US5783893A - Multiple stator, single shaft electric machine - Google Patents
Multiple stator, single shaft electric machine Download PDFInfo
- Publication number
- US5783893A US5783893A US08/546,317 US54631795A US5783893A US 5783893 A US5783893 A US 5783893A US 54631795 A US54631795 A US 54631795A US 5783893 A US5783893 A US 5783893A
- Authority
- US
- United States
- Prior art keywords
- rotor
- stator
- electric machine
- magnetic
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001369 Brass Inorganic materials 0.000 claims abstract description 5
- 229910000906 Bronze Inorganic materials 0.000 claims abstract description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- 239000010951 brass Substances 0.000 claims abstract description 5
- 239000010974 bronze Substances 0.000 claims abstract description 5
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 5
- 239000011777 magnesium Substances 0.000 claims abstract description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 5
- 239000010935 stainless steel Substances 0.000 claims abstract description 5
- 239000010936 titanium Substances 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 4
- 239000004020 conductor Substances 0.000 claims description 17
- 238000003475 lamination Methods 0.000 claims description 12
- 241000555745 Sciuridae Species 0.000 abstract description 7
- 230000000712 assembly Effects 0.000 abstract description 4
- 238000000429 assembly Methods 0.000 abstract description 4
- 238000002955 isolation Methods 0.000 abstract description 3
- 230000006698 induction Effects 0.000 description 9
- 230000004907 flux Effects 0.000 description 7
- 238000004804 winding Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
Definitions
- the present invention is related to electric machines such as motors and generators, and more particularly to radial gap electric machines with a rotor interacting with both an inner stator and an outer stator.
- the rotor includes two sets of magnetic pole pieces, inner and outer, attached to the inner and outer sides, respectively, of a rim.
- the flow of flux is radial through the rotor passing through the inner pole pieces, the rim and the outer pole pieces, and then tangential through the magnetic cores of the inner and outer stators.
- the inner and outer pole pieces mounted on either side of the rim are arranged to form radial pairs such that inner and outer pole pieces in facing relationship have opposing signs or polarities.
- the present invention overcomes the disadvantages of the prior art by providing a flexible multiple stator, single shaft machine that is capable of independent operation with the rotor interacting solely with the inner stator or solely with the outer stator.
- this advantage is achieved by a unique rotor configuration that magnetically isolates the inner rotor portion/inner stator from the outer rotor portion/outer stator.
- the machine of the present invention can be configured, for example, as either a permanent magnet (PM) motor or as an induction motor.
- the rotor magnetic poles formed by either permanent magnets in a PM motor or created by current induced in rotor conductors in an induction motor
- the magnetic isolator which supports the permanent magnets in the PM motor or inner and outer squirrel cage rotor assemblies in the induction motor, is preferably made of non-magnetic stainless steel but may also be made of titanium, brass, aluminum, bronze or magnesium.
- the inner and outer rotor magnetic poles in facing relationship are arranged to have a like magnetic polarity, thus tending to repel the flow of magnetic flux from one side of the rotor to the other.
- the isolation features of the present invention prevent undesirable induction of current in the damaged stator even while the machine continues to operate with the rotor interacting with the working stator.
- the rotor conductors are excited from the stator. If one stator is damaged, there will be no source of induced current on the damaged side of the machine. In the PM embodiment, the permanent magnets are removed from the rotor on the damaged stator side, thus preventing any induced current in the damaged stator windings.
- FIG. 1 is a side sectional view of an upper half of a permanent magnet (PM) motor embodiment of the present invention, it being understood that the machine is generally circular in cross-section and the lower half is a mirror image of the upper half.
- PM permanent magnet
- FIG. 2 is an end sectional view along line 2--2 of FIG. 1.
- FIG. 3 is a side sectional view of an upper half of an induction motor embodiment of the present invention, it again being understood that the machine is generally circular in cross-section and the lower half is a mirror image of the upper half.
- FIG. 4 is an end sectional view along line 4--4 of FIG. 3.
- the electrical machine 10 of the present invention is shown as a permanent magnet (PM) motor including a housing 12.
- Housing 12 will include two end plates 14, 16 to enclose the housing.
- End plate 14 is preferably permanently attached to housing 12 and may be integrally formed therewith, as shown.
- End plate 16 is preferably removable to allow access to the inside of machine 10.
- End plates 14, 16 include openings 18, 20 concentric with the central axis of the housing for admitting shaft 22, which is rotatively supported in annular bearing assemblies, shown generally as 24 and 26.
- Shaft 22 is connected to rotor 28 through annular extension member 30 and axially extending ring member 32.
- Shaft 22 and members 30 and 32 may be integrally formed or connected together in any suitable manner.
- Rotor 28 is generally cylindrical with a central opening 36, but when connected with members 30 and 32 it is generally cup shaped.
- Corner braces 34 which are circumferentially spaced about the motor, are attached between the shaft 22 and extension member 30 to provide support.
- Inner stator 38 is secured within housing 12 in central opening 36 of rotor 28 and is separated from rotor 28 by inner air gap 98.
- Inner stator 38 is coaxial with rotor 28 and is supported by inner stator ring 40.
- Stator ring 40 is connected to housing 12 and supported therein by a brace ring 42, an end ring 44 and a plurality of inner support brackets 46 that are circumferentially and equally spaced around the inside circumference of the brace ring 42.
- the support brackets 46 are attached to end plate 14, the inner circumference of brace ring 42 and stator ring 40, and to end ring 44.
- Outer stator 48 is secured within housing 12 in surrounding relationship to and coaxial with rotor 28, and is separated from rotor 28 by outer air gap 100. Outer stator 48 is supported by outer stator ring 50 that is connected to and supported by a plurality of circumferentially and equally spaced supports 52 that are attached to the inside of housing 12.
- Inner stator 38 and outer stator 48 are conventionally formed with, for example, a plurality of thin disc laminates (identified generally as L in FIG. 1) cut to form teeth T (FIG. 2) spaced about the circumference of each stator, and a plurality of insulated, conductive coils (identified generally as C in FIG. 1) wound around the teeth T in the spaces S therebetween (FIG. 2, with conductors omitted for illustration), as is conventional.
- Rotor 28 is divided about its circumference into an inner rotor section 28A and an outer rotor section 28B by a generally cylindrical rotor isolator 54.
- Rotor isolator 54 magnetically separates and also supports rotor inner backiron 56 and rotor outer backiron 58.
- Rotor isolator 54 preferably is made of non-magnetic stainless steel, but may also be made of titanium, brass, aluminum, bronze or magnesium, or any material that is capable of magnetically isolating the inner and outer portions of the rotor 28.
