WO2012149758A1 - 一种信号的处理方法及装置 - Google Patents

一种信号的处理方法及装置 Download PDF

Info

Publication number
WO2012149758A1
WO2012149758A1 PCT/CN2011/079952 CN2011079952W WO2012149758A1 WO 2012149758 A1 WO2012149758 A1 WO 2012149758A1 CN 2011079952 W CN2011079952 W CN 2011079952W WO 2012149758 A1 WO2012149758 A1 WO 2012149758A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
modulation
processing unit
standard
gsm
Prior art date
Application number
PCT/CN2011/079952
Other languages
English (en)
French (fr)
Inventor
黄金福
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/079952 priority Critical patent/WO2012149758A1/zh
Priority to CN201180001868.8A priority patent/CN102388592B/zh
Publication of WO2012149758A1 publication Critical patent/WO2012149758A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal processing method and apparatus.
  • the base station and the terminal in the wireless communication system need to perform processing for modulating the signal before performing signal transmission.
  • the modulation of the signal is done by the baseband processing unit or the RF processing unit of the device.
  • the device can be used for GSM (Global System of Mobile communication, LTE (Long Term Evolution, Long Term Evolution), UMTS (Universal Mobile Telecommunications System,
  • GSM Global System of Mobile communication
  • LTE Long Term Evolution, Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • GSM signals GSM encoding is first performed in the baseband processing unit, then the encoded GSM signal is sent to the RF processing unit, and the GSM signal is processed by the RF processing unit.
  • the coding and pre-pulse shaping operations are first performed in the baseband processing unit, and then the pulse-modulated modulation actions are performed on the LTE and UMTS signals in the RF processing unit.
  • the inventors have found that the configuration in the prior art causes waste of hardware resources and increases costs.
  • Embodiments of the present invention provide a signal processing method and apparatus, which can improve system resource utilization and reduce cost.
  • a method of processing a signal comprising:
  • the baseband processing unit performs a modulation action before the pulse shaping of the first standard signal
  • a signal processing device includes:
  • a signal detecting module configured to detect whether the current signal is a first standard signal
  • a signal modulation module configured to perform a modulation operation before the pulse forming of the first standard signal
  • a signal sending module configured to package the first standard signal modulated by the modulation action before the pulse forming, and send the signal to the radio frequency processing unit.
  • a base station comprising processing means for the above signals.
  • a terminal comprising a processing device for the above signals.
  • the signal processing method and apparatus provided by the embodiments of the present invention complete the modulation operation before pulse shaping of the first standard signal, such as the GSM signal, in the existing radio frequency processing unit, and the baseband processing unit is It is possible to perform non-first-standard signals, such as modulation operations before pulse shaping of signals such as LTE and UMTS, and modulation operations before pulse shaping of the first standard signals, and it is not necessary to use the first-standard signals in the RF processing unit.
  • the modulation function before the pulse molding is configured, and the resource utilization ratio of the system is improved and the cost is reduced compared with the case where the modulation function before signal pulse shaping is configured in the baseband processing unit and the RF processing unit in the prior art. .
  • FIG. 2 is a block diagram of a signal processing apparatus in Embodiment 1 of the present invention.
  • Embodiment 3 is a flowchart of a method for processing a signal in Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a linear modulation process of a signal in Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a signal nonlinear modulation process in Embodiment 2 of the present invention
  • FIG. 6 is a block diagram of a signal processing apparatus in Embodiment 3 of the present invention
  • Figure 7 is a block diagram of a distributed base station in Embodiment 4 of the present invention.
  • An embodiment of the present invention provides a signal processing method. As shown in FIG. 1, the method is a method on a side of a baseband processing unit, and includes the following steps:
  • the first mode signal includes one or a combination of the following signals: GSM signal, EDGE (Enhanced Data Rate for GSM Evolution) signal, EDGE+ (Enhanced Data Rate for GSM Evolution+) signal.
  • GSM signal GSM signal
  • EDGE Enhanced Data Rate for GSM Evolution
  • EDGE+ Enhanced Data Rate for GSM Evolution+
  • the non-first mode signal includes one or a combination of the following signals: LTE signal, UMTS signal, TD-SCDMA (Time Division - Synchronous Code Divi s ion Mul t iple Access) signal, CDMA ( Code Division Multiple Access, CDMA2000 (Code Division Multiple Access 2000) signal, etc.
  • the modulation of the first standard signal may be a linear modulation method and a nonlinear modulation method
  • the linear modulation method includes: 8PSK (8 phase-shift keying, 8 phase shift keying), QPSK (Quarature Phase Shift Keying, quadrature phase shift key) Control), a-QPSK ( ⁇ -Quadrature Phase Shift Keying), 16QAM (16 Quadrature Amplitude Modulation, 16 Quadrature Amplitude Modulation), 32QAM (32 Quadrature Amplitude Modulation, 32 quadrature amplitude modulation, etc.;
  • the above nonlinear modulation method is GMSK (Gaussian Filtered Minimum Shift Keying).
  • the modulation method for the non-first standard signal is a linear modulation method, including: 8PSK, QPSK, a-QPSK, 16QAM, 32QAM, and the like.
  • the RF processing unit performs a pulse shaping modulation operation on the received signal.
  • the RF processing unit can perform power amplification, filtering, and the like on the signal that has been modulated, and then transmit it through the antenna.
  • a signal processing apparatus includes: a signal detecting module 21, a signal modulating module 22, and a signal transmitting module 23.
  • the signal detection module 21 is configured to detect whether the current signal is a first standard signal, and the first standard signal includes one or a combination of the following signals: a GSM signal, an EDGE signal, an EDGE+ signal; the non-first standard signal includes one of the following signals Or a combination thereof: LTE, UMTS, TD-SCDMA, CDMA, CDMA2000, and the like.
  • the signal modulation module 22 is configured to perform a modulation operation prior to pulse shaping of the first standard signal.
  • the modulation mode of the first standard signal may be a linear modulation method or a nonlinear modulation method.
  • the above linear modulation methods include: 8PSK, QPSK, a-QPSK, 16QAM, 32QAM, etc.; the nonlinear modulation method includes GMSK.
