WO2012152971A1 - Materiales compuestos de cerámica y whiskers de alfa-alumina y procedimiento de obtención - Google Patents

Materiales compuestos de cerámica y whiskers de alfa-alumina y procedimiento de obtención Download PDF

Info

Publication number
WO2012152971A1
WO2012152971A1 PCT/ES2012/070321 ES2012070321W WO2012152971A1 WO 2012152971 A1 WO2012152971 A1 WO 2012152971A1 ES 2012070321 W ES2012070321 W ES 2012070321W WO 2012152971 A1 WO2012152971 A1 WO 2012152971A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
alumina
whiskers
sintering
ceramic
Prior art date
Application number
PCT/ES2012/070321
Other languages
English (en)
French (fr)
Inventor
Ramón TORRECILLAS SAN MILLÁN
María Isabel ALVAREZ CLEMARES
Luis Antonio DÍAZ RODRIGUEZ
Carmen CERECEDO FERNÁNDEZ
Víctor Manuel VALCÁRCEL JUÁREZ
Francisco GUITIÁN RIVERA
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidade De Santiago De Compostela filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2012152971A1 publication Critical patent/WO2012152971A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention can be included in the field of composite materials, in particular in the field of ceramic materials containing particles of high aspect ratio (fibers or whiskers) as reinforcing material.
  • silicon carbide whiskers are used due to the improvement experienced by mechanical resistance.
  • SiC whiskers degrade over time causing the material to lose stability and, therefore, not suitable as an element. structural.
  • non-oxidic ceramic whiskers are an advantage, giving rise to a more stable material for a wider range of working temperatures.
  • Alumina whiskers are an especially interesting option in this case because it is a non-oxidizable material, of great chemical stability and with good mechanical properties.
  • the efficiency as reinforcement of these materials depends on their aspect ratio. Whiskers are less effective as reinforcement when their aspect ratio decreases as they result in lower fracture toughness and resistance [H. Fukuda, W.-T. Chou .; J. Mater. Sci. 17, (1982) 1003-11; Y. Baek, CH Kim; J. Mater. Sci. 24, (1989) 1589-93; I. Wadswirth, R. Stevens; J. er. Ceram Soc.
  • alumina fibers with alpha crystalline structure also called ⁇ -alumina whiskers
  • ⁇ -alumina whiskers as reinforcement in dense ceramic matrices
  • the crystalline ⁇ -alumina fibers may also have high aspect ratios that are directly proportional to the reinforcing effect in the matrix.
  • the process for obtaining the composite material does not require the addition of sintering additives, obtaining a material with theoretical densities greater than 98%, in which the whiskers are homogeneously distributed.
  • a first aspect of the invention is a composite material comprising at least one matrix of a ceramic nature, and a reinforcement comprising a-alumina whiskers.
  • the invention is directed to a process for obtaining a composite material ceramic as previously defined comprising:
  • the invention is further directed to a composite material obtainable according to the procedure described above.
  • a final aspect of the invention is the use of the ceramic composite material defined above for the preparation of structural components. DESCRIPTION OF THE FIGURES
  • ⁇ Figure 2. Micrograph showing the arrangement of the fibers in the green body of an alumina composite material reinforced with ⁇ -alumina whiskers prepared according to the process of the invention.
  • Figure 3 Micrograph of the fiber arrangement in the sintered body at 1700 ° C of a mullite composite material reinforced with alumina whiskers.
  • Figure 4. Graph showing the deformation of an alumina material reinforced with ⁇ -alumina whiskers, prepared according to the method of the invention, after 90 hours at temperatures between 1200 and 1350 ° C and subjected to 100 MPa (line with rhombuses). At Graph compares said deformation with that recorded for the same type of alumina without reinforcement (lines of triangles and squares) and for an alumina composite with 17% silicon carbide (dashed line).
  • the present invention relates to a composite material comprising at least one matrix of a ceramic nature and alumina whiskers, wherein said a-alumina whiskers act as reinforcing material.
  • ⁇ -alumina whiskers refers to crystalline aluminum oxide fibers with preferential growth in the c-axis direction of the hexagonal system present in the corundum phase.
  • the average aspect ratio of ⁇ -alumina whiskers is greater than 8, more preferably it is greater than 9.
  • the density of the composite material is greater than 98% of its theoretical density, that is, of its density in the absence of pores.
  • a preferred aspect of the invention is that in which the total content of ⁇ -alumina whiskers in the composite material is comprised between 0.5% and 50%, by weight. Lower contents give rise to a significant difference in the mechanical behavior of the matrix and, on the other hand, higher contents of alumina whiskers do not suppose an effective reinforcement because the whiskers are not dispersed correctly and can be a source of defects in the material.
  • the total content of ⁇ -alumina whiskers is between 1 and 30%, more preferably between 1 and fifteen%.
  • the alumina whiskers are homogeneously distributed in the matrix of the ceramic material. This homogeneity in the distribution is a crucial factor in order to achieve an improvement in the overall mechanical behavior of the composite material.
  • the alumina whiskers have a diameter between 0.1 and 10 ⁇ , more preferably between 0.1 and 5 ⁇ , and a length between 5 and 500 um.
  • any one used in the manufacture of ceramic composites can be used.
  • said ceramic material is selected from alumina, silica, magnesia, mullite, zirconia, aluminosilicates of metals such as lithium, magnesium or barium.
  • the ceramic matrix may comprise mixtures of said ceramic materials.
  • the object of the invention is also a process for obtaining ceramic composite materials such as those described above, which comprises adding the ceramic material to a dispersion of a-alumina whiskers and the intimate synthesis of the mixture obtained by means of a sintering technique. selected from sintering by plasma discharge, hot isostatic pressing or sintering in microwave ovens.