- one or more, and preferably a set of several, equally spaced, permanent magnets 60 are attached to the inner backiron 56 by a magnetic carrier assembly 62, 63.
- Magnetic carrier assembly 62, 63 is attached to inner backiron 56 with dovetail keys that slide into dovetail grooves cut into backiron 56, with the base of the carrier assembly 62, 63 being attached to the base of the permanent magnets 60. Magnetic carrier assembly 62, 63 is secured to inner backiron 56 with bolts 64 and inner magnet retainer ring 66.
- one or more, and preferably a set of several, equally spaced, permanent magnets 68 are attached to the outer backiron 58 by a magnetic carrier assembly 70, 71.
- Magnetic carrier assembly 70, 71 is attached to outer backiron 58 with dovetail keys that slide into dovetail grooves cut into backiron 58, with the base of the carrier assembly 70, 71 being attached to the base of the permanent magnets 68.
- Magnetic carrier assembly 70, 71 is secured to outer backiron 58 with bolts 72 and outer magnet retainer ring 74.
- the flow of magnetic flux from one rotor side to the other is preferably further impeded by the configuration of the permanent magnets wherein the inner permanent magnets 60 and the outer permanent magnets 68 in facing relationship have like poles or polarities.
- radially aligned permanent magnetic pair 60A, 68A is arranged such that the north poles face each other across magnetic isolator 54.
- the inner permanent magnets 60 are oriented to form a set of inner magnetic poles facing the outer permanent magnets 68
- the outer permanent magnets are oriented to form a set of outer magnetic poles facing the inner permanent magnets 60.
- inner and outer magnetic poles in facing relationship have the same polarity.
- FIGS. 3 and 4 An induction motor embodiment of the electrical machine 10 of the present invention is shown in FIGS. 3 and 4. Structure that is common to both the permanent magnet motor and induction motor embodiments have like numbers in all figures and their description will not be repeated in this discussion of the induction motor embodiment. The primary difference between the two embodiments is in the rotor.
- rotor 76 is divided about its circumference into an inner rotor section 76A and an outer rotor section 76B by generally cylindrical rotor isolator 54.
- Rotor isolator 54 magnetically separates and also supports rotor inner squirrel cage assembly 78 and outer squirrel cage assembly 80.
- rotor isolator 54 is preferably made of non-magnetic stainless steel, but may also be made of titanium, brass, aluminum, bronze or magnesium, or any material that provides magnetic isolation between the inner and outer portions of the rotor 76.
- the inner squirrel cage assembly 78 includes inside rotor laminations 82, inner rotor conductors 84 and inner rotor end conductors 86.
- the outer squirrel cage assembly 80 includes outer rotor laminations 88, outer rotor conductors 90 and outer rotor end conductors 92.
- the inner and outer rotor laminations are secured to axially extending ring member 32 of rotor 76 with through bolts 94 and rotor lamination compression ring 96.
- Rotating fields set up by currents flowing in the inner and outer stators induce voltages in the respective inner and outer rotor conductors, which in turn cause current to flow in such conductors.
- Current flowing in the respective squirrel cage assemblies make loops that establish magnetic fields with north and south poles in the rotor.
- the rotor conductors are wound to establish a set of inner rotor magnetic poles and a set of outer rotor magnetic poles. Certain of such poles are illustrated for example in FIG. 4, it being understood that magnetic poles would be spaced around the entire circumference of the rotor.
- the rotor conductors are connected so that inner and outer magnetic poles in facing relationship have the same polarity.
- the present invention provides flexibility and efficiency to motor operation.
- the motors as described above can be operated with both the inner and outer motor portions operating at full power. If less power is required, one motor portion can be run at less than full power while the other motor portion is allowed to operate at maximum power and efficiency. In the event one of the motor portions fails, the other portion can still be operated, thus providing backup capability.
- the permanent magnet embodiment the permanent magnets are removed from the rotor in the damaged stator side, thus preventing any induced current in the damaged stator windings.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/546,317 US5783893A (en) | 1995-10-20 | 1995-10-20 | Multiple stator, single shaft electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/546,317 US5783893A (en) | 1995-10-20 | 1995-10-20 | Multiple stator, single shaft electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
US5783893A true US5783893A (en) | 1998-07-21 |
Family
ID=24179857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/546,317 Expired - Lifetime US5783893A (en) | 1995-10-20 | 1995-10-20 | Multiple stator, single shaft electric machine |
Country Status (1)
Country | Link |
---|---|
US (1) | US5783893A (en) |
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986370A (en) * | 1999-04-21 | 1999-11-16 | Cheng; Shui-Jung | Autonomous generation brake |
US6304017B1 (en) * | 2000-02-18 | 2001-10-16 | The United States Of America As Represented By The Secretary Of The Army | Counter rotating nested cylinders in electrical machinery |
DE10101377A1 (en) * | 2001-01-13 | 2002-07-18 | Vlado Ostovic | Dual stator or dual rotor machine has any number of generally concentric, stationary parts and any number of generally concentric movable parts whose revolution rates can be different |
