WO2012151763A1 - Ocb液晶面板及其制造方法、ocb液晶显示器 - Google Patents

Ocb液晶面板及其制造方法、ocb液晶显示器 Download PDF

Info

Publication number
WO2012151763A1
WO2012151763A1 PCT/CN2011/074363 CN2011074363W WO2012151763A1 WO 2012151763 A1 WO2012151763 A1 WO 2012151763A1 CN 2011074363 W CN2011074363 W CN 2011074363W WO 2012151763 A1 WO2012151763 A1 WO 2012151763A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
lower substrate
liquid crystal
upper substrate
substrates
Prior art date
Application number
PCT/CN2011/074363
Other languages
English (en)
French (fr)
Inventor
李冠政
马小龙
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/318,352 priority Critical patent/US8570471B2/en
Publication of WO2012151763A1 publication Critical patent/WO2012151763A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • G02F1/1395Optically compensated birefringence [OCB]- cells or PI- cells

Definitions

  • the present invention relates to the field of display, and more particularly to an OCB liquid crystal panel and a method of fabricating the same, and to an OCB liquid crystal display.
  • liquid crystal panels require an alignment film to determine the initial steering angle (pretilt angle) of liquid crystal molecules.
  • liquid crystal molecules are aligned by a method of rubbing an alignment film.
  • a liquid crystal panel of an OCB (Optically Compensated Bend) mode is also subjected to rubbing for alignment.
  • the composition ratio of the alignment film is adjusted, and then applied to the substrate.
  • the surface of the alignment film is subjected to rubbing treatment, and then the liquid crystal layer is filled, thereby achieving alignment of the liquid crystal molecules of the OCB mode liquid crystal panel.
  • the alignment film layer is liable to be peeled off and the like, and impurities are contaminated by the alignment film.
  • one technical solution adopted by the present invention is to provide a method for manufacturing an OCB liquid crystal panel, including:
  • Arranging step S1 providing at least one upper substrate and at least one lower substrate, wherein the upper substrate and the lower substrate are coated with a photo alignment material;
  • Light irradiation step S2 illuminating the light alignment materials of the upper substrate and the lower substrate with a UV light source such that an alignment film having a predetermined alignment direction is formed on the upper substrate and the lower substrate;
  • the bonding step S3 bonding the upper substrate and the lower substrate, and filling an OCB liquid crystal layer between the upper substrate and the lower substrate to form a plurality of OCB liquid crystal panels.
  • a plurality of upper substrates and a plurality of lower substrates are provided, and the plurality of upper substrates and the plurality of lower substrates are used in the horizontal direction to the upper substrate-lower substrate-upper substrate-
  • the lower substrates are arranged in an alternating manner.
  • the upper substrate includes a first end of the upper substrate and a second end of the upper substrate
  • the lower substrate includes a first end of the lower substrate and a second end of the lower substrate.
  • the upper substrate is first
  • the upper substrate and the lower substrate are alternately arranged in a horizontal plane with respect to the adjacent lower substrate, and the first substrate is adjacent to the first end of the lower substrate, and the second end of the upper substrate is adjacent to the upper substrate and the lower substrate.
  • the other second substrate is adjacent to the second end.
  • the UV light source is firstly moved from the first end of the upper substrate to the second end of the upper substrate, and then the adjacent lower substrate is transferred to the upper substrate to be irradiated. In the position, the UV light source is moved back in the opposite direction, and is moved from the first end of the lower substrate to the second end of the lower substrate.
  • the upper substrate is vertically rotated by 180° with respect to the lower substrate, and is fastened to the lower substrate for bonding.
  • the upper substrate includes a first end of the upper substrate and a second end of the upper substrate
  • the lower substrate includes a first end of the lower substrate and a second end of the lower substrate.
  • the first end of the upper substrate and the adjacent end The second ends of the lower substrate are adjacently arranged, and the second end of the upper substrate is adjacent to the first end of the lower substrate adjacent to another block.
  • the UV light source is irradiated from the first end of the upper substrate of the upper substrate, and then irradiates the same second substrate of the upper substrate, and then the first substrate of the lower substrate is first.
  • the end starts to illuminate, and scans the second end of the lower substrate irradiated to the same lower substrate.
  • the upper substrate is first rotated by 180° in the horizontal plane, and then rotated vertically by 180°.
  • the buckle is attached to the lower substrate to achieve the bonding.
  • One of the upper substrate and the lower substrate is a TFT (Thin Film Transistor) substrate, and the other is a CF (Color Filter) substrate.
  • TFT Thin Film Transistor
  • CF Color Filter
  • another technical solution to be used in the present invention is to provide an OCB liquid crystal display comprising the above OCB liquid crystal panel.
  • the effect of the embodiment of the present invention is:
  • the invention forms an alignment film by coating a light alignment material on the upper substrate and the lower substrate, and irradiating the light alignment material with a UV light source, thereby effectively preventing the peeling of the alignment film layer during the rubbing alignment.
  • the problem of pollution is generated, and the process is simple, and a plurality of substrates can be quickly irradiated by using a UV light source, and the manufacturing efficiency is high, which is convenient for mass production.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for fabricating an OCB liquid crystal panel of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of an OCB liquid crystal panel of the present invention
  • FIG. 3 is a schematic view showing a arrangement of a TFT substrate and a CF substrate of the OCB liquid crystal panel shown in FIG. 2 in an arrangement step;
  • FIG. 4 is a schematic view showing the bonding of the TFT substrate and the CF substrate in the arrangement shown in FIG. 3;