  • the signal transmitting module 23 is configured to package the first standard signal modulated by the modulation operation before the pulse forming and transmit the signal to the radio frequency processing unit.
  • the RF processing unit is configured to perform a pulse shaping modulation operation on the first system signal modulated by the modulation operation before pulse shaping.
  • a signal processing method and apparatus provided by an embodiment of the present invention will be in an existing radio frequency processing unit
  • the modulation operation before pulse shaping of the first standard signal is performed in the baseband processing unit, so that the baseband processing unit can perform the modulation operation before the pulse molding of the first standard signal, and the non-first standard signal.
  • the modulation action before pulse shaping, and the modulation function before the pulse molding of the first standard signal is no longer required in the RF processing unit, and the signal processing before the pulse shaping of the baseband processing unit and the RF processing unit in the prior art Compared with the case where the modulation function is configured, the resource utilization of the system is improved and the cost is reduced.
  • the embodiment of the present invention further provides a signal processing method, where the method is a method on the side of the baseband processing unit, as shown in FIG. 3, including the following steps:
  • the first mode signal includes one or a combination of the following signals: GSM signal, EDGE signal, EDGE+ signal.
  • the non-first mode signal includes one or a combination of the following signals: LTE signal, UMTS signal, TD-SCDMA signal, CDMA signal, CDMA2000 signal, and the like.
  • the specific process may include: first performing coding processing on the GSM signal in the baseband processing unit, and the encoding process may be any one of convolutional coding, turbo coding, interleaving coding, and the like.
  • the main modulation actions before pulse shaping include: constellation mapping and phase rotation of the first standard signal, and the specific modulation modes may be 8PSK, QPSK, a-QPSK, 16QAM, 32QAM. If the first mode signal is nonlinearly modulated, and the specific modulation mode may be GMSK modulation, the modulation action before the pulse shaping includes: differential code modulation operation.
  • the non-first mode signal is first passed through a baseband processing unit prior to performing the modulating action
  • the encoding operation is performed, and the encoding processing may be any one of convolutional coding, turbo coding, and interleaving coding.
  • the baseband processing unit then performs a modulation operation prior to pulse shaping on the encoded signal.
  • the main modulation actions include: constellation mapping and phase rotation.
  • the specific modulation method of the non-first standard signal may be 8PSK, QPSK, a-QPSK, 16QAM, 32QAM, and the like.
  • the signal modulated by the pulse modulation pre-modulation action is encapsulated, and the signal may be encapsulated according to the CPRI universal public wireless interface protocol, or may be encapsulated according to a protocol agreed by the baseband processing unit and the RF processing unit, and then the baseband processing unit The encapsulated signal is sent to the RF processing unit.
  • the RF processing unit decapsulates the received signal. If the signal received by the RF processing unit is the first system signal, the pulse shaping operation is performed on the first system signal modulated by the modulation operation before the pulse shaping by the baseband processing unit. Specifically, a pulse shaping modulation operation is performed on the first standard signal linearly modulated in the baseband processing unit, and a GMSK lookup table is performed on the first standard signal in which the baseband processing unit performs nonlinear modulation. If the signal received by the RF processing unit is a non-first mode signal, the pulse shaping operation is performed on the non-first mode signal modulated by the modulation operation before the pulse shaping by the baseband processing unit.
  • the baseband processing unit may be a BBU (Bu ing ding Ba se Un it) baseband processing unit
  • the radio frequency processing unit is an RRU (Radio Remo te Un it) radio remote unit
  • the BBU will The signal modulated by the modulation action before pulse shaping is encapsulated according to the CPR I common public radio interface protocol and sent to the RRU.
  • the following takes a distributed base station as an example to describe the processing method of the GSM/LTE dual-mode signal as an example.
  • the baseband processing unit of the base station first detects the current signal format, GSM or LTE signal; then encodes the current signal, which may be convolutional coding, turbo coding, interleaving Any of the codes, etc.
  • the linear modulation process of the GSM signal is as shown in FIG. 4.
  • the GSM signal that needs to be linearly modulated is subjected to pulse shaping before the modulation operation, including the constellation diagram. Map 4 1 1 and phase rotation 41 2 .
  • Linear modulation methods include: 8PSK, QPSK, a _QPSK, 1 6QAM, 32QAM, etc.
  • the baseband processing unit 41 then encapsulates the signal modulated by the modulation action before the pulse shaping 42 1 .
  • the baseband processing unit 41 and the radio frequency processing unit 42 Through the fiber connection, the signal can be encapsulated according to the CPR I common public wireless interface protocol.
  • the baseband processing unit 4 1 transmits the encapsulated signal to the RF processing unit 42, and the RF processing unit 42 decapsulates the received signal according to the CPR I Common Public Radio Interface Protocol and performs pulse shaping 421 modulation on the signal.
  • the nonlinear modulation process of the GSM signal is as shown in FIG. 5, and the GSM signal is nonlinearly modulated, which is different from the linear modulation in that the GSM signal is differentially coded in the baseband processing unit 51.
  • the GMSK lookup table 521 is performed in the RF processing unit.
  • the current signal is an LTE signal
  • the LTE signal is linearly modulated. The specific process is shown in FIG. 4, and details are not described herein again.
  • the current signal is subjected to power amplification, filtering, and the like, and then transmitted to a terminal, a base station, or the like through an antenna.
  • the GSM/LTE dual-mode signal processing method is taken as an example in the embodiment of the present invention.
  • it may also be a GSM/UMTS dual-mode signal, or a multi-mode signal such as GSM/CDMA/LTE/TD-SCDMA, or any first standard.
  • a signal processing method combined with any non-first system.
  • the baseband processing unit needs to perform corresponding modulation actions on signals of other standards, such as EDGE/UMTS multimode signals, and then perform corresponding pulse modulation actions on the EDGE and UMTS signals in the baseband processing unit respectively.
  • the modulation operation of the corresponding pulse shaping of the EDGE and UMTS signals in the RF processing unit is not described in detail herein.
  • the signal processing method provided by the embodiment of the present invention will be the first system in the existing radio frequency processing unit.
