WO2012155507A1 - 一种信息反馈方法及用户设备 - Google Patents

一种信息反馈方法及用户设备 Download PDF

Info

Publication number
WO2012155507A1
WO2012155507A1 PCT/CN2011/084124 CN2011084124W WO2012155507A1 WO 2012155507 A1 WO2012155507 A1 WO 2012155507A1 CN 2011084124 W CN2011084124 W CN 2011084124W WO 2012155507 A1 WO2012155507 A1 WO 2012155507A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
port
user equipment
physical
srs
Prior art date
Application number
PCT/CN2011/084124
Other languages
English (en)
French (fr)
Inventor
王瑜新
陈艺戬
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012155507A1 publication Critical patent/WO2012155507A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03949Spatial equalizers equalizer selection or adaptation based on feedback
    • H04L25/03955Spatial equalizers equalizer selection or adaptation based on feedback in combination with downlink estimations, e.g. downlink path losses

Definitions

  • the present invention relates to the field of communications, and in particular to an information feedback method and a user equipment. Background technique
  • the uplink signal includes a Physical Uplink Shared Channel (referred to as the Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • SRS is used to measure wireless channel information between a terminal device and a base station.
  • CSI Information
  • the user equipment User Equipment, UE for short
  • e-Node-B referred to as eNB
  • Timing is sent on the last data symbol of the transmitted subframe.
  • the eNB obtains the uplink CSI of the UE according to the received SRS, and performs operations such as frequency domain selection scheduling and closed loop power control according to the obtained CSI.
  • the eNB can also obtain downlink CSI by using channel reciprocity according to the received SRS, thereby performing precoding operation of downlink transmission.
  • the uplink signal is transmitted using a single antenna port.
  • the user equipment can support one antenna port (antenna port), called antenna port 0 (port 0); it can also support two antenna ports, called antenna port 0 (port 0) and antenna port 1 (port l ).
  • the user equipment supporting the multi-antenna port can select the antenna port to transmit the uplink signal by using the UE transmit antenna selection technique.
  • the selection of the user equipment transmit antenna is configured by the upper layer.
  • the closed-loop (closed-loop) user equipment transmit antenna selection is enabled by the high-level configuration, and the user sets When the transmit antenna selection is supported, the user equipment selects the antenna port according to the transmit antenna selection configuration information carried in the Downlink Control Information Format 0 (DCI format 0), and transmits the measurement reference signal SRS. Other uplink signals.
  • DCI format 0 Downlink Control Information Format 0
  • the base station sends downlink control information (Downlink Control Information, DCI for short) to the user equipment, including downlink/uplink scheduling information (downlink or uplink) through a Physical Downlink Control Channel (PDCCH). Scheduling information ), uplink transmit power control commands, etc.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the LTE system defines multiple downlink control information formats (DCI formats).
  • DCI formats Downlink control information formats
  • the uplink scheduling information of the Physical Uplink Shared Channel (PUSCH) is carried in the PDCCH with the downlink control information format 0 (DCI format 0).
  • the downlink scheduling information of the Physical Downlink Shared Channel (PDSCH) is carried in the downlink.
  • the control information format is 1A/1B/1C/1D/1/2A/2 (DCI format 1A/1B/1C/1D/1/2A/2) in the PDCCH.
  • the open-loop user equipment transmit antenna selection is enabled by the upper layer configuration, and the user equipment supports the transmit antenna selection, how does the user equipment select the antenna port to transmit other uplink signals than the measurement reference signal, as a user equipment implementation problem There is no unified solution yet.
  • the user equipment transmit antenna selection When the user equipment transmit antenna selection is enabled by the upper layer configuration, and the user equipment supports the transmit antenna selection, the user equipment selects the antenna port according to a certain rule, and transmits a measurement reference signal.
  • LTE-Advanced (LTE-A) system is the next-generation evolution system of the LTE system.
  • LTE-A standard version is Release 10 (Release 10, Rel-10), and may include subsequent versions. , such as Rel-11 and so on.
  • the base station may configure the UE to perform downlink precoding transmission by using Pre-coding Matrix Indicator (PMI) feedback or no PMI feedback.
  • PMI Pre-coding Matrix Indicator
  • the UE should assume no physical resource block binding (PRB bundling); and when the UE is configured to have PMI feedback, the UE should assume the use of PRB bundling.
  • PRB bundling physical resource block binding
  • the base station can obtain the complete downlink channel by using channel reciprocity (the number of transmitting antennas at the UE side is equal to the number of receiving antennas), and then the optimal precoding matrix can be used for each PRB in downlink transmission.
  • channel reciprocity the number of transmitting antennas at the UE side is equal to the number of receiving antennas
  • uplink signals such as PUSCH, PUCCH, and SRS can be transmitted using a single antenna port, or multiple antenna ports can be used.
  • the user equipment can support one antenna port (port O) and two antenna ports ( Port 0/1 ), or 4 antenna ports (port 0/1/2/3) transmit uplink signals.
  • the user equipment can receive downlink transmission data by 1, 2, 4, 6 or 8 antenna ports.
  • some channel reciprocity problems may occur according to the current standard.
  • the partial channel reciprocity problem refers to the case where the transmitting and receiving antenna configuration of the UE is asymmetric.
  • the UE uses one transmitting antenna for uplink, and four receiving antennas for downlink receiving.
  • the base station needs to use channel reciprocity by measuring SRS.
  • the base station can only obtain partial channel reciprocity, and can only use downlink spatial multiplexing transmission with rank (Rank) 1.
  • the base station cannot judge when The downlink transmission can be performed with a rank of rank 2 or higher and which precoding matrix is used.
  • the uplink multi-antenna transmits the SRS
  • selecting which of the four antennas to transmit the SRS also affects the performance of the downlink transmission.
  • the base station cannot judge when the UE is configured into a PMI feedback mode for downlink precoding transmission, and when to use channel reciprocity for downlink precoding transmission. .
  • the object of the present invention is to overcome the defects in the prior art that the base station cannot determine how to configure the downlink precoding transmission for the UE.
  • the present invention first provides an information feedback method, including: the user equipment feeds back information to the base station,
  • the information includes one or more of the following information: a mapping relationship between a transmit antenna port of the measurement reference signal (SRS) to a physical antenna of the user equipment, a mapping relationship between a downlink receive antenna port and a physical antenna of the user equipment, A mapping relationship between a physical antenna of the user equipment and a downlink receiving antenna port, and a configuration mode of the downlink precoding transmission recommended by the user equipment to the base station.
  • SRS measurement reference signal
  • the information that the user equipment feeds back to the base station includes a mapping relationship between the transmit antenna port of the SRS and the physical antenna of the user equipment.
  • the total number of antennas supported by the user equipment is 4, and the number of uplink uplink SRS ports is 2.
  • the mapping relationship between the transmit antenna port of the SRS and the physical antenna of the user equipment includes:
  • the transmit antenna port 0 and port 1 of the SRS are respectively mapped to the physical antenna 0 and the antenna 1 of the user equipment; or
  • the transmitting antenna port 0 and port 1 of the SRS are respectively mapped to the physical antenna 2 of the user equipment, and the antenna 3; or
  • the transmit antenna port 0 and port 1 of the SRS are respectively mapped to the physical antenna 0 and the antenna 2 of the user equipment; or
  • the transmit antenna port 0 and port 1 of the SRS are respectively mapped to the physical antenna 1 and the antenna 3 of the user equipment.
  • the information that the user equipment feeds back to the base station includes a mapping relationship between the transmit antenna port of the SRS and the physical antenna of the user equipment, where the total number of antennas supported by the user equipment is 8, and the number of uplink uplink SRS ports is 4
  • the mapping relationship between the transmit antenna port of the SRS and the physical antenna of the user equipment includes:
  • the transmit antenna port 0, port 1, port 2, and port 3 of the SRS are respectively mapped to the physical antenna 0, the antenna 1, the antenna 2, and the antenna 3 of the user equipment; or
  • the transmit antenna port 0, port 1, port 2, and port 3 of the SRS are respectively mapped to the physical antenna 4, the antenna 5, the antenna 6, and the antenna 7 of the user equipment; or