  • FIG. 5 is a schematic view showing another arrangement of the TFT substrate and the CF substrate of the OCB liquid crystal panel shown in FIG. 2 in the arranging step;
  • Fig. 6 is a view showing the bonding of the TFT substrate and the CF substrate in the arrangement shown in Fig. 5.
  • Fig. 1 is a schematic flow chart showing an embodiment of a method of manufacturing an OCB liquid crystal panel of the present invention.
  • the OCB liquid crystal panel manufacturing method of the present invention comprises the following steps:
  • Aligning step S1 providing at least one upper substrate and at least one lower substrate, wherein the upper substrate and the lower substrate are coated with a photo-alignment material, and the photo-alignment material may be a resin containing a photosensitive group;
  • Light irradiation step S2 irradiating the upper substrate and the lower substrate with a UV (Ultraviolet) light source
  • a UV (Ultraviolet) light source The light alignment material, when the UV light source illuminates the plurality of TFT substrates and the plurality of CF substrates, the polymer on the optical alignment material automatically adjusts the guiding direction according to the irradiation direction of the UV light source, and the guiding direction of the polymer Parallel to the irradiation direction of the UV light source, an alignment film having a predetermined alignment direction is formed on the upper substrate and the lower substrate.
  • the alignment direction refers to a direction in which liquid crystal molecules adjacent to the surface of the substrate are projected on the substrate without applying a voltage (OFF state).
  • the bonding step S3 bonding the upper substrate and the lower substrate, the alignment direction of the upper substrate is the same as the alignment direction of the lower substrate, and the OCB liquid crystal layer is filled between the upper substrate and the lower substrate to form After bonding the plurality of OCB liquid crystal panels, the liquid crystal molecules adjacent to the alignment film of the OCB liquid crystal layer automatically adjust the pretilt direction according to the alignment direction.
  • the OCB liquid crystal panel can be produced one by one for the optical alignment and bonding of only one upper substrate and one lower substrate.
  • the present invention can also provide a plurality of upper substrates and a plurality of lower substrates, and one of the upper substrate and the lower substrate can be a TFT substrate, and the other one corresponds to a CF substrate.
  • a TFT substrate as a lower substrate and a CF substrate as an upper substrate will be described.
  • the OCB liquid crystal panel manufacturing method of the present invention uses a UV light source to illuminate the light alignment material to form an alignment film, so that the OCB liquid crystal panel relatively accurately controls the pretilt angle of the liquid crystal molecules, and the method of using the optical alignment.
  • the alignment film is not required to be contacted, and the alignment film can be directly irradiated with a UV light source to complete the alignment of the alignment film, and the alignment film is peeled off or deteriorated when the alignment film is rubbed and aligned, thereby causing contamination of the alignment film. problem.
  • the process of aligning with light is simple, and a plurality of substrates can be quickly irradiated with a UV light source, which is high in manufacturing efficiency and convenient for mass production.
  • FIG. 2 is a structural diagram of the OCB liquid crystal panel of the present invention.
  • the OCB liquid crystal panel is produced by the above manufacturing method.
  • the OCB liquid crystal panel includes a TFT substrate 10, a CF substrate 20, a first alignment film 301, a second alignment film 302, and a liquid crystal layer 40.
  • the liquid crystal layer 40 is interposed between the TFT substrate 10 and the CF substrate 20.
  • the first alignment film 301 is interposed between the TFT substrate 10 and the liquid crystal layer 40, and the second alignment film 301 is interposed between the liquid crystal layer 40 and the CF substrate 20.
  • the TFT substrate 10 includes a TFT substrate first end 101 and a TFT substrate second end 102.
  • the CF substrate 20 includes a CF substrate first end 201 and a CF substrate second end 202. One end of the TFT substrate 10 marked with a black solid point is the first end 101 of the TFT substrate.
  • one end of the CF substrate 20 marked with a black solid point is the first end 201 of the CF substrate.
  • the first end 101 of the TFT substrate and the first end 201 of the CF substrate are at the same end, and the second end 102 of the TFT substrate and the second end 202 of the CF substrate are at the same end.
  • the alignment direction of the first alignment film 301 is as indicated by an arrow in FIG. 2: from the first end 101 of the TFT substrate to the second end 102 of the TFT substrate.
  • the alignment direction of the second alignment film 302 is as indicated by an arrow in FIG. 2: from the first end 201 of the CF substrate to the second end 202 of the CF substrate.
  • the alignment directions of the first alignment film 301 and the second alignment film 302 are the same.
  • the TFT substrate 10 may further include a light transmissive material layer (not shown) or other material layers known to those skilled in the art, which will not be described in detail herein.
  • the liquid crystal layer 40 includes liquid crystal molecules of an OCB mode, which are filled in the liquid crystal layer 40 and arranged in a symmetry, and the liquid crystal molecules of the OCB mode have mutual compensation effects.
  • FIG. 3 is a schematic diagram showing an arrangement of the TFT substrate 10 and the CF substrate 20 in the arranging step S1.
  • the CF substrate 20 is first rotated by 180° in the horizontal plane with respect to the TFT substrate 10, and then the TFT substrate 10 and the plurality of CF substrates 20 are used in the horizontal direction by the TFT substrate 10 _ CF.
  • the substrate 20 - the TFT substrate 10 - the CF substrate 20 are arranged alternately.
  • the first end 101 of the TFT substrate is adjacent to the first end 201 of the adjacent CF substrate, and the second end 102 of the TFT substrate and the second end 202 of the adjacent CF substrate are adjacently arranged.
  • the TFT substrate 10 is coated with a first photo alignment material 103
