WO2012152068A1 - 异型电机 - Google Patents

异型电机 Download PDF

Info

Publication number
WO2012152068A1
WO2012152068A1 PCT/CN2012/000623 CN2012000623W WO2012152068A1 WO 2012152068 A1 WO2012152068 A1 WO 2012152068A1 CN 2012000623 W CN2012000623 W CN 2012000623W WO 2012152068 A1 WO2012152068 A1 WO 2012152068A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoelectric
armature
common axis
shape
magnetic
Prior art date
Application number
PCT/CN2012/000623
Other languages
English (en)
French (fr)
Inventor
陈鹤
Original Assignee
Chen He
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen He filed Critical Chen He
Priority to CA2835659A priority Critical patent/CA2835659A1/en
Priority to US14/117,275 priority patent/US20140292130A1/en
Priority to AU2012253134A priority patent/AU2012253134A1/en
Priority to EP12781831.8A priority patent/EP2712055A1/en
Priority to KR1020137033027A priority patent/KR20140047615A/ko
Priority to JP2014509586A priority patent/JP2014513516A/ja
Priority to SG2013083837A priority patent/SG194923A1/en
Priority to RU2013154966/07A priority patent/RU2013154966A/ru
Publication of WO2012152068A1 publication Critical patent/WO2012152068A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Definitions

