WO2012152000A1 - 测量参考信号发射方法及装置 - Google Patents

测量参考信号发射方法及装置 Download PDF

Info

Publication number
WO2012152000A1
WO2012152000A1 PCT/CN2011/084155 CN2011084155W WO2012152000A1 WO 2012152000 A1 WO2012152000 A1 WO 2012152000A1 CN 2011084155 W CN2011084155 W CN 2011084155W WO 2012152000 A1 WO2012152000 A1 WO 2012152000A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
reference signal
measurement reference
srs
group
Prior art date
Application number
PCT/CN2011/084155
Other languages
English (en)
French (fr)
Inventor
王瑜新
陈艺戬
郝鹏
杨维维
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012152000A1 publication Critical patent/WO2012152000A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present invention relates to the field of communications, and in particular to a method and an apparatus for transmitting a measurement reference signal.
  • the uplink signal includes a Physical Uplink Shared Channel (PUSCH). And its Demodulation Reference Signal for PUSCH, Physical Uplink Control Channel (PUCCH) and its Demodulation Reference Signal for PUCCH, Sounding Reference Signal , referred to as SRS).
  • LTE Long Term Evolution
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • SRS is a signal used between a terminal device and a base station to measure channel state information (CSI).
  • the user equipment User Equipment, UE for short
  • e B the parameters indicated by the base station
  • bandwidth bandwidth
  • frequency domain position e.g., bandwidth
  • sequence cyclic shift e.g., sequence cyclic shift
  • period e.g., period
  • subframe offset e.g., subframe offset
  • timing sends the uplink SRS on the last data symbol of the transmitting subframe.
  • the eNB determines the uplink CSI of the UE according to the received SRS, and performs operations such as frequency domain selection scheduling, closed loop power control, and the like according to the obtained CSI.
  • the eNB can also obtain downlink CSI by using channel reciprocity according to the received SRS, thereby performing precoding of downlink transmission.
  • the uplink signal is transmitted using a single antenna port.
  • the user equipment can support one antenna port (Antenna Port), which is called antenna port 0 (port O); it can also support two antenna ports, which are called antenna port 0 (port 0) and antenna port 1 (port 1). ).
  • a user equipment supporting multiple antenna ports may select an antenna port to transmit an uplink signal by using a UE transmit antenna selection technique.
  • the user equipment transmit antenna selection is configured by the upper layer.
  • the user equipment transmit antenna selection When the closed-loop user equipment transmit antenna selection is enabled by the upper layer configuration, and the user equipment supports the transmit antenna selection, the user equipment according to the recently received downlink control information format 0 (Downlink Control Information format 0, referred to as DCI format for short) 0)
  • the transmit antenna carried in the selection configuration information selects the antenna port and transmits other uplink signals than the measurement reference signal.
  • the base station eNodeB uses the physical downlink control channel (Physical Downlink Control Channel, PDCCH for short) to control downlink information (Downlink Control Information, referred to as The DCI) is sent to the user equipment, including downlink or uplink scheduling information, uplink transmit power control commands, and the like.
  • PDCCH Physical Downlink Control Channel
  • the LTE system defines multiple downlink control information formats (DCI format, where the uplink scheduling information of the physical uplink shared channel is carried in the PDCCH with the downlink control information format 0 (DCI format 0); physical downlink sharing
  • the downlink scheduling information of the channel (Physical Downlink Shared Channel, PDSCH for short) is carried in the downlink control information format 1A/1B/1C/1D/1/2A/2 (DCI format 1A/1B/1C/1D/1/2A/ 2) In the PDCCH.
  • DCI format Physical Downlink Shared Channel
  • LTE-Advanced abbreviated as LTE-A
  • LTE-A LTE-Advanced, abbreviated as LTE-A
  • Uplink signals such as PUSCH, PUCCH, and SRS can be transmitted using a single antenna port or multiple antenna ports.
  • the user equipment can support one antenna port (port 0), two antenna ports (port 0/1), or four.
  • the antenna port (port O/1/2/3) transmits the uplink signal.
  • the user equipment can receive the downlink transmission data by 1, 2, 4, 6 or 8 antenna ports.
  • channel reciprocity is required for downlink transmission, part of the channel reciprocity problem may occur according to the current standard practice.
  • Part of the channel reciprocity problem refers to the case where the UE's transmitting and receiving antenna configuration is asymmetric, for example, the UE uplinks. 1 transmit antenna, and 4 receive antennas are used for downlink reception.
  • the base station needs to use the channel reciprocity for downlink transmission by measuring SRS, since only one transmit antenna is used for the uplink, the base station can only obtain part of the channel. For reciprocity, only downlink spatial multiplexing transmission with a rank of 1 can be used.
  • a method for transmitting a measurement reference signal comprising: a user equipment selecting an antenna or an antenna group to transmit a measurement reference signal, wherein the user equipment determines, according to an antenna mapping rule, or an antenna selection rule, or an antenna selection mask of a downlink control information format, for transmitting An antenna or antenna group that measures the reference signal.
  • Determining, by the user equipment, an antenna or an antenna group for transmitting the measurement reference signal according to an antenna mapping rule, or an antenna selection rule, or an antenna selection mask of a downlink control information format includes: when the antenna and the antenna port do not have a one-to-one correspondence
  • the user equipment determines an antenna or an antenna group for transmitting the measurement reference signal according to the antenna mapping rule; when the antenna has a one-to-one correspondence with the antenna port, the user equipment determines the antenna selection mask according to the antenna selection rule or the downlink control information format.
  • the antenna mapping rules include: At different transmission reference signal transmission timings, the transmit antenna ports of the measurement reference signals are sequentially switched between the antennas.
  • the antenna selection rule includes: transmitting the antenna or the antenna group index on the antenna index or the antenna group.
  • the antenna index or antenna group index ⁇ ) is determined according to the following formula: When the measurement reference signal is not enabled in the frequency domain, ⁇ moc ⁇ or When the measurement reference signal is enabled in the frequency domain, the frequency hopping is enabled.
  • the antenna selection mask of the downlink control information format corresponds to the antenna or antenna group of the user equipment.
  • the control information format is an information format that carries uplink scheduling information or carries downlink scheduling information.
  • the foregoing downlink control information format includes: format 4, format 2 A, format 2B, and format 2C.
  • a measurement reference signal transmitting apparatus located on a user equipment, comprising: a determining module, configured to be an antenna selection mask according to an antenna mapping rule, or an antenna selection rule, or a downlink control information format Determining an antenna or antenna group for transmitting a measurement reference signal; and transmitting a module configured to transmit a measurement reference signal using the antenna or antenna group.
  • the sending module includes: a first determining unit, configured to: when the antenna and the antenna port do not have a one-to-one correspondence, determine an antenna or an antenna group for transmitting a measurement reference signal according to an antenna mapping rule; and second determining unit, configured to be at the antenna When there is a one-to-one correspondence with the antenna ports, the antenna or antenna group for transmitting the measurement reference signal is determined according to the antenna selection rule of the antenna selection rule or the downlink control information format.
  • the antenna mapping rules include: At different transmission reference signal transmission timings, the transmit antenna ports of the measurement reference signals are sequentially switched between the antennas.
  • the antenna index or antenna group index ⁇ ) is determined according to the following formula: When the measurement reference signal is not enabled in the frequency domain, ⁇ ⁇ moc ⁇ or
  • the frequency hopping is enabled.
  • the antenna selection mask of the downlink control information format corresponds to the antenna or antenna group of the user equipment.
  • the downlink control information format is an information format that carries uplink scheduling information or carries downlink scheduling information.
  • the foregoing downlink control information format includes: format 4, format 2 A, format 2B, and format 2C.
  • an antenna or an antenna group for transmitting a current measurement reference signal is determined in real time by using an antenna selection mask of a user terminal according to an antenna mapping rule, an antenna selection rule, or a downlink control information format, and the measurement reference signal is finally transmitted.
  • the solution solves the problem of partial channel reciprocity in the current standard practice, so that the base station can obtain the complete downlink channel CSI through channel reciprocity, which can be used for each physical resource block in the downlink transmission (Physical Resource).
  • Physical Resource Physical Resource
  • Block abbreviated as PRB
  • PRB uses the optimal precoding matrix to obtain the frequency selective precoding gain.
  • FIG. 1 is a flowchart of a method for transmitting a measurement reference signal according to an embodiment of the present invention
  • FIG. 2 is a physical antenna of a SRS transmitting antenna port to a user equipment when the number of uplink transmitting antennas is 2 and the number of downlink receiving antennas is 4 according to the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of mapping of an SRS transmit antenna port to a user equipment physical antenna when the number of uplink transmit antennas is 4 and the number of downlink receive antennas is 8 according to Example 1 of the present invention
  • FIG. 2 is a physical antenna of a SRS transmitting antenna port to a user equipment when the number of uplink transmitting antennas is 2 and the number of downlink receiving antennas is 4 according to the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of mapping of an SRS transmit antenna port to a user equipment physical antenna when the number of uplink transmit antennas is 4 and the number of downlink receive antennas is 8 according to Example 1 of the present invention
  • FIG. 4 is a SRS according to Example 2 of the present invention
  • Mapping of the transmit antenna port to the physical antenna of the user equipment 5 is a schematic diagram of mapping of an SRS transmit antenna port to a user equipment physical antenna according to Example 3 of the present invention
  • FIG. 6 is a structural block diagram of a measurement reference signal transmitting apparatus according to an embodiment of the present invention.
  • a measurement reference signal transmission method includes: Step S102: A user equipment determines, according to an antenna mapping rule, an antenna selection rule, or an antenna selection mask of a downlink control information format, for transmitting an SRS. Antenna or antenna group; Step S104, the user equipment transmits the SRS by using the antenna or the antenna group.
  • the measurement reference signal transmission method provided in this embodiment discards the existing measurement reference signal transmission mode that has been using the same antenna to transmit the SRS, and provides a dynamic measurement reference signal transmission mode, that is, the user equipment selects the antenna or the antenna group to transmit.
