WO2012149668A1 - 二步法生产还原铁粉的工艺 - Google Patents

二步法生产还原铁粉的工艺 Download PDF

Info

Publication number
WO2012149668A1
WO2012149668A1 PCT/CN2011/001359 CN2011001359W WO2012149668A1 WO 2012149668 A1 WO2012149668 A1 WO 2012149668A1 CN 2011001359 W CN2011001359 W CN 2011001359W WO 2012149668 A1 WO2012149668 A1 WO 2012149668A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
reduction
charge
coal
heating
Prior art date
Application number
PCT/CN2011/001359
Other languages
English (en)
French (fr)
Inventor
刘元生
Original Assignee
Liu Yuansheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Yuansheng filed Critical Liu Yuansheng
Publication of WO2012149668A1 publication Critical patent/WO2012149668A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0066Preliminary conditioning of the solid carbonaceous reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the present invention relates to the field of metallurgical technology, and more particularly to a process for producing reduced iron powder by a coal-based two-step process of non-blast furnace iron making.
  • the direct reduced iron (DRI) method is a process in which iron ore does not melt under solid conditions, does not form slag, and is reduced to metallic iron. Due to its stable composition and low content of harmful elements, DRI has few metal inclusions that are particularly difficult to oxidize. It can be used as a pure raw material for smelting high-quality steel and special steel, and also as a raw material for iron in casting, ferroalloy, powder metallurgy and other processes.
  • the direct reduction iron process does not use coke, and the raw material can use lump or pellets without sintering, so it is a superior shield, low-consumption, low-pollution ironmaking process, and one of the cutting-edge technologies of world steel metallurgy.
  • Direct reduction method is divided into two categories: gas base method and coal base method.
  • the gas-based method uses natural gas to crack and produce H2 and CO gas as a reducing agent to reduce iron oxide in iron ore into sponge iron in a shaft furnace, a tank furnace or a fluidized bed.
  • the coal-based method is a method of reducing iron oxide in iron ore in a shaft furnace, a rotary kiln, a tunnel kiln, a rotary hearth furnace and the like using coal as a reducing agent.
  • more than 70% of the direct reduced iron production in the world is produced by the gas-based method.
  • the O environment and the C environment are contradictory environments at high temperatures. It is difficult to handle this contradiction in a process vessel (although the blast furnace method deals with this contradiction, the C environment in the hearth and the furnace body 0 environment, so the blast furnace method has the lowest energy consumption).
  • the best way to solve this contradiction is to decompose them into a two-step process (the coal-based direct reduction method also has a two-step method, which is to say that the burning of the charge is the first step, obviously this is unreasonable because No one will call the blast furnace method a two-step method.
  • the tunnel kiln process In the process of reducing iron in the C-based process, it is the key to the reduced iron technology to treat the CO produced by the Boudouard reaction without causing a large amount of loss.
  • the tunnel kiln process In order to reduce CO loss, the tunnel kiln process only reduces the reduction temperature, thus prolonging the reduction time to 50 hours, and the P strip has low productivity.
  • the two-flame tunnel kiln has no tank rapid reduction method. He wants to use the kiln. The method leads to the re-burning of CO, but it is very difficult to get things done in a kiln.
  • the solution to the rotary hearth method is the rotary hearth furnace proposed by Kobe Steel Co., Ltd. and its operation method (ZL200680040858.4).
  • the technical problem to be solved by the present invention is to provide a process for producing reduced iron powder in a two-step process with more reasonable and effective energy reduction in view of the deficiencies of the prior art.
  • the technical problem to be solved by the present invention is achieved by the following technical solutions.
  • the present invention is a two-step process for producing reduced iron powder, which is characterized by the following steps:
  • the furnace charge is set in the heating equipment for heating to 1000-1300 °C, the heating heat comes from the CO supplied by the reduction furnace in the reduction process, and the heating equipment itself is used for the coal injection combustion system. Replenishment of heat when needed;
  • the heating device may be a shaft furnace, a belt furnace, a tunnel kiln for heating various objects by an open flame or an internal flame.
  • the equipment such as roller kiln, rotary kiln and rotary hearth furnace is most preferably an open flame or inner flame type shaft furnace, belt furnace or rotary kiln.
  • the reduction furnace is preferably a shaft furnace, a slope furnace, a tank furnace or a fluidized bed.
  • the reduction furnace is further preferably an internal combustion type slope furnace or a shaft furnace, and the reduction energy is derived from the carbon fuel injected from the coal injection hole.
  • the carbon fuel is coal, waste plastic powder, waste rubber powder or other carbonaceous powder;
  • a backup electric heater is also provided at the bottom of the ramp or shaft furnace so that it can be electrically heated when needed.
  • the grate machine is preferably subjected to a drying treatment, and preferably a ring cooler is used for the cooling treatment.
  • the selective treatment process of the present invention may be a selective treatment process of conventional iron powder such as magnetic separation and sieving.
  • the heating heat of the heating process of the invention comes from the reduction furnace, and the CO is extracted from the reduction furnace to the combustion system of the heating device. When the CO is sufficient, the heat is not required to be replenished, and only when the CO is insufficient, the heating is required.
  • the thermal equipment itself's coal injection combustion system is used for heat replenishment.
  • the main components of the coal-reducing pellet are iron ore fines, coal blending (reducing agent), easy-selecting agent (de-P, S, Si agent and catalyst) and a binder.
  • the lump ore or carbide compact can also be used directly in the process of the invention.
  • Adjust the discharge temperature of the grate (affecting the maximum temperature of the exhaust gas), the discharge temperature of the rotary kiln (the energy consumption of the ring and the reduction section), the carbon content of the pellet and the amount of coal added to the kiln (affecting the CO content of the tail gas) , can burn a part of the rotary kiln at 0 high temperature, so that the whole system can run at the best condition.
  • the process of the invention is more reasonable, and it fully utilizes the CO generated in the process, and the one-step reduction process of warming and reduction together in the prior art is decomposed into an o environment and a C environment. In a two-step process, and reacting in different vessels, this greatly reduces CO emissions and reduces process energy consumption.
  • FIG. 1 is a schematic diagram of a process flow of the present invention.
  • Example 1 A two-step process for producing reduced iron, the steps of which are as follows:
  • Heating The furnace charge is set in the heating equipment for heating to 1000, the heating heat is from the co supply in the reduction furnace in the reduction process, and the heating equipment itself's coal injection combustion system is used for the heat supplement when needed. ;
  • Example 2 A two-step process for producing reduced iron powder, the steps of which are as follows:
  • the furnace charge is set in the heating equipment for heating to 1300 ° C, the heating heat is from the CO supplied by the reduction furnace in the reduction process, and the heating equipment itself is used for the coal injection combustion system when needed.
  • Calorie supplementation
  • Example 3 A two-step process for producing reduced iron powder, the steps of which are as follows:
  • the furnace material is set in the heating equipment for heating to 1200 °C, the heating heat is from the CO supplied by the reduction furnace in the reduction process, and the heating equipment itself is used for the coal injection combustion system when needed.
  • Calorie supplementation
  • the heating device is an open flame or internal flame type shaft furnace, a belt furnace or a rotary kiln.
  • the reduction furnace is a shaft furnace, a slope furnace, a tank furnace or a fluidized bed.
  • the reduction furnace is an internal combustion type slope furnace or a shaft furnace, and the reduction energy is from the carbon injected into the coal injection hole.
  • Fuel the carbon fuel is coal, waste plastic powder, waste rubber powder or other carbon powder; and a backup electric heating device is also arranged at the bottom of the internal combustion type slope furnace or the shaft furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