  • the CF substrate 20 is coated with a second photo alignment material 203.
  • the UV light source is first irradiated from the first end 101 of the TFT substrate to the second end 102 of the TFT substrate; and then the next CF substrate 20 is transferred to the original position of the TFT substrate 10 to be irradiated. Then, the UV light source moves back in the opposite direction, and moves from the first end 201 of the CF substrate.
  • the second photo-directed material 103 is coated on the TFT substrate 10, and the second photo-alignment material 203 is coated on the TFT substrate 20 by UV light irradiation.
  • the alignment direction of the first alignment film 301 is: from the first end 101 of the TFT substrate to the second end 102 of the TFT substrate.
  • the alignment direction of the second alignment film 302 is: from the CF substrate first end 201 to the CF substrate second end 202.
  • the TFT substrate 10, the CF substrate 20 and the UV light source are alternately moved, and the moving direction of the TFT substrate 10 and the CF substrate 20 is parallel to the moving direction of the UV light source.
  • FIG. 4 is a schematic view showing the bonding of the TFT substrate 10 and the CF substrate 20 in the arrangement shown in FIG.
  • the CF substrate 20 is vertically rotated by 180°, and is bonded to the TFT substrate 10 to be bonded.
  • the first end 201 of the CF substrate is at the same end as the first end 101 of the TFT substrate, and the alignment directions of the two alignment moons are the same.
  • the TFT substrate 10 may be first rotated 180 in the horizontal plane with respect to the CF substrate 20.
  • the CF substrate 20 may be fixed, and the TFT substrate 10 may be vertically rotated by 180°, and then bonded to the CF substrate 20 to be bonded.
  • the plurality of TFT substrates 10 and the plurality of CF substrates 20 are reciprocally irradiated with a UV light source, which saves time, improves efficiency, and facilitates batch continuous production.
  • the UV light source is moved in a bidirectional manner, and the array of the TFT substrate 10 and the CF substrate 20 is sequentially passed through the irradiation position of the UV light source at a predetermined rate, and the next block is aligned every time the alignment is completed, and The transmission direction of the TFT substrate 10 and the CF substrate 20 is parallel to the moving direction of the UV light source, which saves the installation space of the irradiation device.
  • FIG. 5 is a schematic diagram showing another arrangement of the TFT substrate 10 and the CF substrate 20 in the arranging step S1.
  • the plurality of TFT substrates 10 and the CF substrate 20 are arranged in such a manner that the TFT substrate 10 - the CF substrate 20 - the TFT substrate 10 - the CF substrate 20 are alternately arranged in the horizontal direction.
  • the first end 101 of the TFT substrate is adjacent to the second end 202 of the adjacent CF substrate, and the second end 102 of the TFT substrate is adjacent to the first end 201 of another adjacent CF substrate, as shown in FIG.
  • the arrangement of the CF substrate does not first rotate 180° in the horizontal plane.
  • the first optical alignment material 102 and the CF substrate 20 coated on the TFT substrate 10 are coated with the second optical alignment material 203.
  • the UV light source sequentially irradiates the TFT substrate 10 and the CF substrate 20.
  • the UV light source is not moved, and the plurality of TFT substrates 10 and the plurality of CF substrates 20 are sequentially transferred to the UV light source for alignment.
  • the UV light source is irradiated from the first end 101 of the TFT substrate of the TFT substrate, and then the second end 102 of the TFT substrate of the same TFT substrate is irradiated, and then irradiated from the first end 201 of the CF substrate of the next CF substrate 20, and the scanning is performed. Go to the second end 202 of the CF substrate of the same CF substrate 20.
  • the TFT substrate 10 and the CF substrate 20 sequentially pass through the irradiation region of the UV light source.
  • the first optical alignment material 103 on the TFT substrate 10 and the second optical alignment material 203 on the CF substrate 20 are irradiated with UV light to form the first alignment film 301 as shown in FIG.
  • the alignment direction of the first alignment film 301 is: from the first end 101 of the TFT substrate to the second end 102 of the TFT substrate.
  • the alignment direction of the second alignment film 302 is: from the first end 201 of the CF substrate to the second end 202 of the CF substrate.
  • the illumination mode of the UV light source includes two types of moving illumination and fixed illumination.
  • the UV light source is fixed, and the TFT substrate 10 and the CF substrate 20 are sequentially irradiated to the UV light source for illumination by a production line.
  • the present invention is not limited thereto, and the TFT substrate 10 and the CF substrate 20 may be fixed.
  • the UV light source moves to illuminate.
  • FIG. 6 is a schematic view showing the arrangement of the TFT substrate 10 and the CF substrate 20 in the arrangement shown in FIG.
  • the CF substrate 20 is first rotated by 180° in the horizontal plane, and then rotated 180° vertically, and buckled on the TFT substrate 10 to achieve bonding.
  • the first end 201 of the CF substrate is at the same end as the first end 101 of the TFT substrate, and the alignment directions of the two alignment films are the same.
  • the liquid crystal molecules of the OCB mode liquid crystal display are symmetrically arranged on the upper and lower sides of the two substrates.
  • the UV light source is fixed, and the TFT substrate 10 and the CF substrate 20 are sequentially aligned by the irradiation region.
  • the UV light source does not need to move back and forth, and the TFT substrate 10 and the CF substrate 20 do not need to stay and evenly
  • the fast transfer performs fast alignment, which is faster than the optical alignment mode shown in FIG. 3 and FIG. 4, and improves the production efficiency.
  • the present invention also provides an OCB liquid crystal display comprising the above OCB liquid crystal panel.
  • the OCB liquid crystal display of the present invention may further include a polarizer, a driving power source, a backlight module, and the like, which are not easily described herein by those skilled in the art.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)

