WO2012148020A1 - Method for forming a nanodiamond-impregnated dielectric layer for a highly heat dissipating metal substrate - Google Patents

Method for forming a nanodiamond-impregnated dielectric layer for a highly heat dissipating metal substrate Download PDF

Info

Publication number
WO2012148020A1
WO2012148020A1 PCT/KR2011/003177 KR2011003177W WO2012148020A1 WO 2012148020 A1 WO2012148020 A1 WO 2012148020A1 KR 2011003177 W KR2011003177 W KR 2011003177W WO 2012148020 A1 WO2012148020 A1 WO 2012148020A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
forming
diamond
substrate
impregnation
Prior art date
Application number
PCT/KR2011/003177
Other languages
French (fr)
Korean (ko)
Inventor
김동규
김현수
황영찬
손재구
Original Assignee
주식회사 이넥트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이넥트론 filed Critical 주식회사 이넥트론
Priority to KR1020127011033A priority Critical patent/KR20130016457A/en
Priority to PCT/KR2011/003177 priority patent/WO2012148020A1/en
Publication of WO2012148020A1 publication Critical patent/WO2012148020A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a high-efficiency LED metal heat dissipation substrate and a method of manufacturing the same, and more particularly, to improve heat dissipation capability of the insulating layer in the existing metal heat dissipation substrate by impregnating the nano-diamond in the insulating layer to improve heat dissipation performance and insulation performance It relates to a method for forming an insulating layer.
  • LED devices were mainly used for indicator purposes (display purposes), and since high heat dissipation was not required, resin-based (FR-4) substrates have been used as substrates on which LEDs are mounted. Since 2000, the LED's high brightness, high efficiency, and especially the blue LED device has been significantly improved, and the attempt to examine its applicability in LCD, home appliances, and electronic fields has been accelerated. The area of reviewing the range of applications has also expanded due to the rapid penetration of digital home appliances and flat panel displays (FPD) and the cost savings of LED alone. In addition, as the company sponsors this trend, the European Union's RoHS ban on harmful substances has made it clear that the trend of technology trend from CCFL (cold cathode tube) to LED is becoming clear. The demand for is also growing.
  • CCFL cold cathode tube
  • the substrate on which the LED is mounted may be divided into a resin substrate, a ceramic substrate, and a metal substrate.
  • an epoxy resin (FR-4) -based substrate it is not suitable as a high heat dissipation substrate, and a ceramic substrate or a metal substrate is attracting attention as a high heat dissipation substrate.
  • a ceramic substrate eg, SiC, thermal conductivity is 170W / m ⁇ K
  • an aluminum (alloy) metal substrate e.g., a thermal conductivity of pure Al of 230 W / m ⁇ K
  • a power LED substrate is generally used as a power LED substrate.
  • the 1 is a metal PCB structure most used in the conventional power LED field.
  • Aluminum (alloy), which is a metal material, is used as the heat dissipation layer, and synthetic resin material is used as the insulating layer thereon.
  • An electrically conductive layer is formed on the insulating layer.
  • As the electrically conductive layer a Cu foil having good electrical conductivity is generally used.
  • the problem of the above structure is in the insulating layer, because the heat dissipation layer and the electrically conductive layer is a metal, the heat dissipation performance is good, but there is a limit to the heat dissipation performance because the insulating layer located in the middle is made of synthetic resin material. Therefore, the current thermal conductivity of commercially available synthetic resin materials (1.8W / mK, Japan Panasonic Electric Device) is much lower than the metal, so the ability of the metal heat dissipation layer is not fully utilized.
  • FIG. 2 is a structure of another conventional metal PCB developed for improving the performance of FIG. 2.
  • an aluminum oxide surface is anodized and used as an insulating layer without using a synthetic resin as an insulating layer.
  • the insulating layer secured by anodizing treatment has a heat dissipation performance superior to that of the synthetic resin material with a thermal conductivity of about 70 W / m ⁇ K.
  • the metal layer used as the electrically conductive layer is formed in a paste type, the resistance value is much higher than that of a single metal (Cu foil), thus making it difficult to implement a fine pattern.
  • Japan which is known as the originator of LEDs
  • the demand for high-efficiency LED products is increasing by more than 20% every year.
  • the LED was developed in the LCD TV field, and in 2010, LED lighting began to develop in earnest, and lighting companies are actively producing LED lighting.
  • Japan is also a major technical issue in LED development, which is a heat dissipation measure for products equipped with high power LEDs.
  • the deterioration of the lifespan and luminance of the LEDs due to heat generation are important tasks. Therefore, the demand for high heat dissipation substrates is increasing.
  • the LED package In Japan, the LED package is classified as the power consumption of the LED. In low power LEDs that do not require heat dissipation measures, a resin substrate such as a FR-4 substrate and a plastic lead chip carrier (PLC) package having a conventional structure Is used. In addition, a heat sink package and a metal base substrate are used in a power LED of 1 W or more, and an alumina substrate and an aluminum nitride substrate are used in a high power LED of 3 W or more.
  • PLC plastic lead chip carrier
  • the present invention seeks to overcome the fundamental limitation of the heat dissipation effect that can be obtained by changing the existing heat dissipation substrate structure.
  • nano diamond is applied to improve heat transfer properties of the heat radiation board itself.
  • the present invention provides an insulating layer on one surface of an aluminum substrate through an anodizing treatment to solve the existing resin-based insulating layer to inhibit the heat dissipation characteristics of the existing resin-based material in the nano-sized pores formed in the anodizing film
  • the objective is to secure an insulating layer that significantly improves heat dissipation performance and insulation performance by impregnating nano-sized diamond (thermal conductivity 900 ⁇ 2,000W / m ⁇ k) with the best thermal conductivity.
  • the present invention introduces an anodizing method on at least one surface of at least one metal heat sink plate selected from aluminum, aluminum alloy, magnesium, and magnesium alloy to form an anodizing film as an insulating layer.
  • a metal heat sink plate selected from aluminum, aluminum alloy, magnesium, and magnesium alloy to form an anodizing film as an insulating layer.
  • the conditioning in the step (S3) may use a surfactant having a HLB (Hydrophile-Lipophile Balance) value of 10 or more, because it is advantageous to secure the hydrophilicity in the pores.
  • the pores in the step (S2) is preferably to be expanded to at least 30nm or more, because the pores should be at least 30nm or more can be sufficiently impregnated with 4 ⁇ 20nm size nanodiamonds in the post-process.
  • the metal heat sink used in the present invention uses aluminum, an aluminum alloy (hereinafter aluminum), or a magnesium or magnesium alloy (hereinafter magnesium) plate material.
  • Aluminum and magnesium vary depending on the type of alloy, and the present invention is not bound to the type.
  • the thickness of the board is 0.4 ⁇ 10mm, so the thickness can be selected according to the specifications of the heat sink board that the user wants. There is no boundary for the thickness.
  • a wet surface treatment method has been introduced to effectively impregnate diamond with nanopores without using expensive equipment.
  • the treatment time can be adjusted according to the thickness of the anodizing film.
  • Important during the impregnation process is continuous mechanical agitation so that the nanodiamonds can be dispersed in the process solution.