二步法生产还原铁粉的工艺 技术领域
本发明涉及的是冶金技术领域, 具体地说本发明属于非高炉炼铁的煤基 二步法生产还原铁粉的工艺。
背景技术
由于传统的高炉炼铁方式投资大、 能耗高、 流程长、 污染严重, 所以高 炉炼铁的工艺不是人们的最佳选择。 为了克服高炉炼铁的种种缺憾, 人们研 究开发了多种非高炉炼铁的方法, 这些方法包括直接还原法和熔融还原法。 直接还原铁 (DRI)法是铁矿石在固态条件下不熔化、 不造渣, 将其还原为金属 铁的工艺。 DRI 由于其成分稳定、 有害元素含量低, 特别不易氧化的金属夹 杂元素少。 可以用来作为冶炼优质钢、 特殊钢的纯净原料, 也可作为铸造、 铁合金、 粉末冶金等工艺的含铁原料。 直接还原铁工艺不用焦炭, 原料可使 用块矿或球团矿而不用烧结, 所以是一种优盾、 低耗、 低污染的炼铁工艺方 法, 也是世界钢铁冶金的前沿技术之一。
直接还原法分气基法和煤基法两大类。 气基法是用天然气经裂化产出 H2 和 CO气体, 作为还原剂, 在竖炉、罐式炉或流化床内将铁矿石中的氧化铁还 原成为海绵铁。 主要有 Midrex法、 HYL III法、 FIOR法等。 煤基法是用煤作 还原剂, 在竖炉、 回转窑、 隧道窑、 转底炉等设备内将铁矿石中氧化铁还原 的方法。 目前, 世界上 70%以上的直接还原铁产量是用气基法生产出来的。 但是由于天然气资源的地域限制和价格昂贵, 促使其生产量增长不快。 用便 宜的煤作还原剂的直接还原法是最古老的冶铁方法, 但是它的产量现在却只 是世界铁产量的百分之一。 究其原因, 还是工艺问题, 用隧道窑法生产的海 绵铁的能耗几乎是理论值的 4倍, 这不能不说是阻碍煤基直接还原法发展的 重要因素。 要把铁矿石还原成铁, 需要有两种能量参加反应。 第一种能量是把铁矿 石加热到 1000°C以上的热能, 它的反应过程是要在一个富氧(0 ) 的环境中 才合理。 另一种能量就是 4巴铁矿石中的 o还原出来的化学能, 它需要在一个 富 H或富 C的反应环境; 本发明使用煤基来还原铁, 所以在工艺中应该有一 个富 C的环境存在。
在还原铁的工艺过程当中, 还有一个与氧化铁还原成铁的结果没有直接 关系的能量, 就是 CO携带的化学能。把氧化铁还原成铁, 如果用煤来做还原 剂那就是用 C把氧化铁中的 o携带出来; 其最理想的结果是在还原工艺的最 后得到的都是 C02。 但是, 在铁熔化温度的附近, 存有大量 C时, C02就很 难存在, 因为在多 C的环境中高温会使 C02裂解成为 CO ( Boudouard反应)。 CO携带的化学能是巨大的, 它占到煤能量的 72 %。 还原工艺如果处理不好 CO, 那就会造成工艺能量损失。
O环境和 C环境在高温下是相互矛盾的环境, 在一个工艺容器里 4艮难处 理好这个矛盾 (不过高炉法就处理好这一矛盾, 在炉缸部为 C环境, 在炉身 部为 0环境, 所以高炉法的能耗最低)。 要解决这个矛盾的最好办法, 就是把 它们分解成为二步工艺 (煤基直接还原法中原来也有一个二步法, 就是把炉 料烧制称做第一步, 显然这是不合理的, 因为没人会把高炉法称作二步法) 法。