Description

OCB液晶面板及其制造方法、 OCB液晶显示器
【技术领域】
本发明涉及显示领域, 特别是涉及 OCB液晶面板及其制造方法, 还涉及一 种 OCB液晶显示器。
【背景技术】
众所周知, 液晶面板需要配向膜来决定液晶分子的初始导向角 (预倾角)。 一般情况下通常釆用摩擦配向膜的方法对液晶分子进行配向。
现有技术中, 对 OCB ( Optically Compensated Bend, 光学弯曲补偿)模式 的液晶面板也釆用摩擦进行配向的方法。 首先通过调整配向膜的成分比例, 然 后涂覆到基板上, 接着对配向膜的表面进行摩擦处理, 再填充液晶层, 从而实 现对 OCB模式液晶面板的液晶分子的配向。 但是釆用摩擦进行配向的方法时该 配向膜层容易出现剥落等现象, 并产生杂质污染配向膜。
另外, 由于摩擦配向需要高精度地控制工艺流程, 该工艺流程的操作不易 控制, 造成配向不便、 影响制造 OCB液晶面板的效率。
【发明内容】
为了解决现有技术 OCB液晶面板的配向膜易被污染且制造效率低下的技术 问题 ,有必要提供一种配向膜不易污染且制造效率高的 OCB液晶面板制造方法, 还提供了一种 OCB液晶面板和一种 OCB液晶显示器,
为解决上述技术问题, 本发明釆用的一个技术方案是: 提供一种 OCB液晶 面板制造方法, 包括:
排列步骤 S1 : 提供至少一上基板和至少一下基板, 其中, 该上基板和该下 基板涂覆有光配向材料;
光照射步骤 S2: 利用 UV光源照射该上基板和下基板的光配向材料, 使得 该上基板和该下基板上形成具有预定配向方向的配向膜; 以及 贴合步骤 S3: 贴合该上基板和该下基板, 并在该上基板和该下基板之间填 充 OCB液晶层, 形成多个 OCB液晶面板。
在另一实施例中, 在该排列步骤 S1中, 提供多块上基板和多块下基板, 将 多块上基板和多块下基板沿着水平方向釆用上基板 -下基板 -上基板 -下基板 交替排列的方式进行排列。
在另一实施例中, 该上基板包括上基板第一端和上基板第二端, 该下基板 包括下基板第一端和下基板第二端, 在该排列步骤 S1中, 先将上基板相对于相 邻的下基板在水平面内自旋转 180° , 再交替排列上基板和下基板, 排列后, 该 上基板第一端与该下基板第一端相邻、 该上基板第二端与另一块该下基板第二 端相邻。
其中, 在该光照射步骤 S2中, 先将该 UV光源从该上基板第一端移动照射 至该上基板第二端, 然后将相邻的该下基板传送到上一个被照射的上基板原来 的位置上, 接着该 UV光源回程反方向移动, 从该下基板第一端移动照射至该 下基板第二端。
其中, 在该贴合步骤 S3中, 将该上基板相对于该下基板竖直旋转 180° , 并扣在该下基板上实现贴合。
其中, 该上基板包括上基板第一端和上基板第二端, 该下基板包括下基板 第一端和下基板第二端, 在该排列步骤 S1中, 该上基板第一端和邻近的该下基 板第二端相邻排列, 该上基板第二端和另一块邻近的该下基板第一端相邻排列。
其中, 在该光配向步骤 S2中, 该 UV光源从该上基板的该上基板第一端开 始照射, 接着照射同一块该上基板第二端, 再从下一块下基板的该下基板第一 端开始照射, 并扫描照射到同一块下基板的该下基板第二端, 在所述贴合步骤 S3中, 先将该上基板在水平面内自旋转 180° , 然后再竖直旋转 180° , 扣在该 下基板上实现贴合。
其中, 该上基板和该下基板中的一块为 TFT ( Thin Film Transistor, 薄膜场 效应晶体管)基板, 另一块为 CF ( Color Filter, 彩色滤光片)基板。 为解决上述技术问题, 本发明釆用的另一个技术方案是: 提供一种 OCB液 晶面板, 釆用上述的制造方法制得。
为解决上述技术问题, 本发明釆用的另一个技术方案是: 提供一种 OCB液 晶显示器, 包括上述的 OCB液晶面板。
本发明实施例的效果是: 本发明通过在上基板和下基板上涂覆光配向材料, 并釆用 UV 光源照射所述光配向材料来形成配向膜, 可有效避免摩擦配向时配 向膜层剥落产生污染的问题, 而且工艺简单, 可釆用一 UV 光源快速地对多块 基板进行照射, 制造效率较高便于进行大批量生产。
【附图说明】
图 1是本发明 OCB液晶面板制造方法的一个实施例的流程示意图; 图 2是本发明 OCB液晶面板的一个实施例的结构示意图;
图 3是图 2所示 OCB液晶面板的 TFT基板和 CF基板在排列步骤中一种排 列方式的示意图;
图 4是图 3所示排列方式的 TFT基板和 CF基板的贴合示意图;
图 5是图 2所示 OCB液晶面板的 TFT基板和 CF基板在排列步骤中另一种 排列方式的示意图; 及
图 6是图 5所示排列方式的 TFT基板和 CF基板的贴合示意图。
【具体实施方式】
请参阅图 1 , 图 1是本发明 OCB液晶面板制造方法的一个实施例的流程示 意图。
