WO2012150422A1 - Procede de deconstruction d'ecrans plats a cristaux liquides et lampes de retro-eclairage - Google Patents
Procede de deconstruction d'ecrans plats a cristaux liquides et lampes de retro-eclairage Download PDFInfo
- Publication number
- WO2012150422A1 WO2012150422A1 PCT/FR2012/050998 FR2012050998W WO2012150422A1 WO 2012150422 A1 WO2012150422 A1 WO 2012150422A1 FR 2012050998 W FR2012050998 W FR 2012050998W WO 2012150422 A1 WO2012150422 A1 WO 2012150422A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- screen
- lamp
- lamps
- laser
- melting
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133604—Direct backlight with lamps
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/68—Green display, e.g. recycling, reduction of harmful substances
Definitions
- the present invention relates to the deconstruction, that is to say the dismantling, of flat screens equipped with backlighting lamps (CCFL).
- CCFL backlighting lamps
- Such backlighting lamps contain mercury. We must therefore be particularly careful not to break them, that is to say, we must aim to preserve their integrity as much as possible, or at least to avoid any spill / contact of their pollutant (mercury) content on others. elements of the screen, or any release of the pollutant in nature. This effectively excludes any operation of even partial grinding of a screen as it still contains lamps.
- the present invention focuses on the removal of backlight lamps. If a screen contains a slab, it is removed beforehand.
- the invention relates to a method of at least partial deconstruction of a flat screen, the screen comprising
- backlighting lamps connected to at least one respective connector, and secured to the screen by this connector
- the deconstruction of flat screens is more environmentally friendly and the health of operators.
- provision is made to at least partially remove the wafer, when it exists, to give access to the connectors.
- each melting point is located at a predetermined distance from a reference position.
- a laser profilometry step of obtaining at least three-dimensional topography lamps there is further provided a laser profilometry step of obtaining at least three-dimensional topography lamps.
- the laser profilometry step comprises a longitudinal laser scan and / or lateral, possibly multiple.
- the melting step is carried out by a heating device in contact with the tube of said lamp.
- a heating device for example, there is provided a step of thermally pinching the glass of at least one lamp.
- the melting step is implemented by a heating device remote from the tube said lamp, said device comprising a torch and / or an induction coil.
- each lamp comprises a tubular portion having an axis of elongation
- the method further comprising for each lamp a step of rotating said lamp about its axis of elongation during or after the melting step .
- the rotation step is implemented by a set of at least three wheels in contact with said lamp, of which at least one wheel is motorized.
- the deconstruction process can be at least semi-automatic, which allows for high production rates.
- FIG. 1 illustrates a partial view of a screen in which the slab has been previously removed to make the lamps and the plate apparent
- FIG. 2 illustrates the principle of laser profilometry
- FIG. 3 illustrates a longitudinal section of a screen during a laser profilometry step
- FIGS. 4a to 4e and 5a to 5e illustrate the position of a camera-laser assembly and the respective image resulting therefrom during a laser profilometry step with a longitudinal scan
- FIGS. 4f to 4g and 5f to 5g illustrate the position of a camera-laser assembly and the respective image resulting therefrom during a laser profilometry step with a lateral scan
- FIG. 6 illustrates a screen after the melting and the removal of a part of the lamps, in this case from the central part of the lamps,
- FIG. 7 illustrates a cross section of an embodiment of an induction heating device according to the invention, positioned around a lamp
- FIG. 8 illustrates the thermal pinch
- FIG. 9 illustrates the result of the melting step of the glass in at least two pieces
- FIG. 10 illustrates an embodiment of the method according to the invention
- FIG. 11 illustrates a cross section of clips
- FIG. 12 illustrates an embodiment of a set of at least three wheels carried by a clamp for rotating a lamp around its axis of elongation
- FIG. 13 illustrates an embodiment of a fork according to the invention.
- flat screen 10 is meant a screen of computer or television type comprising at the origin, that is to say during the construction and use of the screen, a display matrix or LCD panel for " Liquid Crystal Display “(not shown) substantially flat, and generally furthermore diffuser filters (not shown).
- These screens also include 11 backlight lamps, or neons, of at least partly straight tubular shape or U. They have an axis of elongation and are hereinafter referred to as lamps. The lamps are generally parallel and equidistant from each other, so as to have a uniform, uniform distribution of light.
- the diameter of a lamp tube is typically a few millimeters in diameter.
- the lamps contain mercury, so we aim not to break them during the deconstruction of the screen so as not to pollute.
- the screen also comprises a bottom 12, generally made of plastic and substantially flat, in the form of a reflective sheet.
- the bottom 12 is integral with the screen 10, and white to best reflect the light from the lamps to the LCD panel.
- the lamps 11 are arranged in a plane parallel to the bottom 12 and originally arranged between the bottom and the LCD panel. They are each connected to at least one respective connector.
- the connectors are arranged either on the same side of the screen (U-shaped lamps) or on both sides of the screen (straight lamps).
- the connectors 15 are integral directly or indirectly with the screen 10, generally by welding on a metal part (housing 30 or other).
- the lamps 11 connected are therefore integral with the screen 10 at least through the connectors 15. In addition they can be secured to the screen 10 by means of clips 40 described later.
- the screen, the slab and the flat bottom are generally rectangular. By convention, length means the long side and height the small side of the rectangle, whether the bottom, the slab or the screen. Generally, the lamps are aligned in the direction of the length.
- the connectors are aligned in the direction of the height.
- the screen may also comprise at least one plate 13, covering the connectors 15 and the actual end of the lamps connected thereto, and being provided with recesses (or notches). for the passage of said lamps to the connectors 15.
- the wafer 13 generally has a direction of elongation in the direction of the height of the screen.
- the plate 13 may be integral or not secured to the bottom.
- a wafer 13 The configuration of a wafer 13 is such that it covers the connectors 15 and at least partially the lamps 11 which are fixed thereto. These connectors 15 are therefore not always accessible or visible, even after the LCD panel and any filter diffusers have been removed.
- a wafer 13 (just like other elements of the structure of a screen such as a housing) can thus hinder the deconstruction of a screen by hindering / preventing direct access to the connectors 15.
- FIG. one end of a lamp is illustrated, with a main piece 11a and a piece 11b connected to a connector 15.
- the central piece 11a can then be easily removed, as shown in Figure 6.
- This at least partial withdrawal step 110 can comprise a step of cutting, melting and / or at least partial tearing of the wafer 13.
- a step 150 laser profilometry consisting of obtaining the topography (three-dimensional), that is to say the position, orientation in space and dimensions of at least a portion of the lamps 11, as well as the wafer 13 or at least part of any element of the screen other than the lamps 11, preferably in the extension thereof.
- a laser 20 projects a plane beam resulting in a light line 23, for example on an area of the wafer and lamps.
- the laser is inclined at an angle ⁇ , for example from 30 ° to 45 °, relative to the optical axis XX of a camera 21 which scans an area 22 where the laser line is projected in reflection, so as to to image the deformations of the line due to the relief, that is to say to the geometry of the bottom of the screen, in this case of the lamps, the plate or any other element of the screen illuminated by the line of light 23.
- the optical axis XX of the camera 21 or the laser plane is orthogonal to the flat bottom.
- the movement of the camera 21 is integral with the movement of the laser 20, for example by being both carried by a robotic arm (not shown).
- This arm makes it possible to produce a translation movement (sweeping) of the laser-camera assembly in particular parallel and / or perpendicular to the direction of the lamps 11.
- the robot rotates the camera-laser assembly by 180 °, so that the laser 20 is found oriented similarly in the other direction.
- the camera 21 acquires a set of images (sampling) during the movement. We define by dt the time interval separating two successive images captured by the camera.
- This line called profile represents the deformation of the laser line on the relief illuminated by the line of light 23, in this case the relief of the lamps 11 and the plate 13. Longitudinal scan
- the laser scan is longitudinal.
- the laser line 23 (rectilinear) is substantially perpendicular to the axis of elongation of the lamps, see Figure 4a to 4e.
- the laser line 23 is substantially parallel to the short side of the screen, and the movement of the camera-laser assembly is in this case parallel to the axis of the lamps, and parallel to the long side of the screen. screen.
- the direction of movement is in this case centrifugal, that is to say from the inside of the screen to the outer edge (housing 30) of the screen, via the connectors 15, so that the laser line 23 passes first on the lamps 11 and then on the plate 13 and then on the outer edge (housing 30) of the screen.
- the movement is centripetal, that is to say from the outside of the screen to the outer edge (housing 30) of the screen, then the connectors, so that that the laser line 23 passes first on the outer edge (housing 30) of the screen, then on the plate 13, then on the lamps 11.
- Figures 4a to 4e illustrate chronologically the position of a camera-laser assembly during a laser profilometry step with a longitudinal scan.
- Figures 5a to 5e illustrate the respective resulting image in which the frame illustrates a display screen.
- FIG. 4a the laser line is upstream of the wafer 13. This results in the profile corresponding to FIG. 5a which comprises:
- a substantially continuous straight line PT corresponding to the support on which the screen was placed during profilometry measurements.
