WO2012147950A1 - Liquid crystal panel, liquid crystal display device, and television receiver - Google Patents

Liquid crystal panel, liquid crystal display device, and television receiver Download PDF

Info

Publication number
WO2012147950A1
WO2012147950A1 PCT/JP2012/061454 JP2012061454W WO2012147950A1 WO 2012147950 A1 WO2012147950 A1 WO 2012147950A1 JP 2012061454 W JP2012061454 W JP 2012061454W WO 2012147950 A1 WO2012147950 A1 WO 2012147950A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
data signal
liquid crystal
substrate
signal line
Prior art date
Application number
PCT/JP2012/061454
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 保
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012147950A1 publication Critical patent/WO2012147950A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0205Simultaneous scanning of several lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed

Definitions

  • the present invention relates to the structure of two substrates included in a liquid crystal panel.
  • a liquid crystal panel in general, includes an active matrix substrate, a counter substrate facing the active matrix substrate, and a liquid crystal layer disposed between the two substrates.
  • the active matrix substrate includes a data signal line, a scanning signal line, a data signal line, and a data signal line.
  • a transistor connected to the scanning signal line and a pixel electrode connected to the transistor are formed, and a common electrode, a color filter, and a black matrix are formed on the counter substrate.
  • scanning signal lines and data signal lines of an active matrix substrate are driven by a source driver and a gate driver, respectively.
  • Reference 1 discloses a configuration in which a source driver and a gate driver are formed on the counter substrate side in order to increase the yield of the liquid crystal panel.
  • An object of the present invention is to realize a liquid crystal panel that can be driven at a higher speed.
  • the liquid crystal panel includes first and second substrates, a liquid crystal layer disposed between the first and second substrates, first and second pixels, a first conductor disposed on the liquid crystal layer, First and second transistors formed on one substrate, a first pixel electrode included in the first pixel, a second pixel electrode included in the second pixel, and first and second data signal lines,
  • the first and second pixel electrodes and the first data signal line are formed on the first substrate, the first transistor is electrically connected to the first data signal line and the first pixel electrode, and the second data signal line is the second data signal line.
  • the second data signal line and the first conductor are electrically connected to each other, and the second transistor is electrically connected to the first conductor and the second pixel electrode.
  • FIG. 3 is a circuit diagram illustrating a configuration of a liquid crystal panel (including pixels A to P) according to Embodiment 1.
  • FIG. It is a top view of the field corresponding to pixel A * B of the 1st substrate. It is a top view of the field corresponding to pixel A * B of the 2nd substrate.
  • FIG. 4 is a cross-sectional view of a pixel A (corresponding to A1-A1 ′ in FIGS. 2 and 3). It is a top view of the field corresponding to pixel C * D of the 1st substrate. It is a top view of the field corresponding to pixel C * D of the 2nd substrate.
  • 7 is a cross-sectional view of a pixel C (corresponding to A3-A3 ′ in FIGS.
  • FIG. 1 is a schematic diagram illustrating a configuration of a liquid crystal display device of Example 1.
  • FIG. 11 is a schematic diagram illustrating a driving method (vertical scanning period V1) of the liquid crystal display device of FIG.
  • FIG. 11 is a schematic diagram illustrating a driving method (vertical scanning period V2) of the liquid crystal display device of FIG.
  • FIG. 11 is a timing chart showing a driving method (data signal line driving method) of the liquid crystal display device of FIG. 10.
  • FIG. 11 is a schematic diagram illustrating a data writing method (first horizontal scanning period of a vertical scanning period V1) of the liquid crystal display device of FIG.
  • FIG. 11 is a schematic diagram illustrating a data writing method (second horizontal scanning period of a vertical scanning period V1) of the liquid crystal display device of FIG.
  • FIG. 11 is a schematic diagram illustrating a data writing method (first horizontal scanning period of a vertical scanning period V2) of the liquid crystal display device of FIG.
  • FIG. 11 is a schematic diagram illustrating a data writing method (second horizontal scanning period of a vertical scanning period V2) of the liquid crystal display device of FIG.
  • FIG. 11 is a timing chart showing a driving method (data signal line driving method) of the liquid crystal display device of FIG. 10.
  • FIG. 11 is a schematic diagram illustrating a data writing method (first horizontal scanning period of a vertical scanning period V1) of the liquid crystal display device
  • FIG. 3 is a cross-sectional view illustrating a configuration of an end portion (portion along a long side) of the liquid crystal panel of Example 1.
  • It is a schematic diagram which shows the structure of the display unit of this liquid crystal panel, (a) makes 3 pixels (R * G * B) a display unit, (b) shows 6 pixels (R * G * B *) When (Y, M, C) is used as a display unit, (c) shows a case where 6 pixels (R, G, B, G, M, Y) are used as a display unit.
  • FIG. 22 is a cross-sectional view of the pixel A in the modification of FIG. 21 (corresponding to A1-A1 ′ in FIG. 21).
  • FIG. 6 is a circuit diagram showing a configuration of a liquid crystal panel (including pixels A to P) of Example 2.
  • 6 is a schematic diagram illustrating a data writing method of the liquid crystal display device of Example 2.
  • FIG. FIG. 10 is a circuit diagram showing a configuration of a liquid crystal panel (including pixels A to P) of Example 3.
  • 6 is a schematic diagram illustrating a data writing method of the liquid crystal display device of Example 3.
  • FIG. FIG. 10 is a circuit diagram showing a configuration of a liquid crystal panel (including pixels A to P) of Example 4.
  • FIG. 10 is a schematic diagram illustrating a data writing method of the liquid crystal display device of Example 4.
  • FIG. 5 is a cross-sectional view showing a modification of FIG. 4 (corresponding to a1-a1 ′ in FIGS. 29 and 30).
  • FIG. 8 is a cross-sectional view showing a modification of FIG. 7 (corresponding to a3-a3 ′ in FIGS. 32 and 33).
  • FIG. 7 It is a schematic diagram which shows another structural example of this liquid crystal display device.
  • Embodiments of the present invention will be described with reference to FIGS. 1 to 34 as follows.
  • FIG. 1 is a circuit diagram illustrating a configuration of a liquid crystal panel according to the first embodiment.
  • a liquid crystal panel (1080 lines) compatible with HDTV (high definition television) is assumed, but this is only an example.
  • the scanning direction of the liquid crystal panel (the direction along the short side) is the column direction.
  • the configuration formed on one of the two substrates (first substrate) constituting the liquid crystal panel is indicated by a solid line, and the configuration formed on the other (second substrate) is indicated by a broken line.
  • the liquid crystal panel of Example 1 includes first and second substrates and a liquid crystal layer disposed between the first and second substrates, and includes a pixel electrode P1 in the pixel column PL1 as shown in FIG.
  • Pixel A, pixel B including pixel electrode P2, pixel C including pixel electrode P3, pixel D including pixel electrode P4, pixel E including pixel electrode P541, pixel F including pixel electrode P542, pixel A pixel G including the electrode P543 and a pixel H including the pixel electrode P544 are included.
  • the pixels A to D are continuously arranged in the upper half area of the liquid crystal panel (the area on the upstream side in the scanning direction when the liquid crystal panel is divided into two in the scanning direction). Are continuously arranged in the lower half area of the liquid crystal panel (the area that is downstream in the scanning direction when the liquid crystal panel is divided into two in the scanning direction).
  • pixel electrodes P1 to P4, scanning signal lines G1 to G4, data, and data are provided in the upper half area of the first substrate (the area on the upstream side in the scanning direction when the first substrate is divided into two in the scanning direction).
  • Signal lines DX1, DX2, DX1 ', DX2', transistors T1 to T4, and storage capacitor lines CS1 to CS4 are formed, and the upper half region of the second substrate (when the second substrate is divided into two in the scanning direction,
  • the data signal lines dx1, dx2, dx1 ′, dx2 ′ and the counter (common) electrode COM are formed in a region upstream in the scanning direction.
  • the data signal line DX1 (first substrate) and the data signal line dx1 (second substrate) do not overlap, but actually they overlap (described later).
  • the data signal line DX1 ′ The (first substrate) and the data signal line dx1 ′ (second substrate) overlap.
  • the pixel electrodes P1 to P4 are arranged in this order in the column direction between the data signal line DX1 and the data signal line DX1 ′, and the pixel electrode P1 is arranged downstream of the scanning signal line G1 in the scanning direction.
  • the pixel electrode P2 is disposed on the downstream side in the scanning direction of the scanning signal line G2, the pixel electrode P3 is disposed on the downstream side in the scanning direction of the scanning signal line G3, and the pixel electrode P4 is disposed in the scanning direction of the scanning signal line G4. It is arranged downstream.
  • the pixel electrode P1 is connected to the data signal line DX1 and the scanning signal line G1 through the transistor T1, and the pixel electrode P2 is connected to the data signal line DX1 ′ and the scanning signal line G2 through the transistor T2.
  • the electrode P3 is connected to the data signal line dx1 and the scanning signal line G3 via the transistor T3, and the pixel electrode P4 is connected to the data signal line dx1 ′ and the scanning signal line G4 via the transistor T4.
  • a liquid crystal capacitor is formed between each of the pixel electrodes P1 to P4 and the counter electrode COM.
  • the storage capacitor lines CS1 to CS4 are provided in parallel with the scanning signal lines.
  • the pixel P1 forms a storage capacitor with the storage capacitor line CS1
  • the pixel P2 forms a storage capacitor with the storage capacitor line CS2
  • the pixel P3 A storage capacitor line CS3 and a storage capacitor are formed
  • the pixel P4 forms a storage capacitor line CS4 and a storage capacitor.
  • pixel electrodes P541 to P544, scanning signal lines G541 to G544, data signals are provided in the lower half area of the first substrate (area that is downstream in the scanning direction when the first substrate is divided into two in the scanning direction).
  • Lines DY1, DY2, DY1 ′, DY2 ′, transistors T541 to T544, and storage capacitor lines CS541 to CS544 are formed, and the lower half region of the second substrate (scanning when the second substrate is divided into two in the scanning direction)
  • the data signal lines dy1, dy2, dy1 ′, dy2 ′ and the counter (common) electrode COM are formed in the region on the downstream side in the direction.
  • the data signal line DY1 (first substrate) and the data signal line dy1 (second substrate) do not overlap, but actually they overlap (described later).
  • the data signal line DY1 ′ The (first substrate) and the data signal line dy1 ′ (second substrate) overlap.
  • the pixel electrodes P541 to P544 are arranged in this order in the column direction between the data signal line DY1 and the data signal line DY1 ′, and the pixel electrode P541 is arranged downstream of the scanning signal line G541 in the scanning direction.
  • the pixel electrode P542 is disposed on the downstream side in the scanning direction of the scanning signal line G542, the pixel electrode P543 is disposed on the downstream side in the scanning direction of the scanning signal line G543, and the pixel electrode P544 is disposed in the scanning direction of the scanning signal line G544. It is arranged downstream.
  • the pixel electrode P541 is connected to the data signal line DY1 and the scanning signal line G541 via the transistor T541, and the pixel electrode P542 is connected to the data signal line DY1 ′ and the scanning signal line G542 via the transistor T542.
  • the electrode P543 is connected to the data signal line dy1 and the scanning signal line G543 via the transistor T543, and the pixel electrode P544 is connected to the data signal line dy1 ′ and the scanning signal line G544 via the transistor T544.
  • a liquid crystal capacitor is formed between each of the pixel electrodes P541 to P544 and the counter electrode COM.
  • the storage capacitor lines CS541 to CS544 are provided in parallel with the scanning signal lines, the pixel P541 forms a storage capacitor with the storage capacitor line CS541, the pixel P542 forms a storage capacitor with the storage capacitor line CS542, and the pixel P543 A storage capacitor line CS543 and a storage capacitor are formed, and the pixel P544 forms a storage capacitor line CS4 and a storage capacitor.
  • data signal lines DX1, DX1 ′, DX2 and DX2 ′ are arranged in this order on the upper half of the first substrate, and data signal lines dx1, dx1 ′, dx2 are arranged on the upper half of the second substrate.
  • dx2 ′ are arranged in this order, and the pixel electrode of the pixel I adjacent to the pixel A in the row direction is provided on the first substrate and is connected to the data signal line DX2 via the transistor, and is connected to the pixel B in the row direction.
  • the pixel electrode of the pixel J adjacent to the pixel J is provided on the first substrate, connected to the data signal line DX2 ′ via the transistor, and the pixel electrode of the pixel K adjacent to the pixel C in the row direction is provided on the first substrate.
  • the pixel electrode of the pixel L that is connected to the data signal line dx2 through the transistor and is adjacent to the pixel D in the row direction is provided on the first substrate, and is connected to the data signal line dx2 ′ through the transistor.
  • data signal lines DY1, DY1 ′, DY2 and DY2 ′ are arranged in this order on the lower half of the first substrate, and data signal lines dy1, dy1 ′ are arranged on the lower half of the second substrate.
  • Dy2 and dy2 ′ are arranged in this order, and the pixel electrode of the pixel M adjacent to the pixel E in the row direction is provided on the first substrate and is connected to the data signal line DY2 through the transistor.
  • the pixel electrode of the pixel N adjacent in the row direction is provided on the first substrate, is connected to the data signal line DY2 ′ via the transistor, and the pixel electrode of the pixel O adjacent to the pixel G in the row direction is the first substrate.
  • the pixel electrode of the pixel P adjacent to the pixel H in the row direction is provided on the first substrate and connected to the data signal line dy2 ′ via the transistor.
  • FIG. 2 is a plan view showing a configuration of a portion corresponding to the pixels A and B of the first substrate (SU1)
  • FIG. 3 is a plan view showing a configuration of a portion corresponding to the pixels A and B of the second substrate (SU2).
  • FIG. 4 is a cross-sectional view of the pixel A of the liquid crystal panel LCP (corresponding to A1-A1 ′ in FIGS. 2 and 3).
  • FIG. 5 is a plan view showing a configuration of a portion corresponding to the pixels C and D of the first substrate (SU1)
  • FIG. 6 shows a configuration of a portion corresponding to the pixels C and D of the second substrate (SU2).
  • FIG. 7 is a cross-sectional view of the pixel C of the liquid crystal panel LCP (corresponding to A3-A3 ′ in FIGS. 5 and 6).
  • the extending portion g1 of the scanning signal line G1 (gate electrode of the transistor T1) and the extending portion g3 of the scanning signal line G3 (of the transistor T3)
  • the gate insulating film 21 is formed so as to cover the extending portions g1 and g3, and the data signal lines DX1 and DX1 ′, the semiconductor layer 24 of the transistor T1, and the source electrode are formed on the gate insulating film 21.
  • 8 and the drain electrode 9 the semiconductor layer 24 of the transistor T3, and the source electrode 8 and the drain electrode 9 are formed, and from the passivation film 25 and the organic insulating film 26 thicker than this so as to cover the channels of the transistors T1 and T3.
  • An interlayer insulating film (channel protective film) is formed, and the pixel electrodes P1 and P3 and the relay electrode TM1 are formed on the interlayer insulating film.
  • TM4 ⁇ TM1 ' ⁇ TM4' is formed using a light-transmitting conductive film (ITO, etc.).
  • the data signal lines dx1 and dx1 ′ are formed on the glass substrate 32, and the metal coat film MC (insulating film) is formed so as to cover the data signal lines dx1 and dx1 ′.
  • a color filter CF and a black matrix BM are formed on the film MC, an overcoat film MC (insulating film) is formed so as to cover the color filter CF and the black matrix BM, and a counter (common) is formed on the overcoat film MC.
  • the electrode COM and the relay electrodes tm1 to tm4 ⁇ tm1 ′ to tm4 ′ are formed using a light-transmitting conductive film (ITO or the like).
  • the counter electrode COM can be formed as a single unit (solid) on the entire panel, which is desirable from the viewpoint of reducing the resistance of the counter electrode COM.
  • the parasitic capacitance between the counter electrode COM and the data signal line (of the second substrate SU2) may increase, and the counter electrode COM may be divided into a plurality of parts to avoid this.
  • the counter electrodes COM can be divided and formed in stripes, and each counter electrode COM can be sized to correspond to a plurality of pixel columns (vertical one pixel column ⁇ horizontal several pixels) in accordance with the panel process.
  • the data signal line dx1 on the second substrate is provided so as to overlap (coincides in plan view) with the data signal line DX1 on the first substrate.
  • dx1 ′ is provided so as to overlap with the data signal line DX1 ′ of the first substrate (coincides in plan view), and the liquid crystal layer LCL is filled between the first substrate SU1 and the second substrate SU2, and the liquid crystal layer LCL Conductive photospacers FS3 and FS3 ′ are formed (between the first and second substrates).
  • the relay electrode TM1 is formed so as to overlap the data signal line DX1, and so as to overlap the data signal line DX1 ′.
  • the relay electrode TM1 ′ is formed, and in plan view, the data signal line DX1, the source electrode 8 of the transistor T1 (not shown), the extending part g1 of the scanning signal line G1 (gate electrode of the transistor T1), and the drain electrode of the transistor T1 9 are arranged in this order in the row direction, and the source electrode 8 of the transistor T1, the extending portion g1 of the scanning signal line G1, and the drain electrode 9 of the transistor T1 overlap the semiconductor layer 24.
  • the data signal line DX1 and the relay electrode tm1 are connected via a contact hole 11d that penetrates the interlayer insulating film, and the relay electrode tm1 and the source electrode 8 of the transistor T1 are connected via a contact hole 11b that penetrates the interlayer insulating film.
  • the drain electrode 9 of the transistor T1 and the pixel electrode P1 are connected through a contact hole 11a that penetrates the interlayer insulating film.
  • the capacitor electrode 27 is disposed so as to overlap the storage capacitor line CS1, and the capacitor electrode 27 and the pixel electrode P1 are connected via the contact hole 11c.
  • the relay electrode tm1 is formed so as to overlap with the data signal line dx1, and also overlaps with the data signal line DX1 ′.
  • the relay electrode tm1 ′ is formed, the data signal line dx1 and the relay electrode tm1 are connected via the contact hole h1, and the data signal line dx1 ′ and the relay electrode tm1 ′ are connected via the contact hole h1 ′. ing.
  • the relay electrodes TM3 and TM4 are formed so as to overlap with the data signal line DX1, and also overlap with the data signal line DX1 ′. In this way, the relay electrodes TM3 ′ and TM4 ′ are formed.
  • the data signal line DX1, the source electrode 8 of the transistor T3 (not shown), the extending portion g3 of the scanning signal line G3 (the gate electrode of the transistor T1), and The drain electrode 9 of the transistor T3 is arranged in this order in the row direction, and the source electrode 8 of the transistor T3, the extending portion g3 of the scanning signal line G3, and the drain electrode 9 of the transistor T3 overlap with the semiconductor layer 24.
  • the relay electrode TM3 is in contact with the conductive photospacer FS3, the relay electrode TM3 and the source electrode 8 of the transistor T3 are connected via a contact hole 11b that penetrates the interlayer insulating film, and the drain electrode 9 of the transistor T3.
  • the pixel electrode P3 are connected through a contact hole 11a penetrating the interlayer insulating film.
  • the relay electrode TM4 ′ is in contact with the conductive photospacer FS4 ′, and the relay electrode TM4 ′ and the source electrode 8 of the transistor T4 are connected via a contact hole 11b that penetrates the interlayer insulating film, and the transistor T4.
  • the drain electrode 9 and the pixel electrode P4 are connected through a contact hole 11a penetrating the interlayer insulating film.
  • the capacitor electrode 27 is arranged so as to overlap with the storage capacitor line CS3, and the capacitor electrode 27 and the pixel electrode P3 are connected via the contact hole 11c.
  • the relay electrodes tm3 and tm4 are formed so as to overlap the data signal line dx1, and the data signal line DX1 ′ is formed.
  • the relay electrodes tm3 ′ and tm4 ′ are formed so as to overlap with each other, the data signal line dx1 and the relay electrode tm3 are connected via the contact hole h3, and the data signal line dx1 ′ and the relay electrode tm4 ′ are connected to the contact hole h4 ′.