  • the SRS where the user equipment determines an antenna or an antenna group for transmitting the SRS according to an antenna mapping rule, or an antenna selection rule, or an antenna selection mask of a downlink control information format, that is, the user equipment may be real-time for the SRS at different times.
  • the antenna selection mask for transmitting the SRS is determined according to an antenna selection rule, an antenna selection rule, or an antenna selection mask of a downlink control information format, to overcome a partial channel reciprocity problem caused by asymmetric configuration of the transceiver antenna.
  • the antenna mapping rule overcomes the asymmetry of the transmitting and receiving antennas by changing the correspondence between the antenna port and the physical antenna.
  • the antenna selection rule is to overcome the asymmetry of the transmitting and receiving antennas by selecting different antennas to transmit SRS in real time, and according to the downlink control information.
  • the antenna selection mask of the format determines that the antenna or antenna group used for transmitting the SRS is actually a base station indication mechanism, that is, an antenna or an antenna for the user equipment to transmit the SRS by the base station through the antenna selection mask of the downlink control information format. group.
  • the base station can obtain the complete downlink channel CSI through channel reciprocity, so that the optimal precoding matrix can be used for each PRB in the downlink transmission to obtain the frequency selective precoding gain.
  • the determining, by the user equipment, the antenna or the antenna group for transmitting the SRS according to the antenna selection rule, the antenna selection rule, or the antenna selection mask of the downlink control information format may further include: when the antenna and the antenna port do not have a one-to-one correspondence Determining, by the user equipment, an antenna or an antenna group for transmitting the SRS according to an antenna mapping rule; When the antenna has a one-to-one correspondence with the antenna port, the user equipment determines an antenna or an antenna group for transmitting the SRS according to an antenna selection rule or an antenna selection mask of a downlink control information format.
  • the antenna mapping rule needs to change the mapping relationship between the antenna port and the physical antenna in real time to transmit the SRS through different antennas, thereby overcoming the problem of partial channel reciprocity. Therefore, the antenna or the antenna group for transmitting the SRS is mainly used according to the antenna mapping rule, and the antenna and the antenna port do not have a one-to-one correspondence, where the antenna and the antenna port do not correspond one-to-one, including the number of the antenna port and the antenna.
  • the case where the mapping is uniform but the mapping relationship is variable also includes the case where the number of antenna ports and the number of antennas are inconsistent.
  • Determining an antenna or an antenna group for transmitting an SRS according to an antenna selection rule of an antenna selection rule or a downlink control information format is mainly applicable to a case where a antenna has a one-to-one correspondence with an antenna port, and thus, an antenna for transmitting an SRS is determined. After the antenna group or the antenna group, the antenna port for transmitting the SRS is correspondingly determined.
  • the one-to-one correspondence between the antenna and the antenna port is a premise that the user terminal can overcome the inconsistency of the transmitting and receiving antenna by using the antenna or the antenna group determined according to the antenna selection rule to transmit the SRS.
  • the antenna and the antenna port are also required to have a one-to-one correspondence to ensure that the use is determined according to an antenna selection mask.
  • the antenna or antenna group transmitting SRS can overcome the inconsistency of the transceiver antenna.
  • the rule for changing the mapping relationship between the antenna port and the physical antenna can be flexibly set according to the needs of the user.
  • the basic principle is to use different antennas to transmit SRS at different SRS transmission moments, for transmitting SRS.
  • the number of antennas cannot be smaller than the maximum number of antennas that can be used by the user equipment when performing downlink reception.
  • the transmission of the SRS can traverse all antennas of the user equipment, so that the base station can always obtain full channel reciprocity.
  • a rule for changing the mapping relationship between the antenna port and the physical antenna is provided.
  • the antenna mapping rule may include: at different SRS transmission moments, the transmit antenna ports of the SRS are sequentially Switch between antennas.
  • the user equipment transmit antenna selection is enabled by the high layer configuration, and the user equipment supports the transmit antenna selection, the user equipment selects the antenna port according to a certain rule to transmit the SRS. The preferred embodiment is improved on the basis of this.
  • the user equipment switches the transmit antenna ports of the SRS between the antennas at different SRS transmission times to ensure that the SRS transmission can traverse the user equipment.
  • All of the antennas overcome the problem of partial channel reciprocity.
  • the premise that the user equipment switches the transmit antenna ports of the SRS between the antennas in sequence is that the antenna ports do not have a one-to-one correspondence with the antennas.
  • the antenna selection rule it is also diverse, and different selection rules can be set according to different needs.
  • the preferred embodiment provides a general antenna selection rule.
  • the above antenna selection rule may be included Include: Send / / ⁇ ⁇ SRS on antenna index or antenna group with antenna group index /
  • the antenna selection rule given in the preferred embodiment is also an ergodic selection rule.
  • all the antennas of the user terminal are actually divided into 2 groups or 4 groups, and each group includes one.
  • the antenna or multiple antennas, when transmitting the SRS use these groups in sequence to transmit the SRS, ensuring that each antenna is used to transmit the SRS, thereby overcoming the problem of partial channel reciprocity.
  • the antenna port is required to have a one-to-one correspondence with the antenna.
  • ⁇ 3 ⁇ 4 ⁇ is odd 4 when K is even
  • ⁇ 3 ⁇ 4 ⁇ is an odd number
  • the number of branches corresponding to the layer when the wide tree structure is allocated is the user-specific SRS bandwidth.
  • P is the user-specific frequency hopping bandwidth.
  • the method for determining the antenna index or the antenna group index +) provided by the preferred embodiment provides different determination formulas according to whether the frequency hopping of the reference signal in the frequency domain is enabled, and ensures that the user terminal is in the measurement reference. In the case where the frequency hopping of the signal is not enabled, the partial channel reciprocity problem can be overcome even when the measurement reference signal is enabled in the frequency domain.
  • the antenna selection mask of the downlink control information format corresponds to the antenna or antenna group of the user equipment. That is, the antenna selection mask sent by the base station to the user terminal in the downlink control information format is in one-to-one correspondence with the antenna or the antenna group of the user terminal, that is, the user terminal can uniquely determine an antenna or an antenna according to the antenna selection mask. Group to send the current SRS.
  • the downlink control information format is mainly an information format that carries uplink scheduling information or carries downlink scheduling information.
  • the carrier information carrying the uplink scheduling information or carrying the downlink scheduling information as the antenna selection mask is less modified, and is easier to implement.
  • the downlink control information format includes: format 4, format 2 A, format 2B, and format 2C.
  • the present invention preferentially uses the above downlink control information format.
  • Example 1 In this example, the user equipment selects an antenna or an antenna group to transmit a measurement reference signal according to an antenna mapping rule. As shown in FIG.
  • the number of uplink SRS transmit antennas is 2, and when the downlink receive antenna is 4, in order to solve the partial channel reciprocity problem, the transmit antenna ports of the SRS may be sequentially between the physical transmit antennas at different SRS transmission moments. Perform a switch map.
  • the transmit port 0 of the SRS is mapped to the physical antenna 0, the transmit port 1 of the SRS is mapped to the physical antenna 1; then the second transmit subframe of the SRS, the transmit port 0 of the SRS Mapping to physical antenna 2, the transmit port 1 of the SRS is mapped to the physical antenna 3; in the third transmit subframe of the SRS, the transmit port 0 of the SRS is mapped to the physical antenna 0, and the transmit port 1 of the SRS is mapped to the physical antenna 1; Similarly, the transmit antenna ports of the SRS are cyclically switched between the physical transmit antennas.
  • the transmit port 0 of the SRS is mapped to the physical antenna 0, the transmit port 1 of the SRS is mapped to the physical antenna 2; then the second transmit subframe of the SRS, the transmit port 0 of the SRS Map to physical antenna 1, transmit port 1 of SRS to physical antenna 3; third transmit subframe in SRS, SRS The transmitting port 0 is mapped to the physical antenna 0, and the transmitting port 1 of the SRS is mapped to the physical antenna 2; and so on, the transmitting antenna ports of the SRS are sequentially cyclically switched between the physical transmitting antennas. As shown in FIG.
  • the transmit antenna ports of the SRS may be sequentially in the physical transmit antennas at different SRS transmission moments. Switch mapping between them. For example, in the first transmission subframe of the SRS, the transmission port 0, port 1, port 2, and port 3 of the SRS are respectively mapped to the physical antennas 0, 1, 2, 3; then the second transmission subframe in the SRS, SRS Transmitting port 0, port 1, port 2, port 3 are mapped to physical antennas 4, 5, 6, and 7, respectively; in the third transmitting sub-frame of SRS, transmitting port 0, port 1, port 2, port 3 of SRS Mapping to physical antennas 0, 1, 2, 3, respectively; and so on, the transmit antenna ports of the SRS are cyclically switched between the physical transmit antennas.
  • the transmit port 0, port 1, port 2, and port 3 of the SRS are respectively mapped to the physical antennas 0, 4, 1, and 5; then in the second transmit subframe of the SRS, SRS transmit port 0, port 1, port 2, port 3 are mapped to physical antennas 2, 6, 3, 7 respectively; in the third transmit subframe of SRS, SRS transmit port 0, port 1, port 2, port 3 is mapped to physical antennas 0, 4, 1, and 5, respectively; and so on, the transmit antenna ports of the SRS are sequentially cyclically switched between the physical transmit antennas.
  • Example 2 In this example, the user equipment selects an antenna or an antenna group to transmit a measurement reference signal according to an antenna selection rule.
  • the foregoing antenna selection rule includes: the user equipment sends the first measurement reference signal on an antenna or an antenna group whose antenna index or group index is, wherein each group of transmit antennas includes one or more transmit antennas, an antenna index or an antenna group.
  • the expression of the number of measurement reference signal transmissions is the user-specific SRS bandwidth
  • P is the user-specific frequency hopping bandwidth