Abstract

The present invention relates to a method for forming a dielectric layer having an improved heat-dissipating performance and dielectric performance by impregnating nanodiamond into the dielectric layer of an existing metal heat-dissipating substrate in order to improve the heat-dissipating ability of the dielectric layer. More specifically, an anodisation method is introduced so as to form an anodic film as a dielectric layer on at least one surface of an aluminium or aluminium alloy or a magnesium or magnesium alloy plate material provided as a metal heat-dissipating plate, and then an acid or an alkali is used so as to expand voids in the anodic film, and conditioning is carried out in order to ensure that the insides of the expanded voids are hydrophilic. Also, a method is provided for forming a nanodiamond-impregnated dielectric layer for a highly heat dissipating metal substrate, the method comprising the step of impregnating the expanded voids with nanodiamond.

Description

나노 다이아몬드 함침 고 방열성 메탈기판의 절연층 형성방법Method of forming insulating layer of nano diamond impregnated high heat dissipation metal substrate
본 발명은 고효율 LED용 금속 방열기판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 기존 금속 방열기판에서 절연층의 방열능력을 개선하기 위해 나노 다이아몬드를 절연층에 함침시켜 방열성능 및 절연성능이 개선된 절연층의 형성방법에 관한 것이다.The present invention relates to a high-efficiency LED metal heat dissipation substrate and a method of manufacturing the same, and more particularly, to improve heat dissipation capability of the insulating layer in the existing metal heat dissipation substrate by impregnating the nano-diamond in the insulating layer to improve heat dissipation performance and insulation performance It relates to a method for forming an insulating layer.
LED 소자는 얼마 전까지만 해도 주로 인디케이터 용도(표시용도)로 사용되었고, 고방열을 필요로 하지 않았기 때문에 LED를 탑재하는 기판으로는 수지계(FR-4)기판이 사용되어 왔다. 2000년 이후로는 LED의 고휘도화, 고효율화, 특히 청색 LED소자가 현저히 개량되면서 LCD분야, 가전제품 및 전장(電裝)분야에서의 적용 가능 여부를 검토하는 시도가 가속화되었다. 디지털 가전제품 및 평판 디스플레이(FPD)의 가파른 보급률과 LED단독의 비용절감에 힘입어 적용범위를 검토하는 분야도 넓어졌다. 또한 이러한 흐름을 후원이라도 하듯이 LCD분야에서는 유렵연합(EU)의 유해물질 규제지첨(RoHS)으로 인해 CCFL(냉음극관)에서 LED화로 향하는 기술 추이의 큰 흐름이 명확해지고 있으며 게다가 파워 LED계 소자 탑재에 대한 요구도 커지고 있다.Until recently, LED devices were mainly used for indicator purposes (display purposes), and since high heat dissipation was not required, resin-based (FR-4) substrates have been used as substrates on which LEDs are mounted. Since 2000, the LED's high brightness, high efficiency, and especially the blue LED device has been significantly improved, and the attempt to examine its applicability in LCD, home appliances, and electronic fields has been accelerated. The area of reviewing the range of applications has also expanded due to the rapid penetration of digital home appliances and flat panel displays (FPD) and the cost savings of LED alone. In addition, as the company sponsors this trend, the European Union's RoHS ban on harmful substances has made it clear that the trend of technology trend from CCFL (cold cathode tube) to LED is becoming clear. The demand for is also growing.
이처럼 각종 장치에 고출력, 고휘도 LED가 전개됨에 따라 LED를 실장한 제품에 대한 방열대책이 크게 부각되고 있다. 가격대 성능비가 뛰어난 고방열성 기판이 파워 LED용 기판으로서 주목을 받고 있으며 선진국을 중심으로 많은 검토가 이루어지고 있다.As high power and high brightness LEDs are deployed in various devices as described above, heat dissipation measures for products mounted with LEDs are being highlighted. High heat dissipation substrates with excellent price / performance ratios have attracted attention as substrates for power LEDs, and many studies have been conducted in advanced countries.
일반적으로 LED가 실장 되는 기판은 수지 기판과 세라믹 기판 및 금속 기판 등으로 나눌 수 있다. 에폭시수지(FR-4)계 기판의 경우 고방열성 기판으로서는 적합하지 않으며, 세라믹 기판 또는 금속 기판(metal PCB)이 고방열성 기판으로 주목을 받고 있다. 세라믹 기판(예, SiC의 경우 열전도도 170W/m·K)의 경우 방열효과 면에서는 대단히 유리하다고 할 수 있지만 제작이 어렵고 생산성이 낮고 단가가 높은 단점이 있다. 따라서 세라믹 기판보다는 저가이면서 리사이클성과 열전도가 양호한 알루미늄(합금) 금속 기판(예, 순Al의 열전도도 230W/m·K)이 파워 LED용 기판으로 일반적으로 사용되고 있다.In general, the substrate on which the LED is mounted may be divided into a resin substrate, a ceramic substrate, and a metal substrate. In the case of an epoxy resin (FR-4) -based substrate, it is not suitable as a high heat dissipation substrate, and a ceramic substrate or a metal substrate is attracting attention as a high heat dissipation substrate. In the case of a ceramic substrate (eg, SiC, thermal conductivity is 170W / m · K), it can be said to be very advantageous in terms of heat dissipation effect, but it is difficult to manufacture, low productivity, and high cost. Therefore, an aluminum (alloy) metal substrate (e.g., a thermal conductivity of pure Al of 230 W / m · K), which is cheaper than a ceramic substrate and has good recycling properties, is generally used as a power LED substrate.
도 1은 종래 파워 LED 분야에서 가장 많이 사용되는 금속 PCB 구조이다. 방열층으로는 금속 소재인 알루미늄(합금)이 사용되며 그 위에 절연층으로 합성수지재료가 사용된다. 절연층 위에는 전기전도층이 형성되는데, 전기전도층으로는 일반적으로 전기전도성이 좋은 Cu 포일(Copper foil)이 사용된다. 상기 구조의 문제점은 절연층에 있는데, 방열층과 전기전도층이 금속이라서 방열 성능이 좋지만 그 중간에 위치한 절연층이 합성수지재료가 사용되기 때문에 방열 성능에 그 한계가 있다. 따라서 현재 상품화된 합성수지재료의 열전도도(1.8W/m·K, 일본 파나소닉일렉트랙디바이스製)는 금속보다 매우 낮기 때문에 금속 방열층의 능력을 십분 발휘하지 못하는 실정이다.1 is a metal PCB structure most used in the conventional power LED field. Aluminum (alloy), which is a metal material, is used as the heat dissipation layer, and synthetic resin material is used as the insulating layer thereon. An electrically conductive layer is formed on the insulating layer. As the electrically conductive layer, a Cu foil having good electrical conductivity is generally used. The problem of the above structure is in the insulating layer, because the heat dissipation layer and the electrically conductive layer is a metal, the heat dissipation performance is good, but there is a limit to the heat dissipation performance because the insulating layer located in the middle is made of synthetic resin material. Therefore, the current thermal conductivity of commercially available synthetic resin materials (1.8W / mK, Japan Panasonic Electric Device) is much lower than the metal, so the ability of the metal heat dissipation layer is not fully utilized.