  • the relay electrode tm3 is in contact with the conductive photospacer FS3, and the relay electrode tm4 'is in contact with the conductive photospacer FS4'.
  • the data signal line dx1 on the second substrate is connected via the contact hole h3, the relay electrode tm3 on the second substrate, the conductive photo spacer FS3 on the liquid crystal layer, the relay electrode TM3 on the first substrate, and the contact hole 11b.
  • the data signal line dx1 ′ of the second substrate includes the contact hole h4 ′, the relay electrode tm4 ′ of the second substrate, the conductive photospacer FS4 ′ of the liquid crystal layer, the relay electrode TM4 ′ of the first substrate, and the contact hole.
  • 11b is connected to the source electrode 8 of the transistor T4 on the first substrate.
  • the resistance value can be made uniform between the pixels A and C.
  • FIG. 8 is a schematic diagram showing the overall configuration of the first substrate
  • FIG. 9 is a schematic diagram showing the overall configuration of the second substrate
  • FIG. 10 is a schematic diagram showing the overall configuration of the liquid crystal panel.
  • the display area of the first substrate includes a plurality of scanning signal lines, a plurality of data signal lines, a plurality of transistors, and a plurality of pixel electrodes.
  • a plurality of source connection pads SP are arranged along two long sides (sides parallel to the row direction), and a plurality of source connection pads SP are arranged along two short sides (sides parallel to the column direction).
  • Gate connection pads GP are arranged.
  • the display area of the second substrate includes a plurality of data signal lines, and the non-display area of the second substrate has two long sides (sides parallel to the row direction).
  • a plurality of inter-substrate connection pads BP are arranged along the line. Each inter-substrate connection pad BP is connected to a data signal line. Then, after the first substrate in FIG. 8 and the second substrate in FIG. 9 are bonded together so that the data signal lines overlap each other, the liquid crystal material is filled to obtain the liquid crystal panel shown in FIG.
  • the signal line is connected to the source connection pad SP of the first substrate via the inter-substrate connection pad BP (second substrate) and the inter-substrate connection pad bp (first substrate).
  • FIG. 11 is a cross-sectional view showing the configuration of the end region TA of FIG.
  • the first substrate includes a source connection pad SP, a gate metal GM (same layer as the scanning signal line), a connection electrode CE (same layer as the data signal line), and an inter-substrate connection pad bp (pixel).
  • an inter-substrate connection pad BP in the same layer as the counter electrode
  • conductive connection beads BZ are provided between the first and second substrates.
  • the source connection pad SP is connected to the connection electrode CE through the gate metal GM, and the connection electrode CE is connected to the inter-substrate connection pad through the contact hole penetrating the interlayer insulating film (25, 26) of the first substrate.
  • the inter-substrate connection pad bp is connected to the inter-substrate connection pad BP of the second substrate via the connection beads BZ, and the inter-substrate connection pad BP penetrates the metal coat film MC and the overcoat film OC.
  • the hole is connected to the data signal line dx1 of the second substrate.
  • the source connection pad SP is connected to the source driver SDX via the flexible printed circuit board FC.
  • the source connection pad SP and the inter-substrate connection pad BP ⁇ bp are each formed of, for example, ITO. Since the gate metal GM is easily corroded, it is covered with the source connection pad SP (ITO) and an insulating film (the gate insulating film 21 and the interlayer insulating film 25).
  • each pixel corresponds to one primary color
  • the display units are R (red), G (green), and B (blue). It may be 3 pixels (see FIG. 12A), 6 pixels of R, G, B, Y (yellow), M (magenta), and C (cyan) (see FIG. 12B), or R 6 pixels of G, B, G, M, and Y may be used (see FIG. 12C).
  • the liquid crystal display device provided with the present liquid crystal panel is configured as shown in FIG. 13, for example, and the upper half of the data signal lines (DX1, DX2, DX1 ′, DX2 ′, dx1, dx2, dx1 ′, dx2 ′, etc.)
  • a source driver SDX that drives the data signal lines (DY1, DY2, DY1 ′, DY2 ′, dy1, dy2, dy1 ′, dy2 ′, etc.) on the lower half of the panel, and each scanning signal line
  • Two gate drivers GDL / GDR connected to both sides and a display control circuit DCC for controlling the source drivers SDX / SDY and the gate drivers GDL / GDR are provided.
  • FIGS. 14 and 15 are schematic diagrams showing a driving method of scanning signal lines of the present liquid crystal display device
  • FIG. 16 is a timing chart showing a driving method of data signal lines of the present liquid crystal display device. These are schematic diagrams showing a data writing method of the present liquid crystal display device.
  • each scanning signal line (G 1, G 2, g 3, g 4, and so on) are generated in the first horizontal scanning period (H 1) of a certain vertical scanning period (V 1).
  • G541, G542, g543, and g544) are simultaneously selected, and then eight scanning signal lines (G5, G6, g7, g8, G545, G546, g547, and g548) are simultaneously selected in the second horizontal scanning period (H2).
  • eight scanning signal lines G9, G10, g11, g12, G549, G550, g551, and g552) are simultaneously selected.
  • the data signal of the first line of the frame F2 is written to the pixels connected from the data signal line DX1 to the scanning signal line G1, and scanning is performed from the data signal line DX1 ′.
  • the data signal of the second line of the frame F2 is written to the pixel connected to the signal line G2, and the data signal of the third line of the frame F2 is written to the pixel connected to the scanning signal line G3 from the data signal line dx1.
  • the data signal of the fourth line of the frame F2 is written to the pixel connected to the scanning signal line G4 from the data signal line dx1 ′, and the 541st line of the frame F1 is written to the pixel connected to the scanning signal line G541 from the data signal line DY1. Is written to the pixels connected to the scanning signal line G542 from the data signal line DY1 ′.
  • a pixel in which the data signal of the 543rd line of the frame F1 is written to the pixel connected to the scanning signal line G543 from the data signal line dy1 and the data signal line dy1 ′ is connected to the scanning signal line G544 is written.
  • the data signal of the 544th line of the frame F1 is written into the frame F1.
  • the data signals from the data signal lines DX1 and DY1 have a positive polarity
  • the data signals from the data signal lines DX1 ′ and DY1 ′ have a positive polarity.
  • the data signal from the data signal lines dx1 and dy1 has a positive polarity
  • the data signal from the data signal lines dx1 ′ and dy1 ′ has a negative polarity.
  • the pixel A has a positive polarity
  • the pixel B has a negative polarity
  • the pixel C has a positive polarity
  • the pixel D has a negative polarity
  • the pixel E has a positive polarity
  • Pixel F has negative polarity
  • pixel G has positive polarity
  • pixel H has negative polarity.
  • the data signals from the data signal lines DX2 and DY2 have a negative polarity
  • the data signals from the data signal lines DX2 ′ and DY2 ′ have a positive polarity.
  • the polarity, the data signal from the data signal lines dx2 ⁇ dy2 has a negative polarity
  • the data signal from the data signal lines dx2 ′ ⁇ dy2 ′ has a positive polarity.
  • the pixel I adjacent to the pixel A in the row direction has a negative polarity
  • the pixel J adjacent to the pixel B in the row direction has a positive polarity
  • the pixel C The pixel K adjacent to the pixel in the row direction is negative polarity
  • the pixel L adjacent to the pixel D in the row direction is positive polarity
  • the pixel M adjacent to the pixel E in the row direction is negative polarity
  • the pixel N is adjacent to the pixel F in the row direction.
  • the pixel O adjacent to the pixel G in the row direction is negative polarity
  • the pixel P adjacent to the pixel H in the row direction is positive polarity.
  • the data signals from the data signal lines DX1 and DY1 are positive, and the data signals from the data signal lines DX1 ′ and DY1 ′ are negative.
  • the data signals from the data signal lines dx1 and dy1 have a positive polarity, and the data signals from the data signal lines dx1 ′ and dy1 ′ have a negative polarity.
  • data signals having polarities as shown in FIG. 18 are written into the four pixels following the pixel D and the four pixels following the pixel H.
  • the data signals from the data signal lines DX1 and DY1 have a negative polarity, and the data signal lines DX1 ′.
  • the data signal from data signal lines dx1 and dy1 has a negative polarity
  • the first horizontal scanning period (H1) of the vertical scanning period (V2) as shown in FIG.
  • the pixel A has a negative polarity
  • the pixel B has a positive polarity
  • the pixel C has a negative polarity
  • the pixel D has a positive polarity.
  • the pixel E has a negative polarity
  • the pixel F has a positive polarity
  • the pixel G has a negative polarity
  • the pixel H has a positive polarity (the data signal polarity from each data signal line is inverted every vertical scanning period).
  • the data signals from the data signal lines DX1 and DY1 have a negative polarity, and the data signal lines DX1 ′ and DY1 ′. From the data signal lines dx1 and dy1 have a negative polarity, and the data signals from the data signal lines dx1 ′ and dy1 ′ have a positive polarity.
  • the second horizontal scanning period (H2) of the vertical scanning period (V2) data signals having polarities as shown in FIG. 20 are written in the four pixels following the pixel D and the four pixels following the pixel H.
  • the liquid crystal panel can be driven at 8 ⁇ speed (the first and second substrates can be driven at 4 ⁇ speed), a liquid crystal display device (for example, a high-definition liquid crystal display device or It is suitable for a three-dimensional display compatible liquid crystal display device.
  • each of the first and second substrates is driven at a quadruple speed, but the present invention is not limited to this.
  • Each of the first and second substrates can be driven at a constant speed (1 ⁇ speed) or 2 ⁇ speed.
  • dot inversion driving as shown in FIGS. 17 to 20 can be realized while the polarity inversion period of the data signal of each data signal line is one vertical scanning period, and the power consumption of the source driver is suppressed and displayed. Improvement in quality can be achieved at the same time.
  • the data signal line DX1 is once connected to the source electrode 8 of the transistor T1 via the relay electrode TM1 in order to make the resistance value between the data signal line and the source electrode of the transistor uniform between the pixels A and C.
  • the relay electrode TM1 is removed, and as shown in FIG. 21 and FIG.
  • the extending portion of the signal line DX1 may be overlaid on the semiconductor layer 24, and the extending portion may function as a source electrode.
  • FIG. 2 to FIG. 7 can be modified as shown in FIG. 29 to FIG. That is, in the first substrate SU1, the relay electrodes TM1 ′, TM2, TM3 ′, TM4 are not formed, the conductive photospacers FS3 ′, FS4 are not provided, and the relay electrodes tm1, tm1 ′ are also formed in the second substrate SU2. Without forming the tm2, tm2 ′, tm3 ′, and tm4, the counter electrode COM is expanded to the formation region of the relay electrodes tm1, tm1 ′, tm2, tm2 ′, tm3 ′, and tm4. ) The resistance value can also be lowered.
  • Example 2 The liquid crystal panel of FIG. 1 is modified, and as shown in FIG. 23, for the upper half of the liquid crystal panel, the pixel electrode of the pixel A is connected to the data signal line DX1 through the transistor, and the pixel electrode of the pixel B is connected to the transistor The pixel electrode of the pixel C is connected to the data signal line dx1 ′ via the transistor, and the pixel electrode of the pixel D is connected to the data signal line DX1 ′ via the transistor.
  • the pixel electrode of the pixel I is connected to the data signal line dx2 through the transistor, the pixel electrode of the pixel J is connected to the data signal line DX2 through the transistor, and the pixel electrode of the pixel K is connected to
  • the transistor L is connected to the data signal line DX2 ′, the pixel electrode of the pixel L is connected to the data signal line dx2 ′ via the transistor, and the lower half of the liquid crystal panel is also connected to the upper half. It is also possible to have the same connection relationship.
  • the data signal polarities of the data signal lines DX1, DX1 ′, DX2, DX2′dX1, dX1 ′, dX2, and dX2 ′ are set to the first polarity, the second polarity, and the first polarity, respectively.
  • Polarity, 2nd polarity, 2nd polarity, 1st polarity, 2nd polarity, 1st polarity (1st and 2nd polarities are positive or negative polarity respectively
  • the lower half of the liquid crystal panel is driven in the same way as the upper half
  • Example 3 The liquid crystal panel of FIG. 1 is modified, and as shown in FIG. 25, the pixel electrode of the pixel A is connected to the data signal line DX1 through the transistor and the pixel electrode of the pixel B is connected to the transistor in the upper half of the liquid crystal panel. Is connected to the data signal line dx1, the pixel electrode of the pixel C is connected to the data signal line DX1 ′ via the transistor, and the pixel electrode of the pixel D is connected to the data signal line dx1 ′ via the transistor.
  • the pixel electrode of the pixel I is connected to the data signal line dx2 through the transistor, the pixel electrode of the pixel J is connected to the data signal line DX2 through the transistor, and the pixel electrode of the pixel K is connected to
  • the transistor L is connected to the data signal line dx2 ′, the pixel electrode of the pixel L is connected to the data signal line DX2 ′ via the transistor, and the lower half of the liquid crystal panel is also connected to the upper half. It is also possible to have the same connection relationship.
  • the data signal polarities of the data signal lines DX1, DX1 ′, DX2, DX2′dX1, dX1 ′, dX2, dX2 ′ are set to the first polarity, the first polarity, and the first polarity, respectively.
  • the lower half of the liquid crystal panel is driven in the same way as the upper half
  • dot inversion driving as shown in FIG. 26 can be realized.
  • the data signals of the data signal lines on the same substrate have the same polarity, interference between the data signal lines (influence of parasitic capacitance or the like) can be suppressed.
  • Example 4 The liquid crystal panel of FIG. 1 is modified, and as shown in FIG. 27, the pixel electrode of the pixel A is connected to the data signal line DX1 through the transistor and the pixel electrode of the pixel B is connected to the transistor in the upper half of the liquid crystal panel. Is connected to the data signal line dx1, the pixel electrode of the pixel C is connected to the data signal line DX1 ′ via the transistor, and the pixel electrode of the pixel D is connected to the data signal line dx1 ′ via the transistor.
  • the pixel electrode of the pixel I is connected to the data signal line DX2 through the transistor, the pixel electrode of the pixel J is connected to the data signal line dx2 through the transistor, and the pixel electrode of the pixel K is connected to
  • the transistor L is connected to the data signal line DX2 ′, the pixel electrode of the pixel L is connected to the data signal line dx2 ′ via the transistor, and the lower half of the liquid crystal panel is also connected to the upper half. It is also possible to have the same connection relationship.
  • the data signal polarities of the data signal lines DX1, DX1 ′, DX2, DX2′dX1, dX1 ′, dX2, dX2 ′ are set to the first polarity, the first polarity, the second polarity, respectively.
  • Polarity, 2nd polarity, 2nd polarity, 2nd polarity, 1st polarity, 1st polarity (1st and 2nd polarities are positive or negative polarity respectively
  • the lower half of the liquid crystal panel is driven in the same way as the upper half
  • the present liquid crystal panel includes the first and second substrates, the liquid crystal layer disposed between the first and second substrates, the first and second pixels, and the first liquid crystal layer disposed on the liquid crystal layer.
  • a conductor, first and second transistors formed on the first substrate, a first pixel electrode included in the first pixel, a second pixel electrode included in the second pixel, and first and second data signals First and second pixel electrodes and a first data signal line are formed on the first substrate, the first transistor is electrically connected to the first data signal line and the first pixel electrode, and the second data
  • the signal line is formed on the second substrate, the second data signal line and the first conductor are electrically connected, and the second transistor is electrically connected to the first conductor and the second pixel electrode. It is characterized by being.
  • the liquid crystal panel includes first and second substrates, a liquid crystal layer disposed between the first and second substrates, first and second pixels, a conductor, and first and second substrates formed on the first substrate.
  • One data signal line is formed on the first substrate, the first transistor is electrically connected to the first data signal line and the first pixel electrode, the second data signal line is formed on the second substrate, and the second data signal
  • the line and the conductor can be electrically connected, and the second transistor can be electrically connected to the conductor and the second pixel electrode.
  • the liquid crystal display device including the liquid crystal panel for example, as shown in FIG.
  • the first data signal line DX1 is driven by the first substrate data signal line driving circuit SDX1 connected to the first substrate, and the second data signal line DX1 is driven by the second substrate data signal line driving circuit SDX1.
  • the data signal line dx1 is driven by the second substrate data signal line driving circuit SDX2 connected to the second substrate.
  • the conductor may be provided on the liquid crystal layer (for example, a conductive spacer may be used), may be provided on a seal portion between both substrates, or may be provided on an end surface (side surface) of the liquid crystal panel. Good.
  • a counter electrode facing the first pixel electrode is formed on the second substrate, a first relay electrode is formed in the same layer as the first pixel electrode, and a second relay is formed in the same layer as the counter electrode.
  • An electrode is formed, the second data signal line and the second relay electrode are electrically connected, the first and second relay electrodes are electrically connected via the first conductor, and the first relay electrode and the second relay electrode A configuration in which one conductive electrode of two transistors is electrically connected may be employed.
  • the first conductor may be a spacer that adjusts the thickness of the liquid crystal layer.
  • the first and second data signal lines may be arranged so as to overlap each other.
  • a third relay electrode is formed in the same layer as the first pixel electrode, and the first data signal line and one conductive electrode of the first transistor are electrically connected via the third relay electrode. It can also be set as the structure which is.
  • the first substrate includes the third and fourth pixel electrodes and the third data signal line;
  • the three transistors are electrically connected to the third data signal line and the third pixel electrode, the fourth data signal line is formed on the second substrate, and the fourth data signal line and the second conductor are electrically connected.
  • the fourth transistor may be configured to be electrically connected to the second conductor and the fourth pixel electrode.
  • the present liquid crystal panel includes first to fourth scanning signal lines formed on a first substrate.
  • the first to fourth transistors are electrically connected to the first to fourth scanning signal lines, respectively, and the scanning direction is set.
  • the first to fourth pixels may be included in the same pixel column.
  • the first to fourth pixels in the pixel row may be arranged successively in the order of the first pixel, the third pixel, the second pixel, and the fourth pixel.
  • the first to fourth pixels in the pixel row may be arranged in succession in the order of the first pixel, the second pixel, the third pixel, and the fourth pixel.
  • the first to fourth pixels in the pixel row may be arranged successively in the order of the first pixel, the second pixel, the fourth pixel, and the third pixel.
  • an inter-substrate connection pad is provided in each non-display area of the first and second substrates, and the inter-substrate connection pad of the second substrate and the second data signal line are electrically connected.
  • the inter-substrate connection pad of the first substrate and the inter-substrate connection pad of the second substrate may be connected via a conductive photospacer or conductive beads.
  • a plurality of driver connection pads are provided on the first substrate, the first data signal line and one driver connection pad are electrically connected, and the inter-substrate connection pad of the first substrate is connected to another driver connection. It can also be set as the structure electrically connected with the pad.
  • This liquid crystal display device includes the liquid crystal panel.
  • the first and second scanning signal lines may be simultaneously selected.
  • the present invention is not limited to the above-described embodiments, and those obtained by appropriately modifying the above-described embodiments based on common general technical knowledge and those obtained by combining them are also included in the embodiments of the present invention.
  • the present invention is suitable for a liquid crystal panel that requires high-speed driving.