  • the present invention relates to the field of electrical machinery, and more particularly to a special-shaped motor including a profiled motor and a profiled generator.
  • Electric motors and generators can be collectively referred to as motors.
  • a motor is an electromagnetic device that converts or transmits electrical energy according to the law of electromagnetic induction.
  • the electric motor can realize the conversion of electric energy to mechanical energy, and the electric machine can realize the conversion of mechanical energy to electric energy, both of which are electric and magnetic conversion operations, and can be mutually modified.
  • the key components are armature components (including auxiliary parts such as wire turns and armature cores) and magnetic pole assemblies (permanent magnets or electromagnets), which can generate electricity and magnetism when they move relative to each other. Interaction. Therefore, the magnetoelectric system composed of the armature assembly and the magnetic pole assembly can be regarded as a basic unit.
  • a motor is a device that converts electrical energy into mechanical energy. It is made by a phenomenon in which a coiled coil is forced to rotate in a magnetic field.
  • the motor is mainly composed of a stator and a rotor.
  • the direction in which the energized conductor is forced to move in the magnetic field is related to the direction of the current and the direction of the magnetic induction line (the direction of the magnetic field).
  • the working principle of the motor is that the magnetic field acts on the current to force the motor to rotate. It converts electrical energy into mechanical energy. It mainly consists of an electromagnet winding or a distributed stator winding for generating a magnetic field and a rotating armature or rotor. The wires in the wires pass through and are rotated by the action of the magnetic field. Some types can be used as motors or as generators.
  • a generator is a device that converts mechanical energy into electrical energy. Its working principle is based on the laws of electromagnetic induction and the law of electromagnetic force. Therefore, the general principle of its construction is: Replacement pages with appropriate magnetically conductive and conductive materials (Article 26) Magnetic circuits and circuits that electromagnetically sense each other to generate electromagnetic power for energy conversion purposes.
  • the stator and the rotor of the generator are assembled by bearings and end caps, so that the rotor can rotate in the stator, or the rotor can be rotated relative to the stator to cut the magnetic induction line, thereby generating an induced potential.
  • the terminal is led out and connected to the circuit, and a current is generated.
  • the prior art motors are generally divided into two types: one is a magnet (divided into a permanent magnet and an electromagnet), and the coil (ie, the wire coil constituting the armature assembly) rotates in a magnetic induction line generated by the magnet. Cutting magnetic lines, or magnets (divided into permanent magnets and electromagnets), outside the coil, they are called squirrel-cage conventional motors.
  • the magnet (divided into a permanent magnet and an electromagnet) is on one side or both sides of the coil (that is, the coil of the wire constituting the armature assembly), and the coil and the magnet are relatively rotated about the common rotating shaft, and the rotating shaft of the magnet is stationary, or Conversely, the diameter of such a motor is much larger than the thickness as a plate, so it is called a disc motor.
  • a common feature of disc motors is that the magnets and coils are arranged perpendicular to the common axis and are arranged in a radial planar configuration. Moreover, the diameter of the disc motor is much larger than the thickness.
  • the structure of the traditional squirrel cage motor has been very mature after more than one hundred years of development. As far as the structure itself is concerned, there is not much room for improvement, and the power density per unit volume of the motor cannot be further improved.
  • the disc motor is more novel than the squirrel cage motor and has many advantages. However, the disc motor of the prior art still has the following drawbacks:
  • the disc motor uses only one stator and one rotor structure, its power density is still not high, which is not in line with the development trend of modern motor design. Meanwhile, in the case where the application space is limited, for example, as shown in FIG. 20, since the presence of the obstacle 900 makes the space of the discharge machine very limited, thereby limiting the radial length of the disk motor cannot be lengthened, and cannot be done very well. Large, this means that the space for increasing the number of turns of the coil becomes very limited, so that it is almost impossible to substantially increase the stand-alone power of the disk motor when the conditions such as the magnetic strength of the magnetic pole are constant or the possibility of variation is very limited. This allows the disc motor to achieve limited functionality and power.
  • the disc motor uses a structure of multiple stators and multiple rotors, although the motor can be improved Machine power, but this requires widening the axial width of the disc motor to accommodate multiple stators and rotors.
  • the application space is limited, for example, as shown in FIG. 21, since the presence of the obstacle 900 makes the space of the discharge machine limited and the axial direction of the disk motor cannot be made wide, the disk motor can The functionality and power achieved will also be affected.
  • the technical effect of power The invention provides a large unit power density, the same It can also meet the special-shaped motors of different application object specific space shape requirements, thus expanding the range of motor applications and increasing the motor power.
  • the present invention can be applied to a profiled motor and a profiled generator, and has a significant innovative effect on existing generators and motors.
  • the special-shaped motor includes an armature assembly and a magnetic pole assembly, the armature assembly and the magnetic pole assembly are relatively moved about a common axis, and the armature assembly and the magnetic pole assembly constitute a magnetic
  • the electric system unit is characterized in that the magnetoelectric unit forms an axisymmetric profiled surface around the common axis, and the axisymmetric profiled surface is not a plane perpendicular to the common axis.
  • the profile motor includes at least two armature assemblies and at least two pole assemblies, and one of the armature assemblies and one of the pole assemblies constitutes a magnetoelectric unit, at least two of which are The magnetoelectric units are arranged side by side to form a side-by-side magnetoelectric unit, and the armature assembly and the magnetic pole assembly in each of the magnetoelectric units are relatively moved about a common axis, wherein the side-by-side magnetoelectric unit includes at least An electroelectric system unit that forms an axisymmetric profiled surface about the common axis, the axisymmetric profiled surface being not a plane perpendicular to the common axis.
  • the shape of the axisymmetric profiled surface is embodied as a depth warped curved shape and/or a curved extended curved shape along a radial direction of the common axis.
  • the profile motor includes at least two armature assemblies and at least two pole assemblies, and one of the armature assemblies and one of the pole assemblies constitutes a magnetoelectric unit, each of the magnetoelectric systems
  • the armature assembly and the magnetic pole assembly in the unit both move relative to each other about the common axis, wherein at least two of the magnetoelectric units are connected to form an axisymmetric profiled surface around the common axis, and the axisymmetric profiled surface is not A plane perpendicular to the common axis.
  • the special-shaped motor includes at least three of the magneto-electric units, and at least three of the magneto-electric units are connected in an axial direction along a common axis It is embodied as a shape that is bifurcated into a surface by at least two layers;
  • At least three of the magnetoelectric system units are sequentially connected to form an axisymmetric profiled surface around the common axis, the axisymmetric profiled surface being not a plane perpendicular to the common axis.
  • the profile motor includes at least three armature assemblies and at least three magnetic pole assemblies, and one of the armature assemblies and one of the magnetic pole assemblies constitutes a magnetoelectric system unit, each of the magnetoelectric systems
  • the armature assembly and the magnetic pole assembly in the unit both move relative to each other about the common axis
  • at least one of the magnetoelectric system units constitutes a magnetoelectric system
  • at least two magnetoelectric systems are arranged side by side to form a side-by-side magnetoelectric system.
  • the side-by-side magnetoelectric system includes at least one row of magnetoelectric system systems connected by at least two magnetoelectric system units, the magnetoelectric system forming an axisymmetric profiled surface around the common axis, An axisymmetric profiled surface is not a plane perpendicular to the common axis.
  • the electro-mechanical system of the profiled motor forming an axisymmetric profiled surface around the common axis includes at least three of the magnetoelectric system units, at least three The shape in which the magnetoelectric unit is connected is formed along the axial direction of the common axis to be bifurcated into a shape of at least two curved surfaces;
  • At least three of the magnetoelectric system units are sequentially connected to form an axisymmetric profiled surface around the common axis, the axisymmetric profiled surface being not a plane perpendicular to the common axis.
  • the side-by-side magnetoelectric system includes at least one magnetoelectric unit according to the first technical solution of the special-shaped motor.
  • the magnetoelectric unit forms an axisymmetric profiled surface around the common axis, and the shape of the axisymmetric profiled surface is embodied as a deep warped curved shape and/or a curved extended curved surface along an axial direction of the common axis. shape;
  • the shape of the axisymmetric profiled surface is embodied as a depth warped curved shape and/or a curved extended curved shape along a radial direction of the common axis.
  • the magnetoelectric units constituting the axisymmetric profiled surface, at least one of the magnetoelectric systems
  • the shape of the unit is embodied along the axial direction of the common axis as the shape of the deep warped curved surface and/or the shape of the curved extended curved surface;
  • the shape of the at least one magnetoelectric unit is embodied in the radial direction of the common axis as the shape of the deep warped curved surface and/or the shape of the curved extended curved surface.
  • the magnetoelectric system units constituting the axisymmetric profiled surface, at least one of the magnetoelectric systems
  • the shape of the unit is embodied along the axial direction of the common axis as the shape of the deep warped curved surface and/or the shape of the curved extended curved surface;
  • the shape of the at least one magnetoelectric unit is embodied in the radial direction of the common axis as the shape of the deep warped curved surface and/or the shape of the curved extended curved surface.
  • the common axis is a rotating shaft connected to at least one of the magnetoelectric units; or the common axis is a common axis of each of the magnetoelectric units.
  • the armature assembly is a stator, the magnetic pole assembly is a rotor; or the armature assembly is a rotor, and the magnetic pole assembly is a stator.
  • armature assembly can be implemented by the following three technical solutions:
  • the armature assembly includes a first armature, the magnetic pole assembly includes a first magnetic group, and a magnetic gap is disposed between the first armature and the first magnetic group;
  • the first magnetic group is formed by a permanent magnet, and the first magnetic group is close to an end surface of the first armature a plurality of permanent magnets are disposed, and the N poles and the S poles of the plurality of permanent magnets are alternately arranged in a circumferential direction around the common axis;
  • the first magnetic group is configured by an electromagnet, and a plurality of electromagnets are disposed on an end surface of the first magnetic group close to the first armature, and an external current flows through a coil wire wound on the electromagnet
  • the electromagnet has magnetic properties and causes the N and S poles of the plurality of electromagnets to be staggered in a circumferential direction that rotates about the common axis.
  • the armature assembly includes a second armature and a third armature, the pole assembly includes a second magnetic group, and the second magnetic group is located between the second armature and the third armature a magnetic gap is disposed between the second magnetic group and the second armature and the third armature;
  • the second magnetic group is formed by a permanent magnet, and a plurality of permanent magnets are disposed on two end faces of the second magnetic group adjacent to the second armature and adjacent to the third armature, and the plurality of permanent
  • the N pole and the S pole of the magnet are staggered in a circumferential direction that rotates around the common axis;
  • the second magnetic group is formed by an electromagnet, and the plurality of electromagnets are disposed on the two end faces of the second magnetic group adjacent to the second armature and adjacent to the third armature, and the external current flows.