  • J! is the operation of multiplying multiple numbers.
  • the transmit antenna ports of the SRS are mapped to the physical antenna one by one, and can be divided into 2 or 4 antenna groups, and the antenna group selection is performed by using the above manner to ensure the 2 or The four antenna groups are used for SRS transmission, which overcomes the problem of partial channel reciprocity.
  • Example 3 In this example, the user equipment determines the antenna or antenna group transmission measurement reference signal according to the antenna selection mask of the downlink control information format.
  • the downlink control information format corresponds to the antenna (port) of the user equipment or the antenna (port) group, and the antenna (port) group includes one or more antennas (ports).
  • the line control information format is an information format that carries uplink scheduling information or carries downlink scheduling information.
  • the format of the downlink control information includes: format 4 format 2 A format 2B format 2C when the base station sends multiple portable antennas to the user equipment in a certain subframe.
  • the base station may carry the same antenna selection mask on the multiple PDCCHs or the base station carries the antenna selection mask on one of the specific PDCCHs.
  • the antenna selection mask is mainly used for the physical downlink control channel sent to the user equipment.
  • the PDCCH's Cyclic Redundancy Check (CRC) is scrambled.
  • CRC Cyclic Redundancy Check
  • the payload of the entire PDCCH, , , ,..., ⁇ ⁇ is used to calculate the CRC parity bits.
  • B A + L
  • A is the PDCCH payload size
  • RNTI Radio Network Temporary Identifier
  • the antenna selection mask and the corresponding RNTI are used for the CRC of the DCI format 0 format PDCCH.
  • the check bits are scrambled to obtain the sequence c.
  • the transmit antenna ports of the SRS are mapped to the physical antennas one by one.
  • the base station can control the user terminal to select different SRS transmission moments by using an antenna selection mask corresponding to the antenna one-to-one.
  • the antenna transmits SRS, thereby overcoming the problem of partial reciprocity.
  • the antenna selection mask may also be in one-to-one correspondence with the antenna group.
  • UE antenna port 1 or antenna port group 1 ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>
  • UE antenna port 2 or antenna port group 2 ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0>
  • UE antenna port 3 or antenna port group 3 ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0> Table 2
  • UE antenna port 1 or antenna port group 1 ⁇ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
  • UE antenna port 2 or antenna port group 2 ⁇ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
  • UE antenna port 3 or antenna port group 3 ⁇ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> Table 3
  • UE antenna port 1 or antenna port group 1 ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>
  • UE antenna port 2 or antenna port group 2 ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0>
  • UE antenna port 3 or antenna port group 3 ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1> Table 4
  • UE antenna port 1 or antenna port group 1 ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>
  • UE antenna port 2 or antenna port group 2 ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1>
  • UE antenna port 3 or antenna port group 3 ⁇ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0> Table 5
  • UE antenna port 1 or antenna port group 1 ⁇ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
  • UE antenna port 2 or antenna port group 2 ⁇ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1>
  • UE antenna port 3 or antenna port group 3 ⁇ 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0> or, as shown in Table 6.
  • FIG. 6 is a schematic structural diagram of a measurement reference signal transmitting apparatus according to an embodiment of the present invention.
  • the measurement reference signal transmitting apparatus includes: a determining module 62 configured to determine an SRS for transmitting according to an antenna selection rule, or an antenna selection rule, or an antenna selection mask of a downlink control information format.
  • the antenna or antenna group the transmitting module 64, coupled to the determining module 62, is configured to transmit the SRS using the antenna or antenna group.
  • the measurement reference signal transmitting apparatus provided in this embodiment discards the existing measurement reference signal method that always uses the same antenna to transmit the SRS, and adopts a dynamic measurement reference signal transmission mode. For different time SRS, the above device will be real-time.
  • the antenna or antenna group for transmitting the SRS is determined according to an antenna selection rule of an antenna mapping rule, an antenna selection rule, or a downlink control information format, to overcome a partial channel reciprocity problem caused by asymmetric configuration of the transceiver antenna.
  • the antenna mapping rule overcomes the asymmetry of the transmitting and receiving antennas by changing the correspondence between the antenna port and the physical antenna.
  • the antenna selection rule is to overcome the asymmetry of the transmitting and receiving antennas by selecting different antennas to transmit SRS in real time, and according to the downlink control information.
  • the antenna selection mask of the format determines that the antenna or the antenna group used for transmitting the SRS is actually a base station indication mechanism, that is, the antenna or the antenna that the base station uses to transmit the SRS through the antenna selection mask of the downlink control information format. group.
  • the base station can obtain the complete downlink channel CSI through channel reciprocity, so that the optimal precoding matrix can be used for each PRB in the downlink transmission, and the frequency selective precoding gain is obtained.
  • the sending module may further include:
  • the first determining unit is configured to: when the antenna and the antenna port do not have a one-to-one correspondence, determine an antenna or an antenna group for transmitting the SRS according to an antenna mapping rule; and the second determining unit is configured to have one antenna at the antenna and the antenna port.
  • the antenna or antenna group for transmitting the SRS is determined according to an antenna selection rule or an antenna selection mask of a downlink control information format.
  • the first determining unit is mainly used when the antenna and the antenna port do not have a one-to-one correspondence, and the first determining unit changes the mapping relationship between the antenna port and the physical antenna in real time according to the antenna mapping rule, so as to transmit the SRS through different antennas.
  • the case where the antenna does not correspond to the antenna port one by one includes the case where the number of antenna ports is the same as the number of antennas but the mapping relationship is variable, and the case where the number of antenna ports and the number of antennas are themselves inconsistent.
  • the second determining unit is mainly used in a case where the antenna and the antenna port have a one-to-one correspondence, such that after determining the antenna or antenna group for transmitting the SRS, the antenna port for transmitting the SRS is correspondingly determined.
  • the one-to-one correspondence between the antenna and the antenna port is a premise that the user terminal can overcome the inconsistency of the transmitting and receiving antenna by using the antenna or the antenna group determined according to the antenna selection rule to transmit the SRS.
  • the second determining unit determines the antenna or the antenna group for transmitting the SRS according to the antenna selection mask of the downlink control information format
  • the antenna and the antenna port are also required to have a one-to-one correspondence to ensure that the use is determined according to the antenna selection mask.
  • the antenna or antenna group transmitting SRS can overcome the inconsistency of the transceiver antenna.
  • the foregoing antenna mapping rule may include: at different SRS transmission moments, the transmit antenna ports of the SRS are sequentially switched between the antennas.
  • the transmit antenna ports of the SRS are sequentially switched between the antennas, so that the transmission of the SRS can traverse all the antennas of the user equipment, thereby overcoming the problem of partial channel reciprocity.
  • the antenna selection rule given in the preferred embodiment is an ergodic selection rule.
  • the antennas of the user terminal are actually divided into two groups or four groups, and each group includes one.
  • the antenna or multiple antennas when transmitting the SRS, use these groups in sequence to transmit the SRS, ensuring that each antenna is used to transmit the SRS, thereby overcoming the problem of partial channel reciprocity.
  • the antenna index or the antenna group index may further determine, when the frequency hopping of the measurement reference signal in the frequency domain is not enabled, according to the following formula, ⁇ moc ⁇ or ⁇ mod 4 When the measurement reference signal is enabled in the frequency domain, the frequency hopping is enabled.
  • N b is 1 ⁇ ⁇ ' as a measurement reference signal band
  • the number of branches corresponding to the layer when the wide tree structure is allocated is the user-specific SRS bandwidth.
  • P is the user-specific frequency hopping bandwidth.
  • the determining method of the antenna index or the antenna group index provided by the preferred embodiment provides different determining formulas according to whether the frequency hopping of the signal in the frequency domain is enabled, and ensures that the user terminal is in the frequency domain regardless of the measurement reference signal. If the frequency hopping is not enabled, the partial channel reciprocity problem can be overcome even when the measurement reference signal is enabled in the frequency domain.
  • the antenna selection mask of the downlink control information format corresponds to an antenna or an antenna group of the user equipment.
  • Determining an antenna or an antenna group for transmitting a measurement reference signal according to an antenna selection mask of a downlink control information format actually determines a base station indication mechanism, that is, the base station sends an antenna selection mask to a user terminal to indicate a user by using a downlink control information format.
  • the terminal is used to transmit the antenna of the SRS to overcome the partial reciprocity problem. Therefore, the antenna selection mask is required to be in one-to-one correspondence with the antenna or the antenna group of the user terminal, so that the user terminal can determine an antenna uniquely according to the antenna selection mask.
  • the downlink control information format is mainly an information format that carries uplink scheduling information or carries downlink scheduling information.
  • the carrier information carrying the uplink scheduling information or carrying the downlink scheduling information as the antenna selection mask is less modified, and is easier to implement.
  • the downlink control information format includes: format 4, format 2A, format 2B, and format 2C.
  • the present invention preferentially uses the above downlink control information format. It can be seen from the above description that the technical solution provided by the present invention solves the problem of partial channel reciprocity which occurs in the related art due to the asymmetric configuration of the transmitting and receiving antennas of the UE.
  • the base station can obtain the complete downlink channel CSI through channel reciprocity, so that the optimal precoding matrix can be used for each PRB in the downlink transmission, and the frequency selective precoding gain is obtained. .
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