在本实施例中, 本发明 OCB液晶面板制造方法包括下列步骤:
排列步骤 S1 : 提供至少一上基板和至少一下基板, 其中, 该上基板和该下 基板涂覆有光配向材料, 该光配向材料可以为含有光敏基团的树脂;
光照射步骤 S2: 利用 UV (Ultraviolet, 紫外)光源照射该上基板和该下基板 的光配向材料, 当该 UV光源照射该多块 TFT基板和该多块 CF基板时, 该光 配向材料上的高分子根据该 UV光源的照射方向自动调整导向方向, 且该高分 子的导向方向与该 UV光源的照射方向平行, 使得该上基板和该下基板上形成 具有预定配向方向的配向膜。所述配向方向指的是在不施加电压的情况下(OFF 态) 临近基板表面的液晶分子在基板上的投影的方向。
贴合步骤 S3 : 贴合该上基板和该下基板, 贴合后该上基板的配向方向和该 下基板的配向方向相同, 并在该上基板与该下基板之间填充 OCB液晶层, 形成 多个 OCB液晶面板, 贴合后, 该 OCB液晶层邻近该配向膜的液晶分子自动根 据配向方向调整其预倾方向。
在实际制造过程中, 可以仅针对一块上基板和一块下基板光配向和贴合, 逐个地生产 OCB液晶面板。
此外, 本发明还可以提供多块上基板和多块下基板, 且该上基板和该下基 板中的一块可为 TFT基板, 另一块对应为 CF基板。 下文中将以 TFT基板为下 基板、 CF基板为上基板进行介绍。
相较于现有技术, 本发明 OCB液晶面板制造方法釆用 UV光源照射光配向 材料而形成配向膜,使得该 OCB液晶面板比较准确地控制了液晶分子的预倾角, 而且釆用光配向的方法无需接触该配向膜层, 只需用 UV光源直接照射该配向 膜即可完成对该配向膜的配向, 避免了配向膜摩擦配向时, 配向膜层出现剥落 或者变质, 从而对配向膜造成污染的问题。 此外, 釆用光照射进行配向的工艺 简单, 可釆用一 UV 光源快速地对多块基板进行照射, 制造效率较高便于进行 大批量生产。
请参阅图 2 ,是本发明 OCB液晶面板的结构示意图。该 OCB液晶面板釆用 上述制造方法制得。
该 OCB液晶面板包括一 TFT基板 10、 一 CF基板 20、 一第一配向膜 301、 一第二配向膜 302和一液晶层 40。 液晶层 40夹设于 TFT基板 10和 CF基板 20 之间。 该第一配向膜 301夹设于该 TFT基板 10和该液晶层 40之间, 该第二配向 膜 301夹设于该液晶层 40和该 CF基板 20之间。该 TFT基板 10包括 TFT基板 第一端 101和 TFT基板第二端 102, 该 CF基板 20包括 CF基板第一端 201和 CF基板第二端 202。该 TFT基板 10标有黑实点的一端为该 TFT基板第一端 101 , 对应地, 该 CF基板 20标有黑实点的一端为该 CF基板第一端 201。 该 TFT基 板第一端 101和该 CF基板第一端 201位于同一端, 该 TFT基板第二端 102和 该 CF基板第二端 202位于同一端。
该第一配向膜 301的配向方向如图 2中的箭头所示:自 TFT基板第一端 101 到 TFT基板第二端 102。 该第二配向膜 302的配向方向如图 2中的箭头所示: 自 CF基板第一端 201到 CF基板第二端 202。 该第一配向膜 301、 第二配向膜 302的配向方向相同。
该 TFT基板 10还可以包括本领域技术人员已知的透光材料层(图未示)或 其它材料层, 本发明不作细述。
该液晶层 40包括 OCB模式的液晶分子, 该液晶分子填充于液晶层 40中, 并呈对称性排列, 该 OCB模式的液晶分子具有互相补偿的作用。
请参阅图 3 , 图 3是 TFT基板 10和 CF基板 20在排列步骤 S1中一种排列 方式的示意图。 在该排列步骤 S1中, 先将 CF基板 20相对于 TFT基板 10在水 平面内自旋转 180° ,然后将多块 TFT基板 10和多块 CF基板 20沿着水平方向 方向釆用 TFT基板 10 _ CF基板 20 - TFT基板 10 _ CF基板 20交替排列的方式 进行排列。 TFT基板第一端 101和邻近的 CF基板第一端 201相邻排列, 而 TFT 基板第二端 102和另一块邻近的 CF基板第二端 202相邻排列。 上述 TFT基板 10上涂覆有一第一光配向材料 103 , 上述 CF基板 20上涂覆有一第二光配向材 料 203。
在该光照射步骤 S2中, 先将 UV光源从 TFT基板第一端 101移动照射至 TFT基板第二端 102; 然后将下一个 CF基板 20传送到上一个被照射的 TFT基 板 10原来的位置上, 接着 UV光源回程反方向移动, 从 CF基板第一端 201移 动照射至 CF基板第二端 202, 釆用上述方式, 对该 TFT基板 10上涂覆第一光 配向材料 103和该 CF基板 20上涂覆第二光配向材料 203进行 UV光照射形成 如图 4所示的第一配向膜 301和第二配向膜 302。第一配向膜 301的配向方向为: 自 TFT基板第一端 101到 TFT基板第二端 102。第二配向膜 302的配向方向为: 自 CF基板第一端 201到 CF基板第二端 202。