WO2002093719A1 (en) * | 2001-05-16 | 2002-11-21 | Lg Electronics Inc. | Reciprocating motor |
US6570278B1 (en) | 2000-01-24 | 2003-05-27 | Salvatore Falanga | Electromagnetic integrated driver alternator |
EP1111756A3 (en) * | 1999-12-14 | 2003-09-24 | Volkswagen Aktiengesellschaft | Electric machine |
US20030201686A1 (en) * | 2002-04-30 | 2003-10-30 | Fujitsu General Limited | Induction motor |
US20040061398A1 (en) * | 2000-10-27 | 2004-04-01 | Wolfram Angerer | Rotor for an electric machine, especially a synchronous machine, and synchronous machine with a transverse flux |
US20040108781A1 (en) * | 2002-04-13 | 2004-06-10 | Razzell Anthony G. | Compact electrical machine |
US20040155554A1 (en) * | 2003-02-06 | 2004-08-12 | Morgante John C. | Dual concentric AC motor |
US20040195925A1 (en) * | 2002-03-20 | 2004-10-07 | Denso Corporation | Rotary electric machine |
US20050052091A1 (en) * | 2003-08-01 | 2005-03-10 | Nissan Motor Co., Ltd. | Rotating machine |
US20050110365A1 (en) * | 2003-09-04 | 2005-05-26 | Shkondin Vasily V. | Electric motor |
DE10354604A1 (en) * | 2003-11-21 | 2005-06-23 | Gesellschaft für Aufladetechnik und Spindelbau mbH | Infinitely variable, magnetodynamic transmission |
US20050218740A1 (en) * | 2004-03-30 | 2005-10-06 | Stout David E | Low profile generator configuration |
US20050248231A1 (en) * | 2004-03-24 | 2005-11-10 | Pioneer Corporation | Motor and information recording and reproducing apparatus |
US20060096796A1 (en) * | 2002-11-18 | 2006-05-11 | Mats Leijon | System for storage of power |
US20060244338A1 (en) * | 2005-04-29 | 2006-11-02 | Petersen Technology Corporation | Vertical stator double gas d.c. PM motors |
US20070096574A1 (en) * | 2004-01-29 | 2007-05-03 | Renault S.A. S. | Electromagnetic coupler |
US20070186692A1 (en) * | 2006-02-14 | 2007-08-16 | Michal-Wolfgang Waszak | Electric machine apparatus with integrated, high torque density magnetic gearing |
US20070281558A1 (en) * | 2004-06-30 | 2007-12-06 | Jansen Patrick L | Electrical machine with double-sided rotor |
US20080036324A1 (en) * | 2006-08-09 | 2008-02-14 | Mitsubishi Electric Corporation | Magneto generator |
US20080100166A1 (en) * | 2006-10-26 | 2008-05-01 | Deere & Company | Motor having stator with generally planar windings |
US20080100174A1 (en) * | 2006-10-26 | 2008-05-01 | Deere & Company | Motor having stator with generally planar windings |
US20080129135A1 (en) * | 2006-11-07 | 2008-06-05 | Inventec Corporation | Motor structure |
US20080169720A1 (en) * | 2005-05-23 | 2008-07-17 | Marko Petek | Synchronous Electromechanical Transformer |
US20080197738A1 (en) * | 2004-06-23 | 2008-08-21 | Heinz Leiber | Rotating Field Machine With Bell Shaped Rotor |
US20090206692A1 (en) * | 2007-09-13 | 2009-08-20 | Eric Stephane Quere | Composite electromechanical machines with uniform magnets |
US20090315329A1 (en) * | 2008-06-18 | 2009-12-24 | Duffey Christopher K | Variable Speed Synchronous Generator |
US20100052323A1 (en) * | 2008-09-03 | 2010-03-04 | Parag Vyas | Magnetically geared generator |
US20100139999A1 (en) * | 2007-04-18 | 2010-06-10 | Gye-Jeung Park | Motor having rotors arranged concentrically and driving apparatus having the motor |
US7791245B1 (en) * | 2009-03-24 | 2010-09-07 | Gm Global Technology Operations, Inc. | Optimized electric machine for smart actuators |
US7812500B1 (en) | 2008-11-12 | 2010-10-12 | Demetrius Calvin Ham | Generator / electric motor |
US7851962B1 (en) * | 2007-06-14 | 2010-12-14 | Williams Kevin R | Induction motor utilizing dual stators and a double squirrel cage motor |
US20110012447A1 (en) * | 2009-07-14 | 2011-01-20 | Hamilton Sundstrand Corporation | Hybrid cascading lubrication and cooling system |
WO2011022354A1 (en) | 2009-08-20 | 2011-02-24 | Northrop Grumman Shipbuilding, Inc. | Tuned rolling wave energy extractor |
US20110043066A1 (en) * | 2009-08-19 | 2011-02-24 | Dijiya Technology, Inc. | Bilayer magnetic electric motor |
CN102122869A (en) * | 2011-02-24 | 2011-07-13 | 中科盛创(青岛)电气有限公司 | Concentric double-stator structured direct-drive cage type induction generator system |
CN102141007A (en) * | 2011-02-24 | 2011-08-03 | 中科盛创(青岛)电气有限公司 | Direct drive switch magnetic resistance wind driven generator system with concentric type double-stator structure |
CN102141008A (en) * | 2011-02-24 | 2011-08-03 | 中科盛创(青岛)电气有限公司 | Direct-drive solid rotor asynchronous wind power generator system in concentric type double-stator structure |
US20110215668A1 (en) * | 2010-03-03 | 2011-09-08 | Industrial Technology Research Institute | Magnetic transmission assembly |
US20120032545A1 (en) * | 2010-08-04 | 2012-02-09 | Liang-Yi Hsu | Magnetic-controlled actuator with auto-locking function for joints of manipulation arm |
CN102371589A (en) * | 2010-08-13 | 2012-03-14 | 台达电子工业股份有限公司 | Magnetic controlled robotic arm joint brake with power-off self-locking function |
WO2011162501A3 (en) * | 2010-06-23 | 2012-04-12 | 주식회사 아모텍 | Double-stator/double-rotor motor and direct actuator for washer using same |
US20120161497A1 (en) * | 2011-12-30 | 2012-06-28 | Jing He | Wheel hub flywheel-motor kinetic hybrid system and method |
WO2012031694A3 (en) * | 2010-09-07 | 2012-11-15 | Daimler Ag | Rotor of an electrical machine |
CN102801265A (en) * | 2011-05-26 | 2012-11-28 | 德昌电机(深圳)有限公司 | Motor |
CN103023243A (en) * | 2012-12-26 | 2013-04-03 | 国电联合动力技术有限公司 | Double-air-gap hybrid excitation direct drive switched reluctance wind power generator and unit system thereof |
CN103023245A (en) * | 2012-12-26 | 2013-04-03 | 国电联合动力技术有限公司 | Double-bearing support double-stator switch magnetic-resistance wind power generator and unit system thereof |
US20130088103A1 (en) * | 2011-10-05 | 2013-04-11 | Industrias Metalurgicas Pescarmona S.A.I.C. Y F. | Synchronic Wind Turbine Generator |