- the laser line is on the wafer 13 above the top of the lamps. This results in the profile corresponding to Figure 5c in which on the display screen, the set of substantially circular arcs Pli corresponding to the lamps 11 are no longer visible.
- the substantially straight discontinuous line P12 corresponds to the recesses 14 of the bottom 12.
- the laser line is on the plate
- the images of the profile obtained make it possible, by known image processing algorithms, to detect:
- the profilometry makes it possible to determine the position of the glass tubes of the lamps 11 and the positions from their apparent ends.
- visible end of a lamp glass tube is meant on the profile obtained any change in said profile over a distance greater than a predetermined threshold, which corresponds for example in the screen to the part of the tube covered by a wafer or housing, or connected to a connector.
- this profile shape can be used to control the melting step of the lamp glass, so as to guarantee that it is implemented on the glass of a lamp and not on the plate or the casing for example.
- a device or cast iron tool (not shown) may for example be slaved to melt the lamp tubes at a predetermined distance from these ends.
- a reference position may be for example the position of a connector, an apparent end, a structural element of the screen such as a housing, or a position external to the screen. Because of the sampling of the laser scan it is possible not to obtain an image corresponding to the precise instant when the laser 20 is positioned at the real end or the visible end of a lamp.
- the shape of the profile it is possible to determine whether the image obtained corresponds to a scan of the laser upstream (before) or downstream (after) of the end of a lamp. So we can plan to select the last image obtained before scanning the end of a lamp and consider that the profile of this image contains said end (real or apparent) of said lamp. This provides a safety margin for example in the positioning of the heater described below.
- the position of the end (real or apparent) considered in this last image obtained can for example serve as a reference position.
- the line covers all the lamps.
- the distance between the laser 20 and the screen can be adapted.
- this distance influences the resolution of the camera 21: the larger the screen, the more it is necessary, for the same laser-camera assembly, to increase the laser / screen distance, so the further the camera 21 is also removed from the screen, and the lower the resolution.
- the measurement accuracy is a function of the size of the screens.
- increasing the distance between the area illuminated by the laser 20 and the camera 21 reduces the light power reaching the sensor of the camera 21: this further reduces the measurement accuracy.
- the laser line does not cover all the lamps, it is therefore preferable to perform a multiple scan of the screen, keeping the laser / screen distance constant for all screens.
- the number of sweeps depends on this distance, the dimensions of the screen, the size of the field scanned by the camera 21 and the opening angle of the laser light plane.
- a 3D equation is determined in the robot reference of each object of the screen (lamps, plate, etc.) represented by the profile by means of a calculation algorithm which takes as input the geometrical information (and references) of the screen and which generates plans (3D equations).
- a calculation algorithm which takes as input the geometrical information (and references) of the screen and which generates plans (3D equations).
- we obtain several right-hand 3D equations that are almost collinear (to measurement inaccuracies) or, after regression, one and the same equation, which typically makes it possible to calculate the position and the dimensions of the different lamps.
- the system can raise an alarm.
- Such an alarm may correspond either to the state of deformation of the screen (damaged / deformed at the level of the wafer) so the melting procedure might not be adequate, either to a measurement error. It is then possible to evacuate the screen to other means of cutting / disassembly.
- a plurality of camera-laser assemblies can be provided.
- the laser has a respective opening lens allowing to have a more or less extended line and the camera has a more or less short focal length (large or very wide angle).
- the laser camera set is selected according to the size of the screen. One can then perform only one scan. Beforehand, the camera-laser vision set has been calibrated.
- the calibration known per se in this field, consists of matching points of the 2D image with real 3D coordinates in a given reference frame, so as to transcribe the information collected in the images in sectional planes in a basic reference frame. .
- the basic reference is that of the robot (of cast iron). This makes it possible to make a reference change for all the coordinates of the points corresponding to the movements of the laser-camera assembly and the different equations calculated between the reference of the laser-camera unit and this basic reference.
- the laser scanning is lateral.
- the laser line (rectilinear) is almost parallel to the axis of elongation of the lamps, see Figures 4f, 4g, 5f and 5g.
- the laser line is between two adjacent lamps. This results in the profile corresponding to FIG. 5f which comprises:
- discontinuities D1 and D2 will be noted, on either side of the substantially curved line P11 '. These discontinuities are due to reflections of the laser line on the curved surface of the lamp that do not reach the camera.
- the laser line is almost parallel to the direction of the length of the bottom of the screen.
- the length of the laser line covers the wafer 13, which makes it possible to detect the high and low ends of the wafer for sure.
- the angle between the laser line and the elongation axis of the lamps is less than 10 degrees and preferably less than 5 degrees.
- the direction of scanning is parallel to the direction of the length of the bottom of the screen. Compared to the previous embodiment in which the direction of scanning is perpendicular to the direction of the length of the bottom of the screen, the advantage is that only one scanning is sufficient to determine the lateral ends of the wafer.
- the connectors can be disengaged from the bottom of the screen, for example by desoldering.
- the lamps can be disconnected from the connectors later.
- the lamps are generally kept away from the bottom by eyelets or clips.
- the eyelets are disc-shaped parts whose inner diameter matches the outer diameter of the lamps, and whose outer diameter is adapted to the height of the connectors relative to the bottom.
- the clips 40 ( Figure 11) are parts, usually plastic, comprising a support 42 and two trestles 43, each bridge being mounted on a respective pin 41, between which a lamp 11 can be maintained. It can be provided to separate the lamps clips, for example by cutting or breaking the easels.
- This operation can be implemented manually, using tools such as a hammer / chisel or screwdriver, cutter, Dremel (registered trademark), etc.
- This operation can also be implemented by a robot.
- the melt consists of softening the glass thermally so that it becomes and remains pasty, preferably for a fixed period.
- the melting step is carried out by a heating device whose operating temperature, called the melting temperature, is capable of melting the glass constituting said lamp 11.
- the time during which the melting temperature is applied to the lamp glass depends on the melting temperature and the possible distance between the heater and the glass.
- borosilicate glass lamp having a melting point of between 750 ° C and 850 ° C, it can be heated to a melting temperature of 1100 ° C less than 5 seconds for each melting point, the glass remains pasty.
- Each melting point is located at a predetermined distance from a reference position.
- the predetermined distance may be an absolute or relative value, a distance in a set of absolute values, or a set of relative values.
- absolute value is meant a distance whose value is expressed in units of measurement, for example in centimeters.
- relative value is meant a distance whose value is expressed as a percentage of the apparent length of the glass tube (measured by laser profilometry) starting from the reference position.
- the melting point is located at a distance of less than 15% of the apparent length of the glass tube, or between 3 and 10 cm from the reference position.
- the melting step is carried out by a heating device in contact with the tube of said lamp, typically by thermal pinching.
- the thermal pinching is to heat a clamp 50 ( Figure 8) at high temperature, that is to say, a temperature sufficient to melt the glass tube tubes are formed, and to apply the clamp on the lamps.
- the clamp is positioned by a robot or an operator preferably as close as possible to the connectors.
- Actuation of the clamp melts the glass, which separates the lamp into two pieces 11a, 11b (FIG. 9).
- the melting of the glass on itself also tightly closes the tube on each side of the thermal gripper, which forms an airtight plug for each piece 11a, 11b which limits the diffusion of mercury and makes it possible to disconnect the lamps 120 11 of the screen 10 without breaking them.
- a (small) piece of lamp 11b usually remains in the connector. The operator can then manually remove this piece, made less fragile by the decrease of the lever arm, and without the risk of breaking the entire lamp.
- the thermal pinch can be performed in addition to the steps described above, for example when a lamp is stuck in its connector and the connector remains attached to the bottom of the screen.
- Thermal pinching can be performed as an alternative to at least partial removal of the wafer. In this case, it must be applied to all lamps.
- the glass paste may adhere to the thermal gripper, which is why it is possible to provide a non-contact melting between the lamp glass and the heating device.
- the melting step is implemented by a heating device remote from the tube of said lamp 11, said device comprising a torch and / or an induction coil.
- the internal pressure of a lamp is lower than the atmospheric pressure, it is generally less than or equal to 100 mbar.
- a cooling step of the molten glass is provided, for example by moving the heating device away or by cutting off the power supply thereof. During the cooling of the molten glass, it closes on itself and then solidifies, forming a hermetic plug to each piece 11a, 11b.
- some elements of the screen can face a risk of ignition.
- a heater comprising an induction coil 710.
- the induction coil is used to inductively heat a metal heat transmission element 711, called "fork" by concision.
- the range comprises a material having a high resistance to oxidation, good thermal conductivity and capable of maintaining its mechanical properties at a temperature of the order of 1000 ° C.
- the range may comprise at least one of the following materials: cupronickel (CUNi3Si), Inconel (registered trademark), a nickel-chromium alloy such as NIMONIC Alloy 75 (registered trademark), and titanium .