Abstract

This liquid crystal panel comprises: first and second substrates; a liquid crystal layer arranged between the first and second substrates; first and second pixels; a first conductor arranged on the liquid crystal layer; first and second transistors formed on the first substrate; a first pixel electrode included in the first pixel; a second pixel electrode included in the second pixel; and first and second data signal lines. The liquid crystal panel is configured such that: the first and second pixel electrodes and the first data signal line are formed on the first substrate; the first transistor is electrically connected to the first data signal line and the first pixel electrode; the second data signal line is formed on the second substrate; the second data signal line and the first conductor are electrically connected; the second transistor is electrically connected to the first conductor and the second pixel electrode; and the liquid crystal panel can be driven at high speed.

Description

液晶パネル、液晶表示装置、テレビジョン受像機Liquid crystal panel, liquid crystal display device, television receiver
 本発明は、液晶パネルに含まれる2つの基板の構造に関する。 The present invention relates to the structure of two substrates included in a liquid crystal panel.
 一般に液晶パネルは、アクティブマトリクス基板とこれに対向する対向基板とこれら両基板間に配された液晶層とを備え、アクティブマトリクス基板には、データ信号線と、走査信号線と、データ信号線および走査信号線に接続されたトランジスタと、該トランジスタに接続された画素電極とが形成され、対向基板には、共通電極とカラーフィルタおよびブラックマトリクスとが形成される。液晶パネルを備えた液晶表示装置では、アクティブマトリクス基板の走査信号線およびデータ信号線がそれぞれ、ソースドライバおよびゲートドライバによって駆動される。なお、文献1には、液晶パネルの歩留まりを高めるため、対向基板側に、ソースドライバとゲートドライバを形成する構成が開示されている。 In general, a liquid crystal panel includes an active matrix substrate, a counter substrate facing the active matrix substrate, and a liquid crystal layer disposed between the two substrates. The active matrix substrate includes a data signal line, a scanning signal line, a data signal line, and a data signal line. A transistor connected to the scanning signal line and a pixel electrode connected to the transistor are formed, and a common electrode, a color filter, and a black matrix are formed on the counter substrate. In a liquid crystal display device including a liquid crystal panel, scanning signal lines and data signal lines of an active matrix substrate are driven by a source driver and a gate driver, respectively. Reference 1 discloses a configuration in which a source driver and a gate driver are formed on the counter substrate side in order to increase the yield of the liquid crystal panel.
日本国公開特許公報「特開平11-202364号」公報Japanese Patent Publication “JP 11-202364 A”
 近年では高精細化や3次元表示を実現するべく、液晶パネルのさらなる高速駆動が求められているが、従来の液晶パネルでは、これ以上の高速駆動が難しいという問題がある。1水平走査期間をさらに短縮すると、必要な画素充電率を確保できなくなるおそれが高いためである。 In recent years, there has been a demand for higher-speed driving of liquid crystal panels in order to achieve higher definition and three-dimensional display. However, conventional liquid crystal panels have a problem that it is difficult to drive at higher speeds. This is because if the one horizontal scanning period is further shortened, there is a high possibility that a required pixel charging rate cannot be secured.
 本発明の目的は、さらなる高速駆動を可能とする液晶パネルを実現することにある。 An object of the present invention is to realize a liquid crystal panel that can be driven at a higher speed.
 本液晶パネルは、第1および第2基板と、第1および第2基板間に配された液晶層と、第1および第2画素と、上記液晶層に配された第1導電体と、第1基板に形成された第1および第2トランジスタと、第1画素に含まれる第1画素電極と、第2画素に含まれる第2画素電極と、第1および第2データ信号線とを備え、第1および第2画素電極並びに第1データ信号線が第1基板に形成され、第1トランジスタは第1データ信号線および第1画素電極と電気的に接続され、第2データ信号線は第2基板に形成され、第2データ信号線と第1導電体とが電気的に接続されるとともに、第2トランジスタは第1導電体および第2画素電極と電気的に接続されている。 The liquid crystal panel includes first and second substrates, a liquid crystal layer disposed between the first and second substrates, first and second pixels, a first conductor disposed on the liquid crystal layer, First and second transistors formed on one substrate, a first pixel electrode included in the first pixel, a second pixel electrode included in the second pixel, and first and second data signal lines, The first and second pixel electrodes and the first data signal line are formed on the first substrate, the first transistor is electrically connected to the first data signal line and the first pixel electrode, and the second data signal line is the second data signal line. The second data signal line and the first conductor are electrically connected to each other, and the second transistor is electrically connected to the first conductor and the second pixel electrode.
 上記構成によれば、例えば、第1および第2画素電極に同時にデータ信号を書き込むことが可能となり、さらなる高速駆動が実現される。 According to the above configuration, for example, it becomes possible to simultaneously write data signals to the first and second pixel electrodes, thereby realizing further high-speed driving.
実施例1の液晶パネル(画素A~P含む)の構成を示す回路図である。3 is a circuit diagram illustrating a configuration of a liquid crystal panel (including pixels A to P) according to Embodiment 1. FIG. 第1基板の画素A・Bに対応する領域の平面図である。It is a top view of the field corresponding to pixel A * B of the 1st substrate. 第2基板の画素A・Bに対応する領域の平面図である。It is a top view of the field corresponding to pixel A * B of the 2nd substrate. 画素Aの断面図(図2・3のA1-A1’に対応)である。FIG. 4 is a cross-sectional view of a pixel A (corresponding to A1-A1 ′ in FIGS. 2 and 3). 第1基板の画素C・Dに対応する領域の平面図である。It is a top view of the field corresponding to pixel C * D of the 1st substrate. 第2基板の画素C・Dに対応する領域の平面図である。It is a top view of the field corresponding to pixel C * D of the 2nd substrate. 画素Cの断面図(図5・6のA3-A3’に対応)である。7 is a cross-sectional view of a pixel C (corresponding to A3-A3 ′ in FIGS. 5 and 6). FIG. 第1基板の全体(端部を含む)のレイアウトを示す模式図である。It is a schematic diagram which shows the layout of the whole 1st board | substrate (an edge part is included). 第2基板の全体(端部を含む)のレイアウトを示す模式図である。It is a schematic diagram which shows the layout of the whole 2nd board | substrate (an edge part is included). 図8の第1基板と図9の第2基板との貼り合わせ例を示す模式図である。It is a schematic diagram which shows the example of bonding of the 1st board | substrate of FIG. 8, and the 2nd board | substrate of FIG. 実施例1の液晶表示装置の構成を示す模式図である。1 is a schematic diagram illustrating a configuration of a liquid crystal display device of Example 1. FIG. 図10の液晶表示装置の駆動方法(垂直走査期間V1)を示す模式図である。FIG. 11 is a schematic diagram illustrating a driving method (vertical scanning period V1) of the liquid crystal display device of FIG. 図10の液晶表示装置の駆動方法(垂直走査期間V2)を示す模式図である。FIG. 11 is a schematic diagram illustrating a driving method (vertical scanning period V2) of the liquid crystal display device of FIG. 図10の液晶表示装置の駆動方法(データ信号線の駆動方法)を示すタイミングチャートである。11 is a timing chart showing a driving method (data signal line driving method) of the liquid crystal display device of FIG. 10. 図10の液晶表示装置のデータ書き込み方法(垂直走査期間V1の第1水平走査期間)を示す模式図である。FIG. 11 is a schematic diagram illustrating a data writing method (first horizontal scanning period of a vertical scanning period V1) of the liquid crystal display device of FIG. 図10の液晶表示装置のデータ書き込み方法(垂直走査期間V1の第2水平走査期間)を示す模式図である。FIG. 11 is a schematic diagram illustrating a data writing method (second horizontal scanning period of a vertical scanning period V1) of the liquid crystal display device of FIG. 図10の液晶表示装置のデータ書き込み方法(垂直走査期間V2の第1水平走査期間)を示す模式図である。FIG. 11 is a schematic diagram illustrating a data writing method (first horizontal scanning period of a vertical scanning period V2) of the liquid crystal display device of FIG. 図10の液晶表示装置のデータ書き込み方法(垂直走査期間V2の第2水平走査期間)を示す模式図である。FIG. 11 is a schematic diagram illustrating a data writing method (second horizontal scanning period of a vertical scanning period V2) of the liquid crystal display device of FIG. 実施例1の液晶パネルの端部(長辺に沿った部分)構成を示す断面図である。FIG. 3 is a cross-sectional view illustrating a configuration of an end portion (portion along a long side) of the liquid crystal panel of Example 1. 本液晶パネルの表示単位の構成を示す模式図であり、(a)は、3画素(R・G・B)を表示単位とする場合、(b)は、6画素(R・G・B・Y・M・C)を表示単位とする場合、(c)は、6画素(R・G・B・G・M・Y)を表示単位とする場合を示している。It is a schematic diagram which shows the structure of the display unit of this liquid crystal panel, (a) makes 3 pixels (R * G * B) a display unit, (b) shows 6 pixels (R * G * B *) When (Y, M, C) is used as a display unit, (c) shows a case where 6 pixels (R, G, B, G, M, Y) are used as a display unit. 第1基板の変形例(第1基板の画素A・Bに対応する領域)を示す平面図である。It is a top view which shows the modification (area | region corresponding to pixel A * B of a 1st board | substrate) of a 1st board | substrate. 図21の変形例での画素Aの断面図(図21のA1-A1’に対応)である。FIG. 22 is a cross-sectional view of the pixel A in the modification of FIG. 21 (corresponding to A1-A1 ′ in FIG. 21). 実施例2の液晶パネル(画素A~P含む)の構成を示す回路図である。FIG. 6 is a circuit diagram showing a configuration of a liquid crystal panel (including pixels A to P) of Example 2. 実施例2の液晶表示装置のデータ書き込み方法を示す模式図である。6 is a schematic diagram illustrating a data writing method of the liquid crystal display device of Example 2. FIG. 実施例3の液晶パネル(画素A~P含む)の構成を示す回路図である。FIG. 10 is a circuit diagram showing a configuration of a liquid crystal panel (including pixels A to P) of Example 3. 実施例3の液晶表示装置のデータ書き込み方法を示す模式図である。6 is a schematic diagram illustrating a data writing method of the liquid crystal display device of Example 3. FIG. 実施例4の液晶パネル(画素A~P含む)の構成を示す回路図である。FIG. 10 is a circuit diagram showing a configuration of a liquid crystal panel (including pixels A to P) of Example 4. 実施例4の液晶表示装置のデータ書き込み方法を示す模式図である。FIG. 10 is a schematic diagram illustrating a data writing method of the liquid crystal display device of Example 4. 図2の変形例を示す平面図である。It is a top view which shows the modification of FIG. 図3の変形例を示す平面図である。It is a top view which shows the modification of FIG. 図4の変形例(図29・30のa1-a1’に対応)を示す断面図である。FIG. 5 is a cross-sectional view showing a modification of FIG. 4 (corresponding to a1-a1 ′ in FIGS. 29 and 30). 図5の変形例を示す平面図である。It is a top view which shows the modification of FIG. 図6の変形例を示す平面図である。It is a top view which shows the modification of FIG. 図7の変形例(図32・33のa3-a3’に対応)を示す断面図である。FIG. 8 is a cross-sectional view showing a modification of FIG. 7 (corresponding to a3-a3 ′ in FIGS. 32 and 33). 本液晶表示装置の別構成例を示す模式図である。It is a schematic diagram which shows another structural example of this liquid crystal display device.
 本発明の実施の形態を、図1~34を用いて説明すれば、以下のとおりである。 Embodiments of the present invention will be described with reference to FIGS. 1 to 34 as follows.
 〔実施例1〕
 図1は実施例1にかかる液晶パネルの構成を示す回路図である。なお、以下の説明では、HDTV(高精細度テレビジョン)対応の液晶パネル(1080ライン)を前提とするがこれは一例に過ぎない。また、説明の便宜のため、液晶パネルの走査方向(短辺に沿う方向)を列方向とする。また、原則として、液晶パネルを構成する2つの基板の一方(第1基板)に形成される構成を実線で、他方(第2基板)に形成される構成を破線で示すものとする。
[Example 1]
FIG. 1 is a circuit diagram illustrating a configuration of a liquid crystal panel according to the first embodiment. In the following description, a liquid crystal panel (1080 lines) compatible with HDTV (high definition television) is assumed, but this is only an example. For convenience of explanation, the scanning direction of the liquid crystal panel (the direction along the short side) is the column direction. In principle, the configuration formed on one of the two substrates (first substrate) constituting the liquid crystal panel is indicated by a solid line, and the configuration formed on the other (second substrate) is indicated by a broken line.
 実施例1の液晶パネルは、第1および第2基板と、第1および第2基板間に配された液晶層とを備え、図1に示すように、画素列PL1に、画素電極P1を含む画素Aと、画素電極P2を含む画素Bと、画素電極P3を含む画素Cと、画素電極P4を含む画素Dと、画素電極P541を含む画素Eと、画素電極P542を含む画素Fと、画素電極P543を含む画素Gと、画素電極P544を含む画素Hとが含まれている。 The liquid crystal panel of Example 1 includes first and second substrates and a liquid crystal layer disposed between the first and second substrates, and includes a pixel electrode P1 in the pixel column PL1 as shown in FIG. Pixel A, pixel B including pixel electrode P2, pixel C including pixel electrode P3, pixel D including pixel electrode P4, pixel E including pixel electrode P541, pixel F including pixel electrode P542, pixel A pixel G including the electrode P543 and a pixel H including the pixel electrode P544 are included.
 なお、画素A~画素Dは、液晶パネルの上半分の領域(液晶パネルを走査方向に2分割したときに、走査方向上流側となる領域)に、連続して並べられ、画素E~画素Hは、液晶パネルの下半分の領域(液晶パネルを走査方向に2分割したときに、走査方向下流側となる領域)に、連続して並べられている。 The pixels A to D are continuously arranged in the upper half area of the liquid crystal panel (the area on the upstream side in the scanning direction when the liquid crystal panel is divided into two in the scanning direction). Are continuously arranged in the lower half area of the liquid crystal panel (the area that is downstream in the scanning direction when the liquid crystal panel is divided into two in the scanning direction).
 ここで、第1基板の上半分の領域(第1基板を走査方向に2分割したときに、走査方向上流側となる領域)には、画素電極P1~P4、走査信号線G1~G4、データ信号線DX1・DX2・DX1’・DX2’、トランジスタT1~T4、および保持容量配線CS1~CS4が形成され、第2基板の上半分の領域(第2基板を走査方向に2分割したときに、走査方向上流側となる領域)には、データ信号線dx1・dx2・dx1’・dx2’および対向(共通)電極COMが形成される。 Here, pixel electrodes P1 to P4, scanning signal lines G1 to G4, data, and data are provided in the upper half area of the first substrate (the area on the upstream side in the scanning direction when the first substrate is divided into two in the scanning direction). Signal lines DX1, DX2, DX1 ', DX2', transistors T1 to T4, and storage capacitor lines CS1 to CS4 are formed, and the upper half region of the second substrate (when the second substrate is divided into two in the scanning direction, The data signal lines dx1, dx2, dx1 ′, dx2 ′ and the counter (common) electrode COM are formed in a region upstream in the scanning direction.
 図1では、データ信号線DX1(第1基板)とデータ信号線dx1(第2基板)とが重なっていないが、実際には両者は重なっており(後述)、同様に、データ信号線DX1’(第1基板)とデータ信号線dx1’(第2基板)とが重なっている。そして、平面視において、データ信号線DX1とデータ信号線DX1’との間に画素電極P1~P4がこの順に列方向に並べられ、画素電極P1は、走査信号線G1の走査方向下流側に配され、画素電極P2は、走査信号線G2の走査方向下流側に配され、画素電極P3は、走査信号線G3の走査方向下流側に配され、画素電極P4は、走査信号線G4の走査方向下流側に配されている。 In FIG. 1, the data signal line DX1 (first substrate) and the data signal line dx1 (second substrate) do not overlap, but actually they overlap (described later). Similarly, the data signal line DX1 ′ The (first substrate) and the data signal line dx1 ′ (second substrate) overlap. In plan view, the pixel electrodes P1 to P4 are arranged in this order in the column direction between the data signal line DX1 and the data signal line DX1 ′, and the pixel electrode P1 is arranged downstream of the scanning signal line G1 in the scanning direction. The pixel electrode P2 is disposed on the downstream side in the scanning direction of the scanning signal line G2, the pixel electrode P3 is disposed on the downstream side in the scanning direction of the scanning signal line G3, and the pixel electrode P4 is disposed in the scanning direction of the scanning signal line G4. It is arranged downstream.
 画素電極P1は、トランジスタT1を介して、データ信号線DX1および走査信号線G1に接続され、画素電極P2は、トランジスタT2を介して、データ信号線DX1’および走査信号線G2に接続され、画素電極P3は、トランジスタT3を介して、データ信号線dx1および走査信号線G3に接続され、画素電極P4は、トランジスタT4を介して、データ信号線dx1’および走査信号線G4に接続される。なお、画素電極P1~P4それぞれと対向電極COMとの間には液晶容量が形成される。また、保持容量配線CS1~CS4は各走査信号線と平行に設けられ、画素P1は保持容量配線CS1と保持容量を形成し、画素P2は保持容量配線CS2と保持容量を形成し、画素P3は保持容量配線CS3と保持容量を形成し、画素P4は保持容量配線CS4と保持容量を形成する。 The pixel electrode P1 is connected to the data signal line DX1 and the scanning signal line G1 through the transistor T1, and the pixel electrode P2 is connected to the data signal line DX1 ′ and the scanning signal line G2 through the transistor T2. The electrode P3 is connected to the data signal line dx1 and the scanning signal line G3 via the transistor T3, and the pixel electrode P4 is connected to the data signal line dx1 ′ and the scanning signal line G4 via the transistor T4. Note that a liquid crystal capacitor is formed between each of the pixel electrodes P1 to P4 and the counter electrode COM. The storage capacitor lines CS1 to CS4 are provided in parallel with the scanning signal lines. The pixel P1 forms a storage capacitor with the storage capacitor line CS1, the pixel P2 forms a storage capacitor with the storage capacitor line CS2, and the pixel P3 A storage capacitor line CS3 and a storage capacitor are formed, and the pixel P4 forms a storage capacitor line CS4 and a storage capacitor.
 一方、第1基板の下半分の領域(第1基板を走査方向に2分割したときに、走査方向下流側となる領域)には、画素電極P541~P544、走査信号線G541~G544、データ信号線DY1・DY2・DY1’・DY2’、トランジスタT541~T544、および保持容量配線CS541~CS544が形成され、第2基板の下半分の領域(第2基板を走査方向に2分割したときに、走査方向下流側となる領域)には、データ信号線dy1・dy2・dy1’・dy2’および対向(共通)電極COMが形成される。 On the other hand, pixel electrodes P541 to P544, scanning signal lines G541 to G544, data signals are provided in the lower half area of the first substrate (area that is downstream in the scanning direction when the first substrate is divided into two in the scanning direction). Lines DY1, DY2, DY1 ′, DY2 ′, transistors T541 to T544, and storage capacitor lines CS541 to CS544 are formed, and the lower half region of the second substrate (scanning when the second substrate is divided into two in the scanning direction) The data signal lines dy1, dy2, dy1 ′, dy2 ′ and the counter (common) electrode COM are formed in the region on the downstream side in the direction.