CN103051127A (en) * | 2013-01-21 | 2013-04-17 | 国电联合动力技术有限公司 | Double-stator permanent magnetic direct drive generator and assembly method thereof |
US20130093275A1 (en) * | 2010-06-23 | 2013-04-18 | Amotech Co., Ltd. | Double-stator/double-rotor type motor and direct drive apparatus for washer using same |
KR20130044756A (en) * | 2011-10-24 | 2013-05-03 | 엘지전자 주식회사 | A manufacturing method of a dual-motor stator and a washing machine |
US20130119789A1 (en) * | 2011-11-15 | 2013-05-16 | Denso Corporation | Multiple-gap electric rotating machine |
US20140028142A1 (en) * | 2012-07-30 | 2014-01-30 | Denso Corporation | Double-stator motor |
US20140159533A1 (en) * | 2012-12-07 | 2014-06-12 | Denso Corporation | Multi-gap type rotary electric machine |
US20140292130A1 (en) * | 2011-05-12 | 2014-10-02 | He Chen | Heterogeneous motor |
WO2015007338A1 (en) | 2013-07-19 | 2015-01-22 | Abb Technology Ltd | A wind power generation assembly |
US20150288235A1 (en) * | 2012-12-28 | 2015-10-08 | Ihi Corporation | Double stator switched reluctance rotating machine |
US20150318805A1 (en) * | 2013-01-21 | 2015-11-05 | Amotech Co., Ltd. | Multi-motor driving device and apparatus and method of driving motor for washing machine using same |
US9331535B1 (en) * | 2012-03-08 | 2016-05-03 | Leidos, Inc. | Radial flux alternator |
US9647520B2 (en) | 2013-01-10 | 2017-05-09 | Ihi Corporation | Double stator switched reluctance rotating machine |
US20180054093A1 (en) * | 2016-08-17 | 2018-02-22 | Arnold Yoonho Lee | Electric generator that generates electrical energy by magnetic induction |
US20180083556A1 (en) * | 2015-04-06 | 2018-03-22 | Lg Electronics Inc. | Laundry treatment apparatus |
CN108023416A (en) * | 2016-10-28 | 2018-05-11 | 财团法人工业技术研究院 | permanent magnet rotor and permanent magnet rotating member |
EP3208918A4 (en) * | 2014-10-17 | 2018-07-04 | IHI Corporation | Double stator-type rotary machine |
US10122224B2 (en) | 2015-12-28 | 2018-11-06 | Filip Sammak | Electric motor assembly |
US10312782B2 (en) * | 2010-06-25 | 2019-06-04 | The Board Of Regents, The University Of Texas System | Double stator permanent magnet machine |
US20190305704A1 (en) * | 2018-03-30 | 2019-10-03 | Kohler Co. | Alternator Flux Shaping |
CN112970178A (en) * | 2019-02-07 | 2021-06-15 | 松下知识产权经营株式会社 | Magnetic gear motor |
US20210234425A1 (en) * | 2020-01-23 | 2021-07-29 | Etel S.A. | Elastic-locking winding carrier for preformed coil assemblies of an electric motor |
US20210257896A1 (en) * | 2020-02-17 | 2021-08-19 | Dan Haronian | Movement and Vibration energy harvesting |
US11128209B2 (en) * | 2017-03-16 | 2021-09-21 | Portland State University | Magnetic gearbox with flux concentration halbach rotors |
RU2759161C2 (en) * | 2018-05-30 | 2021-11-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского" | Asynchronous three-phase electric engine |
US20210399594A1 (en) * | 2018-12-17 | 2021-12-23 | Nippon Steel Corporation | Laminated core and electric motor |
US11289985B2 (en) * | 2019-08-09 | 2022-03-29 | Hamilton Sundstrand Corporation | Dual stator machine with a rotor magnet set configured to minimize flux leakage |
US20220139687A1 (en) * | 2020-01-23 | 2022-05-05 | Spark Thermionics, Inc. | Small gap device system and method of fabrication |
US11325643B2 (en) * | 2017-11-03 | 2022-05-10 | Mando Corporation | Apparatus for detecting steering angle, steering system, and torque sensing method of steering system |
US20220247242A1 (en) * | 2019-06-26 | 2022-08-04 | Sony Group Corporation | Motor and motor control device |
US11411449B2 (en) * | 2018-12-14 | 2022-08-09 | Tdk Corporation | Rotating electrical machine with rotor having arch shaped permanent magnets with perpendicular reference surface |
US11482899B2 (en) * | 2018-12-14 | 2022-10-25 | Tdk Corporation | Rotating electrical machine with rotor having arc shaped permanent magnets |
US20220368205A1 (en) * | 2021-05-11 | 2022-11-17 | Aac Microtech (Changzhou) Co., Ltd. | Linear vibration motor |
US20230086204A1 (en) * | 2021-09-22 | 2023-03-23 | Apple Inc. | Haptic Engine Based on an Angular Resonant Actuator |
KR20230140805A (en) | 2022-03-30 | 2023-10-10 | 현대자동차주식회사 | Dual rotor motor and hybrid powertrain using thereof |
US11791143B2 (en) | 2017-07-24 | 2023-10-17 | Spark Thermionics, Inc. | Small gap device system and method of fabrication |
US20230421007A1 (en) * | 2020-11-27 | 2023-12-28 | Kyungsung Univ. Industry Cooperation Foundation | Double air gap-type surface permanent magnet synchronous motor provided with non-magnetic shielding member |
US20240006970A1 (en) * | 2020-11-27 | 2024-01-04 | Kyungsung Univ. Industry Cooperation Foundation | Double air gap-type surface permanent magnet synchronous motor provided with double controllers |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4375047A (en) * | 1981-07-23 | 1983-02-22 | General Signal Corporation | Torque compensated electrical motor |
US4517484A (en) * | 1982-02-18 | 1985-05-14 | Ateliers De Constructions Electriques De Charleroi (Acec) | Double gap electric generating machines |
US4651040A (en) * | 1984-01-02 | 1987-03-17 | Robert Bosch Gmbh | Induction motor |
US4714853A (en) * | 1986-09-04 | 1987-12-22 | Tri-Tech, Inc. | Low profile electric motor |
US4829205A (en) * | 1987-12-04 | 1989-05-09 | Lindgren Theodore D | Dual-rotary induction motor with stationary field winding |
US5107156A (en) * | 1988-07-11 | 1992-04-21 | Hermann Jaun | Synchronous motor |
US5281879A (en) * | 1991-04-27 | 1994-01-25 | Satake Corporation | Synchronous motor with two permanent magnet rotor portions |
US5289072A (en) * | 1990-11-23 | 1994-02-22 | J. M. Voith Gmbh | Electrical machine |
US5345133A (en) * | 1992-06-10 | 1994-09-06 | Okuma Corporation | Electric motor |
US5396140A (en) * | 1993-05-28 | 1995-03-07 | Satcon Technology, Corp. | Parallel air gap serial flux A.C. electrical machine |