测量参考信号发射方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种测量参考信号发射方法及装置。 背景技术 在第三代合作伙伴计划 (The 3rd Generation Partnership Project, 简称为 3GPP)长 期演进 (Long Term Evolution, 简称为 LTE) 系统中, 上行信号包括物理上行共享信 道(Physical Uplink Shared Channel,简称为 PUSCH)及其解调参考信号(Demodulation Reference Signal for PUSCH), 物理上行控制信道(Physical Uplink Control Channel, 简 称为 PUCCH) 及其解调参考信号 (Demodulation Reference Signal for PUCCH), 测量 参考信号 (Sounding Reference Signal, 简称为 SRS ) 等。
SRS是一种终端设备与基站间用来测量无线信道信息 (Channel State Information, 简称为 CSI) 的信号。 在长期演进系统中, 用户设备 (User Equipment, 简称为 UE) 按照基站 (e-Node-B, 简称为 e B ) 指示的带宽、 频域位置、 序列循环移位、 周期和 子帧偏置等参数, 定时在发送子帧的最后一个数据符号上发送上行 SRS。 eNB根据接 收到的 SRS判断 UE上行的 CSI, 并根据得到的 CSI进行频域选择调度、 闭环功率控 制等操作。除此以外,在一些系统特别是时分复用(Time Division Duplex,简称为 TDD) 系统中, eNB还可以根据接收到的 SRS, 利用信道互易性获得下行的 CSI, 从而进行 下行传输的预编码操作。 在 LTE系统中, 上行信号采用单天线端口发射。 但是, 用户设备可支持 1个天线 端口 (Antenna Port), 称为天线端口 0 (port O); 也可支持 2个天线端口, 分别称为天 线端口 0 (port 0) 和天线端口 1 (port 1 )。 支持多天线端口的用户设备可采用用户设 备发射天线选择 (UE transmit antenna selection) 技术选择天线端口发射上行信号。 用 户设备发射天线选择由高层配置。 当闭环 (closed-loop) 用户设备发射天线选择由高层配置使能, 且用户设备支持 发射天线选择时, 用户设备根据最近收到的下行控制信息格式 0 (Downlink Control Information format 0, 简称为 DCI format 0) 中携带的发射天线选择配置信息选择天线 端口, 发射除测量参考信号以外的其它上行信号。下面对下行控制信息格式进行说明: 在 LTE系统中, 基站 (eNodeB ) 通过物理下行控制信道 (Physical Downlink Control Channel, 简称为 PDCCH) 将下行控制信息 (Downlink Control Information, 简称为 DCI) 发送给用户设备, 其中包括下 /上行调度信息 (downlink or uplink scheduling information), 上行发射功率控制命令等。 对不同的下行控制信息, LTE系统定义了多 种下行控制信息格式 (DCI format 其中, 物理上行共享信道的上行调度信息承载于 具有下行控制信息格式 0 (DCI format 0) 的 PDCCH中; 物理下行共享信道(Physical Downlink Shared Channel, 简称为 PDSCH) 的下行调度信息承载于具有下行控制信息 格式 1A/1B/1C/1D/1/2A/2 (DCI format 1A/1B/1C/1D/1/2A/2) 的 PDCCH中。 当开环 (open-loop) 用户设备发射天线选择由高层配置使能, 且用户设备支持发 射天线选择时,用户设备如何选择天线端口发射除测量参考信号以外的其它上行信号, 作为用户设备实现问题, 未标准化。 当用户设备发射天线选择由高层配置使能, 且用户设备支持发射天线选择时, 用 户设备会根据一定的规则选择天线端口, 发射测量参考信号。 高级长期演进(LTE-Advanced, 简称为 LTE- A)系统是 LTE系统的下一代演进系 统。 在 LTE-A系统中, PUSCH、 PUCCH、 SRS等上行信号可采用单天线端口发射, 也可采用多天线端口发射;用户设备可支持 1个天线端口(port 0), 2个天线端口(port 0/1 ), 或 4个天线端口 (port O/1/2/3 )发射上行信号。 而对于下行传输, 用户设备则可 以用 1个、 2个、 4个、 6个或 8个天线端口接收下行传输的数据。 当基站需要利用信 道互易性进行下行传输时, 按照目前标准的做法会出现部分信道互易性的问题。 部分 信道互易性问题指的是 UE的收发天线配置不对称的情况, 例如, UE上行使用 1根发 射天线, 而下行接收时使用 4根接收天线, 当基站需要通过测量 SRS利用信道互易性 来进行下行传输时, 由于上行只使用了 1根发射天线, 因此基站只能获得部分的信道 互易性, 只能使用秩 (Rank) 为 1的下行空间复用传输, 此时基站不能判断什么时候 可以以秩为 2或者更高的秩来下行传输以及使用何种预编码矩阵。 针对这一问题, 目 前尚未提出有效的解决方案。 发明内容 本发明提供了一种测量参考信号发射方法及装置, 以解决上述问题。 根据本发明的一个方面, 提供了一种测量参考信号发射方法, 包括: 用户设备选 择天线或天线组发射测量参考信号, 其中, 用户设备根据天线映射规则、 或天线选择 规则、 或下行控制信息格式的天线选择掩码确定用于发射测量参考信号的天线或天线 组。 用户设备根据天线映射规则、 或天线选择规则、 或下行控制信息格式的天线选择 掩码确定用于发射所述测量参考信号的天线或天线组包括: 当天线与天线端口不具备 一一对应关系时, 用户设备根据天线映射规则确定用于发射测量参考信号的天线或天 线组; 当天线与天线端口具备一一对应关系时, 用户设备根据天线选择规则或下行控 制信息格式的天线选择掩码确定用于发射测量参考信号的天线或天线组。 天线映射规则包括: 在不同的测量参考信号发送时刻, 测量参考信号的发射天线 端口依次在天线之间进行切换。 天线选择规则包括:在天线索引或天线组索引为 的天线或天线组上发送第
SRS个测量参考信号, 其中, 天线索引或天线组索引^^^)根据下面公式确定: a{nsRs ) = nsRs m°d 2 ^ « («5R5 ) = mod 4 , 其中, ^为测量参考信号的发送次 数或者为测量参考信号发送计数器的值。 天线索引或天线组索引^^^)根据下面公式确定: 当测量参考信号在频域的跳频没有使能时, ^^^^^moc^或
Figure imgf000005_0001
当测量参考信号在频域的跳频使能时,
_ mod 2 当 X为偶数
aPsRs)一
当 为奇数
Figure imgf000005_0002
mod4 当 K为偶数
aPsRs)一
I « mod 4 当 K为奇数
+
Figure imgf000005_0003
当 K为偶数
或 ( SR )
ro?mod4 当 K为奇数
_ , [1 ¾^Tmod4 = 0
其中 = t ^,, K= ]j Nb , Nb ^为 1, '为测量参考信号带
0 其他 b'=b. 宽树形结构分配时 层对应的分支数, 为用户专有的 SRS带宽, 。P为用户专有 的频率跳频带宽。 上述下行控制信息格式的天线选择掩码一一对应于用户设备的天线或天线组。 上述控制信息格式为承载上行调度信息或承载下行调度信息的信息格式。 上述下行控制信息格式包括: format 4、 format 2 A、 format 2B、 format 2C。 根据本发明的另一方面, 提供了一种测量参考信号发射装置, 位于用户设备上, 包括: 确定模块, 设置为根据天线映射规则、 或天线选择规则、 或下行控制信息格式 的天线选择掩码确定用于发射测量参考信号的天线或天线组; 发送模块, 设置为使用 上述天线或天线组发射测量参考信号。 发送模块包括: 第一确定单元, 设置为在天线与天线端口不具备一一对应关系时, 根据天线映射规则确定用于发射测量参考信号的天线或天线组; 第二确定单元, 设置 为在天线与天线端口具备一一对应关系时, 根据天线选择规则或下行控制信息格式的 天线选择掩码确定用于发射测量参考信号的天线或天线组。 天线映射规则包括: 在不同的测量参考信号发送时刻, 测量参考信号的发射天线 端口依次在天线之间进行切换。 天线选择规则包括:在天线索引或天线组索引为 的天线或天线组上发送第 个测量参考信号, 其中, 天线索引或天线组索引^^^ )根据下面公式确定: a {nsRs ) = nsRs m°d 2 ^ « («5R5 ) = mod 4 , 其中, ^为测量参考信号的发送次 数或者为测量参考信号发送计数器的值。 天线索引或天线组索引^^^ )根据下面公式确定: 当测量参考信号在频域的跳频没有使能时, ^^^ ^^ moc^或
当测量参考信号在频域的跳频使能时,
Figure imgf000006_0001
当 K为偶数
当 κ为奇数 其中 Nbi 为 1, ,为测量参考信号带
Figure imgf000007_0001
宽树形结构分配时 层对应的分支数, 为用户专有的 SRS带宽, 。P为用户专有 的频率跳频带宽。 上述下行控制信息格式的天线选择掩码一一对应于用户设备的天线或天线组。 上述下行控制信息格式为承载上行调度信息或承载下行调度信息的信息格式。 上述下行控制信息格式包括: format 4、 format 2 A、 format 2B、 format 2C。 通过本发明, 采用由用户终端根据天线映射规则、 天线选择规则、 或下行控制信 息格式的天线选择掩码实时地确定用于发射当前测量参考信号的天线或天线组, 并发 最终发射该测量参考信号的方案, 解决了目前标准的做法会出现部分信道互易性的问 题, 使得基站端可以通过信道互易性获得完整的下行信道 CSI, 从而可以为下行传输 时的每个物理资源块(Physical Resource Block, 简称为 PRB)使用最优的预编码矩阵, 得到频率选择性预编码增益。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图