 図1では、データ信号線DY1(第1基板)とデータ信号線dy1(第2基板)とが重なっていないが、実際には両者は重なっており(後述)、同様に、データ信号線DY1’(第1基板)とデータ信号線dy1’(第2基板)とが重なっている。そして、平面視において、データ信号線DY1とデータ信号線DY1’との間に画素電極P541~P544がこの順に列方向に並べられ、画素電極P541は、走査信号線G541の走査方向下流側に配され、画素電極P542は、走査信号線G542の走査方向下流側に配され、画素電極P543は、走査信号線G543の走査方向下流側に配され、画素電極P544は、走査信号線G544の走査方向下流側に配されている。 In FIG. 1, the data signal line DY1 (first substrate) and the data signal line dy1 (second substrate) do not overlap, but actually they overlap (described later). Similarly, the data signal line DY1 ′ The (first substrate) and the data signal line dy1 ′ (second substrate) overlap. In plan view, the pixel electrodes P541 to P544 are arranged in this order in the column direction between the data signal line DY1 and the data signal line DY1 ′, and the pixel electrode P541 is arranged downstream of the scanning signal line G541 in the scanning direction. The pixel electrode P542 is disposed on the downstream side in the scanning direction of the scanning signal line G542, the pixel electrode P543 is disposed on the downstream side in the scanning direction of the scanning signal line G543, and the pixel electrode P544 is disposed in the scanning direction of the scanning signal line G544. It is arranged downstream.
 画素電極P541は、トランジスタT541を介して、データ信号線DY1および走査信号線G541に接続され、画素電極P542は、トランジスタT542を介して、データ信号線DY1’および走査信号線G542に接続され、画素電極P543は、トランジスタT543を介して、データ信号線dy1および走査信号線G543に接続され、画素電極P544は、トランジスタT544を介して、データ信号線dy1’および走査信号線G544に接続される。なお、画素電極P541~P544それぞれと対向電極COMとの間には液晶容量が形成される。また、保持容量配線CS541~CS544は各走査信号線と平行に設けられ、画素P541は保持容量配線CS541と保持容量を形成し、画素P542は保持容量配線CS542と保持容量を形成し、画素P543は保持容量配線CS543と保持容量を形成し、画素P544は保持容量配線CS4と保持容量を形成する。 The pixel electrode P541 is connected to the data signal line DY1 and the scanning signal line G541 via the transistor T541, and the pixel electrode P542 is connected to the data signal line DY1 ′ and the scanning signal line G542 via the transistor T542. The electrode P543 is connected to the data signal line dy1 and the scanning signal line G543 via the transistor T543, and the pixel electrode P544 is connected to the data signal line dy1 ′ and the scanning signal line G544 via the transistor T544. A liquid crystal capacitor is formed between each of the pixel electrodes P541 to P544 and the counter electrode COM. The storage capacitor lines CS541 to CS544 are provided in parallel with the scanning signal lines, the pixel P541 forms a storage capacitor with the storage capacitor line CS541, the pixel P542 forms a storage capacitor with the storage capacitor line CS542, and the pixel P543 A storage capacitor line CS543 and a storage capacitor are formed, and the pixel P544 forms a storage capacitor line CS4 and a storage capacitor.
 さらに図1では、第1基板の上半分には、データ信号線DX1、DX1’、DX2およびDX2’がこの順に並べられ、第2基板の上半分には、データ信号線dx1、dx1’、dx2およびdx2’がこの順に並べられており、画素Aと行方向に隣接する画素Iの画素電極は、第1基板に設けられ、トランジスタを介してデータ信号線DX2に接続し、画素Bと行方向に隣接する画素Jの画素電極は、第1基板に設けられ、トランジスタを介してデータ信号線DX2’に接続し、画素Cと行方向に隣接する画素Kの画素電極は、第1基板に設けられ、トランジスタを介してデータ信号線dx2に接続し、画素Dと行方向に隣接する画素Lの画素電極は、第1基板に設けられ、トランジスタを介してデータ信号線dx2’に接続する。 Further, in FIG. 1, data signal lines DX1, DX1 ′, DX2 and DX2 ′ are arranged in this order on the upper half of the first substrate, and data signal lines dx1, dx1 ′, dx2 are arranged on the upper half of the second substrate. And dx2 ′ are arranged in this order, and the pixel electrode of the pixel I adjacent to the pixel A in the row direction is provided on the first substrate and is connected to the data signal line DX2 via the transistor, and is connected to the pixel B in the row direction. The pixel electrode of the pixel J adjacent to the pixel J is provided on the first substrate, connected to the data signal line DX2 ′ via the transistor, and the pixel electrode of the pixel K adjacent to the pixel C in the row direction is provided on the first substrate. The pixel electrode of the pixel L that is connected to the data signal line dx2 through the transistor and is adjacent to the pixel D in the row direction is provided on the first substrate, and is connected to the data signal line dx2 ′ through the transistor.
 同様に、図1では、第1基板の下半分には、データ信号線DY1、DY1’、DY2およびDY2’がこの順に並べられ、第2基板の下半分には、データ信号線dy1、dy1’、dy2およびdy2’がこの順に並べられており、画素Eと行方向に隣接する画素Mの画素電極は、第1基板に設けられ、トランジスタを介してデータ信号線DY2に接続し、画素Fと行方向に隣接する画素Nの画素電極は、第1基板に設けられ、トランジスタを介してデータ信号線DY2’に接続し、画素Gと行方向に隣接する画素Oの画素電極は、第1基板に設けられ、トランジスタを介してデータ信号線dy2に接続し、画素Hと行方向に隣接する画素Pの画素電極は、第1基板に設けられ、トランジスタを介してデータ信号線dy2’に接続する。 Similarly, in FIG. 1, data signal lines DY1, DY1 ′, DY2 and DY2 ′ are arranged in this order on the lower half of the first substrate, and data signal lines dy1, dy1 ′ are arranged on the lower half of the second substrate. , Dy2 and dy2 ′ are arranged in this order, and the pixel electrode of the pixel M adjacent to the pixel E in the row direction is provided on the first substrate and is connected to the data signal line DY2 through the transistor. The pixel electrode of the pixel N adjacent in the row direction is provided on the first substrate, is connected to the data signal line DY2 ′ via the transistor, and the pixel electrode of the pixel O adjacent to the pixel G in the row direction is the first substrate. The pixel electrode of the pixel P adjacent to the pixel H in the row direction is provided on the first substrate and connected to the data signal line dy2 ′ via the transistor. .
 図2は第1基板(SU1)の画素A・Bに対応する部分の構成を示す平面図であり、図3は第2基板(SU2)の画素A・Bに対応する部分の構成を示す平面図であり、図4は、液晶パネルLCPの画素Aの断面図(図2・3のA1-A1’に対応)である。また、図5は第1基板(SU1)の画素C・Dに対応する部分の構成を示す平面図であり、図6は第2基板(SU2)の画素C・Dに対応する部分の構成を示す平面図であり、図7は、液晶パネルLCPの画素Cの断面図(図5・6のA3-A3’に対応)である。 FIG. 2 is a plan view showing a configuration of a portion corresponding to the pixels A and B of the first substrate (SU1), and FIG. 3 is a plan view showing a configuration of a portion corresponding to the pixels A and B of the second substrate (SU2). FIG. 4 is a cross-sectional view of the pixel A of the liquid crystal panel LCP (corresponding to A1-A1 ′ in FIGS. 2 and 3). FIG. 5 is a plan view showing a configuration of a portion corresponding to the pixels C and D of the first substrate (SU1), and FIG. 6 shows a configuration of a portion corresponding to the pixels C and D of the second substrate (SU2). FIG. 7 is a cross-sectional view of the pixel C of the liquid crystal panel LCP (corresponding to A3-A3 ′ in FIGS. 5 and 6).
 図4・7に示すように、第1基板SU1では、ガラス基板31上に、走査信号線G1の延伸部g1(トランジスタT1のゲート電極)と、走査信号線G3の延伸部g3(トランジスタT3のゲート電極)とが形成され、延伸部g1・g3を覆うようにゲート絶縁膜21が形成され、ゲート絶縁膜21上に、データ信号線DX1・DX1’と、トランジスタT1の半導体層24並びにソース電極8およびドレイン電極9と、トランジスタT3の半導体層24並びにソース電極8およびドレイン電極9とが形成され、トランジスタT1・T3のチャネルを覆うように、パッシベーション膜25およびこれよりも厚い有機絶縁膜26からなる層間絶縁膜(チャネル保護膜)が形成され、層間絶縁膜上に、画素電極P1・P3および中継電極TM1~TM4・TM1’~TM4’が、透光性導電膜(ITO等)を用いて形成される。 4 and 7, in the first substrate SU1, on the glass substrate 31, the extending portion g1 of the scanning signal line G1 (gate electrode of the transistor T1) and the extending portion g3 of the scanning signal line G3 (of the transistor T3) The gate insulating film 21 is formed so as to cover the extending portions g1 and g3, and the data signal lines DX1 and DX1 ′, the semiconductor layer 24 of the transistor T1, and the source electrode are formed on the gate insulating film 21. 8 and the drain electrode 9, the semiconductor layer 24 of the transistor T3, and the source electrode 8 and the drain electrode 9 are formed, and from the passivation film 25 and the organic insulating film 26 thicker than this so as to cover the channels of the transistors T1 and T3. An interlayer insulating film (channel protective film) is formed, and the pixel electrodes P1 and P3 and the relay electrode TM1 are formed on the interlayer insulating film. TM4 · TM1 '~ TM4' is formed using a light-transmitting conductive film (ITO, etc.).
 一方、第1基板SU2では、ガラス基板32上にデータ信号線dx1・dx1’が形成され、データ信号線dx1・dx1’を覆うようにメタルコート膜MC(絶縁膜)が形成され、メタルコート絶縁膜MC上に、カラーフィルタCFおよびブラックマトリクスBMが形成され、カラーフィルタCFおよびブラックマトリクスBMを覆うようにオーバーコート膜MC(絶縁膜)が形成され、オーバーコート膜MC上に、対向(共通)電極COMおよび中継電極tm1~tm4・tm1’~tm4’が、透光性導電膜(ITO等)を用いて形成される。なお、対向電極COMはパネル全体に単一形成(ベタ形成)することができ、対向電極COMの低抵抗化の観点からはこれが望ましい。ただ、単一形成では対向電極COMと(第2基板SU2の)データ信号線との寄生容量が大きくなるおそれがあり、これを避けるために、対向電極COMを複数に分割形成してもよい。例えば、対向電極COMをストライプ状に分割形成し、パネルプロセスに合わせて、各対向電極COMを複数画素列(縦が1画素列×横が数画素)に対応する大きさとすることができる。 On the other hand, in the first substrate SU2, the data signal lines dx1 and dx1 ′ are formed on the glass substrate 32, and the metal coat film MC (insulating film) is formed so as to cover the data signal lines dx1 and dx1 ′. A color filter CF and a black matrix BM are formed on the film MC, an overcoat film MC (insulating film) is formed so as to cover the color filter CF and the black matrix BM, and a counter (common) is formed on the overcoat film MC. The electrode COM and the relay electrodes tm1 to tm4 · tm1 ′ to tm4 ′ are formed using a light-transmitting conductive film (ITO or the like). The counter electrode COM can be formed as a single unit (solid) on the entire panel, which is desirable from the viewpoint of reducing the resistance of the counter electrode COM. However, in the single formation, the parasitic capacitance between the counter electrode COM and the data signal line (of the second substrate SU2) may increase, and the counter electrode COM may be divided into a plurality of parts to avoid this. For example, the counter electrodes COM can be divided and formed in stripes, and each counter electrode COM can be sized to correspond to a plurality of pixel columns (vertical one pixel column × horizontal several pixels) in accordance with the panel process.
 また、図2~7に示すように、第2基板のデータ信号線dx1は、第1基板のデータ信号線DX1に重なる(平面視で一致する)ように設けられ、第2基板のデータ信号線dx1’は、第1基板のデータ信号線DX1’に重なる(平面視で一致する)ように設けられ、第1基板SU1および第2基板SU2間には、液晶層LCLが充填され、液晶層LCL(第1および第2基板間)には、導電性フォトスペーサFS3・FS3’が形成される。 As shown in FIGS. 2 to 7, the data signal line dx1 on the second substrate is provided so as to overlap (coincides in plan view) with the data signal line DX1 on the first substrate. dx1 ′ is provided so as to overlap with the data signal line DX1 ′ of the first substrate (coincides in plan view), and the liquid crystal layer LCL is filled between the first substrate SU1 and the second substrate SU2, and the liquid crystal layer LCL Conductive photospacers FS3 and FS3 ′ are formed (between the first and second substrates).
 図2~4に示すように、第1基板SU1の画素A・Bに対応する領域では、データ信号線DX1と重なるように中継電極TM1が形成されるとともに、データ信号線DX1’と重なるように中継電極TM1’が形成され、平面視において、データ信号線DX1、トランジスタT1(図示せず)のソース電極8、走査信号線G1の延伸部g1(トランジスタT1のゲート電極)およびトランジスタT1のドレイン電極9がこの順に行方向に並べられ、トランジスタT1のソース電極8、走査信号線G1の延伸部g1およびトランジスタT1のドレイン電極9が半導体層24と重なっている。また、データ信号線DX1と中継電極tm1とが層間絶縁膜を貫くコンタクトホール11dを介して接続され、中継電極tm1とトランジスタT1のソース電極8とが層間絶縁膜を貫くコンタクトホール11bを介して接続され、トランジスタT1のドレイン電極9と画素電極P1とが層間絶縁膜を貫くコンタクトホール11aを介して接続されている。さらに、保持容量配線CS1と重なるように容量電極27が配され、容量電極27と画素電極P1とがコンタクトホール11cを介して接続されている。 As shown in FIGS. 2 to 4, in the region corresponding to the pixels A and B of the first substrate SU1, the relay electrode TM1 is formed so as to overlap the data signal line DX1, and so as to overlap the data signal line DX1 ′. The relay electrode TM1 ′ is formed, and in plan view, the data signal line DX1, the source electrode 8 of the transistor T1 (not shown), the extending part g1 of the scanning signal line G1 (gate electrode of the transistor T1), and the drain electrode of the transistor T1 9 are arranged in this order in the row direction, and the source electrode 8 of the transistor T1, the extending portion g1 of the scanning signal line G1, and the drain electrode 9 of the transistor T1 overlap the semiconductor layer 24. Further, the data signal line DX1 and the relay electrode tm1 are connected via a contact hole 11d that penetrates the interlayer insulating film, and the relay electrode tm1 and the source electrode 8 of the transistor T1 are connected via a contact hole 11b that penetrates the interlayer insulating film. The drain electrode 9 of the transistor T1 and the pixel electrode P1 are connected through a contact hole 11a that penetrates the interlayer insulating film. Further, the capacitor electrode 27 is disposed so as to overlap the storage capacitor line CS1, and the capacitor electrode 27 and the pixel electrode P1 are connected via the contact hole 11c.
 また、図2~4に示すように、第2基板SU2の画素A・Bに対応する領域では、データ信号線dx1と重なるように中継電極tm1が形成されるとともに、データ信号線DX1’と重なるように中継電極tm1’が形成され、データ信号線dx1と中継電極tm1とがコンタクトホールh1を介して接続され、データ信号線dx1’と中継電極tm1’とがコンタクトホールh1’を介して接続されている。 As shown in FIGS. 2 to 4, in the region corresponding to the pixels A and B of the second substrate SU2, the relay electrode tm1 is formed so as to overlap with the data signal line dx1, and also overlaps with the data signal line DX1 ′. Thus, the relay electrode tm1 ′ is formed, the data signal line dx1 and the relay electrode tm1 are connected via the contact hole h1, and the data signal line dx1 ′ and the relay electrode tm1 ′ are connected via the contact hole h1 ′. ing.
 図5~7に示すように、第1基板SU1の画素C・Dに対応する領域では、データ信号線DX1と重なるように中継電極TM3・TM4が形成されるとともに、データ信号線DX1’と重なるように中継電極TM3’・TM4’が形成され、平面視において、データ信号線DX1、トランジスタT3(図示せず)のソース電極8、走査信号線G3の延伸部g3(トランジスタT1のゲート電極)およびトランジスタT3のドレイン電極9がこの順に行方向に並べられ、トランジスタT3のソース電極8、走査信号線G3の延伸部g3およびトランジスタT3のドレイン電極9が半導体層24と重なっている。また、中継電極TM3が、導電性フォトスペーサFS3と接触しており、中継電極TM3とトランジスタT3のソース電極8とが層間絶縁膜を貫くコンタクトホール11bを介して接続され、トランジスタT3のドレイン電極9と画素電極P3とが層間絶縁膜を貫くコンタクトホール11aを介して接続されている。同様に、中継電極TM4’が、導電性フォトスペーサFS4’と接触しており、中継電極TM4’とトランジスタT4のソース電極8とが層間絶縁膜を貫くコンタクトホール11bを介して接続され、トランジスタT4のドレイン電極9と画素電極P4とが層間絶縁膜を貫くコンタクトホール11aを介して接続されている。さらに、保持容量配線CS3と重なるように容量電極27が配され、容量電極27と画素電極P3とがコンタクトホール11cを介して接続されている。 As shown in FIGS. 5 to 7, in the region corresponding to the pixels C and D of the first substrate SU1, the relay electrodes TM3 and TM4 are formed so as to overlap with the data signal line DX1, and also overlap with the data signal line DX1 ′. In this way, the relay electrodes TM3 ′ and TM4 ′ are formed. In plan view, the data signal line DX1, the source electrode 8 of the transistor T3 (not shown), the extending portion g3 of the scanning signal line G3 (the gate electrode of the transistor T1), and The drain electrode 9 of the transistor T3 is arranged in this order in the row direction, and the source electrode 8 of the transistor T3, the extending portion g3 of the scanning signal line G3, and the drain electrode 9 of the transistor T3 overlap with the semiconductor layer 24. The relay electrode TM3 is in contact with the conductive photospacer FS3, the relay electrode TM3 and the source electrode 8 of the transistor T3 are connected via a contact hole 11b that penetrates the interlayer insulating film, and the drain electrode 9 of the transistor T3. And the pixel electrode P3 are connected through a contact hole 11a penetrating the interlayer insulating film. Similarly, the relay electrode TM4 ′ is in contact with the conductive photospacer FS4 ′, and the relay electrode TM4 ′ and the source electrode 8 of the transistor T4 are connected via a contact hole 11b that penetrates the interlayer insulating film, and the transistor T4. The drain electrode 9 and the pixel electrode P4 are connected through a contact hole 11a penetrating the interlayer insulating film. Further, the capacitor electrode 27 is arranged so as to overlap with the storage capacitor line CS3, and the capacitor electrode 27 and the pixel electrode P3 are connected via the contact hole 11c.
 また、図5~7に示すように、第2基板SU2の画素C・Dに対応する領域では、データ信号線dx1と重なるように中継電極tm3・tm4が形成されるとともに、データ信号線DX1’と重なるように中継電極tm3’・tm4’が形成され、データ信号線dx1と中継電極tm3とがコンタクトホールh3を介して接続され、データ信号線dx1’と中継電極tm4’とがコンタクトホールh4’を介して接続されている。また、中継電極tm3が、導電性フォトスペーサFS3と接触するとともに、中継電極tm4’が、導電性フォトスペーサFS4’と接触している。 As shown in FIGS. 5 to 7, in the region corresponding to the pixels C and D of the second substrate SU2, the relay electrodes tm3 and tm4 are formed so as to overlap the data signal line dx1, and the data signal line DX1 ′ is formed. The relay electrodes tm3 ′ and tm4 ′ are formed so as to overlap with each other, the data signal line dx1 and the relay electrode tm3 are connected via the contact hole h3, and the data signal line dx1 ′ and the relay electrode tm4 ′ are connected to the contact hole h4 ′. Connected through. Further, the relay electrode tm3 is in contact with the conductive photospacer FS3, and the relay electrode tm4 'is in contact with the conductive photospacer FS4'.
 このように、第2基板のデータ信号線dx1は、コンタクトホールh3、第2基板の中継電極tm3、液晶層の導電性フォトスペーサFS3、第1基板の中継電極TM3、およびコンタクトホール11bを介して、第1基板のトランジスタT3のソース電極8に接続される。同様に、第2基板のデータ信号線dx1’は、コンタクトホールh4’、第2基板の中継電極tm4’、液晶層の導電性フォトスペーサFS4’、第1基板の中継電極TM4’、およびコンタクトホール11bを介して、第1基板のトランジスタT4のソース電極8に接続される。 As described above, the data signal line dx1 on the second substrate is connected via the contact hole h3, the relay electrode tm3 on the second substrate, the conductive photo spacer FS3 on the liquid crystal layer, the relay electrode TM3 on the first substrate, and the contact hole 11b. , Connected to the source electrode 8 of the transistor T3 on the first substrate. Similarly, the data signal line dx1 ′ of the second substrate includes the contact hole h4 ′, the relay electrode tm4 ′ of the second substrate, the conductive photospacer FS4 ′ of the liquid crystal layer, the relay electrode TM4 ′ of the first substrate, and the contact hole. 11b is connected to the source electrode 8 of the transistor T4 on the first substrate.
 なお、図2・4のようにデータ信号線DX1を、一旦中継電極TM1(ITO等)を介してトランジスタT1のソース電極8に接続することで、データ信号線とトランジスタのソース電極との間の抵抗値(寄生抵抗値)を、画素A・C間で揃えることができる。 2 and 4, once the data signal line DX1 is connected to the source electrode 8 of the transistor T1 via the relay electrode TM1 (ITO or the like), the data signal line and the source electrode of the transistor are connected. The resistance value (parasitic resistance value) can be made uniform between the pixels A and C.
 図8は第1基板の全体構成を示す模式図であり、図9は第2基板の全体構成を示す模式図であり、図10は、液晶パネルの全体構成を示す模式図である。図8に示すように、第1基板の表示領域には、複数の走査信号線と、複数のデータ信号線と、複数のトランジスタと、複数の画素電極とが含まれ、第1基板の非表示領域には、2つの長辺(行方向に平行な辺)それぞれに沿って複数のソース接続パッドSPが並べられるとともに、2つの短辺(列方向に平行な辺)それぞれに沿って、複数のゲート接続パッドGPが並べられている。