  • the transmit antenna port 0, port 1, port 2, and port 3 of the SRS are respectively mapped to the physical antenna 0, the antenna 4, the antenna 1, and the antenna 5 of the user equipment; or
  • the transmit antenna port 0, port 1, port 2, and port 3 of the SRS are respectively mapped to the physical antenna 2, the antenna 6, the antenna 3, and the antenna 7 of the user equipment.
  • the information that the user equipment feeds back to the base station includes a mapping relationship between the downlink receiving antenna port and the physical antenna of the user equipment.
  • the total number of antennas supported by the user equipment is 4, and the number of the downlink receiving antenna ports is 4.
  • the mapping relationship between the receiving antenna port and the physical antenna of the user equipment includes:
  • the downlink receiving antenna port 0, port 1, port 2, and port 3 are respectively mapped to the physical antenna 0, the antenna 1, the antenna 2, and the antenna 3 of the user equipment; or
  • the downlink receiving antenna port 0, port 1, port 2, and port 3 are respectively mapped to the physical antenna 0, the antenna 2, the antenna 1, and the antenna 3 of the user equipment.
  • the information that the user equipment feeds back to the base station includes a mapping relationship between the downlink receiving antenna port and the physical antenna of the user equipment.
  • the total number of antennas supported by the user equipment is 8, and the number of the downlink receiving antenna ports is 8.
  • the mapping relationship between the receiving antenna port and the physical antenna of the user equipment includes:
  • the downlink receiving antenna port 0, the port 1, the port 2, the port 3, the port 4, the port 5, the port 6, and the port 7 are respectively mapped to the physical antenna 0, the antenna 1, the antenna 2, the antenna 3, and the antenna 4 of the user equipment.
  • the downlink receiving antenna port 0, port 1, port 2, port 3, port 4, port 5, port 6, and port 7 are respectively mapped to the physical antenna 0, the antenna 4, the antenna 1, the antenna 5, and the antenna 2 of the user equipment.
  • the information that the user equipment feeds back to the base station includes a mapping relationship between the physical antenna of the user equipment and the downlink receiving antenna port.
  • the total number of antennas supported by the user equipment is 4, and the number of the downlink receiving antenna ports is 4.
  • the mapping relationship between the physical antenna of the device and the downlink receiving antenna port includes:
  • the physical antenna 0, the antenna 1, the antenna 2, and the antenna 3 of the user equipment are respectively mapped to the downlink receiving antenna port 0, port 1, port 2, port 3; or
  • the physical antenna 0, the antenna 2, the antenna 1, and the antenna 3 of the user equipment are respectively mapped to the downlink receiving antenna port 0, port 1, port 2, and port 3.
  • the information that the user equipment feeds back to the base station includes a mapping relationship between the physical antenna of the user equipment and the downlink receiving antenna port, and the total number of antennas supported by the user equipment is 8.
  • the number of receiving antenna ports is 8, and the mapping relationship between the physical antenna of the user equipment and the downlink receiving antenna port includes:
  • the physical antenna 0, the antenna 1, the antenna 2, the antenna 3, the antenna 4, the antenna 5, the antenna 6, and the antenna 7 of the user equipment are respectively mapped to the downlink receiving antenna port 0, port 1, port 2, port 3, port 4, Port 5, port 6, port 7; or
  • the physical antenna 0, the antenna 4, the antenna 1, the antenna 5, the antenna 2, the antenna 6, the antenna 3, and the antenna 7 of the user equipment are respectively mapped to the downlink receiving antenna port 0, port 1, port 2, port 3, port 4, Port 5, Port 6, Port 7.
  • the information that the user equipment feeds back to the base station includes a configuration mode that the user equipment recommends to the base station to perform downlink precoding transmission, where the configuration mode includes:
  • the user equipment feeds back the information to the base station by using physical layer signaling or high layer signaling.
  • the present invention also provides a user equipment for feeding back the information to the base station according to the method as described above.
  • the embodiment of the present invention overcomes the defect that the base station can not determine how to configure the downlink precoding transmission for the UE in the prior art, and solves the partial channel that occurs in the prior art due to the asymmetric configuration of the UE transceiver antenna. Reciprocity issues. Embodiments of the present invention improve downlink transmission performance. BRIEF abstract
  • FIG. 1 is a physical antenna mapping diagram of a SRS transmit antenna port to a user equipment according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a physical antenna mapping of an SRS transmit antenna port to a user equipment according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a physical antenna mapping of a downlink receiving antenna port to a user equipment according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a physical antenna mapping of a downlink receiving antenna port to a user equipment according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a physical antenna to downlink receiving antenna port mapping of a user equipment according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a physical antenna to downlink receiving antenna port mapping of a user equipment according to an embodiment of the present invention.
  • the information feedback method in the time division duplex system of the embodiment of the present invention includes: the user equipment feeds back information to the base station, and the information includes one or more of the following information (if not specified, the "multiple" in the patent) Indicates the mapping relationship between the transmit antenna port of the SRS and the physical antenna of the user equipment, the mapping relationship between the downlink receive antenna port and the physical antenna of the user equipment, and the mapping between the physical antenna of the user equipment and the downlink receive antenna port. And a configuration mode that the user equipment recommends to the base station to perform downlink precoding transmission.
  • the difference between transmitting one of the above information or multiple feedbacks to the base station is that the feedback is slightly larger than the transmission overhead used by the feedback one.
  • An embodiment of the present invention provides an information feedback method in a time division duplex system, including: a user equipment feeding back information to a base station, where the feedback information includes: a mapping relationship between a transmit antenna port of the SRS and a physical antenna of the user equipment. .
  • the user equipment feeds back the information to the base station through physical layer signaling or higher layer signaling.
  • the total number of antennas supported by the user equipment is 4, and the number of ports transmitting SRS at the same time is 2.
  • the mapping relationship between the transmit antenna port of the SRS and the physical antenna of the user equipment is: SRS transmit antenna port 0, port 1 is mapped to physical antenna 0 and antenna 1 of the user equipment, respectively.
  • mapping relationship between the transmit antenna port of the SRS and the physical antenna of the user equipment in this embodiment may also be:
  • SRS transmit antenna port 0, port 1 is mapped to the physical antenna of the user equipment 2, antenna 3;
  • SRS transmit antenna port 0, port 1 is mapped to the physical antenna 0 of the user equipment, antenna 2;
  • the transmitting antenna port 0 and port 1 of the SRS are respectively mapped to the physical antenna 1 of the user equipment, and the antenna 3.
  • the total number of antennas supported by the user equipment is 8, and the number of ports transmitting SRS at the same time is 4, and the mapping relationship between the transmit antenna ports of the SRS and the physical antennas of the user equipment is: SRS transmit antenna port 0, port 1.
  • Port 2 and port 3 are respectively mapped to physical antenna 0, antenna 1, antenna 2, and antenna 3 of the user equipment.
  • mapping relationship between the transmit antenna port of the SRS and the physical antenna of the user equipment in this embodiment may also be:
  • SRS transmit antenna port 0, port 1, port 2, port 3 are respectively mapped to the physical antenna 4 of the user equipment, antenna 5, antenna 6, antenna 7;
  • SRS transmit antenna port 0, port 1, port 2, port 3 are respectively mapped to the physical antenna 0 of the user equipment, antenna 4, antenna 1, antenna 5; or
  • the transmit antenna port 0, port 1, port 2, and port 3 of the SRS are respectively mapped to the physical antenna of the user equipment 2, the antenna 6, the antenna 3, and the antenna 7.
  • the base station may determine whether to configure the UE as a PMI feedback mode or use channel reciprocity to perform downlink precoding transmission according to the received information, thereby improving downlink transmission performance.
  • the base station configures the UE into a PMI feedback mode.