US5525851A (en) * | 1992-12-04 | 1996-06-11 | Toshiba Kikai Kabushiki Kaisha | Apparatus for producing high-speed rotation |
-
1995
- 1995-10-20 US US08/546,317 patent/US5783893A/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4375047A (en) * | 1981-07-23 | 1983-02-22 | General Signal Corporation | Torque compensated electrical motor |
US4517484A (en) * | 1982-02-18 | 1985-05-14 | Ateliers De Constructions Electriques De Charleroi (Acec) | Double gap electric generating machines |
US4651040A (en) * | 1984-01-02 | 1987-03-17 | Robert Bosch Gmbh | Induction motor |
US4714853A (en) * | 1986-09-04 | 1987-12-22 | Tri-Tech, Inc. | Low profile electric motor |
US4829205A (en) * | 1987-12-04 | 1989-05-09 | Lindgren Theodore D | Dual-rotary induction motor with stationary field winding |
US5107156A (en) * | 1988-07-11 | 1992-04-21 | Hermann Jaun | Synchronous motor |
US5289072A (en) * | 1990-11-23 | 1994-02-22 | J. M. Voith Gmbh | Electrical machine |
US5281879A (en) * | 1991-04-27 | 1994-01-25 | Satake Corporation | Synchronous motor with two permanent magnet rotor portions |
US5345133A (en) * | 1992-06-10 | 1994-09-06 | Okuma Corporation | Electric motor |
US5525851A (en) * | 1992-12-04 | 1996-06-11 | Toshiba Kikai Kabushiki Kaisha | Apparatus for producing high-speed rotation |
US5396140A (en) * | 1993-05-28 | 1995-03-07 | Satcon Technology, Corp. | Parallel air gap serial flux A.C. electrical machine |
Cited By (149)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986370A (en) * | 1999-04-21 | 1999-11-16 | Cheng; Shui-Jung | Autonomous generation brake |
EP1111756A3 (en) * | 1999-12-14 | 2003-09-24 | Volkswagen Aktiengesellschaft | Electric machine |
US6570278B1 (en) | 2000-01-24 | 2003-05-27 | Salvatore Falanga | Electromagnetic integrated driver alternator |
US6304017B1 (en) * | 2000-02-18 | 2001-10-16 | The United States Of America As Represented By The Secretary Of The Army | Counter rotating nested cylinders in electrical machinery |
US7026737B2 (en) * | 2000-10-27 | 2006-04-11 | Voith Turbo Gmbh & Co. Kg | Rotor for an electric machine, especially a synchronous machine, and synchronous machine with a transverse flux |
US20040061398A1 (en) * | 2000-10-27 | 2004-04-01 | Wolfram Angerer | Rotor for an electric machine, especially a synchronous machine, and synchronous machine with a transverse flux |
DE10101377A1 (en) * | 2001-01-13 | 2002-07-18 | Vlado Ostovic | Dual stator or dual rotor machine has any number of generally concentric, stationary parts and any number of generally concentric movable parts whose revolution rates can be different |
CN1303745C (en) * | 2001-05-16 | 2007-03-07 | Lg电子株式会社 | Reciprocating motor |
US20040145248A1 (en) * | 2001-05-16 | 2004-07-29 | Won-Hyun Jung | Reciprocating motor |
WO2002093719A1 (en) * | 2001-05-16 | 2002-11-21 | Lg Electronics Inc. | Reciprocating motor |
EP1400004B1 (en) * | 2001-05-16 | 2013-03-27 | LG Electronics, Inc. | Reciprocating motor |
US6894407B2 (en) | 2001-05-16 | 2005-05-17 | Lg Electronics Inc. | Reciprocating motor |
US6922000B2 (en) * | 2002-03-20 | 2005-07-26 | Denso Corporation | Rotary electric machine |
US20040195925A1 (en) * | 2002-03-20 | 2004-10-07 | Denso Corporation | Rotary electric machine |
US20040108781A1 (en) * | 2002-04-13 | 2004-06-10 | Razzell Anthony G. | Compact electrical machine |
US6794781B2 (en) * | 2002-04-13 | 2004-09-21 | Rolls-Royce Plc | Compact electrical machine |
US6819026B2 (en) * | 2002-04-30 | 2004-11-16 | Fujitsu General Limited | Induction motor |
CN100377477C (en) * | 2002-04-30 | 2008-03-26 | 富士通将军股份有限公司 | Inductive motor |
US20030201686A1 (en) * | 2002-04-30 | 2003-10-30 | Fujitsu General Limited | Induction motor |
US20060096796A1 (en) * | 2002-11-18 | 2006-05-11 | Mats Leijon | System for storage of power |
US7768176B2 (en) * | 2002-11-18 | 2010-08-03 | Electric Line Uppland Ab | Power storage system with low voltage and high voltage windings for a vehicle driving system |
US7030528B2 (en) * | 2003-02-06 | 2006-04-18 | General Motors Corporation | Dual concentric AC motor |
US20040155554A1 (en) * | 2003-02-06 | 2004-08-12 | Morgante John C. | Dual concentric AC motor |
US7138742B2 (en) * | 2003-08-01 | 2006-11-21 | Nissan Motor Co., Ltd. | Rotating machine |
US20050052091A1 (en) * | 2003-08-01 | 2005-03-10 | Nissan Motor Co., Ltd. | Rotating machine |
US7119468B2 (en) * | 2003-09-04 | 2006-10-10 | Ultra Motor Company Limited | Electric motor |
US20050110365A1 (en) * | 2003-09-04 | 2005-05-26 | Shkondin Vasily V. | Electric motor |
DE10354604B4 (en) * | 2003-11-21 | 2016-10-13 | Gesellschaft für Aufladetechnik und Spindelbau mbH | Infinitely variable, magnetodynamic transmission |
US20080054748A1 (en) * | 2003-11-21 | 2008-03-06 | Gerhard Huber | Continuously Controllable Magnetodynamic Gear |
DE10354604A1 (en) * | 2003-11-21 | 2005-06-23 | Gesellschaft für Aufladetechnik und Spindelbau mbH | Infinitely variable, magnetodynamic transmission |
US7723886B2 (en) | 2003-11-21 | 2010-05-25 | Gesellschaft Fur Aufladetechnik Und Spindelbau Mbh | Continously controllable magnetodynamic gear |
US20070096574A1 (en) * | 2004-01-29 | 2007-05-03 | Renault S.A. S. | Electromagnetic coupler |
US7535143B2 (en) * | 2004-01-29 | 2009-05-19 | Renault S.A.S. | Electromagnetic coupler |
US20050248231A1 (en) * | 2004-03-24 | 2005-11-10 | Pioneer Corporation | Motor and information recording and reproducing apparatus |
US20050218740A1 (en) * | 2004-03-30 | 2005-10-06 | Stout David E | Low profile generator configuration |
US7230363B2 (en) * | 2004-03-30 | 2007-06-12 | Honeywell International, Inc. | Low profile generator configuration |
US7723888B2 (en) * | 2004-05-25 | 2010-05-25 | Marko Petek | Synchronous electromechanical transformer |
US7683515B2 (en) * | 2004-06-23 | 2010-03-23 | Heinz Leiber | Rotating field machine with bell-shaped rotor |