在本实例中, 该 TFT基板 10、 该 CF基板 20与该 UV光源釆用交替移动的 方式, 且该 TFT基板 10、 该 CF基板 20的移动方向与该 UV光源的移动方向平 行。
请再次参阅图 4,图 4是图 3所示排列方式的 TFT基板 10和 CF基板 20贴 合的示意图。在该贴合步骤 S3中,将该 CF基板 20竖直旋转 180° ,扣在该 TFT 基板 10上实现贴合。 贴合后, 该 CF基板第一端 201与该 TFT基板第一端 101 位于同一端, 且两个配向月莫的配向方向相同。
在其它实例的排列步骤 S1中, 也可先将 TFT基板 10相对于 CF基板 20在 水平面内自旋转 180。 ,在贴合步骤 S3中,也可以釆用该 CF基板 20固定不动, 而将该 TFT基板 10竖直旋转 180° , 然后扣在该 CF基板 20上实现贴合。
在图 3和图 4所示实例中, 釆用 UV光源对该多块 TFT基板 10和该多块 CF基板 20进行往返照射, 节约了时间, 提高效率从而便于批量连续生产。 另 外, UV光源釆用双向移动的方式, 而该 TFT基板 10和该 CF基板 20的排列阵 列按指定的速率依次通过 UV光源的照射位置上, 每配向完一块即可对下一块 进行配向, 且该 TFT基板 10和该 CF基板 20的传送方向平行于 UV光源的移 动方向, 节省了照射装置的安装空间。
请参阅图 5 , 图 5是 TFT基板 10和 CF基板 20在排列步骤 S1中另一种排 列方式的示意图。 在该排列步骤 S1中, 将多块 TFT基板 10和 CF基板 20沿着 水平方向釆用 TFT基板 10 - CF基板 20 - TFT基板 10 - CF基板 20交替排列的 方式进行排列。 TFT基板第一端 101和邻近的 CF基板第二端 202相邻排列, TFT 基板第二端 102和另一块邻近的 CF基板第一端 201相邻排列,相比于图 3所示 的排列方式, 该 CF基板未先在水平面内自旋转 180° 。 上述 TFT基板 10上涂 覆有上述第一光配向材料 102和上述 CF基板 20上涂覆有上述第二光配向材料 203。
在该光照射步骤 S2中, UV光源依次照射 TFT基板 10和 CF基板 20。 该 UV光源不动,该多块 TFT基板 10和该多块 CF基板 20的依次传送至该 UV光 源进行配向。 UV光源从 TFT基板的 TFT基板第一端 101开始照射, 接着照射 同一块 TFT基板的该 TFT基板第二端 102, 再从下一块 CF基板 20的 CF基板 第一端 201开始照射, 并扫描照射到同一块 CF基板 20的 CF基板第二端 202。 依此进行, 该 TFT基板 10和该 CF基板 20依次通过 UV光源的照射区域。 釆 用上述方式, 对该 TFT基板 10上的第一光配向材料 103和该 CF基板 20上的 第二光配向材料 203进行 UV光照射形成如图 6所示的该第一配向膜 301和该 第二配向膜 302。 该第一配向膜 301 的配向方向为: 自该 TFT基板第一端 101 到该 TFT基板第二端 102。 该第二配向膜 302的配向方向为: 自该 CF基板第一 端 201到该 CF基板第二端 202。
该 UV光源的照射方式包括移动照射和固定照射两种。在本实例中该 UV光 源固定, 该 TFT基板 10和该 CF基板 20通过生产流水线依次传送至 UV光源 进行照射, 但并不限于此, 也可以将该 TFT基板 10和该 CF基板 20固定, 将 UV光源移动进行照射。
请再次参阅图 6,图 6是图 5所示排列方式的 TFT基板 10和 CF基板 20贴 合的示意图。 在该贴合步骤 S3中, 先将 CF基板 20在水平面内自旋转 180° , 然后再竖直旋转 180° , 扣在该 TFT基板 10上实现贴合。 贴合后, 该 CF基板 第一端 201与该 TFT基板第一端 101位于同一端, 且两个配向膜的配向方向相 同。 实现 OCB模式液晶显示器的液晶分子在二基板上下侧对称排列。
在图 5和图 6所示的实施例中, 该 UV光源固定不动, 该 TFT基板 10和该 CF基板 20依次通过照射区域进行光配向。 相对于图 3和图 4所示的实施例, 该 UV光源无需往返移动照射, 该 TFT基板 10和该 CF基板 20无需停留而匀 速传送进行快速的配向, 比图 3和图 4所示的光配向方式更快速, 提高了生产 效率。