  • the mapping relationship is other modes, the channel reciprocity is used for downlink precoding transmission.
  • the transmit antenna port 0 and port 1 of the SRS are respectively mapped to the physical antenna 0 and the antenna 1 of the user equipment;
  • the transmit antenna port 0 of the SRS and the port 1 are respectively mapped to the physical antenna 2 of the user equipment 2 and the antenna 3.
  • the base station configures the UE into a PMI feedback mode.
  • the mapping relationship is other modes, the channel reciprocity is used for downlink precoding transmission.
  • the transmit antenna port 0, port 1, port 2, and port 3 of the SRS are respectively mapped to the physical antenna 0, the antenna 1, the antenna 2, and the antenna 3 of the user equipment; (2) The transmit antenna port 0, port 1, port 2, and port 3 of the SRS are respectively mapped to the physical antenna 4, the antenna 5, the antenna 6, and the antenna 7 of the user equipment.
  • the embodiment of the present invention further provides an information feedback method in a time division duplex system, including: the user equipment feeds back information to the base station, where the feedback information includes: a mapping relationship between the downlink receiving antenna port and the physical antenna of the user equipment. .
  • the user equipment feeds back the information to the base station through physical layer signaling or higher layer signaling.
  • the total number of antennas supported by the user equipment is 4, the number of downlink receiving antenna ports is 4, and the mapping relationship between the downlink receiving antenna ports and the physical antennas of the user equipment is: Downstream receiving antenna port 0, port 1, port 2 Port 3 is mapped to physical antenna 0, antenna 1, antenna 2, and antenna 3 of the user equipment.
  • mapping relationship between the downlink receiving antenna port and the physical antenna of the user equipment in this embodiment may also be:
  • the downlink receiving antenna port 0, port 1, port 2, and port 3 are respectively mapped to the physical antenna 0, antenna 2, antenna 1, and antenna 3 of the user equipment.
  • the total number of antennas supported by the user equipment is 8, and the number of downlink receiving antenna ports is 8.
  • the mapping relationship between the downlink receiving antenna ports and the physical antennas of the user equipment is: Downstream receiving antenna port 0, port 1, port 2 Port 3, Port 4, Port 5, Port 6, and Port 7 are respectively mapped to the physical antenna 0 of the user equipment, the antenna 1, the antenna 2, the antenna 3, the antenna 4, the antenna 5, the antenna 6, and the antenna 7.
  • mapping relationship between the downlink receiving antenna port and the physical antenna of the user equipment in this embodiment may also be:
  • the downlink receiving antenna port 0, the port 1, the port 2, the port 3, the port 4, the port 5, the port 6, and the port 7 are respectively mapped to the physical antenna 0, the antenna 4, the antenna 1, the antenna 5, the antenna 2, and the antenna 6 of the user equipment. , antenna 3, antenna 7.
  • the base station may determine whether to configure the UE as a PMI feedback mode or use channel reciprocity to perform downlink precoding transmission according to the received information, thereby improving downlink transmission performance.
  • the mapping relationship between the downlink receiving antenna port and the physical antenna of the user equipment is as follows: Downlink receiving antenna port 0, port 1, port 2, and port 3 are respectively mapped to the physical antenna 0, antenna 1, and antenna of the user equipment. 2. Antenna 3, the base station configures the UE into a PMI feedback mode. When the mapping relationship is other modes, the channel reciprocity is used to perform downlink precoding transmission.
  • the mapping relationship between the downlink receiving antenna port and the physical antenna of the user equipment is as follows: Downstream receiving antenna port 0, port 1, port 2, port 3, port 4, port 5, port 6, and port 7 respectively map To the physical antenna 0 of the user equipment, the antenna 1, the antenna 2, the antenna 3, the antenna 4, the antenna 5, the antenna 6, and the antenna 7, the base station configures the UE into a mode of PMI feedback.
  • the mapping relationship is other, the channel reciprocity is used for downlink precoding transmission.
  • the embodiment of the present invention provides an information feedback method in a time division duplex system, including: the user equipment feeds back information to the base station, where the feedback information includes: a mapping relationship between the physical antenna of the user equipment and the downlink receiving antenna port.
  • the user equipment feeds back the information to the base station through physical layer signaling or higher layer signaling.
  • the total number of antennas supported by the user equipment is 4, and the number of downlink receiving antenna ports is 4.
  • the mapping between the physical antennas of the user equipment and the downlink receiving antenna ports is: physical antenna 0, antenna 1, and antenna of the user equipment. 2.
  • Antenna 3 is mapped to downlink receiving antenna port 0, port 1, port 2, and port 3, respectively.
  • mapping relationship between the physical antenna of the user equipment and the downlink receiving antenna port further includes: physical antenna 0, antenna 2, antenna 1, and antenna 3 of the user equipment are respectively mapped to the downlink receiving antenna port 0, port 1, and port 2, respectively. Port 3.
  • the total number of antennas supported by the user equipment is 8, and the number of downlink receiving antenna ports is 8.
  • the mapping between the physical antennas of the user equipment and the downlink receiving antenna ports is as follows: physical antenna 0, antenna 1, and antenna 2 of the user equipment.
  • the antenna 3, the antenna 4, the antenna 5, the antenna 6, and the antenna 7 are respectively mapped to the downlink receiving antenna port 0, the port 1, the port 2, the port 3, the port 4, the port 5, the port 6, and the port 7.
  • mapping relationship between the physical antenna of the user equipment and the downlink receiving antenna port further includes: physical antenna 0 of the user equipment, antenna 4, antenna 1, antenna 5, antenna 2, antenna 6, antenna 3.
  • the antenna 7 is mapped to the downlink receiving antenna port 0, port 1, port 2, port 3, port 4, port 5, port 6, and port 7, respectively.
  • the base station may determine whether to configure the UE as a PMI feedback mode or use channel reciprocity to perform downlink precoding transmission according to the received information, thereby improving downlink transmission performance.
  • the mapping between the physical antenna of the user equipment and the downlink receiving antenna port is as follows: Physical antenna 0, antenna 1, antenna 2, and antenna 3 of the user equipment are mapped to the downlink receiving antenna port 0, port 1, and port respectively. 2.
  • the base station configures the UE into a mode of PMI feedback.
  • the mapping relationship is other modes, the channel reciprocity is used for downlink precoding transmission.
  • the mapping relationship between the physical antenna of the user equipment and the downlink receiving antenna port is as follows: physical antenna 0, antenna 1, antenna 2, antenna 3, antenna 4, antenna 5, antenna 6, and antenna 7 of the user equipment are respectively mapped.
  • the base station configures the UE into a mode of PMI feedback.
  • the mapping relationship is other, the channel reciprocity is used for downlink precoding transmission.
  • the embodiment of the present invention provides an information feedback method in a time division duplex system, including: the user equipment feeds back information to the base station, where the feedback information includes: a configuration mode that the user equipment proposes to the base station to perform downlink precoding transmission. .
  • the user equipment feeds back the information to the base station through physical layer signaling or higher layer signaling.
  • the configuration mode suggested by the user equipment to the base station includes one or more of the following configuration modes:
  • the base station may determine whether to configure the UE as a PMI feedback mode or use channel reciprocity to perform downlink pre-processing according to the received information (ie, the configuration mode recommended by the user equipment to the base station). Encoding transmission, thereby improving downlink transmission performance.
  • Embodiments of the present invention provide a user equipment that feeds back the aforementioned information to a base station.
  • the content of this embodiment is understood by referring to the foregoing embodiments of the present invention, and is not described herein.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the present invention overcomes the defect that the base station cannot determine how to configure downlink precoding transmission for the UE in the prior art, and solves the problem of partial channel reciprocity arising from the asymmetric configuration of the transmitting and receiving antennas of the UE. , improved downlink transmission performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种信息反馈方法和用户设备,该方法包括:用户设备向基站反馈信息,所反馈的信息包括如下信息中的一种或多种:测量参考信号(SRS)的发射天线端口到该用户设备的物理天线的映射关系、下行接收天线端口到该用户设备的物理天线的映射关系、该用户设备的物理天线到下行接收天线端口的映射关系以及该用户设备向该基站建议的进行下行预编码传输的配置模式。本发明解决了由于UE收发天线配置不对称而出现的部分信道互易性问题,提高了下行传输性能。