图 1是根据本发明实施例的测量参考信号发射方法的流程图; 图 2是根据本发明实例一的上行发射天线数目为 2,下行接收天线数目为 4时 SRS 发射天线端口到用户设备物理天线的映射示意图; 图 3是根据本发明实例一的上行发射天线数目为 4,下行接收天线数目为 8时 SRS 发射天线端口到用户设备物理天线的映射示意图; 图 4是根据本发明实例二的 SRS 发射天线端口到用户设备物理天线的映射示意 图 5 是根据本发明实例三的 SRS 发射天线端口到用户设备物理天线的映射示意 图; 图 6是根据本发明实施例的测量参考信号发射装置的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1是根据本发明实施例的测量参考信号发射方法的流程图。 如图 1所示, 根据 本发明实施例的测量参考信号发射方法包括: 步骤 S102, 用户设备根据天线映射规则、 或天线选择规则、 或下行控制信息格式 的天线选择掩码确定用于发射 SRS的天线或天线组; 步骤 S104, 用户设备使用上述天线或天线组发射该 SRS。 本实施例提供的测量参考信号发射方法抛弃了一直采用同样的天线发射 SRS的现 有测量参考信号发射方式, 提供了一种动态的测量参考信号发射方式, 即用户设备会 选择天线或天线组发射 SRS, 其中, 用户设备根据天线映射规则、 或天线选择规则、 或下行控制信息格式的天线选择掩码确定用于发射 SRS的天线或天线组, 也就是说对 于不同时刻的 SRS, 用户设备会实时的根据天线映射规则、 天线选择规则、 或下行控 制信息格式的天线选择掩码确定用于发射该 SRS的天线或天线组, 以克服收发天线配 置不对称带来的部分信道互易性问题。 其中, 天线映射规则是通过改变天线端口与物 理天线的对应关系来克服收发天线的不对称, 天线选择规则是通过实时的选择不同的 天线发射 SRS来克服收发天线的不对称, 而根据下行控制信息格式的天线选择掩码确 定用于发射该 SRS的天线或天线组实际上是一种基站指示机制, 即由基站通过下行控 制信息格式的天线选择掩码指示用户设备用于发送 SRS 的天线或天线组。 通过 SRS 的发射天线选择机制, 基站端就可以通过信道互易性获得完整的下行信道 CSI, 从而 可以为下行传输时的每个 PRB使用最优的预编码矩阵, 得到频率选择性预编码增益。 优选地, 用户设备根据天线映射规则、 天线选择规则、 或下行控制信息格式的天 线选择掩码确定用于发射 SRS的天线或天线组可以进一步包括: 当天线与天线端口不具备一一对应关系时, 用户设备根据天线映射规则确定用于 发射 SRS的天线或天线组; 当天线与天线端口具备一一对应关系时, 用户设备根据天线选择规则或下行控制 信息格式的天线选择掩码确定用于发射 SRS的天线或天线组。 天线映射规则需要实时地改变天线端口和物理天线的映射关系, 以通过不同的天 线发射 SRS, 从而克服部分信道互易性的问题。 因此根据天线映射规则确定用于发射 SRS的天线或天线组主要应用在天线与天线端口不具备一一对应关系的情况下, 这里 天线与天线端口不一一对应的情况包括天线端口与天线的数量一致但映射关系可变的 情况, 也包括天线端口与天线的数量本身就不一致的情况。 根据天线选择规则或下行控制信息格式的天线选择掩码确定用于发射 SRS的天线 或天线组主要适用于天线与天线端口具备一一对应关系的情况, 这样, 在确定了用于 发射 SRS的天线或天线组后,用于发射 SRS的天线端口就相应的确定下来了。天线与 天线端口的一一对应关系是保证用户终端使用按照天线选择规则确定的天线或天线组 发送 SRS就可以克服收发天线的不一致性的一个前提。 同样的, 在根据下行控制信息 格式的天线选择掩码确定用于发射 SRS的天线或天线组的基站指示机制中, 同样要求 天线与天线端口具有一一对应关系以保证使用根据天线选择掩码确定的天线或天线组 发送 SRS可以克服收发天线的不一致性。 对于天线映射规则来说, 改变天线端口与物理天线映射关系的规则实际上是可以 根据用户的需要灵活的设置的,其基本原则是在不同的 SRS发送时刻使用不同天线发 送 SRS,用来发送 SRS的天线数量不能小于该用户设备在进行下行接收时可使用的天 线的最大数量, 优选地就是使 SRS的发射可以遍历用户设备的所有天线, 这样即可保 证基站总能获得全部的信道互易性。 本优选实施例中给出了一种使用范围较广的改变天线端口与物理天线映射关系的 规则: 优选地, 上述天线映射规则可以包括: 在不同的 SRS发送时刻, SRS的发射天 线端口依次在天线之间进行切换。 在现有技术中, 当用户设备发射天线选择由高层配置使能, 且用户设备支持发射 天线选择时, 用户设备会根据一定的规则选择天线端口, 以发射 SRS。 本优选实施例 在此基础上进行了改进, 在确定了天线端口后, 在不同的 SRS发送时刻, 用户设备将 SRS的发射天线端口依次在天线之间进行切换,保证 SRS的发射可以遍历用户设备的 所有天线, 从而克服了部分信道互易性的问题。 当然, 用户设备将 SRS的发射天线端 口依次在天线之间进行切换的前提是天线端口与天线不具备一一对应的关系。 对于天线选择规则, 其也是多种多样的, 根据不同的需要可以设置不同的选择规 贝1」。 本优选实施例给出一种通用的天线选择规则。 优选地, 上述天线选择规则可以包 括: 在天线索引或天线组索引为 /的 w 天线或天线组上发送第《 / l^SRS
号, 其中, 天线索引或天线组索引 α(¾ ^根据下面公式确定: α = mod 2或 « ,) = ^ mod4 , 其中, 为测量参考信号的发送次数或者为测量参考信号发送 计数器的值。 本优选实施例中给出的天线选择规则也是一种遍历性的选择规则,从 )的确 定公式来看, 实际上就是将用户终端的所有天线分为 2组或 4组, 每组中包括一个天 线或多个天线, 在发射 SRS时, 依次使用这些组来发射 SRS, 保证每个天线都会被用 来发射 SRS, 从而克服了部分信道互易性的问题。 当然, 为了保证每个天线都会被用 来发射 SRS, 要求天线端口与天线是一一对应的。 优选地, 上述天线索引或天线组索引 还可以根据下面公式确定: 当测量参考信号在频域的跳频没有使能时, ^^^ ^^ moc^或 a {nsRS ) = nsRS mod 4 当测量参考信号在频域的跳频使能时, 当 为偶数
当 为奇数 当 K为偶数
,
Ξ¾Κ为奇数 4 当 K为偶数
Ξ¾Κ为奇数 , Nb 为 1 Λ^'为测量参考信号带
Figure imgf000010_0001
宽树形结构分配时 层对应的分支数, 为用户专有的 SRS带宽, 。P为用户专有 的频率跳频带宽。 本优选实施例提供的天线索引或天线组索引 + )的确定方法根据测量参考信 号在频域的跳频是否使能给出了不同的确定公式, 保证了用户终端不论是在测量参考 信号在频域的跳频没有使能的情况下, 还是在测量参考信号在频域的跳频使能的情况 下都可以克服部分信道互易问题。 对于根据下行控制信息格式的天线选择掩码确定用于发射测量参考信号的天线或 天线组的基站指示机制, 天线选择掩码与天线或天线组的具体对应关系的设置也是十 分灵活的, 但也有一个基本的原则要遵守: 优选地, 上述下行控制信息格式的天线选 择掩码一一对应于用户设备的天线或天线组。 即要求基站通过下行控制信息格式发送 给用户终端的天线选择掩码与用户终端的天线或天线组是一一对应的, 也就是说, 用 户终端可以根据天线选择掩码唯一的确定一个天线或天线组以发送当前的 SRS。 优选地, 上述下行控制信息格式主要指承载上行调度信息或承载下行调度信息的 信息格式。 使用承载上行调度信息或承载下行调度信息的信息格式作为天线选择掩码的载体 改动较小, 实现起来较为容易。 优选地,上述下行控制信息格式包括: format 4、 format 2 A、 format 2B、 format 2C。 本发明优先使用上述下行控制信息格式。 下面结合实例对上述优选实施例进行详细说明。 实例一: 在本实例中, 用户设备根据天线映射规则选择天线或天线组发射测量参考信号。 如图 2所示, 上行 SRS发射天线数目为 2, 下行接收天线为 4时, 为解决部分信 道互易性问题, 可以在不同的 SRS发送时刻, SRS的发射天线端口依次在物理发射天 线之间进行切换映射。 比如, 在 SRS的第一个发送子帧, SRS的发射端口 0映射到物 理天线 0, SRS的发射端口 1映射到物理天线 1 ; 则在 SRS的第二个发送子帧, SRS 的发射端口 0映射到物理天线 2, SRS的发射端口 1映射到物理天线 3 ; 在 SRS的第 三个发送子帧, SRS的发射端口 0映射到物理天线 0, SRS的发射端口 1映射到物理 天线 1 ; 依次类推, SRS的发射天线端口依次循环在物理发射天线之间进行切换映射。 或者, 在 SRS的第一个发送子帧, SRS的发射端口 0映射到物理天线 0, SRS的 发射端口 1映射到物理天线 2; 则在 SRS的第二个发送子帧, SRS的发射端口 0映射 到物理天线 1, SRS的发射端口 1映射到物理天线 3 ; 在 SRS的第三个发送子帧, SRS 的发射端口 0映射到物理天线 0, SRS的发射端口 1映射到物理天线 2;依次类推, SRS 的发射天线端口依次循环在物理发射天线之间进行切换映射。 如图 3所示, 当上行 SRS发射天线数目为 4, 下行接收天线为 8时, 为解决部分 信道互易性问题, 可以在不同的 SRS发送时刻, SRS的发射天线端口依次在物理发射 天线之间进行切换映射。 比如在 SRS的第一个发送子帧, SRS的发射端口 0、 端口 1、 端口 2、 端口 3分别映射到物理天线 0、 1、 2、 3; 则在 SRS的第二个发送子帧, SRS 的发射端口 0、 端口 1、 端口 2、 端口 3分别映射到物理天线 4、 5、 6、 7; 在 SRS的 第三个发送子帧, SRS的发射端口 0、端口 1、 端口 2、端口 3分别映射到物理天线 0、 1、 2、 3;依次类推, SRS的发射天线端口依次循环在物理发射天线之间进行切换映射。 或者, 在 SRS的第一个发送子帧, SRS的发射端口 0、 端口 1、 端口 2、 端口 3 分别映射到物理天线 0、 4、 1、 5; 则在 SRS的第二个发送子帧, SRS的发射端口 0、 端口 1、 端口 2、 端口 3分别映射到物理天线 2、 6、 3、 7; 在 SRS的第三个发送子帧, SRS的发射端口 0、 端口 1、 端口 2、 端口 3分别映射到物理天线 0、 4、 1、 5; 依次类 推, SRS的发射天线端口依次循环在物理发射天线之间进行切换映射。 实例二: 在本实例中, 用户设备根据天线选择规则选择天线或天线组发射测量参考信号。 上述天线选择规则包括: 用户设备在天线索引或组索引为 的天线或天线组上发送第《^个测量参 考信号,其中,每组发射天线包括 1根或多根发射天线,天线索引或天线组索引 根据如下方式确定: 方式一: a {nsRs ) = nsRS mod 2或 a ) = nsRS mod 4。 方式二: 当 SRS在频域的跳频没有使能时, α(¾„) = ¾„ηιο(12或