- the fork comprises a recess 712 for inserting at least a portion of a lamp tube 11, preferably without contact between the fork and the lamp.
- a recess 712 for inserting at least a portion of a lamp tube 11, preferably without contact between the fork and the lamp.
- the shape of the recess at least partially matches that of the lamp, which allows to homogenize the heating.
- the recess is advantageously at least partially cylindrical, whose radius is greater than that of the tube.
- the recess 712 is a half-cylinder of center C and radius R mounted on plane flanks 714, in this case parallel and of height H greater than or equal to radius R.
- a tube of radius r ⁇ R can be inserted into the recess 712 without contact with the walls 713, 714.
- the center of the tube is inserted so as to substantially coincide with the center C of the half-cylinder, which allows to ensure homogeneous heating of the glass tube at least on the half-cylinder of the tube whose radial distance to the recess 712 is constant.
- the flanks 714 make it possible to very easily perform a relative movement, at least in translation and typically parallel to the sidewalls, between the glass tube of a lamp 11 and the fork. They also allow to heat the tube, in this case the other part of the lamp that is to say the half cylinder of the lamp whose radial distance to the recess 712 is not constant.
- a fork may be brought by ⁇ above a lamp 11, the lamp is inserted into the recess in a relative movement, induction heating makes it possible to melt the glass and then the fork is removed after the melting, and it repeatedly to a set of lamps.
- the shape of the fork allows a very localized heating. In fact, the elements (including the bottom of the screen) adjacent to the lamp undergoing heating are not likely to ignite.
- the induction being at a distance, the molten glass does not stick to the fork, so there is no risk of adhesion and cleaning problem of the heating device.
- the melting step is implemented simultaneously at two melting points for a given lamp, for example using two forks per lamp.
- a lamp is thus melted into three pieces, two pieces each of which is potentially connected to a respective connector, and a central piece that can be removed very easily, for example by hand or by a clamp as described 1200 below.
- the melting step is implemented in series, that is to say lamp per lamp; or in parallel, that is to say several lamps simultaneously.
- Rotation A step of rotating a lamp 11, preferably around its axis of elongation, during or after the melting step can be further provided.
- the rotation of the tube around its axis of elongation allows the molten glass to fold on itself, which limits sagging and facilitates the gripping of the lamp pieces, and which promotes the sealing of each piece 11a, 11b .
- the step of rotation about the axis of elongation of a lamp is implemented by a set of at least three wheels 1210, 1211, 1212 in contact with said lamp 11, at least one wheel is motorized.
- the set of at least three wheels is carried by a clamp 1200, the wheels being distributed on the two branches 1201, 1202 of the clamp.
- the wheels 1210, 1211, 1212 come into contact with the tube of a lamp 11.
- the clamp can also allow the maintenance of the lamp during melting of the glass, as well as the displacement of the disconnected piece after melting, for example to a storage area.
- a piece is removed, for example by a clamp, in particular a clamp as described above, and two pieces remain connected, each to a respective connector.
- Each melted piece connected to a connector can be disconnected from the screen manually by an operator, by separating the melted piece from its connector and / or by disconnecting the connector from the screen.
- the size of the melted piece coupled with the fact that it is connected to only one connector (while the lamp is generally connected to two connectors) makes this separation much easier. It is also possible, after the melting step and the removal of melted pieces between two melting points, a step of cutting the screen over its entire thickness between the two melting points, which further facilitates the ergonomics of access to the connectors and fused pieces that are connected to it.
- the previous embodiments may be combinable. For example, it is possible to provide a combination of the melting and thermal pinching step, the thermal gripper being at possibly ambient temperature.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Laser Beam Processing (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Planar Illumination Modules (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
L' invention concerne un procédé de déconstruction au moins partielle d'un écran plat, l'écran (10) comprenant des connecteurs (15) solidaires de l'écran (10), des lampes (11) de rétro-éclairage connectées à au moins un connecteur (15) respectif, et solidaires de l'écran (10) par ce connecteur (15), le procédé comprenant des étapes consistant à : - lorsque l'écran (10) comprend une dalle, retirer au préalable (100) ladite dalle pour rendre les lampes (11) et la plaquette (13) apparentes, et - désolidariser (120) les lampes (11) de l'écran (10) sans les casser.
Description
PROCEDE DE DECONSTRUCTION D ' ECRANS PLATS A CRISTAUX LIQUIDES ET LAMPES DE RETRO-ECLAIRAGE .
La présente invention concerne la déconstruction, c'est-à-dire le démantèlement, d'écrans plats équipés de lampes de rétro-éclairage (CCFL) .
De telles lampes de rétro-éclairage contiennent du mercure. Il faut donc faire particulièrement attention à ne pas les casser c'est-à-dire qu'il faut viser à conserver leur intégrité autant que possible, ou du moins à éviter tout déversement / contact de leur contenu polluant (mercure) sur les autres éléments de l'écran, ou toute libération du polluant dans la nature. Ce qui exclut de fait toute opération de broyage même partiel d'un écran tant que celui-ci contient encore des lampes.
En effet, pour détruire ou dépolluer ces écrans plats en fin de vie, il existe des procédés industriels de broyage, au moins partiel, de ces écrans au cours desquels la dalle et/ou les lampes de rétro-éclairage (ou néons) des écrans plats sont en général détruits ou partiellement endommagés. Dès lors, de tels procédés entraînent la libération, dans l'air, sur le sol mais également directement en contact avec l'écran ou les opérateurs, de gaz et de substances toxiques, tels que le mercure par exemple. Or le mercure qui se libère a tendance à polluer les autres éléments de l'écran, par exemple le plastique qui devient alors difficilement recyclable. Ces procédés sont donc responsables d'une certaine pollution mais également d'un risque d'intoxication pour l'opérateur.
En outre, les lampes de rétro-éclairage ont une constitution en verre fin et une forme fine et allongée. Elles sont donc particulièrement fragiles et peuvent se briser facilement lors du démontage d'un écran.
Les documents de l'art antérieur relatifs au démantèlement des écrans plats focalisent sur des procédés de retrait de la dalle à cristaux liquides (LCD) des écrans, dans lesquels les éléments polluants sont aspirés et piégés dans des filtres.
Au contraire, la présente invention focalise sur le retrait des lampes de rétro-éclairage. Si un écran contient une dalle, celle-ci est donc préalablement retirée.
Plus précisément, l'invention concerne un procédé de déconstruction au moins partielle d'un écran plat, l'écran comprenant
des connecteurs solidaires de l'écran,
des lampes de rétro-éclairage connectées à au moins un connecteur respectif, et solidaires de l'écran par ce connecteur,
le procédé comprenant des étapes consistant à :
- lorsque l'écran comprend une dalle, retirer au préalable ladite dalle pour rendre les lampes et la plaquette apparentes, et
- désolidariser les lampes de l'écran sans les casser.
Grâce au procédé selon l'invention, la déconstruction des écrans plats est plus respectueuse de l'environnement et la santé des opérateurs.
Dans un mode de réalisation, on prévoit de retirer au moins partiellement la plaquette, lorsqu'elle existe, pour donner accès aux connecteurs.
Grâce à cette caractéristique, la désolidarisation des lampes de leur (s) connecteur ( s ) est grandement facilitée, tout en conservant au mieux l'intégrité des lampes.
Dans un mode de réalisation, on prévoit en outre pour au moins une lampe en au moins un point de fonte de ladite lampe, une étape de fonte du verre constituant ladite lampe, jusqu'à séparer celle-ci en au moins deux morceaux de part et d'autre de chaque point de fonte.
De préférence, chaque point de fonte est situé à une distance prédéterminée d'une position de référence.
Dans un mode de réalisation, on prévoit en outre une étape de profilométrie laser consistant à obtenir la topographie tridimensionnelle au moins des lampes.
De préférence, l'étape de profilométrie laser comprend un balayage laser longitudinal et/ou latéral, éventuellement multiple.
Dans un mode de réalisation, l'étape de fonte est mise en œuvre par un dispositif de chauffe au contact du tube de ladite lampe. Par exemple, on prévoit une étape de pincement thermique du verre d'au moins une lampe.
Dans un mode de réalisation, l'étape de fonte est mise en œuvre par un dispositif de chauffe distant du tube
de ladite lampe, ledit dispositif comprenant un chalumeau et/ou une bobine d'induction.
Dans un mode de réalisation, chaque lampe comprend une partie tubulaire qui présente un axe d' élongation, le procédé comprenant en outre pour chaque lampe une étape de rotation de ladite lampe autour de son axe d' élongation pendant ou après l'étape de fonte. De préférence, l'étape de rotation est mise en œuvre par un ensemble d'au moins trois roues en contact de ladite lampe, dont au moins une roue est motorisée.