Description

一种信息反馈方法及用户设备
技术领域
本发明涉及通信领域, 具体而言, 涉及一种信息反馈方法及一种用户设 备。 背景技术
在第三代合作伙伴计戈' j ( The 3rd Generation Partnership Project, 简称为 3GPP )长期演进( Long Term Evolution, 简称为 LTE ) 系统中, 上行信号包 括物理上行共享信道( Physical Uplink Shared Channel , 简称为 PUSCH )及其 解调参考信号(Demodulation Reference Signal for PUSCH ) , 物理上行控制信 道(Physical Uplink Control Channel, 简称为 PUCCH )及其解调参考信号 ( Demodulation Reference Signal for PUCCH ) , 测量参考信号 ( Sounding Reference Signal, 简称为 SRS )等。
SRS 是一种终端设备与基站间用来测量无线信道信息 (Channel State
Information , 简称为 CSI ) 的信号。 在长期演进系统中, 用户设备(User Equipment, 简称为 UE )按照基站(e-Node-B, 简称为 eNB )指示的带宽、 频域位置、 序列循环移位、 周期和子帧偏置等参数, 定时在发送子帧的最后 一个数据符号上发送上行 SRS。 eNB根据接收到的 SRS获得 UE上行的 CSI, 并根据得到的 CSI进行频域选择调度、 闭环功率控制等操作。 除此以外, 在 一些系统特别是 TDD (时分复用) 系统中, eNB还可以根据接收到的 SRS, 利用信道互易性获得下行的 CSI, 从而进行下行传输的预编码操作。
在 LTE系统中, 上行信号釆用单天线端口发射。 但是, 用户设备可支持 1个天线端口 ( Antenna Port ) , 称为天线端口 0 ( port 0 ) ; 也可支持 2个天 线端口, 分别称为天线端口 0 ( port 0 )和天线端口 1 ( port l ) 。 支持多天线 端口的用户设备可釆用用户设备发射天线选择 ( UE transmit antenna selection ) 技术选择天线端口发射上行信号。 用户设备发射天线的选择由高层配置。
当闭环( closed-loop )用户设备发射天线选择由高层配置使能, 且用户设 备支持发射天线选择时, 用户设备根据最近收到的下行控制信息格式 0 ( Downlink Control Information format 0 , 简称为 DCI format 0 )中携带的发射 天线选择配置信息选择天线端口, 发射除测量参考信号 SRS以外的其它上行 信号。
下面对下行控制信息格式进行说明。
在 LTE系统中, 基站通过物理下行控制信道( Physical Downlink Control Channel, 简称为 PDCCH )将下行控制信息 ( Downlink Control Information, 简称为 DCI )发送给用户设备, 其中包括下 /上行调度信息( downlink or uplink scheduling information ) 、 上行发射功率控制命令等。
对不同的下行控制信息, LTE 系统定义了多种下行控制信息格式(DCI format ) 。 其中, 物理上行共享信道 PUSCH的上行调度信息承载于具有下行 控制信息格式 0 ( DCI format 0 ) 的 PDCCH中; 物理下行共享信道(Physical Downlink Shared Channel, 简称为 PDSCH ) 的下行调度信息承载于具有下行 控制信息格式 1A/1B/1C/1D/1/2A/2 ( DCI format 1A/1B/1C/1D/1/2A/2 ) 的 PDCCH中。
当开环 (open-loop )用户设备发射天线选择由高层配置使能, 且用户设 备支持发射天线选择时, 用户设备如何选择天线端口发射除测量参考信号以 外的其它上行信号, 作为用户设备实现问题还没有统一的解决方案。
当用户设备发射天线选择由高层配置使能, 且用户设备支持发射天线选 择时, 用户设备根据一定的规则选择天线端口, 发射测量参考信号。
目前,在 3GPP制定的标准版本中, LTE标准的版本为第 8版( Release 8, 简写为 Rel-8 ) 和第 9 版 (Release 9 , 简写为 Rel-9 ) 。 高级长期演进 ( LTE-Advanced,简称为 LTE-A )系统是 LTE系统的下一代演进系统 , LTE-A 标准的版本为第 10版(Release 10, 简写为 Rel-10 ) , 可能还包含后续版本, 比如 Rel-11等等。
目前 Rel-10版本中, 下行空间复用传输模式下, 基站可将 UE配置成有 预编码矩阵指示 ( Pre-coding Matrix Indicator, PMI )反馈或无 PMI反馈的方 式来进行下行预编码传输。 当 UE 配置成无 PMI反馈时, UE应假定没有物理资源块绑定(PRB bundling ) ; 而当 UE配置成有 PMI反馈时, UE应假定使用 PRB bundling。 UE无 PMI反馈的情况下, 假定基站可以利用信道互易性获得完整的下行信 道(UE端的发射天线数量等于接收天线数量), 那么下行传输时就可以为每 个 PRB使用最优的预编码矩阵, 从而可以得到频域选择性的预编码增益, 完 全足够弥补由于没有进行 PRB绑定所带来的性能损失。
在 LTE-A系统中, PUSCH、 PUCCH、 SRS等上行信号可釆用单天线端 口发射, 也可釆用多天线端口发射; 用户设备可支持 1个天线端口(port O ) , 2个天线端口 (port 0/1 ) , 或 4个天线端口 (port 0/1/2/3 )发射上行信号。 而 对于下行传输, 用户设备则可以用 1个、 2个、 4个、 6个或 8个天线端口接 收下行传输的数据。 当基站需要利用信道互易性进行下行传输时, 按照目前 标准的做法会出现部分信道互易性的问题。
部分信道互易性问题指的是 UE的收发天线配置不对称的情况,例如 UE 上行使用 1根发射天线, 而下行接收时使用 4根接收天线, 当基站需要通过 测量 SRS利用信道互易性来进行下行传输时, 由于上行只使用了 1根发射天 线, 因此基站只能获得部分的信道互易性, 只能使用秩(Rank )为 1的下行 空间复用传输, 此时基站不能判断什么时候可以以秩为 2或者更高的秩来下 行传输以及使用何种预编码矩阵。
此外,当上行多天线发送 SRS时,选择 4根天线中的哪 2根天线发送 SRS 也会影响到下行传输的性能。
为了最佳的下行传输性能, 按照目前的 Rel-10协议, 基站不能判断何时 将 UE配置成 PMI反馈的模式来进行下行预编码传输, 以及何时利用信道互 易性来进行下行预编码传输。
发明内容
本发明的目的是克服现有技术中基站还不能判断如何为 UE配置下行预 编码传输的缺陷。 本发明首先提供了一种信息反馈方法, 包括: 用户设备向基站反馈信息, 该信息包括如下信息中的一种或多种: 测量参考信号 (SRS ) 的发射天线端 口到该用户设备的物理天线的映射关系、 下行接收天线端口到该用户设备的 物理天线的映射关系、 该用户设备的物理天线到下行接收天线端口的映射关 系以及该用户设备向该基站建议的进行下行预编码传输的配置模式。
优选地, 该用户设备向该基站反馈的信息包括该 SRS的发射天线端口到 该用户设备的物理天线的映射关系, 该用户设备所支持的天线总数为 4, 上 行同时发送 SRS的端口数量为 2, 该 SRS的发射天线端口到该用户设备的物 理天线的映射关系包括:
该 SRS的发射天线端口 0、 端口 1分别映射到该用户设备的物理天线 0、 天线 1 ; 或
该 SRS的发射天线端口 0、 端口 1分别映射到该用户设备的物理天线 2、 天线 3; 或
该 SRS的发射天线端口 0、 端口 1分别映射到该用户设备的物理天线 0、 天线 2; 或