  • a preferred aspect of the process of the invention is that in which the addition of the ⁇ -alumina whiskers in step (a) takes place by stirring in a solvent boiling.
  • This method is less aggressive than those referenced in other works that mainly use ultrasonic probes to achieve a good degree of dispersion and that normally entails the rupture of the fibers of greater length decreasing their aspect ratio.
  • the dispersion of the alumina whiskers in a boiling solvent makes it possible to improve the breakdown of the fibers and to do it smoothly, avoiding their breakage.
  • a composite material is obtained where the ⁇ -alumina fibers or whiskers are homogeneously dispersed in the ceramic matrix preserving a high aspect ratio, equal to or greater than 8 and preferably greater than 9 and improving the mechanical properties of the material.
  • step (a) The addition of the ceramic material in step (a) is preferably carried out at the boiling temperature of the solvent, subjecting the mixture to stirring and heating until the solvent is completely removed.
  • the dispersion once dried, is then introduced into a heating system, preferably an oven, where it is maintained at a preferred temperature between 100 and 150 ° C, and more preferably 120 ° C .
  • the mixture is then subjected to a milling and sieving process by using a standard mesh with the selected light size, preferably between 60 and 70 um, more preferably 63 ⁇ , resulting in a powder material that can be subsequently subjected to a uniaxial pressing step, preferably in hydraulic press at a pressure preferably between 10 and 30 MPa, and more preferably 15 MPa.
  • step (b) is performed by the plasma discharge sintering technique (Spark Plasma Sintering).
  • spark Plasma Sintering the plasma discharge sintering technique
  • the use of this technique allows to obtain materials with a density close to their theoretical density, this being calculated from the density of the single crystal of the phases that make up the material, applying the law of mixtures at lower temperatures than by other methods and without the need to use sintering additives that can have counterproductive effects (such as the formation of vitreous phases that decrease mechanical resistance at high temperature) depending on the application of the material.
  • the Spark Plasma Sintering process is carried out at a pressure preferably between 5 and 800 MPa, more preferably, 80 MPa, at a temperature equal to or less than 2000 ° C.
  • plasma discharge sintering is the method preferably carried out in the invention, said method is not limiting, and other sintering techniques such as hot isostatic pressing (HIP) or sintering can be used. Microwaves .
  • HIP hot isostatic pressing
  • Microwaves Microwaves .
  • a further object of the invention is related to the use of these materials in structural applications.
  • said structural applications may consist of transport vehicle brakes, high temperature components, preferably greater than 1000 ° C, or shields, among other possibilities.
  • Example 1 Alumina material reinforced with 5% by weight of ⁇ -alumina whiskers
  • the raw materials used were the following:
  • Alumina - alumina with average particle size 158 nm and purity greater than 99% (Taimei);
  • Alumina Whiskers Long-Alumina Whiskers
  • ⁇ -alumina whiskers were added, at 5% by weight, while maintaining the dispersion and subsequently the ceramic material (alumina).
  • the dispersion was kept under stirring and heating until the solvent was removed.
  • the dry dispersion was maintained for 24 hours in an oven at a temperature of 120 ° C.
  • the green body was obtained by uniaxial pressing in a hydraulic powder press at a pressure of 15 MPa.
  • the preform obtained in this case was a cylinder of 20 mm in diameter and variable height depending on the amount of material used.
  • Figure 2 shows the arrangement of the fibers in said green body.
  • the density of the material thus obtained was 3.9 g / cm 3 , therefore greater than 99% of the theoretical density of alumina.
  • the material was subjected to an indentation tenacity test, obtaining a value of 5.2 ⁇ 0.01 MPa-m 1 2 . Its resistance to bending and deformation at high Temperatures were characterized by three-point bending tests. As a value of its flexural strength 300 MPa were obtained. The deformation values at the different test temperatures are shown in Table 1.
  • Figure 4 shows the values obtained after subjecting the alumina composite material reinforced with -aluminum whiskers at temperatures between 1200 and 1350 ° C and 10OOMPa for 90h (diamond line), comparing the results of said deformation with that recorded for the same type of alumina without reinforcement (lines of triangles and squares) and for the composite material of alumina with 17% silicon carbide (dashed line).
  • the alumina composite material reinforced with 5% of alumina whiskers densified at 1700 ° C has a very low deformation at high temperature, similar to that of the alumina composite material with a higher content of reinforcement (17%) of silicon carbide.
  • Example 2 Mullite material reinforced with 20% by weight of a-alumina whiskers
  • the raw materials used were the following:
  • Mullita Baikowski 193 CR, of particle size 2.7 ⁇ and purity (Baikowski); -Alumma Whiskers: a-alumina whiskers of length 5-500 ⁇ and average diameter 0.1-10 ⁇ ; with a purity of 98-99% (Neoker);
  • a dispersion of ⁇ -alumina and mullite whiskers was obtained following the same boiling process as in example 1. The dispersion was then dried by stirring and heating simultaneously until the solvent was removed.
  • the green body was obtained by uniaxial pressing in a hydraulic powder press at a pressure of 15 MPa.
  • the preform obtained in this case was a cylinder of 20 mm in diameter and variable height depending on the amount of material used.
  • Figure 3 shows the arrangement of the fibers in said sintered body.
  • the density of the material thus obtained was 3.14 g / cm 3 , therefore greater than 98.4% of the theoretical density of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