도 2는 도 2의 성능 개선을 위해 개발된 종래의 또다른 금속 PCB의 구조이다. 도 2에서는 도 1과는 달리 절연층으로 합성수지재료를 사용하지 않고 알루미늄(Aluminium) 표면을 양극산화(아노다이징) 처리하여 절연층으로 사용하고 있다. 양극산화 처리를 이용해 확보된 절연층은 열전도도가 약 70W/m·K 정도로 합성수지재료보다 방열성능이 매우 우수한 편이다. 그러나 전기전도층으로 사용되는 금속층이 페이스트 형(Paste type)으로 형성되기 때문에 단일 금속(Cu foil)보다 저항 값이 매우 높아 미세 패턴 구현이 매우 어려운 문제가 있다.FIG. 2 is a structure of another conventional metal PCB developed for improving the performance of FIG. 2. In FIG. 2, unlike the case of FIG. 1, an aluminum oxide surface is anodized and used as an insulating layer without using a synthetic resin as an insulating layer. The insulating layer secured by anodizing treatment has a heat dissipation performance superior to that of the synthetic resin material with a thermal conductivity of about 70 W / m · K. However, since the metal layer used as the electrically conductive layer is formed in a paste type, the resistance value is much higher than that of a single metal (Cu foil), thus making it difficult to implement a fine pattern.
LED 패키지에서 방열성능은 가장 중요한 문제이기 때문에 현재 파워 LED계 패키지에서는 일반적으로 세라믹이 사용된다. 그러나 질화알루미늄계(AlN) 패키지에는 고가의 원재료가 사용되어 제품 가격 상승으로 이어지고 따라서 조명 및 가전 분야에서는 세라믹 기판으로 가격 경쟁력을 구축하기는 어려운 것이 현실이다.Since heat dissipation is the most important issue in LED packages, ceramics are commonly used in current LED packages. However, expensive raw materials are used in aluminum nitride (AlN) packages, leading to higher product prices. Therefore, it is difficult to build a price competitiveness with ceramic substrates in lighting and home appliances.
LED의 원조로 알려져 있는 일본의 경우도 고효율 LED제품군에 대한 수요가 매년 20%이상 신장되고 있다. 2009년에는 LCD TV분야에서 LED화가 진행되었고, 2010년에는 LED 조명도 본격적으로 전개되기 시작해 조명 회사에서는 LED조명을 활발하게 제품화하고 있다. LED화에 있어서 일본 역시 커다란 기술적 과제로서 고파워(High power) LED를 실장한 제품의 방열 대책이다. 특히 발열로 인한 LED의 수명 저하 및 휘도 저하는 중요한 과제로 이를 위해 고(高) 방열성 기판에 대한 요구가 높아지고 있다.In Japan, which is known as the originator of LEDs, the demand for high-efficiency LED products is increasing by more than 20% every year. In 2009, the LED was developed in the LCD TV field, and in 2010, LED lighting began to develop in earnest, and lighting companies are actively producing LED lighting. Japan is also a major technical issue in LED development, which is a heat dissipation measure for products equipped with high power LEDs. In particular, the deterioration of the lifespan and luminance of the LEDs due to heat generation are important tasks. Therefore, the demand for high heat dissipation substrates is increasing.
일본에서 LED 패키지를 LED의 소비전력으로 분류했을 경우, 방열대책을 필요로 하지 않는 저파워(Low power) LED에서는 FR-4기판과 같은 수지기판 및 통상적인 구조의 PLCC(Plastic Lead Chip Carrier) 패키지가 사용된다. 그리고 1W 이상의 파워(Power) LED에서는 히트싱크 탑재 패키지 및 메탈 베이스 기판이 사용되고 또한 3W 이상의 고파워 LED에는 알루미나 기판 및 질화알루미늄 기판 등이 사용된다.In Japan, the LED package is classified as the power consumption of the LED. In low power LEDs that do not require heat dissipation measures, a resin substrate such as a FR-4 substrate and a plastic lead chip carrier (PLC) package having a conventional structure Is used. In addition, a heat sink package and a metal base substrate are used in a power LED of 1 W or more, and an alumina substrate and an aluminum nitride substrate are used in a high power LED of 3 W or more.
이처럼 고파워 LED 시장이 지속적으로 성장함에 따라 고(高) 방열성 기판에 대한 수요가 증가하기 때문에 지속적인 제품개발이 필요한 시점이다.As the high power LED market continues to grow, the demand for high heat dissipation substrates increases, so it is time for continuous product development.
본 발명은 따라서 종래기술의 문제점을 해결하고 수요의 증가에 대처하기 위해 금속 PCB에서 금속 방열층과 금속 전기전도층 사이에 위치하여 방열성능을 저해하는 합성수지계 절연층을 대체하는 기술을 제공하고자 함에 그 목적이 있는 것으로 기존 금속 PCB에서 절연층으로 사용하고 있는 양극산화막의 방열성능 및 절연성능을 개선하는 기술을 제공하고자, 나노 다이아몬드를 함침한 고방열성 메탈기판의 절연층 형성 방법을 제공함에 그 목적이 있다.The present invention is therefore to provide a technique for replacing the synthetic resin insulating layer which is located between the metal heat dissipation layer and the metal conductive layer in the metal PCB to hinder the heat dissipation performance in order to solve the problems of the prior art and cope with the increase in demand. In order to provide a technique for improving the heat dissipation performance and insulation performance of the anodized film used as an insulating layer in the existing metal PCB, to provide a method for forming an insulating layer of a high heat-resistant metal substrate impregnated with nanodiamonds. There is this.
본 발명은 기존의 방열기판 구조를 변경하여 얻을 수 있는 방열효과의 근본적인 한계를 극복하고자 한다. 기존 방열기판을 구성하는 소재의 열전달 능력의 한계를 극복하고자 방열기판 자체의 열전달 물성을 개선하기 위해 나노 다이아몬드를 적용한 것을 특징으로 한다.The present invention seeks to overcome the fundamental limitation of the heat dissipation effect that can be obtained by changing the existing heat dissipation substrate structure. In order to overcome the limitations of the heat transfer capability of the material constituting the existing heat radiation board, nano diamond is applied to improve heat transfer properties of the heat radiation board itself.
본 발명은 기존 수지계열의 절연층이 방열특성을 저해하는 것을 해결하기 위해 알루미늄 기판의 일면에 아노다이징 처리를 통해 절연층을 형성한 후 아노다이징 피막에 형성된 나노 사이즈의 기공(pore)에 현존하는 재료 중에 가장 우수한 열전도 특성을 가진 나노 사이즈의 다이아몬드(열전도도 900~2,000W/m·k)를 함침시켜 방열성능 및 절연성능을 획기적으로 개선한 절연층을 확보하는 것을 목적으로 한다.The present invention provides an insulating layer on one surface of an aluminum substrate through an anodizing treatment to solve the existing resin-based insulating layer to inhibit the heat dissipation characteristics of the existing resin-based material in the nano-sized pores formed in the anodizing film The objective is to secure an insulating layer that significantly improves heat dissipation performance and insulation performance by impregnating nano-sized diamond (thermal conductivity 900 ~ 2,000W / m · k) with the best thermal conductivity.
본 발명은 상기와 같은 본 발명의 목적을 달성하기 위해 알루미늄, 알루미늄합금, 마그네슘, 마그네슘합금 중에서 선택되는 1종이상의 금속방열판 판재의 적어도 일면에, 양극산화 방법을 도입하여 절연층으로서 아노다이징 피막을 형성시키는 단계(S1);In order to achieve the above object of the present invention, the present invention introduces an anodizing method on at least one surface of at least one metal heat sink plate selected from aluminum, aluminum alloy, magnesium, and magnesium alloy to form an anodizing film as an insulating layer. Making a step (S1);
상기 단계(S1) 후에 산이나 알칼리를 이용하여 아노다이징 피막의 기공을 확장시키는 단계(S2);Expanding the pores of the anodizing film using acid or alkali after step S1;