该 SRS的发射天线端口 0、 端口 1分别映射到该用户设备的物理天线 1、 天线 3。
优选地, 该用户设备向该基站反馈的信息包括该 SRS的发射天线端口到 该用户设备的物理天线的映射关系, 该用户设备所支持的天线总数为 8, 上 行同时发送 SRS的端口数量为 4, 该 SRS的发射天线端口到用户设备的物理 天线的映射关系包括:
该 SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到该用户设 备的物理天线 0、 天线 1、 天线 2、 天线 3; 或
该 SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到该用户设 备的物理天线 4、 天线 5、 天线 6、 天线 7; 或
该 SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到该用户设 备的物理天线 0、 天线 4、 天线 1、 天线 5; 或
该 SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到该用户设 备的物理天线 2、 天线 6、 天线 3、 天线 7。 优选地, 该用户设备向该基站反馈的信息包括该下行接收天线端口到用 户设备的物理天线的映射关系, 该用户设备所支持的天线总数为 4, 该下行 接收天线端口数量为 4 , 该下行接收天线端口到该用户设备的物理天线的映 射关系包括:
该下行接收天线端口 0、 端口 1、 端口 2、 端口 3分别映射到该用户设备 的物理天线 0、 天线 1、 天线 2、 天线 3; 或
该下行接收天线端口 0、 端口 1、 端口 2、 端口 3分别映射到该用户设备 的物理天线 0、 天线 2、 天线 1、 天线 3。
优选地, 该用户设备向该基站反馈的信息包括该下行接收天线端口到用 户设备的物理天线的映射关系, 该用户设备所支持的天线总数为 8, 该下行 接收天线端口数量为 8 , 该下行接收天线端口到该用户设备的物理天线的映 射关系包括:
该下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端口 4、 端口 5、 端口 6、 端口 7分别映射到该用户设备的物理天线 0、 天线 1、 天线 2、 天线 3、 天 线 4、 天线 5、 天线 6、 天线 7; 或
该下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端口 4、 端口 5、 端口 6、 端口 7分别映射到该用户设备的物理天线 0、 天线 4、 天线 1、 天线 5、 天 线 2、 天线 6、 天线 3、 天线 7。
优选地, 该用户设备向该基站反馈的信息包括该用户设备的物理天线到 下行接收天线端口的映射关系, 该用户设备所支持的天线总数为 4, 该下行 接收天线端口数量为 4 , 该用户设备的物理天线到下行接收天线端口的映射 关系包括:
该用户设备的物理天线 0、 天线 1、 天线 2、 天线 3分别映射到该下行接 收天线端口 0、 端口 1、 端口 2、 端口 3; 或
该用户设备的物理天线 0、 天线 2、 天线 1、 天线 3分别映射到该下行接 收天线端口 0、 端口 1、 端口 2、 端口 3。
优选地, 该用户设备向该基站反馈的信息包括该用户设备的物理天线到 下行接收天线端口的映射关系, 该用户设备所支持的天线总数为 8, 该下行 接收天线端口数量为 8 , 该用户设备的物理天线到该下行接收天线端口的映 射关系包括:
该用户设备的物理天线 0、 天线 1、 天线 2、 天线 3、 天线 4、 天线 5、 天 线 6、 天线 7分别映射到该下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端 口 4、 端口 5、 端口 6、 端口 7; 或
该用户设备的物理天线 0、 天线 4、 天线 1、 天线 5、 天线 2、 天线 6、 天 线 3、 天线 7分别映射到该下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端 口 4、 端口 5、 端口 6、 端口 7。
优选地, 该用户设备向该基站反馈的信息包括该用户设备向该基站建议 的进行下行预编码传输的配置模式, 该配置模式包括:
PMI反馈的模式; 或
使用信道互易性的模式。
优选地, 该用户设备通过物理层信令或者高层信令向基站反馈该信息。 本发明还提供了一种用户设备, 用于根据如前所述的方法向该基站反馈 该信息。
与现有技术相比, 本发明的实施例克服了现有技术中基站还不能判断如 何为 UE配置下行预编码传输的缺陷,解决了现有技术由于 UE收发天线配置 不对称而出现的部分信道互易性问题。本发明的实施例提高了下行传输性能。 附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1是本发明实施例中 SRS发射天线端口到用户设备物理天线映射图 1。 图 2是本发明实施例中 SRS发射天线端口到用户设备物理天线映射图 2。 图 3是本发明实施例中下行接收天线端口到用户设备物理天线映射图 1。 图 4是本发明实施例中下行接收天线端口到用户设备物理天线映射图 2。 图 5是本发明实施例中用户设备物理天线到下行接收天线端口映射图 1。 图 6是本发明实施例中用户设备物理天线到下行接收天线端口映射图 2。
本发明的较佳实施方式
下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。
本发明实施例的时分双工系统下的信息反馈方法, 包括: 用户设备向基 站反馈信息, 该信息包括如下信息中的一种或多种(如无特殊说明, 本专利 中的 "多种" 表示两种或者两种以上) : SRS的发射天线端口到用户设备的 物理天线的映射关系、下行接收天线端口到用户设备的物理天线的映射关系、 用户设备物理天线到下行接收天线端口的映射关系以及该用户设备向该基站 建议的进行下行预编码传输的配置模式。 传输上述信息中的一种还是多种反 馈给基站的区别在于, 反馈多种比反馈一种所用到的传输开销稍大一点。
本发明的实施例提供了一种时分双工系统下的信息反馈方法, 包括: 用 户设备向基站反馈信息, 其中, 所反馈的信息包括: SRS的发射天线端口到 用户设备的物理天线的映射关系。
本实施例中, 用户设备通过物理层信令或者高层信令向基站反馈所述信 息。
以图 1为例, 用户设备所支持的天线总数为 4, 上行同时发送 SRS的端 口数量为 2, SRS的发射天线端口到用户设备的物理天线的映射关系为: SRS 的发射天线端口 0、 端口 1分别映射到用户设备的物理天线 0、 天线 1。
除此以外, 本实施例中 SRS的发射天线端口到用户设备的物理天线的映 射关系还可以是:
SRS的发射天线端口 0、 端口 1分别映射到用户设备的物理天线 2、 天线 3;
SRS的发射天线端口 0、 端口 1分别映射到用户设备的物理天线 0、 天线 2; 或者
SRS的发射天线端口 0、 端口 1分别映射到用户设备的物理天线 1、 天线 3。
以图 2为例, 用户设备所支持的天线总数为 8, 上行同时发送 SRS的端 口数量为 4, SRS的发射天线端口到用户设备的物理天线的映射关系为: SRS 的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到用户设备的物理天线 0、 天线 1、 天线 2、 天线 3。
除此以外, 本实施例中 SRS的发射天线端口到用户设备的物理天线的映 射关系还可以是:
SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到用户设备的 物理天线 4、 天线 5、 天线 6、 天线 7;
SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到用户设备的 物理天线 0、 天线 4、 天线 1、 天线 5; 或者
SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到用户设备的 物理天线 2、 天线 6、 天线 3、 天线 7。
基站接收到用户设备反馈的信息后, 就可根据收到的信息确定是将 UE 配置成 PMI反馈的模式, 还是利用信道互易性来进行下行预编码传输, 从而 提高下行传输性能。
以图 1为例, 当 SRS的发射天线端口到用户设备的物理天线的映射关系 为以下两种方式之一时, 则基站将 UE配置成 PMI反馈的模式。 当映射关系 为其他方式时, 则利用信道互易性来进行下行预编码传输。
( 1 ) SRS的发射天线端口 0、 端口 1分别映射到用户设备的物理天线 0、 天线 1 ;
( 2 ) SRS的发射天线端口 0、 端口 1分别映射到用户设备的物理天线 2、 天线 3。
以图 2为例, 当 SRS的发射天线端口到用户设备的物理天线的映射关系 为以下两种方式之一时, 则基站将 UE配置成 PMI反馈的模式。 当映射关系 为其他方式时, 则利用信道互易性来进行下行预编码传输。
( 1 ) SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到用户 设备的物理天线 0、 天线 1、 天线 2、 天线 3; ( 2 ) SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到用户 设备的物理天线 4、 天线 5、 天线 6、 天线 7。
本发明的实施例还提供了一种时分双工系统下的信息反馈方法, 包括: 用户设备向基站反馈信息, 其中, 所反馈的信息包括: 下行接收天线端口到 用户设备的物理天线的映射关系。
本实施例中, 用户设备通过物理层信令或者高层信令向基站反馈所述信 息。
以图 3为例, 用户设备所支持的天线总数为 4, 下行接收天线端口数量 为 4 , 下行接收天线端口到用户设备的物理天线的映射关系为: 下行接收天 线端口 0、端口 1、端口 2、端口 3分别映射到用户设备的物理天线 0、天线 1、 天线 2、 天线 3。
除此以外, 本实施例中下行接收天线端口到用户设备的物理天线的映射 关系还可以是:
下行接收天线端口 0、 端口 1、 端口 2、 端口 3分别映射到用户设备的物 理天线 0、 天线 2、 天线 1、 天线 3。
以图 4为例, 用户设备所支持的天线总数为 8, 下行接收天线端口数量 为 8 , 下行接收天线端口到用户设备的物理天线的映射关系为: 下行接收天 线端口 0、 端口 1、 端口 2、 端口 3、 端口 4、 端口 5、 端口 6、 端口 7分别映 射到用户设备的物理天线 0、 天线 1、 天线 2、 天线 3、 天线 4、 天线 5、 天线 6、 天线 7。
除此以外, 本实施例中下行接收天线端口到用户设备的物理天线的映射 关系还可以是:
下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端口 4、 端口 5、 端口 6、 端口 7分别映射到用户设备的物理天线 0、 天线 4、 天线 1、 天线 5、 天线 2、 天线 6、 天线 3、 天线 7。
基站接收到用户设备反馈的信息后, 就可根据收到的信息确定是将 UE 配置成 PMI反馈的模式, 还是利用信道互易性来进行下行预编码传输, 从而 提高下行传输性能。 以图 3为例, 当下行接收天线端口到用户设备的物理天线的映射关系为: 下行接收天线端口 0、 端口 1、 端口 2、 端口 3分别映射到用户设备的物理天 线 0、 天线 1、 天线 2、 天线 3 , 则基站将 UE配置成 PMI反馈的模式。 当映 射关系为其他方式时, 则利用信道互易性来进行下行预编码传输。
以图 4为例, 当下行接收天线端口到用户设备的物理天线的映射关系为: 下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端口 4、 端口 5、 端口 6、 端 口 7分别映射到用户设备的物理天线 0、 天线 1、 天线 2、 天线 3、 天线 4、 天 线 5、 天线 6、 天线 7 , 则基站将 UE配置成 PMI反馈的模式。 当映射关系为 其他方式时, 则利用信道互易性来进行下行预编码传输。
本发明的实施例提供了一种时分双工系统下的信息反馈方法, 包括: 用 户设备向基站反馈信息, 其中, 所反馈的信息包括: 用户设备物理天线到下 行接收天线端口的映射关系。
本实施例中, 用户设备通过物理层信令或者高层信令向基站反馈所述信 息。
以图 5为例, 用户设备所支持的天线总数为 4, 下行接收天线端口数量 为 4 , 用户设备的物理天线到下行接收天线端口的映射关系为: 用户设备的 物理天线 0、天线 1、天线 2、天线 3分别映射到下行接收天线端口 0、端口 1、 端口 2、 端口 3。
除此以外,用户设备的物理天线到下行接收天线端口的映射关系还包括: 用户设备的物理天线 0、 天线 2、 天线 1、 天线 3分别映射到下行接收天 线端口 0、 端口 1、 端口 2、 端口 3。
以图 6为例, 用户设备所支持的天线总数为 8, 下行接收天线端口数量 为 8 , 用户设备物理天线到下行接收天线端口的映射关系为: 用户设备的物 理天线 0、 天线 1、 天线 2、 天线 3、 天线 4、 天线 5、 天线 6、 天线 7分别映 射到下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端口 4、 端口 5、 端口 6、 端口 7。
除此以外, 用户设备物理天线到下行接收天线端口的映射关系还包括: 用户设备的物理天线 0、 天线 4、 天线 1、 天线 5、 天线 2、 天线 6、 天线 3、 天线 7分别映射到下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端口 4、 端口 5、 端口 6、 端口 7。
基站接收到用户设备反馈的信息后, 就可根据收到的信息确定是将 UE 配置成 PMI反馈的模式, 还是利用信道互易性来进行下行预编码传输, 从而 提高下行传输性能。
以图 5为例, 当用户设备的物理天线到下行接收天线端口的映射关系为: 用户设备的物理天线 0、 天线 1、 天线 2、 天线 3分别映射到下行接收天线端 口 0、 端口 1、 端口 2、 端口 3 , 则基站将 UE配置成 PMI反馈的模式。 当映 射关系为其他方式时, 则利用信道互易性来进行下行预编码传输。
以图 6为例, 当用户设备物理天线到下行接收天线端口的映射关系为: 用户设备的物理天线 0、 天线 1、 天线 2、 天线 3、 天线 4、 天线 5、 天线 6、 天线 7分别映射到下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端口 4、 端 口 5、 端口 6、 端口 7, 则基站将 UE配置成 PMI反馈的模式。 当映射关系为 其他方式时, 则利用信道互易性来进行下行预编码传输。
本发明的实施例提供了一种时分双工系统下的信息反馈方法, 包括: 用 户设备向基站反馈信息, 其中, 所反馈的信息包括: 用户设备向基站建议的 进行下行预编码传输的配置模式。
本实施例中, 用户设备通过物理层信令或者高层信令向基站反馈所述信 息。
其中, 用户设备向基站建议的配置模式, 包括以下配置模式中的一种或 多种:
PMI反馈的模式;
使用信道互易性的模式。
基站接收到用户设备反馈的信息后, 就可根据收到的信息 (即用户设备 向基站建议的配置模式) , 确定是将 UE配置成 PMI反馈的模式, 还是利用 信道互易性来进行下行预编码传输, 从而提高下行传输性能。
本发明的实施例提供了一种向基站反馈前述信息的用户设备。 本实施例 的内容请参照本发明前述的各实施例进行理解, 此处不做赞述。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。
工业实用性 与现有技术相比, 本发明克服了现有技术中基站不能判断如何为 UE配 置下行预编码传输的缺陷, 解决了由于 UE收发天线配置不对称而出现的部 分信道互易性问题, 提高了下行传输性能。