La presente invención se refiere aun material compuestoque comprende al menos una matriz de naturaleza cerámica y un material de refuerzo que comprende whiskers de α-alúmina, a un procedimiento para su obtención, así como al uso del mismo en componentes estructurales.

Description

MATERIALES COMPUESTOS DE CERÁMICA Y WHISKERS DE α-ALUMINA Y
PROCEDIMIENTO DE OBTENCIÓN
CAMPO DE LA INVENCIÓN
La presente invención se puede incluir en el campo de los materiales compuestos, en concreto en el campo de los materiales cerámicos que contienen partículas de elevada relación de aspecto (fibras o whiskers) como material de refuerzo .
ANTECEDENTES DE LA INVENCIÓN
La elevada resistencia al desgaste y a elevadas temperaturas, y la rigidez, entre otras propiedades, de los materiales cerámicos, los han convertido en candidatos potenciales para el desarrollo de estructuras sometidas a requerimientos mecánicos que otros materiales, como metales o polímeros, no pueden satisfacer.
Existen ya desde los años 80, numerosos estudios en los cuales se ha tratado de mejorar propiedades como la tenacidad o la resistencia a la deformación a alta temperatura de las cerámicas estructurales ya conocidas. A partir de la aparición de dichos estudios se ha generalizado el uso de whiskers como refuerzo de materiales cerámicos.
En la mayoría de casos se emplean whiskers de carburo de silicio debido a la mejora que experimenta la resistencia mecánica. Sin embargo, dichos materiales no son aptos para el trabajo a alta temperatura en atmósferas oxidantes, debido a que bajo dichas condiciones, los whiskers de SiC se degradan con el tiempo haciendo que el material pierda estabilidad y, por tanto, no sea adecuado como elemento estructural .
En este sentido, el empleo de whiskers de cerámica no oxídica supone una ventaja, dando lugar a un material más estable para un rango más amplio de temperaturas de trabajo. Los whiskers de alúmina resultan una opción especialmente interesante en este caso debido a que es un material no oxidable, de gran estabilidad química y con buenas propiedades mecánicas. Sin embargo, la eficiencia como refuerzo de estos materiales depende de su relación de aspecto. Los whiskers resultan menos eficaces como refuerzo cuando disminuye su relación de aspecto ya que dan lugar a tenacidades y resistencias a fractura inferiores [H. Fukuda, W.-T. Chou.; J. Mater. Sci. 17, (1982) 1003-11; Y. Baek, C.H. Kim; J. Mater. Sci. 24, (1989) 1589-93; I. Wadswirth, R. Stevens; J. er. Ceram. Soc. 9, (1992) 153-163] . Sin embargo, trabajar con relaciones de aspecto elevadas conlleva como inconveniente principal la aglomeración de los whiskers, resultando dichos aglomerados una fuente de defectos en el material. Por ello, su procesamiento incluye generalmente etapas como la molienda o dispersión mediante ultrasonidos que homogenizan la distribución de los whiskers, pero que reducen su relación de aspecto.
En el estado del arte existen numerosas referencias al uso de whiskers de alúmina como refuerzo de matrices metálicas [J. Corrochano, C. Cerecedo, V. Valcárcel, M. Lieblich, F. Guitián; Materials Letters 62, (2008) 103-105] y poliméricas [Z. Wen, M. Wu, T. Itoh, M. Kubo, Z. Lin, O.
Yamamoto; Solid State Ionics 148, (2002) 185-91] . Existen también algunas referencias al empleo de los mismos como refuerzo de materiales cerámicos. Asi, en la patente EP0282879 se reivindica un material donde la matriz es una vitrocerámica de aluminosilicato de litio y que se caracteriza porque las fibras se encuentran con una orientación unidireccional dentro de una estructura multicapa. La patente europea EP0194811 protege un material que contiene whiskers cerámicos con untamente con partículas de refuerzo en una matriz cerámica, no obstante se hace necesario el empleo de aditivos de s int er i z ación , no indicándose el grado de densidad del material obtenido. Finalmente, en la patente W02009 / 102815 los inventores reivindican un material compuesto poroso de alúmina con fibras de alúmina. También existen algunos artículos [Nevarez-Rascon, A. Aguilar-Elguezabal, E. Orrantia, M.H. Bocanegra-Bernal ; Int. Journal of Refractory Metals and Hard Materials 29, (2011) 333-340; Nevarez-Rascon, A. Aguilar- Elguezabal, E. Orrantia, M.H. Bocanegra-Bernal ; Int . Acta Biomaterialia 6, (2010) 563-570], donde se indica el uso de fibras de alúmina como refuerzo de composites cerámicos pero donde en ningún caso se obtienen densidades teóricas superiores al 98%.
Si bien existen referencias en la literatura en las que se menciona la utilización de whiskers de alúmina en matrices cerámicas, no se ha constatado en el estado de la técnica ningún documento que describa el uso de whiskers de -alúmina como refuerzo de materiales cerámicos densos para ser empleados con funcionalidad estructural a alta temperatura, que permitan ser además obtenidos sin utilizar aditivos de sinterización .
BREVE DESCRIPCIÓN DE LA INVENCIÓN