なお、複数のソース接続パッドSPの半数はデータ信号線に接続され、残り半数は、基板間接続パッドbpに接続され、各ゲート接続パッドGPは走査信号線に接続されている。
また、図9に示すように、第2基板の表示領域には、複数のデータ信号線が含まれ、第2基板の非表示領域には、2つの長辺(行方向に平行な辺)それぞれに沿って、複数の基板間接続パッドBPが並べられている。なお、各基板間接続パッドBPはデータ信号線に接続されている。そして、図8の第1基板と図9の第2基板とをそれぞれのデータ信号線同士が重なるように張り合わせた後に液晶材を充填すれば図10に示す液晶パネルとなり、第2基板の各データ信号線は、基板間接続パッドBP(第2基板)および基板間接続パッドbp(第1基板)を介して、第1基板のソース接続パッドSPに接続される。
FIG. 8 is a schematic diagram showing the overall configuration of the first substrate, FIG. 9 is a schematic diagram showing the overall configuration of the second substrate, and FIG. 10 is a schematic diagram showing the overall configuration of the liquid crystal panel. As shown in FIG. 8, the display area of the first substrate includes a plurality of scanning signal lines, a plurality of data signal lines, a plurality of transistors, and a plurality of pixel electrodes. In the region, a plurality of source connection pads SP are arranged along two long sides (sides parallel to the row direction), and a plurality of source connection pads SP are arranged along two short sides (sides parallel to the column direction). Gate connection pads GP are arranged.
Note that half of the plurality of source connection pads SP are connected to the data signal line, the other half are connected to the inter-substrate connection pad bp, and each gate connection pad GP is connected to the scanning signal line.
As shown in FIG. 9, the display area of the second substrate includes a plurality of data signal lines, and the non-display area of the second substrate has two long sides (sides parallel to the row direction). A plurality of inter-substrate connection pads BP are arranged along the line. Each inter-substrate connection pad BP is connected to a data signal line. Then, after the first substrate in FIG. 8 and the second substrate in FIG. 9 are bonded together so that the data signal lines overlap each other, the liquid crystal material is filled to obtain the liquid crystal panel shown in FIG. The signal line is connected to the source connection pad SP of the first substrate via the inter-substrate connection pad BP (second substrate) and the inter-substrate connection pad bp (first substrate).
 図11は、図10の端部領域TAの構成を示す断面図である。図11に示されるように、第1基板には、ソース接続パッドSP、ゲートメタルGM(走査信号線と同層)、接続電極CE(データ信号線と同層)、基板間接続パッドbp(画素電極と同層)が設けられ、第2基板には、基板間接続パッドBP(対向電極と同層)が設けられ、第1および第2基板間に、導電性の接続ビーズBZが設けられる。ここでは、ソース接続パッドSPが、ゲートメタルGMを介して接続電極CEに接続され、接続電極CEが、第1基板の層間絶縁膜(25・26)を貫くコンタクトホールを介して基板間接続パッドbpに接続され、基板間接続パッドbpが、接続ビーズBZを介して第2基板の基板間接続パッドBPに接続され、基板間接続パッドBPが、メタルコート膜MCおよびオーバーコート膜OCを貫くコンタクトホールを介して、第2基板のデータ信号線dx1に接続されている。なお、ソース接続パッドSPはフレキシブルプリント基板FCを介してソースドライバSDXに接続される。また、ソース接続パッドSPおよび基板間接続パッドBP・bpはそれぞれ、例えば、ITOで形成される。なお、ゲートメタルGMは腐食しやすいので、ソース接続パッドSP(ITO)および絶縁膜(ゲート絶縁膜21や層間絶縁膜25)で被覆している。 FIG. 11 is a cross-sectional view showing the configuration of the end region TA of FIG. As shown in FIG. 11, the first substrate includes a source connection pad SP, a gate metal GM (same layer as the scanning signal line), a connection electrode CE (same layer as the data signal line), and an inter-substrate connection pad bp (pixel). In the second substrate, an inter-substrate connection pad BP (in the same layer as the counter electrode) is provided, and conductive connection beads BZ are provided between the first and second substrates. Here, the source connection pad SP is connected to the connection electrode CE through the gate metal GM, and the connection electrode CE is connected to the inter-substrate connection pad through the contact hole penetrating the interlayer insulating film (25, 26) of the first substrate. The inter-substrate connection pad bp is connected to the inter-substrate connection pad BP of the second substrate via the connection beads BZ, and the inter-substrate connection pad BP penetrates the metal coat film MC and the overcoat film OC. The hole is connected to the data signal line dx1 of the second substrate. The source connection pad SP is connected to the source driver SDX via the flexible printed circuit board FC. The source connection pad SP and the inter-substrate connection pad BP · bp are each formed of, for example, ITO. Since the gate metal GM is easily corroded, it is covered with the source connection pad SP (ITO) and an insulating film (the gate insulating film 21 and the interlayer insulating film 25).
 実施例1の液晶パネルでは、各画素(例えば、A・B・I・J)は1つの原色に対応しており、表示単位は、R(赤)・G(緑)・B(青)の3画素でもよいし(図12(a)参照)、R・G・B・Y(黄)・M(マゼンダ)・C(シアン)の6画素でもよいし(図12(b)参照)、R・G・B・G・M・Yの6画素でもよい(図12(c)参照)。 In the liquid crystal panel of Example 1, each pixel (for example, A, B, I, and J) corresponds to one primary color, and the display units are R (red), G (green), and B (blue). It may be 3 pixels (see FIG. 12A), 6 pixels of R, G, B, Y (yellow), M (magenta), and C (cyan) (see FIG. 12B), or R 6 pixels of G, B, G, M, and Y may be used (see FIG. 12C).
 本液晶パネルを備えた液晶表示装置は、例えば、図13のように構成され、パネル上半分のデータ信号線(DX1・DX2・DX1’・DX2’・dx1・dx2・dx1’・dx2’等)を駆動するソースドライバSDXと、パネル下半分のデータ信号線(DY1・DY2・DY1’・DY2’・dy1・dy2・dy1’・dy2’等)を駆動するソースドライバSDYと、各走査信号線の両側に接続する2つのゲートドライバGDL・GDRと、これらソースドライバSDX・SDYおよびゲートドライバGDL・GDRを制御する表示制御回路DCCとを備える。 The liquid crystal display device provided with the present liquid crystal panel is configured as shown in FIG. 13, for example, and the upper half of the data signal lines (DX1, DX2, DX1 ′, DX2 ′, dx1, dx2, dx1 ′, dx2 ′, etc.) A source driver SDX that drives the data signal lines (DY1, DY2, DY1 ′, DY2 ′, dy1, dy2, dy1 ′, dy2 ′, etc.) on the lower half of the panel, and each scanning signal line Two gate drivers GDL / GDR connected to both sides and a display control circuit DCC for controlling the source drivers SDX / SDY and the gate drivers GDL / GDR are provided.
 図14・15は、本液晶表示装置の走査信号線の駆動方法を示す模式図であり、図16は、本液晶表示装置のデータ信号線の駆動方法を示すタイミングチャートであり、図17~20は、本液晶表示装置のデータ書き込み方法を示す模式図である。 FIGS. 14 and 15 are schematic diagrams showing a driving method of scanning signal lines of the present liquid crystal display device, and FIG. 16 is a timing chart showing a driving method of data signal lines of the present liquid crystal display device. These are schematic diagrams showing a data writing method of the present liquid crystal display device.
 本液晶表示装置では、図14・17~18に示すように、ある垂直走査期間(V1)の第1水平走査期間(H1)に、8本の走査信号線(G1・G2・g3・g4・G541・G542・g543・g544)を同時選択し、次いで、第2水平走査期間(H2)に、8本の走査信号線(G5・G6・g7・g8・G545・G546・g547・g548)を同時選択し、第3水平走査期間(H3)に、8本の走査信号線(G9・G10・g11・g12・G549・G550・g551・g552)を同時選択する。 In the present liquid crystal display device, as shown in FIGS. 14 and 17 to 18, eight scanning signal lines (G 1, G 2, g 3, g 4, and so on) are generated in the first horizontal scanning period (H 1) of a certain vertical scanning period (V 1). G541, G542, g543, and g544) are simultaneously selected, and then eight scanning signal lines (G5, G6, g7, g8, G545, G546, g547, and g548) are simultaneously selected in the second horizontal scanning period (H2). In the third horizontal scanning period (H3), eight scanning signal lines (G9, G10, g11, g12, G549, G550, g551, and g552) are simultaneously selected.
 これにより、例えば第1水平走査期間(H1)には、データ信号線DX1から走査信号線G1に接続する画素に、フレームF2の1ライン目のデータ信号が書き込まれ、データ信号線DX1’から走査信号線G2に接続する画素に、フレームF2の2ライン目のデータ信号が書き込まれ、データ信号線dx1から走査信号線G3に接続する画素に、フレームF2の3ライン目のデータ信号が書き込まれ、データ信号線dx1’から走査信号線G4に接続する画素に、フレームF2の4ライン目のデータ信号が書き込まれ、データ信号線DY1から走査信号線G541に接続する画素に、フレームF1の541ライン目のデータ信号が書き込まれ、データ信号線DY1’から走査信号線G542に接続する画素に、フレームF1の542ライン目のデータ信号が書き込まれ、データ信号線dy1から走査信号線G543に接続する画素に、フレームF1の543ライン目のデータ信号が書き込まれ、データ信号線dy1’から走査信号線G544に接続する画素に、フレームF1の544ライン目のデータ信号が書き込まれる。 Thus, for example, in the first horizontal scanning period (H1), the data signal of the first line of the frame F2 is written to the pixels connected from the data signal line DX1 to the scanning signal line G1, and scanning is performed from the data signal line DX1 ′. The data signal of the second line of the frame F2 is written to the pixel connected to the signal line G2, and the data signal of the third line of the frame F2 is written to the pixel connected to the scanning signal line G3 from the data signal line dx1. The data signal of the fourth line of the frame F2 is written to the pixel connected to the scanning signal line G4 from the data signal line dx1 ′, and the 541st line of the frame F1 is written to the pixel connected to the scanning signal line G541 from the data signal line DY1. Is written to the pixels connected to the scanning signal line G542 from the data signal line DY1 ′. A pixel in which the data signal of the 543rd line of the frame F1 is written to the pixel connected to the scanning signal line G543 from the data signal line dy1 and the data signal line dy1 ′ is connected to the scanning signal line G544 is written. The data signal of the 544th line of the frame F1 is written into the frame F1.
 ここで、第1水平走査期間(H1)には、図16・17に示すように、データ信号線DX1・DY1からのデータ信号がプラス極性、データ信号線DX1’・DY1’からのデータ信号がマイナス極性、データ信号線dx1・dy1からのデータ信号がプラス極性、データ信号線dx1’・dy1’からのデータ信号がマイナス極性となっている。これにより、第1水平走査期間(H1)では、図17に示すように、画素Aはプラス極性、画素Bはマイナス極性、画素Cはプラス極性、画素Dはマイナス極性、画素Eはプラス極性、画素Fはマイナス極性、画素Gはプラス極性、画素Hはマイナス極性となる。 Here, in the first horizontal scanning period (H1), as shown in FIGS. 16 and 17, the data signals from the data signal lines DX1 and DY1 have a positive polarity, and the data signals from the data signal lines DX1 ′ and DY1 ′ have a positive polarity. The negative polarity, the data signal from the data signal lines dx1 and dy1 has a positive polarity, and the data signal from the data signal lines dx1 ′ and dy1 ′ has a negative polarity. Thus, in the first horizontal scanning period (H1), as shown in FIG. 17, the pixel A has a positive polarity, the pixel B has a negative polarity, the pixel C has a positive polarity, the pixel D has a negative polarity, the pixel E has a positive polarity, Pixel F has negative polarity, pixel G has positive polarity, and pixel H has negative polarity.
 なお、図16・17に示すように、第1水平走査期間(H1)には、データ信号線DX2・DY2からのデータ信号がマイナス極性、データ信号線DX2’・ DY2’からのデータ信号がプラス極性、データ信号線dx2・dy2からのデータ信号がマイナス極性、データ信号線dx2’・dy2’からのデータ信号がプラス極性となっている。これにより、第1水平走査期間(H1)では、図17に示すように、画素Aと行方向に隣接する画素Iはマイナス極性、画素Bと行方向に隣接する画素Jはプラス極性、画素Cと行方向に隣接する画素Kはマイナス極性、画素Dと行方向に隣接する画素Lはプラス極性、画素Eと行方向に隣接する画素Mはマイナス極性、画素Fと行方向に隣接する画素Nはプラス極性、画素Gと行方向に隣接する画素Oはマイナス極性、画素Hと行方向に隣接する画素Pはプラス極性となる。 As shown in FIGS. 16 and 17, in the first horizontal scanning period (H1), the data signals from the data signal lines DX2 and DY2 have a negative polarity, and the data signals from the data signal lines DX2 ′ and DY2 ′ have a positive polarity. The polarity, the data signal from the data signal lines dx2 · dy2 has a negative polarity, and the data signal from the data signal lines dx2 ′ · dy2 ′ has a positive polarity. Thus, in the first horizontal scanning period (H1), as shown in FIG. 17, the pixel I adjacent to the pixel A in the row direction has a negative polarity, the pixel J adjacent to the pixel B in the row direction has a positive polarity, and the pixel C The pixel K adjacent to the pixel in the row direction is negative polarity, the pixel L adjacent to the pixel D in the row direction is positive polarity, the pixel M adjacent to the pixel E in the row direction is negative polarity, and the pixel N is adjacent to the pixel F in the row direction. Is positive polarity, the pixel O adjacent to the pixel G in the row direction is negative polarity, and the pixel P adjacent to the pixel H in the row direction is positive polarity.
 また、第2水平走査期間(H2)でも、図16・18に示すように、データ信号線DX1・DY1からのデータ信号がプラス極性、データ信号線DX1’・DY1’からのデータ信号がマイナス極性、データ信号線dx1・dy1からのデータ信号がプラス極性、データ信号線dx1’・dy1’からのデータ信号がマイナス極性となっている。これにより、第2水平走査期間(H2)では、画素Dに続く4画素および画素Hに続く4画素に、図18に示すような極性のデータ信号が書き込まれる。 In the second horizontal scanning period (H2), as shown in FIGS. 16 and 18, the data signals from the data signal lines DX1 and DY1 are positive, and the data signals from the data signal lines DX1 ′ and DY1 ′ are negative. The data signals from the data signal lines dx1 and dy1 have a positive polarity, and the data signals from the data signal lines dx1 ′ and dy1 ′ have a negative polarity. As a result, in the second horizontal scanning period (H2), data signals having polarities as shown in FIG. 18 are written into the four pixels following the pixel D and the four pixels following the pixel H.
 一方、次の垂直走査期間(V2)の第1水平走査期間(H1)では、図16・19に示すように、データ信号線DX1・DY1からのデータ信号がマイナス極性、データ信号線DX1’・DY1’からのデータ信号がプラス極性、データ信号線dx1・dy1からのデータ信号がマイナス極性、データ信号線dx1’・dy1’からのデータ信号がプラス極性となる。これにより、垂直走査期間(V2)の第1水平走査期間(H1)では、図19に示すように、画素Aはマイナス極性、画素Bはプラス極性、画素Cはマイナス極性、画素Dはプラス極性、画素Eはマイナス極性、画素Fはプラス極性、画素Gはマイナス極性、画素Hはプラス極性となる(各データ信号線からのデータ信号極性は1垂直走査期間ごとに反転する)。 On the other hand, in the first horizontal scanning period (H1) of the next vertical scanning period (V2), as shown in FIGS. 16 and 19, the data signals from the data signal lines DX1 and DY1 have a negative polarity, and the data signal lines DX1 ′. The data signal from DY1 'has a positive polarity, the data signal from data signal lines dx1 and dy1 has a negative polarity, and the data signal from data signal lines dx1' and dy1 'has a positive polarity. Accordingly, in the first horizontal scanning period (H1) of the vertical scanning period (V2), as shown in FIG. 19, the pixel A has a negative polarity, the pixel B has a positive polarity, the pixel C has a negative polarity, and the pixel D has a positive polarity. The pixel E has a negative polarity, the pixel F has a positive polarity, the pixel G has a negative polarity, and the pixel H has a positive polarity (the data signal polarity from each data signal line is inverted every vertical scanning period).
 また、垂直走査期間(V2)の第2水平走査期間(H2)では、図16・20に示すように、データ信号線DX1・DY1からのデータ信号がマイナス極性、データ信号線DX1’・DY1’からのデータ信号がプラス極性、データ信号線dx1・dy1からのデータ信号がマイナス極性、データ信号線dx1’・dy1’からのデータ信号がプラス極性となっている。これにより、垂直走査期間(V2)の第2水平走査期間(H2)では、画素Dに続く4画素および画素Hに続く4画素に、図20に示すような極性のデータ信号が書き込まれる。 In the second horizontal scanning period (H2) of the vertical scanning period (V2), as shown in FIGS. 16 and 20, the data signals from the data signal lines DX1 and DY1 have a negative polarity, and the data signal lines DX1 ′ and DY1 ′. From the data signal lines dx1 and dy1 have a negative polarity, and the data signals from the data signal lines dx1 ′ and dy1 ′ have a positive polarity. As a result, in the second horizontal scanning period (H2) of the vertical scanning period (V2), data signals having polarities as shown in FIG. 20 are written in the four pixels following the pixel D and the four pixels following the pixel H.
 このように、本液晶パネルは8倍速駆動(第1および第2基板それぞれを4倍速駆動すること)が可能となるため、高速駆動が要求される液晶表示装置(例えば、高精細液晶表示装置や3次元表示対応の液晶表示装置)に好適である。なお、本実施例では、第1および第2基板それぞれを4倍速で駆動しているが、これに限定されない。第1および第2基板それぞれを、等速(1倍速)や2倍速で駆動することも可能である。 As described above, since the liquid crystal panel can be driven at 8 × speed (the first and second substrates can be driven at 4 × speed), a liquid crystal display device (for example, a high-definition liquid crystal display device or It is suitable for a three-dimensional display compatible liquid crystal display device. In this embodiment, each of the first and second substrates is driven at a quadruple speed, but the present invention is not limited to this. Each of the first and second substrates can be driven at a constant speed (1 × speed) or 2 × speed.
 また、各データ信号線のデータ信号の極性反転周期を1垂直走査期間としながら、図17~図20に示されるようなドット反転駆動を実現することができ、ソースドライバの消費電力の抑制と表示品位の向上を両立させることができる。 Further, dot inversion driving as shown in FIGS. 17 to 20 can be realized while the polarity inversion period of the data signal of each data signal line is one vertical scanning period, and the power consumption of the source driver is suppressed and displayed. Improvement in quality can be achieved at the same time.
 図2では、データ信号線とトランジスタのソース電極との間の抵抗値を、画素A・C間で揃えるため、データ信号線DX1を、一旦中継電極TM1を介してトランジスタT1のソース電極8に接続しているがこの構成に限定されない。データ信号線とトランジスタのソース電極との間の抵抗値を低く抑えることができるプロセスでは、中継電極TM1を除去し、図21およびそのA1-A1’断面図である図22に示すように、データ信号線DX1の延伸部を半導体層24に重ね、この延伸部をソース電極として機能させる構成でも構わない。 In FIG. 2, the data signal line DX1 is once connected to the source electrode 8 of the transistor T1 via the relay electrode TM1 in order to make the resistance value between the data signal line and the source electrode of the transistor uniform between the pixels A and C. However, it is not limited to this configuration. In the process in which the resistance value between the data signal line and the source electrode of the transistor can be kept low, the relay electrode TM1 is removed, and as shown in FIG. 21 and FIG. The extending portion of the signal line DX1 may be overlaid on the semiconductor layer 24, and the extending portion may function as a source electrode.
 なお、図2~図7を、図29~図34のように変形することも可能である。すなわち、第1基板SU1では、中継電極TM1’・TM2・TM3’・TM4を形成せず、導電性フォトスペーサFS3’・FS4を設けず、また、第2基板SU2でも、中継電極tm1・tm1’・tm2・tm2’・tm3’・tm4を形成せずに、対向電極COMを、中継電極tm1・tm1’・tm2・tm2’・tm3’・tm4の形成領域まで拡張し、対向電極COMの(寄生)抵抗値を下げることもできる。 Note that FIG. 2 to FIG. 7 can be modified as shown in FIG. 29 to FIG. That is, in the first substrate SU1, the relay electrodes TM1 ′, TM2, TM3 ′, TM4 are not formed, the conductive photospacers FS3 ′, FS4 are not provided, and the relay electrodes tm1, tm1 ′ are also formed in the second substrate SU2. Without forming the tm2, tm2 ′, tm3 ′, and tm4, the counter electrode COM is expanded to the formation region of the relay electrodes tm1, tm1 ′, tm2, tm2 ′, tm3 ′, and tm4. ) The resistance value can also be lowered.
 〔実施例2〕