在 C基还原铁的工艺当中, 处理好 Boudouard反应产生的 CO不使大量 流失是还原铁技术的关键所在。 隧道窑工艺为减少 CO 流失只有降低还原温 度, 这样使还原时间延长至 50小时, P条低了生产率; 为解决问题, 有人设想 出两焰隧道窑无罐快速还原法, 他想用隔窑的办法引出再烧 CO, 但是在一个 窑体里是很难把事情做好的。 转底炉法的解决办法是由日本神户制钢所提出 的转底炉及其运转方法(ZL200680040858.4 ), 它也是采用隔炉的办法, 在炉 内再燃 CO; 该技术把还原时间缩短到十分钟, 号称是第三代炼铁法 (ITmk3); 不过转底炉本来就不是大规模生产工艺, 所以它的发展受到制约。 链篦机-回 转窑法是现有煤基直接还原法中处理 CO最好的工艺, 所以它的工艺能耗最 低, 占煤基 DRI产出量的比例也最大; 只是因为结圏问题使它无法提高还原 温度, 而延长了工艺还原时间, 因此也不能完善 DRI的还原质量。
发明内容
本发明所要解决的技术问题是针对现有技术的不足, 提供一种工艺更为 合理、 有效降低能耗的二步法生产还原铁粉的工艺。
本发明所要解决的技术问题是通过以下的技术方案来实现的。 本发明是 一种二步法生产还原铁粉的工艺, 其特点是, 其步骤如下:
( 1 ) 炉料准备: 用配煤还原球团, 或者铁块矿与配煤组成的混合物, 或者碳 铁矿压块作炉料, 并对炉料进行干燥处理;
( 2 )加温: 将炉料设入加温设备中进行加温至 1000-1300 °C , 加温热量来自 · 于还原工序中还原炉供给的 CO, 加温设备自身的喷煤燃烧系统用于需 要时的热量补充;
( 3 )还原: 将炉料投入还原炉中加温至 1300-1500°C进行还原处理;
( 4 ) 炉料处理: 将还原后的炉料进行冷却, 粉碎, 精选处理, 得成品铁粉。
以上所述的二步法生产还原铁粉的工艺技术方案的步骤(2 ) 中, 所述的 加温设备可以为各种敞焰或内焰对物体加热的竖炉、 带式炉、 隧道窑、 辊道 窑、 回转窑和转底炉等设备, 最优选为敞焰或内焰式的竖炉、 带式炉或回转 窑。
以上所述的二步法生产还原铁粉的工艺技术方案的步骤(3 ) 中, 所述的 还原炉优选为竖炉、 斜坡炉、 罐式炉或流化床。
以上所述的二步法生产还原铁粉的工艺技术方案的步骤(3 ) 中, 所述的 还原炉进一步优选为内燃式斜坡炉或竖炉, 其还原能量来自喷煤孔喷入的碳 燃料; 所述的碳燃料为煤、 废塑料粉、 废橡胶粉或其他含碳粉料; 在内燃式 斜坡炉或竖炉底部还设有备用电加热装置, 这样可以在需要的时候进行电加 热。
本发明工艺中, 优选链篦机进行干燥处理, 优选环冷机进行冷却处理。 本发明所述的精选处理工艺可以为磁选、 筛分等常规铁粉的精选处理工艺。
本发明工加温工序的加温热量来自于还原炉,需要从还原炉中引出 CO至 加温设备的燃烧系统, 当 CO足够时, 可不不需要热量补充, 只有当 CO不够 时, 才需要加温设备自身的喷煤燃烧系统用于热量补充。
所述的配煤还原球团的主要成分为铁矿粉、配煤(还原剂)、易选剂(脱 P、 S、 Si 剂和催化剂)和粘合剂。 本发明工艺也可以直接使用块矿或者碳铁矿压 块。
在加温工艺段, 在大的富 0燃烧环境中在炉料里还存在一个小的 C预还 原环境, 它可以将铁矿石预还原 50 - 70 %, 它需要的 C来自球团配碳和回转 窑 (加温设备)窑尾的加煤。 窑尾加煤中可以添加 10 ~ 40 %的白云石粉或石 灰粉, 用于脱去煤中的8、 P和提高回转窑的不结圏温度。 窑尾加煤料还有的 作用是保护球团不破碎, 使回转窑可以处理球团矿强度和转鼓指数较低炉料。 调整链篦机的出料温度(影响尾气最高温度)、回转窑的出料温度 (结圈和还原 段的能耗)、 球团的配碳和窑尾的加煤量(影响尾气的 CO含量, 在回转窑富 0高温下可以燃烧一部分), 使整个系统运行在最佳状态下。