Los autores de la presente invención han encontrado que el empleo de fibras de alúmina con estructura cristalina alfa, también denominados whiskers de α-alúmina, como refuerzo en matrices cerámicas densas, permite obtener un material compuesto muy adecuado para su utilización en aplicaciones estructurales, que no sufre degradaciones a altas temperaturas, preferentemente superiores a 1000°C. Las fibras cristalinas de α-alúmina pueden además presentar relaciones de aspecto elevadas que son directamente proporcionales al efecto de refuerzo en la matriz.
Además, el procedimiento de obtención del material compuesto no necesita la adición de aditivos de sinterización, consiguiéndose un material con densidades teóricas superiores al 98%, en el que los whiskers se encuentran homogéneamente distribuidos.
De este modo, un primer aspecto de la invención lo constituye un material compuesto que comprende al menos una matriz de naturaleza cerámica, y un refuerzo que comprende whiskers de a-alúmina.
En otro aspecto, la invención se dirige a un procedimiento para la obtención de un material compuesto cerámico como se ha definido previamente que comprende:
a) adición de un material cerámico a una dispersión de whiskers de -alúmina; y
b) sinterización de la mezcla obtenida mediante una técnica de sinterización seleccionada entre sinterización por descarga de plasma, prensado isostático en caliente o sinterización en hornos de microondas .
La invención se dirige además a un material compuesto obtenible según el procedimiento anteriormente descrito.
Un último aspecto de la invención lo constituye el uso del material compuesto cerámico definido anteriormente para la elaboración de componentes estructurales . DESCRIPCIÓN DE LAS FIGURAS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de figuras en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1.- Micrografía de los whiskers de a-alúmina empleados .
· Figura 2.- Micrografía que muestra la disposición de las fibras en el cuerpo en verde de un material compuesto de alúmina reforzado con whiskers de α-alúmina preparado según el procedimiento de la invención.
Figura 3.- Micrografía de la disposición de las fibras en el cuerpo sinterizado a 1700°C de un material compuesto de mullita reforzado con whiskers de a- alúmina .
Figura 4.- Gráfico en el cual se representa la deformación de un material de alúmina reforzado con whiskers de α-alúmina, preparado según el procedimiento de la invención, tras 90h a temperaturas entre 1200 y 1350°C y sometido a 100 MPa (línea con rombos) . En el gráfico se compara dicha deformación con la registrada para el mismo tipo de alúmina sin reforzar (lineas de triángulos y cuadrados) y para un composite de alúmina con un 17% de carburo de silicio (linea discontinua) .
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere a un material compuesto que comprende al menos una matriz de naturaleza cerámica y whiskers de -alúmina, donde dichos whiskers de a-aúmina actúan como material de refuerzo.
El término "whiskers de α-alúmina" se refiere a fibras cristalina de óxido de aluminio con crecimiento preferencial en la dirección del eje c del sistema hexagonal presente en la fase corindón.
En una realización preferente, la relación de aspecto promedio de los whiskers de α-alúmina es superior a 8, más preferiblemente es superior a 9.
Por "relación de aspecto" debe entenderse el cociente entre la longitud de las fibras y el diámetro de las mismas. El hecho de que los whiskers puedan mantener una relación de aspecto superior a 8 dentro de la matriz cerámica supone una ventaja importante, dado que los mecanismos de puenteo que actúan evitando la propagación de grietas son más eficaces.
En otra realización preferente, la densidad del material compuesto es superior al 98% de su densidad teórica, es decir, de su densidad en ausencia de poros.
Un aspecto preferente de la invención es aquel en el que el contenido total de whiskers de α-alúmina en el material compuesto se encuentra comprendido entre un 0.5% y un 50%, en peso. Contenidos inferiores dan lugar a una diferencia significativa en el comportamiento mecánico de la matriz y, por otra parte, contenidos superiores de whiskers de a- alúmina no suponen un refuerzo eficaz debido a que los whiskers no se dispersan correctamente y pueden suponer una fuente de defectos en el material. De forma preferente, el contenido total de whiskers de α-alúmina se encuentra comprendido entre 1 y 30%, más preferentemente entre 1 y 15%.
Los whiskers de -alúmina se encuentran homogéneamente distribuidos en la matriz del material cerámico. Esta homogeneidad en la distribución resulta un factor crucial de cara a conseguir una mejora en el comportamiento mecánico global del material compuesto.
En otra realización preferente, los whiskers de a- alúmina presentan un diámetro de entre 0.1 y 10 μπι, más preferentemente entre 0.1 y 5 μπι, y una longitud de entre 5 y 500 um.