  • the coil wire wound on the electromagnet causes the electromagnet to be magnetic, and the N pole and the S pole of the plurality of electromagnets are alternately arranged in a circumferential direction about the common axis.
  • the armature assembly includes a fourth armature, the magnetic pole assembly includes a third magnetic group and a fourth magnetic group, and the fourth armature is located between the third magnetic group and the fourth magnetic group a magnetic gap is disposed between the fourth armature and the third magnetic group and the fourth magnetic group;
  • the third magnetic group and the fourth magnetic group are formed by permanent magnets, and a plurality of permanent magnets are disposed on end faces of the third magnetic group and the fourth magnetic group adjacent to the fourth armature.
  • the N poles and the S poles of the plurality of permanent magnets are staggered in a circumferential direction that rotates around the common axis;
  • the third magnetic group and the fourth magnetic group are configured by an electromagnet, and the third magnetic group and the fourth magnetic group are disposed on two end faces of the fourth armature Electromagnets, an external current flowing through a coil wire wound on the electromagnet to make the electromagnet magnetic, and causing the plurality of electricity
  • the N and S poles of the magnet are staggered in a circumferential direction that rotates about the common axis.
  • At least two of the armature assemblies are connected in series and/or in parallel with one another.
  • the beneficial effects of the present invention are:
  • the technical solution of the present invention changes the shape and structure of the magnetoelectric system unit to meet the requirements of the application space, and increases the number of magnetoelectric system units and changes the connection structure and space arrangement by using innovative techniques, thereby improving The space utilization rate of the magnetoelectric system, in turn, effectively increases the power of the motor, and achieves the technical effect of improving the magnetoelectric conversion function of the motor or improving the mutual conversion function between the electrical energy and the mechanical energy of the motor.
  • the special-shaped motor of the invention can adapt to the shape requirements of different application objects, thereby further expanding the application range of the motor, so that it is no longer limited by the space and limitation of the special application space.
  • the invention provides a new concept shaped motor, which can play a huge role in some specific fields by thoroughly innovating the structure and shape of the motor. It is a revolution in the structure and shape of the motor, and it is also a breakthrough and innovation in the concept of motor design.
  • the present invention solves the problem of how to effectively increase the motor power density and motor function under the constraints of a particular shape space. Especially in the case of space-constrained implementation of the presence of obstacles, the problem is solved by the unique design of the embedded obstacles, by creatively forming the special structure and form of the motor, and greatly increasing the motor power. Improve the functions that the motor can achieve.
  • FIG. 1 is a schematic structural view of a first technical solution of a special-shaped motor according to the present invention
  • FIG. 2 is a schematic structural view of a first implementation manner of a third technical solution of a profiled motor according to the present invention
  • 3 is a schematic structural view of a first implementation manner of a fourth technical solution of a special-shaped motor according to the present invention
  • 4 is a schematic structural view of a second implementation manner of a third technical solution of a special-shaped motor according to the present invention
  • FIG. 5 is a schematic structural view of a third implementation manner of a third technical solution of the special-shaped motor of the present invention.
  • FIG. 6 is a schematic structural view of a second implementation manner of a fourth technical solution of a profiled motor according to the present invention.
  • FIG. 7 is a schematic structural view of a first implementation of a magnetoelectric system unit composed of an electromagnet;
  • FIG. 8 is a schematic structural view of a second implementation of a magnetoelectric system unit composed of an electromagnet;
  • FIG. 10 is a schematic structural view of a third embodiment of the electric system unit;
  • FIG. 10 is a schematic cross-sectional view showing a magnetoelectric unit of the special-shaped motor in the axial direction;
  • Figure 1 1 is a schematic cross-sectional view showing the magnetoelectric unit of the profile motor of the present invention in the axial direction as a depth warp;
  • FIG. 12 is a schematic cross-sectional view showing a magnetoelectric unit of a profiled motor in the radial direction as a depth warp of the present invention
  • Figure 13 is a schematic cross-sectional view showing the magnetoelectric unit of the profile motor of the present invention in a radial direction;
  • Figure 14 is a schematic view showing the cross-sectional shape of the first type of the differential motor of the present invention.
  • Figure 15 is a schematic view showing a cross-sectional shape of a curved extension according to a first technical solution of the profile motor of the present invention
  • Figure 16 is a schematic view showing the cross-sectional shape of the magnetoelectric unit of the profile motor of the present invention
  • Fig. 17 is a schematic view showing the configuration of the first embodiment of the magnetic pole assembly of the present invention
  • FIG. 19 is a schematic structural view of a third implementation manner of a magnetic pole assembly according to the present invention
  • FIG. 20 is a schematic diagram of technical defects when the prior art disc motor is limited by the radial space of the application object;
  • Figure 21 is a schematic view showing the technical defects of the prior art disc type motor when it is restricted by the axial space of the application object;
  • Figure 22 is a schematic view showing the technical defect of the prior art disc type motor when it is limited by the radial and axial space of the application object;
  • FIG. 23 is a schematic diagram of solving the technical defect shown in FIG. 20 by using the technical solution of the present invention
  • FIG. 24 is a schematic diagram of solving the technical defect shown in FIG. 21 by using the technical solution of the present invention
  • FIG. 25 is a schematic diagram of the technology shown in FIG. 22 by using the technical solution of the present invention. Schematic diagram of the defect.
  • the special-shaped motor includes an electric 4-zone assembly 400 composed of an armature, a magnetic pole assembly 500 composed of a magnetic group, and an armature assembly 400 and a magnetic pole assembly 500.
  • the axis 100 is relatively moved.
  • the armature assembly 400 and the pole assembly 100 form a magnetoelectric unit 203.
  • the magnetoelectric unit 203 forms an axisymmetric profile around the common axis 100.
  • the axisymmetric profile is not perpendicular to the common axis 100. flat.
  • the technical solution of the present invention makes full use of the limited space of the application object, and arranges the armature assembly 400 and the magnetic pole assembly 500 as much as possible in the limited spatial range with the radial and/or axial width variation, thereby increasing the power of the motor, and further Improve the function of the motor. That is to say, if the motor is a generator, the magnetoelectric conversion function of the generator is improved; if the motor is a motor, the function of the electric energy to mechanical energy of the motor is improved.
  • the special-shaped motor includes at least two armature assemblies and at least two magnetic pole assemblies, one armature assembly and one magnetic pole assembly constitute one magnetoelectric system unit, and at least two magnetoelectric unit units are arranged side by side.
  • the cloth forms a side-by-side magnetoelectric unit, and the armature assembly in each magnetoelectric unit And the magnetic pole assembly both move relative to each other about the common axis.
  • the above-mentioned side-by-side magnetoelectric system unit includes at least one magnetoelectric system unit 203 that forms an axisymmetric profiled surface around the common axis 100, and the axisymmetric profiled surface is not a plane perpendicular to the common axis 100.
  • the side-by-side magnetoelectric system unit includes at least one magnetoelectric system unit 203 as shown in FIG. 1.
  • at least one magnetoelectric system unit 203 is disposed according to a change in space in a plurality of rows of magnetoelectric systems. It can make full use of the application space with limited application objects, improve the utilization of specific space, and increase the motor power. This is also an innovative method of improving the motor power that is included and can be solved by the present invention.
  • the shape of the axisymmetric profiled surface is represented by the axis of the common axis 100 as a depth warped curved surface shape and/or a curved extended curved surface shape; and/or, an axisymmetric shaped curved surface.
  • the shape is embodied in the radial direction of the common axis 100 as a deep warped curved shape and/or a curved extended curved shape.
  • the line segment or the curved segment with an arrow in the figure represents the shape of the radial section of the magnetoelectric system in the axial longitudinal section.
  • the profile motor includes at least two armature assemblies and at least two pole assemblies, and one armature assembly and one magnetic pole assembly constitute a magnetoelectric system unit, and electricity in each magnetoelectric system unit
  • the pivot assembly and the magnetic pole assembly are both moved relative to the common axis, and at least two magnetoelectric units are connected to form an axisymmetric profiled surface around the common axis, and the axisymmetric profiled surface is not a plane perpendicular to the common axis.
  • the special-shaped motor refer to the first, second and third concrete implementation modes shown in Fig. 2, Fig. 4 and Fig. 5 respectively.
  • the profile motor may include at least three magnetoelectric units.
  • the shape of at least three magnetoelectric units connected along the common axis is formed by a layer of curved surface into at least two curved surfaces; or, at least three magnetoelectric units are connected along a common shape.
  • the radial direction of the axis is embodied by a layer of curved surfaces that are at least two layers of curved and/or planar shapes.
  • at least three magnetoelectric units are sequentially connected to form an axisymmetric profiled surface around the common axis, and the axisymmetric profiled surface is not a plane perpendicular to the common axis.
  • a magnetoelectric system unit to improve the function of the motor Mainly reflected in the following two aspects:
  • Figure 1 is a schematic cross-sectional view, wherein the arrowed line segment or curve segment represents the radial shape of the magnetoelectric system in the axial longitudinal section. Indicate.
  • the magnetoelectric system unit can be added at a wider spatial position by providing a terminal bifurcation according to the spatial characteristics which become wider in the radial direction, thereby realizing the technical effect of improving the motor function.
  • Fig. 4 and to the cross-sectional view shown in Fig. 16, wherein the line segment or curve segment with arrows represents the shape of the radial section of the magnetoelectric system in the axial longitudinal section.
  • a plurality of magnetoelectric system units are connected end to end in series with a plurality of magnetoelectric system units and are used in a bifurcated manner. , maximizing space utilization and maximizing the functions that the motor can achieve.
  • the profile motor includes at least three armature assemblies and at least three magnetic pole assemblies, and one armature assembly and one magnetic pole assembly constitute a magnetoelectric unit, and electricity in each of the magnetoelectric units Both the pivot assembly and the magnetic pole assembly move relative to each other about the common axis.
  • At least one magnetoelectric system unit constitutes a magnetoelectric system, at least two magnetoelectric systems are arranged side by side to form a side-by-side magnetoelectric system, and the side-by-side magnetoelectric system comprises at least one row connected by at least two magnetoelectric units.
  • the magnetoelectric system which forms an axisymmetric profiled surface around a common axis, and the axisymmetric profiled surface is not a plane perpendicular to the common axis. That is, the side-by-side magnetoelectric system includes at least one row of magnetoelectric system systems in which more than one magnetoelectric system unit is connected to each other, and according to the needs of the application space, at least one of the above-mentioned conditions is set according to the change of space in the multi-row magnetoelectric system.
  • the magnetoelectric system can make full use of the application space where the application object is limited, and improve the utilization of specific space, thereby increasing the motor power. This is also an innovative method of improving the motor function that is included and can be solved by the present invention. Shaped motor For the fourth technical solution, reference may be made to the first and second specific implementation modes shown in FIG. 3 and FIG. 6, respectively.