Grâce à l'invention, le procédé de déconstruction peut être au moins semi-automatique, ce qui permet d'avoir des cadences de production élevées.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif et faite en référence aux figures annexées dans lesquelles :
- la figure 1 illustre une vue partielle d'un écran dans lequel la dalle a été préalablement retirée pour rendre les lampes et la plaquette apparentes,
- la figure 2 illustre le principe de la profilométrie laser,
- la figure 3 illustre une coupe longitudinale d'un écran pendant une étape de profilométrie laser,
- les figures 4a à 4e et 5a à 5e illustrent la position d'un ensemble caméra-laser et l'image respective qui en résulte pendant une étape de profilométrie laser avec un balayage longitudinal,
- figures 4f à 4g et 5f à 5g illustrent la position d'un ensemble caméra-laser et l'image respective qui en résulte pendant une étape de profilométrie laser avec un balayage latéral,
- la figure 6 illustre un écran après la fonte et le retrait d'une partie des lampes, en l'espèce de la partie centrale des lampes,
- la figure 7 illustre une coupe transversale d'un mode de réalisation d'un dispositif de chauffe par induction selon l'invention, positionné autour d'une lampe,
- la figure 8 illustre le pincement thermique,
- la figure 9 illustre le résultat de l'étape de fonte du verre en au moins deux morceaux,
- la figure 10 illustre un mode de réalisation du procédé selon l'invention,
- la figure 11 illustre une coupe transversale de clips ,
- la figure 12 illustre un mode de réalisation d'un ensemble d'au moins trois roues portées par une pince pour mettre en rotation une lampe autour de son axe d' élongation, et
- la figure 13 illustre un mode de réalisation d'une fourchette selon l'invention. Par écran plat 10, on entend un écran de type informatique ou télévisuel comprenant à l'origine, c'est-à- dire lors de la construction et de l'utilisation de l'écran, une matrice de visualisation ou dalle LCD pour « Liquid Crystal Display » (non illustrée) sensiblement plate, et généralement en outre des filtres diffuseurs (non illustrés) . Ces écrans comprennent également des lampes 11 de rétro-éclairage, ou néons, de forme au moins en partie tubulaire droite ou en U. Elles présentent un axe
d'élongation et sont désignées ci-après lampes. Les lampes sont généralement parallèles et équidistantes entre elles, de sorte à avoir une répartition homogène, uniforme de la lumière. Le diamètre d'un tube de lampe est typiquement quelques millimètres de diamètre.
Les lampes renferment du mercure, on vise donc à ne pas les casser lors de la déconstruction de l'écran afin de ne pas polluer.
L'écran comprend également un fond 12, généralement en plastique et sensiblement plat, sous forme de feuille réfléchissante. Le fond 12 est solidaire de l'écran 10, et blanc pour réfléchir au mieux la lumière des lampes vers la dalle LCD. Les lampes 11 sont disposées selon un plan parallèle au fond 12 et disposées à l'origine entre le fond et la dalle LCD. Elles sont connectées chacune à au moins un connecteur 15 respectif. Les connecteurs sont disposés soit du même côté de l'écran (lampes en U) soit de part et d'autre de l'écran (lampes droites) .
Les connecteurs 15 sont solidaires directement ou indirectement de l'écran 10, en général par soudure sur une partie métallique (carter 30 ou autre) . Les lampes 11 connectées sont donc solidaires de l'écran 10 au moins par l'intermédiaire des connecteurs 15. En outre elles peuvent être solidaires de l'écran 10 par l'intermédiaire de clips 40 décrits ultérieurement. Par ailleurs, l'écran, la dalle et le fond plat sont globalement rectangulaires.
Par convention, on entend par longueur le grand côté et par hauteur le petit côté du rectangle, que ce soit du fond, de la dalle ou de l'écran. Généralement, les lampes sont alignées dans le sens de la longueur. Les connecteurs sont donc alignés dans le sens de la hauteur.
Sur l'un au moins des quatre rebords, l'écran peut comprendre également au moins une plaquette 13, recouvrant les connecteurs 15 et l'extrémité réelle des lampes connectées à ceux-ci, et étant munie d'évidements (ou encoches) 14 pour le passage desdites lampes vers les connecteurs 15. La plaquette 13 présente généralement une direction d'élongation dans le sens de la hauteur de l'écran. La plaquette 13 peut être solidaire ou non solidaire du fond.
La configuration d'une plaquette 13 est telle qu'elle recouvre les connecteurs 15 et au moins partiellement les lampes 11 qui y sont fixées. Ces connecteurs 15 ne sont donc pas toujours accessibles, ni visibles, même une fois que la dalle LCD et les éventuels filtres diffuseurs ont été retirés. Une plaquette 13 (tout comme d'autres éléments de la structure d'un écran comme un carter) peut donc gêner la déconstruction d'un écran en gênant/empêchant l'accès direct aux connecteurs 15.
Il est proposé ici un procédé de déconstruction au moins partielle d'un écran plat.
Dans ce contexte, on prévoit au préalable d'enlever la dalle 100, de préférence en conservant son intégrité, et
les éventuels filtres diffuseurs de l'écran. Une partie au moins des lampes 11 et la plaquette 13 sont alors apparentes. Par souci de concision, on ne décrit qu'une seule plaquette.
Dans un mode de réalisation, on prévoit de conserver l'intégrité de la plaquette 13. On peut alors désolidariser 120 d'au moins une à toutes les lampes 11 de l'écran 10 sans les casser par une étape de fonte du verre constituant ladite lampe 11 en au moins un point de fonte de ladite lampe 11, jusqu'à séparer celle-ci en au moins deux morceaux lia, 11b de part et d'autre du point de fonte, comme illustré figure 9. Sur la figure 9 seule une extrémité d'une lampe est illustrée, avec un morceau principal lia et un morceau 11b connecté à un connecteur 15. En mettant en œuvre l'étape de fonte sur l'autre extrémité de la lampe, simultanément ou non, on obtient un deuxième point de fonte sur une même lampe 11, dont il résulte un autre morceau 11b connecté à un autre connecteur 15, le morceau central lia pouvant alors être facilement enlevé, comme illustré sur la figure 6.
Dans un autre mode de réalisation, on prévoit une étape 110 consistant à retirer au moins partiellement la plaquette pour donner accès aux connecteurs, avant ou après l'étape fonte du verre constituant les lampes (11) . Cette étape 110 de retrait au moins partiel peut comprendre une étape de découpe, de fonte et/ou d'arrachage au moins partiel de la plaquette 13.
Profilométrie laser
Dans un mode de réalisation, on prévoit une étape 150 profilométrie laser consistant à obtenir la topographie
(tridimensionnelle), c'est-à-dire la position, l'orientation dans l'espace et les dimensions d'une partie au moins des lampes 11, ainsi que de la plaquette 13 ou d'une partie au moins de tout élément de l'écran autre que les lampes 11, de préférence dans le prolongement de celles-ci .
La profilométrie laser comporte les avantages suivants :
- bonne précision,
compatible avec un écran incliné,
technologie sans contact, non intrusive, choix de la longueur d'onde du laser possible en fonction des matériaux de l'écran, et
- temps de cycle théorique relativement faible.
Pour la profilométrie laser, un laser 20 projette un faisceau plan dont il résulte un trait de lumière 23, par exemple sur une zone de la plaquette et des lampes. Le laser est incliné d'un angle a donné, par exemple de 30° à 45°, par rapport à l'axe optique XX d'une caméra 21 qui scrute une zone 22 où le trait laser est projeté en réflexion, de manière à imager les déformations du trait dues au relief, c'est-à-dire à la géométrie du fond de l'écran, en l'espèce des lampes, de la plaquette ou tout autre élément de l'écran illuminé par le trait de lumière 23. De préférence, l'axe optique XX de la caméra 21 ou le plan laser est orthogonal au fond plat. Le mouvement de la caméra 21 est solidaire du mouvement du laser 20, par exemple en étant portés tous deux par un bras robotisé (non illustré) . Ce bras permet de produire un mouvement de translation (balayage) de
l'ensemble caméra-laser notamment parallèlement et/ou perpendiculairement à la direction des lampes 11.
Si nécessaire, pour pouvoir balayer le côté opposé de l'écran, le robot fait pivoter l'ensemble caméra-laser de 180°, pour que le laser 20 se retrouve orienté de manière similaire dans l'autre sens.
La caméra 21 acquiert un ensemble d'images (échantillonnage) au cours du mouvement. On définit par dt l'intervalle de temps séparant deux images successives captées par la caméra.
Sur chaque image, une ligne plus ou moins discontinue est observable (voir figure 5a à 5g) . Cette ligne appelée profil représente la déformation du trait laser sur le relief illuminé par le trait de lumière 23, en l'espèce le relief des lampes 11 et de la plaquette 13. Balayage longitudinal
Dans un mode de réalisation, le balayage laser est longitudinal. Dans ce cas, le trait laser 23 (rectiligne) est sensiblement perpendiculaire à l'axe d'élongation des lampes, voir figure 4a à 4e. En l'espèce le trait laser 23 est sensiblement parallèle au petit côté de l'écran, et le mouvement de l'ensemble caméra-laser est en l'espèce parallèle à l'axe des lampes, et parallèle au grand côté de l'écran. Le sens du mouvement est en l'espèce centrifuge, c'est-à-dire de l'intérieur de l'écran vers le bord externe (carter 30) de l'écran, via les connecteurs 15, de manière à ce que le trait laser 23 passe d'abord sur les lampes 11 puis sur la plaquette 13 puis sur le bord externe (carter 30) de l'écran. Pour simplifier la présente description,
seul ce mouvement est illustré sur les figures 4a à 4e et 5a à 5e. Dans un autre mode de réalisation non illustré, le mouvement est centripète, c'est-à-dire depuis l'extérieur de l'écran vers le bord externe (carter 30) de l'écran, puis les connecteurs, de manière à ce que le trait laser 23 passe d'abord sur le bord externe (carter 30) de l'écran, puis sur la plaquette 13, puis sur les lampes 11.