Figure imgf000012_0001
; 当 SRS在频域的跳频使能时, 当 K为偶数
当 为奇数 当 Κ为偶数
当 K为奇数 4 当 K为偶数
Figure imgf000013_0001
Ξ¾Κ为奇数
_ , il 当^ T mod 4 = 0
其中 = Κ = Π Ν^ ' N1 '为 SRS带宽树形结 构分配时 层对应的分支数, 《^为81^的发送计数器 (用于记录测量参考信号的发 送次数) 的值, 或者为待发送的测量参考信号的发送次数 (测量参考信号发送次数的 表现形式之 为用户专有的 SRS带宽, 。P为用户专有的频率跳频带宽, J! 为多个数相乘的操作。 在本实例中, 如图 4所示, SRS的发射天线端口一一对应映射到物理天线, 可将 其划分为 2或 4个天线组, 使用上述方式进行天线组选择, 即可保证这 2或 4个天线 组都会用于 SRS发射, 从而克服了部分信道互易性问题。 实例三: 在本实例中, 用户设备根据下行控制信息格式的天线选择掩码来确定天线或天线 组发射测量参考信号。 下行控制信息格式的与用户设备的天线(端口)或者与天线(端口)组一一对应, 天线 (端口) 组包括一个或多个天线 (端口)。 下行控制信息格式为承载上行调度信息或承载下行调度信息的信息格式, 下行控 制信息格式包括: format 4 format 2 A format 2B format 2C 当基站在某一子帧上向用户设备发送多个可携带天线选择掩码的 PDCCH时, 基 站可以在该多个 PDCCH上携带相同的天线选择掩码或基站在其中一个特定的 PDCCH 上携带该天线选择掩码。 现有技术中, 天线选择掩码主要用于对发送给用户设备的物理下行控制信道
PDCCH的环冗余校验 (Cyclic Redundancy Check, 简称为 CRC) 校验位加扰。 下面对 LTE系统中采用循环冗余校对下行控制信息 DCI检错(error detection)进 行说明。整个 PDCCH的有效载荷 , , , ,...,^用来计算 CRC校验比特(CRC parity bits)
Figure imgf000014_0001
CRC校验后, 得到序列/) ,/¾,... 其中 B= A+L, 其中, A是 PDCCH有效载荷的比特数 (PDCCH payload size), L是 CRC校验比特的 比特数, 例如 L=16。 当用户设备发射天线选择由高层配置为不使能, 或用户设备不支持发射天线选择 时,用对应的无线网络临时标识符(Radio Network Temporary Identifier,简称为 RNTI) 对 CRC校验比特加扰, 得到序列 c。,Cl,c2 : ck =bk k = 0, 1,2, ...,Α-1; ck = ( + x一) mod2 k= A, A+l, A+2,..., A+15; 其中, ^^。,^^,...,^«5为 RNTI, xmft.,。为 RNTI的最高位。 当闭环 (closed-loop) 用户设备发射天线选择由高层配置使能, 且用户设备支持 发射天线选择时, 用天线选择掩码 (antenna selection mask) 和对应的 RNTI对 DCI format 0格式的 PDCCH的 CRC校验比特加扰, 得到序列 c。, ,c2 : ck=bk k = 0, 1,2, ...,Α-1; ct = ( + xmtl,t_A +xAS!t_A)mod2 k = A, A+l, A+2,..., A+15; 其中, ^。,。,^^,…,^。^为腿!!, ,。为 RNTI的最高位; ^^,χ^,...,^^ 为天线选择掩码, 为天线选择掩码的最高位。
LTE-A系统中的环冗余校验校验位加扰与上述类似, 在此不再赘述。 在本实例中, SRS的发射天线端口一一对应映射到物理天线, 如图 5所示, 通过 与天线一一对应的天线选择掩码,基站即可控制用户终端在不同的 SRS发送时刻选择 不同的天线发射 SRS, 从而克服部分互易性的问题。 当然, 天线选择掩码也可以是与 天线组一一对应。 在本实例中, 两个天线选择掩码的汉明距离是: 两个天线选择掩码对应的码位上 不同码元的个数。 例如, 采用如表 1、 表 2、 表 3、 表 4、 或表 5所示的方式, 建立天 线 (端口) 或天线 (端口) 组 0/1/2/3与天线选择掩码的一一对应关系, 这里 L=16。 表 1
天线选择掩码
用户设备发射天线选择
UE transmit antenna selection Antenna selection mask< 0, 15 >
UE天线端口 0或天线端口组 0 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
UE天线端口 1或天线端口组 1 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>
UE天线端口 2或天线端口组 2 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0>
UE天线端口 3或天线端口组 3 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0> 表 2
天线选择掩码
用户设备发射天线选择
UE transmit antenna selection Antenna selection mask< 0, 15 >
UE天线端口 0或天线端口组 0 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
UE天线端口 1或天线端口组 1 <1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
UE天线端口 2或天线端口组 2 <0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
UE天线端口 3或天线端口组 3 <1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> 表 3
天线选择掩码
用户设备发射天线选择
UE transmit antenna selection Antenna selection mask< 0, 15 >
UE天线端口 0或天线端口组 0 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
UE天线端口 1或天线端口组 1 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>
UE天线端口 2或天线端口组 2 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0>
UE天线端口 3或天线端口组 3 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1> 表 4
天线选择掩码
用户设备发射天线选择
UE transmit antenna selection Antenna selection mask< 0, 15 >
UE天线端口 0或天线端口组 0 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
UE天线端口 1或天线端口组 1 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>
UE天线端口 2或天线端口组 2 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1>
UE天线端口 3或天线端口组 3 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0> 表 5
用户设备发射天线选择 天线选择掩码 UE transmit antenna selection
Antenna selection mask< 0, 15 >
UE天线端口 0或天线端口组 0 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>
UE天线端口 1或天线端口组 1 <1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>
UE天线端口 2或天线端口组 2 <0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1>
UE天线端口 3或天线端口组 3 <1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0> 或者, 采用如表 6所示的方式, 建立天线 (端口) 或天线 (端口) 组 0/1与天线 选择掩码的一一对应关系。 表 6
Figure imgf000016_0001