  • the magnetoelectric system forming an axisymmetric profiled surface around the common axis may include at least three magnetoelectric system units, see FIG. 6, and a cross-sectional view shown in FIG.
  • the shape of the three magnetoelectric units connected in the axial direction of the common axis is formed by a layer of curved surface into at least two curved surfaces; or, the shape of at least three magnetoelectric units connected in a radial direction along the common axis A shape that is bifurcated by a layer of curved surface into at least two layers of curved surfaces and/or planes.
  • at least three magnetoelectric system units are sequentially connected to form an axis-symmetrical shaped curved surface around the common axis, and the axisymmetric shaped curved surface is not a plane perpendicular to the common axis.
  • a fourth aspect of the present invention in a side-by-side arrangement of a plurality of rows of magnetoelectric systems, at least one row of magnetoelectric system systems for forming an axisymmetric profiled surface around a common axis is provided, and the power of the motor is increased by providing a plurality of magnetoelectric system units. See Figure 10, Figure 11, Figure 12, Figure 13, Figure 16, for a section of the magneto-electric system.
  • the side-by-side magnetoelectric system may include at least one magnetoelectric system unit 203 in the first aspect of the profile motor shown in Fig. 1.
  • a cross-sectional view of one of the manifestations of this magnetoelectric unit can be seen in Fig. 14 or Fig. 15, and will not be described again.
  • At least one of the magnetoelectric units when at least two magnetoelectric units are formed as the axisymmetric profiled surface, at least one of the magnetoelectric units may have a shape along the common axis.
  • the axial direction is embodied by the shape of the deep warped curved surface and/or the shape of the curved extended curved surface; and/or wherein at least one of the magnetoelectric unit shapes is formed in the radial direction of the common axis as the shape of the deep warped curved surface and/or Or bend the shape of the extended surface.
  • FIG. 12 or FIG. 13 wherein the line segment or curve segment with an arrow represents the shape of the radial section of the magnetoelectric system in the axial longitudinal section. Indicate.
  • the magnetoelectric units when at least three magnetoelectric units are formed as the axisymmetric profiled surface, at least one of the magnetoelectric units may be included therein.
  • the shape of the shape along the common axis is embodied as the shape of the deep warped curved surface and/or the shape of the curved extended curved surface; and/or wherein at least one of the magnetoelectric unit shapes is radially curved along the common axis as a deep warped curved surface
  • the shape and/or shape of the curved stretched surface wherein, the line segment or the curved segment with an arrow in the figure represents the shape of the radial section of the magnetoelectric system in the axial longitudinal section.
  • the profile motor of the present invention can creatively utilize the spatial characteristics to include a plurality of magnetoelectric system units, the power of the motor is increased, and the electromagnetic conversion output efficiency of the single motor is improved.
  • the motor of the present invention can adapt to the space constrained requirements and shape requirements of different application objects. For example, as shown in FIG. 20, FIG. 21 and FIG. 22 as set forth in the background, the difficulties encountered in the application of the motor can adopt the schemes shown in FIGS. 23, 24 and 25, using the present invention. Provided by a unique structure and original technology to solve. It should be noted that the line segment or the curved segment with an arrow in the figure represents the shape of the radial section of the magnetoelectric system in the axial longitudinal section.
  • the common axis of the present invention may be a rotating shaft connected to at least one magnetoelectric system unit.
  • the common axis may not be a physical axis, not connected to any magnetoelectric system, but only the common axis of each magnetoelectric system unit. That is, the common axis is not necessarily the physical axis, but only the common geometric axis that the magnetoelectric system is commonly surrounded.
  • the armature assembly is a stator and the magnetic pole assembly is a rotor; or the armature assembly is a rotor, and the magnetic pole assembly is a stator.
  • the magnetic pole assembly in the magnetoelectric unit may be formed of a permanent magnet or an electromagnet.
  • the permanent magnet material itself has the characteristics of maintaining its magnetic properties for a long time, and the electromagnet requires external energization to generate magnetic force.
  • the magnetoelectric system unit of the present invention can have the following three implementation modes. The specific configuration of the magnetoelectric system unit will be described in detail below by taking the generator as an example.
  • the armature assembly in the magnetoelectric system unit includes a first armature
  • the magnetic pole assembly includes a first magnetic group
  • a magnetic gap is disposed between the first armature and the first magnetic group.
  • the first magnetic group 501 is made of a permanent magnet.
  • a plurality of permanent magnets 300 are disposed on an end surface of the first magnetic group 501 adjacent to the first armature 401.
  • the N poles and the S poles of the plurality of permanent magnets 300 are alternately arranged in a circumferential direction around the common axis, and the staggered rows are arranged.
  • the first magnetic group 501 and the first electricity can be driven by the rotation of the rotating shaft (that is, the common axis 100 of the first magnetic group 501 and the first armature 401).
  • the relative rotational movement between the pivots 401 that is, if the first magnetic group 501 is rotated, the first armature 401 is stationary, and vice versa.
  • the first magnetic group 501' is formed by an electromagnet, and an end face of the first magnetic group 50 close to the first armature is provided with a plurality of electromagnets, and an external current flows through
  • the coil wire 600 wound on the electromagnet causes the electromagnet to be magnetic, and the N pole and the S pole of the plurality of electromagnets are staggered in a circumferential direction that rotates about the common axis.
  • the electromagnet comprises a yoke 601 and an energized coil conductor 600 (the coiled conductor can be a loop conductor, a coil).
  • an external current flows through the energized coil conductor 600 wound on the yoke 601 to form an N pole and an S pole.
  • the first magnetic group 501' is made magnetic, and then the current output is generated by a magnetic flux change, a cutting magnetic line, or the like.
  • the armature assembly in the magnetoelectric system unit includes a second armature and a third armature
  • the magnetic pole assembly includes a second magnetic group
  • the second magnetic group is located at the second armature and the third armature
  • Between the second magnetic group and the second armature and the third armature are each provided with a magnetic gap.
  • the second magnetic group 502 is formed of a permanent magnet, as shown in FIG. 3, the second magnetic group 502 is formed of a permanent magnet, and the second magnetic group 502 is on the end surface adjacent to the second armature 402 and on the end surface adjacent to the third armature 403.
  • a plurality of permanent magnets 300 are provided, and the N poles and the S poles of the plurality of permanent magnets 300 are alternately arranged in a circumferential direction that rotates about a common axis, see FIG.
  • the second magnetic group 502 and the second armature can be driven by the rotation of the rotating shaft (that is, the common axis 100 of the second magnetic group 502, the second armature 402, and the third armature 403).
  • the third armature 403 performs relative rotational motion, that is, When the second magnetic group 502 is rotated, the second armature 402 and the third armature 403 are stationary, and vice versa. This produces a current output through flux changes and cutting of the magnetic sense line.
  • various arrangements and combinations can be made according to the implementation requirements of the specific application object to meet the needs of different specific application requirements. Two of the array demonstrations can be seen in Figure 18 and
  • the second magnetic group 502' is formed by an electromagnet, and the two end faces of the second magnetic group 502' adjacent to the second armature and adjacent to the third armature are disposed.
  • the plurality of electromagnets, the external current flowing through the coil wires wound on the electromagnets makes the electromagnets magnetic, and the N poles and the S poles of the plurality of electromagnets are staggered in a circumferential direction that rotates around the common axis.
  • the principle is the same as that of the first embodiment, in which the electromagnet is used to form a magnetic group, and details are not described herein.
  • the second implementation adds a magnetoelectric system to the first implementation, which further increases the power density of the alien motor and improves the efficiency and function of the power conversion output.
  • the armature assembly in the magnetoelectric unit includes a fourth armature
  • the magnetic pole assembly includes a third magnetic group and a fourth magnetic group
  • the fourth armature is located in the third magnetic group and the fourth magnetic group
  • the fourth armature and the third magnetic group and the fourth magnetic group are each provided with a magnetic gap.
  • the third magnetic group 503 and the fourth magnetic group 504 are both formed of permanent magnets, and the third magnetic group 503 is adjacent to the end surface of the fourth armature 404 and A plurality of permanent magnets 300 are disposed on the end faces of the fourth magnetic group 504 adjacent to the fourth armature 404.
  • the N poles and the S poles of the plurality of permanent magnets 300 are alternately arranged in a circumferential direction around the common axis, and are staggered. See Figure 17 for a schematic diagram.
  • the third magnetic group 503 and the fourth magnetic group 504 are rotated by concentric rotation under the rotation of the rotating shaft, and the fourth armature 404 is stationary, or the fourth armature 404 is driven by the rotation of the rotating shaft.
  • the rotary motion is performed such that the third magnetic group 503 and the fourth magnetic group 504 are relatively rotated with respect to the fourth armature 404.
  • the above method increases the magnetic induction intensity B per unit area of the induction coil.
  • FIGS. 18 and 19 Two of the array demonstrations can be referred to as shown in FIGS. 18 and 19.
  • the third magnetic group 503' and the fourth magnetic group 504' are each formed of an electromagnet, and the third magnetic group 503' and the fourth magnetic group 504' are close to the fourth.
  • a plurality of electromagnets are disposed on the two end faces of the armature, and an external current flows through the coil wires wound on the electromagnet to make the electromagnets magnetic, and the turns of the plurality of electromagnets and the S poles rotate along the common axis. Arranged in a staggered manner. The principle is the same as the working principle of using the electromagnet to form a magnetic group in the first implementation manner, and details are not described herein again.
  • the above three processes for constructing the magnetoelectric system unit are described by taking a magnetically converted electric generator as an example. Since the generator and the motor are both electrically and magnetically converted, they can be mutually modified.
  • the invention of the profiled motor can also be used to realize an electric motor that is electrically converted into magnetism and thereby converts electrical energy into mechanical energy, which will not be described herein.
  • the drains and S poles of the plurality of permanent magnets 300 may be staggered at regular intervals.
  • the cloth, after being separated by at least one bungee, is arranged with the same number of S poles to meet the needs of different specific application requirements.
  • the width of each of the wire coils constituting the armature assembly depends on the width and width of the magnetic pole of the corresponding magnetic pole assembly in the circumferential direction, and may be the same width and width as the magnetic pole. Can be different width and width, with other electrical accessories to meet the needs of different applications.
  • the spacing between the turns and turns of the wire coil is also dependent on the corresponding
  • the width and width of the magnetic poles of the magnetic pole assembly may be the same width and width as the magnetic poles, or may be different width and narrow sizes, and may be applied together with other electrical accessories to meet the needs of different applications.
  • each armature component can directly draw current generated through the terminal, or at least two armature components can be connected to each other in series and/or at least two armature components can be mutually connected. After parallel connection, the generated current is taken out through the terminal block to meet the needs of different specific application requirements.
  • the special-shaped motor of the present invention can also be an electric motor, and its working principle is also an electric and magnetic conversion operation, which will not be described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