Como material constituyente de la matriz cerámica puede emplearse cualquiera que se utilice en la fabricación de composites cerámicos.
En una realización particular, dicho material cerámico se selecciona entre alúmina, silica, magnesia, mullita, zirconia, aluminosilicatos de metales como litio, magnesio o bario. Asimismo, la matriz cerámica puede comprender mezclas de dichos materiales cerámicos.
Es asimismo objeto de la invención un procedimiento de obtención de materiales compuestos cerámicos como los descritos anteriormente que comprende la adición del material cerámico a una dispersión de whiskers de a-alúmina y la s int e r i z aci ón de la mezcla obtenida mediante una técnica de sinterización seleccionada entre sinterización por descarga de plasma, prensado isostático en caliente o sinterización en hornos de microondas .
Este procedimiento permite superar los problemas de aglomeración durante el procesamiento de los whiskers y la dificultad para obtener materiales compuestos con densidades elevadas que den lugar a una mejora en las propiedades mecánicas de dichos materiales. En dicho procedimiento se emplean técnicas de sinterización caracterizadas por el uso de hornos no convencionales, no siendo necesario el uso de aditivos de sinterización.
Un aspecto preferente del procedimiento de la invención es aquel en que la adición de los whiskers de α-alúmina en la etapa (a) tiene lugar mediante agitación en un disolvente en ebullición. Dicho método, resulta menos agresivo que los referenciados en otros trabajos que principalmente emplean sondas ultrasónicas para lograr un buen grado de dispersión y que normalmente conlleva la ruptura de las fibras de mayor longitud disminuyendo su relación de aspecto. Por el contrario, la dispersión de los whiskers de -alúmina en un disolvente en ebullición, permite mejorar la desaglomeración de las fibras y efectuarla de manera suave, evitando su ruptura. Como resultado, se obtiene un material compuesto donde las fibras o whiskers de α-alúmina se encuentran homogéneamente dispersas en la matriz cerámica conservando una elevada relación de aspecto, igual o superior a 8 y preferentemente superior a 9 y mejorando las propiedades mecánicas del material.
La adición del material cerámico en la etapa (a) se lleva a cabo preferentemente a la temperatura de ebullición del disolvente, sometiendo la mezcla a agitación y calefacción hasta la eliminación total del disolvente.
En una realización preferida de la invención, la dispersión, una vez seca, es introducida a continuación en un sistema calefactor, preferentemente una estufa, donde se mantiene a una temperatura preferente de entre 100 y 150°C, y más preferente de 120°C.
Asimismo, en una realización preferida aunque no limitante de la invención, la mezcla es sometida a continuación a un proceso de molturación y tamizado mediante el empleo de una malla estándar con el tamaño de luz seleccionado, preferentemente entre 60 y 70 um, más preferentemente 63 μπι, dando lugar a un material en polvo que puede ser sometido posteriormente a una etapa de prensado uniaxial, preferentemente en prensa hidráulica a una presión comprendida preferentemente entre 10 y 30 MPa, y más preferentemente de 15 MPa.
Otro aspecto preferente del procedimiento de la invención es aquel en el que la sinterización de la etapa (b) se realiza mediante la técnica de sinterización por descarga de plasma (Spark Plasma Sintering) . A diferencia de otros métodos de sinterización, el uso de esta técnica permite obtener materiales con una densidad próxima a su densidad teórica, siendo ésta calculada a partir de la densidad del monocristal de las fases que componen el material, aplicando la ley de mezclas a temperaturas más bajas que por otros métodos y sin necesidad de emplear aditivos de sinterización que pueden tener efectos contraproducentes (como formación de fases vitreas que disminuyan la resistencia mecánica a alta temperatura) en función de la aplicación del material.
En una realización preferida de la invención, el proceso de Spark Plasma Sintering se lleva a cabo a una presión comprendida preferentemente entre 5 y 800 MPa, más preferentemente, de 80 MPa, a una temperatura igual o inferior a 2000°C.
Si bien la sinterización por descarga de plasma es el método llevado a cabo de manera preferida en la invención, dicho método no es limitante, pudiéndose emplear otras técnicas de sinterización como, por ejemplo, el prensado isostático en caliente (HIP) o la sinterización en hornos de microondas .
Un objeto adicional de la invención es el relacionado con el uso de estos materiales en aplicaciones estructurales. De manera preferida, dichas aplicaciones estructurales pueden consistir en frenos de vehículos de transporte, componentes para alta temperatura, preferentemente superiores a 1000°C, o blindajes, entre otras posibilidades.
REALIZACION PREFERENTE DE LA INVENCION