在还原工艺段: 还原炉在喷煤或者其它含灰分的碳粉时, 加入 10 ~ 20 % 的白云石粉或石灰粉, 以降低灰分的烧结温度。 在大量的 C存在的高温还原 炉内, C会到处寻找 0最后生成 CO, 所以铁氧化物会很快被还原成铁。 控制 空气, 也就是 0的进入量和节奏, 使还原炉内空间有时变为 o环境, 以尽量 增加排出气体的 co2含量, 使更多的能量留在还原炉内。 炉料排出前要把炉 料加温到 1423°C ( FeO消失温度) 以上, 使其中的 FeO (浮氏体)含量降到 最低, 而铁又不熔化流淌。 与现有技术相比, 本发明工艺更为合理, 它充分利用了工艺过程中产生 的 CO,将原有技术中加温和还原放在一起的一步法还原工艺,分解为 o环境 和 C环境在二步工艺, 并在不同的容器里反应, 这样大大降低了 CO排放, 降^ ί氐了工艺能耗。
附图说明
图 1为本发明的一种工艺流程示意图。
具体实施方式
以下参照附图, 进一步描述本发明的具体技术方案, 以便于本领域的技 术人员进一步地理解本发明 , 而不构成对其权利的限制。
实施例 1。 一种二步法生产还原铁分的工艺, 其步骤如下:
(1) 炉料准备: 用配煤还原球团, 或者铁块矿与配煤组成的混合物, 或者碳 铁矿压块作炉料, 并对炉料进行干燥处理;
(2) 加温: 将炉料设入加温设备中进行加温至 1000,加温热量来自于还原工 序中还原炉供给的 co, 加温设备自身的喷煤燃烧系统用于需要时的热 量补充;
(3)还原: 将炉料投入还原炉中加温至 1300°C进行还原处理;
(4) 炉料处理: 将还原后的炉料进行冷却, 粉碎, 精选处理, 得成品铁粉。
实施例 2。 一种二步法生产还原铁粉的工艺, 其步骤如下:
(1) 炉料准备: 用配煤还原球团, 或者铁块矿与配煤组成的混合物, 或者碳 铁矿压块作炉料, 并对炉料进行干燥处理;
(2) 加温: 将炉料设入加温设备中进行加温至 1300°C,加温热量来自于还原 工序中还原炉供给的 CO, 加温设备自身的喷煤燃烧系统用于需要时的 热量补充;
( 3) 还原: 将炉料投入还原炉中加温至 1500°C进行还原处理;
(4) 炉料处理: 将还原后的炉料进行冷却, 粉碎, 精选处理, 得成品铁粉。 实施例 3。 一种二步法生产还原铁粉的工艺, 其步骤如下:
( 1 ) 炉料准备: 用配煤还原球团, 或者铁块矿与配煤组成的混合物, 或者碳 铁矿压块作炉料, 并对炉料进行干燥处理;
( 2 )加温: 将炉料设入加温设备中进行加温至 1200 °C,加温热量来自于还原 工序中还原炉供给的 CO, 加温设备自身的喷煤燃烧系统用于需要时的 热量补充;
( 3 ) 还原: 将炉料投入还原炉中加温至 1450°C进行还原处理;
( 4 ) 炉料处理: 将还原后的炉料进行冷却, 粉碎, 精选处理, 得成品铁粉。
实施例 4。实施例 1或 2或 3所述的二步法生产还原铁粉的工艺的步骤( 2 ) 中, 所述的加温设备为敞焰或内焰式的竖炉、 带式炉或回转窑。
实施例 5。实施例 1或 2或 3所述的二步法生产还原铁粉的工艺的步骤( 3 ) 中, 所述的还原炉为竖炉、 斜坡炉、 罐式炉或流化床。
实施例 6。实施例 1或 2或 3所述的二步法生产还原铁粉的工艺的步骤( 3 ) 中, 所述的还原炉为内燃式斜坡炉或竖炉, 还原能量来自喷煤孔喷入的碳燃 料; 所述的碳燃料为煤、 废塑料粉、 废橡胶粉或其他含碳粉料; 在内燃式斜 坡炉或竖炉底部还设有备用电加热装置。