Figure imgf000003_0001
异型电机
技术领域 本发明涉及电机技术领域, 尤其涉及一种异型电机, 包括异型电动机和 异型发电机。 背景技术 电动机和发电机可被统称为电机。 电机是指依据电磁感应定律实现电能 的转换或传递的一种电磁装置。 电动机可以实现电能向机械能的转换,发电 机可以实现机械能向电能的转换, 二者都是电和磁的转换操作, 是可以互相 改装的。
不管是电动机还是发电机, 其关键组成部分都是电枢组件 (包括导线线 圏和电枢铁心等辅助部分)和磁极组件(永久磁体或者电磁体), 二者相对 运动就可产生电和磁的交互作用。 因此电枢组件和磁极组件构成的磁电系可 以被视为基本单元。
电动机是把电能转换成机械能的设备,它是利用通电线圈在磁场中受力 转动的现象制成, 电动机主要由定子与转子组成。 通电导线在磁场中受力运 动的方向跟电流方向和磁感线(磁场方向)方向有关。 电动机工作原理是磁 场对电流受力的作用, 使电动机转动。 它将电能转变为机械能, 它主要包括 一个用以产生磁场的电磁体绕组或分布的定子绕组和一个旋转电枢或转子, 其导线中有电流通过并受磁场的作用而使转动,这些机器中有些类型可作电 动机用, 也可作发电机用。
发电机是把机械能转换为电能的设备,其工作原理都基于电磁感应定律 和电磁力定律。 因此, 其构造的一般原则是: 用适当的导磁和导电材料构成 替换页 (细则第 26条) 互相进行电磁感应的磁路和电路, 以产生电磁功率, 达到能量转换的目的。 一般都是由轴承及端盖将发电机的定子, 转子连接组装起来, 使转子能在定 子中旋转, 或者是使转子可以相对定子旋转, 做切割磁感线的运动, 从而产 生感应电势, 通过接线端子引出, 接在回路中, 便产生了电流。
现有技术的电机一般分为两种: 一种是磁体(分为永磁体和电磁体)在 外, 线圈 (即构成电枢组件的导线线圈)在内, 线圈在磁体产生的磁感线中 旋转切割磁感线, 或者磁体(分为永磁体和电磁体)在内, 线圈在外, 他们 都被称作鼠笼式传统电机。另一种是磁体(分为永磁体和电磁体)在线圈(即 构成电枢组件的导线线圈)的一侧或两侧, 线圈和磁体绕共有转轴做相对转 动, 磁体转动线圏静止, 或者反之, 此类电机的直径远大于厚度从外形上看 像个盘子, 因此被称为盘式电机。 盘式电机的一个共有特点是磁体和线圈的 排布方向与共有轴垂直, 沿径向平面结构排列。 而且盘式电机的直径远大于 厚度。 以上是所有已公知技术的共有特点。
传统的鼠笼式电机的结构经过百多年的发展已经非常成熟, 就其结构本 身而言, 改进的余地并不大, 无法进一步提高电机的单位体积的功率密度。 而盘式电机相对鼠笼式电机更为新颖, 具有不少优点, 但是, 现有技术中的 盘式电机仍存在以下缺陷:
1. 若盘式电机只采用一个定子与一个转子的结构, 则其功率密度仍然 不高, 不符合现代电机设计的发展趋势。 同时, 在应用空间受限的情况下, 例如, 如图 20所示, 因为障碍物 900的存在使得安放电机的空间很受限制, 从而限制了盘式电机的径向不能加长、 不能做得很大, 这意味着能够增加线 圈匝数的空间变得很有限, 这样在诸如磁极磁力强度等条件不变或变化的可 能很有限时, 若想大幅提高盘式电机的单机功率则几乎不可能。 这使得盘式 电机能够实现的功能和功率都艮有限。
2.若盘式电机采用多个定子与多个转子的结构, 虽然可以提高电机的单 机功率, 但是这就需要加宽盘式电机的轴向宽度以容纳多个定子和转子。 但 是在应用空间受限制的情况下, 例如, 如图 21所示, 因为障碍物 900的存 在使得安放电机的空间有限而限制盘式电机的轴向不能做得很宽时, 则盘式 电机能够实现的功能和功率同样会很受影响。
3.在特殊应用空间的限制下, 例如, 如图 22所示, 因为障碍物 900的 存在使得应用空间的尺寸有限, 不容许盘式电机的径向加长, 也不容许盘式 电机的轴向加宽时, 则要提高盘式电机的功率和功能就会变得不可能。
随着现代社会和生活的不断进步, 不断涌现出很多崭新的领域需要应用 电机, 这同时也对电机从功能到尺寸都提出了新的要求, 比如在人体仿生工 程领域, 仿生人体的某些器官零件, 这就需要安装一些小电动机, 但是由于 可以安装电动机的空间很有限, 这就对电机的设计提出了新的要求, 即特殊 的空间限制对电动机的设计提出了特殊要求, 电动机既需要适合满足特殊的 空间形态限制, 同时还需要达到很高的功率表现和足够满足功能。 这就对革 新电机的现有结构提出了新的要求。 另外, 在诸如新能源发电领域中, 一些 新的应用需求需要发电机被安放在特定的极其苛刻和有限的空间形态范围 内, 同时还需要发电机达到足够大的单机发电功率。 这些新领域都对革新电 机的现有结构提出了新的要求。
以上这些新要求在所有已公知技术中都无法解决,这需要通过彻底创新 电机的结构和形态来解决。 发明内容
磁电系单元的结构和形状来配合空间的要求, 用创新技术来增加磁电系单元 的数量并改变其连接结构和空间排布, 从而提高磁电系空间利用率, 进而实 现有效增加电机的功率的技术效果。 本发明提供一种单位功率密度较大, 同 时还可满足不同应用对象特定空间形状要求的异型电机, 从而扩大电机应用 范围并增大电机功率。 本发明可应用于异型电动机和异型发电机, 对现有形 式的发电机以及电动机来说都具有重大革新作用。
本发明的技术方案如下:
作为本发明的第一种技术方案, 异型电机包括电枢组件和磁极组件, 所 述电枢组件和所述磁极组件绕共有轴线做相对运动, 所述电枢组件、 所述磁 极组件构成一磁电系单元, 其特征在于, 所述磁电系单元绕所述共有轴线形 成一个轴对称异型曲面, 所述轴对称异型曲面不是与共有轴线相垂直的平 面。
作为本发明的第二种技术方案,异型电机包括至少两个电枢组件和至少 两个磁极组件, 一个所述电枢组件和一个所述磁极组件构成一个磁电系单 元, 至少两个所述磁电系单元并排排布形成并排磁电系单元, 每个磁电系单 元中的电枢组件和磁极组件均绕共有轴线做相对运动, 其特征在于, 所述并 排磁电系单元中至少包含一个绕所述共有轴线形成轴对称异型曲面的磁电 系单元, 所述轴对称异型曲面不是与共有轴线相垂直的平面。
进一步地, 所述异型电机的第一种技术方案或所述异型电机的第二种技 曲曲面形状和 /或弯曲伸展曲面形状;
和 /或, 所述轴对称异型曲面的形状沿所述共有轴线的径向体现为进深 翘曲曲面形状和 /或弯曲伸展曲面形状。
作为本发明的第三种技术方案,异型电机包括至少两个电枢组件和至少 两个磁极组件, 一个所述电枢组件和一个所述磁极组件构成一个磁电系单 元, 每个磁电系单元中的电枢组件和磁极组件均绕共有轴线做相对运动, 其 特征在于, 至少两个所述磁电系单元相连, 绕所述共有轴线形成轴对称异型 曲面, 所述轴对称异型曲面不是与共有轴线相垂直的平面。 进一步地, 所述异型电机的第三种技术方案中, 所述异型电机包括至少 三个所述磁电系单元, 至少三个所述磁电系单元相连的形状沿所述共有轴线 的轴向体现为由一层曲面分叉成至少两层曲面的形状;
或者, 至少三个所述磁电系单元相连的形状沿所述共有轴线的径向体现 为由一层曲面分叉成至少两层曲面和 /或平面的形状;
或者, 至少三个所述磁电系单元依次相连, 绕所述共有轴线形成轴对称 异型曲面, 所述轴对称异型曲面不是与共有轴线相垂直的平面。
作为本发明的第四种技术方案,异型电机包括至少三个电枢组件和至少 三个磁极组件, 一个所述电枢组件和一个所述磁极组件构成一个磁电系单 元, 每个磁电系单元中的电枢组件和磁极组件均绕共有轴线做相对运动, 至少一个所述磁电系单元构成一个磁电系系统, 至少两个磁电系系统并 排排布形成并排磁电系系统, 其特征在于, 所述并排磁电系系统中至少包含 一排由至少两个磁电系单元相连构成的磁电系系统, 所述磁电系系统绕所述 共有轴线形成轴对称异型曲面, 所述轴对称异型曲面不是与共有轴线相垂直 的平面。
进一步地, 所述异型电机的第四种技术方案中, 所述异型电机的绕所述 共有轴线形成轴对称异型曲面的磁电系系统包括至少三个所述磁电系单元, 至少三个所述磁电系单元相连的形状沿所述共有轴线的轴向体现为由一层 曲面分叉成至少两层曲面的形状;
或者, 至少三个所述磁电系单元相连的形状沿所述共有轴线的径向体现 为由一层曲面分叉成至少两层曲面和 /或平面的形状;
或者, 至少三个所述磁电系单元依次相连, 绕所述共有轴线形成轴对称 异型曲面, 所述轴对称异型曲面不是与共有轴线相垂直的平面。
进一步地, 所述异型电机的第四种技术方案中, 所述并排磁电系系统中 至少包含一个如异型电机的第一种技术方案中所述的磁电系单元。 进一步地, 所述磁电系单元绕所述共有轴线形成一个轴对称异型曲面, 所述轴对称异型曲面的形状沿所述共有轴线的轴向体现为进深翘曲曲面形 状和 /或弯曲伸展曲面形状;
和 /或, 所述轴对称异型曲面的形状沿所述共有轴线的径向体现为进深 翘曲曲面形状和 /或弯曲伸展曲面形状。
进一步地, 所述异型电机的第三种技术方案或所述异型电机的第四种技 术方案中, 构成所述轴对称异型曲面的至少两个所述磁电系单元, 其中至少 一个磁电系单元的形状沿所述共有轴线的轴向体现为进深翘曲曲面的形状 和 /或弯曲伸展曲面的形状;
和 /或, 其中至少一个磁电系单元的形状沿所述共有轴线的径向体现为 进深翘曲曲面的形状和 /或弯曲伸展曲面的形状。
进一步地, 所述异型电机的第三种技术方案或所述异型电机的第四种技 术方案中, 构成所述轴对称异型曲面的至少三个所述磁电系单元, 其中至少 一个磁电系单元的形状沿所述共有轴线的轴向体现为进深翘曲曲面的形状 和 /或弯曲伸展曲面的形状;
和 /或, 其中至少一个磁电系单元的形状沿所述共有轴线的径向体现为 进深翘曲曲面的形状和 /或弯曲伸展曲面的形状。
进一步地, 在以上各技术方案中, 所述共有轴线是与至少一个所述磁电 系单元相连的转轴;或者,所述共有轴线是每个所述磁电系单元的共有轴线。
进一步地, 在以上各技术方案中, 所述电枢组件为定子, 所述磁极组件 为转子; 或者, 所述电枢组件为转子, 所述磁极组件为定子。
进一步地, 所述电枢组件可由以下三种技术方案来实现:
1、 所述电枢组件包括第一电枢, 所述磁极组件包括第一磁组, 所述第 一电枢和所述第一磁组之间设有磁隙;
所述第一磁组采用永磁体构成, 所述第一磁组靠近所述第一电枢的端面 上设置有多个永磁体, 所述多个永磁体的 N极与 S极沿绕所述共有轴线旋转 的周向交错排布;