 図1の液晶パネルを変形し、図23に示すように、液晶パネル上半分について、画素Aの画素電極を、トランジスタを介して、データ信号線DX1に接続し、画素Bの画素電極を、トランジスタを介して、データ信号線dx1に接続し、画素Cの画素電極を、トランジスタを介して、データ信号線dx1’に接続し、画素Dの画素電極を、トランジスタを介して、データ信号線DX1’に接続し、画素Iの画素電極を、トランジスタを介して、データ信号線dx2に接続し、画素Jの画素電極を、トランジスタを介して、データ信号線DX2に接続し、画素Kの画素電極を、トランジスタを介して、データ信号線DX2’に接続し、画素Lの画素電極を、トランジスタを介して、データ信号線dx2’に接続し、さらに、液晶パネル下半分も上半分と同一の接続関係とすることもできる。
[Example 2]
The liquid crystal panel of FIG. 1 is modified, and as shown in FIG. 23, for the upper half of the liquid crystal panel, the pixel electrode of the pixel A is connected to the data signal line DX1 through the transistor, and the pixel electrode of the pixel B is connected to the transistor The pixel electrode of the pixel C is connected to the data signal line dx1 ′ via the transistor, and the pixel electrode of the pixel D is connected to the data signal line DX1 ′ via the transistor. The pixel electrode of the pixel I is connected to the data signal line dx2 through the transistor, the pixel electrode of the pixel J is connected to the data signal line DX2 through the transistor, and the pixel electrode of the pixel K is connected to The transistor L is connected to the data signal line DX2 ′, the pixel electrode of the pixel L is connected to the data signal line dx2 ′ via the transistor, and the lower half of the liquid crystal panel is also connected to the upper half. It is also possible to have the same connection relationship.
 この場合は、図24に示すように、データ信号線DX1、DX1’、DX2、DX2’dX1、dX1’、dX2、dX2’それぞれのデータ信号の極性を、第1極性、第2極性、第1極性、第2極性、第2極性、第1極性、第2極性、第1極性とし(第1および第2極性はそれぞれ、プラスまたはマイナス極性)、さらに、液晶パネル下半分も上半分と同一駆動とし、各データ信号のデータ信号の極性反転周期を1垂直走査期間とすることで、図24のようなドット反転駆動を実現することができる。 In this case, as shown in FIG. 24, the data signal polarities of the data signal lines DX1, DX1 ′, DX2, DX2′dX1, dX1 ′, dX2, and dX2 ′ are set to the first polarity, the second polarity, and the first polarity, respectively. Polarity, 2nd polarity, 2nd polarity, 1st polarity, 2nd polarity, 1st polarity (1st and 2nd polarities are positive or negative polarity respectively), and the lower half of the liquid crystal panel is driven in the same way as the upper half By setting the polarity inversion period of the data signal of each data signal as one vertical scanning period, dot inversion driving as shown in FIG. 24 can be realized.
 〔実施例3〕
 図1の液晶パネルを変形し、図25に示すように、液晶パネル上半分について、画素Aの画素電極を、トランジスタを介して、データ信号線DX1に接続し、画素Bの画素電極を、トランジスタを介して、データ信号線dx1に接続し、画素Cの画素電極を、トランジスタを介して、データ信号線DX1’に接続し、画素Dの画素電極を、トランジスタを介して、データ信号線dx1’に接続し、画素Iの画素電極を、トランジスタを介して、データ信号線dx2に接続し、画素Jの画素電極を、トランジスタを介して、データ信号線DX2に接続し、画素Kの画素電極を、トランジスタを介して、データ信号線dx2’に接続し、画素Lの画素電極を、トランジスタを介して、データ信号線DX2’に接続し、さらに、液晶パネル下半分も上半分と同一の接続関係とすることもできる。
Example 3
The liquid crystal panel of FIG. 1 is modified, and as shown in FIG. 25, the pixel electrode of the pixel A is connected to the data signal line DX1 through the transistor and the pixel electrode of the pixel B is connected to the transistor in the upper half of the liquid crystal panel. Is connected to the data signal line dx1, the pixel electrode of the pixel C is connected to the data signal line DX1 ′ via the transistor, and the pixel electrode of the pixel D is connected to the data signal line dx1 ′ via the transistor. The pixel electrode of the pixel I is connected to the data signal line dx2 through the transistor, the pixel electrode of the pixel J is connected to the data signal line DX2 through the transistor, and the pixel electrode of the pixel K is connected to The transistor L is connected to the data signal line dx2 ′, the pixel electrode of the pixel L is connected to the data signal line DX2 ′ via the transistor, and the lower half of the liquid crystal panel is also connected to the upper half. It is also possible to have the same connection relationship.
 この場合は、図26に示すように、データ信号線DX1、DX1’、DX2、DX2’dX1、dX1’、dX2、dX2’それぞれのデータ信号の極性を、第1極性、第1極性、第1極性、第1極性、第2極性、第2極性、第2極性、第2極性とし(第1および第2極性はそれぞれ、プラスまたはマイナス極性)、さらに、液晶パネル下半分も上半分と同一駆動とし、各データ信号のデータ信号の極性反転周期を1垂直走査期間とすることで、図26のようなドット反転駆動を実現することができる。また、同一基板の各データ信号線のデータ信号が同極性になるため、データ信号線間の干渉(寄生容量等の影響)を抑えることができる。 In this case, as shown in FIG. 26, the data signal polarities of the data signal lines DX1, DX1 ′, DX2, DX2′dX1, dX1 ′, dX2, dX2 ′ are set to the first polarity, the first polarity, and the first polarity, respectively. Polarity, 1st polarity, 2nd polarity, 2nd polarity, 2nd polarity, 2nd polarity (1st and 2nd polarities are positive or negative polarity respectively), and the lower half of the liquid crystal panel is driven in the same way as the upper half By setting the polarity inversion period of the data signal of each data signal as one vertical scanning period, dot inversion driving as shown in FIG. 26 can be realized. In addition, since the data signals of the data signal lines on the same substrate have the same polarity, interference between the data signal lines (influence of parasitic capacitance or the like) can be suppressed.
 〔実施例4〕
 図1の液晶パネルを変形し、図27に示すように、液晶パネル上半分について、画素Aの画素電極を、トランジスタを介して、データ信号線DX1に接続し、画素Bの画素電極を、トランジスタを介して、データ信号線dx1に接続し、画素Cの画素電極を、トランジスタを介して、データ信号線DX1’に接続し、画素Dの画素電極を、トランジスタを介して、データ信号線dx1’に接続し、画素Iの画素電極を、トランジスタを介して、データ信号線DX2に接続し、画素Jの画素電極を、トランジスタを介して、データ信号線dx2に接続し、画素Kの画素電極を、トランジスタを介して、データ信号線DX2’に接続し、画素Lの画素電極を、トランジスタを介して、データ信号線dx2’に接続し、さらに、液晶パネル下半分も上半分と同一の接続関係とすることもできる。
Example 4
The liquid crystal panel of FIG. 1 is modified, and as shown in FIG. 27, the pixel electrode of the pixel A is connected to the data signal line DX1 through the transistor and the pixel electrode of the pixel B is connected to the transistor in the upper half of the liquid crystal panel. Is connected to the data signal line dx1, the pixel electrode of the pixel C is connected to the data signal line DX1 ′ via the transistor, and the pixel electrode of the pixel D is connected to the data signal line dx1 ′ via the transistor. The pixel electrode of the pixel I is connected to the data signal line DX2 through the transistor, the pixel electrode of the pixel J is connected to the data signal line dx2 through the transistor, and the pixel electrode of the pixel K is connected to The transistor L is connected to the data signal line DX2 ′, the pixel electrode of the pixel L is connected to the data signal line dx2 ′ via the transistor, and the lower half of the liquid crystal panel is also connected to the upper half. It is also possible to have the same connection relationship.
 この場合は、図28に示すように、データ信号線DX1、DX1’、DX2、DX2’dX1、dX1’、dX2、dX2’それぞれのデータ信号の極性を、第1極性、第1極性、第2極性、第2極性、第2極性、第2極性、第1極性、第1極性とし(第1および第2極性はそれぞれ、プラスまたはマイナス極性)、さらに、液晶パネル下半分も上半分と同一駆動とし、各データ信号のデータ信号の極性反転周期を1垂直走査期間とすることで、図28のようなドット反転駆動を実現することができる。 In this case, as shown in FIG. 28, the data signal polarities of the data signal lines DX1, DX1 ′, DX2, DX2′dX1, dX1 ′, dX2, dX2 ′ are set to the first polarity, the first polarity, the second polarity, respectively. Polarity, 2nd polarity, 2nd polarity, 2nd polarity, 1st polarity, 1st polarity (1st and 2nd polarities are positive or negative polarity respectively), and the lower half of the liquid crystal panel is driven in the same way as the upper half By setting the polarity inversion period of the data signal of each data signal as one vertical scanning period, dot inversion driving as shown in FIG. 28 can be realized.
 以上のように、本液晶パネルは、第1および第2基板と、第1および第2基板間に配された液晶層と、第1および第2画素と、上記液晶層に配された第1導電体と、第1基板に形成された第1および第2トランジスタと、第1画素に含まれる第1画素電極と、第2画素に含まれる第2画素電極と、第1および第2データ信号線とを備え、第1および第2画素電極並びに第1データ信号線が第1基板に形成され、第1トランジスタは第1データ信号線および第1画素電極と電気的に接続され、第2データ信号線は第2基板に形成され、第2データ信号線と第1導電体とが電気的に接続されるとともに、第2トランジスタは第1導電体および第2画素電極と電気的に接続されていることを特徴とする。 As described above, the present liquid crystal panel includes the first and second substrates, the liquid crystal layer disposed between the first and second substrates, the first and second pixels, and the first liquid crystal layer disposed on the liquid crystal layer. A conductor, first and second transistors formed on the first substrate, a first pixel electrode included in the first pixel, a second pixel electrode included in the second pixel, and first and second data signals First and second pixel electrodes and a first data signal line are formed on the first substrate, the first transistor is electrically connected to the first data signal line and the first pixel electrode, and the second data The signal line is formed on the second substrate, the second data signal line and the first conductor are electrically connected, and the second transistor is electrically connected to the first conductor and the second pixel electrode. It is characterized by being.
 上記構成によれば、例えば、第1および第2画素電極に同時にデータ信号を書き込むことが可能となり、さらなる高速駆動が実現される。 According to the above configuration, for example, it becomes possible to simultaneously write data signals to the first and second pixel electrodes, thereby realizing further high-speed driving.
 本液晶パネルは、第1および第2基板と、第1および第2基板間に配された液晶層と、第1および第2画素と、導電体と、第1基板に形成された第1および第2トランジスタと、第1画素に含まれる第1画素電極と、第2画素に含まれる第2画素電極と、第1および第2データ信号線とを備え、第1および第2画素電極並びに第1データ信号線が第1基板に形成され、第1トランジスタは第1データ信号線および第1画素電極と電気的に接続され、第2データ信号線は第2基板に形成され、第2データ信号線と導電体とが電気的に接続されるとともに、第2トランジスタは導電体および第2画素電極と電気的に接続されている構成とすることもできる。この液晶パネルを備えた液晶表示装置では、例えば図35に示すように、第1データ信号線DX1は、第1基板に接続された第1基板用データ信号線駆動回路SDX1で駆動され、第2データ信号線dx1は第2基板に接続された第2基板用データ信号線駆動回路SDX2で駆動される。なお、上記導電体は液晶層に設けても(例えば、導電性スペーサを用いても)よいし、両基板間のシール部分に設けてもよいし、液晶パネルの端面(側面)に設けてもよい。 The liquid crystal panel includes first and second substrates, a liquid crystal layer disposed between the first and second substrates, first and second pixels, a conductor, and first and second substrates formed on the first substrate. A second transistor; a first pixel electrode included in the first pixel; a second pixel electrode included in the second pixel; and first and second data signal lines. One data signal line is formed on the first substrate, the first transistor is electrically connected to the first data signal line and the first pixel electrode, the second data signal line is formed on the second substrate, and the second data signal The line and the conductor can be electrically connected, and the second transistor can be electrically connected to the conductor and the second pixel electrode. In the liquid crystal display device including the liquid crystal panel, for example, as shown in FIG. 35, the first data signal line DX1 is driven by the first substrate data signal line driving circuit SDX1 connected to the first substrate, and the second data signal line DX1 is driven by the second substrate data signal line driving circuit SDX1. The data signal line dx1 is driven by the second substrate data signal line driving circuit SDX2 connected to the second substrate. The conductor may be provided on the liquid crystal layer (for example, a conductive spacer may be used), may be provided on a seal portion between both substrates, or may be provided on an end surface (side surface) of the liquid crystal panel. Good.
 本液晶パネルでは、第2基板には第1画素電極と対向する対向電極が形成され、第1画素電極と同層に第1中継電極が形成されるとともに、対向電極と同層に第2中継電極が形成され、 第2データ信号線と第2中継電極とが電気的に接続され、第1および第2中継電極が第1導電体を介して電気的に接続され、第1中継電極と第2トランジスタの1つの導通電極とが電気的に接続されている構成とすることもできる。 In the present liquid crystal panel, a counter electrode facing the first pixel electrode is formed on the second substrate, a first relay electrode is formed in the same layer as the first pixel electrode, and a second relay is formed in the same layer as the counter electrode. An electrode is formed, the second data signal line and the second relay electrode are electrically connected, the first and second relay electrodes are electrically connected via the first conductor, and the first relay electrode and the second relay electrode A configuration in which one conductive electrode of two transistors is electrically connected may be employed.
 本液晶パネルでは、第1導電体は、液晶層の厚みを調整するスペーサである構成とすることもできる。 In the present liquid crystal panel, the first conductor may be a spacer that adjusts the thickness of the liquid crystal layer.
 本液晶パネルでは、第1および第2データ信号線が互いに重なるように配置されている構成とすることもできる。 In the present liquid crystal panel, the first and second data signal lines may be arranged so as to overlap each other.
 本液晶パネルでは、第1画素電極と同層に第3中継電極が形成され、第1データ信号線と第1トランジスタの1つの導通電極とが第3中継電極を介して電気的に接続されている構成とすることもできる。 In the present liquid crystal panel, a third relay electrode is formed in the same layer as the first pixel electrode, and the first data signal line and one conductive electrode of the first transistor are electrically connected via the third relay electrode. It can also be set as the structure which is.
 本液晶パネルでは、第3および第4画素と、上記液晶層に配された第2導電体と、第1基板に形成された第3および第4トランジスタと、第3画素に含まれる第3画素電極と、第4画素に含まれる第4画素電極と、第3および第4データ信号線を備え、第1基板には第3および第4画素電極と第3データ信号線とが形成され、第3トランジスタは第3データ信号線および第3画素電極と電気的に接続され、第2基板には第4データ信号線が形成され、第4データ信号線と第2導電体とが電気的に接続されるとともに、第4トランジスタは第2導電体および第4画素電極と電気的に接続されている構成とすることもできる。 In the present liquid crystal panel, the third and fourth pixels, the second conductor disposed in the liquid crystal layer, the third and fourth transistors formed on the first substrate, and the third pixel included in the third pixel. An electrode, a fourth pixel electrode included in the fourth pixel, and third and fourth data signal lines. The first substrate includes the third and fourth pixel electrodes and the third data signal line; The three transistors are electrically connected to the third data signal line and the third pixel electrode, the fourth data signal line is formed on the second substrate, and the fourth data signal line and the second conductor are electrically connected. In addition, the fourth transistor may be configured to be electrically connected to the second conductor and the fourth pixel electrode.
 本液晶パネルでは、第1基板に形成された第1~第4走査信号線を備え、第1~第4トランジスタはそれぞれ、第1~第4走査信号線と電気的に接続され、走査方向を列方向として、第1~第4画素が同一の画素列に含まれる構成とすることもできる。 The present liquid crystal panel includes first to fourth scanning signal lines formed on a first substrate. The first to fourth transistors are electrically connected to the first to fourth scanning signal lines, respectively, and the scanning direction is set. As the column direction, the first to fourth pixels may be included in the same pixel column.
 本液晶パネルでは、上記画素列で、上記第1~第4画素が、第1画素、第3画素、第2画素、および第4画素の順に連続して並んでいる構成とすることもできる。 In the present liquid crystal panel, the first to fourth pixels in the pixel row may be arranged successively in the order of the first pixel, the third pixel, the second pixel, and the fourth pixel.
 本液晶パネルでは、上記画素列で、上記第1~第4画素が、第1画素、第2画素、第3画素、および第4画素の順に連続して並んでいる構成とすることもできる。 In the present liquid crystal panel, the first to fourth pixels in the pixel row may be arranged in succession in the order of the first pixel, the second pixel, the third pixel, and the fourth pixel.
 本液晶パネルでは、上記画素列で、上記第1~第4画素が、第1画素、第2画素、第4画素、および第3画素の順に連続して並んでいる構成とすることもできる。 In the present liquid crystal panel, the first to fourth pixels in the pixel row may be arranged successively in the order of the first pixel, the second pixel, the fourth pixel, and the third pixel.
 本液晶パネルでは、第1および2基板それぞれの非表示領域に基板間接続パッドが設けられ、第2基板の基板間接続パッドと第2データ信号線とが電気的に接続されている構成とすることもできる。 In the present liquid crystal panel, an inter-substrate connection pad is provided in each non-display area of the first and second substrates, and the inter-substrate connection pad of the second substrate and the second data signal line are electrically connected. You can also
 本液晶パネルでは、第1基板の基板間接続パッドと第2基板の基板間接続パッドとが、導電性フォトスペーサあるいは導電性ビーズを介して接続されている構成とすることもできる。 In the present liquid crystal panel, the inter-substrate connection pad of the first substrate and the inter-substrate connection pad of the second substrate may be connected via a conductive photospacer or conductive beads.
 本液晶パネルでは、第1基板に複数のドライバ接続パッドが設けられ、第1データ信号線と1つのドライバ接続パッドとが電気的に接続され、第1基板の基板間接続パッドと別のドライバ接続パッドとが電気的に接続されている構成とすることもできる。 In the present liquid crystal panel, a plurality of driver connection pads are provided on the first substrate, the first data signal line and one driver connection pad are electrically connected, and the inter-substrate connection pad of the first substrate is connected to another driver connection. It can also be set as the structure electrically connected with the pad.
 本液晶表示装置は、上記液晶パネルを備える。 This liquid crystal display device includes the liquid crystal panel.
 本液晶表示装置では、第1および第2走査信号線が同時選択される構成とすることもできる。 In the present liquid crystal display device, the first and second scanning signal lines may be simultaneously selected.
 本発明は上記の実施の形態に限定されるものではなく、上記実施の形態を技術常識に基づいて適宜変更したものやそれらを組み合わせて得られるものも本発明の実施の形態に含まれる。 The present invention is not limited to the above-described embodiments, and those obtained by appropriately modifying the above-described embodiments based on common general technical knowledge and those obtained by combining them are also included in the embodiments of the present invention.
 本発明は、高速駆動が要求される液晶パネルに好適である。 The present invention is suitable for a liquid crystal panel that requires high-speed driving.
 A~P 画素
 P1~P4 画素電極
 T1~T4 トランジスタ
 DX1・dx1・DX1’・dx1’ データ信号線
 DY1・dy1・DY1’・dy1’ データ信号線
 FS3 導電性のフォトスペーサ(第1導電体)
 TM3 中継電極(第1中継電極)
 tm3 中継電極(第2中継電極)
 TM1 中継電極(第3中継電極)
 G1~G4 走査信号線
 COM 対向(共通)電極
 BP bp 基板間接続パッド
 SP ソース接続パッド(ドライバ接続パッド)
A to P pixels P1 to P4 pixel electrodes T1 to T4 transistors DX1, dx1, DX1 ', dx1' data signal lines DY1, dy1, DY1 ', dy1' data signal lines FS3 conductive photospacer (first conductor)
TM3 relay electrode (first relay electrode)
tm3 relay electrode (second relay electrode)
TM1 relay electrode (third relay electrode)
G1 to G4 Scan signal line COM Counter (common) electrode BP bp Inter-substrate connection pad SP Source connection pad (driver connection pad)