Les figures 4a à 4e illustrent de façon chronologique la position d'un ensemble caméra-laser pendant une étape de profilométrie laser avec un balayage longitudinal.
Les figures 5a à 5e illustrent l'image respective qui en résulte dans lesquelles le cadre illustre un écran de visualisation.
Sur la figure 4a, le trait laser est en amont de la plaquette 13. Il en résulte le profil correspondant figure 5a qui comprend :
- une ligne sensiblement droite discontinue P12 correspondant au fond 12,
- un ensemble d'arcs sensiblement circulaires P11 correspondant aux lampes 11,
- une ligne sensiblement droite continue PR1 correspondant au bord latéral R1,
- une ligne sensiblement droite continue P30 correspondant au carter 30, et
- une ligne sensiblement droite continue PT correspondant au support sur lequel était posé l'écran lors des mesures de profilométrie .
Sur la figure 4b, le trait laser est sur la plaquette 13 au dessous du sommet des lampes. Il en résulte le profil correspondant figure 5b dans lequel la distance relative
sur l'écran de visualisation entre l'ensemble d'arcs sensiblement circulaires Pli correspondant aux lampes 11 et la ligne sensiblement droite discontinue P12 correspondant au fond 12 diminue par rapport à la figure 5a, du fait du mouvement de balayage centrifuge.
Sur la figure 4c, le trait laser est sur la plaquette 13 au dessus du sommet des lampes. Il en résulte le profil correspondant figure 5c dans lequel sur l'écran de visualisation, l'ensemble d'arcs sensiblement circulaires Pli correspondant aux lampes 11 ne sont plus visibles. La ligne sensiblement droite discontinue P12 correspond aux évidements 14 du fond 12. Sur la figure 4d, le trait laser est sur la plaquette
13 au dessus du sommet des lampes et des évidements, et au- dessous du carter. Il en résulte le profil correspondant figure 5d dans lequel sur l'écran de visualisation, la ligne sensiblement droite P12 est alors continue.
Sur la figure 4e, le trait laser est sur le carter. Il en résulte le profil correspondant figure 5e dans lequel sur l'écran de visualisation, on n'observe qu'une ligne sensiblement droite et continue correspondant au balayage du carter.
Les images du profil obtenu permettent, par des algorithmes de traitement d'image connus, de détecter :
- les points correspondant au sommet S des lampes (points des lampes les plus hauts par rapport au fond plat) ,
- le (s) segment (s) de droite correspondant au fond plat,
- le (s) segment (s) de droite correspondant au sommet de la plaquette (par exemple par une grande majorité de ligne continue et rectiligne),
- le (s) segment (s) de droite correspondant au carter 30 (par exemple par un profil complètement rectiligne)
et d'en déduire, par exemple dans le repère du robot supportant le bras robotisé :
- les coordonnées 3D (trois dimensions) des points correspondant au sommet S des lampes 11,
- l'équation 3D du fond plat 12,
- l'équation 3D du plan de la plaquette 13,
- l'équation 3D des droites correspondant aux limites du plan de la plaquette au niveau du carter 30 (limite haute) , au niveau du fond (limite basse) et/ou au niveau de la droite HL des points correspondant au sommet des lampes.
De ces informations, on déduit par régression, dans le plan de la plaquette, l'équation de la droite reliant les points correspondant au sommet S des lampes, ainsi que les limites basse, haute, et latérales de la plaquette. Généralement, le sommet S des lampes coïncide sensiblement avec le sommet des évidements 14.
Connaissant les différentes équations et coordonnées 3D, il est alors possible de déterminer les limites dans lesquelles doit être mise en œuvre l'étape de fonte du verre des lampes, la position de chaque point de fonte et celle d'une position de référence.
En effet, la profilométrie permet de déterminer la position des tubes de verre des lampes 11 et les positions
de leurs extrémités apparentes. Par « extrémité apparente » d'un tube en verre en lampe, on entend sur le profil obtenu tout changement dudit profil sur une distance supérieure à un seuil prédéterminé, ce qui correspond par exemple dans l'écran à la partie du tube recouvert par une plaquette ou un carter, ou connecté à un connecteur.
Typiquement, puisque l'ensemble d'arcs sensiblement circulaires Pli du profil représentent les lampes, on peut utiliser cette forme de profil pour asservir l'étape de fonte du verre des lampes, de sorte à garantir que celle-ci soit mise en œuvre sur le verre d'une lampe et pas sur la plaquette ou le carter par exemple. Une fois la position des extrémités des lampes déterminée, un dispositif ou outil de fonte (non illustré) peut par exemple être asservi pour fondre les tubes des lampes à une distance prédéterminée de ces extrémités. Une position de référence peut être par exemple la position d'un connecteur, d'une extrémité apparente, d'un élément de structure de l'écran tel qu'un carter, voire une position externe à l'écran. A cause de l'échantillonnage du balayage laser il est possible de ne pas obtenir d' image correspondant à l'instant précis où le laser 20 est positionné à l'extrémité réelle ou l'extrémité apparente d'une lampe. En revanche, grâce au changement de la forme du profil, il est possible de déterminer si l'image obtenue correspond à un balayage du laser en amont (avant) ou en aval (après) de l'extrémité d'une lampe. On peut donc
prévoir de sélectionner la dernière image obtenue avant le balayage de l'extrémité d'une lampe et considérer que le profil de cette image contient ladite extrémité (réelle ou apparente) de ladite lampe. Ce qui permet d'obtenir une marge de sécurité par exemple dans le positionnement du dispositif de chauffe décrit ci-après. La position de l'extrémité (réelle ou apparente) considérée dans cette dernière image obtenue peut par exemple servir de position de référence.
Balayage multiple
Il est souhaitable que le trait couvre la totalité des lampes. A cet effet, la distance entre le laser 20 et l'écran peut être adaptée.
Or cette distance influence la résolution de la caméra 21 : plus l'écran est grand, plus il faut, pour un même ensemble laser-caméra, augmenter la distance laser/écran, donc plus la caméra 21 est également éloignée de l'écran, et plus la résolution est faible. Ainsi, la précision de mesure est fonction de la taille des écrans. De plus, l'augmentation de la distance entre la zone éclairée par le laser 20 et la caméra 21 réduit la puissance lumineuse atteignant le capteur de la caméra 21 : ceci réduit encore la précision de mesure.
Si le trait laser ne couvre pas la totalité des lampes, il est donc préférable de réaliser un balayage multiple de l'écran, en gardant la distance laser/écran constante pour tous les écrans. Le nombre de balayages dépend outre cette distance, des dimensions de l'écran, de la taille du champ scruté par la caméra 21 et de l'angle d'ouverture du plan lumière du laser.
Lors de chaque balayage, on détermine une équation en 3D dans le repère du robot de chaque objet de l'écran (lampes, plaquette, etc.) représenté par le profil grâce à un algorithme de calcul qui prend en entrée les informations géométriques (et références) de l'écran et qui génère des plans (équations 3D) . Pour plusieurs balayages, on obtient plusieurs équations 3D de droite qui sont quasiment colinéaires (aux imprécisions de mesure près) , soit -après régression- une seule et même équation, ce qui permet typiquement de calculer la position et les dimensions des différentes lampes.
On notera que si les équations obtenues pour chaque balayage sont trop différentes entre elles, le système peut alors lever une alarme. Une telle alarme peut correspondre soit à l'état de déformation de l'écran (abimé/déformé au niveau de la plaquette) donc la procédure de fonte risquerait de ne pas être adéquate, soit à une erreur de mesure. Il est alors possible d'évacuer l'écran vers d'autres moyens de découpe/désassemblage.
Alternativement au balayage multiple, on peut prévoir une pluralité d'ensembles caméra-laser. Pour chaque ensemble le laser a une lentille d'ouverture respective permettant d' avoir un trait plus ou moins étendu et la caméra a une focale plus ou moins courte (grand ou très grand angle) .
L'ensemble caméra-laser est sélectionné selon la taille de l'écran. On peut alors n'effectuer qu'un seul balayage .