本发明还提供一种 OCB液晶显示器, 包括上述的 OCB液晶面板。 本发明 OCB液晶显示器还可相应包括偏光片、 驱动电源和背光模组等, 在本技术领域 内的技术人员容易理解的情况下, 在此不作赘述。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权 利 要求
1. 一种 OCB液晶面板制造方法, 其特征在于, 包括:
排列步骤 S1 , 提供至少一上基板和至少一下基板, 其中, 所述上基板和所 述下基板涂覆有光配向材料;
光照射步骤 S2, 利用 UV光源照射所述上基板和下基板的光配向材料, 使 得所述上基板和所述下基板上形成具有预定配向方向的配向膜; 以及
贴合步骤 S3 , 贴合所述上基板和所述下基板, 并在所述上基板和所述下基 板之间填充 OCB液晶层, 形成多个 OCB液晶面板。
2. 根据权利要求 1所述的制造方法,其特征在于,在所述排列步骤 S1中, 提供多块上基板和多块下基板, 将多块上基板和多块下基板沿着水平方向釆用 上基板 -下基板 -上基板 -下基板交替排列的方式进行排列。
3. 根据权利要求 2所述的制造方法, 其特征在于, 所述上基板包括上基板 第一端和上基板第二端, 所述下基板包括下基板第一端和下基板第二端, 在所 述排列步骤 S1中, 先将上基板相对于相邻的下基板在水平面内自旋转 180° , 再交替排列上基板和下基板, 排列后, 所述上基板第一端与所述下基板第一端 相邻、 所述上基板第二端与另一块所述下基板第二端相邻。
4. 根据权利要求 3 所述的制造方法, 其特征在于, 在所述光照射步骤 S2 中, 先将所述 UV光源从所述上基板第一端移动照射至所述上基板第二端, 然 后将相邻的所述下基板传送到上一个被照射的上基板原来的位置上, 接着所述 UV光源回程反方向移动, 从所述下基板第一端移动照射至所述下基板第二端。
5. 根据权利要求 4所述的制造方法,其特征在于,在所述贴合步骤 S3中, 将所述上基板相对于所述下基板竖直旋转 180° ,并扣在所述下基板上实现贴合。
6. 根据权利要求 2所述的制造方法, 其特征在于, 所述上基板包括上基板 第一端和上基板第二端, 所述下基板包括下基板第一端和下基板第二端, 在所 述排列步骤 S1中, 所述上基板第一端和邻近的所述下基板第二端相邻排列, 所 述上基板第二端和另一块邻近的所述下基板第一端相邻排列。
7. 根据权利要求 6 所述的制造方法, 其特征在于, 在所述光配向步骤 S2 中, 所述 UV光源从所述上基板的所述上基板第一端开始照射, 接着照射同一 块所述上基板第二端, 再从下一块下基板的所述下基板第一端开始照射, 并扫 描照射到同一块下基板的所述下基板第二端, 在所述贴合步骤 S3中, 先将所述 上基板在水平面内自旋转 180° , 然后再竖直旋转 180° , 扣在所述下基板上实 现贴合。
8. 根据权利要求 1所述的制作方法, 其特征在于, 所述上基板和所述下基 板中的一块为薄膜场效应晶体管基板, 另一块为彩色滤光片基板。
9. 根据权利要求 2所述的制造方法, 其特征在于, 所述上基板和所述下基 板中的一块为薄膜场效应管基板, 另一块为彩色滤光片基板。
10. 一种 OCB液晶面板, 其特征在于, 所述 OCB液晶面板釆用的制造方 法包括:
排列步骤 S1 : 提供至少一上基板和至少一下基板, 其中, 所述上基板和所 述下基板涂覆有光配向材料;
光照射步骤 S2: 利用 UV光源照射所述上基板和下基板的光配向材料, 使 得所述上基板和所述下基板上形成具有预定配向方向的配向膜; 以及
贴合步骤 S3 : 贴合所述上基板和所述下基板, 并在所述上基板和所述下基 板之间填充 OCB液晶层, 形成多个 OCB液晶面板。
11. 一种 OCB液晶显示器, 其特征在于, 包括权利要求 10所述的 OCB液 晶面板。
PCT/CN2011/074363 2011-05-10 2011-05-19 Ocb液晶面板及其制造方法、ocb液晶显示器 WO2012151763A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/318,352 US8570471B2 (en) 2011-05-10 2011-05-19 OCB liquid crystal panel and manufacturing method thereof, and OCB liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101200815A CN102169255A (zh) 2011-05-10 2011-05-10 Ocb液晶面板及其制造方法、ocb液晶显示器
CN201110120081.5 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012151763A1 true WO2012151763A1 (zh) 2012-11-15