或者, 所述第一磁组釆用电磁体构成, 所述第一磁组的靠近所述第一电 枢的端面上设置有多个电磁体, 外部电流流经电磁体上缠绕的线圈导线使所 述电磁体具有磁性, 并使得所述多个电磁体的 N极与 S极沿绕所述共有轴线 旋转的周向交错排布。
2、 所述电枢组件包括第二电枢和第三电枢, 所述磁极组件包括第二磁 组, 所述第二磁组位于所述第二电枢和所述第三电枢之间, 所述第二磁组与 所述第二电枢和所述第三电枢之间均设有磁隙;
所述第二磁组采用永磁体构成, 所述第二磁组的靠近所述第二电枢和靠 近所述第三电枢的两个端面上设置有多个永磁体, 所述多个永磁体的 N极与 S极沿绕所述共有轴线旋转的周向交错排布;
或者, 所述第二磁组采用电磁体构成, 所述第二磁组的靠近所述第二电 枢和靠近所述第三电枢的两个端面上设置有多个电磁体, 外部电流流经电磁 体上缠绕的线圈导线使所述电磁体具有磁性, 并使得所述多个电磁体的 N极 与 S极沿绕所述共有轴线旋转的周向交错排布。
3、 所述电枢组件包括第四电枢, 所述磁极组件包括第三磁组和第四磁 组, 所述第四电枢位于所述第三磁组和所述第四磁组之间 , 所述第四电枢与 所述第三磁组和所述第四磁组之间均设有磁隙;
所述第三磁组和所述第四磁组采用永磁体构成, 所述第三磁组和所述第 四磁组的靠近所述第四电枢的端面上均设置有多个永磁体, 所述多个永磁体 的 N极与 S极沿绕所述共有轴线旋转的周向交错排布;
或者, 所述第三磁组和所述第四磁组釆用电磁体构成, 所述第三磁组和 所述第四磁组的靠近所述第四电枢的两个端面上设置有多个电磁体, 外部电 流流经电磁体上缠绕的线圈导线使所述电磁体具有磁性, 并使得所述多个电 磁体的 N极与 S极沿绕所述共有轴线旋转的周向交错排布。
在以上含有至少两个电枢组件的技术方案中, 至少两个所述电枢组件相 互串联连接和 /或相互并联连接。
本发明的有益效果是: 本发明技术方案从改变磁电系单元的形状和结构 来配合应用空间的要求, 用创新技术增加磁电系单元的数量并改变其连接结 构和空间排布,从而提高磁电系空间利用率,进而实现有效增加电机的功率, 达到提高电机的磁电转换功能或者提高电机的电能与机械能相互转换功能 的技术效果。 本发明的异型电机可适应不同应用对象的形状要求, 从而还扩 大了电机的应用范围, 使其不再受特殊应用空间的空间限制和局限。
本发明提供一种新概念异型电机, 通过彻底创新电机的结构和形态, 使 其在一些特定领域能发挥巨大的作用。 是对电机结构和形态的革命, 也是电 机设计观念的突破与革新。本发明解决了在特定形状空间的限制下如何有效 提高电机功率密度和电机功能的问题。特别是在有障碍物存在的空间受限的 实施电机条件下, 通过嵌入式绕过障碍物的独特设计、 通过创造性地形成电 机的特殊结构和形态来解决问题, 并大幅增大电机功率, 大幅提高电机可以 实现的功能。 在海洋发电、 人工智能仿生、 人体仿生关节或仿生机器等领域 都大有可为。 可适用于特定形状需求, 特定空间限制下的特殊电机的设计和 应用。 附图说明 图 1为本发明异型电机的第一种技术方案的结构示意图;
图 2 为本发明异型电机第三种技术方案的第一种实现方式的结构示意 图;
图 3 为本发明异型电机第四种技术方案的第一种实现方式的结构示意 图; 图 4 为本发明异型电机第三种技术方案的第二种实现方式的结构示意 图;
图 5 为本发明异型电机第三种技术方案的第三种实现方式的结构示意 图;
图 6 为本发明异型电机第四种技术方案的第二种实现方式的结构示意 图;
图 7为由电磁体构成磁电系单元的第一种实现方式的结构示意图; 图 8为由电磁体构成磁电系单元的第二种实现方式的结构示意图; 图 9为由电磁体构成磁电系单元的第三种实现方式的结构示意图; 图 10为本发明异型电机的磁电系单元沿轴向体现为弯曲伸展的截面形 状示意图;
图 1 1 为本发明异型电机的磁电系单元沿轴向体现为进深翘曲的截面形 状示意图;
图 12 为本发明异型电机磁电系单元沿径向体现为进深翘曲的截面形状 示意图;
图 1 3为本发明异型电机的磁电系单元沿径向体现为弯曲伸展的截面形 状示意图;
图 14 为本发明异型电机第一种技术方案体现为进深翘曲的截面形状示 意图;
图 15 为本发明异型电机第一种技术方案体现为弯曲伸展的截面形状示 意图;
图 16为本发明异型电机的磁电系单元体现为分叉的截面形状示意图; 图 17为本发明中的磁极组件的第一种实现方式的构成示意图; 图 18为本发明中的磁极组件的第二种实现方式的构成示意图; 图 19为本发明中的磁极组件的第三种实现方式的构成示意图; 图 20 为现有技术盘式电机受应用对象径向空间限制时的技术缺陷示意 图;
图 21 为现有技术盘式电机受应用对象轴向空间限制时的技术缺陷示意 图;
图 22 为现有技术盘式电机受应用对象径向和轴向空间限制时的技术缺 陷示意图;
图 23为利用本发明技术方案解决图 20所示技术缺陷的示意图; 图 24为利用本发明技术方案解决图 21所示技术缺陷的示意图; 图 25为利用本发明技术方案解决图 22所示技术缺陷的示意图。 具体实施方式 以下结合附图对本发明的原理和特征进行描述, 所举实例只用于解释本 发明, 并非用于限定本发明的范围。
作为本发明的第一种技术方案, 参见图 1, 异型电机包括由电枢构成的 电 4区组件 400、 由磁组构成的磁极组件 500, 电枢组件 400和磁极组件 500 绕二者的共有轴线 100做相对运动, 电枢组件 400、 磁极组件 100构成一磁 电系单元 203, 磁电系单元 203绕共有轴线 100形成一个轴对称异型曲面, 轴对称异型曲面不是与共有轴线 100相垂直的平面。本发明技术方案充分利 用应用对象的有限空间, 在受限的空间范围内随着径向和 /或轴向的宽窄变 化尽量地布设电枢组件 400和磁极组件 500, 从而增加电机的功率, 进而提 高电机的功能。 也就是说, 若电机为发电机, 则提高了发电机的磁电转换功 能; 若电机为电动机, 则提高了电动机的电能转机械能的功能。
作为本发明的第二种技术方案,异型电机包括至少两个电枢组件和至少 两个磁极组件, 一个电枢组件和一个磁极组件构成一个磁电系单元, 至少两 个磁电系单元并排排布形成并排磁电系单元,每个磁电系单元中的电枢组件 和磁极组件均绕共有轴线做相对运动。 其中, 在上述并排磁电系单元中至少 包含一个绕共有轴线 100形成轴对称异型曲面的磁电系单元 203, 轴对称异 型曲面不是与共有轴线 100相垂直的平面。 即并排磁电系单元中至少包含一 个如图 1所示的磁电系单元 203, 根据应用空间的需要, 在多排磁电系中因 地制宜根据空间的变化设置至少一个磁电系单元 203, 就可充分利用应用对 象受限的应用空间, 提高特定空间的利用率, 从而增大电机功率。 这也是本 发明所包括的并可以解决的提高电机功率的创新方法。
其中一种表现形式可以参见图 14或图 15, 轴对称异型曲面的形状沿共 有轴线 100的轴向体现为进深翘曲曲面形状和 /或弯曲伸展曲面形状;和 /或, 轴对称异型曲面的形状沿共有轴线 100的径向体现为进深翘曲曲面形状和 / 或弯曲伸展曲面形状。 其中, 图中带箭头的线段或曲线段代表的是磁电系在 轴向纵剖面的径向剖口的走向形状示意。
作为本发明的第三种技术方案,异型电机包括至少两个电枢组件和至少 两个磁极组件, 一个电枢组件和一个磁极组件构成一个磁电系单元, 每个磁 电系单元中的电枢组件和磁极组件均绕共有轴线做相对运动, 至少两个磁电 系单元相连, 绕共有轴线形成轴对称异型曲面, 轴对称异型曲面不是与共有 轴线相垂直的平面。 异型电机的第三种技术方案, 可参见图 2、 图 4、 图 5 分别所示的第一种、 第二种和第三种具体实现方式。
在上述异型电机的第三种技术方案中, 异型电机可包括至少三个磁电系 单元。 参见图 4 , 至少三个磁电系单元相连的形状沿共有轴线的轴向体现为 由一层曲面分叉成至少两层曲面的形状; 或者, 至少三个磁电系单元相连的 形状沿共有轴线的径向体现为由一层曲面分叉成至少两层曲面和 /或平面的 形状。 或者, 参见图 2、 图 5, 至少三个磁电系单元依次相连, 绕共有轴线 形成轴对称异型曲面, 轴对称异型曲面不是与共有轴线相垂直的平面。
上述异型电机的第三种技术方案中, 根据应用空间的需要, 通过设置多 个磁电系单元来提高电机的功能。 主要体现为以下两方面:
一方面, 适用于应用对象存在径向相对深入狭长并弯曲的应用空间, 顺 有限应用空间的走向变化, 将多个磁电系单元依次相连, 通过增加磁电系单 元的方式达到提高电机功能的技术效果。 参见图 2、 图 5, 以及图 10、 图 1 1 所示的截面示意图, 其中, 图中带箭头的线段或曲线段代表的是磁电系在轴 向纵剖面的径向剖口的走向形状示意。
另一方面, 可根据随径向变阔了的空间特点来在较宽的空间位置处通过 设置末端分叉的方式来增加磁电系单元, 进而实现提高电机功能的技术效 果。 参见图 4 , 以及参见图 16所示的截面示意图, 其中, 图中带箭头的线段 或曲线段代表的是磁电系在轴向纵剖面的径向剖口的走向形状示意。
除此之外,还可根据应用对象的空间特点,顺有限应用空间的尺寸变化, 将多个磁电系单元依次首尾相连的方式与多个磁电系单元相连并分叉的方 式相互配合使用, 最大程度地提高空间利用率, 最大程度地提高电机可以实 现的功能。
作为本发明的第四种技术方案,异型电机包括至少三个电枢组件和至少 三个磁极组件, 一个电枢组件和一个磁极组件构成一个磁电系单元, 每个磁 电系单元中的电枢组件和磁极组件均绕共有轴线^:相对运动。 至少一个磁电 系单元构成一个磁电系系统, 至少两个磁电系系统并排排布形成并排磁电系 系统, 并排磁电系系统中至少包含一排由至少两个磁电系单元相连构成的磁 电系系统, 此磁电系系统绕共有轴线形成轴对称异型曲面 , 轴对称异型曲面 不是与共有轴线相垂直的平面。 即并排磁电系系统中至少包含一排由多于一 个磁电系单元彼此相连构成的磁电系系统, 根据应用空间的需要, 在多排磁 电系中因地制宜根据空间的变化设置至少一个上述磁电系系统, 可以充分利 用应用对象受限的应用空间, 提高特定空间的利用率, 从而增大电机功率。 这也是本发明所包括的并可以解决的提高电机功能的创新方法。异型电机的 第四种技术方案, 可参见图 3、 图 6分别所示的第一种和第二种具体实现方 式。
在上述异型电机的第四种技术方案中, 绕共有轴线形成轴对称异型曲面 的磁电系系统可以包括至少三个磁电系单元,参见图 6、 以及参见图 16所示 的截面示意图, 至少三个磁电系单元相连的形状沿共有轴线的轴向体现为由 一层曲面分叉成至少两层曲面的形状; 或者, 至少三个磁电系单元相连的形 状沿共有轴线的径向体现为由一层曲面分叉成至少两层曲面和 /或平面的形 状。 或者, 参见图 3, 至少三个磁电系单元依次相连, 绕共有轴线形成轴对 称异型曲面, 轴对称异型曲面不是与共有轴线相垂直的平面。
本发明第四种技术方案在多排磁电系并排的布置中包括至少一排绕共 有轴线形成轴对称异型曲面的磁电系系统,通过设置多个磁电系单元来增加 电机的功率, 该排磁电系系统的截面参见图 10、 图 11、 图 12、 图 13、 图 16, 此处不再赘述。
或者, 在异型电机的第四种技术方案中, 并排磁电系系统中可至少包含 一个如图 1所示异型电机的第一种技术方案中的磁电系单元 203。 此磁电系 单元的其中一种表现形式的截面图可以参见图 14或图 15, 此处不再赘述。
另外, 在异型电机的第三种技术方案或第四种技术方案中, 当构成轴对 称异型曲面的为至少两个磁电系单元时, 可以其中至少有一个磁电系单元的 形状沿共有轴线的轴向体现为进深翘曲曲面的形状和 /或弯曲伸展曲面的形 状; 和 /或, 其中至少有一个磁电系单元的形状沿共有轴线的径向体现为进 深翘曲曲面的形状和 /或弯曲伸展曲面的形状。 对以上部分的其中一种表现 形式的图解请参见图 12或图 1 3, 其中, 图中带箭头的线段或曲线段代表的 是磁电系在轴向纵剖面的径向剖口的走向形状示意。
再者, 在异型电机的第三种技术方案或第四种技术方案中, 当构成轴对 称异型曲面的为至少三个磁电系单元时, 可以其中至少有一个磁电系单元的 形状沿共有轴线的轴向体现为进深翘曲曲面的形状和 /或弯曲伸展曲面的形 状; 和 /或, 其中至少有一个磁电系单元的形状沿共有轴线的径向体现为进 深翘曲曲面的形状和 /或弯曲伸展曲面的形状。 其中, 图中带箭头的线段或 曲线段代表的是磁电系在轴向纵剖面的径向剖口的走向形状示意。
由于本发明的异型电机可创造性地充分利用空间特点来包括多个磁电 系单元, 这就增加了电机的功率, 提高了单个电机的电磁转化输出效率。 同 时, 因为本发明中多个磁电系相连形成的是轴对称异型曲面, 就使得本发明 的电机能够适应不同应用对象的空间受限要求和形状要求。 例如, 背景技术 中陈述的如图 20、 图 21和图 22所表示的, 电机在应用过程中遇到的困难, 就可以采取图 23、 图 24和图 25所展示的方案, 利用本发明所提供的独特结 构和独创技术来解决。 需要说明的是, 图中带箭头的线段或曲线段代表的是 磁电系在轴向纵剖面的径向剖口的走向形状示意。
进一步地, 本发明的共有轴线可以是与至少一个磁电系单元相连的转 轴。 或者, 共有轴线也可以不是实体转轴, 不与任何磁电系相连, 而只是每 个磁电系单元的共有轴线。 即共有轴线不一定是实体轴, 而只是磁电系所共 同围绕的共有的几何轴线。
进一步地,在本发明异型电机的上述几种技术方案中,电枢组件为定子, 磁极组件为转子; 或者, 电枢组件为转子, 磁极组件为定子。
磁电系单元中的磁极组件可采用永磁体构成, 也可采用电磁体构成。 其 中, 永磁体材料本身具有长期保持其磁性的特点, 而电磁体则需要外界通电 才能产生磁力。 本发明的磁电系单元可有以下三种实现方式, 下面以发电机 为例对磁电系单元的具体构成进行详细描述。
1.第一种实现方式, 磁电系单元中的电枢组件包括第一电枢, 磁极组件 包括第一磁组, 且第一电枢和第一磁组之间设有磁隙。
如果磁组釆用永磁体构成, 参见图 2所示, 第一磁组 501采用永磁体构 IS
成, 第一磁组 501靠近第一电枢 401的端面上设置有多个永磁体 300, 多个 永磁体 300的 N极与 S极沿绕共有轴线旋转的周向交错排布,其交错排布的 示意图可参见图 17本实现方式中, 在旋转轴(也就是第一磁组 501和第一 电枢 401的共有轴线 100 ) 的旋转带动下, 可以使第一磁组 501与第一电枢 401之间做相对旋转运动, 亦即若第一磁组 501旋转, 则第一电枢 401静止, 反之亦然。 这样就可通过磁通变化、 切割磁感线产生电流输出。 关于 N极和 S极的沿绕共有轴线旋转的周向排布, 还可以根据具体应用对象的实施需要 做各种排列组合以适应不同具体应用需求的需要。其中的两个排列示范可以 参照如图 18和图 19所示。
如果磁组采用电磁体构成, 如图 7所示, 第一磁组 501 '采用电磁体构 成, 第一磁组 50 的靠近第一电枢的端面上设置有多个电磁体, 外部电流 流经电磁体上缠绕的线圈导线 600使电磁体具有磁性, 并使得多个电磁体的 N极与 S极沿绕共有轴线旋转的周向交错排布。 电磁体包括磁轭 601和通电 线圏导线 600 (通电线圏导线可为环形导线、 线圈), 在外界通电后, 外部电 流流经磁轭 601上缠绕的通电线圈导线 600形成 N极和 S极,使得第一磁组 501 '具有磁性, 然后再通过磁通变化、 切割磁感线等方式产生电流输出。
2.第二种实现方式, 磁电系单元中的电枢组件包括第二电枢和第三电 枢, 磁极组件包括第二磁组, 第二磁组位于第二电枢和第三电枢之间, 且第 二磁组与第二电枢和第三电枢之间均设有磁隙。
如果磁组采用永磁体构成, 参见图 3所示, 第二磁组 502采用永磁体构 成, 第二磁组 502在靠近第二电枢 402的端面上和靠近第三电枢 403的端面 上均设置有多个永磁体 300, 多个永磁体 300的 N极与 S极沿绕共有轴线旋 转的周向交错排布, 参见图 17。 本实施方式中, 在旋转轴(也就是第二磁组 502、 第二电枢 402和第三电枢 403的共有轴线 100 )的旋转带动下, 可以使 第二磁组 502与第二电枢 402、 第三电枢 403之间做相对旋转运动, 亦即若 第二磁组 502旋转, 则第二电枢 402和第三电枢 403静止, 反之亦然。 这样 可通过磁通变化、 切割磁感线产生电流输出。 关于 N极和 S极的沿绕共有轴 线旋转的周向排布,还可以根据具体应用对象的实施需要做各种排列组合以 适应不同具体应用需求的需要。 其中的两个排列示范可以参照如图 18和图
19所示。
如果磁组采用电磁体构成, 如图 8所示, 第二磁组 502 '采用电磁体构 成, 第二磁组 502 '的靠近第二电枢和靠近第三电枢的两个端面上设置有多 个电磁体, 外部电流流经电磁体上缠绕的线圈导线使电磁体具有磁性, 并使 得多个电磁体的 N极与 S极沿绕共有轴线旋转的周向交错排布。其原理与第 一种实现方式中采用电磁体构成磁组的工作原理相同, 此处不再赘述。
第二种实现方式相对第一种实现方式来说增加了一套磁电系,也就进一 步地增加了异型电机的功率密度, 提高了电能转化输出效率和功能。
3. 第三种实现方式, 磁电系单元中的电枢组件包括第四电枢, 磁极组 件包括第三磁组和第四磁组, 第四电枢位于第三磁组和第四磁组之间 , 且第 四电枢与第三磁组和第四磁组之间均设有磁隙。
如果磁组采用永磁体构成, 参见图 4、 图 5所示, 第三磁组 503和第四 磁组 504均采用永磁体构成, 第三磁组 503靠近第四电枢 404的端面上和第 四磁组 504靠近第四电枢 404的端面上均设置有多个永磁体 300, 多个永磁 体 300的 N极与 S极沿绕共有轴线旋转的周向交错排布, 其交错排布的示意 图可参见图 17。 本实现方式中, 第三磁组 503、 第四磁组 504在旋转轴的旋 转带动下作同心圆旋转运动, 而第四电枢 404静止, 或者, 第四电枢 404在 旋转轴的旋转带动下作旋转运动,从而使得第三磁组 503和第四磁组 504相 对第四电枢 404做相对转动。上述方式与第一种实现方式相比增大了感应线 圈单位面积的磁感应强度 B, 根据法拉第电磁感应定律 δ = BLvs in Θ可知, 感应电流的大小与磁感应强度 Β, 导线长 L、运动速度 V , 以及运动方向和 磁力线方向间的夹角 Θ的正弦成正比。 增大磁感应强度 Β, 增大切割磁力线 的导线的长度 L, 提高切割速度 V和尽可能垂直切割磁力线 (即 Θ = 90° ;), 均可增大感应电流,本实现方式通过增大磁感应强度 Β来提高磁电转换能力。 并考虑了应用空间受限从而需要磁电系与磁电系之间有折角这一独特结构 设计。 关于 Ν极和 S极的沿绕共有轴线旋转的周向排布, 还可以根据具体应 用对象的实施需要做各种排列组合以适应不同具体应用需求的需要。其中的 两个排列示范可以参照如图 18和图 19所示。
如果磁组采用电磁体构成,如图 9所示,第三磁组 503 '和第四磁组 504 '均采用电磁体构成, 第三磁组 503 '和第四磁组 504 '的靠近第四电枢的 两个端面上设置有多个电磁体, 外部电流流经电磁体上缠绕的线圈导线使电 磁体具有磁性, 并使得多个电磁体的 Ν极与 S极沿绕共有轴线旋转的周向交 错排布。 其原理与第一种实现方式中采用电磁体构成磁组的工作原理相同, 此处不再赘述。
上述构成磁电系单元的三种实现方式的工作过程均是以磁转化为电的 发电机为例进行的描述, 由于发电机和电动机都是电和磁的相互转换, 可以 互相改装,故本发明的异型电机也可用于实现以电转化为磁并进而将电能转 化为机械能的电动机, 此处不再赘述。
为满足不同实施目的,关于 Ν极和 S极的沿绕共有轴线旋转的周向排布, 可以参见图 17、 图 18 , 多个永磁体 300的 Ν极与 S极可按一定规律间隔交 错排布, 可间隔至少一个 Ν极后, 排列相同数目的 S极, 以适应不同具体应 用需求的需要。
此外, 在以上磁电系单元的各项技术方案中, 构成电枢组件的导线线圈 每匝的宽度取决于线圈对应磁极组件的磁极沿周向的宽窄尺寸, 可以是与磁 极同一宽窄尺寸, 也可以是不同宽窄尺寸, 配合其它电气配件一起应用, 以 满足不同应用需求的需要。导线线圈的匝与匝之间的间距设计也取决于对应 磁极组件的磁极沿周向的宽窄尺寸, 可以是与磁极同一宽窄尺寸, 也可以是 不同宽窄尺寸, 配合其它电气配件一起应用, 以满足不同应用需求的需要。
若本发明的异型电机应用为发电机, 则每个电枢组件可直接通过接线端 子将产生的电流引出, 也可将至少两个电枢组件相互串联连接和 /或至少两 个电枢组件相互并联连接后, 再通过接线端子将产生的电流引出, 以适应不 同具体应用需求的需要。 同样地, 本发明的异型电机也可为电动机, 其工作 原理也是电和磁的转换操作, 此处不再赘述。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明 的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发 明的保护范围之内。

Claims

权 利 要 求 书
1. 一种异型电机, 包括电枢组件和磁极组件, 所述电枢组件和所述磁 极组件绕共有轴线做相对运动, 所述电枢组件、 所述磁极组件构成一磁电系 单元, 其特征在于, 所述磁电系单元绕所述共有轴线形成一个轴对称异型曲 面, 所述轴对称异型曲面不是与共有轴线相垂直的平面。
2. —种异型电机, 包括至少两个电枢组件和至少两个磁极组件, 一个 所述电枢组件和一个所述磁极组件构成一个磁电系单元, 至少两个所述磁电 系单元并排排布形成并排磁电系单元,每个磁电系单元中的电枢组件和磁极 组件均绕共有轴线做相对运动, 其特征在于, 所述并排磁电系单元中至少包 含一个绕所述共有轴线形成轴对称异型曲面的磁电系单元, 所述轴对称异型 曲面不是与共有轴线相垂直的平面。
3. 按照权利要求 1或 2所述的异型电机, 其特征在于, 所述轴对称异 型曲面的形状沿所述共有轴线的轴向体现为进深翘曲曲面形状和 /或弯曲伸 展曲面形状;
和 /或, 所述轴对称异型曲面的形状沿所述共有轴线的径向体现为进深 翘曲曲面形状和 /或弯曲伸展曲面形状。
4. 一种异型电机, 包括至少两个电枢组件和至少两个磁极组件, 一个 所述电枢组件和一个所述磁极组件构成一个磁电系单元,每个磁电系单元中 的电枢组件和磁极组件均绕共有轴线#文相对运动, 其特征在于, 至少两个所 述磁电系单元相连, 绕所述共有轴线形成轴对称异型曲面, 所述轴对称异型 曲面不是与共有轴线相垂直的平面。
5. 按照权利要求 4所述的异型电机, 其特征在于, 包括至少三个所述 磁电系单元, 至少三个所述磁电系单元相连的形状沿所述共有轴线的轴向体 现为由一层曲面分叉成至少两层曲面的形状;
或者, 至少三个所述磁电系单元相连的形状沿所述共有轴线的径向体现 为由一层曲面分叉成至少两层曲面和 /或平面的形状;
或者, 至少三个所述磁电系单元依次相连, 绕所述共有轴线形成轴对称 异型曲面, 所述轴对称异型曲面不是与共有轴线相垂直的平面。
6. 一种异型电机, 包括至少三个电枢组件和至少三个磁极组件, 一个 所述电枢组件和一个所述磁极组件构成一个磁电系单元,每个磁电系单元中 的电枢组件和磁极组件均绕共有轴线做相对运动,
至少一个所述磁电系单元构成一个磁电系系统, 至少两个磁电系系统并 排排布形成并排磁电系系统, 其特征在于, 所述并排磁电系系统中至少包含 一排由至少两个磁电系单元相连构成的磁电系系统 , 所述磁电系系统绕所述 共有轴线形成轴对称异型曲面, 所述轴对称异型曲面不是与共有轴线相垂直 的平面。
7. 按照权利要求 6所述的异型电机, 其特征在于, 绕所述共有轴线形 成轴对称异型曲面的磁电系系统包括至少三个所述磁电系单元, 至少三个所 述磁电系单元相连的形状沿所述共有轴线的轴向体现为由一层曲面分叉成 至少两层曲面的形状;
或者, 至少三个所述磁电系单元相连的形状沿所述共有轴线的径向体现 为由一层曲面分叉成至少两层曲面和 /或平面的形状;
或者, 至少三个所述磁电系单元依次相连, 绕所述共有轴线形成轴对称 异型曲面, 所述轴对称异型曲面不是与共有轴线相垂直的平面。
8. 按照权利要求 6所述的异型电机, 其特征在于, 所述并排磁电系系 统中至少包含一个如权利要求 1所述的磁电系单元。
9. 按照权利要求 8所述的异型电机, 其特征在于, 所述磁电系单元绕 所述共有轴线形成一个轴对称异型曲面, 所述轴对称异型曲面的形状沿所述 共有轴线的轴向体现为进深翘曲曲面形状和 /或弯曲伸展曲面形状;
和 /或, 所述轴对称异型曲面的形状沿所述共有轴线的径向体现为进深 翘曲曲面形状和 /或弯曲伸展曲面形状。
10.按照权利要求 4或 6所述的异型电机, 其特征在于, 构成所述轴对 称异型曲面的至少两个所述磁电系单元, 其中至少一个磁电系单元的形状沿 所述共有轴线的轴向体现为进深翘曲曲面的形状和 /或弯曲伸展曲面的形 状;
和 /或, 其中至少一个磁电系单元的形状沿所述共有轴线的径向体现为 进深翘曲曲面的形状和 /或弯曲伸展曲面的形状。
11.按照权利要求 5或 7所述的异型电机, 其特征在于, 构成所述轴对 称异型曲面的至少三个所述磁电系单元, 其中至少一个磁电系单元的形状沿 状;
和 /或, 其中至少一个磁电系单元的形状沿所述共有轴线的径向体现为 进深翘曲曲面的形状和 /或弯曲伸展曲面的形状。
12.按照权利要求 1、 2、 4、 5、 6 、 7、 8或 9所述的异型电机, 其特征 在于, 所述共有轴线是与至少一个所述磁电系单元相连的转轴; 或者, 所述 共有轴线是每个所述磁电系单元的共有轴线<
13.按照权利要求 1、 2、 4、 5、 6 、 7、 8或 9所述的异型电机, 其特征 在于, 所述电枢组件为定子, 所述磁极组件为转子; 或者, 所述电枢组件为 转子, 所述磁极组件为定子。
14.按照权利要求 1、 2、 4、 5、 6 、 7、 8或 9所述的异型电机, 其特征 在于, 所述电枢组件包括第一电枢, 所述磁极组件包括第一磁组, 所述第一 电枢和所述第一磁组之间设有磁隙;
所述第一磁组采用永磁体构成,所述第一磁组靠近所述第一电枢的端面 上设置有多个永磁体, 所述多个永磁体的 N极与 S极沿绕所述共有轴线旋转 的周向交错排布;
或者, 所述第一磁组采用电磁体构成, 所述第一磁组的靠近所述第一电 枢的端面上设置有多个电磁体, 外部电流流经电磁体上缠绕的线圈导线使所 述电磁体具有磁性, 并使得所述多个电磁体的 N极与 S极沿绕所述共有轴线 旋转的周向交错排布。
15.按照权利要求 1、 2、 4、 5、 6 、 7、 8或 9所述的异型电机, 其特征 在于,所述电枢组件包括第二电枢和第三电枢,所述磁极组件包括第二磁组, 所述第二磁组位于所述第二电枢和所述第三电枢之间, 所述第二磁组与所述 第二电枢和所述第三电枢之间均设有磁隙;
所述第二磁组采用永磁体构成,所述第二磁组的靠近所述第二电枢和靠 近所述第三电枢的两个端面上设置有多个永磁体, 所述多个永磁体的 N极与 S极沿绕所述共有轴线旋转的周向交错排布;
或者, 所述第二磁组采用电磁体构成, 所述第二磁组的靠近所述第二电 枢和靠近所述第三电枢的两个端面上设置有多个电磁体, 外部电流流经电磁 体上缠绕的线圈导线使所述电磁体具有磁性, 并使得所述多个电磁体的 N极 与 S极沿绕所述共有轴线旋转的周向交错排布。
16.按照权利要求 1、 2、 4、 5、 6 、 7、 8或 9所述的异型电机, 其特征 在于,所述电枢组件包括第四电枢,所述磁极组件包括第三磁组和第四磁组, 所述第四电枢位于所述第三磁组和所述第四磁组之间, 所述第四电枢与所述 第三磁组和所述第四磁组之间均设有磁隙;
所述第三磁组和所述第四磁组采用永磁体构成, 所述第三磁组和所述第 四磁组的靠近所述第四电枢的端面上均设置有多个永磁体, 所述多个永磁体 的 N极与 S极沿绕所述共有轴线旋转的周向交错排布;
或者, 所述第三磁组和所述第四磁组采用电磁体构成, 所述第三磁组和 所述第四磁组的靠近所述第四电枢的两个端面上设置有多个电磁体, 外部电 流流经电磁体上缠绕的线圏导线使所述电磁体具有磁性, 并使得所述多个电 磁体的 N极与 S极沿绕所述共有轴线旋转的周向交错排布。
17.按照权利要求 2、 4、 5、 6 、 7、 8或 9所述的异型电机, 其特征在 于, 至少两个所述电枢组件相互串联连接和 /或相互并联连接。
PCT/CN2012/000623 2011-05-12 2012-05-09 异型电机 WO2012152068A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2835659A CA2835659A1 (en) 2011-05-12 2012-05-09 Anomalous electric machinery
US14/117,275 US20140292130A1 (en) 2011-05-12 2012-05-09 Heterogeneous motor
AU2012253134A AU2012253134A1 (en) 2011-05-12 2012-05-09 Heterogeneous motor
EP12781831.8A EP2712055A1 (en) 2011-05-12 2012-05-09 Heterogeneous motor
KR1020137033027A KR20140047615A (ko) 2011-05-12 2012-05-09 이종 모터
JP2014509586A JP2014513516A (ja) 2011-05-12 2012-05-09 変則電気機械
SG2013083837A SG194923A1 (en) 2011-05-12 2012-05-09 Heterogeneous motor
RU2013154966/07A RU2013154966A (ru) 2011-05-12 2012-05-09 Электрическая машина (варианты)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110122195.3 2011-05-12
CN2011101221953A CN102185389B (zh) 2011-05-12 2011-05-12 异型电机

Publications (1)

Publication Number Publication Date
WO2012152068A1 true WO2012152068A1 (zh) 2012-11-15

Family

ID=44571482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000623 WO2012152068A1 (zh) 2011-05-12 2012-05-09 异型电机

Country Status (10)

Country Link
US (1) US20140292130A1 (zh)
EP (1) EP2712055A1 (zh)
JP (1) JP2014513516A (zh)
KR (1) KR20140047615A (zh)
CN (1) CN102185389B (zh)
AU (1) AU2012253134A1 (zh)
CA (1) CA2835659A1 (zh)
RU (1) RU2013154966A (zh)
SG (1) SG194923A1 (zh)
WO (1) WO2012152068A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185389B (zh) * 2011-05-12 2013-11-27 陈鹤 异型电机
BR112014023867B1 (pt) 2012-03-28 2021-02-09 Lanxess Deutschland Gmbh composição; produto polimérico; processo para a preparação do produto polimérico; e uso da composição

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204570A (en) * 1991-09-09 1993-04-20 Gerfast Sten R Spheroidal machine
CN1323460A (zh) * 1998-08-28 2001-11-21 Abb股份有限公司 一种电机及其制造方法
CN1514528A (zh) * 2003-07-24 2004-07-21 张凤林 带式转子
CN102185389A (zh) * 2011-05-12 2011-09-14 陈鹤 一种异型电机
CN202019235U (zh) * 2011-05-12 2011-10-26 陈鹤 一种异型电机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413502A (en) * 1965-03-27 1968-11-26 Siemens Ag Rotor structure of alternating polarity synchronous machine
JPH04304132A (ja) * 1991-04-02 1992-10-27 Fanuc Ltd 同期電動機のロータ構造
US5783893A (en) * 1995-10-20 1998-07-21 Newport News Shipbuilding And Dry Dock Company Multiple stator, single shaft electric machine
US6411002B1 (en) * 1996-12-11 2002-06-25 Smith Technology Development Axial field electric machine
JP3131403B2 (ja) * 1997-04-07 2001-01-31 日本サーボ株式会社 ステッピングモータ
JP2005328592A (ja) * 2004-05-12 2005-11-24 Matsushita Electric Ind Co Ltd 球面モータ
US7791242B2 (en) * 2004-08-20 2010-09-07 Clearwater Holdings, Ltd. DC induction electric motor-generator
US7834503B2 (en) * 2004-08-20 2010-11-16 Clearwater Holdings, Ltd. Immersed windings, monopole field, electromagnetic rotating machine
DE112006001916B4 (de) * 2005-07-19 2016-11-24 Denso Corporation Wechselstrommotor und Steuereinheit desselben
GB0613570D0 (en) * 2006-07-07 2006-08-16 Imp Innovations Ltd An electrical machine
JP5120961B2 (ja) * 2009-02-26 2013-01-16 独立行政法人産業技術総合研究所 球面減速駆動機構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204570A (en) * 1991-09-09 1993-04-20 Gerfast Sten R Spheroidal machine
CN1323460A (zh) * 1998-08-28 2001-11-21 Abb股份有限公司 一种电机及其制造方法
CN1514528A (zh) * 2003-07-24 2004-07-21 张凤林 带式转子
CN102185389A (zh) * 2011-05-12 2011-09-14 陈鹤 一种异型电机
CN202019235U (zh) * 2011-05-12 2011-10-26 陈鹤 一种异型电机

Also Published As

Publication number Publication date
CN102185389A (zh) 2011-09-14
US20140292130A1 (en) 2014-10-02
CA2835659A1 (en) 2012-11-15
EP2712055A1 (en) 2014-03-26
SG194923A1 (en) 2013-12-30
KR20140047615A (ko) 2014-04-22
JP2014513516A (ja) 2014-05-29
AU2012253134A1 (en) 2014-01-09
RU2013154966A (ru) 2015-06-20
CN102185389B (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
CN102035270B (zh) 轴向励磁的双凸极电机
US20070152528A1 (en) Permanent magnet excited transverse flux motor with outer rotor
US20050099081A1 (en) Disk alternator
JP5265615B2 (ja) 永久磁石埋め込み回転子
EP2394351A2 (en) Electrical machine
KR102143808B1 (ko) 마그넷 발전기
CN104967270B (zh) 聚磁型无源转子横向磁通单相电机
CN104682642A (zh) 一种两自由度电机
WO2012152068A1 (zh) 异型电机
RU2524144C2 (ru) Однофазная электрическая машина
CN107689699A (zh) 一种新型印刷绕组的永磁无刷直流电机
CN111835170A (zh) 无刷电动发电机
CN110707890A (zh) 交变复合励磁双凸极对组件及其永磁电机
CN112968539A (zh) 一种48槽三相集中绕组式永磁电机
JP6346385B2 (ja) 回転発電機
CN202019235U (zh) 一种异型电机
RU216039U1 (ru) Электрическая машина осевого потока
CN109510337A (zh) 一种交替磁极的双定子永磁发电机
TW202008688A (zh) 混合可變磁力之節能電動機
JP7429441B2 (ja) 磁石列ユニットおよび電磁装置
RU181317U1 (ru) Электрический генератор, имеющий центральный магнитный вал
CN109004782B (zh) 模块化的内置式交替极永磁电机转子
CN209088642U (zh) 一种交替磁极的双定子永磁发电机
CN102005983A (zh) 一种双段交错耦合感应式磁能发电机
CN205883008U (zh) 永磁电动机多转子结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2835659

Country of ref document: CA

Ref document number: 2014509586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137033027

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2013154966

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012781831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012781831

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012253134

Country of ref document: AU

Date of ref document: 20120509

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14117275

Country of ref document: US