US20080197738A1 (en) * | 2004-06-23 | 2008-08-21 | Heinz Leiber | Rotating Field Machine With Bell Shaped Rotor |
US20070281558A1 (en) * | 2004-06-30 | 2007-12-06 | Jansen Patrick L | Electrical machine with double-sided rotor |
US7830063B2 (en) * | 2004-06-30 | 2010-11-09 | General Electric Company | Electrical machine with double-sided rotor |
EP1612415A3 (en) * | 2004-06-30 | 2011-09-28 | General Electric Company | Electrical machine with double-sided rotor |
US20060244338A1 (en) * | 2005-04-29 | 2006-11-02 | Petersen Technology Corporation | Vertical stator double gas d.c. PM motors |
US7598649B2 (en) * | 2005-04-29 | 2009-10-06 | Petersen Technology Corporation | Vertical stator double gas D.C. PM motors |
US20080169720A1 (en) * | 2005-05-23 | 2008-07-17 | Marko Petek | Synchronous Electromechanical Transformer |
US8358044B2 (en) * | 2006-02-14 | 2013-01-22 | General Electric Company | Electric machine apparatus with integrated, high torque density magnetic gearing |
US20070186692A1 (en) * | 2006-02-14 | 2007-08-16 | Michal-Wolfgang Waszak | Electric machine apparatus with integrated, high torque density magnetic gearing |
US20080036324A1 (en) * | 2006-08-09 | 2008-02-14 | Mitsubishi Electric Corporation | Magneto generator |
US8558425B2 (en) * | 2006-10-26 | 2013-10-15 | Deere & Company | Motor having stator with generally planar windings |
US20080100174A1 (en) * | 2006-10-26 | 2008-05-01 | Deere & Company | Motor having stator with generally planar windings |
US20080100166A1 (en) * | 2006-10-26 | 2008-05-01 | Deere & Company | Motor having stator with generally planar windings |
US20080129135A1 (en) * | 2006-11-07 | 2008-06-05 | Inventec Corporation | Motor structure |
US8701805B2 (en) * | 2007-04-18 | 2014-04-22 | Gye-Jeung Park | Motor having rotors arranged concentrically and driving apparatus having the motor |
US20100139999A1 (en) * | 2007-04-18 | 2010-06-10 | Gye-Jeung Park | Motor having rotors arranged concentrically and driving apparatus having the motor |
US7851962B1 (en) * | 2007-06-14 | 2010-12-14 | Williams Kevin R | Induction motor utilizing dual stators and a double squirrel cage motor |
US20090206692A1 (en) * | 2007-09-13 | 2009-08-20 | Eric Stephane Quere | Composite electromechanical machines with uniform magnets |
US8288916B2 (en) * | 2007-09-13 | 2012-10-16 | Eric Stephane Quere | Composite electromechanical machines with uniform magnets |
US20090315329A1 (en) * | 2008-06-18 | 2009-12-24 | Duffey Christopher K | Variable Speed Synchronous Generator |
US8125095B2 (en) * | 2008-06-18 | 2012-02-28 | Duffey Christopher K | Variable speed synchronous generator |
US20100052323A1 (en) * | 2008-09-03 | 2010-03-04 | Parag Vyas | Magnetically geared generator |
US8299641B2 (en) | 2008-09-03 | 2012-10-30 | General Electric Company | Magnetically geared generator |
US7812500B1 (en) | 2008-11-12 | 2010-10-12 | Demetrius Calvin Ham | Generator / electric motor |
US7791245B1 (en) * | 2009-03-24 | 2010-09-07 | Gm Global Technology Operations, Inc. | Optimized electric machine for smart actuators |
US20100244613A1 (en) * | 2009-03-24 | 2010-09-30 | Gm Global Technology Operations, Inc. | Optimized electric machine for smart actuators |
US8207644B2 (en) * | 2009-07-14 | 2012-06-26 | Hamilton Sundstrand Corporation | Hybrid cascading lubrication and cooling system |
US20110012447A1 (en) * | 2009-07-14 | 2011-01-20 | Hamilton Sundstrand Corporation | Hybrid cascading lubrication and cooling system |
US20110043066A1 (en) * | 2009-08-19 | 2011-02-24 | Dijiya Technology, Inc. | Bilayer magnetic electric motor |
WO2011022354A1 (en) | 2009-08-20 | 2011-02-24 | Northrop Grumman Shipbuilding, Inc. | Tuned rolling wave energy extractor |
US8446027B2 (en) | 2009-08-20 | 2013-05-21 | Huntington Ingalls, Inc. | Tuned rolling wave energy extractor |
US8541922B2 (en) * | 2010-03-03 | 2013-09-24 | Industrial Technology Research Institute | Magnetic transmission assembly |
US20110215668A1 (en) * | 2010-03-03 | 2011-09-08 | Industrial Technology Research Institute | Magnetic transmission assembly |
CN102948048B (en) * | 2010-06-23 | 2015-11-25 | 阿莫泰克有限公司 | Bimorph transducer/twin rotor type motor and utilize its direct attachment type drive unit of washing machine |
US20130093275A1 (en) * | 2010-06-23 | 2013-04-18 | Amotech Co., Ltd. | Double-stator/double-rotor type motor and direct drive apparatus for washer using same |
US8987962B2 (en) | 2010-06-23 | 2015-03-24 | Amotech Co., Ltd. | Double-stator/double-rotor type motor and direct drive apparatus for washer using same |
WO2011162501A3 (en) * | 2010-06-23 | 2012-04-12 | 주식회사 아모텍 | Double-stator/double-rotor motor and direct actuator for washer using same |
CN102948048A (en) * | 2010-06-23 | 2013-02-27 | 阿莫泰克有限公司 | Double-stator/double-rotor motor and direct actuator for washer using same |
US9124161B2 (en) * | 2010-06-23 | 2015-09-01 | Amotech Co., Ltd. | Double-stator/double-rotor type motor and direct drive apparatus for washer using same |
US10312782B2 (en) * | 2010-06-25 | 2019-06-04 | The Board Of Regents, The University Of Texas System | Double stator permanent magnet machine |
US20120032545A1 (en) * | 2010-08-04 | 2012-02-09 | Liang-Yi Hsu | Magnetic-controlled actuator with auto-locking function for joints of manipulation arm |
US8598757B2 (en) * | 2010-08-04 | 2013-12-03 | Delta Electronics, Inc. | Magnetic-controlled actuator with auto-locking function for joints of manipulation arm |
KR101133718B1 (en) | 2010-08-04 | 2012-04-09 | 델타 일렉트로닉스 아이엔시. | Self-control type robot arm joint motor having auto power-off function |
TWI413347B (en) * | 2010-08-04 | 2013-10-21 | Delta Electronics Inc | Magnetic-controlled actuator with auto-locking function for joints of manipulate arm |