Family

ID=44490469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074363 WO2012151763A1 (zh) 2011-05-10 2011-05-19 Ocb液晶面板及其制造方法、ocb液晶显示器

Country Status (3)

Country Link
US (1) US8570471B2 (zh)
CN (1) CN102169255A (zh)
WO (1) WO2012151763A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709764A (zh) * 2017-06-08 2020-01-17 日产化学株式会社 液晶取向剂、液晶取向膜及液晶表示元件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436098A (zh) * 2011-12-21 2012-05-02 深圳市华星光电技术有限公司 一种聚合物稳定垂直配向液晶面板的配向设备及方法
CN104898323B (zh) * 2014-12-30 2018-09-14 南京中电熊猫液晶显示科技有限公司 光配向方法和液晶显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222605B1 (en) * 1995-10-13 2001-04-24 Sharp Kabushiki Kaisha Surface mode liquid crystal device and method of making a liquid crystal device
US20020167631A1 (en) * 2000-02-10 2002-11-14 Shoichi Ishihara Liquid crystal display device and method of manufacturing same
CN1693970A (zh) * 2005-03-24 2005-11-09 友达光电股份有限公司 液晶配向添加剂、包含其的液晶显示装置及制造方法
CN101023392A (zh) * 2004-06-26 2007-08-22 香港科技大学 一种改善的聚亚酰胺单元液晶显示器
CN101082724A (zh) * 2006-05-30 2007-12-05 台湾薄膜电晶体液晶显示器产业协会 液晶显示器组件制造方法
CN101566762A (zh) * 2008-04-24 2009-10-28 优志旺电机株式会社 光取向用偏振光照射装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8514357B2 (en) * 2008-09-17 2013-08-20 Samsung Display Co., Ltd. Alignment material, alignment layer, liquid crystal display device and manufacturing method thereof
KR101612480B1 (ko) 2008-12-22 2016-04-27 삼성디스플레이 주식회사 배향기판, 이를 포함하는 액정표시패널 및 배향기판의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222605B1 (en) * 1995-10-13 2001-04-24 Sharp Kabushiki Kaisha Surface mode liquid crystal device and method of making a liquid crystal device
US20020167631A1 (en) * 2000-02-10 2002-11-14 Shoichi Ishihara Liquid crystal display device and method of manufacturing same
CN101023392A (zh) * 2004-06-26 2007-08-22 香港科技大学 一种改善的聚亚酰胺单元液晶显示器
CN1693970A (zh) * 2005-03-24 2005-11-09 友达光电股份有限公司 液晶配向添加剂、包含其的液晶显示装置及制造方法
CN101082724A (zh) * 2006-05-30 2007-12-05 台湾薄膜电晶体液晶显示器产业协会 液晶显示器组件制造方法
CN101566762A (zh) * 2008-04-24 2009-10-28 优志旺电机株式会社 光取向用偏振光照射装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709764A (zh) * 2017-06-08 2020-01-17 日产化学株式会社 液晶取向剂、液晶取向膜及液晶表示元件
KR20200016261A (ko) * 2017-06-08 2020-02-14 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
CN110709764B (zh) * 2017-06-08 2022-05-27 日产化学株式会社 液晶取向剂、液晶取向膜及液晶表示元件
KR102666618B1 (ko) 2017-06-08 2024-05-16 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자

Also Published As

Publication number Publication date
CN102169255A (zh) 2011-08-31
US20120287387A1 (en) 2012-11-15
US8570471B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
US20100035190A1 (en) Method of forming an alignment layer, and apparatus for forming the alignment layer
CN1881047A (zh) 液晶显示器件及其制造方法
TWI510844B (zh) 液晶層的前驅物、液晶單元及其製造方法
WO2012151763A1 (zh) Ocb液晶面板及其制造方法、ocb液晶显示器
JP3209166B2 (ja) 液晶配向膜の製造方法
CN108957864B (zh) 一种掩膜版及柔性液晶显示面板的制备方法
US10345696B2 (en) Photomask for optical alignment and optical alignment method
JP2006234922A (ja) 液晶表示装置用光学素子の製造装置
CN101833191A (zh) 半反透式聚合物稳定配向面板的制造装置及方法
JP2012078697A (ja) 液晶用配向膜露光方法及びその装置並びにそれを用いて製作された液晶パネル
JP4797468B2 (ja) 位相差制御部材、その製造方法、及び液晶ディスプレイ装置
CN1873487A (zh) 液晶显示面板及其制造方法
WO2017143674A1 (zh) 配向剂、配向膜的制作方法、显示面板及显示装置
CN106681058A (zh) 光配向设备
KR101987187B1 (ko) 광배향막을 포함하는 액정표시장치 및 그 제조방법
CN105607349B (zh) Pi液涂布方法
KR20160006333A (ko) 액정 표시 장치 및 이의 제조 방법
CN109884823B (zh) 偏振光照射装置以及带光取向膜的基板的制造方法
CN106773337A (zh) 一种光配向设备及光配向方法
WO2018188163A1 (zh) 光配向装置及光配向方法
US7092058B2 (en) Method and apparatus for imparting alignment to alignment layer through generation of two kinds of polarized light from a single light source and treatment with both
WO2015027622A1 (zh) 液晶显示器、液晶显示器用基板及其制作方法和制作装置
KR101641619B1 (ko) 액정 표시 장치 및 그 제조 방법
JP6029364B2 (ja) 液晶表示装置及びその製造方法
KR20130027912A (ko) 액정표시장치 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13318352

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864917

Country of ref document: EP

Kind code of ref document: A1