  • the modulation signal before the pulse shaping of the GSM signal is set in the baseband processing unit for processing, so that the baseband processing unit can perform linear modulation and nonlinear modulation of the modulation action before the pulse shaping of the first standard signal,
  • the non-first standard signal such as the LTE signal, can be modulated before pulse shaping, and the RF processing unit does not need to configure the modulation function before the pulse molding of the first standard signal, and the baseband processing unit and the radio frequency in the prior art.
  • the modulation function before the pulse shaping of the signal is configured, and the resource utilization ratio of the system is improved, and the cost is reduced.
  • the embodiment of the present invention further provides a signal processing device.
  • the device includes: a signal detecting module 61, a signal modulating module 62, and a signal sending module 63.
  • the signal detecting module 61 is configured to detect whether the current signal is a first standard signal.
  • the signal modulation module 62 is configured to perform a modulation operation before the pulse molding on the first standard signal.
  • the signal modulation module 62 can include:
  • the first standard signal modulation sub-module 621 is configured to perform constellation mapping and phase rotation modulation on the first standard signal, or perform differential coding modulation on the first standard signal.
  • the non-first-standard signal modulation sub-module 622 is configured to perform a star map mapping and a phase rotation modulation operation on the non-first standard signal.
  • the signal sending module 63 is configured to package the first standard signal modulated by the modulation action before the pulse forming, and send the signal to the radio frequency processing unit.
  • the first mode signal includes one or a combination of the following signals: a GSM signal, an EDGE signal, and an EDGE+ signal.
  • the non-first mode signal includes one or a combination of the following signals: an LTE signal, a UMTS signal, a TD-SCDMA signal, a CDMA signal, a WCDMA signal, a CDMA2000 signal.
  • the signal detecting module 61 is configured to detect whether the current signal is a GSM signal or an LTE signal.
  • the first standard signal modulation sub-module 621 is configured to perform constellation mapping and phase rotation modulation on the GSM signal, or to perform differential coding modulation on the GSM signal; the non-first-standard signal modulation sub-module 622 is used for LTE.
  • the signal performs constellation mapping and phase rotation modulation operations.
  • the signal sending module 63 is configured to encapsulate the signal modulated by the signal modulation module 62.
  • the specific encapsulation protocol may be a CPR I common public radio interface protocol, or an interface protocol agreed between the baseband processing unit and the radio frequency processing unit.
  • the packaged signal is then sent to the RF processing unit to cause the RF processing unit to perform a pulse shaping modulation action.
  • the radio frequency processing unit is configured to perform a pulse shaping modulation operation after decapsulating the received signal. If the current signal is a GSM signal, and the GSM signal is linearly modulated, the RF processing unit performs a pulse shaping modulation operation on the GSM signal; if the GSM signal is nonlinearly modulated, the RF processing unit performs a GMSK lookup on the GSM signal. If the RF processing unit receives the LTE signal, the LTE signal is pulse-modulated.
  • the signal whose modulation operation is completed is subjected to power amplification, filtering, and the like, and the signal is transmitted through the antenna.
  • a GSM/LTE dual-mode signal processing device is taken as an example.
  • it may also be a GSM/UMTS dual-mode signal processing device, or may be a multi-mode signal processing device such as GSM/CDMA/LTE/TD-SCDMA. , or any signal processing device of the first system and any non-first system combination.
  • the signal modulation device modulates the signal of the corresponding standard, such as the EDGE/UMTS dual mode signal, then the first system signal modulation sub-module is used to modulate the EDGE signal before pulse shaping; non-first standard
  • the signal modulation sub-module is used to modulate the UMTS signal before pulse shaping, and will not be described in detail herein.
  • the signal processing device is used for performing a modulation action before pulse shaping on a non-first standard signal, such as an LTE signal, and the main steps include a constellation mapping and a phase rotation modulation action; Modulation actions prior to pulse shaping of a first system signal, such as a GSM signal, including constellation mapping, phase rotation steps, or nonlinearity of linear modulation Modulated differential encoding; then the baseband processing unit sends the signal modulated by the pre-pulse shaping modulation to the RF processing unit. In this way, regardless of the type of signal, the modulation action before pulse shaping is processed in the baseband processing unit, which improves the resource utilization of the system and reduces the cost.
  • a non-first standard signal such as an LTE signal
  • the main steps include a constellation mapping and a phase rotation modulation action; Modulation actions prior to pulse shaping of a first system signal, such as a GSM signal, including constellation mapping, phase rotation steps, or nonlinearity of linear modulation Modulated differential encoding; then the baseband processing
  • the embodiment of the invention further provides a base station comprising the signal processing device of the above embodiment 1 or 3.
  • the following is a specific description of the case where the distributed base station processes the GSM/LTE signal as an example.
  • the distributed base station includes: an indoor baseband processing unit BBU 71 and a radio remote unit RRU
  • the BBU includes: a signal detection module 711, a signal modulation module 712, and a signal transmission module 713.
  • the signal detecting module 711 is configured to detect whether the current signal is a GSM signal or an LTE signal.
  • the signal modulation module 712 can include a first system signal modulation sub-module 7121 and a non-first system signal modulation sub-module 7122.
  • the first standard signal modulation sub-module 7121 is used for
  • the GSM signal performs constellation mapping and phase rotation modulation operations, or is used for differential coding modulation operation on the GSM signal, and the non-first standard signal modulation sub-module 7122 is used for constellation mapping and phase rotation modulation operations on the LTE signal.
  • the signal transmitting module 713 is configured to encapsulate the signal modulated by the signal modulation module 712.
  • the specific encapsulation protocol may be the CPRI universal public radio interface protocol, and then the encapsulated signal is sent to the radio frequency processing unit 72.
  • the RF processing unit 72 is configured to perform a pulse shaping modulation operation after decapsulating the received current signal.
  • the signal detection module 711 When the base station wants to send signals to the terminal and other base stations, the signal detection module 711 first detects the current signal format, GSM or LTE; and then encodes the current signal, and the encoding process may be convolutional coding, turbo coding, interleaving coding, etc. One.
  • the first system signal modulation sub-module 7121 in the signal modulation module 712 performs a modulation operation before the pulse shaping on the GSM signal that needs to be linearly modulated, including constellation mapping and phase rotation.
  • Linear modulation methods include: 8PSK, QPSK, a-QPSK, 16QAM, 32QAM, etc.