CN102371589A (en) * | 2010-08-13 | 2012-03-14 | 台达电子工业股份有限公司 | Magnetic controlled robotic arm joint brake with power-off self-locking function |
CN102371589B (en) * | 2010-08-13 | 2013-12-18 | 台达电子工业股份有限公司 | Magnetic controlled robotic arm joint brake with power-off self-locking function |
WO2012031694A3 (en) * | 2010-09-07 | 2012-11-15 | Daimler Ag | Rotor of an electrical machine |
CN102122869A (en) * | 2011-02-24 | 2011-07-13 | 中科盛创(青岛)电气有限公司 | Concentric double-stator structured direct-drive cage type induction generator system |
CN102141008A (en) * | 2011-02-24 | 2011-08-03 | 中科盛创(青岛)电气有限公司 | Direct-drive solid rotor asynchronous wind power generator system in concentric type double-stator structure |
CN102141007A (en) * | 2011-02-24 | 2011-08-03 | 中科盛创(青岛)电气有限公司 | Direct drive switch magnetic resistance wind driven generator system with concentric type double-stator structure |
US20140292130A1 (en) * | 2011-05-12 | 2014-10-02 | He Chen | Heterogeneous motor |
CN102801265A (en) * | 2011-05-26 | 2012-11-28 | 德昌电机(深圳)有限公司 | Motor |
CN102801265B (en) * | 2011-05-26 | 2016-12-14 | 德昌电机(深圳)有限公司 | Motor |
US20120299405A1 (en) * | 2011-05-26 | 2012-11-29 | Yue Li | Electric motor |
US8890389B2 (en) * | 2011-05-26 | 2014-11-18 | Johnson Electric S.A. | Electric motor |
US20130088103A1 (en) * | 2011-10-05 | 2013-04-11 | Industrias Metalurgicas Pescarmona S.A.I.C. Y F. | Synchronic Wind Turbine Generator |
KR20130044756A (en) * | 2011-10-24 | 2013-05-03 | 엘지전자 주식회사 | A manufacturing method of a dual-motor stator and a washing machine |
US20130119789A1 (en) * | 2011-11-15 | 2013-05-16 | Denso Corporation | Multiple-gap electric rotating machine |
US8860281B2 (en) * | 2011-11-15 | 2014-10-14 | Denso Corporation | Multiple-gap electric rotating machine |
US20120161497A1 (en) * | 2011-12-30 | 2012-06-28 | Jing He | Wheel hub flywheel-motor kinetic hybrid system and method |
US9787151B2 (en) | 2012-03-08 | 2017-10-10 | Leidos, Inc. | Radial flux alternator |
US9331535B1 (en) * | 2012-03-08 | 2016-05-03 | Leidos, Inc. | Radial flux alternator |
US9106121B2 (en) * | 2012-07-30 | 2015-08-11 | Denso Corporation | Double-stator motor |
US20140028142A1 (en) * | 2012-07-30 | 2014-01-30 | Denso Corporation | Double-stator motor |
US20140159533A1 (en) * | 2012-12-07 | 2014-06-12 | Denso Corporation | Multi-gap type rotary electric machine |
US9407116B2 (en) * | 2012-12-07 | 2016-08-02 | Denso Corporation | Multi-gap rotary machine with dual stator and one rotor with dual permanent magnets and salient poles with dimensions and ratios for torque maximization |
CN103023243A (en) * | 2012-12-26 | 2013-04-03 | 国电联合动力技术有限公司 | Double-air-gap hybrid excitation direct drive switched reluctance wind power generator and unit system thereof |
CN103023245A (en) * | 2012-12-26 | 2013-04-03 | 国电联合动力技术有限公司 | Double-bearing support double-stator switch magnetic-resistance wind power generator and unit system thereof |
US20150288235A1 (en) * | 2012-12-28 | 2015-10-08 | Ihi Corporation | Double stator switched reluctance rotating machine |
US9692267B2 (en) * | 2012-12-28 | 2017-06-27 | Ihi Corporation | Double stator switched reluctance rotating machine |
US9647520B2 (en) | 2013-01-10 | 2017-05-09 | Ihi Corporation | Double stator switched reluctance rotating machine |
CN103051127A (en) * | 2013-01-21 | 2013-04-17 | 国电联合动力技术有限公司 | Double-stator permanent magnetic direct drive generator and assembly method thereof |
US20150318805A1 (en) * | 2013-01-21 | 2015-11-05 | Amotech Co., Ltd. | Multi-motor driving device and apparatus and method of driving motor for washing machine using same |
US9577554B2 (en) * | 2013-01-21 | 2017-02-21 | Amotech Co., Ltd. | Multi-motor driving device and apparatus and method of driving motor for washing machine using same |
CN103051127B (en) * | 2013-01-21 | 2014-11-12 | 国电联合动力技术有限公司 | Double-stator permanent magnetic direct drive generator and assembly method thereof |
WO2015007338A1 (en) | 2013-07-19 | 2015-01-22 | Abb Technology Ltd | A wind power generation assembly |
US10637305B2 (en) | 2014-10-17 | 2020-04-28 | Ihi Corporation | Double stator-type rotary machine |
EP3208918A4 (en) * | 2014-10-17 | 2018-07-04 | IHI Corporation | Double stator-type rotary machine |
US20180083556A1 (en) * | 2015-04-06 | 2018-03-22 | Lg Electronics Inc. | Laundry treatment apparatus |
US10910964B2 (en) * | 2015-04-06 | 2021-02-02 | Lg Electronics Inc. | Laundry treatment apparatus |
US10122224B2 (en) | 2015-12-28 | 2018-11-06 | Filip Sammak | Electric motor assembly |
US20180054093A1 (en) * | 2016-08-17 | 2018-02-22 | Arnold Yoonho Lee | Electric generator that generates electrical energy by magnetic induction |
CN108023416A (en) * | 2016-10-28 | 2018-05-11 | 财团法人工业技术研究院 | permanent magnet rotor and permanent magnet rotating member |
US10243437B2 (en) * | 2016-10-28 | 2019-03-26 | Industrial Technology Research Institute | Permanent magnet rotor and permanent magnet rotary assembly |
US11128209B2 (en) * | 2017-03-16 | 2021-09-21 | Portland State University | Magnetic gearbox with flux concentration halbach rotors |
US11791143B2 (en) | 2017-07-24 | 2023-10-17 | Spark Thermionics, Inc. | Small gap device system and method of fabrication |
US11325643B2 (en) * | 2017-11-03 | 2022-05-10 | Mando Corporation | Apparatus for detecting steering angle, steering system, and torque sensing method of steering system |
US20190305704A1 (en) * | 2018-03-30 | 2019-10-03 | Kohler Co. | Alternator Flux Shaping |
US10581358B2 (en) * | 2018-03-30 | 2020-03-03 | Kohler Co. | Alternator flux shaping |
RU2759161C2 (en) * | 2018-05-30 | 2021-11-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Морской государственный университет имени адмирала Г.И. Невельского" | Asynchronous three-phase electric engine |
US11482899B2 (en) * | 2018-12-14 | 2022-10-25 | Tdk Corporation | Rotating electrical machine with rotor having arc shaped permanent magnets |