Ejemplo 1. Material de alúmina reforzada con un 5% en peso de whiskers de α-alúmina
Las materias primas de partida empleadas fueron las siguientes :
Alúmina: -alúmina con tamaño medio de partícula 158 nm y pureza superior al 99% (Taimei);
Whiskers de alúmina: whiskers de -alúmina de longitud
5-500 μπι y diámetro promedio 0.1-10 um, con una pureza del 98-99% (Neoker) (ver figura 1) ;
· Propanol.
Se calentó en un recipiente una cantidad en exceso de propanol hasta alcanzar la temperatura de ebullición.
Seguidamente se añadieron los whiskers de α-alúmina, en un 5% en peso, manteniendo en ebullición la dispersión y posteriormente el material cerámico (alúmina) . La dispersión se mantuvo en agitación y calefacción hasta la eliminación del disolvente. La dispersión seca se mantuvo durante 24h en una estufa a una temperatura de 120°C.
Posteriormente se molturó y tamizó mediante una malla estándar con una luz de 63 μπι.
El cuerpo en verde fue obtenido mediante el prensado uniaxial en prensa hidráulica del polvo a una presión de 15 MPa . La preforma obtenida en este caso fue un cilindro de 20 mm de diámetro y altura variable en función de la cantidad de material empleada. La figura 2 muestra la disposición de las fibras en el mencionado cuerpo en verde.
Finalmente la sinterización del producto asi obtenido fue realizada mediante la técnica de Spark Plasma Sintering. Las condiciones empleadas en el ciclo fueron las siguientes: · Atmósfera de vacio (10_1 mbars);
Velocidad de calentamiento 50°C/min;
Temperatura máxima: 1700° C;
Presión aplicada: 80 MPa (aplicados a 600° C a una velocidad de 4MPa) ;
· Estancia a máxima temperatura: 2 min;
Enfriamiento libre.
La densidad del material asi obtenido resultó ser del 3.9 g/cm3, superior por tanto al 99% de la densidad teórica de la alúmina.
El material fue sometido a un test de tenacidad por indentación, obteniéndose un valor de 5.2 ± 0.01 MPa-m1 2. Su resistencia a la flexión y su deformación a altas temperaturas se caracterizaron mediante ensayos de flexión en tres puntos. Como valor de su resistencia a la flexión se obtuvieron 300 MPa. Los valores de deformación a las diferentes temperaturas de ensayo se recogen en la Tabla 1.
Figure imgf000011_0001
Este mismo ensayo se efectuó sobre un material con el mismo tipo de alúmina sin reforzar y con un material compuesto de alúmina reforzado con un 17% de carburo de silicio .
En la figura 4 se muestran los valores obtenidos tras someter el material compuesto de alúmina reforzado con whiskers de -alúmina a temperaturas entre 1200 y 1350°C y lOOMPa durante 90h (linea de rombos) , comparándose los resultados de dicha deformación con la registrada para el mismo tipo de alúmina sin reforzar (lineas de triángulos y cuadrados) y para el material compuesto de alúmina con un 17% de carburo de silicio (linea de trazo discontinuo) .
Como puede observarse en la figura 4, el material compuesto de alúmina reforzado con un 5% de whiskers de a- alúmina densificada a 1700°C presentan una deformación muy baja a alta temperatura, similar a la del material compuesto de alúmina con un mayor contenido de refuerzo (17%) de carburo de silicio.
Ejemplo 2. Material de mullita reforzada con un 20% en peso de whiskers de a-alúmina
Las materias primas de partida empleadas fueron las siguientes:
Mullita: Baikowski 193 CR, de tamaño de partícula 2.7 μπι y pureza (Baikowski); Whiskers de -alumma: whiskers de a-alumina de longitud 5-500 μπι y diámetro promedio 0.1-10 μπι; con una pureza del 98-99% (Neoker) ;
Propanol.
Se obtuvo una dispersión de whiskers de α-alúmina y mullita siguiendo el mismo proceso de mezcla en ebullición que en el ejemplo 1. La dispersión fue secada a continuación mediante agitación y calentamiento simultáneo hasta la eliminación del disolvente.
Una vez seca la dispersión se mantuvo durante 24h en una estufa a una temperatura de 120°C.
Posteriormente se molturó y tamizó mediante una malla estándar con una luz de 63 um.
El cuerpo en verde fue obtenido mediante el prensado uniaxial en prensa hidráulica del polvo a una presión de 15 MPa . La preforma obtenida en este caso fue un cilindro de 20 mm de diámetro y altura variable en función de la cantidad de material empleada.
Finalmente la sinterización del producto asi obtenido fue realizada mediante la técnica de Spark Plasma Sintering. Las condiciones empleadas en el ciclo fueron las siguientes:
Atmósfera de vacio (10_1 mbars);
Velocidad de calentamiento 50°C/min;
Temperatura máxima: 1700°C;
Presión aplicada: 80 MPa (aplicados a 600°C a una velocidad de 4MPa) ;
Estancia a máxima temperatura: 5 min;
Enfriamiento libre.
La figura 3 muestra la disposición de las fibras en el mencionado cuerpo sinterizado.
La densidad del material asi obtenido resultó ser del 3,14 g/cm3, superior por tanto al 98,4% de la densidad teórica del material.
Los valores de deformación a las diferentes temperaturas de ensayo se recogen en la Tabla 2.
Tabla 2
Figure imgf000013_0001