  • the differential coding operation is performed on the GSM signal that needs to be nonlinearly modulated, and the specific modulation method includes GMSK.
  • the non-first mode signal modulation sub-module 7122 performs a pre-pulse shaping operation on the current signal, including constellation mapping and phase rotation.
  • the signal sending module 71 3 encapsulates the current signal modulated by the modulation action before the pulse forming, and specifically encapsulates the signal according to the CPR I common public wireless interface protocol, and then sends the encapsulated signal to the RF processing unit 72.
  • the RF processing unit 72 performs a pulse shaping modulation operation on the LTE signal; if the current signal is a GSM signal, if the GSM signal is linearly modulated, the G SM signal is pulse-modulated and modulated. The G SM signal is subjected to nonlinear modulation, and the GSM signal is subjected to a GMSK look-up table.
  • the current signal is subjected to power amplification, filtering, etc., and then transmitted to a terminal, data card, or base station through the antenna transmission.
  • the embodiment is also applicable to a macro base station or a micro base station, etc.
  • a macro base station a micro base station, a baseband processing unit, and a radio frequency processing unit
  • the same device may be used, or different devices located at the same or near locations, and a baseband processing unit.
  • the RF processing unit can encapsulate the signal using the CPR I common public wireless interface protocol, or can be encapsulated by a protocol.
  • a GSM/LTE dual-mode signal processing example is used.
  • it may also be a base station supporting GSM/UMTS dual-mode signal processing, or a base station for multi-mode signal processing such as GSM/CDMA/LTE/TD-SCDMA, or The base station for any signal processing of the first system and any non-first system combination will not be described herein.
  • the base station includes a baseband processing unit and a radio frequency processing unit, and the baseband processing unit is used for performing modulation of a pre-pulse shaping modulation action on a non-first standard signal, and the main steps include constellation mapping and phase rotation. a modulation operation; the baseband processing unit is further configured to perform modulation of a premodulation action of the first standard signal, including a linear modulation constellation mapping, a phase rotation step, or a nonlinear modulation differential encoding; and then the baseband processing unit
  • the signal modulated by the modulation action before pulse shaping is packaged and sent to the RF processing unit. This Regardless of the type of signal, the modulation action before pulse shaping is processed in the baseband processing unit, which improves the resource utilization of the system and reduces the cost.
  • the embodiment of the present invention further provides a terminal, which includes the signal processing device of the embodiment 1 or 3.
  • the terminal may be a mobile phone, a data card, etc., and details are not described herein.
  • a person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be completed by using hardware related to program instructions, and the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Description

一种信号的处理方法及装置 技术领域 本发明涉及通信领域, 尤其涉及一种信号的处理方法及装置。
背景技术