Claims

权 利 要 求 书
1、 一种信息反馈方法, 包括: 用户设备向基站反馈信息, 所反馈的信息 包括如下信息中的一种或多种: 测量参考信号 (SRS ) 的发射天线端口到该 用户设备的物理天线的映射关系、 下行接收天线端口到该用户设备的物理天 线的映射关系、 该用户设备的物理天线到下行接收天线端口的映射关系以及 该用户设备向该基站建议的进行下行预编码传输的配置模式。
2、 根据权利要求 1所述的方法, 其中:
该用户设备向该基站反馈的信息包括该 SRS的发射天线端口到该用户设 备的物理天线的映射关系, 该用户设备所支持的天线总数为 4, 上行同时发 送 SRS的端口数量为 2, 该 SRS的发射天线端口到该用户设备的物理天线的 映射关系包括:
该 SRS的发射天线端口 0、 端口 1分别映射到该用户设备的物理天线 0、 天线 1 ; 或
该 SRS的发射天线端口 0、 端口 1分别映射到该用户设备的物理天线 2、 天线 3; 或
该 SRS的发射天线端口 0、 端口 1分别映射到该用户设备的物理天线 0、 天线 2; 或
该 SRS的发射天线端口 0、 端口 1分别映射到该用户设备的物理天线 1、 天线 3。
3、 根据权利要求 1所述的方法, 其中:
该用户设备向该基站反馈的信息包括该 SRS的发射天线端口到该用户设 备的物理天线的映射关系, 该用户设备所支持的天线总数为 8, 上行同时发 送 SRS的端口数量为 4, 该 SRS的发射天线端口到用户设备的物理天线的映 射关系包括:
该 SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到该用户设 备的物理天线 0、 天线 1、 天线 2、 天线 3; 或
该 SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到该用户设 备的物理天线 4、 天线 5、 天线 6、 天线 7; 或
该 SRS的发射天线端口 0、 端口 1、 端口 2 、 端口 3分别映射到该用户设 备的物理天线 0、 天线 4、 天线 1、 天线 5; 或
该 SRS的发射天线端口 0、 端口 1、 端口 2、 端口 3分别映射到该用户设 备的物理天线 2、 天线 6、 天线 3、 天线 7。
4、 根据权利要求 1所述的方法, 其中:
该用户设备向该基站反馈的信息包括该下行接收天线端口到用户设备的 物理天线的映射关系, 该用户设备所支持的天线总数为 4, 该下行接收天线 端口数量为 4 , 该下行接收天线端口到该用户设备的物理天线的映射关系包 括:
该下行接收天线端口 0、 端口 1、 端口 2、 端口 3分别映射到该用户设备 的物理天线 0、 天线 1、 天线 2、 天线 3; 或
该下行接收天线端口 0、 端口 1、 端口 2、 端口 3分别映射到该用户设备 的物理天线 0、 天线 2、 天线 1、 天线 3。
5、 根据权利要求 1所述的方法, 其中:
该用户设备向该基站反馈的信息包括该下行接收天线端口到用户设备的 物理天线的映射关系, 该用户设备所支持的天线总数为 8, 该下行接收天线 端口数量为 8 , 该下行接收天线端口到该用户设备的物理天线的映射关系包 括:
该下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端口 4、 端口 5、 端口
6、 端口 7分别映射到该用户设备的物理天线 0、 天线 1、 天线 2、 天线 3、 天 线 4、 天线 5、 天线 6、 天线 7; 或
该下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端口 4、 端口 5、 端口 6、 端口 7分别映射到该用户设备的物理天线 0、 天线 4、 天线 1、 天线 5、 天 线 2、 天线 6、 天线 3、 天线 7。
6、 根据权利要求 1所述的方法, 其中:
该用户设备向该基站反馈的信息包括该用户设备的物理天线到下行接收 天线端口的映射关系, 该用户设备所支持的天线总数为 4, 该下行接收天线 端口数量为 4, 该用户设备的物理天线到下行接收天线端口的映射关系包括: 该用户设备的物理天线 0、 天线 1、 天线 2、 天线 3分别映射到该下行接 收天线端口 0、 端口 1、 端口 2、 端口 3; 或
该用户设备的物理天线 0、 天线 2、 天线 1、 天线 3分别映射到该下行接 收天线端口 0、 端口 1、 端口 2、 端口 3。
7、 根据权利要求 1所述的方法, 其中:
该用户设备向该基站反馈的信息包括该用户设备的物理天线到下行接收 天线端口的映射关系, 该用户设备所支持的天线总数为 8, 该下行接收天线 端口数量为 8 , 该用户设备的物理天线到该下行接收天线端口的映射关系包 括:
该用户设备的物理天线 0、 天线 1、 天线 2、 天线 3、 天线 4、 天线 5、 天 线 6、 天线 7分别映射到该下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端 口 4、 端口 5、 端口 6、 端口 7; 或
该用户设备的物理天线 0、 天线 4、 天线 1、 天线 5、 天线 2、 天线 6、 天 线 3、 天线 7分别映射到该下行接收天线端口 0、 端口 1、 端口 2、 端口 3、 端 口 4、 端口 5、 端口 6、 端口 7。
8、 根据权利要求 1所述的方法, 其中:
该用户设备向该基站反馈的信息包括该用户设备向该基站建议的进行下 行预编码传输的配置模式, 该配置模式包括:
预编码矩阵指示反馈的模式; 或
使用信道互易性的模式。
9、 根据权利要求 1至 8中任一项权利要求所述的方法, 其中:
该用户设备通过物理层信令或者高层信令向基站反馈该信息。
10、 一种用户设备, 用于根据权利要求 1至 9中任一项权利要求所述的 方法向基站反馈信息。
PCT/CN2011/084124 2011-09-30 2011-12-16 一种信息反馈方法及用户设备 WO2012155507A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110293173.3A CN102332945B (zh) 2011-09-30 2011-09-30 一种信息反馈方法及用户设备
CN201110293173.3 2011-09-30