Claims

Reivindicaciones
1. Material compuesto que comprende al menos una matriz de naturaleza cerámica y un refuerzo que comprende whiskers de -alúmina .
2. Material compuesto según reivindicación 1, donde los whiskers de α-alúmina tienen una relación de aspecto superior a 8.
Material según cualquiera de las reivindicaciones 1 a donde el material compuesto tiene una densidad superior 98% de su densidad teórica.
4. Material compuesto según cualquiera de las reivindicaciones 1 a 3, donde el porcentaje de whiskers de α-alúmina en el material compuesto se encuentra comprendido entre un 0.5 y un 50% en peso.
5. Material compuesto según cualquiera de las reivindicaciones 1 a 4, donde los whiskers de α-alúmina se encuentran homogéneamente distribuidos.
6. Material compuesto según cualquiera de las reivindicaciones 1 a 5, donde los whiskers de a-alúmina presentan un diámetro comprendido entre 0.1 y 10 μπι y una longitud entre 5 y 500 μπι.
7. Un procedimiento para la preparación de un material compuesto como se define en cualquiera de las reivindicaciones 1 a 6, que comprende::
a) adición del material cerámico a una dispersión de whiskers de α-alúmina; y
b) sinterización de la mezcla obtenida en (a) mediante un método de sinterización seleccionado entre sinterización por descarga de plasma, prensado isostático en caliente o sinterización en hornos de microondas.
8. Procedimiento según la reivindicación 7, caracterizado porque la dispersión de los whiskers de -alúmina durante la etapa (a) tiene lugar mediante agitación en un disolvente en ebullición .
9. Procedimiento según cualquiera de las reivindicaciones 7 a 8, donde la sinterización de la etapa (b) se realiza mediante descarga de plasma.
10. Un material compuesto obtenible según un procedimiento como se define en cualquiera de las reivindicaciones 7 a 9.
11. Uso de un material compuesto como se define en cualquiera de las reivindicaciones 1 a 6 y 10, para la elaboración de componentes estructurales.
12. Uso de un material compuesto, según la reivindicación 11, donde dicho componente estructural es seleccionado entre frenos de vehículos de transporte, componentes para alta temperatura y blindajes.
PCT/ES2012/070321 2011-05-06 2012-05-07 Materiales compuestos de cerámica y whiskers de alfa-alumina y procedimiento de obtención WO2012152971A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201130724 2011-05-06
ES201130724A ES2391961B1 (es) 2011-05-06 2011-05-06 Materiales compuestos de ceramica y whiskers de alumina y procedimiento de obtencion