확장된 기공 내부에 친수성을 확보하기 위해서 컨디셔닝을 하는 단계(S3); 그리고,Conditioning to ensure hydrophilicity in the expanded pores (S3); And,
상기 단계(S3) 후 확장된 기공으로 나노 다이아몬드를 함침시키는 단계(S4)를포함하는 나노 다이아몬드 함침 고 방열성 메탈기판의 절연층 형성 방법을 제공한다.After the step (S3) provides a method for forming an insulating layer of nano-diamond-impregnated high heat dissipation metal substrate comprising the step (S4) of impregnating nanodiamonds with expanded pores.
상기에서, 상기단계(S3)에서의 컨디션닝은 HLB(Hydrophile-Lipophile Balance) 값이 10이상의 계면활성제를 사용할 수 있는데, 이는 기공 내 친수성 확보에 유리하기 때문이다. 또한 상기 단계(S2)에서의 기공은 적어도 30nm 이상으로 확장되게 함이 바람직한데, 기공이 최소 30nm 이상 되어야 후공정에서 4~20nm 사이즈의 나노 다이아몬드의 함침이 충분히 될 수 있기 때문이다.In the above, the conditioning in the step (S3) may use a surfactant having a HLB (Hydrophile-Lipophile Balance) value of 10 or more, because it is advantageous to secure the hydrophilicity in the pores. In addition, the pores in the step (S2) is preferably to be expanded to at least 30nm or more, because the pores should be at least 30nm or more can be sufficiently impregnated with 4 ~ 20nm size nanodiamonds in the post-process.
또한, 상기 단계(S4)에서의 나노 다이아몬드의 입자는 4~20㎚ 크기로 되게 함이 바람직한데, 상용화된 최소 사이즈가 4nm이며, 20nm 이상이 되면 함침율이 떨어지고, 함침되지 않은 것은 표면에 쌓여 함침효과가 없기 때문에 상기 범위로 한다. 상기 단계(S4)에서의 함침은 10wt% 이하의 나노 다이아몬드 분산수용액에서 기공이 닫히지 않는 온도인 80℃이하의 온도에서 피막두께를 고려해 1분~10시간을 교반하면서 1회 이상 함침시킴이 바람직하다.In addition, the nano-diamond particles in the step (S4) is preferably made to be 4 ~ 20nm size, the commercialized minimum size is 4nm, when more than 20nm impregnation rate is lowered, unimpregnated is accumulated on the surface Since there is no impregnation effect, it is set as the said range. The impregnation in the step (S4) is preferably impregnated one or more times while stirring for 1 minute to 10 hours in consideration of the film thickness at a temperature of 80 ℃ or less, the temperature at which the pores are not closed in the nanodiamond dispersion aqueous solution of 10wt% or less. .
상기에서 다이아몬드의 함량이 10wt% 이상이 되면 다이아몬드의 밀도가 높아져 함침율이 저하되는데 즉, 수용액 중 물이 다이아몬드를 기공 안쪽까지 이동시킬 수 있는 역할을 수행하기 때문에 다이아몬드의 밀도가 높아지면 그만큼 물의 이동경로에 제약이 있어 기공 내부까지 다이아몬드를 전달하기 어렵게 된다.When the diamond content is more than 10wt%, the density of the diamond is increased and the impregnation rate is lowered. That is, since the water in the aqueous solution plays a role to move the diamond to the inside of the pores, when the density of the diamond is increased, the movement of water is increased. The path is constrained, making it difficult to deliver diamonds into the pores.
또한, 상기 함침은 간헐적으로 40~100khz의 초음파를 작동시키면서 수 분 이내로 행할 수도 있다. 여기서 40khz 이하에서는 초음파효과를 기대할 수 없고 100khz 이상에서는 아노다이징 피막에 스트레스를 주고 함침율이 저하될 수 있으므로 위와 같이 한다.In addition, the impregnation may be performed within a few minutes while operating an ultrasonic wave of 40 ~ 100khz intermittently. The ultrasonic effect can not be expected below 40khz and stress above the anodizing film above 100khz and the impregnation rate may be lowered as above.
또한, 상기 함침은 대기압 이하의 진공상태 하에서 할 수도 있다.In addition, the said impregnation can also be performed under the vacuum state below atmospheric pressure.
본 발명에 따르면 금속 방열층의 화학적 구조 변형을 통해 형성된 아노다이징 피막은 절연체의 기능을 수행할 수 있으며, 이 아노다이징 피막에 형성된 나노 기공(Nano pore)에 나노 다이아몬드를 함침시켜 절연성과 방열성을 동시에 개선할 수 있는 복합 절연층을 확보할 수 있게 된다. 따라서 본 발명에 의하면 기존 수지계열 절연층의 방열성능을 대폭 향상시킬 수 있는 기술을 제공함으로써 고출력 LED의 수명과 신뢰성을 대폭 향상시킬 수 있게 된다. 또한 기존 아노다이징 피막의 물성도 개선시켜 향상된 기능의 절연층을 확보할 수 있게 된다.According to the present invention, the anodizing film formed through the chemical structural modification of the metal heat dissipation layer can perform the function of an insulator, and impregnate nano diamonds in the nano pores formed in the anodizing film to improve insulation and heat dissipation at the same time. The composite insulation layer can be secured. Therefore, according to the present invention, by providing a technology that can significantly improve the heat dissipation performance of the existing resin-based insulating layer it is possible to significantly improve the life and reliability of the high-power LED. In addition, by improving the physical properties of the existing anodizing film it is possible to secure an improved insulating layer.
도 1은 종래의 금속 PCB 구조1 is a conventional metal PCB structure
도 2는 종래의 또다른 금속 PCB 구조2 is another conventional metal PCB structure
도 3은 본 발명의 실시예에 따른 기판구조3 is a substrate structure according to an embodiment of the present invention
도 4는 비교예 1에 따른 기판구조4 is a substrate structure according to Comparative Example 1
도 5는 비교예 2에 따른 기판구조5 is a substrate structure according to Comparative Example 2
도 6은 아노다이징 피막 표면의 나노기공(기공확장 전)6 shows nanopores (before pore expansion) of anodizing film surface
도 7은 기공 확장 후의 피막 표면 나노기공7 shows the film surface nanopores after pore expansion
도 8은 아노다이징 피막 단면(나노 다이아몬드 함침 전)8 is anodizing film cross section (before nano diamond impregnation)
도 9는 함침 공정 후 아노다이징 피막 단면(나노 다이아몬드 함침 확인)9 is anodizing film cross section after the impregnation process (nano diamond impregnation confirmed)
이하에서는 첨부한 도면 및 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 이하의 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명하기 위한 것이지 본 발명을 이에 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and examples. The following examples are intended to be easily described by those of ordinary skill in the art, but the present invention is not limited thereto.
본 발명에서 말하는 금속 방열판은 알루미늄이나 알루미늄합금(이하 알루미늄) 또는 마그네슘이나 마그네슘합금(이하 마그네슘) 판재를 사용한다. 알루미늄이나 마그네슘은 합금 형태에 따라 그 종류가 다양하며 본 발명에서는 그 종류에 경계를 두지 않는다. 판재의 두께는 0.4~10mm 정도로 사용자가 원하는 방열기판 사양에 따라 그 두께를 선택할 수 있으며 두께에 대한 경계는 두지 않는다.The metal heat sink used in the present invention uses aluminum, an aluminum alloy (hereinafter aluminum), or a magnesium or magnesium alloy (hereinafter magnesium) plate material. Aluminum and magnesium vary depending on the type of alloy, and the present invention is not bound to the type. The thickness of the board is 0.4 ~ 10mm, so the thickness can be selected according to the specifications of the heat sink board that the user wants. There is no boundary for the thickness.
본 발명은 기존 금속 방열기판 제조 공정 중 절연층 형성공정과 관련된 것으로 그 기술적 특징이 있다. 절연층 형성 전/후 진행되는 공정들은 기존 제조공정들로 진행할 수 있으며 본 발명에서는 그 방법들에 제한을 두지 않는다. 본 발명에서는 아노다이징 피막 형성 후 그 피막의 나노 포어에 나노 다이아몬드를 함침하는 공정에 그 기술적 특징이 있다.The present invention is related to the insulating layer forming process of the existing metal radiating substrate manufacturing process has its technical features. Processes that are performed before / after the insulating layer formation may proceed to existing manufacturing processes, and the present invention does not limit the methods. In the present invention, there is a technical feature in the process of impregnating nanodiamonds in the nanopores of the film after the anodizing film is formed.
금속 방열판으로 알루미늄 또는 마그네슘 판재를 준비하고 양극산화를 통해 적어도 일면에 아노다이징 피막을 형성시킨다. 양극산화 방법은 통상의 공지기술로 진행하며 본 발명에서는 그 방법에 제한을 두지 않는다. 양극산화 공정을 마치면 아노다이징 피막이 형성되어 절연층이 형성된다. 이 피막 자체로도 절연층의 구실을 할 수 있지만 본 발명에서는 나노 다이아몬드를 아노다이징 피막에 함침하여 기존 절연층의 기능을 개선하고, 기존 수지계열의 절연층을 대체하는데 그 목적이 있는 것이다. 본 발명의 기술적 특징인 Nano 다이아몬드를 함침하는 공정을 자세히 설명하면 다음과 같다.An aluminum or magnesium plate is prepared with a metal heat sink and anodized film is formed on at least one surface through anodization. The anodization method proceeds with a conventional well-known technique, and the present invention does not limit the method. After the anodization process, an anodizing film is formed to form an insulating layer. The coating itself can serve as an insulating layer, but the present invention is intended to improve the function of the existing insulating layer by impregnating nanodiamonds into the anodizing film, and to replace the existing resin-based insulating layer. Referring to the process of impregnating Nano diamond which is a technical feature of the present invention in detail.
[기공확장(pore expansion) 공정][Pore expansion process]
양극산화를 진행한 후 절연층인 아노다이징 피막의 표면을 살펴보면 직경 20nm 정도의 기공(Pore)이 무수히 많이 분포되어 있다. 이 기공의 깊이는 아노다이징 피막 두께와 비례한다. 본 발명은 상기 기공의 크기를 확장시켜 직경 20nm 이하의 나노 다이아몬드 분말을 포어 내부에 함침시켜 방열능력 및 절연능력을 획기적으로 개선하고자 하는 것이다. 기공 확장을 위해서는 인산, 불산, 수산화나트륨, 수산화칼륨 등에서 선택하는 산 또는 알카리를 이용하여서 아노다이징 피막의 포어를 확장시킨다. 포어의 크기는 20nm이하의 나노 다이아몬드가 함침될 수 있도록 최소 30nm이상 확장시킨다.After anodizing, the surface of the anodizing film, which is an insulating layer, has a large number of pores of about 20 nm in diameter. The depth of these pores is proportional to the thickness of the anodizing film. The present invention is to expand the pore size by impregnating the nanodiamond powder having a diameter of 20nm or less inside the pore to significantly improve the heat dissipation ability and insulation ability. For pore expansion, an acid or alkali selected from phosphoric acid, hydrofluoric acid, sodium hydroxide and potassium hydroxide is used to expand the pore of the anodizing film. The pore size is extended to at least 30 nm to impregnate nanodiamonds less than 20 nm.
[컨디셔닝(Conditioning) 공정][Conditioning process]
확장된 기공 내부에 나노 다이아몬드를 함침하기 위해 기공 내부의 친수성을 확보하기 위한 공정이다. 컨디셔닝 공정에는 HLB(Hydrophile-Lipophile Balance) 값이 10이상의 계면활성제를 사용한다.It is a process to secure the hydrophilicity inside the pores in order to impregnate the nano diamond inside the expanded pores. In the conditioning process, a surfactant having a hydrophile-lipophile balance (HLB) value of 10 or more is used.
[함침(Impregnation) 공정][Impregnation process]
30nm이상 확장된 기공에 20nm이하 사이즈의 나노 다이아몬드를 함침시키는 공정이다. 방열기판 제조시 다이아몬드를 금속기판에 함침시키는 국내특허(출원번호 10-2009-0065448)를 살펴보면 금속기판위에 다이아몬드 분말을 분산시킨 후 롤이나 프레스로 가압하여 금속기판 내로 다이아몬드 분말을 압입시킨 후 기상화학합성법으로 코팅된 다이아몬드 코팅막이 금속기판 표면에 노출된 다이아몬드 분말의 입자에 증착되어 성장하게 함으로써 방열 및 절연을 위한 코팅막이 형성된다고 설명하고 있다. 상기 기술로 제작된 제품은 시중에서 아직 소개되지 않아 그 성능이 어느 정도인지 파악하지는 못했다. 하지만 상기 기술로 방열기판을 만들기 위해서는 고가의 생산 설비가 필요하기 때문에 제품 단가 상승으로 이어질 수 있다.It is a process of impregnating nanodiamond of size less than 20nm in the pores expanded more than 30nm. Looking at the domestic patent (Application No. 10-2009-0065448) that impregnates diamond into a metal substrate during the manufacture of a heat dissipation substrate, the diamond powder is dispersed on the metal substrate, pressurized with a roll or a press to press the diamond powder into the metal substrate, It is explained that a diamond coating film coated by a synthetic method is deposited on particles of diamond powder exposed on a surface of a metal substrate to grow, thereby forming a coating film for heat dissipation and insulation. Products manufactured with the above technology have not been introduced on the market yet, so it has not been known how much its performance is. However, in order to make a heat radiation board with the above technology, expensive production equipment is required, which may lead to an increase in product cost.
따라서 본 발명에서는 고가의 장비를 사용하지 않고 효과적으로 다이아몬드를 나노 기공에 함침시키기 위해 습식 표면처리 방법을 도입했다. 10wt% 이하의 나노 다이아몬드 분산수용액에서 80℃이하 1분 ~10시간을 교반하면서 1회 이상 함침시키는 방법을 사용한다. 처리시간의 경우 아노다이징 피막의 두께에 따라 조절할 수 있다. 함침 공정 중 중요한 것은 나노 다이아몬드가 공정용액 중에 분산될 수 있도록 지속적인 기계적 교반이 필요하다. 이 공정 중 초음파 장치를 이용하면 보다 효과적으로 나노 다이아몬드를 함침할 수 있고, 이 경우 초음파는 40~100KHZ 정도에서 2~8분마다 10~30초 정도 주기적으로 작동시킴이 바람직하다. 지속적으로 초음파를 작동시키면 오히려 함침 효율이 떨어지게 된다. 또한 위 조건과 동시에 대기압 이하의 진공 조건에서 함침공정을 진행하면 함침 효율을 향상시킬 수 있도 있으나 저진공 조건을 사용하지 않아도 다이아몬드 함침에는 문제가 없다.Therefore, in the present invention, a wet surface treatment method has been introduced to effectively impregnate diamond with nanopores without using expensive equipment. A method of impregnating at least one time with stirring for 1 minute to 10 hours at 80 ° C. or less in a 10 wt% or less nanodiamond dispersion solution. The treatment time can be adjusted according to the thickness of the anodizing film. Important during the impregnation process is continuous mechanical agitation so that the nanodiamonds can be dispersed in the process solution. In this process, the ultrasonic device can be used to more effectively impregnate the nanodiamond, and in this case, the ultrasonic wave is preferably operated periodically for about 10 to 30 seconds every 2 to 8 minutes at about 40 to 100 KHZ. If the ultrasonic wave is continuously operated, the impregnation efficiency is rather deteriorated. In addition, the impregnation process may be improved by performing the impregnation process at the same time as the above conditions under a vacuum condition, but there is no problem in diamond impregnation even without using a low vacuum condition.
상기한 바와 같이 함침 공정을 마친 후 건조 후 나머지 공정을 진행하여 금속 방열기판을 완성한다. 이후 공정은 절연층에 전기전도층을 형성하는 공정으로 금속 페이스트 프린팅기술과 무전해 도금 기술을 이용하는 방법과, 무전해 도금과 전해 도금을 이용하는 방법, 진공 설비를 이용한 건식 코팅 기술을 이용하는 방법, 수지계 접착층을 이용해 동박(RCC)을 적층하는 방법 등이 있다. 이러한 전기전도층 형성 방법은 기존에 발명되거나 상용화된 기술로서 본 발명에서는 제한을 두지 않는다.After finishing the impregnation process as described above to proceed to the rest of the process to complete the metal radiating substrate. Subsequently, the process of forming an electrically conductive layer on the insulating layer is performed by using a metal paste printing technique and an electroless plating technique, a method using an electroless plating and an electrolytic plating, a method using a dry coating technique using a vacuum equipment, and a resin system. There exists a method of laminating | stacking copper foil (RCC) using an adhesive layer. Such a conductive layer forming method is not limited in the present invention as a conventionally invented or commercialized technology.
본 발명에 따라 기존 아노다이징 피막에 나노 다이아몬드를 함침시키면 기존 아노다이징 피막의 방열특성 및 절연특성을 5~20% 정도 향상시키며, 기존 수지계 절연층 보다는 방열특성측면에서 수십배 향상된다.Impregnating nanodiamonds into the existing anodizing film according to the present invention improves the heat dissipation and insulating properties of the existing anodizing film by about 5 to 20%, and improves the heat dissipation properties in terms of heat dissipation properties by several orders of magnitude.
실시예 및 비교예를 통해 만들어진 제품에 대한 성능 평가를 실시하였다. 방열성능은 열전도도 측정을 통해 그 성능을 확인했으며, 절연성능은 내전압 측정을 통해 그 성능을 확인하였다.Performance evaluation was performed on products made through Examples and Comparative Examples. The heat dissipation performance was confirmed by the thermal conductivity measurement, and the insulation performance was confirmed by the withstand voltage measurement.
[실시예]EXAMPLE
본 실시예에서는 1mm 두께의 알루미늄 판재를 양극산화 공법을 이용해 40㎛ 정도의 아노다이징 피막을 형성시킨 후 함침공정을 진행하였다. 아노다이징 피막에 형성된 나노 기공에 다이아몬드를 함침하기 위해 기공 확장 공정을 진행하였다. 4㎖/ℓ의 불산(40%)이 포함된 수용액을 준비하고 공정온도는 25℃로 유지하였다. 준비된 기판을 공정용액에 20초 정도 침적시켜 포어 확장 공정을 실시한 후, 충분히 수세를 하고 기공 안쪽의 친수성 확보를 위한 컨디셔닝 공정을 진행하였다. 라우릴황산나트륨 4g/Lt으로 구성된 공정용액을 준비하고 25℃정도로 용액 온도를 유지하였다. 이전 공정 후 준비된 기판을 공정용액에 10분 동안 침적시켜 컨디셔닝 공정을 수행하고, 충분히 수세하고 건조하여 함침 공정을 진행하였다. 함침 조건으로는 우선 나노 다이아몬드 1wt%를 물에 분산시켜 공정용액을 준비하여 30℃까지 온도를 올려 유지하고, 이전 공정을 수행한 기판을 공정용액에 60분간 침적시켜 함침 공정을 수행하였다. 함침공정 중 5분마다 15초씩 40khz의 조건으로 초음파를 실시하고, 공정용액은 기계적 교반을 진행하여 나노 다이아몬드의 분산을 지속적으로 유지시켰다. 함침 공정 후 통상적인 방법으로 Ag paste로 패턴 형성 후 무전해 Ni/Au 도금으로 전기전도층을 완성하였다.In this embodiment, an anodizing film having a thickness of about 40 μm was formed by using an anodizing method on an aluminum plate having a thickness of 1 mm, followed by an impregnation process. In order to impregnate the nano-pores formed in the anodizing film, a pore expansion process was performed. An aqueous solution containing 4 mL / L hydrofluoric acid (40%) was prepared and the process temperature was maintained at 25 ° C. After the prepared substrate was immersed in the process solution for about 20 seconds to carry out the pore expansion process, water washing was sufficiently performed, and a conditioning process for securing hydrophilicity inside the pores was performed. A process solution consisting of 4 g / Lt of sodium lauryl sulfate was prepared and the solution temperature was maintained at about 25 ° C. The substrate prepared after the previous process was immersed in the process solution for 10 minutes to perform the conditioning process, washed with water and dried sufficiently to proceed with the impregnation process. As the impregnation conditions, first, 1 wt% of nanodiamonds were dispersed in water to prepare a process solution, the temperature was maintained at 30 ° C., and the substrate having been subjected to the previous process was immersed in the process solution for 60 minutes to perform an impregnation process. During the impregnation process, ultrasonic waves were performed at 40khz for 15 seconds every 5 minutes, and the process solution was mechanically stirred to maintain the dispersion of nanodiamonds. After the impregnation process, a conductive paste was completed by electroless Ni / Au plating after pattern formation with Ag paste in a conventional manner.
[비교예 1]Comparative Example 1
비교예 1에서는 실시예와 같은 통상적인 양극산화 방법으로 1mm두께의 알루미늄 판재 일면에 40㎛ 정도의 아노다이징 피막만 형성시킨 후 통상적인 방법으로 Ag 페이스트로 패턴 형성 후 무전해 Ni/Au 도금으로 전기전도층을 완성하였다.In Comparative Example 1, only an anodizing film having a thickness of about 40 μm was formed on one surface of an aluminum plate having a thickness of 1 mm by the conventional anodizing method as in Example, and then a pattern was formed by Ag paste using a conventional method, followed by electroconductivity by electroless Ni / Au plating. The layer was completed.
[비교예 2]Comparative Example 2
여기서는 현재 국내 D기업에서 생산하는 금속 방열기판을 사용하였다. 현재 일반적으로 LED분야에서 사용하기 기판의 형태지만 수지계열의 절연층을 사용하기 때문에 본 발명에서 제공하는 절연층보다 방열특성이 매우 좋지 않음을 알 수 있다.In this case, we used a metal heat dissipation board produced by domestic D company. Currently, it is generally known that the heat dissipation characteristics of the substrate are generally better than that of the insulating layer provided by the present invention because the substrate is used in the field of LED but the resin-based insulating layer is used.
표 1
구분 실시예-1 비교예-1 비교예-2
Thermal Conductivity(W/mK) 152 135 2
Dielectric BreakdownVoltage(AC, KV) above 3.5 above 3.0 above 3.0
Table 1
division Example-1 Comparative Example-1 Comparative Example-2
Thermal Conductivity (W / mK) 152 135 2
Dielectric BreakdownVoltage (AC, KV) above 3.5 above 3.0 above 3.0
위 성능비교 표 1을 보면 다이아몬드를 함침한 본 발명의 실시예가 열전도도 및 내전압 특성에서 비교예 조건보다 확실히 개선됨을 볼 수 있다.Looking at the performance comparison Table 1 it can be seen that the embodiment of the present invention impregnated with diamond is significantly improved than the comparative example conditions in the thermal conductivity and withstand voltage characteristics.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당기술분야의 숙련된 당업자는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to a preferred embodiment of the present invention, those skilled in the art can be variously modified and changed within the scope of the invention without departing from the spirit and scope of the invention described in the claims You will understand.