图 6是根据本发明实施例的测量参考信号发射装置的结构示意图。 如图 6所示, 根据本发明实施例的测量参考信号发射装置包括: 确定模块 62, 设置为根据天线映射规则、 或天线选择规则、 或下行控制信息格式 的天线选择掩码确定用于发射 SRS的天线或天线组; 发送模块 64, 连接至确定模块 62, 设置为使用上述天线或天线组发射该 SRS。 本实施例提供的测量参考信号发射装置抛弃了一直采用同样的天线发射 SRS的现 有测量参考信号方式, 采用了一种动态的测量参考信号发射方式, 对于不同时刻的 SRS, 上述装置会实时的根据天线映射规则、 天线选择规则、 或下行控制信息格式的 天线选择掩码确定用于发射该 SRS的天线或天线组, 以克服收发天线配置不对称带来 的部分信道互易性问题。 其中, 天线映射规则是通过改变天线端口与物理天线的对应 关系来克服收发天线的不对称, 天线选择规则是通过实时的选择不同的天线发射 SRS 来克服收发天线的不对称, 而根据下行控制信息格式的天线选择掩码确定用于发射该 SRS的天线或天线组实际上是一种基站指示机制, 即由基站通过下行控制信息格式的 天线选择掩码指示用户设备用于发送 SRS的天线或天线组。通过 SRS的发射天线选择 机制, 基站端就可以通过信道互易性获得完整的下行信道 CSI, 从而可以为下行传输 时的每个 PRB使用最优的预编码矩阵, 得到频率选择性预编码增益。 优选地, 发送模块可以进一步包括: 第一确定单元, 设置为在天线与天线端口不具备一一对应关系时, 根据天线映射 规则确定用于发射 SRS的天线或天线组; 第二确定单元, 设置为在天线与天线端口具备一一对应关系时, 根据天线选择规 则或下行控制信息格式的天线选择掩码确定用于发射 SRS的天线或天线组。 第一确定单元主要应用在天线与天线端口不具备一一对应关系的情况下, 第一确 定单元会根据天线映射规则实时地改变天线端口和物理天线的映射关系, 以通过不同 的天线发射 SRS, 从而克服部分信道互易性的问题。 这里天线与天线端口不一一对应 的情况包括天线端口与天线的数量一致但映射关系可变的情况, 也包括天线端口与天 线的数量本身就不一致的情况。 第二确定单元主要应用在天线与天线端口具备一一对应关系的情况下, 这样, 在 确定了用于发射 SRS的天线或天线组后,用于发射 SRS的天线端口就相应的确定下来 了。 天线与天线端口的一一对应关系是保证用户终端使用按照天线选择规则确定的天 线或天线组发送 SRS就可以克服收发天线的不一致性的一个前提。 同样的, 第二确定 单元在根据下行控制信息格式的天线选择掩码确定用于发射 SRS的天线或天线组时, 同样需要天线与天线端口具有一一对应关系以保证使用根据天线选择掩码确定的天线 或天线组发送 SRS可以克服收发天线的不一致性。 优选地, 上述天线映射规则可以包括: 在不同的 SRS发送时刻, SRS的发射天线 端口依次在天线之间进行切换。 在不同的 SRS发送时刻,将 SRS的发射天线端口依次在天线之间进行切换,保证 了 SRS的发射可以遍历用户设备的所有天线, 从而克服了部分信道互易性的问题。 优选地, 上述天线选择规则可以包括: 在天线索引或天线组索引为 的天线 或天线组上发送第 个测量参考信号, 其中, 天线索引或天线组索引^^^ )根据下 面公式确定: η^8 ) = η^8 mod 2 ^ α («^^ ) = mod 4 , 其中, ^为测量参考信号 的发送次数或者为测量参考信号发送计数器的值。 本优选实施例中给出的天线选择规则是一种遍历性的选择规则,从 )的确定 公式来看, 实际上就是将用户终端的所有天线分为 2组或 4组, 每组中包括一个天线 或多个天线, 在发射 SRS时, 依次使用这些组来发射 SRS, 保证每个天线都会被用来 发射 SRS, 从而克服了部分信道互易性的问题。 优选地, 上述天线索引或天线组索引 还可以根据下面公式确定 当测量参考信号在频域的跳频没有使能时, ^^ ^ ^^ moc^或
Figure imgf000018_0001
π mod 4 当测量参考信号在频域的跳频使能时,
_ mod 2 当 X为偶数
a PsRs)一
Figure imgf000018_0002
当 为奇数
{nsis + lnsRs 14J +
Figure imgf000018_0003
mod4 当 K为偶数
I mod 4 当 K为奇数 mod4 当 K为偶数
当 K为奇数 Nb , Nb 为 1 Λ^'为测量参考信号带
Figure imgf000018_0004
宽树形结构分配时 层对应的分支数, 为用户专有的 SRS带宽, 。P为用户专有 的频率跳频带宽。 本优选实施例提供的天线索引或天线组索引为 的确定方法根据测』 信号在频域的跳频是否使能给出了不同的确定公式, 保证了用户终端不论是在测量参 考信号在频域的跳频没有使能的情况下, 还是在测量参考信号在频域的跳频使能的情 况下都可以克服部分信道互易问题。 优选地, 上述下行控制信息格式的天线选择掩码一一对应于用户设备的天线或天 线组。 根据下行控制信息格式的天线选择掩码确定用于发射测量参考信号的天线或天线 组实际上确定了一种基站指示机制, 即基站通过下行控制信息格式将天线选择掩码发 送给用户终端指示用户终端用于发射 SRS的天线, 以克服部分互易性问题, 因此要求 天线选择掩码与用户终端的天线或天线组是一一对应的, 保证用户终端可以根据天线 选择掩码唯一的确定一个天线或天线组以发送当前的 SRS 优选地, 上述下行控制信息格式主要指承载上行调度信息或承载下行调度信息的 信息格式。 使用承载上行调度信息或承载下行调度信息的信息格式作为天线选择掩码的载体 改动较小, 实现起来较为容易。 优选地,上述下行控制信息格式包括: format 4、 format 2A、 format 2B、 format 2C。 本发明优先使用上述下行控制信息格式。 从以上的描述中, 可以看出, 本发明提供的技术方案解决了相关技术中由于 UE 收发天线配置不对称而出现的部分信道互易性问题。 通过测量参考信号的发射天线选 择机制, 基站端可以通过信道互易性获得完整的下行信道 CSI, 从而可以为下行传输 时的每个 PRB使用最优的预编码矩阵, 得到频率选择性预编码增益。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种测量参考信号发射方法, 包括:
用户设备选择天线或天线组发射测量参考信号, 其中, 所述用户设备根据 天线映射规则、 或天线选择规则、 或下行控制信息格式的天线选择掩码确定用 于发射所述测量参考信号的所述天线或天线组。
2. 根据权利要求 1所述的方法, 其中, 所述用户设备根据天线映射规则、 或天线 选择规则、 或下行控制信息格式的天线选择掩码确定用于发射所述测量参考信 号的天线或天线组包括:
当天线与天线端口不具备一一对应关系时, 所述用户设备根据所述天线映 射规则确定用于发射所述测量参考信号的天线或天线组;
当天线与天线端口具备一一对应关系时, 所述用户设备根据所述天线选择 规则或所述下行控制信息格式的天线选择掩码确定用于发射所述测量参考信号 的天线或天线组。
3. 根据权利要求 1或 2所述的方法, 其中, 所述天线映射规则包括: 在不同的测 量参考信号发送时刻, 所述测量参考信号的发射天线端口依次在天线之间进行 切换。
4. 根据权利要求 1或 2所述的方法, 其中, 所述天线选择规则包括: 在天线索引 或天线组索引为 的天线或天线组上发送第 nsRS个测量参考信号, 其中, 所述天线索引或天线组索引 根据下面公式确定: a {nsRs ) = nsRs m°d 2 S¾ « («5R5 ) = mod 4 , 其中, ^为所述测量参考信 号的发送次数或者为所述测量参考信号发送计数器的值。
5. 根据权利要求 4所述的方法, 其中, 所述天线索引或天线组索引 根据下 面公式确定:
当测量参考信号在频域的跳频没有使能时, ^^ ^ ^^ moc^或 a {nsRS ) = nsRS mod 4; 当测量参考信号在频域的跳频使能时,
Figure imgf000021_0001
信号带宽树形结构分配时 层对应的分支数, 为用户专有的 SRS 带宽, bhoP为用户专有的频率跳频带宽。 根据权利要求 1或 2所述的方法, 其中, 所述下行控制信息格式的天线选择掩 码一一对应于所述用户设备的天线或天线组。 根据权利要求 6所述的方法, 其中, 所述下行控制信息格式为承载上行调度信 息或承载下行调度信息的信息格式。 根据权利要求 7所述的方法,其中,所述下行控制信息格式包括: format 4, format 2A、 format 2B、 format 2C。 一种测量参考信号发射装置, 位于用户设备上, 包括:
确定模块, 设置为根据天线映射规则、 或天线选择规则、 或下行控制信息 格式的天线选择掩码确定用于发射测量参考信号的天线或天线组;
发送模块, 设置为使用所述天线或天线组发射所述测量参考信号。 根据权利要求 9所述的装置, 其中, 所述发送模块包括: 第一确定单元, 设置为在天线与天线端口不具备一一对应关系时, 根据所 述天线映射规则确定用于发射所述测量参考信号的天线或天线组;
第二确定单元, 设置为在天线与天线端口具备一一对应关系时, 根据所述 天线选择规则或所述下行控制信息格式的天线选择掩码确定用于发射所述测量 参考信号的天线或天线组。
11. 根据权利要求 9或 10所述的装置, 其中, 所述天线映射规则包括: 在不同的测 量参考信号发送时刻, 所述测量参考信号的发射天线端口依次在天线之间进行 切换。
12. 根据权利要求 9或 10所述的装置, 其中, 所述天线选择规则包括: 在天线索引 或天线组索引为 的天线或天线组上发送第 nsRS个测量参考信号, 其中, 所述天线索引或天线组索引 根据下面公式确定: a {nsRs ) = nsRs m°d 2 S¾ « («5R5 ) = mod 4 , 其中, ^为所述测量参考信 号的发送次数或者为所述测量参考信号发送计数器的值。
13. 根据权利要求 12所述的装置, 其中, 所述天线索引或天线组索引 根据 下面公式确定:
当测量参考信号在频域的跳频没有使能时, ^^ ^ ^^ moc^或 a {nsRS ) = nsRS mod 4; 当测量参考信号在频域的跳频使能时,
Figure imgf000022_0001
信号带宽树形结构分配时 层对应的分支数, 为用户专有的 SRS 带宽, bhoP为用户专有的频率跳频带宽。
14. 根据权利要求 9或 10所述的装置,其中,所述下行控制信息格式的天线选择掩 码一一对应于所述用户设备的天线或天线组。
5. 根据权利要求 14所述的装置, 其中, 所述下行控制信息格式包括: format 4、 format 2A format 2B format 2C。
PCT/CN2011/084155 2011-08-15 2011-12-16 测量参考信号发射方法及装置 WO2012152000A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110233213.5 2011-08-15
CN201110233213.5A CN102355293B (zh) 2011-08-15 2011-08-15 测量参考信号发射方法及装置

Publications (1)

Publication Number Publication Date
WO2012152000A1 true WO2012152000A1 (zh) 2012-11-15

Family

ID=45578795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084155 WO2012152000A1 (zh) 2011-08-15 2011-12-16 测量参考信号发射方法及装置

Country Status (2)

Country Link
CN (1) CN102355293B (zh)
WO (1) WO2012152000A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018171803A1 (en) * 2017-03-24 2018-09-27 Mediatek Inc. Csi acquisition with channel reciprocity in mobile communications
CN109478908A (zh) * 2016-07-22 2019-03-15 Lg 电子株式会社 无线通信系统中的上行链路多天线传输方法及其装置
WO2019158119A1 (en) * 2018-02-17 2019-08-22 Mediatek Inc. Uplink transmission schemes in mobile communications

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716998A (zh) * 2013-12-16 2015-06-17 中兴通讯股份有限公司 参考信号发射方法及装置
CN104734762B (zh) * 2013-12-20 2018-12-25 中兴通讯股份有限公司 一种发现信号的处理方法、装置和系统
CN106664192B (zh) * 2015-01-30 2020-12-01 韩国电子通信研究院 用于配置csi-rs天线端口的端口编号的方法和设备
CN106685621A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 测量参考信号srs处理方法和装置
CN106817156A (zh) * 2015-11-27 2017-06-09 中兴通讯股份有限公司 天线选择信息的指示方法及装置
US10397940B2 (en) * 2016-07-29 2019-08-27 Qualcomm Incorporated Techniques for dynamically allocating uplink resources in wireless communications
US10454541B2 (en) * 2016-08-12 2019-10-22 Qualcomm Incorporated Dynamic uplink antenna port management
CN108737041B (zh) * 2017-04-18 2020-05-26 上海朗帛通信技术有限公司 一种用于多天线传输的用户设备、基站中的方法和装置
WO2019066677A1 (en) 2017-09-29 2019-04-04 Huawei Technologies Co., Ltd DEVICES AND METHODS FOR ENCODING DOWNLINK CONTROL INFORMATION IN A COMMUNICATION NETWORK
CN109600156B (zh) * 2017-09-30 2020-10-02 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
RU2748317C1 (ru) * 2017-10-30 2021-05-24 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ передачи сигнала, сетевое устройство и оконечное устройство
CN110351851B (zh) * 2018-04-04 2023-08-25 华为技术有限公司 数据传输方法、终端设备和网络设备
CN111886810B (zh) * 2018-04-04 2021-12-24 华为技术有限公司 传输探测参考信号的方法、终端设备及计算机可读存储介质
CN109412665B (zh) * 2018-07-09 2022-03-22 展讯通信(上海)有限公司 信道状态的指示及获取方法、发送设备、接收设备、介质
EP3821553A4 (en) 2018-07-13 2022-03-16 Lenovo (Beijing) Limited SRS CONFIGURATIONS AND SRS TRANSMISSION
WO2021035389A1 (en) * 2019-08-23 2021-03-04 Qualcomm Incorporated Dynamic modification of sounding procedure configuration
WO2021258400A1 (en) * 2020-06-27 2021-12-30 Qualcomm Incorporated Port to antenna mapping for uplink communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867403A (zh) * 2010-06-13 2010-10-20 中兴通讯股份有限公司 一种测量参考信号的多天线发送方法、终端和基站
CN101888624A (zh) * 2010-06-11 2010-11-17 中兴通讯股份有限公司 发射天线选择的配置方法及装置
US20110002415A1 (en) * 2008-04-04 2011-01-06 Panasonic Corporation Wireless communication mobile station device and method for using precoding matrix
CN102098084A (zh) * 2009-12-15 2011-06-15 上海贝尔股份有限公司 发送和接收信道探测参考信号的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110002415A1 (en) * 2008-04-04 2011-01-06 Panasonic Corporation Wireless communication mobile station device and method for using precoding matrix
CN102098084A (zh) * 2009-12-15 2011-06-15 上海贝尔股份有限公司 发送和接收信道探测参考信号的方法及装置
CN101888624A (zh) * 2010-06-11 2010-11-17 中兴通讯股份有限公司 发射天线选择的配置方法及装置
CN101867403A (zh) * 2010-06-13 2010-10-20 中兴通讯股份有限公司 一种测量参考信号的多天线发送方法、终端和基站

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478908A (zh) * 2016-07-22 2019-03-15 Lg 电子株式会社 无线通信系统中的上行链路多天线传输方法及其装置
CN109478908B (zh) * 2016-07-22 2021-07-27 Lg 电子株式会社 无线通信系统中的上行链路多天线传输方法及其装置
WO2018171803A1 (en) * 2017-03-24 2018-09-27 Mediatek Inc. Csi acquisition with channel reciprocity in mobile communications
US10560169B2 (en) 2017-03-24 2020-02-11 Mediatek Inc. CSI acquisition with channel reciprocity in mobile communications
WO2019158119A1 (en) * 2018-02-17 2019-08-22 Mediatek Inc. Uplink transmission schemes in mobile communications

Also Published As

Publication number Publication date
CN102355293A (zh) 2012-02-15
CN102355293B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2012152000A1 (zh) 测量参考信号发射方法及装置
US11943165B2 (en) Method and apparatus for receiving or transmitting downlink signal in wireless communication system
ES2967208T3 (es) Método para informar información de estado de canal en un sistema y aparato de comunicación inalámbrica para lo mismo
RU2745419C1 (ru) Адаптивная антенная решетка с переменной когерентностью
CN108702752B (zh) 终端装置、基站装置和通信方法
JP6503563B2 (ja) 端末装置、基地局装置および通信方法
JP6006335B2 (ja) チャネル状態情報を報告するための方法、これをサポートする方法、及びこれらの方法のための装置
BR112019007429B1 (pt) Método para transmissão de sinal de referência de rastreamento de fase em enlace ascendente por equipamento de usuário em um sistema de comunicação sem fio e aparelho para suportar o mesmo
KR102110289B1 (ko) 단말 장치, 기지국 장치 및 통신 방법
WO2017183252A1 (ja) 端末装置、基地局装置、通信方法
WO2017134954A1 (ja) 端末装置、基地局装置および通信方法
RU2679895C1 (ru) Способы и устройства для конфигурации ограничений измерений
WO2017169003A1 (ja) 端末装置、基地局装置および通信方法
KR20140036247A (ko) 채널상태정보 전송방법 및 사용자 기기, 그리고 채널상태정보 수신방법 및 기지국
WO2015154283A1 (zh) 一种报告信道状态信息的方法、用户设备和基站
JP6771582B2 (ja) 低複雑性マルチ設定csiレポート
JP6439883B2 (ja) 端末装置、基地局装置および通信方法
WO2014109621A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와 하향링크 신호 전송 방법 및 기지국
WO2014067232A1 (zh) 一种下行控制信息的配置、获取方法、基站和终端
WO2014123398A1 (ko) 복조 참조 신호 정보 보고 방법 및 사용자기기와, 복조 참조 신호 정보 수신 방법 및 기지국
WO2012155507A1 (zh) 一种信息反馈方法及用户设备
WO2017169004A1 (ja) 端末装置、基地局装置および通信方法
WO2017130500A1 (ja) 端末装置、基地局装置および通信方法
WO2011153890A1 (zh) 发射天线选择的配置方法及装置
BR112019009905B1 (pt) Método e equipamento de usuário para relatar informações de estado de canal no sistema de comunicação sem fio

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865250

Country of ref document: EP

Kind code of ref document: A1