Au préalable, l'ensemble de vision caméra-laser a été calibré. La calibration, connue en soi dans ce domaine, consiste à faire correspondre des points de l'image 2D avec des coordonnées réelles 3D dans un repère donné, de manière à transcrire les informations recueillies dans les images en plans de coupe dans un repère de base. On définit de préférence comme repère de base celui du robot (de fonte) . Ce qui permet de pouvoir effectuer un changement de repère pour toutes les coordonnées des points correspondants aux mouvements de l'ensemble caméra-laser et les différentes équations calculées entre le repère de l'ensemble caméra- laser et ce repère de base.
Balayage latéral
Dans un autre mode de réalisation, alternatif ou complémentaire, le balayage laser est latéral. Dans ce cas, le trait laser (rectiligne) est quasi parallèle à l'axe d'élongation des lampes, voir figures 4f, 4g, 5f et 5g. Sur la figure 4f, le trait laser est entre deux lampes adjacentes. Il en résulte le profil correspondant à la figure 5f qui comprend :
- une ligne sensiblement droite continue PT' correspondant au support sur lequel était posé l'écran lors des mesures de profilométrie,
- une ligne sensiblement droite continue P30' correspondant au carter 30.
- une ligne sensiblement droite continue P13' correspondant à la plaquette 13, et
- une ligne sensiblement droite continue P12' correspondant au fond 12,
Sur la figure 4g, le trait laser couvre partiellement une lampe et la plaquette. Il en résulte le profil correspondant figure 5g qui comprend :
- une ligne sensiblement droite continue PT" correspondant au support sur lequel était posé l'écran lors des mesures de profilométrie,
- une ligne sensiblement droite continue P30' correspondant au carter 30,
- une ligne sensiblement droite continue P13' correspondant à la plaquette 13,
- une ligne sensiblement courbée Pli' correspondant à la lampe couverte par le laser, et
- une ligne sensiblement droite P12' correspondant au fond 12.
Sur la figure 5g, on notera deux discontinuités Dl et D2, de part et d'autre de la ligne sensiblement courbée Pli' . Ces discontinuités sont dues aux réflexions du trait laser sur la surface courbe de la lampe qui n'atteignent pas la caméra .
En l'espèce le trait laser est quasi parallèle à la direction de la longueur du fond de l'écran. La longueur du trait laser recouvre la plaquette 13, ce qui permet de détecter les extrémités haute et basse de la plaquette à coup sûr. Par quasi parallèle, on entend que l'angle entre le trait laser et l'axe d'élongation des lampes est inférieur à 10 degrés et de préférence inférieur à 5 degrés. Dans ce cas, la direction du balayage est parallèle à la direction de la longueur du fond de l'écran. Par rapport au mode de réalisation précédent dans lequel la direction du balayage est perpendiculaire à la direction de la longueur du fond de l'écran, l'avantage est qu'un seul
balayage suffit pour déterminer les extrémités latérales de la plaquette.
Retrait des lampes
Les connecteurs peuvent être désolidarisés du fond de l'écran, par exemple en les désoudant. Les lampes peuvent être déconnectées des connecteurs ultérieurement. Pour éviter que les lampes ne cassent sous leur propre poids et optimiser la réflexion de la lumière sur le fond, les lampes sont généralement maintenues à distance du fond par des œillets ou des clips. Les œillets (non illustrés) sont des pièces en forme de disque dont le diamètre intérieur épouse le diamètre extérieur des lampes, et dont le diamètre extérieur est adapté à la hauteur des connecteurs par rapport au fond. Les clips 40 (figure 11) sont des pièces, en général en plastique, comprenant un support 42 et deux chevalets 43, chaque chevalet étant monté sur un picot respectif 41, entre lesquels une lampe 11 peut être maintenue. On peut prévoir de désolidariser les lampes des clips, par exemple en découpant ou en cassant les chevalets. Cette opération peut être mise en œuvre manuellement, à l'aide d'outil tel qu'un marteau / burin ou tournevis, cutter, Dremel (Marque déposée), etc. Cette opération peut aussi être mise en œuvre par un robot. A cet effet, il est souhaitable, lors de l'étape de profilométrie laser décrite précédemment, d'effectuer un balayage laser sur toute la surface de l'écran afin de déterminer au moins
l'emplacement, et si possible la forme des picots et des chevalets, pour déterminer le plan de coupe des picots/chevalets .
On peut aussi prévoir de désolidariser d'abord les lampes en conservant les clips solidaires des lampes, puis dans une étape ultérieure de désolidariser les lampes et les clips.
Fonte du verre des lampes
Pour désolidariser 120 une lampe 11 de l'écran 10 sans la casser, on prévoit avantageusement, en au moins un point de fonte de ladite lampe 11, une étape de fonte du verre constituant ladite lampe 11, jusqu'à séparer celle-ci en au moins deux morceaux lia, 11b de part et d'autre du point de fonte .
La fonte consiste à ramollir le verre par voie thermique afin que celui-ci devienne et reste pâteux, de préférence pendant une durée déterminée.
L'étape de fonte est mise en œuvre par un dispositif de chauffe dont la température d'utilisation, appelée température de fonte, est susceptible de faire fondre le verre constituant ladite lampe 11.
La durée pendant laquelle la température de fonte est appliquée au verre de la lampe dépend de la température de fonte et de la distance éventuelle entre le dispositif de chauffe et le verre.
Par exemple avec une lampe en verre borosilicate dont la température de fusion se situe entre 750°C et 850°C, on peut chauffer à une température de fonte de 1100 °C pendant
une durée inférieure à 5 secondes pour chaque point de fonte, le verre reste pâteux.
Chaque point de fonte est situé à une distance prédéterminée d'une position de référence. La distance prédéterminée peut être une valeur absolue ou relative, une distance comprise dans un ensemble de valeurs absolues ou dans un ensemble de valeurs relatives.
Par valeur absolue, on entend une distance dont la valeur est exprimée en unités de mesure, par exemple en centimètres. Par valeur relative, on entend une distance dont la valeur est exprimée en pourcentage de la longueur apparente du tube en verre (mesuré par profilométrie laser) en partant de la position de référence.
Par exemple le point de fonte est situé à une distance inférieure à 15% de la longueur apparente du tube en verre, ou compris entre 3 et 10 cm de la position de référence.
Dans un mode de réalisation, l'étape de fonte est mise en œuvre par un dispositif de chauffe au contact du tube de ladite lampe, typiquement par pincement thermique.
Pincement thermique
On peut également prévoir une étape 160 de pincement thermique du verre d'au moins une lampe, en amont de sa désolidarisation du fond de l'écran.
Le pincement thermique consiste à chauffer une pince 50 (figure 8) à haute température, c'est-à-dire une température suffisante pour faire fondre le verre dont les tubes des lampes sont constitués, et à appliquer la pince sur les lampes.
La pince est positionnée par un robot ou un opérateur de préférence le plus près possible des connecteurs.
L' actionnement de la pince fait fondre le verre, ce qui sépare la lampe en deux morceaux lia, 11b (figure 9) . La fonte du verre sur lui-même referme également, de manière étanche, le tube de chaque côté de la pince thermique, ce qui forme un bouchon hermétique à chaque morceau lia, 11b qui limite la diffusion de mercure et permet de désolidariser 120 les lampes 11 de l'écran 10 sans les casser.
Pour cette opération, il est préférable de conserver les œillets ou de maintenir les lampes dans leurs clips 40 afin de stabiliser les lampes et de les maintenir en position une fois découpées. Sinon les morceaux découpés lia pourraient se casser en tombant sur le fond de l'écran. Ce qui facilite également la manipulation de la pince thermique .
Un (petit) morceau de lampe 11b reste généralement dans le connecteur. L'opérateur peut ensuite enlever manuellement ce morceau, rendu moins fragile par la diminution du bras de levier, et sans risquer de casser toute la lampe.
Le pincement thermique peut être effectué en complément des étapes décrites précédemment, par exemple lorsqu'une lampe est coincée dans son connecteur et que le connecteur reste solidaire du fond de l'écran.
Le pincement thermique peut être effectué en alternative au retrait au moins partiel de la plaquette. Dans ce cas, il doit être appliqué à toutes les lampes. Toutefois, la pâte de verre peut adhérer à la pince thermique, ce pourquoi on peut prévoir une fonte sans contact entre le verre de la lampe et le dispositif de chauffe . A cet effet, dans un mode de réalisation, l'étape de fonte est mise en œuvre par un dispositif de chauffe distant du tube de ladite lampe 11, ledit dispositif comprenant un chalumeau et/ou une bobine d'induction. La pression interne d'une lampe est inférieure à la pression atmosphérique, elle est en général inférieure ou égale à 100 mbar. Ainsi, même sans contact entre le dispositif de chauffe et le tube, la différence de pression entre l'intérieur de la lampe et l'environnement permet par la plasticité du verre fondu que celui-ci se referme sur lui-même et assure de fait l'étanchéité de chaque morceau lia, 11b de part et d'autre du point de fonte.
Après la fonte on prévoit une étape de refroidissement du verre fondu, par exemple en éloignant le dispositif de chauffe ou en coupant l'alimentation en énergie de celui- ci. Lors du refroidissement du verre fondu, celui-ci se referme sur lui-même puis se solidifie, ce qui forme un bouchon hermétique à chaque morceau lia, 11b.
Lors d'une mise en œuvre d'un chalumeau pour une fonte par flamme, il est souhaitable de maîtriser la température de flamme, le mélange gazeux utilisé, et la vitesse de
flamme, qui risque de pouvoir éjecter des débris de verre pendant la fonte.
En outre, certains éléments de l'écran (le fond ou une plaquette par exemple) peuvent faire face à un risque d'inflammation.
L'utilisation d'un plasma a l'avantage d'être très rapide mais est complexe à mettre en œuvre et vaporise le verre, ce qui pose de problèmes d' étanchéité .
Pour ces raisons, on ne décrit précisément qu'une étape de fonte par induction.
Fonte par induction
On prévoit un dispositif de chauffe comprenant une bobine d'induction 710. La bobine d'induction permet de chauffer par induction un élément métallique de transmission thermique 711, dénommé « fourchette » par concision .
De préférence, la fourchette comprend un matériau possédant une haute résistance à l'oxydation, une bonne conductivité thermique et capable de conserver ses propriétés mécaniques à une température de l'ordre de 1000°C.
Par exemple, la fourchette peut comprendre au moins l'un des matériaux suivants : du cupronickel (CUNi3Si) , de l'Inconel (marque déposée), un alliage nickel-chrome tel que du NIMONIC Alloy 75 (marque déposée), et du titane.
La fourchette comprend un évidement 712 permettant d'y insérer une partie au moins d'un tube de lampe 11, de préférence sans contact entre la fourchette et la lampe. On
prévoit typiquement une distance de moins d'un centimètre entre la périphérique de la lampe et les plus proches parois 713, 714 de l'évidement 712. De préférence, la forme de l'évidement épouse au moins partiellement celle de la lampe, ce qui permet d'homogénéiser la chauffe. Avec une lampe tubulaire, l'évidement est avantageusement au moins partiellement cylindrique, dont le rayon est supérieur à celui du tube. Par exemple, comme illustré figure 13, l'évidement 712 est un demi-cylindre de centre C et rayon R monté sur des flancs 714 plans, en l'espèce parallèles et de hauteur H supérieure ou égale au rayon R. Ainsi, un tube de rayon r<R peut être inséré dans l'évidement 712 sans contact avec les parois 713, 714. De préférence, le centre du tube est inséré de sorte à sensiblement coïncider avec le centre C du demi-cylindre, ce qui permet d'assurer une chauffe homogène du tube en verre au moins sur le demi cylindre du tube dont la distance radiale à l'évidement 712 est constante. Les flancs 714 permettent de pouvoir effectuer très facilement un mouvement relatif, au moins en translation et typiquement parallèle aux flancs, entre le tube en verre d'une lampe 11 et la fourchette. Ils permettent également de chauffer le tube, en l'espèce l'autre partie de la lampe c'est-à-dire le demi cylindre de la lampe dont la distance radiale à l'évidement 712 n'est pas constante. Ainsi une fourchette peut être amenée par¬ dessus une lampe 11, la lampe est insérée dans son évidement dans un mouvement relatif, le chauffage par induction permet de faire fondre le verre puis la fourchette est retirée après la fonte, et ce de manière répétée pour un ensemble de lampes.
La forme de la fourchette permet une chauffe très localisée. De fait, les éléments (notamment le fond de l'écran) adjacents à la lampe subissant la chauffe ne risquent pas d'inflammation. En outre, l'induction étant à distance, le verre fondu ne colle pas à la fourchette, il n'y a donc pas de risque d'adhésion et de problème de nettoyage du dispositif de chauffe.
De préférence, on prévoit que l'étape de fonte soit mise en œuvre simultanément en deux points de fonte pour une lampe donnée, par exemple en utilisant deux fourchettes par lampe. Une lampe est ainsi fondue en trois morceaux, deux morceaux dont chacun est potentiellement relié à un connecteur respectif, et un morceau central qui peut être retiré très facilement, par exemple à la main ou par une pince telle que décrite 1200 ci-après.
Pour un écran donné, on peut prévoir que l'étape de fonte soit mise en œuvre en série, c'est-à-dire lampe par lampe ; ou en parallèle, c'est-à-dire plusieurs lampes simultanément .
Rotation On peut prévoir en outre une étape de rotation d'une lampe 11, de préférence autour de son axe d' élongation, pendant ou après l'étape de fonte.
La rotation du tube autour de son axe d' élongation permet au verre fondu de se replier sur lui-même, ce qui limite les coulures et facilite la préhension des morceaux de lampe, et ce qui favorise l'étanchéité de chaque morceau lia, 11b.
L'étape de rotation autour de l'axe d'élongation d'une lampe est mise en œuvre par un ensemble d'au moins trois roues 1210, 1211, 1212 en contact avec ladite lampe 11, dont au moins une roue est motorisée.
Par exemple l'ensemble d'au moins trois roues est porté par une pince 1200, les roues étant réparties sur les deux branches 1201, 1202 de la pince. Ainsi, lorsque la pince est activée, fermée, les roues 1210, 1211, 1212 viennent au contact du tube d'une lampe 11.
On peut prévoir par exemple une pince 1200 ou deux pinces, placée (s) entre deux points de fonte.
Avantageusement, la pince peut également permettre le maintien de la lampe pendant la fonte du verre, ainsi que le déplacement du morceau désolidarisé après la fonte, par exemple vers une zone de stockage.
Une fois une lampe fondue en deux points de fonte, un morceau est retiré, par exemple par une pince, en particulier une pince telle que décrite ci-dessus, et deux morceaux restent connectés, chacune à un connecteur respectif . Chaque morceau fondu connecté à un connecteur peut être désolidarisé de l'écran manuellement par un opérateur, en désolidarisant le morceau fondu de son connecteur et/ou en désolidarisant le connecteur de l'écran. La dimension du morceau fondu, couplée au fait qu'il n'est connecté qu'à un seul connecteur (alors que la lampe est en général connectée à deux connecteurs) rend cette désolidarisation beaucoup plus facile.
On peut également prévoir, après l'étape de fonte et le retrait des morceaux fondus entre deux points de fonte, une étape de découpe de l'écran sur toute son épaisseur entre les deux points de fonte, ce qui facilite encore l'ergonomie de l'accès aux connecteurs et aux morceaux fondus qui y sont connectés.
Les modes de réalisation précédents sont éventuellement combinables. Par exemple on peut prévoir une combinaison de l'étape de fonte et de pincement thermique, la pince thermique étant à température éventuellement ambiante .
Claims
1. Procédé de déconstruction au moins partielle d'un écran plat, l'écran (10) comprenant
des connecteurs (15) solidaires de l'écran (10), des lampes (11) de rétro-éclairage connectées à au moins un connecteur (15) respectif, et solidaires de l'écran (10) par ce connecteur (15),
le procédé comprenant des étapes consistant à :
- lorsque l'écran (10) comprend une dalle, retirer au préalable (100) ladite dalle pour rendre les lampes (11) et la plaquette (13) apparentes, et
- désolidariser (120) les lampes (11) de l'écran (10) sans les casser.
2. Procédé selon la revendication 1, comprenant en outre pour au moins une lampe (11) en au moins un point de fonte de ladite lampe (11), une étape de fonte du verre constituant ladite lampe (11), jusqu'à séparer celle-ci en au moins deux morceaux (lia, 11b) de part et d'autre de chaque point de fonte.
3. Procédé selon la revendication 2, dans lequel chaque point de fonte est situé à une distance prédéterminée d'une position de référence.
4. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre une étape de profilométrie laser (150) consistant à obtenir la topographie tridimensionnelle au moins des lampes (11) .
5. Procédé selon la revendication 4, dans lequel l'étape (150) de profilométrie laser comprend un balayage laser longitudinal et/ou latéral, éventuellement multiple de l ' écran (10).
6. Procédé selon l'une quelconque des revendications 2 à 5, dans lequel l'étape de fonte est mise en œuvre par un dispositif de chauffe au contact du tube de ladite lampe (11) ·
7. Procédé selon la revendication 6, comprenant une étape (160) de pincement thermique du verre de ladite lampe
(11) ·
8. Procédé selon l'une quelconque des revendications 2 à 5, dans lequel l'étape de fonte est mise en œuvre par un dispositif de chauffe distant du tube de ladite lampe (11), ledit dispositif comprenant un chalumeau et/ou une bobine d' induction .
9. Procédé selon l'une quelconque des revendications 2 à 8, dans lequel chaque lampe (11) comprend une partie tubulaire qui présente un axe d' élongation, le procédé comprenant en outre pour chaque lampe (11) une étape de rotation de ladite lampe (11) autour de son axe d' élongation pendant ou après l'étape de fonte.