Claims (7)

  1. 금속 방열판으로 준비된 알루미늄이나 알루미늄합금 또는 마그네슘이나 마그네슘합금 판재의 적어도 일면에, 양극산화 방법을 도입하여 절연층으로서 아노다이징 피막을 형성시키는 단계(S1);Forming an anodizing film as an insulating layer by introducing an anodization method on at least one surface of an aluminum, aluminum alloy or magnesium or magnesium alloy sheet material prepared with a metal heat sink;
    상기 단계(S1) 후에 산이나 알칼리를 이용하여서 아노다이징 피막의 기공을 확장시키는 단계(S2);Expanding the pores of the anodizing film by using an acid or an alkali after the step (S1);
    확장된 기공 내부에 친수성을 확보하기 위해서 컨디셔닝을 하는 단계(S3); 그리고,Conditioning to ensure hydrophilicity in the expanded pores (S3); And,
    상기 단계(S3) 후 확장된 기공으로 나노 다이아몬드를 함침시키는 단계(S4)를 포함함을 특징으로 하는 나노 다이아몬드 함침 고 방열성 메탈기판의 절연층 형성방법.Method of forming an insulating layer of nano-diamond-impregnated high heat dissipation metal substrate, characterized in that it comprises a step (S4) of impregnating nanodiamonds with expanded pores after the step (S3).
  2. 제 1 항에 있어서, 상기 단계(S3)에서의 컨디션닝은 HLB(Hydrophile-Lipophile Balance) 값이 10이상의 계면활성제를 사용함을 특징으로 하는 나노 다이아몬드 함침 고 방열성 메탈기판의 절연층 형성방법.The method of claim 1, wherein the conditioning in the step (S3) is a method of forming an insulating layer of nano-diamond-impregnated high heat-dissipating metal substrate, characterized in that using a HLB (Hydrophile-Lipophile Balance) value of 10 or more surfactant.
  3. 제 1 항에 있어서, 상기 단계(S2)에서의 기공은 적어도 30nm 이상으로 확장되는 것임을 특징으로 하는 나노 다이아몬드 함침 고 방열성 메탈기판의 절연층 형성방법.The method of claim 1, wherein the pores in the step (S2) is extended to at least 30nm or more.
  4. 제 1 항에 있어서, 상기 단계(S4)에서의 나노 다이아몬드의 입자는 4~20㎚ 크기임을 특징으로 하는 나노 다이아몬드 함침 고 방열성 메탈기판의 절연층 형성방법.The method of claim 1, wherein the nano-diamond particles in the step (S4) is 4 ~ 20nm size of the nano-diamond-impregnated high heat dissipating metal substrate.
  5. 제 1 항에 있어서, 상기 단계(S4)에서의 함침은 10wt% 이하의 나노 다이아몬드 분산수용액에서 80℃이하 1분~10시간을 교반하면서 1회 이상 함침시키는 것을 특징으로 하는 나노 다이아몬드 함침 고 방열성 메탈기판의 절연층 형성방법.The method of claim 1, wherein the impregnation in step (S4) is impregnated with nano-diamond impregnated high heat-dissipating metal, characterized in that the impregnation of the nanodiamond dispersion solution of less than 10wt% 1 minute to 10 hours or less while stirring. Method of forming an insulating layer of a substrate.
  6. 제 1 항에 있어서, 상기 함침은 간헐적으로 40~100khz의 초음파를 작동시키면서 수 분 이내 행하는 것임을 특징으로 하는 나노 다이아몬드 함침 고 방열성 메탈기판의 절연층 형성방법.The method of claim 1, wherein the impregnation is performed within several minutes while operating an ultrasonic wave of 40 to 100 kHz intermittently.
  7. 제 5 항 또는 제 6 항 중 어느 한 항에 있어서, 상기 함침은 대기압 이하의 진공상태하에서 행하는 것임을 특징으로 하는 나노 다이아몬드 함침 고 방열성 메탈기판의 절연층 형성방법.7. The method for forming an insulating layer of a nanodiamond-impregnated high heat-dissipating metal substrate according to any one of claims 5 and 6, wherein the impregnation is performed under a vacuum at atmospheric pressure or lower.
PCT/KR2011/003177 2011-04-28 2011-04-28 Method for forming a nanodiamond-impregnated dielectric layer for a highly heat dissipating metal substrate WO2012148020A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127011033A KR20130016457A (en) 2011-04-28 2011-04-28 A method of insulating layer for metal plate by impregnation of nano diamond
PCT/KR2011/003177 WO2012148020A1 (en) 2011-04-28 2011-04-28 Method for forming a nanodiamond-impregnated dielectric layer for a highly heat dissipating metal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/003177 WO2012148020A1 (en) 2011-04-28 2011-04-28 Method for forming a nanodiamond-impregnated dielectric layer for a highly heat dissipating metal substrate