无线通信系统中的基站、 终端需要对信号进行调制的处理后才能执 行信号的传送。 信号的调制是通过设备的基带处理单元或射频处理单元 来完成的。 在当前模式的应用越来越广泛的情况下, 设备可以对 GSM ( Global System of Mobile communication,全球移动通信系统 M言号、 LTE ( Long term Evolution , 长期技术演进) 、 UMTS ( Universal Mobile Telecommunications System, 通用移动通信系统 )等信号分别进行调制动 作。 比如, 对于 GSM信号, 首先在基带处理单元中进行 GSM编码, 然 后将编码后的 GSM信号发送到射频处理单元,并由射频处理单元对 GSM 信号进行调制。 对于 LTE、 UMTS信号, 首先在基带处理单元中进行编 码和脉冲成型前的调制动作, 然后在射频处理单元中对 LTE、 UMTS 信 号完成脉冲成型的调制动作。 在实现上述技术方案的过程中, 发明人发现现有技术中的配置方式 造成了硬件资源的浪费, 同时增加了成本。
发明内容
本发明的实施例提供一种信号的处理方法及装置, 能够提高系统的 资源利用率, 降低成本。
为达到上述目的, 本发明的实施例釆用如下技术方案:
一种信号的处理方法, 包括:
检测当前信号是否为第一制式信号;
若所述当前信号为第一制式信号,在基带处理单元对所述第一制式信 号进行脉冲成型前的调制动作;
对所述经过脉冲成型前的调制动作调制的所述第一制式信号进行封 装, 发送到射频处理单元。 一种信号的处理装置, 包括:
信号检测模块, 用于检测当前信号是否为第一制式信号;
信号调制模块, 用于对所述第一制式信号进行脉冲成型前的调制动 作;
信号发送模块,用于将经过所述脉冲成型前的调制动作调制的所述第 一制式信号进行封装, 发送到射频处理单元。 一种基站, 包括上述信号的处理装置。
一种终端, 包括上述信号的处理装置。 本发明实施例提供的信号处理方法和装置, 将现有射频处理单元中 对第一制式信号, 如 GSM信号进行的脉冲成型前的调制动作设置在基带 处理单元中完成, 从而使得基带处理单元既可以进行非第一制式信号, 如 LTE、 UMTS等信号的脉冲成型前的调制动作, 又可以进行第一制式信 号的脉冲成型前的调制动作, 而在射频处理单元中不必再对第一制式信 号的脉冲成型前的调制功能进行配置, 与现有技术中基带处理单元和射 频处理单元中都要对信号脉冲成型前的调制功能进行配置的情况相比, 提高了系统的资源利用率, 降低成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。 图 1为本发明实施例 1中的信号的处理方法的流程图;
图 2为本发明实施例 1中的信号的处理装置的框图;
图 3为本发明实施例 2中的信号的处理方法的流程图;
图 4为本发明实施例 2中的信号线性调制过程示意图;
图 5为本发明实施例 2中的信号非线性调制过程示意图; 图 6本发明实施例 3中的信号的处理装置的框图; 图 7为本发明实施例 4中的分布式基站的框图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
实施例 1:
本发明实施例提供了一种信号处理方法, 如图 1所示, 所述方法为基 带处理单元一侧的方法, 包括以下步骤:
101、 检测当前信号是否为第一制式信号, 若为第一制式信号则执行 102, 否则执行 103。
其中第一制式信号包括如下信号之一或其组合: GSM 信号、 EDGE ( Enhanced Data Rate for GSM Evolution, 增强型数据速率 GSM演进) 信号、 EDGE+ ( Enhanced Data Rate for GSM Evolution+ ) 信号。
非第一制式信号包括如下信号之一或其组合: LTE信号、 UMTS信号、 TD-SCDMA ( Time Division - Synchronous Code Divi s ion Mul t iple Access, 时分同步码分多址接入) 信号、 CDMA ( Code Division Multiple Access, 码分多址接入) 信号、 CDMA2000 ( Code Division Multiple Access 2000 ) 信号等。
102、 在基带处理单元对所述第一制式信号进行脉冲成型前的调制动 作。
第一制式信号的调制可以是线性调制方式和非线性调制方式,上述线 性调制方式包括: 8PSK ( 8 phase-shift keying, 8 相移键控)、 QPSK ( Quadrature Phase Shift Keying , 正交相移键控)、 a -QPSK ( α -Quadrature Phase Shift Keying , α正交相移键控 )、 16QAM ( 16 Quadrature Amplitude Modulation , 16 正交振幅调制 )、 32QAM ( 32 Quadrature Amplitude Modulation, 32正交振幅调制) 等; 上述非线性 调制方式为 GMSK ( Gaussian Filtered Minimum Shift Keying , 高斯滤 波最小频移键控 )。
103、 在基带处理单元对所述非第一制式信号进行脉冲成型前的调制 动作。
对于非第一制式信号的调制方式为线性调制方式, 包括: 8PSK、 QPSK、 a -QPSK, 16QAM、 32QAM等。
104、 对所述经过脉冲成型前的调制动作调制的信号进行封装, 发送 到射频处理单元。
射频处理单元对接收到的信号进行脉冲成型调制动作。
然后, 射频处理单元可以对完成调制的信号进行功率放大、 滤波等处 理后, 通过天线发射出去。
本发明实施例还提供的一种信号处理装置, 如图 2所示, 包括: 信号 检测模块 21、 信号调制模块 22、 信号发送模块 23。
其中, 信号检测模块 21用于检测当前信号是否为第一制式信号, 第 一制式信号包括如下信号之一或其组合: GSM信号、 EDGE信号、 EDGE+信 号; 非第一制式信号包括如下信号之一或其组合: LTE、 UMTS, TD-SCDMA、 CDMA, CDMA2000等。
信号调制模块 22用于对所述第一制式信号进行脉冲成型前的调制动 作。 第一制式信号的调制方式可以是线性调制方式和非线性调制方式。 上 述线性调制方式包括: 8PSK、 QPSK、 a-QPSK、 16QAM、 32QAM等; 非线性 调制方式包括 GMSK。
信号发送模块 23用于将经过所述脉冲成型前的调制动作调制的所述 第一制式信号进行封装, 发送到射频处理单元。
射频处理单元用于对经脉冲成型前的调制动作调制的第一制式信号 进行脉冲成型调制动作。
本发明实施例提供的信号处理方法和装置, 将现有射频处理单元中 对第一制式信号进行的脉冲成型前的调制动作设置在基带处理单元中 完成, 从而使得基带处理单元既可以进行第一制式信号的脉冲成型前的 调制动作, 又可以进行非第一制式信号的脉冲成型前的调制动作, 而在 射频处理单元中不必再对第一制式信号的脉冲成型前的调制功能进行 配置, 与现有技术中基带处理单元和射频处理单元中都要对信号脉冲成 型前的调制功能进行配置的情况相比, 提高了系统的资源利用率, 降低 成本。
实施例 2 :
本发明实施例还提供了一种信号处理方法,所述方法为基带处理单元 一侧的方法, 如图 3所示, 包括以下步骤:
301、 检测当前信号是否为第一制式信号, 若为第一制式信号则执行 302 , 否则执行 303。
其中第一制式信号包括如下信号之一或其组合: GSM信号、 EDGE信号、 EDGE+信号。
非第一制式信号包括如下信号之一或其组合: LTE信号、 UMTS信号、 TD-SCDMA信号、 CDMA信号、 CDMA2000信号等。
302、 在基带处理单元对所述第一制式信号进行星座图映射及相位旋 转调制动作, 或对所述第一制式信号进行差分编码调制动作。
具体的过程可以包括: 首先在基带处理单元对 GSM 信号进行编码处 理, 编码处理可以是卷积编码、 turbo编码、 交织编码等的任一种。
若所述第一制式信号进行线性调制,则脉冲成型前的主要调制动作包 括: 第一制式信号的星座图映射和相位旋转, 具体的调制方式可以是 8PSK、 QPSK、 a -QPSK、 16QAM、 32QAM等; 若所述第一制式信号进行非线 性调制, 具体的调制方式可以是 GMSK调制, 则该脉冲成型前的调制动作 包括: 差分编码调制动作。
303、 在基带处理单元对所述非第一制式信号进行星座图映射和相位 旋转的调制动作。
在进行调制动作之前首先通过基带处理单元对所述非第一制式信号 进行编码动作, 编码处理可以是卷积编码、 turbo编码、 交织编码等的任 一种。
然后基带处理单元对编码后的信号进行脉冲成型前的调制动作,主要 的调制动作包括: 星座图映射和相位旋转。
非第一制式信号的具体调制方式可以是 8PSK、 QPSK、 a -QPSK、 16QAM、 32QAM等。
304、 将经过脉冲成型前的调制动作调制后的信号进行封装, 发送到 射频处理单元。
对经过脉冲成型前调制动作调制的信号进行封装, 具体可以依照 CPRI 通用公共无线接口协议对信号进行封装, 也可以依照基带处理单元 与射频处理单元互相约定的协议进行封装,然后基带处理单元把该封装的 信号发送到射频处理单元。
射频处理单元对接收的信号进行解封装。若射频处理单元接收的信号 是第一制式信号,则对经过基带处理单元进行脉冲成型前的调制动作调制 的第一制式信号进行脉冲成型调制动作。 具体的, 对于在基带处理单元进 行线性调制的所述第一制式信号进行脉冲成型调制动作;对于在基带处理 单元进行非线性调制的所述第一制式信号进行 GMSK查表。 若射频处理单 元接收的信号是非第一制式信号,则对经过基带处理单元进行脉冲成型前 的调制动作调制的非第一制式信号进行脉冲成型调制动作。
具体的, 所述基带处理单元可以是 BBU ( Bu i l d ing Ba s e Un i t ) 基带 处理单元, 所述射频处理单元是 RRU ( Rad i o Remo te Un i t ) 射频拉远单 元, 所述 BBU将所述经过脉冲成型前的调制动作调制的信号根据 CPR I通 用公共无线接口协议进行封装, 发送到 RRU。
下面以分布式基站为例,对 GSM/LTE双模信号的处理方法为例具体作 以说明。
基站的基带处理单元首先检测当前信号的制式, GSM或 LTE信号; 然 后对当前信号进行编码, 编码处理可以是卷积编码、 turbo编码、 交织编 码等的任一种。
若当前信号为 GSM信号, GSM信号的线性调制过程如图 4所示, 在基 带处理单元 4 1中,首先对需要进行线性调制的 GSM信号进行脉冲成型 42 1 前的调制动作, 包括有星座图映射 4 1 1及相位旋转 41 2。 线性调制方法包 括: 8PSK、 QPSK、 a _QPSK、 1 6QAM、 32QAM等。
然后基带处理单元 41对经过脉冲成型 42 1前的调制动作调制的信号 进行封装, 对于分布式基站, 由于基带处理单元和射频处理单元为两个独 立的设备, 基带处理单元 4 1与射频处理单元 42通过光纤连接, 具体可以 依照 CPR I通用公共无线接口协议对信号进行封装。
基带处理单元 4 1把该封装的信号发送到射频处理单元 42 , 射频处理 单元 42按照 CPR I通用公共无线接口协议对接收到的信号解封装,并对信 号进行脉冲成型 421调制动作。
若当前信号为 GSM信号, GSM信号的非线性调制过程如图 5所示, 对 GSM信号进行非线性调制, 与线性调制不同之处在于, GSM信号在基带处 理单元 5 1 中进行差分编码 51 1 , 在射频处理单元内进行 GMSK查表 521。
若当前信号为 LTE信号, LTE信号进行线性调制, 具体过程如图 4所 示, 在此不再赘述。
调制完成后, 当前信号进行功率放大、 滤波等处理后, 然后通过天线 被发送到某个终端、 或基站等。
本发明实施例以 GSM/LTE 双模信号处理方法为例, 当然, 也可以是 GSM/UMTS双模信号, 也可以是 GSM/CDMA/LTE/TD-SCDMA等多模信号, 或 任何第一制式和任何非第一制式组合的信号处理方法。 不同之处在于, 基 带处理单元要对其他制式的信号进行相应的调制动作,如 EDGE/UMTS多模 信号, 则要在基带处理单元分别对 EDGE、 UMTS信号进行相应的脉冲成型 前的调制动作, 在射频处理单元分别对 EDGE、 UMTS信号进行相应的脉冲 成型的调制动作, 在此不再详细描述。
本发明实施例提供的信号处理方法,将现有射频处理单元中对第一制 式信号,如 GSM信号的脉冲成型前的调制动作设置在基带处理单元中进行 处理,从而使得基带处理单元既可以对第一制式信号进行脉冲成型前的调 制动作的线性调制及非线性调制, 又可以对非第一制式信号, 如 LTE信号 进行脉冲成型前的调制动作,射频处理单元中不必再对第一制式信号的脉 冲成型前的调制功能进行配置,与现有技术中基带处理单元和射频处理单 元中都要进行信号的脉冲成型前的调制功能进行配置的情况相比, 提高了 系统的资源利用率, 降低成本。
实施例 3:
本发明实施例还提供了一种信号处理装置, 如图 6所示, 所述装置包 括: 信号检测模块 61、 信号调制模块 62、 信号发送模块 63。
信号检测模块 61 , 用于检测当前信号是否为第一制式信号。
信号调制模块 62 , 用于对所述第一制式信号进行脉冲成型前的调制 动作。
具体的, 信号调制模块 62可以包括:
第一制式信号调制子模块 621 , 用于对所述第一制式信号进行星座图 映射及相位旋转调制动作,或用于对所述第一制式信号进行差分编码调制 动作。
非第一制式信号调制子模块 622 , 用于对所述非第一制式信号进行星 座图映射及相位旋转调制动作。
信号发送模块 63 , 用于将经过所述脉冲成型前的调制动作调制的所 述第一制式信号进行封装, 发送到射频处理单元。
其中,所述第一制式信号包括如下信号之一或其组合: GSM信号、 EDGE 信号、 EDGE+信号。
所述非第一制式信号包括如下信号之一或其组合: LTE 信号、 UMTS 信号、 TD-SCDMA信号、 CDMA信号、 WCDMA信号、 CDMA2000信号。
下面具体以上述处理装置处理 GSM/LTE 双模信号为例说明, 如图 6 所示。 首先信号检测模块 61用于检测当前的信号是 GSM信号还是 LTE信号。 其中,第一制式信号调制子模块 621用于对 GSM信号进行星座图映射 及相位旋转调制动作, 或用于对 GSM信号进行差分编码调制动作; 非第一 制式信号调制子模块 622用于对 LTE信号进行星座图映射及相位旋转调制 动作。
上述信号发送模块 63用于将经过信号调制模块 62调制过的信号进行 封装, 具体的封装协议可以是 CPR I通用公共无线接口协议, 也可以是基 带处理单元与射频处理单元相互约定的接口协议。然后将封装的信号发送 到射频处理单元, 以使得射频处理单元进行脉冲成型调制动作。
上述射频处理单元用于将接收到的信号进行解封装后, 执行脉冲成 型调制动作。 若当前信号为 GSM信号, 该 GSM信号进行线性调制, 则射频 处理单元对该 GSM信号进行脉冲成型调制动作;若该 GSM信号进行非线性 调制, 则射频处理单元对该 GSM信号进行 GMSK查表。 若射频处理单元接 收到的是 LTE信号, 对该 LTE信号进行脉冲成型调制动作。
然后将调制动作完成的信号进行功率放大、 滤波等处理, 通过天线将 该信号发射出去。
本实施例以 GSM/LTE 双模信号的处理装置为例, 当然, 也可以是 GSM/UMTS双模信号的处理装置, 也可以是 GSM/CDMA/LTE/TD-SCDMA等多 模的信号处理装置,或任何第一制式和任何非第一制式组合的信号处理装 置。 不同之处在于, 信号调制装置要对相应制式的信号的进行调制, 如 EDGE/UMTS双模信号, 则第一制式信号调制子模块用于对 EDGE信号进行 脉冲成型前的调制; 非第一制式信号调制子模块用于对 UMTS信号进行脉 冲成型前的调制, 在此不再详细描述。
本发明实施例提供的信号处理装置,所述装置既用于对非第一制式信 号, 如 LTE信号进行脉冲成型前的调制动作, 主要步骤包括星座图映射和 相位旋转的调制动作; 同时还用于对第一制式信号, 如 GSM信号进行脉冲 成型前的调制动作, 包括线性调制的星座图映射、 相位旋转步骤或非线性 调制的差分编码;然后基带处理单元将所述经过脉冲成型前调制动作调制 的信号封装发送给射频处理单元。 这样不管是哪种制式的信号, 脉冲成型 前的调制动作都在基带处理单元来处理, 提高了系统的资源利用率, 降低 成本。
实施例 4:
本发明实施例还提供了一种基站,该基站包括上述实施例 1或 3的信 号处理装置。
下面具体以分布式基站处理 GSM/LTE信号为例进行具体说明。
该分布式基站包括: 室内基带处理单元 BBU 71 和射频拉远单元 RRU
72。 BBU包括: 信号检测模块 711、信号调制模块 712、信号发送模块 713。
信号检测模块 711用于检测当前信号是 GSM信号还是 LTE信号。
其中, 信号调制模块 712可以包括第一制式信号调制子模块 7121和 非第一制式信号调制子模块 7122。 第一制式信号调制子模块 7121用于对
GSM信号进行星座图映射及相位旋转调制动作, 或用于对 GSM信号进行差 分编码调制动作, 非第一制式信号调制子模块 7122用于对 LTE信号进行 星座图映射及相位旋转调制动作。
信号发送模块 713用于将经过信号调制模块 712调制过的信号进行封 装, 具体的封装协议可以是 CPRI通用公共无线接口协议, 然后将经过封 装的信号发送到射频处理单元 72。
射频处理单元 72用于将接收到的当前信号进行解封装后, 执行脉冲 成型调制动作。
当基站要向终端、 其它基站发送信号时, 首先信号检测模块 711检测 当前信号的制式, GSM或 LTE; 然后对当前信号进行编码, 编码处理可以 是卷积编码、 turbo编码、 交织编码等的任一种。
若当前信号为 GSM信号,信号调制模块 712中的第一制式信号调制子 模块 7121对需要进行线性调制的 GSM信号进行脉冲成型前的调制动作, 包括有星座图映射及相位旋转。线性调制方法包括: 8PSK、 QPSK、 a -QPSK、 16QAM、 32QAM等。 对需要进行非线性调制的 GSM信号进行差分编码调制 动作, 具体的调制方式包括 GMSK。
若当前信号为 LTE信号, 非第一制式信号调制子模块 7122对当前信 号进行脉冲成型前的调制动作, 包括星座图映射及相位旋转。
然后信号发送模块 71 3 对经过脉冲成型前的调制动作调制的当前信 号进行封装,具体可以依照 CPR I通用公共无线接口协议对信号进行封装, 然后把该封装的信号发送到射频处理单元 72。
若当前信号为 LTE信号, 射频处理单元 72对 LTE信号进行脉冲成型 调制动作; 若当前信号为 GSM信号, 若该 GSM信号进行的是线性调制, 则 对该 G SM信号进行脉冲成型调制动作,若该 G SM信号进行的是非线性调制 , 则对该 GSM信号进行 GMSK查表。
调制完成后, 对当前信号进行功率放大、 滤波等处理后, 然后通过天 线发射被发送到某个终端、 数据卡或基站等。
进一步的, 本实施例还适用于宏基站或微基站等, 对于宏基站、 微基 站, 基带处理单元和射频处理单元可以为同一设备, 或设置在同一或较近 的地点不同设备, 基带处理单元与射频处理单元可以釆用 CPR I通用公共 无线接口协议对信号进行封装, 也可以约定协议进行封装。
本实施例以 GSM/LTE双模信号处理例, 当然,也可以是支持 GSM/UMTS 双模信号处理的基站,也可以是 GSM/CDMA/LTE/TD-SCDMA等多模信号处理 的基站, 或任何第一制式和任何非第一制式组合的信号处理的基站, 在此 不再赘述。
本发明实施例提供的基站, 包括基带处理单元和射频处理单元, 所述 基带处理单元既用于对非第一制式信号进行脉冲成型前调制动作的调制, 主要步骤包括星座图映射和相位旋转的调制动作;同时基带处理单元还用 于对第一制式信号进行脉冲成型前调制动作的调制,包括线性调制的星座 图映射、 相位旋转步骤或非线性调制的差分编码; 然后基带处理单元将所 述经过脉冲成型前调制动作调制的信号进行封装发送给射频处理单元。这 样不管是哪种制式的信号,脉冲成型前的调制动作都在基带处理单元来处 理, 提高了系统的资源利用率, 降低成本。
本发明实施例还提供了一种终端, 包括实施例 1 或 3 的信号处理装 置, 上述终端可以是手机, 数据卡等, 在此不再赘述。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计 算机可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的 步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种信号处理方法, 其特征在于, 包括:
检测当前信号是否为第一制式信号;
若所述当前信号为第一制式信号, 在基带处理单元对所述第一制式信 号进行脉冲成型前的调制动作;
对所述经过脉冲成型前的调制动作调制的所述第一制式信号进行封 装, 发送到射频处理单元。
2、 根据权利要求 1所述的方法, 其特征在于, 所述在基带处理单元对 所述第一制式信号进行脉冲成型前的调制动作, 包括:
对所述第一制式信号进行星座图映射及相位旋转调制动作, 或 对所述第一制式信号进行差分编码调制动作。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述基带处理单元 为 BBU基带处理单元, 所述射频处理单元为 RRU射频拉远单元, 所述 BBU 将所述经过脉冲成型前的调制动作调制的所述第一制式信号根据 CPR I 通 用公共无线接口协议封装, 发送到 RRU。
4、 根据权利要求 3所述的方法, 其特征在于, 所述第一制式信号包括 如下信号之一或其组合: GSM信号、 EDGE信号、 EDGE+信号。
5、 一种信号处理装置, 其特征在于, 包括:
信号检测模块, 用于检测当前信号是否为第一制式信号;
信号调制模块,用于对所述第一制式信号进行脉冲成型前的调制动作; 信号发送模块, 用于将经过所述脉冲成型前的调制动作调制的所述第 一制式信号进行封装, 发送到射频处理单元。
6、根据权利要求 5所述的装置,其特征在于,所述信号调制模块包括: 第一制式信号调制子模块, 用于对所述第一制式信号进行星座图映射 及相位旋转调制动作,或用于对所述第一制式信号进行差分编码调制动作; 非第一制式信号调制子模块, 用于对所述非第一制式信号进行星座图 映射及相位旋转调制动作。
7、 根据权利要求 5或 6所述的装置, 其特征在于, 所述第一制式信号 包括如下信号之一或其组合: GSM信号、 EDGE信号、 EDGE+信号;
所述非第一制式信号包括如下信号之一或其组合: LTE信号、 UMTS信 号、 TD-SCDMA信号、 CDMA信号、 WCDMA信号、 CDMA2000信号。
8、一种基站,其特征在于, 包括所述权利要求 5-7任一项所述的装置。
9、 根据权利要求 8所述的基站, 其特征在于, 所述装置为 BBU基带处 理单元, 所述射频处理单元为 RRU射频拉远单元, 所述 BBU的所述信号发 送模块将所述经过脉冲成型前的调制动作调制的所述第一制式信号根据 CPRI通用公共无线接口协议封装, 发送到 RRU。
10、 一种终端, 其特征在于, 包括所述权利要求 5至 7任一项所述的 装置。
PCT/CN2011/079952 2011-09-21 2011-09-21 一种信号的处理方法及装置 WO2012149758A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/079952 WO2012149758A1 (zh) 2011-09-21 2011-09-21 一种信号的处理方法及装置
CN201180001868.8A CN102388592B (zh) 2011-09-21 2011-09-21 一种信号的处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079952 WO2012149758A1 (zh) 2011-09-21 2011-09-21 一种信号的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2012149758A1 true WO2012149758A1 (zh) 2012-11-08

Family

ID=45826517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079952 WO2012149758A1 (zh) 2011-09-21 2011-09-21 一种信号的处理方法及装置

Country Status (2)

Country Link
CN (1) CN102388592B (zh)
WO (1) WO2012149758A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137256A1 (en) * 2013-03-07 2014-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for providing radio access at local site
CN109076636A (zh) * 2016-12-26 2018-12-21 华为技术有限公司 分布式基站中的信号处理方法和分布式控制装置
CN107968680B (zh) * 2017-12-01 2019-11-22 清华大学 一种光学非线性效应的补偿方法和装置
CN111131109B (zh) * 2019-12-31 2022-08-23 京信网络系统股份有限公司 信号识别方法、装置、计算机设备和存储介质
CN117156499B (zh) * 2023-10-30 2024-01-02 中国移动紫金(江苏)创新研究院有限公司 分布式小区频率资源管理方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1373622A (zh) * 2001-03-07 2002-10-09 华为技术有限公司 集成多种调制功能的基带处理器及其实现多种调制的方法
CN101366192A (zh) * 2005-09-12 2009-02-11 高通股份有限公司 多频带射频调制器
CN102055556A (zh) * 2010-12-29 2011-05-11 重庆邮电大学 基于共性技术的移动通信终端基带处理系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098328B (zh) * 2007-06-29 2010-06-02 中兴通讯股份有限公司 一种基带与射频系统同步和时延补偿方法
CN101175261B (zh) * 2007-11-28 2010-09-29 中兴通讯股份有限公司 一种在基带池中传输多模正交数据的接口及方法
CN101695192A (zh) * 2009-10-22 2010-04-14 中兴通讯股份有限公司 实现基带处理单元与射频单元之间资源分配的方法及系统
WO2011050491A1 (en) * 2009-10-29 2011-05-05 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1373622A (zh) * 2001-03-07 2002-10-09 华为技术有限公司 集成多种调制功能的基带处理器及其实现多种调制的方法
CN101366192A (zh) * 2005-09-12 2009-02-11 高通股份有限公司 多频带射频调制器
CN102055556A (zh) * 2010-12-29 2011-05-11 重庆邮电大学 基于共性技术的移动通信终端基带处理系统

Also Published As

Publication number Publication date
CN102388592B (zh) 2014-07-30
CN102388592A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
US9386440B2 (en) Method for improving communication performance using vehicle provided with antennas
CN111049626B (zh) 无线通信的方法和装置
US11457347B2 (en) Techniques to manage service requests in a wireless network
US10863578B2 (en) Data transmission method, device and system
WO2012149758A1 (zh) 一种信号的处理方法及装置
US9113452B2 (en) Method and arrangement in a wireless communication network
CN108024325A (zh) 无线通信方法和装置
US20080037411A1 (en) Variable filtering for radio evolution
WO2017099841A1 (en) Providing different radio access networks independent, standardized access to a core network
US20230224083A1 (en) Data transmission method and apparatus
US11979936B2 (en) User equipment and method of wireless communication of same
US8094755B2 (en) Ramping in multimode transmitters using primed filters
WO2018005215A1 (en) Group-addressed transmission techniques for directional wireless networks
EP3079270B1 (en) Network management control information transmission method and microwave device
KR102107265B1 (ko) 공통 채널을 통해 ussd 를 사용하기 위한 방법들 및 장치
US20230344493A1 (en) Wireless communication method, terminal device, and network device
WO2024012174A1 (zh) 通信方法、装置、设备以及存储介质
US20220279324A1 (en) Wireless Communication Devices, Corresponding Methods and Computer Programs, Mobile Device and Vehicle
CN116261881A (zh) Nr直通链路中继通信方法及装置
EP2057743A2 (en) Variable filtering for radio evolution

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001868.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864822

Country of ref document: EP

Kind code of ref document: A1