US11411449B2 (en) * | 2018-12-14 | 2022-08-09 | Tdk Corporation | Rotating electrical machine with rotor having arch shaped permanent magnets with perpendicular reference surface |
US11973369B2 (en) * | 2018-12-17 | 2024-04-30 | Nippon Steel Corporation | Laminated core with center electrical steel sheets adhered with adhesive and some electrical steel sheets fixed to each other on both ends of the center sheets |
US20210399594A1 (en) * | 2018-12-17 | 2021-12-23 | Nippon Steel Corporation | Laminated core and electric motor |
CN112970178A (en) * | 2019-02-07 | 2021-06-15 | 松下知识产权经营株式会社 | Magnetic gear motor |
US20220014079A1 (en) * | 2019-02-07 | 2022-01-13 | Panasonic Intellectual Property Management Co., Ltd. | Magnetic geared motor |
US20220247242A1 (en) * | 2019-06-26 | 2022-08-04 | Sony Group Corporation | Motor and motor control device |
US11289985B2 (en) * | 2019-08-09 | 2022-03-29 | Hamilton Sundstrand Corporation | Dual stator machine with a rotor magnet set configured to minimize flux leakage |
US20220139687A1 (en) * | 2020-01-23 | 2022-05-05 | Spark Thermionics, Inc. | Small gap device system and method of fabrication |
US20240213008A1 (en) * | 2020-01-23 | 2024-06-27 | Spark Thermionics, Inc. | Small gap device system and method of fabrication |
US20210234425A1 (en) * | 2020-01-23 | 2021-07-29 | Etel S.A. | Elastic-locking winding carrier for preformed coil assemblies of an electric motor |
US11637470B2 (en) * | 2020-01-23 | 2023-04-25 | Etel S.A. | Elastic-locking winding carrier for preformed coil assemblies of an electric motor |
US11791142B2 (en) * | 2020-01-23 | 2023-10-17 | Spark Thermionics, Inc. | Small gap device system and method of fabrication |
US20210257896A1 (en) * | 2020-02-17 | 2021-08-19 | Dan Haronian | Movement and Vibration energy harvesting |
US20230421007A1 (en) * | 2020-11-27 | 2023-12-28 | Kyungsung Univ. Industry Cooperation Foundation | Double air gap-type surface permanent magnet synchronous motor provided with non-magnetic shielding member |
US20240006970A1 (en) * | 2020-11-27 | 2024-01-04 | Kyungsung Univ. Industry Cooperation Foundation | Double air gap-type surface permanent magnet synchronous motor provided with double controllers |
US11641151B2 (en) * | 2021-05-11 | 2023-05-02 | Aac Microtech (Changzhou) Co., Ltd. | Linear vibration motor with elastic members with brackets, foams and damping glue |
US20220368205A1 (en) * | 2021-05-11 | 2022-11-17 | Aac Microtech (Changzhou) Co., Ltd. | Linear vibration motor |
US11936269B2 (en) * | 2021-09-22 | 2024-03-19 | Apple Inc. | Haptic engine based on angular resonant actuator with pivot axis and mass center that differ |
US20230086204A1 (en) * | 2021-09-22 | 2023-03-23 | Apple Inc. | Haptic Engine Based on an Angular Resonant Actuator |
KR20230140805A (en) | 2022-03-30 | 2023-10-10 | 현대자동차주식회사 | Dual rotor motor and hybrid powertrain using thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5783893A (en) | Multiple stator, single shaft electric machine | |
US4459501A (en) | Toroidal generator and motor with radially extended magnetic poles | |
EP0104382B1 (en) | Variable reluctance motor | |
US7023121B2 (en) | Brushless rotary electric machine having tandem rotary cores | |
US4114057A (en) | Dynamoelectric machine with inner and outer stators | |
US5216339A (en) | Lateral electric motor | |
CA2459126A1 (en) | Rotary electric motor having axially aligned stator poles and/or rotor poles | |
EP0429729A1 (en) | Electric machines with ironcore disk armatures | |
US3237036A (en) | Commutating dynamo-electric machine | |
AU641822B2 (en) | Electric motor | |
EP0319336A2 (en) | Brushless alternator and synchronous motor with optional stationary field winding | |
MXPA05012487A (en) | Generator having axially aligned stator poles and/or rotor poles. | |
US6812615B1 (en) | Electric motor | |
EP1661232B1 (en) | An alternator assembly | |
WO2001042649A3 (en) | Hybrid brushless electric machine | |
US11777385B2 (en) | Excitation system | |
US4820951A (en) | Multiphase small size brushless DC motor | |
US4701656A (en) | Electromechanical device with slotted stator | |
GB2408154A (en) | Stator/rotor arrangement and exciter for an axial flux AC machine | |
KR100569502B1 (en) | Motor stator with double back reel structure | |
GB1148304A (en) | Dynamo electric machines | |
JP3014544B2 (en) | Electric motor | |
US4757225A (en) | Dual stack tachometer/generator | |
KR20250024152A (en) | electromagnetic torque generating motor | |
JPH0370460A (en) | Flat brushless motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEWPORT NEWS SHIPBUILDING AND DRY DOCK COMPANY, VI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DADE, THOMAS B.;GARIS, CHESTER A., JR.;REEL/FRAME:007736/0336 Effective date: 19951017 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: NORTHROP GRUMMAN CORPRATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEWPORT NEWS SHIPBUILDING AND DRY DOCK COMPANY;REEL/FRAME:012967/0884 Effective date: 20020328 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: NORTHROP GRUMMAN SHIPBUILDING, INC., VIRGINIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHROP GRUMMAN CORPORATION;REEL/FRAME:025576/0919 Effective date: 20101216 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, TE Free format text: SECURITY AGREEMENT;ASSIGNOR:NORTHROP GRUMMAN SHIPBUILDING, INC.;REEL/FRAME:026064/0593 Effective date: 20110330 |
|
AS | Assignment |
Owner name: HUNTINGTON INGALLS INCORPORATED, MISSISSIPPI Free format text: CERTIFICATE OF RESTATEMENT;ASSIGNOR:NORTHROP GRUMMAN SHIPBUILDING, INC.;REEL/FRAME:027003/0129 Effective date: 20110414 |
|
AS | Assignment |
Owner name: HUNTINGTON INGALLS INCORPORATED (F/K/A NORTHROP GR Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044734/0227 Effective date: 20171122 |