Publications (1)

Publication Number Publication Date
WO2012148020A1 true WO2012148020A1 (en) 2012-11-01

Family

ID=47072523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003177 WO2012148020A1 (en) 2011-04-28 2011-04-28 Method for forming a nanodiamond-impregnated dielectric layer for a highly heat dissipating metal substrate

Country Status (2)

Country Link
KR (1) KR20130016457A (en)
WO (1) WO2012148020A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114559712A (en) * 2022-02-15 2022-05-31 江苏诺德新材料股份有限公司 High-temperature-resistant low-loss copper-clad plate and preparation process thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399835B1 (en) * 2013-07-09 2014-05-27 박상인 Method of manufacturing case for mobile device and case for mobile device manufactured by the same method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764432B1 (en) * 2006-04-05 2007-10-05 삼성전기주식회사 Led package having anodized isolations and its manufacturing method
KR20080061697A (en) * 2006-12-28 2008-07-03 서울옵토디바이스주식회사 Vertical light emitting diode having patterned semiconductor layer by using anodic aluminum oxide and fabrication method of the same
KR20090070397A (en) * 2007-12-27 2009-07-01 엘지마이크론 주식회사 Radiant heat circuit board and method for manufacturing of radiant heat circuit board
KR20100025502A (en) * 2009-11-18 2010-03-09 이환철 Insulated metal components and method of manufacturing the same
KR20110003763A (en) * 2009-07-06 2011-01-13 주식회사 유앤비오피씨 Method for manufacturing metal core pcb

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764432B1 (en) * 2006-04-05 2007-10-05 삼성전기주식회사 Led package having anodized isolations and its manufacturing method
KR20080061697A (en) * 2006-12-28 2008-07-03 서울옵토디바이스주식회사 Vertical light emitting diode having patterned semiconductor layer by using anodic aluminum oxide and fabrication method of the same
KR20090070397A (en) * 2007-12-27 2009-07-01 엘지마이크론 주식회사 Radiant heat circuit board and method for manufacturing of radiant heat circuit board
KR20110003763A (en) * 2009-07-06 2011-01-13 주식회사 유앤비오피씨 Method for manufacturing metal core pcb
KR20100025502A (en) * 2009-11-18 2010-03-09 이환철 Insulated metal components and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114559712A (en) * 2022-02-15 2022-05-31 江苏诺德新材料股份有限公司 High-temperature-resistant low-loss copper-clad plate and preparation process thereof

Also Published As

Publication number Publication date
KR20130016457A (en) 2013-02-15

Similar Documents

Publication Publication Date Title
WO2007091976A1 (en) Anodised aluminium, dielectric, and method
US20140116661A1 (en) Thermal Pad, Method for Fabricating Thermal Pad, Heat Dissipating Apparatus and Electronic Device
CN102738377B (en) Superhigh heat conduction metal-based circuit board as well as preparation method and applications thereof
CN108573763B (en) Preparation method of wire and cable conductor, graphene-coated metal powder and conductor
CN106847767A (en) A kind of graphite Copper Foil heat sink compound
CN103819215A (en) Preparation method of aluminium nitride base ceramic copper-clad plate
CN102975417A (en) Thermal-conducting fiber reinforced high-thermal-conductivity graphite radiating fin and preparation method thereof
KR101043346B1 (en) Organo-inorganic hybrid composition with excellent thermal radiation and thermal radiation sheet of thin layer type which uses this
WO2012148020A1 (en) Method for forming a nanodiamond-impregnated dielectric layer for a highly heat dissipating metal substrate
CN101887942A (en) Metal baseplate provided with LED and manufacturing method thereof
CN111069611A (en) Preparation method of graphite-graphene-metal composite material
WO2010143829A2 (en) A led array board
CN107460483A (en) A kind of preparation method of graphite, copper composite heat conducting material
Shen et al. Adhesion enhancement of a plated copper layer on an AlN substrate using a chemical grafting process at room temperature
KR102259873B1 (en) Board for LED lighting apparatus and LED lighting apparatus having the same
CN102740591A (en) Double-sided aluminum base circuit board with super-high thermal conductivity and preparation method thereof
CN101298674B (en) Manufacturing method of insulation heat-conducting metal substrate
KR20170093601A (en) Manufacturing method of heat radiation member with graphene coating and heat radiation material manufactured thereby
CN110859020A (en) Manufacturing method of novel heat-conducting aluminum substrate
CN117326886A (en) Slurry for ceramic copper-clad part, and preparation method and application thereof
CN1290384C (en) Printed circuit boarsd with high-radiating metallized holes with Al or Mg or their alloy basement and production thereof
CN107660067A (en) High-power led circuit board
JP2011171687A (en) Insulated substrate, manufacturing method thereof, and forming method of wiring
KR101380774B1 (en) Method of preparing conducting layer of metal plate
JPS63170289A (en) Aluminum nitride substrate with oxidation layer on surface

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127011033

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864524

Country of ref document: EP

Kind code of ref document: A1