Publications (1)

Publication Number Publication Date
WO2012152971A1 true WO2012152971A1 (es) 2012-11-15

Family

ID=47138825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070321 WO2012152971A1 (es) 2011-05-06 2012-05-07 Materiales compuestos de cerámica y whiskers de alfa-alumina y procedimiento de obtención

Country Status (2)

Country Link
ES (1) ES2391961B1 (es)
WO (1) WO2012152971A1 (es)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.NEVAREZ-RASCON: "Compressive strength, hardness and fracture toughness of A1203 whiskers reinforced ZTA and ATZ nanocomposites: Weibull analysis", INT.JOURNAL OF REFRACTORY METALS AND HARD MATERIALS, vol. 29, 22 December 2010 (2010-12-22), pages 333 - 340 *
B.SONUPARLAK: "Tailoring the Microstructure of Ceramics and Ceramic Matrix Composites Through Processing", COMPOSITES SCIENCE AND TECHNOLOGY, vol. 37, 1990, pages 299 - 312 *
NOBUYUKI TAMARI ET AL.: "Mechanical Properties of Zirconia-Alumina Whisker Composite Ceramics", JOURNALOF CERAMIC SOCIETY OF JAPAN, vol. 100, no. 4, 1992, pages 613 - 616 *

Also Published As

Publication number Publication date
ES2391961A1 (es) 2012-12-03
ES2391961B1 (es) 2013-10-10

Similar Documents

Publication Publication Date Title
US20100081556A1 (en) Oxide-based ceramic matrix composites
KR101556719B1 (ko) 세라믹 재료
JPH01257165A (ja) 高温安定低熱膨張セラミックおよびその製造方法
JP4878343B2 (ja) 透光性希土類ガリウムガーネット焼結体及びその製造方法と磁気光学デバイス
JPWO2013146954A1 (ja) 多孔質材料及びハニカム構造体
CN105585313A (zh) 氧化铝陶瓷粉料、氧化铝陶瓷及其制备方法
RU2592319C2 (ru) Керамический композиционный материал, состоящий из оксида алюминия и оксида циркония в качестве основных компонентов
US20120142237A1 (en) Sintered moulded
ES2362533A1 (es) Material compuesto con coeficiente de expansión térmica controlado con cerámicas oxídicas y su procedimiento de obtención.
Sommer et al. Effect of preparation route on the properties of slip-casted Al2O3/YAG composites
WO2007142921A1 (en) Cordierite formation
Pulgarin et al. Three different alumina–zirconia composites: Sintering, microstructure and mechanical properties
JPH10338571A (ja) 反応結合ムライト含有セラミックス
KR20120086793A (ko) 다공성 반응소결질화규소 제조 방법 및 그에 사용되는 가소결 규소혼합분말 과립 및 다공성 반응소결질화규소 제조 방법
Kim et al. Mechanical properties of Al2TiO5 ceramics for high temperature application
WO2012152971A1 (es) Materiales compuestos de cerámica y whiskers de alfa-alumina y procedimiento de obtención
ZHUkOv et al. Porous ceramics obtained with the use of aluminum hydroxide powder
Yin et al. Low temperature spark plasma densification of nano-SiC powder with novel Al2O3-Ho2O3 additives for SiC/SiC applications
KR101698378B1 (ko) 실리콘 카바이드 세라믹 및 이의 제조방법
WO2010014849A2 (en) Partially stabilized zirconia materials
JP3121996B2 (ja) アルミナ質焼結体
Teow et al. Effect of graphene-oxide addition on the microstructure and mechanical properties of two-stage sintered zirconia-toughened alumina (ZTA) composites
Jin et al. Effect of Y2O3 on the sintering, mechanical and dielectric properties of mullite/h-BN composites
WO2023120371A1 (ja) ジルコニア焼結体とその製造方法
Mesquita et al. Fabrication of porous silicon nitride by sacrificing template method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782359

Country of ref document: EP

Kind code of ref document: A1