10. Procédé selon la revendication 9, dans lequel l'étape de rotation est mise en œuvre par un ensemble d'au moins trois roues en contact de ladite lampe (11), dont au moins une roue est motorisée.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES12725104.9T ES2585591T3 (es) | 2011-05-05 | 2012-05-04 | Procedimiento de desmontaje de monitores planos de cristal líquido y lámparas de retroiluminación |
EP12725104.9A EP2705406B1 (fr) | 2011-05-05 | 2012-05-04 | Procede de deconstruction d'ecrans plats a cristaux liquides et lampes de retro-eclairage |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1153876 | 2011-05-05 | ||
FR1153876A FR2974937B1 (fr) | 2011-05-05 | 2011-05-05 | Procede de deconstruction d'ecrans plats a cristaux liquides et lampes de retro-eclairage |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012150422A1 true WO2012150422A1 (fr) | 2012-11-08 |
Family
ID=46201727
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2012/050998 WO2012150422A1 (fr) | 2011-05-05 | 2012-05-04 | Procede de deconstruction d'ecrans plats a cristaux liquides et lampes de retro-eclairage |
PCT/FR2012/050999 WO2012150423A1 (fr) | 2011-05-05 | 2012-05-04 | Procede de deconstruction d'ecrans plats a cristaux liquides et lampes de retro-eclairage |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2012/050999 WO2012150423A1 (fr) | 2011-05-05 | 2012-05-04 | Procede de deconstruction d'ecrans plats a cristaux liquides et lampes de retro-eclairage |
Country Status (5)
Country | Link |
---|---|
EP (2) | EP2705406B1 (fr) |
ES (2) | ES2585591T3 (fr) |
FR (1) | FR2974937B1 (fr) |
PT (2) | PT2705407T (fr) |
WO (2) | WO2012150422A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2999102A1 (fr) * | 2012-12-11 | 2014-06-13 | Veolia Proprete | Procede de decoupe a froid d'une lampe |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050088586A1 (en) * | 2003-10-28 | 2005-04-28 | Mitsubishi Denki Kabushiki Kaisha | Liquid crystal display apparatus and electronic equipment |
JP2006223912A (ja) * | 2005-02-14 | 2006-08-31 | Jfe Kankyo Corp | 蛍光管の口金部の切断方法および装置 |
US20070019275A1 (en) * | 2005-07-22 | 2007-01-25 | Sanyo Epson Imaging Device Corp. | Display |
US20070153496A1 (en) * | 2005-12-30 | 2007-07-05 | Hon Hai Precision Industry Co., Ltd. | Direct type backlight module |
EP1967875A2 (fr) * | 2007-03-06 | 2008-09-10 | Funai Electric Co., Ltd. | Module d'affichage à cristaux liquides |
CN101368697A (zh) * | 2008-10-09 | 2009-02-18 | 友达光电股份有限公司 | 背光模块及其灯管夹座 |
JP2009113871A (ja) * | 2007-11-01 | 2009-05-28 | Sharp Corp | 蛍光管回収容器およびそれを用いた蛍光管の回収方法、液晶表示装置の再資源化方法 |
-
2011
- 2011-05-05 FR FR1153876A patent/FR2974937B1/fr active Active
-
2012
- 2012-05-04 PT PT127251056T patent/PT2705407T/pt unknown
- 2012-05-04 ES ES12725104.9T patent/ES2585591T3/es active Active
- 2012-05-04 EP EP12725104.9A patent/EP2705406B1/fr active Active
- 2012-05-04 ES ES12725105T patent/ES2572077T3/es active Active
- 2012-05-04 EP EP12725105.6A patent/EP2705407B1/fr active Active
- 2012-05-04 WO PCT/FR2012/050998 patent/WO2012150422A1/fr active Application Filing
- 2012-05-04 PT PT127251049T patent/PT2705406T/pt unknown
- 2012-05-04 WO PCT/FR2012/050999 patent/WO2012150423A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050088586A1 (en) * | 2003-10-28 | 2005-04-28 | Mitsubishi Denki Kabushiki Kaisha | Liquid crystal display apparatus and electronic equipment |
JP2006223912A (ja) * | 2005-02-14 | 2006-08-31 | Jfe Kankyo Corp | 蛍光管の口金部の切断方法および装置 |
US20070019275A1 (en) * | 2005-07-22 | 2007-01-25 | Sanyo Epson Imaging Device Corp. | Display |
US20070153496A1 (en) * | 2005-12-30 | 2007-07-05 | Hon Hai Precision Industry Co., Ltd. | Direct type backlight module |
EP1967875A2 (fr) * | 2007-03-06 | 2008-09-10 | Funai Electric Co., Ltd. | Module d'affichage à cristaux liquides |
JP2009113871A (ja) * | 2007-11-01 | 2009-05-28 | Sharp Corp | 蛍光管回収容器およびそれを用いた蛍光管の回収方法、液晶表示装置の再資源化方法 |
CN101368697A (zh) * | 2008-10-09 | 2009-02-18 | 友达光电股份有限公司 | 背光模块及其灯管夹座 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2999102A1 (fr) * | 2012-12-11 | 2014-06-13 | Veolia Proprete | Procede de decoupe a froid d'une lampe |
WO2014091108A1 (fr) | 2012-12-11 | 2014-06-19 | Veolia Proprete | Procédé de découpe à froid d'une lampe |
CN104837572A (zh) * | 2012-12-11 | 2015-08-12 | 威立雅环境服务公司 | 用于冷切割灯的方法 |
US9496113B2 (en) | 2012-12-11 | 2016-11-15 | Veolia Proprete | Method for cold-cutting a lamp |
Also Published As
Publication number | Publication date |
---|---|
EP2705407B1 (fr) | 2016-03-30 |
EP2705406B1 (fr) | 2016-06-22 |
ES2585591T3 (es) | 2016-10-06 |
FR2974937A1 (fr) | 2012-11-09 |
ES2572077T3 (es) | 2016-05-30 |
FR2974937B1 (fr) | 2013-12-13 |
WO2012150423A1 (fr) | 2012-11-08 |
EP2705407A1 (fr) | 2014-03-12 |
EP2705406A1 (fr) | 2014-03-12 |
PT2705406T (pt) | 2016-09-29 |
PT2705407T (pt) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1701147B1 (fr) | Installation de fabrication de tuyaux et procédé de détection de défauts associé | |
EP1641580B1 (fr) | Dispositif de realisation de couches minces de poudre notamment a hautes temperatures lors d'un procede base sur l'action d un laser sur de la matiere | |
CA2838173C (fr) | Procede de deconstruction au moins partielle d'un ecran plat de visualisation | |
EP2694214B1 (fr) | Dispositif de connexion d'une carte microfluidique | |
CA2058881C (fr) | Microsoudeuse pour fibres optiques et procede de soudage a l'aide de cette microsoudeuse | |
FR2960232A1 (fr) | Forme de bombage alveolaire | |
EP3870549A1 (fr) | Procede et installation pour le marquage de recipients chauds en verre | |
EP1967316A1 (fr) | Installation et procédé de contrôle du centrage d'un faisceau laser passant au travers d'une buse laser | |
EP2705406B1 (fr) | Procede de deconstruction d'ecrans plats a cristaux liquides et lampes de retro-eclairage | |
WO2008031981A2 (fr) | Procede de soudage d'un organe sur un support par apport de matiere et dispositif d'agencement de deux elements l'un sur l'autre | |
FR2774319A1 (fr) | Procede de reglage de la position d'une camera de controle thermographique d'une soudure | |
EP3426613B1 (fr) | Installation de production de verre plat comprenant une installation de mesure en continu de la temperature du verre et procede de reglage d'une telle installation de mesure | |
CA3142246A1 (fr) | Lingotiere de coulee continue de metaux, systeme de mesure de la temperature et systeme et procede de detection de percee dans une installation de coulee continue de metaux | |
FR2846748A1 (fr) | Procede de determination du point de disparition des cristaux de produits petroliers ainsi que dispositif permettant la mise en oeuvre de ce procede | |
WO2019207267A1 (fr) | Dispositif de mesure topographique | |
FR2830478A1 (fr) | Dispositif de decoupe laser | |
FR2772872A1 (fr) | Raccords amovibles etanches a haute temperature pour tubes, procede de raccordement des tubes et utilisation | |
CA2890667C (fr) | Procede de decoupe a froid d'une lampe | |
WO2021048288A1 (fr) | Dispositif de mesure avant soudage de composants d'une canalisation | |
FR3072669A1 (fr) | Bombage de verre par gravite en presence d'un contre-squelette radiatif | |
FR2969520A1 (fr) | Systeme de decoupe d'une piece par un rayonnement, et procede de commande correspondant | |
EP2938981B1 (fr) | Dispositif de mesure de l'évolution d'un champ de température et procédé associé d'évaluation de la qualité d'une opération de soudage | |
FR3139334A1 (fr) | Outil de refroidissement local d’une feuille de verre | |
EP2955003B1 (fr) | Machine de soudage laser pour l'assemblage d'un boîtier et d'une glace de feu de véhicule automobile | |
EP4028246A1 (fr) | Procédé de vérification et dispositif de mesure avant soudage de composants d'une canalisation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12725104 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012725104 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |