WO2012149810A1 - Système de réseau optique passif et son procédé de transmission en liaison descendante - Google Patents

Système de réseau optique passif et son procédé de transmission en liaison descendante Download PDF

Info

Publication number
WO2012149810A1
WO2012149810A1 PCT/CN2011/081226 CN2011081226W WO2012149810A1 WO 2012149810 A1 WO2012149810 A1 WO 2012149810A1 CN 2011081226 W CN2011081226 W CN 2011081226W WO 2012149810 A1 WO2012149810 A1 WO 2012149810A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
optical
wavelength
downlink
optical signal
Prior art date
Application number
PCT/CN2011/081226
Other languages
English (en)
Chinese (zh)
Inventor
卫国
程宁
王峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/081226 priority Critical patent/WO2012149810A1/fr
Priority to CN201180002222.1A priority patent/CN102439998B/zh
Publication of WO2012149810A1 publication Critical patent/WO2012149810A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0286WDM hierarchical architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • the present invention relates to a passive optical network (PON) technology, and in particular to a passive optical network system and a downlink transmission method thereof.
  • PON passive optical network
  • the passive optical network system may include at least one optical line terminal (OLT), a plurality of optical network units (ONUs), and an optical distribution network (ODN).
  • OLT is connected to the plurality of ONUs in a point-to-multipoint manner through the ODN, and communicates with a plurality of ONUs in a Time Division Multiplexing (TDM) manner.
  • TDM Time Division Multiplexing
  • Passive optical networks have been developed to date and are widely used due to their low cost, maintenance schedule, and the ability to provide very high bandwidth.
  • the demand for bandwidth is increasing day by day, while the traditional P0N system adopts the TDM mechanism, and the service bandwidth is greatly limited.
  • the P0N upgrade means to replace or update the devices in the P0N, and this replacement or update requires a lot of cost, so how to maximize the utilization has been deployed.
  • the P0N device reduces the cost of the P0N upgrade, and achieving a smooth upgrade becomes a problem that must be considered.
  • the deployed P0N devices include 0NU and 0DN.
  • the equipment and operation and maintenance costs of these two parts account for more than 2/3 of the total cost. Therefore, how to maximize the use of deployed 0NU and 0DN devices during the upgrade process is especially important in the smooth upgrade process of P0N.
  • the prior art solves the problem of maximizing the utilization of existing deployed devices by replacing the first-stage optical splitting device in the P0N with a hybrid splitter (Hybrid Splitter), and the prior art can only perform an overall upgrade of the P0N. , can not be flexibly upgraded according to the needs of specific users. Summary of the invention
  • the embodiment of the present invention provides a passive optical network system to solve the problem of flexible upgrade of the passive optical network. Meanwhile, the embodiment of the present invention further provides a downlink transmission method of the foregoing passive optical network system.
  • a passive optical network system including an optical line terminal, an optical distribution network, and a plurality of optical network units, where the optical line terminal is connected to the plurality of optical network units through the optical distribution network;
  • the optical line terminal is configured to send a downlink multi-wavelength optical signal, where the downlink multi-wavelength optical signal is formed by wavelength division multiplexing of a plurality of downlink optical signals of different wavelengths;
  • the optical distribution network includes a first-stage optical splitter, a plurality of second-stage optical splitters and a plurality of filtering modules; the branching ports of the first-stage optical splitters are respectively connected to the plurality of second-level optical splitters, and the plurality of filtering modules are respectively coupled to the first-level optical splitter Between the branch port of the optical splitter and its corresponding second-stage optical splitter; the first-stage optical splitter is configured to split a downlink multi-wavelength signal sent by the optical line terminal into multiple downlink multi-wavelength signals;
  • the module is configured to filter the multi-channel downlink
  • a downlink transmission method of a passive optical network system includes: receiving a downlink multi-wavelength optical signal from an optical line terminal, where the downlink multi-wavelength optical signal is divided by a plurality of downlink optical signals of different wavelengths Reuse
  • the passive optical network system and the downlink transmission method in the passive optical network system can maximize the utilization of devices in the deployed passive optical network, thereby saving the upgrade cost of the passive optical network and improving Upgrade efficiency of passive optical networks.
  • FIG. 1 is a schematic structural diagram of a passive optical network system using a time division multiplexing mechanism
  • FIG. 2 is a schematic structural diagram of a passive optical network system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a method for processing a downlink optical signal of a passive optical network according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for processing a downlink optical signal of a passive optical network according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a method for processing a downlink optical signal of a passive optical network according to a third embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for processing a downlink optical signal of a passive optical network according to a third embodiment of the present invention. detailed description
  • FIG. 1 is a schematic diagram of a network architecture of a passive optical network (P0N) system using a time division multiplexing (TDM) mechanism.
  • the passive optical network system may include an optical line terminal (0LT), an optical distribution network Network (ODN) and multiple optical network units (0NU).
  • LT optical line terminal
  • ODN optical distribution network Network
  • NU multiple optical network units
  • the direction from the 0LT to the ONU is defined as a downlink direction, and the direction from the 0NU to the 0LT is defined as an uplink direction.
  • the OLT broadcasts downlink data to the multiple ONUs by using a time division multiplexing manner, and each ONU receives only data carrying its own identifier; and in the uplink direction, the multiple ONUs use time division multiple access (TDMA, The Time Div is ion Mul t iplex ing Acces s) mode communicates with the OLT, and each ONU sends uplink data strictly according to the time slot allocated by the 0LT.
  • TDMA time division multiple access
  • the passive optical network system may be a communication network system that does not require any active device to implement data distribution between the OLT and the ONU.
  • the OLT and the ONU Data distribution between the two can be achieved by passive optical devices (such as optical splitters) in the 0DN.
  • the passive optical network system may be an asynchronous transmission mode passive optical network (ATM P0N) system or a broadband passive optical network (BP0N) system defined by the ITU-T G.983 standard, and an ITU-T G. 984 standard.
  • ATM P0N asynchronous transmission mode passive optical network
  • BP0N broadband passive optical network
  • GGA P0N next-generation passive optical network
  • the 0LT is usually located at a central office (Centra l Offcece, CO), which can uniformly manage the plurality of ONUs and transmit data between the ONU and an upper layer network.
  • the OLT may serve as a medium between the ONU and the upper layer network (such as the Internet, a public switched telephone network), and forward data received from the upper layer network to the ONU, and The data received by the ONU is forwarded to the upper layer network.
  • the specific configuration of the OLT may vary depending on the specific type of the passive optical network.
  • the OLT may include an optical transmitter Tx and a receiver Rx.
  • the downlink optical signal is sent to the ONU, and the receiver is configured to receive an uplink optical signal from the ONU, where the downlink optical signal and the uplink optical signal are transmitted by using the 0DN.
  • the ONU can be distributed in a user-side location (such as a customer premises).
  • the 0NU The network device for communicating with the OLT and the user, in particular, the ONU may serve as a medium between the OLT and the user, for example, the ONU may receive from the OLT.
  • the data is forwarded to the user, and data received from the user is forwarded to the OLT.
  • ONT optical network terminal
  • the 0DN may be a data distribution system that may include fiber optics, optical couplers, beamsplitters, and/or other devices.
  • the optical fiber, optical coupler, optical splitter, and/or other device may be a passive optical device, in particular, the optical fiber, optical coupler, optical splitter, and/or other device may be Distributing the data signal between the 0LT and the ONU is a device that does not require power supply support.
  • the 0DN may also include one or more processing devices, such as an optical amplifier or relay dev ice.
  • the 0DN may specifically extend from the optical line terminal to the plurality of 0NUs, but may also be configured in any other point-to-multipoint structure.
  • the data distribution is implemented by using a splitter.
  • the 0DN can be deployed in two-stage split mode, as shown in FIG. 1 .
  • the 0DN may include a first-stage splitter with a split ratio of 1:4 and four second-stage splitters with a split ratio of 1:8, the first-stage splitter
  • Each of the branch ports is correspondingly connected to the four second-stage optical splitters by optical fibers, and the respective branch ports of the second-stage optical splitters are respectively connected to the plurality of ONUs through the branch optical fibers.
  • the data signal of the 0LT is divided into four channels by the first-stage splitter, and then divided into multiple channels by the second-stage splitter and transmitted to the respective ONUs.
  • the first-stage optical splitter is disposed at an optical distribution frame (0DF, Opt ica l Di str ibut ion frame) that is closer to the central office for maintenance; and the second-stage optical splitter is deployed at the remote end.
  • the node Remote Node
  • the operation and maintenance cost of this part is high, and it often does not change after many years of deployment.
  • 0NU devices are usually located in or near the user's home. Due to the large environmental differences, the operation and maintenance costs of this part are also high, and they often do not change after many years of deployment.
  • the increase of bandwidth often leads to the change of the multiplexing mode.
  • the TDM mode has achieved great success in the P0N.
  • the higher rate TDM mode especially in the burst mode.
  • the bottleneck of the high-speed TDM method is increasingly apparent, and TDM P0N is difficult to cope with the development of P0N.
  • WDM Wavelength Divi s ion Mul t iplex ing
  • the embodiment of the invention provides a novel passive optical network P0N system, which can greatly increase the bandwidth provided to users through the combined application of TDM and WDM.
  • the P0N system provided by the embodiment of the present invention may be based on the existing TDM P0N system, and the central office 0LT transmits a downlink multi-wavelength optical signal formed by wavelength division multiplexing of downlink optical signals of multiple different wavelengths.
  • each set of 0NUs can respectively correspond to one downlink wavelength of the downlink multi-wavelength signal and between the same group of 0NUs
  • the downlink wavelength channel is shared by the TDM mode, and different groups of ONUs respectively correspond to different downlink wavelengths and are multiplexed by WDM.
  • the P0N system may further add a filtering module between the first-stage splitter and the second-stage splitter to filter out downlink optical signals belonging to other groups of the ONN in the downlink multi-wavelength signal, so that each The group ONU receives only the downlink optical signal corresponding to its downlink wavelength.
  • FIG. 2 is a schematic diagram of a network architecture of a passive optical network system according to an embodiment of the present invention.
  • the passive optical network system includes an optical line terminal 0LT, an optical distribution network 0DN, and a plurality of optical network units 0NU, wherein the 0LT is connected to the plurality of 0NUs through the 0DN.
  • the optical line terminal OLT includes a plurality of optical transmitters ⁇ 4, a multiplexer 201, a duplexer 206, and an optical receiver Rx.
  • the duplexer has three ports.
  • the plurality of optical transmitters Tx1_Tx4 are connected to one end of the multiplexer 201, the other end of the multiplexer 201 is connected to one of the duplexers 206, and the optical receiver Rx and the duplexer 206 The other port is connected, and the third port of duplexer 206 is connected to the 0DN.
  • the optical transmitters ⁇ 4 have different transmission wavelengths for respectively transmitting downlink optical signals of different downstream wavelengths, and the multiplexer 201 is configured to transmit a plurality of downstream lights of the optical transmitters TxfTx4.
  • the signal is subjected to wavelength division multiplexing processing to generate a downlink multi-wavelength optical signal, and the downlink multi-wavelength optical signal is output to the 0DN through the duplexer 206.
  • the number of optical transmitters is first increased.
  • the number of optical transmitters is set to four. Therefore, the four optical transmitters Txl _ Tx4 is used to transmit 4 downlink optical signals with different downstream wavelengths.
  • the processing of the uplink optical signal by the 0LT may remain unchanged. Specifically, only one light is configured inside the 0LT.
  • the receiver Rx is configured to receive an uplink optical signal transmitted by the plurality of ONUs and transmitted to the 0LT through the 0DN.
  • the optical distribution network 0DN may include a first stage splitter 202, a plurality of filtering modules 207, and a plurality of second stage beamsplitters 205.
  • the common end of the first-stage optical splitter 202 is connected to the OLT through an optical fiber, and each of the branch ports is respectively connected to one of the filtering modules 207, and is further connected to a second-stage optical splitter 205 through an optical fiber.
  • the common ports of the second-stage optical splitters 205 are respectively connected to different ONUs through optical fibers.
  • the filter module 207 can include an optical path redirection device 203 and a filter member 204.
  • the optical path redirection device 203 can be a three-port circulator 203
  • the filter device 204 can be a reflective filter device, such as an FBG. (F iber Bragg Gra t ing , fiber Bragg grating).
  • Each three-port circulator 203 has a port 1, a port 2 and a port 3, wherein port 1 is respectively connected to a corresponding branch port of the first-stage splitter 202, port 1 is connected to the FBG 204, and port 3 is connected to One of the second stage beamsplitters 205; that is, port 1 and port 3 of the three port circulator 203 are cascaded on the fibers between the first stage splitter 202 and the second stage splitter 205, respectively.
  • the three-port circulator 203 can provide the downlink multi-wavelength optical signal input by the port 1 to the port 2 and output to the FBG 204, and provide the downlink optical signal input by the port 2 and filtered by the FBG 204 to be reflected to Port 3 is output to the corresponding ONU through the second stage splitter 205, and the upstream optical signal input by the port 3 is directly supplied to the port 1 and output to the 0LT through the first stage splitter.
  • the FBGs 204 in the different filtering modules 207 may have different reflection channel center wavelengths, and the reflection channel center wavelength of each FBG 204 corresponds to the emission of one of the 0LT optical transmitters ⁇ 4, respectively.
  • the wavelength that is, the different FBGs 204, can reflect the downstream optical signals of the optical transmitters Txl_Tx4 corresponding to the transmitting wavelengths back to the three-port circulator 203, and filter out the downstream optical signals of the other optical transmitters Txl_Tx4.
  • the 0DN of the branching ratio is 1:32
  • the first-stage optical splitter 202 is configured to divide the downlink multi-wavelength optical signal transmitted by the 0LT into four downlink multi-wavelength optical signals
  • the three-port circulator 203 is configured to redirect each of the downlink multi-wavelength optical signals to the FBG 204, respectively
  • the FBG 204 is configured to reflect the downlink optical signals of the downlink multi-wavelength signal corresponding to the center wavelength of the reflective channel thereof.
  • the three-port circulator 203 is configured to filter out the downstream optical signals of other wavelengths in the downlink multi-wavelength optical signal
  • the second-stage optical splitter 205 is configured to divide the downlink optical signal reflected by the FBG 204 into eight optical signals.
  • the signal is passed to respective optical network units ONU that are coupled to the branch ports of the second stage splitter 205.
  • the passive optical network system can be equivalent to a plurality of TDM subsystems (each TDM PON subsystem can include a second-stage optical splitter 205 and a set of ONUs connected thereto) through the WDM mode.
  • Stacked stacked PON (S tack PON) systems and the same TDM P0N subsystem uses the same downstream wavelength channel, while different TDM P0N subsystems use different downstream wavelength channels. Since the stacked P0N system adopts multiple downlink wavelengths, it can upgrade the downlink bandwidth of the user, and meet the requirement of the user to generate bandwidth due to service diversification.
  • the stacked P0N system architecture provided in this embodiment only requires that a plurality of optical transmitters Tx1 _ Tx4 of different transmission wavelengths be configured in the 0LT to transmit downlink multi-wavelength optical signals.
  • the fiber connected to the branch port of the first-stage beam splitter 202 is coupled to the filtering module 207 to perform wavelength selection on the downlink multi-wavelength optical signal to meet the wavelength requirements of each downlink wavelength channel. Therefore, the stacked ⁇ 0 ⁇ system provided in this embodiment can be smoothly upgraded from the TDM ⁇ 0 ⁇ system shown in FIG. 1 without modifying the deployed TDM ⁇ 0 ⁇ subsystem (including the main part of the 0DN and the user side).
  • the embodiment of the present invention further provides a downlink transmission method of the passive optical network, as shown in FIG. 3, including:
  • Step 301 The multiplexer 201 multiplexes the plurality of downlink optical signals of different wavelengths sent from the optical transmitters of the plurality of different transmitting wavelengths into one downlink multi-wavelength optical signal.
  • the emission wavelengths of the plurality of optical transmitters are 1490 ⁇ , 1491. 6 nm, 1493. 2 and 1494.
  • the optical transmitters can emit four downstream optical signals of 1490 GHz, 1491. 6 +1, 1493. 2 and 1494. 8 nm, respectively, correspondingly, the first stage optical splitter 202 and the second of the above 0DN
  • the class splitters 205 are 1:4 and 1:8, respectively. It should be understood that, in practical applications, the number of channels of the downstream optical signal, the wavelength, and the branching ratio of the first-stage and second-stage optical splitters may be adjusted according to actual needs.
  • Step 302 The first-stage optical splitter 202 splits the downlink multi-wavelength optical signal to form multiple downlink multi-wavelength optical signals and respectively provide the three-port ring connected to each branch port of the first-stage optical splitter 202. 203.
  • the downlink multi-wavelength optical signal obtained after multiplexing is split by the first-stage optical splitter 202 having a split ratio of 1:4, and becomes a 4-channel downlink multi-wavelength optical signal, wherein the 4-channel downlink multi-wavelength optical signal
  • the optical power can be the same.
  • Step 303 The three-port circulator 203 re-directs the downlink multi-wavelength optical signal received by the three-port circulator 203 and outputs it to the FBG 204.
  • the three-port circulator 203 has three ports, namely port 1, port 2, and port 3.
  • the downlink multi-wavelength optical signal enters the three-port circulator 203 from the port 1, and is redirected. It is output to the FBG 204 via port 1.
  • Step 304 The FBG 204 filters the downlink multi-wavelength optical signal, and reflects the downlink optical signal of the downlink multi-wavelength optical signal corresponding to the center wavelength of the reflection channel of the FBG 204 back to the three-port circulator 203. .
  • the FBG 204 filters the downlink multi-wavelength optical signals (including 1490 nm, 1491. 6 nm, 1493. 2 and 1494. 4 wavelengths) received by the FBG 204, and only retains the downlink multi-wavelength optical signals.
  • a downstream optical signal of one wavelength reflects the single-wavelength downstream optical signal back to port 2 of the three-port circulator 203.
  • the wavelengths of the downlink optical signals reflected by the different FBGs 204 are different. Therefore, the wavelengths of the three-port circulators 203 are respectively 1490, 1491. 6, 1493. 2 or 1494. Single wavelength downstream optical signal.
  • Step 305 the three-port circulator 203 redirects the received downlink optical signal and outputs it to the second-stage optical splitter 205.
  • the single-wavelength downstream optical signal separated by the FBG 204 is filtered by the port 2 of the three-port circulator 203 into the three-port circulator 203, and after being redirected, is output from the port 3 to the second-stage optical splitter 205.
  • Step 306 the second stage splitter 205 splits the downlink optical signal to form a plurality of downlink optical signals and respectively provide them to the respective 0NUs connected to the second stage splitter 205.
  • the single-wavelength downlink optical signal outputted by the three-port circulator 203 is split into two downlink optical signals by the second-stage optical splitter 205 having a split ratio of 1:8, wherein the wavelengths of the downstream optical signals are the same. And the optical power of each downstream optical signal can be the same.
  • the eight downstream optical signals are respectively transmitted to eight 0NUs connected to the second-stage optical splitter 205, such as 0NU1 to 0NU8.
  • FIG. 4 is a schematic diagram of a network architecture of a passive optical network system according to another embodiment of the present invention.
  • the passive optical network system can also be smoothly upgraded from the TDM P0N system shown in FIG.
  • the passive optical network system provided in this embodiment is similar to the passive optical network system shown in FIG. 2, and the main difference is that it is coupled between the first-stage optical splitter 402 and the second-stage optical splitter 406.
  • the filter module 407 of the optical fiber is different in structure from the filter module 207 shown in FIG. 2.
  • the optical path redirection device in the filtering module 407 may include a first duplexer 403 and a second duplexer 405, both of which have three ports, which are respectively recorded as ports 11, 12, and 13 And ports 21, 11, 23.
  • the filter components in the filtering module 407 may be dual port narrowband filters 404, and the channel center wavelengths of the respective dual port narrowband filters 404 correspond to the emission wavelengths of one of the optical transmitters Txl_Tx4 of the 0LT, respectively.
  • the port 11 of the first duplexer 403 is connected to the branch port of the first stage splitter 402; the port 13 of the first duplexer 403 is connected to the port 21 of the second duplexer 405; the dual port narrowband filter
  • the two ports of the 404 are connected to the port 12 of the first duplexer 403 and the port 22 of the second duplexer 405, respectively; the port 23 of the second duplexer 405 is connected to the common terminal of the second stage splitter 406.
  • the first duplexer 403 is configured to redirect one of the downlink multi-wavelength optical signals output by the first-stage splitter 402 to the dual-port narrow-band filter 404;
  • the dual-port narrow-band filter 404 is configured to the downlink multi-wavelength optical signal Filtering, after filtering, only retaining the downlink optical signal of the downlink multi-wavelength optical signal corresponding to the channel center wavelength of the dual-port narrowband filter 404, and filtering out the downstream optical signal of other wavelengths;
  • the second duplexer 405 is configured to redirect the filtered downstream optical signal to the second stage splitter 405.
  • the embodiment of the present invention further provides another downlink transmission method of the passive optical network. As shown in FIG. 5, the method includes:
  • Step 501 The multiplexer 401 multiplexes the plurality of downlink optical signals of different wavelengths sent from the optical transmitters of the plurality of different transmitting wavelengths into one downlink multi-wavelength optical signal.
  • Step 502 The first stage splitter 402 splits the downlink multi-wavelength optical signal to form a plurality of downlink multi-wavelength optical signals and respectively provide the first duplexer connected to each branch port of the first-stage splitter 402. 403.
  • Step 503 The first duplexer 403 redirects the downlink multi-wavelength optical signal received by the first duplexer 403 and outputs the signal to the dual port narrowband filter 404.
  • Step 504 The dual port narrowband filter 404 filters the downlink multi-wavelength optical signal.
  • a downlink optical signal having a wavelength corresponding to a channel center wavelength of the dual port narrowband filter 404 in the downlink multi-wavelength optical signal is obtained.
  • Step 505 The second duplexer 405 redirects the filtered downlink optical signal and outputs the signal to the second stage splitter 406.
  • Step 506 the second stage splitter 406 splits the downlink optical signals and provides them to the respective 0NUs connected to the second stage splitters 406.
  • FIG. 6 is a schematic diagram of a network architecture of a passive optical network system according to a third embodiment of the present invention.
  • the passive optical network system can also be smoothly upgraded from the TDM P0N system shown in FIG.
  • the passive optical network system provided in this embodiment is similar to the passive optical network system shown in FIG. 2, and the main difference is that the optical fiber coupled between the first-stage optical splitter 602 and the second-stage optical splitter 605 is filtered.
  • Module 607 is structurally different from filter module 207 shown in FIG.
  • the optical path redirection device in the filtering module 607 can be a four-port circulator 603, wherein the four-port circulator 603 has four ports, which are respectively recorded as port 1, port 2, and port 3. Port 4.
  • the filter components in the filtering module 407 may be dual port narrowband filters 404, and the channel center wavelengths of the respective dual port narrowband filters 404 correspond to the emission wavelengths of one of the optical transmitters TxfTx4 of the 0LT, respectively.
  • the port 1 of the four-port circulator 603 is connected to the branch port of the first-stage splitter 602; the two ports of the dual-port narrow-band filter 604 are respectively connected to the port 2 and port 3 of the four-port circulator 603; The port 4 of the circulator is connected to the common end of the second stage splitter 406.
  • the four-port circulator 603 is configured to redirect one of the downlink multi-wavelength optical signals outputted by the first-stage splitter 602 to the dual-port filter 604; the dual-port narrow-band filter 604 is configured to filter the downlink multi-wavelength optical signal After filtering, only the downlink optical signal corresponding to the channel center wavelength of the dual port narrowband filter 604 in the downlink multi-wavelength optical signal is retained, and the downlink optical signal of other wavelengths is filtered out; and, the four-port circulator 603 Also used after filtering The downstream optical signal is redirected to the second stage splitter 605.
  • the embodiment of the present invention further provides a downlink transmission method of the passive optical network. As shown in FIG. 7, the method includes:
  • Step 701 The multiplexer 601 multiplexes the plurality of downlink optical signals of different wavelengths sent from the optical transmitters of the plurality of different transmitting wavelengths into one downlink multi-wavelength optical signal.
  • Step 702 The first stage splitter 602 splits the downlink multi-wavelength optical signal to form multiple downlink multi-wavelength optical signals and respectively provide them to the four-port circulator 603 connected to each branch port of the first-stage splitter 602. .
  • Step 703 the four-port circulator 603 re-orients the received downlink multi-wavelength optical signal and outputs it to the dual-port narrowband filter 604.
  • Step 704 The dual port narrowband filter 604 filters the downlink multi-wavelength optical signal to obtain a downlink optical signal having a wavelength corresponding to a channel center wavelength of the dual port narrowband filter 604 in the downlink multi-wavelength optical signal.
  • Step 705 The four-port circulator 603 receives the filtered downlink optical signal, and redirects the downlink optical signal to the second-stage optical splitter 605.
  • Step 706 the second stage splitter 605 splits the downstream optical signals and provides them to the respective 0NUs connected to the second stage splitters 605, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

L'invention porte sur un système de réseau optique passif et son procédé de transmission en liaison descendante. Le système de réseau optique passif comprend un terminal de ligne optique, un réseau de distribution optique et une pluralité d'unités de réseau optique. Le terminal de ligne optique est utilisé pour envoyer un signal optique à longueurs d'onde multiples de liaison descendante formé par multiplexage par répartition en longueur d'onde d'une pluralité de signaux optiques de liaison descendante ayant des longueurs d'onde différentes; et le réseau de distribution optique comprend un diviseur optique de premier étage, une pluralité de diviseurs optiques de second étage et une pluralité de modules de filtrage, le diviseur optique de premier étage étant utilisé pour diviser un chemin de signaux à longueurs d'onde multiples de liaison descendante envoyés par le terminal de ligne optique en une pluralité de chemins de signaux à longueurs d'onde multiples de liaison descendante, et la pluralité de modules de filtrage étant utilisés pour effectuer un traitement de filtrage sur la pluralité de chemins de signaux optiques à longueurs d'onde multiples de liaison descendante afin d'obtenir un signal optique à longueur d'onde unique de liaison descendante dont la longueur d'onde correspond à sa longueur d'onde centrale de chemin, les longueurs d'onde centrales de chemin de la pluralité de modules de filtrage correspondant à la pluralité de signaux optiques de liaison descendante ayant des longueurs d'onde différentes respectivement; et les diviseurs optiques de second étage étant utilisés pour fournir les signaux optiques à longueur d'onde unique de liaison descendante après traitement de division optique aux unités de réseau optique correspondantes respectivement.
PCT/CN2011/081226 2011-10-25 2011-10-25 Système de réseau optique passif et son procédé de transmission en liaison descendante WO2012149810A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/081226 WO2012149810A1 (fr) 2011-10-25 2011-10-25 Système de réseau optique passif et son procédé de transmission en liaison descendante
CN201180002222.1A CN102439998B (zh) 2011-10-25 2011-10-25 无源光网络系统及其下行传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/081226 WO2012149810A1 (fr) 2011-10-25 2011-10-25 Système de réseau optique passif et son procédé de transmission en liaison descendante

Publications (1)

Publication Number Publication Date
WO2012149810A1 true WO2012149810A1 (fr) 2012-11-08

Family

ID=45986289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081226 WO2012149810A1 (fr) 2011-10-25 2011-10-25 Système de réseau optique passif et son procédé de transmission en liaison descendante

Country Status (2)

Country Link
CN (1) CN102439998B (fr)
WO (1) WO2012149810A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260095A (zh) * 2013-05-31 2013-08-21 电子科技大学 一种基于混沌同步的保密无源光网络

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707395B (zh) * 2012-05-22 2014-09-03 上海长跃通信技术有限公司 一种ftth线路保护方法
CN103686465B (zh) * 2012-09-12 2016-12-21 上海贝尔股份有限公司 光网络节点、光网络单元和低延时的光网络单元间的通信
CN103297167A (zh) * 2013-06-19 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281620A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281613A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103297871A (zh) * 2013-06-19 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103281614A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103281616A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103297869A (zh) * 2013-06-19 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103281602A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103297870A (zh) * 2013-06-19 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103281606A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103313153A (zh) * 2013-06-19 2013-09-18 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281607A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103281611A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281621A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281612A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103281619A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103297168A (zh) * 2013-06-19 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281609A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281608A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281618A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103297872A (zh) * 2013-06-19 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281615A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281617A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281605A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281604A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统的下行传输方法
CN103281610A (zh) * 2013-06-19 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103313152A (zh) * 2013-06-19 2013-09-18 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103313151A (zh) * 2013-06-19 2013-09-18 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281603B (zh) * 2013-06-19 2015-09-30 涂瑞强 多波长无源光网络系统
CN103297874A (zh) * 2013-06-20 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281627A (zh) * 2013-06-20 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281637A (zh) * 2013-06-20 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281624A (zh) * 2013-06-20 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281625A (zh) * 2013-06-20 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281626A (zh) * 2013-06-20 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103297873A (zh) * 2013-06-20 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281623A (zh) * 2013-06-20 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103297875A (zh) * 2013-06-20 2013-09-11 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281622A (zh) * 2013-06-20 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281634A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281636A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281632A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281630A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281635A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281638A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281631A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281633A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281628A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN103281629A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN104869479B (zh) * 2014-02-26 2019-03-01 上海诺基亚贝尔股份有限公司 一种无源光网络架构
CN105356963B (zh) * 2014-08-22 2018-09-28 中兴通讯股份有限公司 可变分光器的实现方法及可变分光器
CN104363070B (zh) * 2014-11-14 2017-11-17 上海欣诺通信技术股份有限公司 一种多路光网传输设备及传输方法
CN105763964B (zh) * 2014-12-19 2020-04-21 中兴通讯股份有限公司 应用于ofdm-pon的通信方法、装置及系统
WO2016101245A1 (fr) * 2014-12-26 2016-06-30 华为技术有限公司 Séparateur optique et système de réseau optique passif
CN110998403A (zh) 2018-12-29 2020-04-10 华为技术有限公司 分光装置
CN113873358B (zh) * 2020-06-30 2022-12-06 华为技术有限公司 分光器、光分布网络及确定光滤波结构对应波长方法
CN112653939B (zh) * 2020-11-27 2021-12-31 华为技术有限公司 光分配网络、光网络系统、分光器及分光器的端口识别方法
CN112887851B (zh) * 2021-01-13 2021-10-08 烽火通信科技股份有限公司 一种家庭全光网络系统及其实现方法
CN114845187A (zh) * 2021-01-30 2022-08-02 华为技术有限公司 一种无源光网络系统及相关装置
CN114243437B (zh) * 2021-12-08 2023-12-22 武汉邮电科学研究院有限公司 基于集中式拉曼光纤放大器的pon系统及光放大方法
CN114339486B (zh) * 2021-12-17 2024-02-27 中国电子科技集团公司第四十四研究所 一种时频信号的光纤网络分配与传输方法
CN114710208A (zh) * 2022-03-31 2022-07-05 中国人民解放军国防科技大学 一种数字信号分发装置及相关组件
CN116055924B (zh) * 2023-01-28 2023-07-14 中兴通讯股份有限公司 一种无源光网络的分光器及光信号处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859810A (zh) * 2005-12-31 2006-11-08 华为技术有限公司 多种光接入网共享光纤分配网的无源光网络及实现方法
CN101098206A (zh) * 2006-06-26 2008-01-02 华为技术有限公司 一种无源光网络系统及其光路处理方法
US20090317084A1 (en) * 2008-06-23 2009-12-24 Electronics And Telecommunications Research Institute Passive optical network system and optical signal receiving method thereof
CN101902293A (zh) * 2010-04-23 2010-12-01 中兴通讯股份有限公司 光网络系统、光线路终端、光网络单元及光分配网装置
CN102075822A (zh) * 2011-01-19 2011-05-25 中兴通讯股份有限公司 波分复用无源光网络系统、通信方法及光线路终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859810A (zh) * 2005-12-31 2006-11-08 华为技术有限公司 多种光接入网共享光纤分配网的无源光网络及实现方法
CN101098206A (zh) * 2006-06-26 2008-01-02 华为技术有限公司 一种无源光网络系统及其光路处理方法
US20090317084A1 (en) * 2008-06-23 2009-12-24 Electronics And Telecommunications Research Institute Passive optical network system and optical signal receiving method thereof
CN101902293A (zh) * 2010-04-23 2010-12-01 中兴通讯股份有限公司 光网络系统、光线路终端、光网络单元及光分配网装置
CN102075822A (zh) * 2011-01-19 2011-05-25 中兴通讯股份有限公司 波分复用无源光网络系统、通信方法及光线路终端设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260095A (zh) * 2013-05-31 2013-08-21 电子科技大学 一种基于混沌同步的保密无源光网络

Also Published As

Publication number Publication date
CN102439998B (zh) 2013-12-18
CN102439998A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2012149810A1 (fr) Système de réseau optique passif et son procédé de transmission en liaison descendante
US7684706B2 (en) System and method for traffic distribution in an optical network
JP3822897B2 (ja) 光波長多重アクセスシステム
US7970281B2 (en) System and method for managing different transmission architectures in a passive optical network
JP4977215B2 (ja) 下位互換性を有するpon共存
EP1863207A1 (fr) Système et procédé de protection d'un réseau optique
US7639946B2 (en) Distribution node for an optical network
WO2005076942A2 (fr) Systeme et dispositif pour reseau optique passif a multiplexage par repartition en longueur d'onde de classe operateur acceptant de multiples services ou protocoles
US8050561B2 (en) Asymmetrical PON with multiple return channels
WO2011110005A1 (fr) Réseau optique passif et dispositif
WO2013087006A1 (fr) Système de réseau optique passif (pon), terminal de ligne optique (olt) et procédé de transmission optique
WO2013075662A1 (fr) Système pon coexistant, et procédé de transmission du signal optique sur la liaison montante et sur la liaison descendante
CN101471730B (zh) 基于波分复用结构的光纤宽带接入系统及光网络单元
CN103281605A (zh) 多波长无源光网络系统
CN103281603B (zh) 多波长无源光网络系统
JP4626208B2 (ja) 光ネットワーク
CN103281609A (zh) 多波长无源光网络系统
WO2024012488A1 (fr) Appareil de distribution optique, unité de réseau de distribution optique et système de réseau
JP2004222255A (ja) 光ネットワークユニット,波長分岐器および光波長多重アクセスシステム
KR20040001028A (ko) 광 가입자 망 구조
JP2002217837A (ja) 光アクセスネットワークシステム
CN103297872A (zh) 多波长无源光网络系统
CN103281610A (zh) 多波长无源光网络系统
CN103281604A (zh) 多波长无源光网络系统的下行传输方法
WO2016169653A1 (fr) Amplification de signal optique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002222.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864666

Country of ref document: EP

Kind code of ref document: A1