Claims

权 利 要 求 书 、 一种二步法生产还原铁粉的工艺, 其特征在于, 其步骤如下:
(1) 炉料准备: 用配煤还原球团, 或者铁块矿与配煤组成的混合物, 或者碳 铁矿压块作炉料, 并对炉料进行干燥处理;
(2) 加温: 将炉料设入加温设备中进行加温至 1000-1300°C, 加温热量来自 于还原工序中还原炉供给的 CO, 加温设备自身的喷煤燃烧系统用于需 要时的热量补充;
(3) 还原: 将炉料投入还原炉中加温至 1300-1500°C进行还原处理;
(4) 炉料处理: 将还原后的炉料进行冷却, 粉碎, 精选处理, 得成品铁粉。 、 根据权利要求 1所述的二步法生产还原铁粉的工艺, 其特征在于: 步骤
(2) 中, 所述的加温设备为敞焰或内焰式的竖炉、 带式炉或回转窑。 、 根据权利要求 1所述的二步法生产还原铁粉的工艺, 其特征在于: 步骤
(3) 中, 所述的还原炉为竖炉、 斜坡炉、 罐式炉或流化床。
、 根据权利要求 1所述的二步法生产还原铁粉的工艺, 其特征在于: 步骤
( 3) 中, 所述的还原炉为内燃式斜坡炉或竖炉, 还原能量来自喷煤孔 喷入的碳燃料; 所述的碳燃料为煤、 废塑料粉、 废橡胶粉或其他含碳粉 料; 在内燃式斜坡炉或竖炉底部还设有备用电加热装置。
PCT/CN2011/001359 2011-05-05 2011-08-15 二步法生产还原铁粉的工艺 WO2012149668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110115332.0 2011-05-05
CN2011101153320A CN102206725A (zh) 2011-05-05 2011-05-05 二步法生产还原铁粉的工艺

Publications (1)

Publication Number Publication Date
WO2012149668A1 true WO2012149668A1 (zh) 2012-11-08

Family

ID=44695783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001359 WO2012149668A1 (zh) 2011-05-05 2011-08-15 二步法生产还原铁粉的工艺

Country Status (2)

Country Link
CN (1) CN102206725A (zh)
WO (1) WO2012149668A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195278B (zh) * 2014-08-05 2016-04-13 甘肃酒钢集团宏兴钢铁股份有限公司 一种铁矿石竖炉-回转窑直接还原生产铁粉工艺
CN110273040B (zh) * 2019-08-02 2020-12-11 唐山鑫虎冶金科技有限公司 铁粉冷压还原装置及方法
CN110578029B (zh) * 2019-09-25 2020-11-10 山东大学 一种两段式下降气流床炼铁系统及炼铁工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB729146A (en) * 1952-06-18 1955-05-04 Stanley Edward Matthews Apparatus and process for the reduction of metal oxides by gases
CN1102440A (zh) * 1994-08-27 1995-05-10 冶金工业部钢铁研究总院 熔融还原炼铁方法及其装置
CN1360060A (zh) * 2001-11-15 2002-07-24 苏亚杰 利用含碳冷固结铁球团矿生产海绵铁的工艺方法和生产设备
RU2198226C2 (ru) * 2001-03-20 2003-02-10 Общество с ограниченной ответственностью "Научно-производственное малое предприятие "Интермет-Сервис" Способ получения изделия из железоуглеродистого материала
CN101413040A (zh) * 2008-11-13 2009-04-22 中冶集团北京冶金设备研究设计总院 一种生产直接还原铁的装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB729146A (en) * 1952-06-18 1955-05-04 Stanley Edward Matthews Apparatus and process for the reduction of metal oxides by gases
CN1102440A (zh) * 1994-08-27 1995-05-10 冶金工业部钢铁研究总院 熔融还原炼铁方法及其装置
RU2198226C2 (ru) * 2001-03-20 2003-02-10 Общество с ограниченной ответственностью "Научно-производственное малое предприятие "Интермет-Сервис" Способ получения изделия из железоуглеродистого материала
CN1360060A (zh) * 2001-11-15 2002-07-24 苏亚杰 利用含碳冷固结铁球团矿生产海绵铁的工艺方法和生产设备
CN101413040A (zh) * 2008-11-13 2009-04-22 中冶集团北京冶金设备研究设计总院 一种生产直接还原铁的装置及方法

Also Published As

Publication number Publication date
CN102206725A (zh) 2011-10-05

Similar Documents

Publication Publication Date Title
US20020005089A1 (en) Method of and apparatus for manufacturing the metallic iron
CN102758085B (zh) 用红土镍矿低温冶炼生产镍铁合金的方法
CN110195139B (zh) 一种铁矿石低温还原-常温渣铁分离-电炉制钢工艺
US3033673A (en) Process of reducing iron oxides
CN100510120C (zh) 一种生产金属化炼铁原料的方法
JP2012007225A (ja) 粒状金属鉄を用いた溶鋼製造方法
JP2004131778A (ja) 溶融金属製造用原料の製造方法および溶融金属の製造方法
JPH11172312A (ja) 移動型炉床炉の操業方法および移動型炉床炉
CN107099659A (zh) 一种不锈钢母液的冶炼系统和方法
WO2012149668A1 (zh) 二步法生产还原铁粉的工艺
JP6964692B2 (ja) 金属鉄の製造方法
JP4116874B2 (ja) 溶鉄の製法
CN102051426B (zh) 一种还原炼铁的方法和装置
CN107604157A (zh) 一种利用热态转炉渣制备高炉用铁碳复合团块的方法
JP6476940B2 (ja) 溶鋼の製造方法
JP2002517607A (ja) 酸化鉄の強化された直接還元による持続的製鉄及び固体廃棄物の最小化
KR20040057191A (ko) 일반탄을 이용한 용철 제조 공정에서 분환원철 및 분소성부원료의 괴성체를 이용한 용철제조방법
CN104017928A (zh) 一种间歇式隔焰还原炼铁工艺
JPH079015B2 (ja) 鉄鉱石の溶融還元方法
CN206828602U (zh) 一种不锈钢母液的冶炼系统
CN212560387U (zh) 一种热压废钢增碳使用的装置
RU2150514C1 (ru) Шихтовой брикет для производства высококачественной стали и способ его получения
Li et al. Improvement of strength of carbon-bearing pellets containing magnesium oxide
CN102628091B (zh) 一种三步法生产铁水的工艺
JPH11217614A (ja) 金属の溶融還元製錬方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864624

Country of ref document: EP

Kind code of ref document: A1