Claims (15)

  1.  第1および第2基板と、第1および第2基板間に配された液晶層と、第1および第2画素と、上記液晶層に配された第1導電体と、第1基板に形成された第1および第2トランジスタと、第1画素に含まれる第1画素電極と、第2画素に含まれる第2画素電極と、第1および第2データ信号線とを備え、
     第1および第2画素電極並びに第1データ信号線が第1基板に形成され、
     第1トランジスタは第1データ信号線および第1画素電極と電気的に接続され、
     第2データ信号線は第2基板に形成され、
     第2データ信号線と第1導電体とが電気的に接続されるとともに、第2トランジスタは第1導電体および第2画素電極と電気的に接続されている液晶パネル。
    Formed on the first substrate, the first and second substrates, the liquid crystal layer disposed between the first and second substrates, the first and second pixels, the first conductor disposed on the liquid crystal layer, and the first substrate. First and second transistors, a first pixel electrode included in the first pixel, a second pixel electrode included in the second pixel, and first and second data signal lines,
    First and second pixel electrodes and a first data signal line are formed on the first substrate,
    The first transistor is electrically connected to the first data signal line and the first pixel electrode,
    The second data signal line is formed on the second substrate,
    A liquid crystal panel in which the second data signal line and the first conductor are electrically connected, and the second transistor is electrically connected to the first conductor and the second pixel electrode.
  2.  第2基板には第1画素電極と対向する対向電極が形成され、
     第1画素電極と同層に第1中継電極が形成されるとともに、対向電極と同層に第2中継電極が形成され、
     第2データ信号線と第2中継電極とが電気的に接続され、第1および第2中継電極が第1導電体を介して電気的に接続され、第1中継電極と第2トランジスタの1つの導通電極とが電気的に接続されている請求項1記載の液晶パネル。
    A counter electrode opposite to the first pixel electrode is formed on the second substrate,
    A first relay electrode is formed in the same layer as the first pixel electrode, and a second relay electrode is formed in the same layer as the counter electrode.
    The second data signal line and the second relay electrode are electrically connected, the first and second relay electrodes are electrically connected via the first conductor, and the first relay electrode and one of the second transistors The liquid crystal panel according to claim 1, wherein the conductive electrode is electrically connected.
  3.  第1導電体は、液晶層の厚みを調整するスペーサである請求項1記載の液晶パネル。 The liquid crystal panel according to claim 1, wherein the first conductor is a spacer for adjusting a thickness of the liquid crystal layer.
  4.  第1および第2データ信号線が互いに重なるように配置されている請求項1記載の液晶パネル。 2. The liquid crystal panel according to claim 1, wherein the first and second data signal lines are arranged so as to overlap each other.
  5.  第1画素電極と同層に第3中継電極が形成され、
     第1データ信号線と第1トランジスタの1つの導通電極とが第3中継電極を介して電気的に接続されている請求項2記載の液晶パネル。
    A third relay electrode is formed in the same layer as the first pixel electrode;
    3. The liquid crystal panel according to claim 2, wherein the first data signal line and one conduction electrode of the first transistor are electrically connected via a third relay electrode.
  6.  第3および第4画素と、上記液晶層に配された第2導電体と、第1基板に形成された第3および第4トランジスタと、第3画素に含まれる第3画素電極と、第4画素に含まれる第4画素電極と、第3および第4データ信号線を備え、
     第1基板には第3および第4画素電極と第3データ信号線とが形成され、
     第3トランジスタは第3データ信号線および第3画素電極と電気的に接続され、
     第2基板には第4データ信号線が形成され、
     第4データ信号線と第2導電体とが電気的に接続されるとともに、第4トランジスタは第2導電体および第4画素電極と電気的に接続されている請求項1記載の液晶パネル。
    Third and fourth pixels; a second conductor disposed in the liquid crystal layer; third and fourth transistors formed on the first substrate; a third pixel electrode included in the third pixel; A fourth pixel electrode included in the pixel, and third and fourth data signal lines;
    Third and fourth pixel electrodes and a third data signal line are formed on the first substrate,
    The third transistor is electrically connected to the third data signal line and the third pixel electrode,
    A fourth data signal line is formed on the second substrate,
    The liquid crystal panel according to claim 1, wherein the fourth data signal line and the second conductor are electrically connected, and the fourth transistor is electrically connected to the second conductor and the fourth pixel electrode.
  7.  第1基板に形成された第1~第4走査信号線を備え、
     第1~第4トランジスタはそれぞれ、第1~第4走査信号線と電気的に接続され、
     走査方向を列方向として、第1~第4画素が同一の画素列に含まれる請求項6記載の液晶パネル。
    Comprising first to fourth scanning signal lines formed on a first substrate;
    The first to fourth transistors are electrically connected to the first to fourth scanning signal lines, respectively.
    The liquid crystal panel according to claim 6, wherein the first to fourth pixels are included in the same pixel column with the scanning direction as the column direction.
  8.  上記画素列では、上記第1~第4画素が、第1画素、第3画素、第2画素、および第4画素の順に連続して並んでいる請求項7記載の液晶パネル。 8. The liquid crystal panel according to claim 7, wherein in the pixel column, the first to fourth pixels are successively arranged in the order of the first pixel, the third pixel, the second pixel, and the fourth pixel.
  9.  上記画素列では、上記第1~第4画素が、第1画素、第2画素、第3画素、および第4画素の順に連続して並んでいる請求項7記載の液晶パネル。 8. The liquid crystal panel according to claim 7, wherein in the pixel column, the first to fourth pixels are successively arranged in the order of the first pixel, the second pixel, the third pixel, and the fourth pixel.
  10.  上記画素列では、上記第1~第4画素が、第1画素、第2画素、第4画素、および第3画素の順に連続して並んでいる請求項7記載の液晶パネル。 The liquid crystal panel according to claim 7, wherein in the pixel column, the first to fourth pixels are successively arranged in the order of the first pixel, the second pixel, the fourth pixel, and the third pixel.
  11.  第1および2基板それぞれの非表示領域に基板間接続パッドが設けられ、
     第2基板の基板間接続パッドと第2データ信号線とが電気的に接続されている請求項1記載の液晶パネル。
    Inter-substrate connection pads are provided in the non-display areas of the first and second substrates,
    The liquid crystal panel according to claim 1, wherein the inter-substrate connection pad of the second substrate is electrically connected to the second data signal line.
  12.  第1基板の基板間接続パッドと第2基板の基板間接続パッドとが、導電性フォトスペーサあるいは導電性ビーズを介して接続されている請求項11記載の液晶パネル。 12. The liquid crystal panel according to claim 11, wherein the inter-substrate connection pad of the first substrate and the inter-substrate connection pad of the second substrate are connected via a conductive photospacer or conductive beads.
  13.  第1基板に複数のドライバ接続パッドが設けられ、
     第1データ信号線と1つのドライバ接続パッドとが電気的に接続され、
     第1基板の基板間接続パッドと別のドライバ接続パッドとが電気的に接続されている請求項12記載の液晶パネル。
    A plurality of driver connection pads are provided on the first substrate,
    The first data signal line and one driver connection pad are electrically connected,
    The liquid crystal panel according to claim 12, wherein the inter-substrate connection pad of the first substrate is electrically connected to another driver connection pad.
  14.  請求項1~13のいずれか1項に記載の液晶パネルを備える液晶表示装置。 A liquid crystal display device comprising the liquid crystal panel according to any one of claims 1 to 13.
  15.  第1および第2走査信号線が同時選択される請求項14に記載の液晶表示装置。 15. The liquid crystal display device according to claim 14, wherein the first and second scanning signal lines are simultaneously selected.
PCT/JP2012/061454 2011-04-28 2012-04-27 Liquid crystal panel, liquid crystal display device, and television receiver WO2012147950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-102374 2011-04-28
JP2011102374 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012147950A1 true WO2012147950A1 (en) 2012-11-01

