WO2012152261A1 - Procédé de mesure 3d d'objets - Google Patents

Procédé de mesure 3d d'objets Download PDF

Info

Publication number
WO2012152261A1
WO2012152261A1 PCT/DE2012/000511 DE2012000511W WO2012152261A1 WO 2012152261 A1 WO2012152261 A1 WO 2012152261A1 DE 2012000511 W DE2012000511 W DE 2012000511W WO 2012152261 A1 WO2012152261 A1 WO 2012152261A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
light source
statistical
optical pattern
projection
Prior art date
Application number
PCT/DE2012/000511
Other languages
German (de)
English (en)
Inventor
Richard Kowarschik
Marcus Große
Martin Schaffer
Bastian HARENDT
Original Assignee
Friedrich-Schiller-Universität Jena
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46489133&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012152261(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Friedrich-Schiller-Universität Jena filed Critical Friedrich-Schiller-Universität Jena
Publication of WO2012152261A1 publication Critical patent/WO2012152261A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns

Definitions

  • the invention relates to a method for the fastest possible and highly accurate 3D measurement of objects, in which statistical patterns are projected onto the object to be measured, which are detected by different image views in the image as corresponding image pattern of the object, for example by cameras. From the comparison of these different image patterns, spatial information for the three-dimensional reconstruction of the object is obtained.
  • This object is achieved by a method for 3D measurement of objects, in which at least one statistical optical pattern for location-differentiated detection and three-dimensional evaluation is imaged onto the object where it is arbitrarily changed in position and / or shape.
  • At least one light source (constant light source or controllable pulsed light source) is provided for generating the at least one random optical pattern to be locally differentiated, wherein at least one element changing the beam path is arranged in the beam path of the light source.
  • the measurement accuracy is realized using a single statistical pattern structure, which is continuously changed in shape and / or position on the object.
  • no flexible projection unit is needed.
  • all limitations that exist through the image structure and the projection rate of conventional projection units bypassed.
  • the type of projection even in the case of fast measuring systems always produces a gray pattern structure, and thus the accuracy of previous fast-measuring methods under Use of high-frequency binary images significantly improved (by about a factor of 10).
  • the usual synchronization between the cameras and the projection unit is not necessary, since no exact picture order and / or position of the pattern must be maintained. Only the synchronization of the cameras with each other must be ensured. This increases the flexibility of possible measurement arrangements, since no connection and no direct exchange of information between the projection source and the recorders must exist. Since the projection of the fixed pattern high-quality projection equipment, such as slide projectors can be used, which still in comparison with other projectors, especially modern DLP projectors, realize the highest contrast and the largest resolution, could be slow with the described method improve measuring procedures with regard to their measuring accuracy. In addition, no correction of the gamma function of the projection device is necessary, as is required in digital projection devices. Furthermore, no control computer and no control electronics for the projection unit are needed, which further reduces the processing costs.
  • the surface 2 is to be measured and reconstructed three-dimensionally.
  • a statistical pattern of a photographic image 3 in a projector 4 is projected onto the surface 2 via a deflection mirror 5.
  • the deflection mirror 5 is fixed to a motor 6, in such a way that its axis 7, the plane of the deflection mirror 5 almost, but not quite, perpendicular intersects.
  • the deflection mirror 5 is set in motion, and by the slight tilting of the mirror plane normal to the axis 7 of the motor 6, a tumbling movement of the deflection mirror 5 is achieved. Due to this tumbling movement of the deflection mirror 5, the projected image of the Photo 3 now also in a tumbling manner on the surface to be measured 2 of the object 1.
  • the case during a complete revolution of the mirror always illuminated area represents the limitation of the measurement volume.
  • an automatic zoom lens for example, an automatic zoom lens, a slide-shifting mechanism or a light-changing element, for example a light-diffractive or refractive element
  • a diffractive optical elements could be used as a diffractive element, either by using digitally switchable spatial light modulators or, in the simplest case, by mechanical displacement of the DOE, in which case a coherent light source should be used in each case.
  • a rotatable wedge could be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention a pour but d'effectuer une mesure d'objets d'une manière économique, la plus rapide possible et avec une grande précision. Selon l'invention, au moins modèle optique statique, de préférence une diapositive (3) d'un projecteur (4), est représenté sur la surface (2) à mesurer d'un objet (1) aux fins d'une détection différenciée en fonction des emplacements et d'une évaluation tridimensionnelle. Ce motif subit une modification quelconque, en termes de position et/ou de forme, par exemple, par l'intermédiaire d'un miroir de déviation (5) déplacé par un moteur (6). Le procédé est utilisé pour effectuer une mesure optique de surface rapide et à haute résolution, pour exemple, pour le contrôle qualité.
PCT/DE2012/000511 2011-05-11 2012-05-10 Procédé de mesure 3d d'objets WO2012152261A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011101476.8 2011-05-11
DE102011101476.8A DE102011101476B4 (de) 2011-05-11 2011-05-11 Verfahren zur 3D-Messung von Objekten

Publications (1)

Publication Number Publication Date
WO2012152261A1 true WO2012152261A1 (fr) 2012-11-15

Family

ID=46489133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2012/000511 WO2012152261A1 (fr) 2011-05-11 2012-05-10 Procédé de mesure 3d d'objets

Country Status (2)

Country Link
DE (1) DE102011101476B4 (fr)
WO (1) WO2012152261A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017680A (zh) * 2012-12-05 2013-04-03 长春工业大学 一种汽车主安全气囊装配轮廓尺寸的检测方法及设备
WO2013087065A1 (fr) * 2011-12-16 2013-06-20 Friedrich-Schiller-Universität Jena Procédé de mesure tridimensionnelle d'objets à profondeur limitée
US10502557B2 (en) 2016-06-20 2019-12-10 Cognex Corporation Method for the three dimensional measurement of a moving objects during a known movement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015001365A1 (de) 2015-02-03 2016-08-04 EnShape GmbH Verfahren zur 3d-vermessung von flüssigkeiten und gelen
WO2017220595A1 (fr) 2016-06-20 2017-12-28 Cognex Corporetion Dispositif pour projeter un motif optique à variation temporelle sur un objet à mesurer en trois dimensions
DE102017007191A1 (de) 2017-07-27 2019-01-31 Friedrich-Schiller-Universität Jena Verfahren und Vorrichtung zur Mustererzeugung zur 3D-Messung von Objekten

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625618A (en) * 1969-10-23 1971-12-07 Infrared Ind Inc Optical contour device and method
EP0572798A2 (fr) * 1992-06-03 1993-12-08 Geyer Medizin- und Fertigungstechnik GmbH Dispositif pour la mesure sans contact d'un objet tridimensionnel
DE19623172C1 (de) 1996-06-10 1997-10-23 Univ Magdeburg Tech Verfahren zur dreidimensionalen optischen Vermessung von Objektoberflächen
DE102007007192A1 (de) * 2006-09-13 2008-03-27 Micro-Epsilon Optronic Gmbh Messanordnung und Verfahren zum Erfassen der Oberfläche von Objekten
DE102007019267A1 (de) * 2007-04-24 2008-10-30 Degudent Gmbh Messanordnung sowie Verfahren zum dreidimensionalen Messen eines Objekts
DE102008064104A1 (de) * 2008-12-19 2010-07-01 Afm Technology Gmbh Ost Vorrichtung und Verfahren zum dreidimensionalen optischen Vermessen von stark reflektierenden oder durchsichtigen Objekten
FR2940831A1 (fr) * 2009-01-06 2010-07-09 Peugeot Citroen Automobiles Sa Dispositif d'eclairage d'une entite d'au moins un vehicule automobile
US20100209002A1 (en) * 2007-11-15 2010-08-19 Sirona Dental Systems Gmbh Method for optical measurement of the three dimensional geometry of objects
US20100252634A1 (en) * 2009-04-07 2010-10-07 Metrologic Instruments,Inc. Laser Scanner

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416319A (en) 1993-12-03 1995-05-16 Hughes Aircraft Company Optical scanner with dual rotating wedge mirrors
US6700669B1 (en) 2000-01-28 2004-03-02 Zheng J. Geng Method and system for three-dimensional imaging using light pattern having multiple sub-patterns
US6754370B1 (en) 2000-08-14 2004-06-22 The Board Of Trustees Of The Leland Stanford Junior University Real-time structured light range scanning of moving scenes
US7103212B2 (en) 2002-11-22 2006-09-05 Strider Labs, Inc. Acquisition of three-dimensional images by an active stereo technique using locally unique patterns
DE602004015799D1 (de) 2003-07-24 2008-09-25 Cognitens Ltd Verfahren und system zur dreidimensionalen oberflächenrekonstruktion eines objekts
DE102006001634B3 (de) 2006-01-11 2007-03-01 Tropf, Hermann Erstellung eines Abstandsbildes
DE102006061712A1 (de) 2006-12-28 2008-07-03 Tropf, Hermann Erstellung eines Abstandsbildes
EP2019281B1 (fr) 2007-07-20 2009-09-09 Sick Ag Procédé destiné au fonctionnement d'un capteur en 3D
DE102008002725B4 (de) 2008-06-27 2013-11-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur 3D-Rekonstruktion
IT1391373B1 (it) 2008-10-08 2011-12-13 Selex Communications Spa "dispositivo di scansione laser"
ATE522785T1 (de) 2008-12-18 2011-09-15 Sick Ag Beleuchtungseinheit für 3d-kamera
DE102009040981A1 (de) 2009-09-10 2011-03-17 Friedrich-Schiller-Universität Jena Verfahren zur dreidimensionalen Rekonstruktion von Objekten

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625618A (en) * 1969-10-23 1971-12-07 Infrared Ind Inc Optical contour device and method
EP0572798A2 (fr) * 1992-06-03 1993-12-08 Geyer Medizin- und Fertigungstechnik GmbH Dispositif pour la mesure sans contact d'un objet tridimensionnel
DE19623172C1 (de) 1996-06-10 1997-10-23 Univ Magdeburg Tech Verfahren zur dreidimensionalen optischen Vermessung von Objektoberflächen
DE102007007192A1 (de) * 2006-09-13 2008-03-27 Micro-Epsilon Optronic Gmbh Messanordnung und Verfahren zum Erfassen der Oberfläche von Objekten
DE102007019267A1 (de) * 2007-04-24 2008-10-30 Degudent Gmbh Messanordnung sowie Verfahren zum dreidimensionalen Messen eines Objekts
US20100209002A1 (en) * 2007-11-15 2010-08-19 Sirona Dental Systems Gmbh Method for optical measurement of the three dimensional geometry of objects
DE102008064104A1 (de) * 2008-12-19 2010-07-01 Afm Technology Gmbh Ost Vorrichtung und Verfahren zum dreidimensionalen optischen Vermessen von stark reflektierenden oder durchsichtigen Objekten
FR2940831A1 (fr) * 2009-01-06 2010-07-09 Peugeot Citroen Automobiles Sa Dispositif d'eclairage d'une entite d'au moins un vehicule automobile
US20100252634A1 (en) * 2009-04-07 2010-10-07 Metrologic Instruments,Inc. Laser Scanner

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
A. WIEGMANN; H. WAGNER; R. KOWARSCHIK: "Human face measurement by projecting bandlimited random patterns", OPTICS EXPRESS, vol. 14, 2006, pages 7692 - 7698
J. GÜHRING: "Dense 3-D surface acquisition by structured light using off-the-shelf components", VIDEOMETRICS AND OPTICAL METHODS FOR 3D SHAPE MEASUREMENT, vol. 4309, 2001, pages 220 - 231
J. SALVI; S. FERNANDEZ; T. PRIBANIC; X. LLADO: "A state of the art in structured light patterns for surface profilometry", PATTERN RECOGNITION, vol. 43, no. 8, 2010, pages 2666 - 2680, XP055146133, DOI: doi:10.1016/j.patcog.2010.03.004
M. SCHAFFER; M. GROSSE; R. KOWARSCHIK: "High-speed pattern projection for three-dimensional shape measurement using laser speckles", APPLIED OPTICS, vol. 49, no. 18, 2010, pages 3622 - 3629, XP001555122, DOI: doi:10.1364/AO.49.003622
MARCUS GROSSE, MARTIN SCHAFFER, BASTIAN HARENDT, ANDRICHARD KOWARSCHIK: "Fast data acquisition forthree-dimensional shape measurementusing fi xed-pattern projection andtemporal coding", OE LETTERS, vol. 50, no. 10, October 2011 (2011-10-01), SPIE, PO BOX 10 BELLINGHAM WA 98227-0010, USA, pages 100503-1 - 100503-3, XP040566110 *
S. KÖNIG; S. GUMHOLD: "Image-based motion compensation for structured light scanning of dynamic surfaces", EG WORKSHOP ON DYNAMIC 3D IMAGING, 2007
S. ZHANG: "Recent progresses on real-time 3d shape measurement using digital fringe projection techniques", OPTICS AND LASERS IN ENGINEERING, vol. 48, 2010, pages 149 - 158, XP026780209, DOI: doi:10.1016/j.optlaseng.2009.03.008
S.S.GORTHI; P. RASTOGI: "Fringe projection techniques: Whither we are?", OPTICS AND LASERS IN ENGINEERING, vol. 48, 2010, pages 133 - 140, XP026780207, DOI: doi:10.1016/j.optlaseng.2009.09.001
W. SCHREIBER; G. NOTNI: "Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using fringe projection technique", OPTICAL ENGINEERING, vol. 39, 2000, pages 159 - 169, XP001092868, DOI: doi:10.1117/1.602347
Y. GONG; S. ZHANG: "Ultrafast 3-d shape measurement with an off-the-shelf dlp projector", OPTICS EXPRESS, vol. 18, no. 19, 2010, pages 19743 - 19754
Y. WANG; S. ZHANG: "Superfast multifrequency phase-shifting technique with optimal pulse width modulation", OPTICS EXPRESS, vol. 19, 2011, pages 5149 - 5155
Z. WANG; H. DU; S. PARK; H. XIE: "Three-dimensional shape mea-surement with a fast and accurate approach", APPL. OPT., vol. 48, no. 6, 2009, pages 1052 - 1061

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013087065A1 (fr) * 2011-12-16 2013-06-20 Friedrich-Schiller-Universität Jena Procédé de mesure tridimensionnelle d'objets à profondeur limitée
CN103017680A (zh) * 2012-12-05 2013-04-03 长春工业大学 一种汽车主安全气囊装配轮廓尺寸的检测方法及设备
US10502557B2 (en) 2016-06-20 2019-12-10 Cognex Corporation Method for the three dimensional measurement of a moving objects during a known movement
US10823552B2 (en) 2016-06-20 2020-11-03 Cognex Corporation Method for the three dimensional measurement of moving objects during a known movement
US11243072B2 (en) 2016-06-20 2022-02-08 Cognex Corporation Method for the three dimensional measurement of moving objects during a known movement

Also Published As

Publication number Publication date
DE102011101476A1 (de) 2012-11-15
DE102011101476B4 (de) 2023-05-25

Similar Documents

Publication Publication Date Title
EP2791619B1 (fr) Procédé et dispositif de mesure tridimensionnelle d'objets à profondeur limitée
EP2583055B1 (fr) Procédé de mesure optique et système de mesure destiné à la détermination de coordonnées 3D sur une surface d'un objet de mesure
EP2079981B1 (fr) Dispositif et procédé pour la mesure sans contact d'un contour tridimensionnel
WO2012152261A1 (fr) Procédé de mesure 3d d'objets
DE102012112321B4 (de) Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102016002398B4 (de) Optischer 3D-Sensor zur schnellen und dichten Formerfassung
DE102006042311B4 (de) Dreidimensionale Vermessung von Objekten in einem erweiterten Winkelbereich
EP3298346A1 (fr) Dispositif pour réaliser une mesure en 3d d'un objet
WO2002014845A1 (fr) Dispositif de mesure optique
WO2015048830A1 (fr) Dispositif d'affichage ou de projection pour un signal vidéo ainsi que module d'éclairage et procédé d'étalonnage correspondant
WO2009071611A2 (fr) Procédé d'enregistrement d'une image d'un objet à enregistrer et dispositif d'enregistrement
DE19919584A1 (de) Verfahren und Anordnung zur 3D-Aufnahme
DE10049103A1 (de) Vorrichtung zur Überlagerung von Röntgen-Videobildern
DE19846145A1 (de) Verfahren und Anordung zur 3D-Aufnahme
DE102011001475B4 (de) Verfahren und Vorrichtungen zur Positionsbestimmung
DE102016012130A1 (de) Optischer Scanner für Zahnabformungen, Digitalisierungsverfahren und System für Dentalmodelle
EP2904988B1 (fr) Procédé de mesure tridimensionnelle intraorale
DE102012001307A1 (de) Verfahren und Vorrichtung zur 3D-Messung von Objekten, insbesondere unter hinderlichen Lichtverhältnissen
DE102015208442A1 (de) Verfahren und Vorrichtung zum Ermitteln zumindest eines Objektabbildes in einer Umgebung um einen änderunssensitiven optischen Bildsensor
WO2005059470A1 (fr) Procede de detection et de representation tridimensionnelle dynamique d'une surface
DE19753246C2 (de) Vorrichtung zur Bestimmung von dreidimensionalen Daten von Objekten
DE102007023920A1 (de) Verfahren und Vorrichtung zur Oberflächenerfassung eines räumlichen Objektes
DE102005044912A1 (de) Verfahren und Vorrichtung zur dreidimensionalen optischen Vermessung von spiegelnden Oberflächen
EP0867689A2 (fr) Dispositif de mesure microphotogrammétrique
DE102017007189A1 (de) Verfahren zur 3D-Vermessung von Objekten durch kohärente Beleuchtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733399

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12733399

Country of ref document: EP

Kind code of ref document: A1