Publications (1)

Publication Number Publication Date
WO2012155507A1 true WO2012155507A1 (zh) 2012-11-22

Family

ID=45484564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084124 WO2012155507A1 (zh) 2011-09-30 2011-12-16 一种信息反馈方法及用户设备

Country Status (2)

Country Link
CN (1) CN102332945B (zh)
WO (1) WO2012155507A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018171803A1 (en) * 2017-03-24 2018-09-27 Mediatek Inc. Csi acquisition with channel reciprocity in mobile communications
US10440724B2 (en) 2016-09-23 2019-10-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting SRS, network device and terminal device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991264B (zh) * 2015-02-03 2019-11-26 中兴通讯股份有限公司 一种测量参考信号的发送方法、设备和系统
CN107396388A (zh) * 2016-05-17 2017-11-24 中兴通讯股份有限公司 小区参考信号端口的配置方法及装置
CN108023616B (zh) * 2016-11-01 2020-01-03 上海朗帛通信技术有限公司 一种用于多天线系统的ue、基站中的方法和装置
CN108023631B (zh) * 2016-11-04 2023-08-22 华为技术有限公司 传输信息的方法和设备
CN109510651B (zh) * 2017-09-15 2021-06-01 维沃移动通信有限公司 一种srs的发送方法、接收方法和相关设备
WO2019056322A1 (zh) * 2017-09-22 2019-03-28 Oppo广东移动通信有限公司 一种指示ue发射端口数量的方法、ue及网络设备
US10419099B2 (en) 2017-11-17 2019-09-17 Huawei Technologies Co., Ltd. Phase tracking reference signal sending method and apparatus
CN109802795B (zh) * 2017-11-17 2021-11-19 华为技术有限公司 相位跟踪参考信号的传输方法及装置
WO2020010506A1 (zh) * 2018-07-10 2020-01-16 华为技术有限公司 上报信道状态信息的方法和装置
CN111464218B (zh) * 2019-01-18 2022-08-12 中国移动通信有限公司研究院 下行波束管理的方法及设备
WO2021258400A1 (en) * 2020-06-27 2021-12-30 Qualcomm Incorporated Port to antenna mapping for uplink communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615937A (zh) * 2008-06-27 2009-12-30 中兴通讯股份有限公司 一种多天线发射方法及多天线发射装置
EP2346190A2 (en) * 2008-10-15 2011-07-20 LG Electronics Inc. Method for transmitting sounding reference signal sequence using plural antennas
WO2011097753A1 (zh) * 2010-02-11 2011-08-18 上海贝尔股份有限公司 天线相关上行反馈方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577968B (zh) * 2008-05-05 2011-08-03 华为技术有限公司 一种获取下行信道信息的方法、系统和装置
CN101626264B (zh) * 2008-07-09 2013-03-20 中兴通讯股份有限公司 一种无线通信系统中实现开环预编码的方法
CN102035615B (zh) * 2009-09-27 2013-06-05 电信科学技术研究院 一种基于mimo的下行数据传输方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615937A (zh) * 2008-06-27 2009-12-30 中兴通讯股份有限公司 一种多天线发射方法及多天线发射装置
EP2346190A2 (en) * 2008-10-15 2011-07-20 LG Electronics Inc. Method for transmitting sounding reference signal sequence using plural antennas
WO2011097753A1 (zh) * 2010-02-11 2011-08-18 上海贝尔股份有限公司 天线相关上行反馈方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10440724B2 (en) 2016-09-23 2019-10-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting SRS, network device and terminal device
US11277846B2 (en) 2016-09-23 2022-03-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting SRS, network device and terminal device
WO2018171803A1 (en) * 2017-03-24 2018-09-27 Mediatek Inc. Csi acquisition with channel reciprocity in mobile communications
CN109417404A (zh) * 2017-03-24 2019-03-01 联发科技股份有限公司 在移动通信中利用信道互易性的信道状态信息获取
TWI661732B (zh) * 2017-03-24 2019-06-01 聯發科技股份有限公司 在行動通訊中運用通道互易性的通道狀態資訊獲取方法
US10560169B2 (en) 2017-03-24 2020-02-11 Mediatek Inc. CSI acquisition with channel reciprocity in mobile communications
CN109417404B (zh) * 2017-03-24 2022-08-19 联发科技股份有限公司 在移动通信中利用信道互易性的信道状态信息获取方法、用户设备及存储器

Also Published As

Publication number Publication date
CN102332945B (zh) 2017-08-25
CN102332945A (zh) 2012-01-25

Similar Documents

Publication Publication Date Title
US11438965B2 (en) User equipment in wireless communication system
US11139877B2 (en) Apparatus and method for determining whether to provide a CSI report
JP7288067B2 (ja) 複数の送受信ポイントにわたってpdsch送信スケジューリングされたマルチpdcch用のharq ack
WO2012155507A1 (zh) 一种信息反馈方法及用户设备
US20200267571A1 (en) Method for transmitting and receiving data on basis of qcl in wireless communication system, and device therefor
CN110754130B (zh) 用于调度对象配置的装置和方法
JP7228693B2 (ja) Pdschダイバーシティをシグナリングするためのシステム及び方法
EP3437224B1 (en) Low complexity multi-configuration csi reporting
EP4104330A1 (en) Pusch reliability enhancements with multiple trps
JP2023514126A (ja) 複数の関連付けられたnzp csi-rsを用いた非コードブックベースのマルチtrp puschの信頼性
WO2012088876A1 (zh) 数据发送方法及装置
WO2012152000A1 (zh) 测量参考信号发射方法及装置
WO2017169467A1 (ja) 基地局装置、端末装置および通信方法
US20230179354A1 (en) Receiving time overlapping downlink reference signals and channels
WO2022024042A1 (en) Csi feedback for multi-trp urllc schemes
WO2022113042A1 (en) Reliable csi feedback towards multiple trps
CN111566983A (zh) 无线通信系统中的信道状态信息(csi)报告方法
WO2020225680A1 (en) Reliable data transmission over multiple trps
JP6952769B2 (ja) ダウンリンク制御チャネルと非周期的なチャネル状態情報リファレンス信号との間の衝突回避
WO2019098937A1 (en) Harq requests and responses
WO2017020578A1 (zh) Srs的指示发送方法、srs的发送方法和装置
WO2021097589A1 (en) Optimization of channel state feedback (csf) report
WO2023170647A1 (en) Downlink (dl) pre-compensation and quasi-co-location (qcl) signaling for coherent joint transmission (cjt)
EP4396991A1 (en) Common spatial filter indication for reference signals in multi-transmission reception point systems
EP4413669A1 (en) Data-driven wtru-specific mimo pre-coder codebook design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865527

Country of ref document: EP

Kind code of ref document: A1