Family

ID=47072461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061454 WO2012147950A1 (en) 2011-04-28 2012-04-27 Liquid crystal panel, liquid crystal display device, and television receiver

Country Status (1)

Country Link
WO (1) WO2012147950A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150293A1 (en) * 2017-02-17 2018-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device
CN112103312A (en) * 2020-08-21 2020-12-18 信利(惠州)智能显示有限公司 AMOLED display module and display screen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215241A (en) * 1988-07-04 1990-01-18 Stanley Electric Co Ltd Liquid crystal display device
JPH02293722A (en) * 1989-05-08 1990-12-04 Fujitsu Ltd Active matrix type liquid crystal display device
JPH04120519A (en) * 1990-09-11 1992-04-21 Fujitsu Ltd Liquid crystal display panel
JPH0566410A (en) * 1991-09-06 1993-03-19 Toshiba Corp Liquid crystal display device
JPH10253987A (en) * 1997-03-11 1998-09-25 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2003249655A (en) * 2002-02-22 2003-09-05 Nec Corp Channel etch type thin film transistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215241A (en) * 1988-07-04 1990-01-18 Stanley Electric Co Ltd Liquid crystal display device
JPH02293722A (en) * 1989-05-08 1990-12-04 Fujitsu Ltd Active matrix type liquid crystal display device
JPH04120519A (en) * 1990-09-11 1992-04-21 Fujitsu Ltd Liquid crystal display panel
JPH0566410A (en) * 1991-09-06 1993-03-19 Toshiba Corp Liquid crystal display device
JPH10253987A (en) * 1997-03-11 1998-09-25 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP2003249655A (en) * 2002-02-22 2003-09-05 Nec Corp Channel etch type thin film transistor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150293A1 (en) * 2017-02-17 2018-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2018138993A (en) * 2017-02-17 2018-09-06 株式会社半導体エネルギー研究所 Display
US10573261B2 (en) 2017-02-17 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Display device
US10902804B2 (en) 2017-02-17 2021-01-26 Semiconductor Energy Laboratory Co., Ltd. Display device
US11176900B2 (en) 2017-02-17 2021-11-16 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI758417B (en) * 2017-02-17 2022-03-21 日商半導體能源硏究所股份有限公司 Display device
CN114594636A (en) * 2017-02-17 2022-06-07 株式会社半导体能源研究所 Display device
JP2022166018A (en) * 2017-02-17 2022-11-01 株式会社半導体エネルギー研究所 Display device
TWI805262B (en) * 2017-02-17 2023-06-11 日商半導體能源研究所股份有限公司 Display device
US11735131B2 (en) 2017-02-17 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Display device
CN112103312A (en) * 2020-08-21 2020-12-18 信利(惠州)智能显示有限公司 AMOLED display module and display screen

Similar Documents

Publication Publication Date Title
US8982144B2 (en) Multi-primary color display device
TWI494675B (en) Stereoscopic display panel, display panel and driving method thereof
JP3300638B2 (en) Liquid crystal display
JP4711404B2 (en) Display device
US20080198283A1 (en) Display apparatus
US7816683B2 (en) Array substrate and display apparatus having the same
JPH11337911A (en) Liquid crystal display element
US9019184B2 (en) Liquid crystal display device including specific subpixel arrangement
US20100073273A1 (en) Liquid crystal panel and liquid crystal display device having the same
JP2005346037A (en) Liquid crystal display device and its driving method
WO2007102382A1 (en) Active matrix substrate, display device, television receiver
JP2012256080A (en) Liquid crystal display device
KR101992103B1 (en) Liquid crystal display and driving method of the same
JP2005539270A (en) Liquid crystal display
JP6117197B2 (en) Liquid crystal display
JP2003162265A (en) Liquid crystal display device
JP2006259135A (en) Display apparatus and color filter substrate
WO2010137230A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, and television receiver
WO2016070540A1 (en) Array substrate, pixel drive method and display device
WO2017063239A1 (en) Array substrate, liquid crystal display panel, and drive method
WO2010109558A1 (en) Tft substrate and liquid crystal display apparatus using the same
JP5199638B2 (en) Liquid crystal display
WO2013146519A1 (en) Display element and display device
WO2012147950A1 (en) Liquid crystal panel, liquid crystal display device, and television receiver
TWI406038B (en) Pixels having polarity extension regions for multi-domain vertical alignment liquid crystal displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP