WO2012147677A1 - Heat storage member, and storage container and building using same - Google Patents

Heat storage member, and storage container and building using same Download PDF

Info

Publication number
WO2012147677A1
WO2012147677A1 PCT/JP2012/060830 JP2012060830W WO2012147677A1 WO 2012147677 A1 WO2012147677 A1 WO 2012147677A1 JP 2012060830 W JP2012060830 W JP 2012060830W WO 2012147677 A1 WO2012147677 A1 WO 2012147677A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage member
latent heat
fire
combustion
Prior art date
Application number
PCT/JP2012/060830
Other languages
French (fr)
Japanese (ja)
Inventor
梅中 靖之
近藤 克巳
青森 繁
夕香 内海
井出 哲也
別所 久徳
山下 隆
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012147677A1 publication Critical patent/WO2012147677A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • A62C2/06Physical fire-barriers
    • A62C2/065Physical fire-barriers having as the main closure device materials, whose characteristics undergo an irreversible change under high temperatures, e.g. intumescent
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/002Fire prevention, containment or extinguishing specially adapted for particular objects or places for warehouses, storage areas or other installations for storing goods
    • A62C3/004Fire prevention, containment or extinguishing specially adapted for particular objects or places for warehouses, storage areas or other installations for storing goods for freezing warehouses and storages
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/006Self-contained movable devices, e.g. domestic refrigerators with cold storage accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0008Particular heat storage apparatus the heat storage material being enclosed in plate-like or laminated elements, e.g. in plates having internal compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage member using a latent heat storage material, a storage container and a building using the same.
  • Patent Document 3 a refrigerator in which a heat storage member using a latent heat storage material that stores thermal energy using latent heat associated with a phase transition between a solid phase and a liquid phase is uniformly arranged so as to surround the storage room is known.
  • Patent Document 3 the material which made such a heat storage material flame-retardant is also known (patent documents 1 and 2).
  • Patent Documents 1 and 2 the material is made flame-retardant by a mixture obtained by adding a flame retardant to a heat storage material, but since it is a mixture, a sufficient heat storage effect cannot be obtained.
  • Patent Document 3 discloses that a flammable substance such as paraffin or 1-decanol is used in a refrigerating room of a cold storage type cold storage, but does not take sufficient measures to prevent the spread of fire. For this reason, for example, when an external flame ignites a refrigerator using a flammable latent heat storage material, measures to prevent the spread of fire to prevent the flame from burning and spreading to the refrigerator itself or other places are applied to the refrigerator. It is more desirable.
  • An object of the present invention is to provide a heat storage member that suppresses combustion of a latent heat storage material and extinguishes fire, and a storage container and a building using the heat storage member.
  • a heat storage member characterized by having a latent heat storage material that accumulates or releases thermal energy by phase transition and a combustion suppression fire extinguishing material that suppresses combustion of the latent heat storage material and extinguishes fire.
  • the heat storage member of the present invention wherein the combustion-suppressing fire extinguishing material generates a predetermined gas or water to suppress the combustion of the latent heat storage material and extinguish the fire.
  • combustion-suppressing fire extinguishing material includes at least one of a self-extinguishing substance, a suffocating gas generating material, and a combustion-suppressing substance.
  • the heat storage member according to the present invention wherein the self-extinguishing substance includes a hydrated compound.
  • the heat storage member of the present invention wherein the suffocating gas generating material contains an azo compound, an ammonium phosphate, or a carbonate compound.
  • the combustion-inhibiting substance includes any one of antimony bromide, antimony oxide, urea-based flame retardant, halogen-based flame retardant, and phosphorus-based flame retardant.
  • the latent heat storage material includes any one of paraffin, polyethylene glycol, polyvinyl alcohol, ethylenediamine, and naphthalene.
  • the heat storage member of the present invention wherein the latent heat storage material is laminated on the combustion-suppressing fire extinguishing material.
  • the heat storage member of the present invention wherein the combustion-suppressing fire extinguishing material is disposed so as to surround the latent heat storage material.
  • the heat storage member of the present invention is characterized in that the latent heat storage material is arranged in a matrix and embedded in the combustion-suppressing fire extinguishing material.
  • the heat storage member according to the present invention wherein the combustion-suppressing fire extinguishing material is included in a capsule for combustion-suppressing fire-extinguishing material.
  • the heat storage member of the present invention wherein the latent heat storage material is contained in a capsule for latent heat storage material inclusion.
  • the heat storage member of the present invention further comprising a flame retardant material layer in which the capsule for encapsulating a fire suppression fire extinguishing material and the capsule for encapsulating a latent heat storage material are embedded.
  • the dispersion concentration of the combustion suppressing fire extinguishing material inclusion capsule and / or the latent heat storage material inclusion capsule is biased in the flame retardant material layer.
  • the object is to provide a storage room for storing a stored product, a heat insulating part that surrounds the storage room and blocks heat transfer between the storage room and the outside, and the storage room and the heat insulating part. And a heat storage member that accumulates the heat of the storage chamber, wherein the heat storage member is a heat storage member of the present invention.
  • the object is provided around the living space, provided between the living space and the heat insulating portion, a heat insulating portion that blocks heat transfer between the living space and the outside world, and the living space
  • It is a building having a heat storage member for accumulating the heat, and the heat storage member is achieved by a building characterized in that it is the heat storage member of the present invention.
  • FIG. 1 shows a schematic cross-sectional configuration of a heat storage member 1 according to the present embodiment.
  • the heat storage member 1 according to the present embodiment includes a base material 3, a combustion suppression fire extinguishing material 7 that is formed on the base material 3 and suppresses the combustion of the latent heat storage material 5 and extinguishes the fire.
  • the heat storage member 1 has a structure in which a single-layer combustion-suppressing fire extinguishing material 7 and a single-layer latent heat storage material 5 are simply laminated.
  • the heat storage member 1 may have a structure in which the latent heat storage material 5 is formed on the base material 3 and the combustion suppressing fire extinguishing material 7 is formed on the latent heat storage material 5.
  • FIG. 1 illustrates a heat storage member 1 having a plate shape (for example, a rectangular flat plate shape) as a whole, the heat storage member 1 can be appropriately formed in different outer shapes depending on the place to which it is applied.
  • the heat storage member 1 is usually used in a predetermined operating temperature range and operating pressure range.
  • the heat storage member 1 stores the cold by being cooled in the refrigerator, and when the operation of the refrigerator is stopped during a power failure or the like, the heat storage member 1 releases the cold and keeps the refrigerator in the refrigerator for a predetermined time.
  • the operating temperature range of the heat storage member 1 includes the temperature range from the set temperature (internal temperature) of the refrigerator during operation to the ambient temperature (for example, room temperature) of the refrigerator installation location.
  • the operating pressure of the heat storage member 1 is, for example, atmospheric pressure.
  • the latent heat storage material 5 provided in the heat storage member 1 has a transition temperature (melting point) at which the phase transition between the solid phase and the liquid phase (first type phase transition) is reversibly within the operating temperature range of the heat storage member 1. is doing.
  • the latent heat storage material 5 becomes a liquid phase at a temperature higher than the transition temperature, and becomes a solid phase at a temperature lower than the transition temperature.
  • the latent heat storage material 5 in the present embodiment contains paraffin.
  • paraffin a single substance or a mixture of normal (linear structure) paraffin (general formula is C n H 2n + 2 ) is used.
  • the melting point of paraffin varies depending on the number of carbons n.
  • n-tetradecane molecular formula: C 14 H 30
  • the melting point (5.9 ° C.) of n-tetradecane is included in the operating temperature range of the heat storage member 1 (for example, 1 ° C. to 8 ° C. when considering use in a refrigerator).
  • the boiling point of n-tetradecane is about 250 ° C.
  • Paraffin is a semi-transparent or white soft solid (wax-like) at room temperature and does not dissolve in water, and becomes a chemically stable substance when the carbon number exceeds a predetermined number.
  • the latent heat storage material 5 contains a gelling agent that gels (solidifies) paraffin.
  • a gel (chemical gel) refers to a gel that is formed by forming a three-dimensional network structure by cross-linking molecules, and absorbing the solvent therein to swell. A gel is chemically stable without melting unless it breaks the structure. A gelling agent produces a gelling effect only by containing it in paraffin by several weight%.
  • the gelling agent used in this embodiment includes a polymer material.
  • polyethylene is used as the polymer material. That is, the latent heat storage material 5 in the present embodiment is polyethylene-containing paraffin gelled with polyethylene.
  • the viscosity of the latent heat storage material 5 can be changed by adjusting the mixing ratio of polyethylene.
  • the melting point of polyethylene used in this example is 130 ° C.
  • Polyethylene-containing paraffin does not have fluidity at least within the operating temperature range of the latent heat storage material 5.
  • the gel-like latent heat storage material 5 can maintain a solid state as a whole before and after the phase transition. Thereby, the latent heat storage material 5 can continue being arrange
  • a latent heat storage material stores, as heat energy, latent heat exchanged with the outside during a phase transition of a substance.
  • the heat of fusion at the melting point of the latent heat storage material is used.
  • the latent heat storage may be superior to the sensible heat storage using the specific heat of the substance.
  • the combustion-suppressing fire extinguishing material 7 contains at least one of a self-extinguishing substance, a suffocating gas generating material, and a combustion-suppressing substance.
  • the combustion-suppressing fire extinguishing material 7 generates a predetermined gas or water and suppresses the combustion of the latent heat storage material 5 to extinguish the fire.
  • the combustion suppression fire extinguishing material 7 prevents the latent heat storage material 5 itself from spreading, and the latent heat storage material 5 from spreading to the base material 3.
  • the combustion-suppressing fire extinguishing material 7 contains, for example, a hydrated metal compound as a self-extinguishing material.
  • a hydrated metal compound for example, magnesium hydroxide or aluminum hydroxide can be used as the hydrated metal compound.
  • magnesium hydroxide and aluminum hydroxide undergo dehydration endothermic reactions shown in Formula (1) and Formula (2), respectively.
  • FIG. 2 is a diagram for explaining self-extinguishing in the heat storage member 1 of the present embodiment.
  • the base material 3 starts to burn.
  • the temperature of the heat storage member 1 begins to rise due to the flame 2 igniting the base material 3. Due to this temperature rise, thermal energy is given to the combustion-suppressing fire extinguishing material 7, and the combustion-suppressing fire extinguishing material 7 generates water by dehydration endothermic reaction as shown in the equations (1) and (2).
  • FIG. 2 is a diagram for explaining self-extinguishing in the heat storage member 1 of the present embodiment.
  • the water generated from the combustion-suppressing fire extinguishing material 7 takes heat from the base material 3 and lowers the temperature of the base material 3 below the ignition point (ignition temperature). As a result, the flame 2 of the base material 3 is calmed and then completely extinguished. As shown in FIG. 2C, the heat storage member 1 suppresses the fire force before the flame 2 burns and spreads on the substrate 3 itself or spreads on the latent heat storage material 5 although the combustion mark 4 remains on the substrate 3. Can self-extinguish.
  • the combustion-suppressing fire extinguishing material 7 can delay, suppress, extinguish and prevent combustion of the base material 3 and the latent heat storage material 5 to prevent the latent heat storage material 5 from burning and spreading. Yes.
  • the combustion-suppressing fire extinguishing material 7 is not limited to a hydrated metal compound, and other materials can be applied.
  • a suffocating gas generating material can be used as the combustion suppressing fire extinguishing material 7, for example.
  • suffocating gas generating materials include azo compounds, ammonium phosphates, and carbonate compounds.
  • the combustion-suppressing fire extinguishing material 7 formed using, for example, an azo derivative generates nitrogen gas when the base material 3 burns and reaches 150 ° C. as shown in FIG. Nitrogen gas can extinguish the flame 2 by shutting off the supply of oxygen to the combustion part of the substrate 3.
  • ammonium phosphate can generate an ammonium gas when heated to cut off the supply of oxygen to the combustion part of the base material 3 and extinguish the flame 2.
  • the carbonate compound can generate carbon dioxide during heating, shut off the supply of oxygen to the combustion part of the base material 3 and extinguish the flame 2.
  • combustion-suppressing fire extinguishing material 7 examples include, for example, combustion-suppressing substances.
  • the combustion-suppressing substance applicable to the combustion-suppressing fire extinguishing material 7 include antimony bromide, antimony oxide, urea-based flame retardant, halogen-based flame retardant, and phosphorus-based flame retardant.
  • the combustion-suppressing fire extinguishing material 7 including any one of these materials can delay, extinguish, and prevent the combustion of the latent heat storage material 5 to prevent the latent heat storage material 5 from burning or spreading.
  • FIG. 3 is a perspective view illustrating a schematic configuration of the storage container 100 according to the present embodiment.
  • the storage container 100 with the door portion 102 opened is shown, but the door portion 102 in the closed state is shown together with a two-dot chain line for easy understanding.
  • 4 shows a state in which a cross section of the storage container 100 taken along the line AA ′ in FIG. 3 in the illustrated vertical direction (the direction of the arrow along the line AA ′) is observed from the right side of the container body 104. Is shown.
  • the storage container 100 is used for storing stored items at a temperature different from the ambient temperature (room temperature) during steady operation, and examples thereof include a refrigerator, a freezer, and a warm storage. In the present embodiment and second to eighth embodiments described later, the storage container is described as being a direct-cooling refrigerator.
  • the storage container 100 is provided rotatably on the container main body 104 via a rectangular parallelepiped container main body 104 and a hinge portion (not shown) as indicated by double-ended arrows in the figure. And a thin plate-shaped door 102.
  • the container main body 104 has a rectangular opening 103, a box-shaped wall 109 opened by the opening 103, and a storage chamber 105 for storing stored items.
  • the storage chamber 105 is connected to the outside through the opening 103 when the door 102 is opened.
  • the storage chamber 105 is a space provided inside the wall portion 109.
  • the door part 102 has a frame-shaped packing 107 provided on the outer periphery of the door part 102. As shown in FIG.
  • the packing 107 is arranged outside the outer periphery of the opening 103 when the door 102 is closed.
  • the packing 107 is arranged to face the wall portion 109 when the door portion 102 is closed.
  • the storage chamber 105 becomes a sealed space surrounded by the door portion 102, the packing 107, and the wall portion 109. Thereby, the storage container 100 can maintain the inside of the storage chamber 105 at a preset temperature.
  • the wall portion 109 includes a heat insulating portion 111 provided around the outer periphery, and a heat storage member 101 that is provided between the heat insulating portion 111 and the storage chamber 105 and accumulates heat of the storage chamber 105.
  • the heat storage member 101 has substantially the same configuration as the heat storage member 1 according to the present embodiment.
  • the heat storage member 101 includes a combustion-suppressing fire extinguishing material 7 provided on the heat insulating portion 111 and a latent heat storage material 5 provided on the combustion-suppressing fire extinguishing material 7.
  • the respective formation materials of the combustion suppression fire extinguishing material 7 and the latent heat storage material 5 used for the wall 109 are the same as the formation materials of the combustion suppression fire extinguishing material 7 and the latent heat storage material 5 of the heat storage member 1. Yes.
  • the wall 109 has a housing (not shown) made of a resin material such as ABS resin.
  • the housing has a cavity.
  • the heat insulating part 111 and the heat storage member 101 are accommodated in the cavity.
  • the door portion 102 has substantially the same configuration as the wall portion 109.
  • the door part 102 is provided between the heat insulating part 111 provided on the outer periphery and the heat insulating part 111 and the storage room 105 when the door part 102 is closed, and the heat storage member 101 that accumulates the heat of the storage room 105. have.
  • the heat storage member 101 has substantially the same configuration as the heat storage member 1.
  • the heat storage member 101 includes a combustion-suppressing fire extinguishing material 7 provided on the heat insulating portion 111 and a latent heat storage material 5 provided on the combustion-suppressing fire extinguishing material 7.
  • the door portion 102 has a housing (not shown) that uses a resin material such as ABS resin as a forming material, like the wall portion 109.
  • the housing has a cavity.
  • the heat insulating part 111 and the heat storage member 101 are accommodated in the cavity.
  • the heat insulating portion 111 is provided to insulate the storage chamber 105 and the heat storage member 101 that are cooled during steady operation so that heat from the outside world is not transmitted through the housing.
  • the heat insulating portion 111 is formed using a generally known material such as an inorganic fiber heat insulating material such as glass wool, a foamed resin heat insulating material such as polyurethane foam, or a natural fiber heat insulating material such as cellulose fiber. Can do.
  • the storage container 100 is provided at the bottom of the container body 104, and is provided with a compressor 115 that compresses the refrigerant and a part of the storage chamber 105 that is exposed in the storage chamber 105.
  • the storage container 100 is surrounded by heat of vaporization when the compressed refrigerant evaporates. It has a cooler 113 for cooling, and a pipe 117 for connecting the compressor 115 and the cooler 113.
  • the compressor 115, the cooler 113, and the pipe 117 constitute a gas compression type cooling device.
  • the cooling device may include a normally known configuration such as a condenser for radiating heat from the compressed refrigerant and a dryer for removing moisture in the refrigerant.
  • the latent heat storage material 5 is formed using a material that causes a phase transition between the liquid phase and the solid phase at a temperature between the set temperature of the storage chamber 105 and the ambient temperature.
  • the “set temperature of the storage chamber 105” is the set temperature in the storage chamber 105 in the steady operation of the storage container 100.
  • the “atmosphere temperature” is a temperature assumed as an outside air temperature in an environment where the storage container 100 is used, for example. For example, if the storage container 100 is a refrigerator having a set temperature of 3 ° C. and the assumed outside air temperature is 25 ° C., the latent heat storage material 5 has a solid-liquid phase transition temperature higher than 3 ° C. and lower than 25 ° C. (for example, N-tetradecane) as described above.
  • the operation of the storage container 100 will be described.
  • the power supply (not shown) of the storage container 100 is on, the refrigerant compressed by the compressor 115 reaches the cooler 113 through the pipe 117.
  • the cooler 113 cools the storage chamber 105 by heat of vaporization when the compressed refrigerant evaporates.
  • heat exchange is performed between the surface of the cooler 113 exposed in the storage chamber 105 and the air in the storage chamber 105.
  • a temperature sensor (not shown) is installed at a predetermined position in the storage chamber 105.
  • the driving of the cooling device is controlled by a temperature control device (not shown) provided in the storage container 100 based on the temperature in the storage chamber 105 measured by the temperature sensor, and heat transfer for controlling the temperature in the storage chamber 105 is performed. Done.
  • a part of the latent heat storage material 5 provided on the wall 109 is provided in direct contact with a part of the surface of the cooler 113. For this reason, the cooler 113 can directly cool the latent heat storage material 5, and can maintain the latent heat storage material 5 in a solid phase state having a phase transition temperature or lower in a relatively short time.
  • the latent heat storage material 5 disposed on the wall portion 109 and the door portion 102 becomes substantially the same temperature as the temperature in the storage chamber 105 through a housing (not shown), and is gradually maintained in a solid state below the phase transition temperature. .
  • the latent heat storage material 5 that maintains the solid state exhibits a function of flattening the temporal change distribution of the temperature in the storage chamber 105.
  • the latent heat storage material 5 can be directly cooled by the cooler 113, and the latent heat storage material 5 is brought into a solid phase state below the phase transition temperature in a relatively short time. Can be maintained.
  • Storage container 100 starts cooling by heat storage member 101 when the cooling capacity of the cooling device is lost due to a power failure or the like.
  • the air in the storage chamber 105 is maintained in a predetermined temperature range for a certain period by the latent heat storage material 5 provided so as to be stretched around the door portion 102 and the wall portion 109. More specifically, the temperature in the storage chamber 105 is maintained at about 5 ° C. until the latent heat storage material 5 undergoes a phase transition from the solid phase to the liquid phase.
  • the storage container 100 can keep the interior of the storage chamber 105 at a predetermined set temperature during steady operation.
  • the storage container 100 can keep the temperature in the storage chamber 105 at the set temperature for a certain time by the heat storage member 101 even when the power supply is stopped due to a power failure and the operation is stopped. .
  • the cause of a fire accident caused by a refrigerator is an electrical malfunction inside the compressor due to aging, continuous current exceeding the allowable current in areas with unstable power conditions, sticking to current plugs and outlets Tracking with dust has been reported.
  • a fire accident may occur in the refrigerator due to the flame generated outside burning into the refrigerator.
  • the heat storage member 101 has the combustion suppressing fire extinguishing material 7. For this reason, in the storage container 100 according to the present embodiment, a fire accident occurs due to these causes, and for example, the heat insulating portion 111 of the wall portion 109 starts to burn.
  • the temperature of the wall 109 starts to rise due to the flame igniting the heat insulating part 111. Due to this temperature rise, thermal energy is given to the combustion-suppressing fire extinguishing material 7, and the combustion-suppressing fire extinguishing material 7 generates water by dehydration endothermic reaction as shown in the equations (1) and (2).
  • the water generated from the combustion-suppressing fire extinguishing material 7 removes heat from the heat insulating part 111 and lowers the temperature of the heat insulating part 111 below the ignition point (ignition temperature). Thereby, the flame of the heat insulation part 111 calms down, and is extinguished completely after that.
  • the storage container 100 can self-extinguish while suppressing the fire before the flame burns and spreads on the heat insulating part 111 itself or spreads on the latent heat storage material 5, although the combustion mark remains in a part of the heat insulating part 111.
  • the combustion-suppressing fire extinguishing material 7 can delay, suppress, extinguish and prevent combustion of the heat insulating portion 111 and the latent heat storage material 5, thereby preventing the latent heat storage material 5 from burning and spreading.
  • the storage container 100 can extinguish fire early by preventing, for example, the spread of flame that has burned into the heat insulating portion 111 by the self-extinguishing function of the combustion-suppressing fire extinguishing material 7.
  • the storage container 100 according to the present embodiment can prevent the fire from spreading even if a fire occurs.
  • FIG. 5 shows a schematic cross-sectional configuration of the storage container 110 according to this modification.
  • the storage container 110 according to this modification has the same configuration as the storage container 100 according to the present embodiment except that the combustion suppressing fire extinguishing material 7 is provided around the compressor 115.
  • the storage container 110 has the combustion-suppressing fire extinguishing material 7 around the compressor 115 that has a relatively high probability of becoming an ignition source. As a result, the storage container 110 can be extinguished before the flame ignited from the compressor 115 due to aging, for example, does not spread to other locations.
  • the combustion-suppressing fire extinguishing material 7 formed using a hydrated metal compound that undergoes a dehydration endothermic reaction when heated generates water due to a temperature rise due to the flame. The generated water falls to the compressor 115 by gravity and extinguishes the flame.
  • the storage container 110 can extinguish the flame efficiently, and can prevent the fire from spreading to other places.
  • the heat storage member 11 according to the present embodiment is characterized in that a plurality of combustion-suppressing fire extinguishing materials 7 and a plurality of latent heat storage materials 5 are laminated.
  • FIG. 6 shows a schematic cross-sectional configuration of the heat storage member 11 according to the present embodiment. As shown in FIG. 6, the heat storage member 11 according to this embodiment includes a base material 3, two layers of combustion-suppressing fire extinguishing material 7 and latent heat heat storage material 5 that are formed on the base material 3 and are alternately stacked. have.
  • the heat storage member 11 can be appropriately formed in different outer shapes depending on the place to be applied.
  • the combustion suppression fire extinguishing material 7 is in contact with the base material 3, but the latent heat storage material 5 is in contact with the base material 3 and the latent heat storage material 5 and the combustion suppression fire extinguishing material 7 are alternately stacked. May be.
  • the number of stacks of the combustion suppressing fire extinguishing material 7 and the latent heat storage material 5 is not limited to two layers, but may be three or more.
  • the formation material similar to the combustion suppression fire extinguishing material 7 and the latent heat storage material 5 of the heat storage member 1 by the said 1st Embodiment is used for each formation material of the combustion suppression fire extinguishing material 7 and the latent heat storage material 5, respectively. It has been. Since the combustion suppression fire extinguishing material 7 and the latent heat storage material 5 in the present embodiment are formed of the same material as the combustion suppression fire extinguishing material 7 and the latent heat storage material 5 of the heat storage member 1, respectively, the heat storage member 11 is the heat storage member 1. The same effect can be obtained.
  • FIG. 7 shows a schematic cross-sectional configuration of the storage container 130 according to the present embodiment. Since the external configuration and operation of the storage container 130 are the same as those of the storage container 100 according to the first embodiment, description thereof is omitted.
  • the wall portion 109 of the storage container 130 according to the present embodiment is provided between the heat insulating portion 111 provided on the outer periphery, and between the heat insulating portion 111 and the storage chamber 105.
  • a heat storage member 131 for storing heat is provided.
  • the heat storage member 131 has substantially the same configuration as the heat storage member 11 according to the present embodiment.
  • the heat storage member 131 is provided on the heat insulating portion 111 and includes two layers of the combustion suppressing fire extinguishing material 7 and two layers of the latent heat storage material 5 that are alternately stacked.
  • the heat storage member 131 is provided such that the combustion-suppressing fire extinguishing material 7 is in contact with the heat insulating portion 111.
  • the storage container 130 has a configuration in which the combustion suppressing fire extinguishing material 7 and the latent heat storage material 5 are alternately stacked.
  • the storage container 130 can alternately stack the combustion-suppressing fire extinguishing material 7 and the latent heat storage material 5 to exhibit a heat storage function and prevent damage during a fire.
  • the storage container 130 increases the number of layers of the latent heat storage material 5 or increases the thickness when the heat storage performance is increased, and increases the number of layers of the combustion suppression fire extinguishing material 7 when the fire suppression performance is increased. Of course, it is possible to increase the thickness or increase the thickness.
  • FIG. 8 shows a schematic cross-sectional configuration of the heat storage member 21 according to the present embodiment.
  • the heat storage member 21 has the base material 3 formed in a hollow plate shape (for example, rectangular flat plate shape).
  • a latent heat storage material 5 and a combustion-suppressing fire extinguishing material 7 disposed so as to surround the latent heat storage material 5 are formed in the hollow portion 3 a of the base material 3.
  • the outer periphery of the combustion-suppressing fire extinguishing material 7 is in contact with the base material 3.
  • the heat storage member 21 has a configuration in which the combustion suppression fire extinguishing material 7 is disposed surrounding the latent heat storage material 5, but the latent heat storage material 5 has a configuration disposed around the combustion suppression fire extinguishing material 7. May be.
  • the heat storage member 21 can be appropriately formed in different outer shapes depending on the place to be applied.
  • the formation materials of the latent heat storage material 5 and the combustion suppression fire extinguishing material 7 the same formation materials as the latent heat storage material 5 and the combustion suppression fire extinguishing material 7 of the heat storage member 1 according to the first embodiment are used, respectively. It has been.
  • the latent heat storage material 5 and the combustion-suppressing fire extinguishing material 7 of the heat storage member 21 are formed of the same material as the latent heat storage material 5 and the combustion-suppressing fire extinguishing material 7 of the heat storage member 1, respectively. Similar effects can be obtained.
  • the storage container according to the present embodiment has the same external configuration as the storage container 100 according to the first embodiment, and the latent heat storage material and the combustion of the heat storage member provided on the door portion 102 and the wall portion 109.
  • the suppression fire extinguishing material has the same configuration as the latent heat storage material 5 and the combustion suppression fire extinguishing material 7 of the heat storage member 21. That is, the storage container according to the present embodiment has a heat insulating part having the same shape as the storage container 100 according to the first embodiment in the cavity of the casing of the door part 102 and the wall part 109, and combustion that contacts the heat insulating part. It has a suppression fire extinguishing material and a latent heat storage material surrounded by the combustion suppression fire extinguishing material. Since the storage container according to the present embodiment has the combustion-suppressing fire extinguishing material, the same effect as the storage container 100 can be obtained.
  • FIG. 9 shows a schematic configuration of the heat storage member 31 according to the present embodiment.
  • FIG. 9A shows a schematic configuration of the heat storage member 31 when the formation surface of the combustion suppressing fire extinguishing material 7 is viewed in the normal direction.
  • FIG. 9B shows a schematic configuration of the cut surface of the heat storage member 31 cut along the line BB ′ in FIG. 9A.
  • the heat storage member 31 includes a base material 3, a combustion-suppressing fire extinguishing material 7 formed on almost the entire surface of the base material 3, and combustion. It has a plurality of latent heat storage materials 5 that are embedded in the suppression fire extinguishing material 7 and arranged in a matrix.
  • FIG. 9 illustrates the heat storage member 11 having a plate shape (for example, a rectangular flat plate shape) as a whole, the heat storage member 31 can be formed in different outer shapes as appropriate depending on the place to which it is applied.
  • the latent heat storage material 5 has, for example, a plate shape (for example, a rectangular flat plate shape).
  • the latent heat storage material 5 is exposed on the upper surface of the combustion-suppressing fire extinguishing material 7.
  • the upper surface of the latent heat storage material 5 and the upper surface of the combustion-suppressing fire extinguishing material 7 are formed substantially flush with each other.
  • the upper surface of the latent heat storage material 5 and the upper surface of the combustion suppression fire extinguishing material 7 are formed substantially flat.
  • the formation materials of the latent heat storage material 5 and the combustion suppression fire extinguishing material 7 the same formation materials as the latent heat storage material 5 and the combustion suppression fire extinguishing material 7 of the heat storage member 1 according to the first embodiment are used, respectively.
  • the heat storage member 31 has a configuration in which the latent heat storage material 5 is formed on substantially the entire surface of the base material 3 and a plurality of combustion suppression fire extinguishing materials 7 are embedded in the latent heat storage material 5 and arranged in a matrix. Also good.
  • the combustion suppression fire extinguishing material 7 surrounds the latent heat storage material 5, the fire is suppressed before the flame ignited on one latent heat storage material 5 spreads to the other latent heat storage material 5. Can be extinguished.
  • the combustion-suppressing fire extinguishing material 7 is formed of a combustion-suppressing substance, the combustion-suppressing substance is relatively difficult to burn. For this reason, the combustion-suppressing fire extinguishing material 7 does not burn with the flame ignited on one latent heat storage material 5, and settles before the flame spreads to the other latent heat storage material 5.
  • FIG. 10A shows a schematic cross-sectional configuration of the storage container 140 according to the present embodiment.
  • FIG. 10B shows a schematic configuration of the heat storage member 141 when the region ⁇ shown in FIG. 10A is viewed from the storage chamber 105 side. Since the external configuration and operation of the storage container 140 are the same as those of the storage container 100 according to the first embodiment, description thereof is omitted.
  • the wall 109 of the storage container 140 is provided between the heat insulating part 111 provided on the outer periphery, the heat insulating part 111 and the storage chamber 105, A heat storage member 141 that stores heat of the storage chamber 105.
  • the heat storage member 141 has substantially the same configuration as the heat storage member 11 according to the present embodiment.
  • the heat storage member 141 includes a combustion suppression fire extinguishing material 7 provided on the heat insulating portion 111 and a latent heat storage material 5 embedded in the combustion suppression fire extinguishing material 7 and arranged in a matrix. Further, the heat storage member 141 provided in the door portion 102 has the same configuration as the heat storage member 141 provided in the wall portion 109.
  • the storage container 140 is arranged in a matrix with the latent heat storage material 5 embedded in the combustion-suppressing fire extinguishing material 7.
  • the combustion-suppressing fire extinguishing material 7 is formed so as to surround the periphery excluding the surface of the latent heat storage material 5 facing the storage chamber 105 side. For this reason, even if the latent heat storage material 5 burns when the fire of the storage container 140 occurs, the combustion suppressing fire extinguishing material 7 can be extinguished efficiently and quickly.
  • the heat storage heat storage material 5 is arrange
  • the storage container 140 is easily extinguished by subdividing the latent heat storage material, the possibility of ignition or ignition can be reduced. Moreover, since the storage container 140 can extinguish the latent heat storage material 5 individually, it becomes possible to extinguish the combustion part efficiently.
  • FIG. 11 shows a schematic cross-sectional configuration of the heat storage member 41 according to the present embodiment.
  • the heat storage member 41 is embedded in the base material 3, the flame retardant material layer 13 formed on almost the entire surface of the base material 3, and the flame retardant material layer 13.
  • a plurality of capsules 15 for inclusion of latent heat storage materials As the formation material of the latent heat storage material contained in the capsule 15 for inclusion of latent heat storage material, the same formation material as the latent heat storage material 5 of the heat storage member 1 according to the first embodiment is used.
  • FIG. 11 illustrates the heat storage member 41 having a plate shape (for example, a rectangular flat plate shape) as a whole, but the heat storage member 41 can be formed in different outer shapes as appropriate depending on the place to be applied.
  • the latent heat storage material inclusion capsule 15 can be formed by forming a predetermined film (for example, an oxide film) on the surface of the latent heat storage material formed in a spherical shape, for example.
  • the heat storage member 41 is formed by embedding (for example, spraying) the capsule 15 for latent heat storage material inclusion in a state where the flame retardant material layer 13 is melted, and then solidifying the flame retardant material layer 13. .
  • the flame retardant material layer 13 exhibits the same function as the combustion suppressing fire extinguishing material 7 of the heat storage member 1.
  • the flame retardant material layer 13 includes a combustion suppressing substance that is a material for forming the combustion suppressing fire extinguishing material 7 of the heat storage member 1.
  • the flame retardant material layer 13 is formed of, for example, antimony bromide, antimony oxide, urea flame retardant, halogen flame retardant, phosphorus flame retardant, or the like.
  • the flame retardant material layer 13 is disposed so as to surround the periphery of the latent heat storage material inclusion capsule 15.
  • the flame retardant material layer 13 suppresses the fire before the flame due to this combustion spreads to the other latent heat storage material inclusion capsules 15. Can be extinguished.
  • the flame retardant material layer 13 can delay, suppress, extinguish and prevent combustion. Since the heat storage member 41 has a configuration in which the periphery of the latent heat storage material inclusion capsule 15 is surrounded by the flame retardant material layer 13, the flame due to the combustion of the latent heat storage material inclusion capsule 15 can be more effectively extinguished. .
  • FIG. 12 shows a schematic cross-sectional configuration of the storage container 150 according to the present embodiment. Since the external configuration of the storage container 150 is the same as that of the storage container 100 according to the first embodiment, description thereof is omitted. As shown in FIG. 12, the wall 109 of the storage container 150 is provided between the heat insulating portion 111 provided on the outer periphery, and between the heat insulating portion 111 and the storage chamber 105, and stores the heat in the storage chamber 105. Member 151.
  • the heat storage member 151 has substantially the same configuration as the heat storage member 41 according to the present embodiment.
  • the heat storage member 151 includes a flame retardant material layer 13 provided on the heat insulating portion 111 and a plurality of latent heat storage material inclusion capsules 15 embedded in the flame retardant material layer 13 and including the latent heat storage material. ing. Further, the heat storage member 151 provided in the door portion 102 has the same configuration as the heat storage member 151 provided in the wall portion 109.
  • the flame retardant material layer 13 is disposed so as to surround the periphery of the latent heat storage material containing capsule 15. For this reason, the flame retardant material layer 13 can delay, extinguish, and prevent combustion even if one latent heat storage material inclusion capsule 15 burns. Thereby, the flame-retardant material layer 13 can extinguish before the flame by this combustion spreads to the capsule 15 for other latent heat storage material inclusions.
  • the storage container 150 includes the heat storage member 151 having a configuration in which the periphery of the latent heat storage material inclusion capsule 15 is surrounded by the flame retardant material layer 13, the latent heat storage material inclusion capsule is more effectively included. Can extinguish 15 combustion.
  • FIG. 13 shows a schematic cross-sectional configuration of the heat storage member 51 according to the present embodiment.
  • the heat storage member 51 includes a base material 3, a latent heat storage material 5 formed on substantially the entire surface of the base material 3, and a plurality of thermal storage members 51 that are embedded in the latent heat storage material 5 and contain a combustion suppression fire extinguishing material. And a combustion suppressing fire extinguishing material-containing capsule 17.
  • FIG. 13 illustrates a heat storage member 51 having a plate-like shape (for example, a rectangular flat plate shape) as a whole, but the heat storage member 51 can be appropriately formed in different outer shapes depending on the place to be applied.
  • the combustion-suppressing fire extinguishing material-containing capsule 17 can be formed by forming a predetermined film (for example, an oxide film) on the surface of the combustion-suppressing fire-extinguishing material formed in a spherical shape, for example.
  • the heat storage member 51 is formed by embedding (for example, spraying) the capsule 17 for containing a combustion-suppressing fire extinguishing material in a state where the latent heat storage material 5 is melted, and then solidifying the latent heat storage material 5.
  • the combustion-suppressing fire-extinguishing material-containing capsule 17 exhibits the same function as the combustion-suppressing fire-extinguishing material 7 of the heat storage member 1 according to the first embodiment.
  • the member enclosing the combustion suppression fire extinguishing material is destroyed and the combustion suppression fire extinguishing material is opened.
  • the heat storage member 51 is destroyed relatively earlier as the capsule 17 for containing the combustion suppressing fire extinguishing material disposed near the burning latent heat storage material 5 so that the combustion suppressing fire extinguishing material is opened.
  • the capsule 17 for combustion suppression fire extinguishing material inclusion can be extinguished before the flame which ignited the latent heat storage material 5 burns and spreads.
  • the heat storage member 51 can selectively effectively extinguish the combustion portion of the latent heat storage material 5 by the combustion-suppressing fire-extinguishing material inclusion capsule 17 to prevent the latent heat storage material 5 from burning and spreading more effectively.
  • the storage container according to the present embodiment has the same external configuration as the storage container 150 according to the sixth embodiment, and the flame retardant material provided on the door portion 102 and the wall portion 109 of the storage container 150.
  • a latent heat storage material is provided, and in place of the plurality of latent heat storage material inclusion capsules 15, a combustion suppressing fire extinguishing material inclusion capsule is provided. Since the storage container according to the present embodiment includes the latent heat storage material having a configuration substantially similar to that of the heat storage member 51 and a plurality of capsules containing combustion suppression fire extinguishing materials, the combustion part of the latent heat storage material is selectively extinguished. This effectively prevents the latent heat storage material from burning and spreading.
  • FIG. 14 shows a schematic cross-sectional configuration of the heat storage member 61 according to the present embodiment.
  • the heat storage member 61 includes a base material 3, a flame retardant material layer 13 formed on almost the entire surface of the base material 3, and a plurality of latent heat storage materials embedded in the flame retardant material layer 13. It has a material inclusion capsule 15 and a plurality of combustion-suppressing fire extinguishing material inclusion capsules 17.
  • the latent heat storage material inclusion capsule 15 has the same configuration as the latent heat storage material inclusion capsule 15 of the heat storage member 41.
  • the capsule 17 for combustion suppression fire extinguishing material inclusion has the same configuration as the capsule 17 for combustion suppression fire extinguishing material inclusion of the heat storage member 51 according to the sixth embodiment.
  • a heat storage member 61 having a plate shape (for example, a rectangular flat plate shape) as a whole is illustrated, but the heat storage member 61 can be appropriately formed in different outer shapes depending on the place to be applied.
  • the heat storage member 41 embeds (for example, sprays) the latent heat storage material-containing capsule 15 and the combustion-suppressing fire-extinguishing material-containing capsule 17 in a state where the flame-retardant material layer 13 is melted, and then the flame-retardant material layer 13 is embedded. It is formed by solidifying.
  • the heat storage member 61 has the same effect as the heat storage member 41 because the flame retardant material layer 13 is disposed around the latent heat storage material inclusion capsule 15. Furthermore, since the heat storage member 61 has the capsule 17 for combustion suppression fire extinguishing material inclusion, the same effect as the heat storage member 51 is acquired. Thus, the heat storage member 61 can obtain the effects of both the heat storage members 41 and 51, and can extinguish the combustion of the latent heat storage material inclusion capsule 15 more efficiently.
  • FIG. 15 shows a schematic cross-sectional configuration of the storage container 160 according to the present embodiment. Since the external configuration and operation of the storage container 160 are the same as those of the storage container 100 according to the first embodiment, description thereof is omitted.
  • the wall portion 109 of the storage container 160 according to the present embodiment is provided between the heat insulating portion 111 provided on the outer periphery, and between the heat insulating portion 111 and the storage chamber 105, and And a heat storage member 161 for storing heat.
  • the heat storage member 161 has substantially the same configuration as the heat storage member 61 according to the present embodiment.
  • the heat storage member 161 includes a flame retardant material layer 13 provided on the heat insulating portion 111, a plurality of latent heat storage material encapsulating capsules 15 embedded in the flame retardant material layer 13, and a plurality of combustion-suppressing fire extinguishing materials. And an internal capsule 17. Further, the heat storage member 161 provided in the door portion 102 has the same configuration as the heat storage member 161 provided in the wall portion 109.
  • the heat storage member 161 of the storage container 160 has a configuration in which a plurality of latent heat storage material inclusion capsules 15 and a plurality of combustion suppression fire extinguishing material inclusion capsules 17 are embedded in the flame retardant material layer 13. And the effect of both the storage containers by 6th Embodiment is acquired.
  • FIG. 16 shows a schematic cross-sectional configuration of the heat storage member 71 according to the present embodiment.
  • the heat storage member 71 is characterized in that the dispersion concentrations of the latent heat storage material inclusion capsule 15 and the combustion suppression fire extinguishing material inclusion capsule 17 are uneven in the flame retardant material layer 13. ing.
  • the heat storage member 71 has, for example, a plurality of latent heat storage material inclusion capsules 15 on the upper side in the figure in the flame retardant material layer 13, and a plurality of combustion on the lower side in the figure in the flame retardant material layer 13.
  • FIG. 16 illustrates a heat storage member 71 having a plate-like shape (for example, a rectangular flat plate shape) as a whole, but the heat storage member 71 can be appropriately formed in different outer shapes depending on the place to which it is applied.
  • a plate-like shape for example, a rectangular flat plate shape
  • the heat storage member 51 mainly embeds (for example, spreads) the latent heat storage material inclusion capsule 15 and the combustion suppression fire extinguishing material inclusion capsule 17 in predetermined places, and then It is formed by solidifying the flame retardant material layer 13.
  • the latent heat storage material-containing capsule 15 is preferentially disposed in the vicinity of the object to be kept cold.
  • the capsule 17 for containing a fire suppression fire extinguishing material is placed in the vicinity of a member that is relatively likely to become a fire source.
  • the heat storage member 71 is dispersed by increasing the arrangement density of the latent heat storage material inclusion capsules 15 and the combustion suppressing fire extinguishing material inclusion capsules 17 in the flame retardant material layer 13 at necessary locations. Has been.
  • the heat storage member 71 can more effectively maintain the cold insulation object at a low temperature, and can extinguish the fire early when a fire occurs and prevent combustion and fire spread.
  • only one of the latent heat storage material inclusion capsule 15 and the combustion suppression fire extinguishing material inclusion capsule 17 may be biased in the dispersion concentration.
  • FIG. 17 shows a schematic cross-sectional configuration of the storage container 170 according to the present embodiment. Since the external configuration and operation of the storage container 170 according to the present embodiment are the same as those of the storage container 100 according to the first embodiment, description thereof will be omitted.
  • the wall portion 109 of the storage container 170 is provided between the heat insulating portion 111 provided on the outer periphery, and between the heat insulating portion 111 and the storage chamber 105, and heat storage for accumulating the heat of the storage chamber 105.
  • the heat storage member 171 has substantially the same configuration as the heat storage member 71 according to the present embodiment.
  • the heat storage member 171 includes a predetermined resin layer 14 provided on the heat insulating portion 111, a plurality of latent heat storage material inclusion capsules 15 embedded in the resin layer 14, and a plurality of combustion suppression fire extinguishing material inclusion capsules 17. And have.
  • the capsule 17 for containing a combustion-suppressing fire extinguishing material is provided in the vicinity of the compressor 115 that has a relatively high probability of becoming an ignition source.
  • the latent heat storage material inclusion capsule 15 is provided mainly around the cooler 113 that is a source of cold air. Since cold air descends, if the capsule 15 for latent heat storage material inclusion is installed around the cooler 113, the heat storage effect is increased.
  • the storage container 170 may have a flame retardant material layer instead of the resin layer 14.
  • the storage container 170 is provided with light and shade distributions of the latent heat storage material inclusion capsule 15 and the combustion suppression fire extinguishing material inclusion capsule 17 depending on whether the heat storage function is important or the fire extinguishing function is important. For example, if many capsules for latent heat storage material inclusion 15 are provided near the cooler 113, the effect of heat storage is enhanced. In addition, if a large number of capsules 17 containing combustion-suppressing fire extinguishing material are provided around the compressor 115, the efficiency of fire extinguishing becomes high. In this manner, the storage container 170 can improve the heat storage function and the fire extinguishing function by adjusting the arrangement of the latent heat storage material inclusion capsule 15 and the combustion suppressing fire extinguishing material inclusion capsule 17.
  • FIG. 18 shows a schematic cross-sectional configuration of the storage container 200 according to the present embodiment. Similar to the storage containers according to the first to eighth embodiments, the storage container 200 is used for storing stored items at a temperature different from the atmospheric temperature (room temperature) during steady operation. For example, a refrigerator, a freezer, A warehouse etc. can be illustrated. In the present embodiment, the storage container is described as being a fan-type refrigerator-freezer.
  • the storage container 200 has a rectangular parallelepiped container body 106.
  • the container main body 106 of the storage container 200 is divided into three regions: a refrigerating room 210 provided in the upper stage, a freezing room 220 provided in the middle stage, and a vegetable room 230 provided in the lower stage.
  • the set temperatures of the refrigerator compartment 210, the freezer compartment 220, and the vegetable compartment 230 are set in advance so as to decrease in the order of the vegetable compartment 230, the refrigerator compartment 210, and the freezer compartment 220. That is, in the storage container 200, the set temperature in each storage room is set in advance so that “freezer room 220 ⁇ refrigeration room 210 ⁇ vegetable room 230”.
  • the set temperature in the vegetable compartment 230 is a temperature suitable for storing vegetables, for example, about 3 ° C. to 8 ° C.
  • the set temperature in the refrigerator compartment 210 is lower than the set temperature in the vegetable compartment 230, and is about 3 ° C., for example.
  • the set temperature in the freezer compartment 220 is lower than that of the refrigerator compartment 210 and is, for example, about ⁇ 18 ° C.
  • the refrigerating chamber 210 has a thin plate-like door portion 102a that is rotatably provided on the container main body 106 via a hinge portion (not shown).
  • the container main body 106 in the refrigerator compartment 210 has a rectangular opening 103a, a box-shaped wall 109a opened by the opening 103a, and a storage chamber 105a for storing stored items.
  • the storage chamber 105a is connected to the outside through the opening 103a when the door 102a is opened.
  • the storage chamber 105a is a space provided inside the wall portion 109a.
  • the door part 102a has a frame-shaped packing 107a provided on the outer periphery of the door part 102a.
  • the packing 107a is arranged outside the outer periphery of the opening 103a when the door 102a is closed.
  • the packing 107a is arranged to face the wall portion 109a when the door portion 102a is closed.
  • the storage chamber 105a becomes a sealed space surrounded by the door portion 102a, the packing 107a, and the wall portion 109a.
  • the refrigerator compartment 210 can maintain the inside of the storage chamber 105a at preset temperature.
  • the freezer compartment 220 has a thin plate-shaped door portion 102b that is rotatably provided on the container body 106 via a hinge portion (not shown).
  • the container main body 106 in the freezer compartment 220 has a rectangular opening 103b, a box-shaped wall 109b opened by the opening 103b, and a storage chamber 105b for storing stored items.
  • the storage chamber 105b is connected to the outside through the opening 103b when the door 102b is opened.
  • the storage chamber 105b is a space provided inside the wall portion 109b.
  • the door part 102b has a frame-shaped packing 107b provided on the outer periphery of the door part 102b.
  • the packing 107b is arranged outside the outer periphery of the opening 103b when the door 102b is closed.
  • the packing 107b is arranged to face the wall portion 109b when the door portion 102b is closed.
  • the storage chamber 105b becomes a sealed space surrounded by the door portion 102b, the packing 107b, and the wall portion 109b.
  • the freezer compartment 220 can maintain the inside of the storage compartment 105b at preset temperature.
  • the freezer compartment 220 may have a drawer-type configuration that allows the interior to be pulled out, rather than a configuration that opens and closes the door.
  • the vegetable compartment 230 has a thin plate-like door portion 102c that is rotatably provided on the container body 106 via a hinge portion (not shown).
  • the container main body 106 in the vegetable compartment 230 has a rectangular opening 103c, a box-shaped wall 109c opened by the opening 103c, and a storage chamber 105c for storing stored items.
  • the storage chamber 105c is connected to the outside through the opening 103c when the door 102c is opened.
  • the storage chamber 105c is a space provided inside the wall portion 109c.
  • the door part 102c has the frame-shaped packing 107c provided in the outer periphery of the door part 102c.
  • the packing 107c is arranged outside the outer periphery of the opening 103c when the door 102c is closed.
  • the packing 107c is arranged to face the wall portion 109c when the door portion 102c is closed.
  • the storage chamber 105c becomes a sealed space surrounded by the door portion 102c, the packing 107c, and the wall portion 109c.
  • the vegetable compartment 230 can maintain the inside of the storage compartment 105c at preset temperature.
  • the vegetable compartment 230 may have a drawer-type configuration that allows the inside of the cabinet to be pulled out rather than a configuration that opens and closes the door.
  • the wall portion 109a includes a heat insulating portion 111 provided on the outer periphery, and a heat storage member 101a that is provided between the heat insulating portion 111 and the storage chamber 105a and accumulates heat of the storage chamber 105a.
  • the heat storage member 101a includes a combustion suppression fire extinguishing material 7a provided on the heat insulating portion 111 and a latent heat storage material 5a provided on the combustion suppression fire extinguishing material 7a.
  • the latent heat storage material 5a is formed of the same forming material as the latent heat storage material 5 in the first embodiment.
  • the combustion suppressing fire extinguishing material 7a is made of, for example, ammonium polyphosphate.
  • the combustion-suppressing fire extinguishing material 7a is capable of self-extinguishing by generating ammonia when heated when a fire occurs (details will be described later).
  • the wall 109a has a housing (not shown) made of a resin material such as ABS resin.
  • the housing has a cavity.
  • the heat insulation part 111 and the heat storage member 101a are accommodated in the cavity.
  • the door 102a has substantially the same configuration as the wall 109a.
  • the door portion 102a includes a heat insulating portion 111 provided outside and a heat storage member 101a that is provided between the heat insulating portion 111 and the storage chamber 105a when the door portion 102a is closed, and accumulates heat of the storage chamber 105a.
  • the heat storage member 101a has the same configuration as the heat storage member 101a provided on the wall portion 109a and is formed of the same forming material.
  • the door portion 102a has a housing (not shown) that uses a resin material such as ABS resin as a forming material, similarly to the wall portion 109a.
  • the housing has a cavity.
  • the heat insulation part 111 and the heat storage member 101a are accommodated in the cavity.
  • the wall portion 109b includes a heat insulating portion 111 provided on the outer periphery, and a heat storage member 101b provided between the heat insulating portion 111 and the storage chamber 105b, for accumulating the heat of the storage chamber 105b.
  • the heat storage member 101b includes a combustion-suppressing fire extinguishing material 7b provided on the heat insulating portion 111 and a latent heat storage material 5b provided on the combustion-suppressing fire extinguishing material 7b.
  • the latent heat storage material 5b is formed of a material having a phase change temperature of about ⁇ 15 ° C.
  • the combustion suppressing fire extinguishing material 7b is made of, for example, a carbonate compound.
  • the combustion-suppressing fire extinguishing material 7b generates carbon dioxide and can self-extinguish when heated when a fire occurs (details will be described later).
  • the wall 109b has a housing (not shown) made of a resin material such as ABS resin.
  • the housing has a cavity.
  • the heat insulation part 111 and the heat storage member 101b are accommodated in the cavity.
  • the door 102b has substantially the same configuration as the wall 109b.
  • the door portion 102b includes a heat insulating portion 111 provided outside and a heat storage member 101b that is provided between the heat insulating portion 111 and the storage chamber 105b when the door portion 102b is closed, and accumulates heat of the storage chamber 105b.
  • the heat storage member 101b has the same configuration as the heat storage member 101b provided on the wall 109b, and is formed of the same forming material.
  • the door part 102b has a housing (not shown) made of a resin material such as ABS resin as a forming material like the wall part 109b.
  • the housing has a cavity.
  • the heat insulation part 111 and the heat storage member 101b are accommodated in the cavity.
  • the casing has a sealed structure so that the saline solution does not flow outside when the saline solution is liquefied.
  • the wall portion 109c includes a heat insulating portion 111 provided on the outer periphery, and a heat storage member 101c that is provided between the heat insulating portion 111 and the storage chamber 105c and accumulates heat of the storage chamber 105c.
  • the heat storage member 101c includes a combustion suppression fire extinguishing material 7c provided on the heat insulating portion 111 and a latent heat storage material 5c provided on the combustion suppression fire extinguishing material 7c.
  • the latent heat storage material 5c is formed of the same forming material as the latent heat storage material 5 in the first embodiment.
  • the combustion suppressing fire extinguishing material 7c is made of, for example, magnesium hydroxide (Mg (OH) 2 ).
  • the combustion-suppressing fire extinguishing material 7c generates water and can self-extinguish when heated when a fire occurs (details will be described later).
  • the wall 109c has a housing (not shown) made of a resin material such as ABS resin.
  • the housing has a cavity.
  • the heat insulation part 111 and the heat storage member 101c are accommodated in the cavity.
  • the door 102c has substantially the same configuration as the wall 109c.
  • the door portion 102c includes a heat insulating portion 111 provided outside, and a heat storage member 101c that is provided between the heat insulating portion 111 and the storage chamber 105c when the door portion 102c is closed, and accumulates heat of the storage chamber 105c.
  • the heat storage member 101c has the same configuration as the heat storage member 101c provided on the wall 109c, and is formed of the same forming material.
  • the door part 102c has a housing (not shown) made of a resin material such as ABS resin as the wall part 109c.
  • the housing has a cavity. The heat insulation part 111 and the heat storage member 101c are accommodated in the cavity.
  • the heat insulating portion 111 is provided to insulate the storage chambers 105a to 105c and the heat storage members 101a to 101c that are cooled during steady operation so that heat from the outside is not transmitted through the housing.
  • the heat insulating portion 111 is formed using a generally known material such as an inorganic fiber heat insulating material such as glass wool, a foamed resin heat insulating material such as polyurethane foam, or a natural fiber heat insulating material such as cellulose fiber. Can do.
  • the storage container 200 is provided at the bottom of the container main body 106 and is connected to the compressor 115 that compresses the refrigerant, the pipe 118 that is connected to the compressor 115 and through which the high-temperature and high-pressure gas refrigerant compressed by the compressor 115 flows, and the storage container 200.
  • a radiator 114 provided on the back side and connected to the pipe 118 to dissipate heat while liquefying the gas refrigerant flowing through the pipe 118, and a capillary tube connected to the radiator 114 to reduce the pressure so that the liquefied refrigerant can be easily vaporized.
  • the cooling device 120 may have a normally known configuration such as a dryer for removing moisture in the refrigerant.
  • the storage container 200 has a duct 205ba that guides cold air from the cooler 113 to the storage chamber 105a through the storage chamber 105b.
  • the duct 205ba is provided on the storage chamber 105b side, and has a fan 201ba that blows cool air into the duct 205ba.
  • the duct 205ba has a damper 203ba that is provided on the side of the storage chamber 105a and adjusts the amount of cool air blown into the duct 205ba to the storage chamber 105a.
  • the storage container 200 is configured to maintain the temperature in the storage chamber 105a at a set temperature by controlling the opening and closing of the damper 203ba.
  • the storage container 200 has a duct 205bc that guides the cool air from the cooler 113 to the storage chamber 105c through the storage chamber 105b.
  • the duct 205bc is provided on the storage chamber 105b side, and has a fan 201bc that blows cool air into the duct 205bc.
  • the duct 205bc is provided on the storage chamber 105c side, and includes a damper 203bc that adjusts the amount of cool air blown into the duct 205bc to the storage chamber 105c.
  • the storage container 200 is configured to maintain the temperature in the storage chamber 105c at a set temperature by controlling the opening and closing of the damper 203bc.
  • the operation of the storage container 200 will be described.
  • the power supply (not shown) of the storage container 200 is on, the high-temperature and high-pressure gas refrigerant compressed by the compressor 115 passes through the pipe 118 and reaches the radiator 114.
  • the radiator 114 liquefies while radiating the gas refrigerant.
  • the liquefied refrigerant is reduced in pressure so as to be easily vaporized in the capillary tube 120 and reaches the cooler 113.
  • the cooler 113 cools the storage chamber 105b by heat of vaporization when the decompressed refrigerant is vaporized.
  • heat exchange is performed between the surface of the cooler 113 exposed in the storage chamber 105b and the air in the storage chamber 105b.
  • a temperature sensor (not shown) is installed at a predetermined position in the storage chamber 105b.
  • the drive of the cooling device is controlled by a temperature control device (not shown) provided in the storage container 200 based on the temperature in the storage chamber 105b measured by the temperature sensor, and heat transfer for controlling the temperature in the storage chamber 105b is performed. Done.
  • the cooler 113 is provided on the wall portion 109b and can directly cool the region of the latent heat storage material 5b arranged opposite to each other via the housing, and can be maintained in a solid phase state equal to or lower than the phase transition temperature.
  • the latent heat storage material 5b disposed on the wall portion 109b other than the region disposed opposite to the cooler 113 and the latent heat storage material 5b disposed on the door portion 102b are substantially in the storage chamber 105b via a housing (not shown). It becomes the same temperature and is gradually maintained in the solid phase state below the phase transition temperature.
  • the latent heat storage material 5b that maintains the solid state exhibits the function of flattening the temporal change distribution of the temperature in the storage chamber 105b.
  • a temperature sensor (not shown) is installed at a predetermined position in the storage chamber 105a. Based on the temperature in the storage chamber 105a measured by the temperature sensor, the storage container 200 operates the fan 201ba and the damper 203ba to blow cool air in the storage chamber 105b to the storage chamber 105a through the duct ba, The temperature is controlled.
  • the latent heat storage material 5a provided on the door portion 102a and the wall portion 109a becomes substantially the same temperature as the inside of the storage chamber 105a through a housing (not shown) and is gradually maintained in a solid state below the phase transition temperature.
  • the latent heat storage material 5a that maintains the solid state also exhibits the function of flattening the temporal change distribution of the temperature in the storage chamber 105a.
  • a temperature sensor (not shown) is installed at a predetermined position in the storage chamber 105c. Based on the temperature in the storage chamber 105c measured by the temperature sensor, the storage container 200 operates the fan 201bc and the damper 203bc to blow cool air in the storage chamber 105c through the duct bc to the storage chamber 105c, The temperature is controlled.
  • the latent heat storage material 5c provided on the door portion 102c and the wall portion 109c becomes substantially the same temperature as that in the storage chamber 105c through a housing (not shown) and is gradually maintained in a solid phase state below the phase transition temperature.
  • the latent heat storage material 5c that maintains the solid state also exhibits a function of flattening the temporal change distribution of the temperature in the storage chamber 105c.
  • the storage container 200 starts cooling by the heat storage members 101a, 101b, and 101c when the cooling capacity of the cooling device is lost due to a power failure or the like.
  • the air in the storage chambers 105a to 105c is maintained in a predetermined temperature range for a certain period by the latent heat storage materials 5a to 5c provided around the doors 102a to 102c and the walls 109a to 109c. More specifically, the temperature in the storage chamber 105a is maintained at about 5 ° C. and the temperature in the storage chamber 105b is ⁇ during the period until each of the latent heat storage materials 5a to 5c transitions from the solid phase to the liquid phase. The temperature in the storage chamber 105c is maintained at about 5 ° C.
  • the set temperature in the refrigerator compartment 210 and the set temperature in the vegetable compartment 230 are set to be different during steady operation.
  • the latent heat storage material 5a used in the refrigerator compartment 210 and the latent heat storage material 5c used in the vegetable compartment 230 are formed of the same material.
  • the refrigerator compartment 210 and the vegetable compartment 230 are maintained at substantially the same temperature during cold insulation due to a power failure or the like.
  • the storage container 200 keeps the inside temperature of the refrigerating chamber 210 during cold storage by differentiating the forming material of the latent heat storage material 5a used for the refrigerator compartment 210 and the forming material of the latent heat storage material 5c used for the vegetable compartment 230. It can also comprise so that it may become lower than the internal temperature of the vegetable compartment 230 at the time.
  • the storage container 200 has a combustion-suppressing fire extinguishing material 7c provided in the vegetable compartment 230 and formed of magnesium hydroxide. For this reason, for example, when a fire breaks out from the compressor 115, water is generated from the combustion-suppressing fire extinguishing material 7c, and the water immediately cools down and extinguishes the compressor 115 when the water falls by gravity. Moreover, the storage container 200 has the combustion suppression fire extinguishing material 7b provided in the freezer compartment 220 and formed with the carbonate compound. The combustion-suppressing fire extinguishing material 7b generates carbon dioxide that is heavier than air when heated when a fire occurs.
  • the storage container 200 has the combustion suppression fire extinguishing material 7c provided in the refrigerator compartment 210 and formed with ammonium polyphosphate.
  • the combustion-suppressing fire extinguishing material 7a When a flame from the outside spreads over the upper part of the storage container 200, the combustion-suppressing fire extinguishing material 7a generates ammonia that is lighter than air when heated in the event of a fire. The ammonia flows into the upper part, shuts off the supply of oxygen to the combustion part, and extinguishes the flame.
  • the storage container 200 has a higher heat storage function and fire extinguishing function by installing a heat storage member and a combustion suppressing fire extinguishing material suitable for each of the storage chambers 105a to 105c.
  • the heat storage member and the combustion-suppressing fire extinguishing material have a configuration in which they are stacked on each other, but this is not a limitation.
  • the latent heat storage material-encapsulating capsules may be arranged around the cooler 113.
  • the capsule for combustion-suppressing fire extinguishing material may be placed in the vicinity of the compressor 115.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the latent heat storage material contains the paraffin, this invention is not limited to this.
  • the latent heat storage material contains any one of polyethylene glycol, polyvinyl alcohol, ethylenediamine, and naphthalene, the same effect as the above embodiment can be obtained.
  • the heat storage members 61 and 71 according to the seventh and eighth embodiments have the flame retardant material layer 13, the present invention is not limited thereto. Even if the latent heat storage material inclusion capsule 15 and the combustion suppression fire extinguishing material inclusion capsule 17 are embedded in a predetermined resin layer, the heat storage members 61 and 71 may be any material capable of preventing the spread of the latent heat storage material inclusion capsule 15. Good.
  • the heat storage member according to the first to eighth embodiments may be used for a wall or ceiling of a house.
  • the house has a heat insulating part that surrounds the living space and blocks heat transfer between the living space and the outside world, and the heat storage member is provided between the living space and the heat insulating part.
  • the heat of the living space is accumulated.
  • paraffin having 17 to 18 carbon atoms as a latent heat storage material and using a heat storage member as shown in FIG. 8, a house having the heat storage member is comfortable even if a large change occurs in the outside air temperature. Room temperature can be maintained for a long time.
  • a heat storage member according to a tenth embodiment of the present invention, a storage container using the heat storage member, and a building will be described.
  • a heat storage member including a heat storage material using latent heat has been known.
  • the heat storage member is used for applications such as heat storage and cold storage.
  • the heat storage member has a hydrocarbon heat storage material such as paraffin as a material having a high heat storage capacity.
  • the paraffin has many flammable and ignitable materials, and there is a possibility that ignition and ignition at the time of a fire may be a problem. For this reason, it is difficult to directly use a hydrocarbon-based heat storage material such as paraffin for the heat storage member.
  • a heat storage member when using a hydrocarbon-based heat storage material, a heat storage member has been proposed in which the heat storage material is covered with a flame-retardant material or mixed with a substance having a fire extinguishing function to prevent ignition in the event of a fire.
  • a heat storage member “a heat storage acrylic resin composition containing an additive such as a microcapsule containing a heat storage material or a flame retardant, and a heat storage sheet-like molded body using the same” Is disclosed.
  • Patent Document 5 discloses, as a heat storage member, “a heat storage body is covered with a laminate film, and a heat insulating layer made of inorganic fine particles is formed on the outer surface of the laminate film, or a heat-foamable paint that generates a nonflammable gas when heated.
  • a “heat storage board comprising any of the coatings” is disclosed.
  • the heat storage sheet-like molded body described in Patent Document 4 is made flame retardant by mixing a microcapsule containing a heat storage material and a flame retardant.
  • the heat storage property and flame retardancy of the heat storage sheet-like molded body are determined by the ratio between the heat storage material-encapsulated microcapsules and the flame retardant. Either the microcapsule or the flame retardant cannot be increased or decreased without limitation, and there is a trade-off relationship between the heat storage performance and the flame retardancy.
  • a heat storage sheet-like molded object is a mixture of a heat storage material and a flame retardant, there exists a problem that sufficient heat storage effect is not obtained compared with the heat storage member of the same shape formed only with a heat storage material.
  • the heat storage board described in Patent Document 5 When the heat storage board described in Patent Document 5 is provided with a heat insulating layer made of inorganic particles on the surface, the heat insulating layer inhibits heat transfer between the heat storage body and the outside. For this reason, the said thermal storage board has the problem that the performance as a thermal storage body cannot fully be exhibited. Further, when the heat storage board is provided with a heat-foamable coating film that generates non-combustible gas on the surface, the generated non-combustible gas is released around the heat storage board and diffuses around without staying around the heat storage board. For this reason, even if the generated incombustible gas can temporarily suppress the combustion of the heat storage board, the effect of suppressing the combustion cannot be maintained. Therefore, the heat storage board has a problem that it is difficult to effectively prevent ignition and ignition of the heat storage body.
  • the heat storage member has a problem that a different material called a flame retardant is mixed and the heat storage material per unit volume is reduced, so that the performance of the heat storage material itself cannot be fully exhibited.
  • the heat storage member has a problem that if the mixing rate of the flame retardant is lowered in order to sufficiently exhibit the performance of the heat storage material itself, the heat storage member cannot be sufficiently ignited.
  • the heat storage member deteriorates the flame retardance performance when trying to improve the heat storage performance, and deteriorates when trying to improve the flame retardance performance, and it is difficult to achieve both the heat storage performance and the flame retardance performance. Has the problem of being.
  • the heat storage member disclosed in Patent Document 5 has a heat transfer performance that is deteriorated due to a strict covering or a material used for the covering, and if a function for preventing ignition of the heat storage member is added, the performance of the heat storage material itself Has the problem that it cannot fully demonstrate.
  • a heat storage member having a latent heat storage material has been subjected to fire prevention measures, but has a problem that sufficient heat storage performance cannot be obtained by taking fire prevention measures. For this reason, development of a heat storage member excellent in heat storage performance and a fire prevention measure, and a refrigerator or a building material using the heat storage member is desired.
  • An object of the present embodiment is to provide a heat storage member that exhibits an excellent heat storage function and an excellent fire extinguishing and fire prevention function, and a storage container and a building using the heat storage member.
  • the above object is provided separately from the heat storage unit provided with a latent heat storage material that reversibly transitions from a solid phase to a liquid phase at a predetermined temperature, and extinguishes the combustion of the latent heat storage material, or This is achieved by a heat storage member characterized by having a fire-fighting part for fire prevention.
  • the heat storage member further includes a melting part that is disposed between the heat storage part and the fire fighting part and melts at a specific temperature.
  • the heat storage member wherein the specific temperature is higher than a melting point of the latent heat storage material and lower than a flash point or ignition point of the latent heat storage material.
  • the heat storage member wherein the fire fighting unit includes a storage unit that stores the latent heat storage material moving from the heat storage unit.
  • the heat storage member wherein the heat storage part has an inclined part inclined so that the latent heat storage material can easily move.
  • the heat storage member wherein the fire department is arranged vertically below the heat storage part during actual use.
  • the heat storage member wherein the fire department is arranged vertically above the heat storage part during actual use.
  • the above-mentioned heat storage member wherein the fire department has a fire extinguishing fireproofing agent that extinguishes or prevents the combustion of the latent heat storage material.
  • the heat storage member wherein the fire-extinguishing and fire-proofing agent includes at least one of a flame retardant and a suffocating gas generating material.
  • the heat storage member wherein the flame retardant includes one of a brominated flame retardant, a urea flame retardant, a halogen flame retardant, and an inorganic flame retardant such as antimony.
  • the flame retardant includes one of a brominated flame retardant, a urea flame retardant, a halogen flame retardant, and an inorganic flame retardant such as antimony.
  • the heat storage member wherein the suffocating gas generating material generates a predetermined gas and suppresses combustion of the latent heat storage material.
  • the object is a storage container having a storage chamber for storing a stored item, and a heat storage member that surrounds the storage chamber and accumulates heat of the storage chamber, and the heat storage member includes the heat storage member.
  • a storage container that is a member.
  • a building having a heat storage member that surrounds a living space and stores heat of the living space, wherein the heat storage member is the heat storage member. Achieved.
  • the fire department is arranged in an underfloor area.
  • FIG. 19A and FIG. 19B show a schematic cross-sectional configuration of the heat storage member 501.
  • FIG. 19A is a view of the heat storage member 501 observed from the front, and shows a cross section cut along a plane including the central axis of the connecting pipe 522.
  • FIG. 19A is a view of the heat storage member 501 observed from the front, and shows a cross section cut along a plane including the central axis of the connecting pipe 522.
  • the heat storage member 501 includes a heat storage unit 503 including a latent heat storage material 504 that reversibly changes phase from a solid phase to a liquid phase at a predetermined temperature, A fire fighting unit 505 that is provided separately from the unit 503 and extinguishes or prevents the combustion of the latent heat storage material 504.
  • the heat storage member 501 is disposed between the heat storage unit 503 and the fire fighting unit 505, and has a melting unit 520 that melts at a specific temperature.
  • the heat storage member 501 has a connection portion 507 that connects the heat storage portion 503 and the fire fighting portion 505.
  • the heat storage unit 503 has a heat storage container body 502.
  • the heat storage container body 502 has a hollow flat rectangular parallelepiped shape.
  • the heat storage unit 503 has a circular opening 506 that has an opening at substantially the center of the bottom surface of the heat storage container body 502.
  • the heat storage unit 503 has an inclined part 508 in which the bottom surface of the heat storage container body 502 is inclined downward toward the opening 506.
  • the inclined portion 508 is formed in a funnel shape.
  • the heat storage unit 503 includes a latent heat storage material 504 filled in an internal space that is a hollow portion of the heat storage container body 502.
  • the latent heat storage material 504 is sealed in the internal space of the heat storage container body 502 by a melting part 520 disposed so as to close the opening 506. It is desirable that the inner wall of the heat storage container body 502 with which the latent heat storage material 504 comes into contact has a smooth surface without unevenness.
  • Heat storage refers to a technology that temporarily stores heat and extracts the heat as needed. Examples of the heat storage method include sensible heat storage, latent heat storage, chemical heat storage, and the like. In this embodiment, latent heat storage is used. Latent heat storage uses the latent heat of a substance to store thermal energy of the phase transition of the substance. The heat storage density is high and the output temperature is constant. As the latent heat storage material 504, ice (water), paraffin, an inorganic salt higher alcohol, an ester material, or the like is used.
  • the latent heat storage material 504 of this embodiment contains paraffin.
  • Paraffin is a generic name for saturated chain hydrocarbons represented by the general formula C n H 2n + 2 .
  • the latent heat storage material 504 containing paraffin reversibly transitions from a solid phase to a liquid phase at a predetermined temperature. Further, the phase transition temperature of the latent heat storage material 504 can be adjusted by changing the type of paraffin included in the latent heat storage material 504. Moreover, the latent heat storage material 504 containing paraffin hardly deteriorates even if heat storage and heat dissipation are repeated due to phase transition.
  • the latent heat storage material 504 containing paraffin can be used in a medium to low temperature range (several to several tens of degrees Celsius). Moreover, the latent heat storage material 504 containing paraffin has a relatively high heat storage density.
  • the paraffin contained in the latent heat storage material 504 is appropriately selected depending on the application of the heat storage member 501.
  • normal tetradecane having 14 carbon atoms is suitable for the paraffin contained in the latent heat storage material 504.
  • the phase transition temperature (melting point) from the liquid phase to the solid phase of normal tetradecane is about 6 ° C.
  • the flash point of normal tetradecane is about 102 ° C.
  • normal heptadecane having 17 carbon atoms is suitable for the paraffin contained in the latent heat storage material 504.
  • the phase transition temperature (melting point) from the liquid phase to the solid phase of normal heptadecane is about 22 ° C.
  • the flash point of normal heptadecane is about 148 ° C.
  • the normal paraffin increases in melting point and flash point as the carbon number increases.
  • normal pentadecane carbon number 15 having a melting point of about 10 ° C. and a flash point of about 132 ° C.
  • the latent heat storage material 504 may include a gelling agent that gels (solidifies) paraffin.
  • a gel refers to a gel that has a three-dimensional network structure formed by cross-linking molecules, and has absorbed and swelled a solvent therein.
  • a gelling agent produces a gelling effect only by being contained in paraffin by several weight%.
  • the gelled latent heat storage material can be used for the heat storage unit 503 as long as it melts and has fluidity when the temperature rises due to a fire or the like. *
  • the heat storage container body 502 has a sealing property that prevents the latent heat storage material 504 having fluidity during the liquid phase from leaking out of the heat storage member 501.
  • the heat storage container body 502 is formed of a material that can easily exchange heat with the outside.
  • the heat storage container body 502 is formed using a resin film, a resin plate, a metal plate, or the like to which a commonly used metal foil is bonded.
  • the heat storage container body 502 has heat resistance that can withstand at least a temperature higher than the flash point of the latent heat storage material 504.
  • the heat storage container body 502 is heated by the heat until the latent heat storage material 504 moves from the solid phase to the liquid phase through the connection portion 507 to the fire fighting portion 505 when the temperature rises due to a fire or the like. Does not melt or break. Since the heat storage container body 502 has a degree of freedom in shape, it can be formed in various shapes depending on the application. *
  • connection unit 507 has a connection pipe 522.
  • the connecting pipe 522 has, for example, a hollow cylindrical shape with both ends opened.
  • a path 524 for moving the latent heat storage material 504 fluidized when the temperature rises due to a fire or the like from the heat storage unit 503 to the fire fighting unit 505 is formed inside the connection pipe 522.
  • the connecting pipe 522 is not limited to a cylinder, and may have another cross-sectional shape as necessary.
  • the path 524 has an inner wall with a smooth surface shape without unevenness. For this reason, when the fluidized latent heat storage material 504 moves to the fire fighting section 505 through the path 524 of the connection portion 507, the latent heat storage material 504 stays in the middle of the path 524 or partially remains. Can be prevented.
  • the connecting pipe 522 is formed of a material that does not cause deformation and damage such as melting and tearing at a temperature lower than the ignition temperature of the latent heat storage material 504.
  • the connecting pipe 522 has heat resistance that can withstand temperatures above the flash point. For this reason, the connecting pipe 522 can reliably move the latent heat storage material 504 from the heat storage unit 503 to the fire fighting unit 505 when the temperature rises due to a fire or the like.
  • connection pipe 522 is intimately connected to the opening 506 of the heat storage container body 502.
  • a melting part 520 is disposed in a path 524 where the connecting pipe 522 and the opening 506 are connected.
  • a heat seal can be used as the melting portion 520.
  • the melting part 520 is solid within the normal temperature range of the heat storage member 501, and is formed of a material that decomposes or melts at a specific temperature higher than this temperature range.
  • the forming material of the melting part 520 include a latent heat storage material having a melting point higher than the melting point of the latent heat storage material 504 of the heat storage unit 503, a Sn-based alloy used for a temperature fuse of an electronic device, an In-Sn alloy, A Zn—In alloy or Bi—In alloy is used.
  • the specific temperature at which the melting part 520 melts is higher than the melting point of the latent heat storage material 504 and lower than the flash point or ignition point of the latent heat storage material 504.
  • the latent heat storage material 504 has a melting point T1, a flash point T2, an ignition point T3, and a temperature at which the melting part 520 is melted T4.
  • the heat storage member 501 is “T1 ⁇ T4 ⁇ T2” or “T1 ⁇ T4 ⁇ T3”. "Is satisfied. Although details will be described later, in the present embodiment, before the latent heat storage material 504 burns in the event of a fire, the fluidized latent heat storage material 504 is moved to the fire fighting section 505 and / or the latent heat storage material 504 is extinguished. It is desirable to mix with 512.
  • the flash point is lower than the ignition point, and the latent heat storage material 504 may burn in the event of a fire when the temperature of the latent heat storage material 504 reaches the flash point before reaching the ignition point. Therefore, the heat storage member 501 according to the present embodiment has a melting portion 520 formed of a material having a melting point lower than the flash point of normal pentadecane contained in the latent heat storage material 504, and a relationship of “T1 ⁇ T4 ⁇ T2”. The expression is satisfied. Since the flash point of normal pentadecane is about 132 ° C., for example, the melting part 520 is formed of an In—Sn alloy (In52: Sn48) having a melting point of 118 ° C.
  • In—Sn alloy In52: Sn48
  • the fire fighting unit 505 is disposed vertically below the heat storage unit 503 when the heat storage member 501 is actually used.
  • the fire department 505 has a fire container body 510.
  • the fire-fighting container 510 has, for example, a hollow box-like rectangular parallelepiped shape.
  • the fire fighting unit 505 has a width of almost the same length as the heat storage unit 503 when observed from the front, and has a width longer than the width of the heat storage unit 503 when observed from the side.
  • the fire fighting section 505 has a circular opening 516 in which a part of the upper surface of the fire fighting container body 510 is opened.
  • the opening 516 of the fire fighting container 510 is closely connected to the other end of the connection pipe 522 of the connection part 507.
  • the fire-fighting container body 510 may have a shape other than a rectangular parallelepiped, and can have various shapes depending on the application.
  • the fire fighting container 510 is formed of the same material as the heat storage container 502 of the heat storage unit 503. In addition, the fire-fighting container 510 is moved from the heat storage unit 503 and externally when the temperature rises due to a fire or the like in order to suppress the ignition or ignition of the latent heat storage material 504 stored in the storage unit 514 (details will be described later). It is necessary to make it difficult to receive the heat. If this condition is satisfied, the fire fighting container body 510 may be formed of a material different from that of the heat storage container body 502 of the heat storage unit 503. For example, the fire-fighting container body 510 may be formed of a porous ceramic in which pores, which are materials having low thermal conductivity, are not conducted inside and outside. Moreover, you may make it cover the outer side of the fire fighting container body 510 with a heat insulating material.
  • the fire fighting unit 505 includes a storage unit 514 that stores the latent heat storage material 504 moving from the heat storage unit 503.
  • the accommodating part 514 is formed inside the fire fighting container body 510.
  • the accommodating portion 514 is provided in the internal space of the fire fighting container body 510.
  • the accommodating portion 514 is connected to the path 524 of the connecting portion 507 through the opening 516 and is continuous.
  • the accommodating part 514 has a volume larger than the volume in the case where the latent heat storage material 504 has a fluidity by phase transition from the solid phase to the liquid phase. Accordingly, the fire fighting unit 505 can accommodate all of the latent heat storage material 504 flowing out from the heat storage unit 503 in the storage unit 514.
  • the fire department 505 has a fire-extinguishing / fire-proofing agent 512 that extinguishes or prevents the combustion of the latent heat storage material 504.
  • the fire extinguishing and fireproofing agent 512 is disposed inside the fire fighting container 510.
  • the fire extinguishing and fireproofing agent 512 is an inner wall of the fire fighting container 510, and is disposed on the entire upper surface and side surfaces other than the opening 516 formation portion so as to come into contact with the latent heat storage material 504 moving from the heat storage unit 503, for example. Yes.
  • the fire extinguishing and fireproofing agent 512 is exposed in the housing portion 514.
  • the fire-extinguishing and fire-proofing agent 512 disposed in the fire fighting unit 505 includes a flame retardant that suppresses the ignition and ignition of the latent heat-storing material 504 by mixing the latent heat-storing material 504 and the fire-extinguishing and fire-preventing agent 512.
  • a flame retardant refers to an agent that adds a flame retardant substance to a flammable substance and changes the flammable substance into a flame retardant substance.
  • the fire extinguishing and fireproofing agent 512 includes a flame retardant capable of making the paraffin, higher alcohol, ester material, or the like contained in the latent heat storage material 504 flame retardant.
  • the flame retardant for example, a bromine-based, urea-based, halogen-based flame retardant, or an inorganic flame retardant such as antimony can be used.
  • the latent heat storage material 504 accumulates or releases thermal energy with the outside of the heat storage unit 503.
  • the latent heat unit 503 exchanges heat with cold air or hot air such as cooling or heating, maintaining temperature such as cold or warm.
  • FIG. 20 is a cross section similar to the cross section of the heat storage member 501 shown in FIG. 19A, and shows the state of the heat storage member 501 after the melting part 520 is melted.
  • the temperature near the heat storage unit 503 rises due to a fire or the like, and the internal temperature of the heat storage container body 502 rises with this temperature rise.
  • the latent heat storage material 504 containing normal pentadecane undergoes a phase transition from the solid phase to the liquid phase.
  • the liquid phase latent heat storage material 504 has high fluidity. When the temperature further rises and the internal temperature of the heat storage container body 502 approaches the flash point of normal pentadecane contained in the latent heat storage material 504, the possibility of the latent heat storage material 504 igniting increases.
  • the latent heat storage material 504 containing normal pentadecane is phase-shifted from the solid phase to the liquid phase and becomes highly fluid.
  • the melting part 520 is formed of an In—Sn alloy (In52: Sn48) having a melting point of 118 ° C. For this reason, when the temperature of the melting part 520 exceeds 118 ° C., the melting part 520 is melted.
  • the melting part 520 is melted before the latent heat storage material 504 reaches the flash point, whereby the heat storage part 503 and the fire fighting part 505 are brought into conduction through the connection part 507. Thereby, the internal space of the heat storage container body 502, the path 524 of the connection part 507, and the accommodating part 514 of the fire fighting part 505 are connected. Therefore, as shown in FIG. 20, the latent heat storage material 504 sealed in the internal space of the heat storage container body 502 by the melting unit 20 passes through the path 524 of the connection unit 507 before reaching the flash point. Move to 505. The latent heat storage material 504 that has moved to the fire fighting unit 505 is accommodated in the accommodating unit 514.
  • the heat storage unit 503 has an inclined part 508 on the connection part 507 side inclined toward the opening 506 so that the fluidized latent heat storage material 504 can easily move to the fire fighting part 505. For this reason, when the fluidized latent heat storage material 504 moves by gravity to the fire fighting section 505 below, the inclined section 508 can flow the latent heat storage material 504 toward the opening 506 of the heat storage container body 502. Moreover, the inner wall of the heat storage container body 502 including the inclined portion 508 has a smooth surface. For this reason, the heat storage unit 503 can prevent the latent heat storage material 504 from staying in a corner of the heat storage container body 502 or the like.
  • the fire extinguishing and fireproofing agent 512 is exposed in the housing part 514 of the fire department 505. For this reason, the latent heat storage material 504 moved to the housing part 514 of the fire fighting part 505 can come into contact with the fire extinguishing fire prevention agent 512 and is mixed with the fire extinguishing fire prevention agent 512. Since the fire-extinguishing and fire-proofing agent 512 contains a flame retardant, the latent heat storage material 504 is flame-retarded by mixing with the fire-extinguishing and fire-proofing agent 512 and becomes a flame-retarding latent heat storage material 518. The latent heat storage material 504 has no measures against ignition and ignition.
  • the latent heat storage material 504 moves to the fire fighting section 505 and changes to the flame retardant latent heat storage material 518, so that the flash point and the ignition point are increased and it is difficult to burn.
  • the heat storage member 501 can prevent ignition and ignition of the latent heat storage material 504.
  • the latent heat storage material 504 is It is mixed with the fire extinguishing and fireproofing agent 512 and changed to a flame retardant latent heat storage material 518.
  • the flame of the latent heat storage material 504 gradually weakens and eventually disappears.
  • the heat storage member 501 can also extinguish the combustion of the latent heat storage material 504.
  • the heat storage member 501 moves the latent heat storage material 504 from the heat storage section 503 to the fire fighting section 505 by gravity when a fire occurs, and changes the latent heat storage material 504 to the flame-retarded latent heat storage material 518, thereby latent heat storage.
  • the ignition and ignition of the material 504 can be prevented, and the combustion of the latent heat storage material 504 can be extinguished.
  • the conventional heat storage member using the latent heat storage material containing normal paraffin is used to solidify the latent heat storage material with an additive in order to prevent the normal paraffin from igniting or igniting when the temperature rises due to a fire or the like.
  • the properties of the latent heat storage material are changed by the additive, and the heat storage performance is lowered.
  • a flame retardant or a microcapsule containing the flame retardant may be mixed with the latent heat storage material in order to prevent normal paraffin from being ignited or ignited when the temperature rises due to a fire or the like.
  • the conventional heat storage member may be wrapped with the latent heat storage material by a nonflammable material.
  • the container used for wrapping has priority on nonflammability over heat transfer. For this reason, since the said heat storage member requires that the said container is nonflammable, it has the problem that the raw material of the said container will be restrict
  • the heat storage member 501 has a heat storage unit 503 that exhibits a heat storage function and a fire fighting unit 505 that performs a fire extinguishing or fire prevention (fire fighting) function, and has each independently. ing.
  • the heat storage unit 503 and the fire fighting unit 505 are arranged apart from each other.
  • the heat storage unit 503 does not need to exhibit a fire fighting function and does not require a flame retardant. Therefore, the heat storage unit 503 can include the amount of latent heat storage material 504 necessary for heat storage. Further, during normal use of the heat storage member 501, the latent heat storage material 504 and the fire-extinguishing / fire-retardant agent 512 are not in contact with or mixed with each other.
  • the heat storage member 501 has a structure in which the latent heat storage material 504 is moved to the fire fighting unit 505 in the event of a fire to mix the latent heat storage material 504 and the fire extinguishing and fireproofing agent 12.
  • the heat storage member 501 can be provided with a fire extinguishing / fireproofing agent 512 in an amount necessary to extinguish or prevent the combustion of the latent heat storage material 504 in the fire fighting unit 505.
  • the heat storage member 501 does not have a trade-off relationship between the heat storage function and the fire fighting function, the heat storage member 501 is excellent in heat storage performance, and the effect that the combustion of the latent heat storage material can be extinguished or prevented can be obtained. .
  • FIG. 21A is a view of the heat storage member 501 observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522.
  • the fire extinguishing fire prevention agent 512 with which the fire fighting part 505 was equipped contains the suffocating gas generating material.
  • the suffocating gas generating material generates a suffocating gas by heating to extinguish or prevent the combustion of the latent heat storage material 504 by suffocation extinction.
  • Suffocation extinction refers to extinguishing or preventing combustion by reducing the oxygen concentration in the air below the amount necessary for maintaining combustion, or for ignition or ignition. Combustion of combustibles cannot be maintained when the oxygen concentration in the air is 15% or less. In addition, ignition and ignition of combustible materials are suppressed when the oxygen concentration in the air is 15% or less.
  • the suffocating gas generating material for example, carbonates such as calcium carbonate and sodium carbonate that generate carbon dioxide by heating, ammonium polyphosphate that generates ammonia, azo compounds that generate nitrogen, and the like can be used.
  • the fire extinguishing and fireproofing agent 512 is formed of an inorganic foam material, an organic foam material, or the like that generates any suffocating gas such as carbon dioxide, ammonia, and nitrogen.
  • ammonium carbonate will be described as an example of the suffocating gas generating material contained in the fire extinguishing and fireproofing agent 512.
  • the fire-fighting container body 510 can be used even if the suffocating gas is generated.
  • the internal pressure of the fire fighting container 510 does not increase so as to be damaged.
  • the fire fighting container 510 may not be able to secure a storage portion 514 that is large enough to store the suffocating gas. In this case, there is a risk that the internal pressure of the fire fighting container 510 will rise to such an extent that the fire fighting container 510 is damaged by the generation of the suffocating gas.
  • a one-way type pressure valve 526 may be provided. The pressure valve 526 allows excess suffocating gas to flow out from the housing portion 514 to the outside of the fire fighting portion 505 and to prevent gas from flowing into the housing portion 514 from the outside.
  • FIG. 21B is a cross-section of the heat storage member 501 similar to FIG. 21A, and shows the heat storage member 501 after the melting part 520 has melted.
  • the latent heat storage material 504 changes from a solid phase to a liquid phase and the fluidity increases.
  • the melting part 520 is melted before the internal temperature of the heat storage container body 502 reaches the flash point of the latent heat storage material 504. For this reason, the internal space of the heat storage container body 502 of the heat storage unit 503 and the accommodation unit 514 of the fire fighting unit 505 are electrically connected via the path 524 of the connection unit 507 to be connected. Since the latent heat storage material 504 is fluidized by phase transition from the solid phase to the liquid phase, the latent heat storage material 504 moves to the fire fighting unit 505 through the path 524 by gravity.
  • the fire department 505 has a fire extinguishing and fire-proofing agent 512 containing ammonium carbonate that generates a suffocating gas by heating.
  • the fire-extinguishing and fire-proofing agent 512 starts to generate carbon dioxide, ammonia, and water vapor as the suffocating gas 511 when the internal temperature of the fire fighting container 510 of the fire fighting unit 505 rises to about 60 ° C. . Since the generated suffocating gas 511 is filled in the storage portion 514, the oxygen concentration in the storage portion 514 can be reduced.
  • the oxygen concentration in the accommodating part 514 becomes lower than a density
  • the heat storage member 501 can prevent combustion, ignition, or ignition of the latent heat storage material 504.
  • the heat storage member 501 can perform suffocation fire extinguishing suitable for extinguishing the latent heat storage material 504 including paraffin in the fire fighting unit 505.
  • Suffocating gas 511 heavier than air such as carbon dioxide, tends to stay below heat storage member 501. For this reason, the state of the heat storage member 501 after the movement of the latent heat storage material 504 to the fire fighting unit 505 is completed, the latent heat storage material 504 is disposed at the lowermost position in the storage unit 514, and suffocation is directly above the latent heat storage material 504. The gas 511 is filled, and the air is filled above the suffocating gas 511. The suffocating gas 511 can stay between the latent heat storage material 504 and the air and block the supply of oxygen to the latent heat storage material 504. Thereby, the heat storage member 501 can prevent ignition, ignition and combustion of the latent heat storage material 504. Thus, by using the suffocating gas 511 heavier than air, the heat storage member 501 can enhance the effect of suffocation extinction of the latent heat storage material 504.
  • the fire fighting unit 505 has a pressure valve 526 when it is not possible to secure a storage unit 514 large enough to store the generated suffocating gas 511.
  • a pressure gauge (not shown) detects that the internal pressure of the fire fighting vessel body 510, the connecting pipe 522, and the heat storage vessel body 502 has become higher than a predetermined value as the suffocating gas 511 is generated, the heat storage member 501 526 is opened to release the air in the housing portion 514 and the suffocating gas 511 to the outside of the heat storage member 501. Thereby, the heat storage member 501 can prevent the fire department 505 from bursting.
  • the heat storage member 501 closes the pressure valve 526 when the internal pressure in the accommodating portion 514 becomes lower than a predetermined value, and ensures the sealing of the fire fighting vessel body 510, the connecting pipe 522, and the heat storage vessel body 502. .
  • the pressure valve 526 is a one-way type, external air can be prevented from flowing into the housing portion 514 when the air or the suffocating gas 511 is released.
  • the pressure adjusting spring (not shown) provided in the pressure valve 526 is deformed, and the pressure valve 526 is opened to open the pressure valve 526.
  • a general spring-type pressure regulating valve may be used as the pressure valve 526 in which the pressure valve is closed again by the force of the spring when the gas is released and the pressure drops.
  • the heat storage member 501 can extinguish or prevent the combustion of the latent heat storage material 504 even if the volume of the housing portion 514 is small.
  • the heat storage member 501 according to the present embodiment uses the fire-extinguishing and fire-preventing agent 512 containing either one of a flame retardant or a suffocating gas generating material, but the fire-extinguishing and fire-proofing agent containing both the flame retardant and the suffocating gas generating material.
  • 512 may be used.
  • the heat storage member 501 is provided separately from the heat storage unit 503 and the heat storage unit 503 used for heat exchange with the outside, and latent heat storage is performed when the temperature rises due to a fire or the like. And a fire fighting unit 505 that extinguishes or prevents the combustion of the material 504. Since the heat storage unit 503 is provided separately from the fire fighting unit 505, it is not necessary to mix a flame retardant with the latent heat storage material or to cover the outer periphery of the heat storage unit 503 with a non-combustible material as in the past. For this reason, the heat storage part 503 can select the material of the latent heat storage material and the heat storage container body 502 for maximizing the heat storage function.
  • the heat storage member 501 extinguishes or prevents the combustion of the latent heat storage material 504 by moving the latent heat storage material 504 to the fire department 505 before the latent heat storage material 504 reaches the flash point in the event of a fire.
  • the latent heat storage material 504 that has moved to the fire department 505 no longer needs to exhibit heat storage.
  • the fire fighting unit 505 can be provided with a fire extinguishing fire prevention agent 512 containing a sufficient amount of a flame retardant and a suffocating gas generating material to extinguish or prevent the combustion of the latent heat storage material 504.
  • the heat storage member 501 has the heat storage unit 503 that exhibits the heat storage function and the fire fighting unit 505 that exhibits the fire fighting function.
  • the heat storage member 501 has an excellent heat storage function, can prevent ignition and ignition of the latent heat storage material 504, and can suppress the combustion of the latent heat storage material 504 at an early stage and extinguish the fire.
  • the heat storage member 501 sufficiently reduces the possibility of ignition or ignition of the latent heat storage material 504 while having excellent heat storage performance as compared with a conventional heat storage member that takes into consideration the balance between heat storage and flame retardancy. can do.
  • the heat storage member 501 of the present embodiment has a latent heat storage material 504 that has a fluidity by causing a phase transition from a solid phase to a liquid phase when the temperature rises where the possibility of ignition or ignition increases.
  • the heat storage member 501 has a fire fighting unit 505 vertically below the heat storage unit 503. Before the latent heat storage material 504 reaches the flash point, the melting part 520 is melted, and the internal space of the heat storage container body 502 and the housing part 514 of the fire fighting container body 510 are brought into conduction via the path 524 of the connection pipe 522.
  • the heat storage member 501 can move the latent heat storage material 504 contained in the heat storage container 510 when the temperature rises to the accommodation portion 514 vertically below through the path 524 by gravity. For this reason, the heat storage member 501 does not require a moving mechanism for moving the latent heat storage material 504 from the heat storage unit 503 to the fire fighting unit 505. Therefore, the heat storage member 501 can be realized with a simple structure.
  • the heat storage member 501 has a melting part 520 that melts at a specific temperature between the heat storage part 503 and the fire fighting part 505.
  • the melting part 520 melts before the latent heat storage material 504 reaches a temperature at which the possibility of ignition or ignition increases. Thereby, the heat storage member 501 can be moved from the heat storage unit 503 to the fire fighting unit 505 before the latent heat storage material 504 ignites.
  • the heat storage unit 503 has an inclined part 508 in which the bottom surface of the heat storage container body 502 is inclined downward toward the opening 506.
  • the heat storage member 501 can move the fluidized latent heat storage material 504 to the fire fighting unit 505 without remaining in the inner corner of the heat storage container body 502 or the like.
  • FIG. 22 is a schematic view of the heat storage member 501 according to the first modification of the present embodiment observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522.
  • the heat storage member 501 according to this modification is characterized in that it includes a plurality of connecting pipes 522.
  • the heat storage member 501 has a plurality (two in this example) of connecting portions 507.
  • Each of the connection portions 507 in this example has the same configuration as the connection portion 507 of the heat storage member 501 shown in FIG. 19 and is formed of the same forming material, and thus detailed description thereof is omitted.
  • the two connection parts 507 are connected to the same heat storage part 503 and are connected to the same fire fighting part 505. Note that the heat storage unit 503 and the fire fighting unit 505 are not limited to being connected by the two connection units 507, and may be connected by three or more connection units 507.
  • FIG. 23 is a schematic view of the heat storage member 501 according to this modification observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522.
  • the heat storage member 501 according to the present modification is characterized in that a plurality of fire fighting units 505 are further provided in addition to the characteristics of the heat storage member 501 according to the first modification.
  • the heat storage member 501 has a plurality (two in this example) of fire fighting units 505. Since each of the fire fighting units 505 has the same configuration as the fire fighting unit 505 of the heat storage member 501 shown in FIG. 19 and is formed of the same forming material, detailed description thereof is omitted. The same number of fire departments 505 as the connection parts 507 are provided. The two fire fighting parts 505 are connected to the same heat storage part 503 via different connection parts 507. Note that the number of fire fighting units 505 is not limited to two, and the heat storage members 501 may have three or more fire fighting units 505 as long as the number of the heat storage members 501 is the same as the number of connection units 507.
  • FIG. 24 is a schematic view of the heat storage member 501 according to this modification observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522.
  • the heat storage member 501 according to the present modification is characterized in that in addition to the characteristics of the heat storage member 501 according to the first modification, a plurality of heat storage portions 503 are further provided.
  • the heat storage member 501 has a plurality (two in this example) of heat storage units 503. Since each of the heat storage units 503 has the same configuration as the heat storage unit 503 of the heat storage member 501 shown in FIG. 19 and is formed of the same forming material, detailed description thereof is omitted. The same number of heat storage units 503 as the connection units 507 are provided. The two heat storage parts 503 are connected to the same fire fighting part 505 through different connection parts 507. Note that the number of the heat storage units 503 is not limited to two, and the heat storage member 501 may have three or more heat storage units 503 as long as the number of the heat storage members 501 is the same as the number of the connection units 507.
  • FIG. 25 is a schematic view of the heat storage member 501 according to this modification observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522.
  • the heat storage member 501 according to this modification is characterized in that a heat storage unit 503 is further provided between the heat storage unit 503 and the fire fighting unit 505.
  • the heat storage unit 503 provided in the heat storage member 501 according to this modification has substantially the same configuration as the heat storage unit 503.
  • the heat storage container body 532 of the heat storage unit 533 has substantially the same shape as the heat storage container body 502 of the heat storage unit 503 and is formed of the same forming material.
  • the heat storage unit 533 includes a circular opening 539 that is opened at the substantially center of the upper surface of the heat storage container body 532.
  • the opening 539 is closely connected to the opening 506 of the heat storage unit 503.
  • a melting portion 520 is disposed at a connection point between the opening 506 of the heat storage unit 503 and the opening 539 of the heat storage unit 533.
  • the heat storage part 503 and the heat storage part 533 may be connected via a connection part formed in the same shape with the same forming material as the connection part 507.
  • the heat storage unit 533 has a circular opening 536 having an opening at substantially the center of the bottom surface of the heat storage container body 532.
  • the heat storage unit 533 includes a funnel-shaped inclined portion 538 in which the bottom surface of the heat storage container body 532 is inclined downward toward the opening 536.
  • the internal space of the heat storage container body 532 is filled with a latent heat storage material 534.
  • the opening 536 of the heat storage unit 533 is closely connected to one end of the connection pipe 522 of the connection unit 507.
  • a melting portion 520 is disposed at a connection portion between the opening 536 and the connection pipe 522.
  • the latent heat storage material 534 is sealed in the internal space of the heat storage container body 532 by a melting portion 520 disposed so as to close the opening 536 and a melting portion 520 disposed at a connection location in the vicinity of the opening 539.
  • the latent heat storage material 504 is sealed in the internal space of the heat storage container body 502 by a melting portion 520 disposed at a connection location near the opening 506.
  • the latent heat storage material 534 includes paraffin as with the latent heat storage material 504.
  • the paraffin contained in the latent heat storage material 534 is different from the melting point of the paraffin contained in the latent heat storage material 504.
  • the heat storage member 501 can include a plurality of (two in this example) latent heat storage materials having different melting points by including the heat storage units 503 and 533. Further, the specific temperature at which the melting part 520 melts is higher than the melting point of the latent heat storage materials 504 and 534 and lower than the flash point or ignition point of the latent heat storage materials 504 and 534. For this reason, in the heat storage member 501, when the temperature rises due to a fire or the like, the melting part 520 is melted before the latent heat storage materials 504 and 534 reach the flash point.
  • the accommodating portion 514 of the heat storage member 501 has a volume larger than the volume in the case where the latent heat storage materials 504 and 534 have a fluidity by phase transition from the solid phase to the liquid phase. Accordingly, the fire fighting unit 505 can accommodate all of the latent heat storage materials 504 and 534 that have flowed out of the heat storage units 503 and 533 in the storage unit 514.
  • the heat storage member 501 can extinguish or prevent the combustion of the latent heat storage materials 504 and 534 by moving all of the latent heat storage materials 504 and 534 to the fire fighting unit 505 when the temperature rises during a fire or the like.
  • the heat storage member 501 according to the present modified example includes one or more other heat storage units between the heat storage unit 503 and the heat storage unit 533, and each of the heat storage units has a latent heat storage material having a different melting point. May be.
  • FIG. 26 shows a schematic cross-sectional configuration of a heat storage member 501 according to this modification.
  • the heat storage member 501 according to this modification is characterized in that two hollow flat plate-like members are connected and a heat storage part 543 having an L-shaped cross section is provided.
  • the heat storage member 501 is provided separately from the heat storage unit 543 provided with the latent heat storage material 504 and the heat storage unit 543, and fire fighting that extinguishes or prevents the combustion of the latent heat storage material 504.
  • the heat storage unit 543 includes a member 543a and a member 43b.
  • the member 543a has a hollow flat rectangular parallelepiped shape.
  • the member 543b has a hollow flat plate shape.
  • the latent heat storage material 504 is filled in the hollow internal space of the members 543a and 543b.
  • the member 543a is arranged such that the longitudinal direction is directed in the vertical direction when the heat storage member 501 is actually used.
  • the heat storage unit 543 has an opening 546a that opens the entire bottom surface of the member 543a. Further, the heat storage unit 543 has an opening 549a that opens the entire upper surface of the member 543a.
  • the member 543b is arranged so that the longitudinal direction is slightly inclined downward with respect to the horizontal direction when the heat storage member 501 is actually used.
  • the heat storage member 501 has the member 543b inclined downward so that the latent heat storage material 504 can be easily moved to the fire fighting section 505.
  • the heat storage member 501 according to the present modification includes an inclined portion 548 configured by the member 543b itself.
  • the heat storage unit 543 has an opening 549b that opens on the entire surface of one side surface of the member 543b.
  • the members 543a and 543b are closely connected with the periphery of the opening 549a and the periphery of the opening 549b being aligned. Thereby, the internal space of the member 543b and the internal space of the member 543a are electrically connected to form a continuous space.
  • the internal space of the members 543a and 543b is filled with a latent heat storage material 504.
  • the latent heat storage material 504 is disposed in the interior space of the members 543 a and 543 b by a melting portion 520 that is disposed so as to close the opening 546 a and melts at a specific temperature.
  • the fire fighting unit 505 is disposed vertically below the heat storage unit 543 during actual use.
  • the fire fighting section 505 is provided with an opening on the upper surface of the fire fighting container body 510, and has an opening 519 formed in the same size as the opening 546a of the member 543a.
  • the fire fighting unit 505 and the heat storage unit 543 are closely connected with the periphery of the opening 519 and the periphery of the opening 546a being aligned.
  • the heat storage member 501 of this embodiment when the temperature rises due to a fire or the like, the melting part 520 melts before the latent heat storage material 504 reaches the flash point, and the internal space of the members 543a and 543b of the heat storage part 543 and the fire fighting part 505
  • the housing portion 514 is electrically connected to be connected.
  • the heat storage member 501 can extinguish or prevent the combustion of the latent heat storage material 504 by moving the latent heat storage material 504 to the housing section 514 of the fire fighting section 505.
  • the heat storage part 543 has an inclined part 548.
  • the heat storage unit 543 includes members 543a and 543b having inner walls with smooth surfaces without unevenness. For this reason, the heat storage member 501 can reliably move all the latent heat storage materials 504 from the heat storage unit 543 to the fire fighting unit 505, and can prevent the latent heat storage materials 504 from staying in the corners of the member 543b.
  • the members 543a and 543b of the heat storage unit 543 may be integrally formed.
  • the opening part 546a of the heat storage part 543 and the opening part 519 of the fire fighting container 510 may be formed in a circle.
  • the heat storage unit 543 may have an inclined portion in which the member 543a is inclined in a funnel shape toward the opening 546a.
  • the heat storage member 501 can prevent the latent heat storage material 504 from staying or remaining in the inclusions of the members 543a and 543b by the inclined portion.
  • any operation of the heat storage member 501 according to Modifications 1 to 5 is the same as the operation of the heat storage member 501 according to the present embodiment, and thus description thereof is omitted. Moreover, according to the heat storage member 501 by the modifications 1 to 5, the same effect as that of the heat storage member 501 according to the present embodiment can be obtained.
  • FIG. 27 is a schematic view of the heat storage member 501 according to this modification observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522.
  • Fig.27 (a) is a figure explaining the general
  • the heat storage member 501 according to the present modification has substantially the same configuration as the heat storage member 501 according to the fourth modification, but the heat storage member 503 is replaced with the heat storage member 533 as compared with the heat storage member 501 according to the fourth modification. Is different from the heat storage unit 503 in that a fire fighting unit 590 is provided. Further, the heat storage member 501 according to this modification is characterized in that the fire fighting unit 590 is arranged vertically above the heat storage unit 503 during actual use.
  • the heat storage unit 503 has the same configuration as that of the heat storage unit 503 provided in the heat storage member 501 of Modification 4 except that the heat storage unit 503 has a circular opening 539 having a substantially central opening on the upper surface of the heat storage container body 502. Description is omitted.
  • the fire fighting unit 590 provided in the heat storage member 501 has substantially the same configuration as the heat storage unit 503.
  • the fire-fighting container body 592 of the fire-fighting unit 590 has a slightly low height, it has, for example, substantially the same shape as the heat-storage container body 502 of the heat-storage part 503 and is formed of, for example, the same forming material.
  • the fire fighting section 590 has a circular opening 596 having an opening at substantially the center of the bottom surface of the fire fighting container body 592.
  • the fire fighting part 590 has a funnel-shaped inclined part 598 in which the bottom face of the fire fighting container body 592 is inclined downward toward the opening part 596.
  • a fire extinguishing and fireproofing agent 591 is filled in the internal space of the fire fighting container body 592.
  • the heat storage member 501 has a connection part 597 for connecting the fire fighting part 590 and the heat storage part 503.
  • the connection part 597 has a short length, it has substantially the same configuration as the connection part 507, for example, and is formed of, for example, the same forming material.
  • the connection portion 597 has a connection pipe 592.
  • the connecting pipe 592 has, for example, a hollow cylindrical shape with both ends opened.
  • a path 594 for moving the fire extinguishing and fireproofing agent 591 from the fire fighting section 590 to the heat storage section 503 is formed inside the connection pipe 592 when the temperature rises due to a fire or the like.
  • the heat storage member 501 has a melting part 520 disposed so as to close almost the entire path 594.
  • the connecting pipe 592 is not limited to a cylinder, and may have other cross-sectional shapes as necessary.
  • connection pipe 592 of the connecting part 597 is in close contact with the opening 596 of the fire fighting part 590.
  • the other end of the connection pipe 592 is closely connected to the opening 539 of the heat storage unit 503.
  • the melting part 520 is arranged from a connection point between one end of the connection pipe 592 and the opening 596 to a connection point between the other end of the connection pipe 592 and the opening 539.
  • the fire fighting unit 590 and the heat storage unit 503 may be directly connected without being connected via the connection unit 597.
  • the fire fighting unit 505 of the heat storage member 501 according to the present modification has the same configuration as the fire fighting unit 505 of the heat storage member 501 according to the modification 4 except that a suffocating gas generating material is disposed as the fire extinguishing and fire prevention agent 512. And is formed of the same forming material.
  • the fluidity of the latent heat storage material 504 provided in the heat storage unit 503 is increased by a phase transition from a solid phase to a liquid phase due to a temperature rise due to a fire or the like.
  • the melting part 520 that separates the heat storage part 503 from the fire fighting part 505 and the fire fighting part 590 is made of a material having a melting point that is higher than the melting point of the latent heat storage material 504 and lower than the flash point or ignition point of the latent heat storage material 504. Yes.
  • the melting part 520 melts before the latent heat storage material 504 reaches the flash point or the ignition point.
  • the fire fighting section 505 and the fire fighting section 590 and the heat storage section 503 are connected, the internal space of the fire fighting container body 592, the path 594 of the connecting pipe 592, the internal space of the container main body 502, and the path 524 of the connecting pipe 522.
  • the accommodating part 514 conduct
  • the heat storage member 501 according to the present modification can mix the fire extinguishing and fireproofing agent 591 with the latent heat storage material 504 remaining in the heat storage unit 503 from the fire fighting unit 590 provided on the upper part thereof. Since the fire fighting part 590 has the inclined part 598, the fire-extinguishing and fire-proofing agent 591 can efficiently flow out to the heat storage part 503.
  • the fire extinguishing and fireproofing agent 591 includes a flame retardant additive.
  • the fire-extinguishing fireproofing agent 591 is mixed with the latent heat storage material 504, and a flame-retardant additive is added.
  • a flame-retardant additive is added.
  • the upper part side of the latent heat storage material 504 inside the thermal storage part 503 is flame-retarded by mixing with the fire-extinguishing fireproofing agent 591 and becomes the flame-retarded latent heat storage material 518.
  • the latent heat storage material 504 is ignited even when the temperature rises until all the latent heat storage material 504 flows into the storage section 514 provided in the fire fighting section 505. The effect that the possibility of ignition can be reduced is obtained.
  • the melting part 520 that separates the fire fighting parts 505 and 590 and the heat storage part 503 is melted at the same temperature, but is not limited thereto.
  • the fire extinguishing / extinguishing agent 591 is first added to the latent heat storage material 504 from the fire fighting unit 590 by changing the material of each melting part 520, and then the latent heat storage material 504 is changed to the fire fighting unit. By pouring into 505, it becomes possible to provide an effective fire prevention function by combining a plurality of fire extinguishing and fireproofing agents.
  • FIG. 28 is a perspective view showing an appearance of the storage container 600 according to the present embodiment.
  • FIG. 29 shows a state in which a cross section of the storage container 600 taken along the line AA ′ in FIG. 28 in the illustrated vertical direction (the direction of the arrow along the line AA ′) is observed from the right side 601b side.
  • Yes. 29 shows the storage container 600 with the door 602 closed.
  • a direct cooling refrigerator will be described as an example of the storage container 600.
  • the storage container 600 includes a storage container body 601 having a rectangular parallelepiped shape that is vertically high in the installed state.
  • FIG. 28 is a perspective view showing an appearance of the storage container 600 according to the present embodiment.
  • FIG. 29 shows a state in which a cross section of the storage container 600 taken along the line AA ′ in FIG. 28 in the illustrated vertical direction (the direction of the arrow along the line AA ′) is observed from the right side 601b side.
  • Yes. 29 shows the storage container 600 with the door
  • the storage container 600 has a storage chamber 604 for storing a hollow box-shaped storage product provided in the storage container body 601 with a rectangular opening as an opening end.
  • a door 602 is attached to the right side of the opening end of the storage chamber 604 on the front surface 601a through an unillustrated hinge so as to be opened and closed.
  • the door 602 is shown in an open state by a solid line, and closed in a two-dot chain line.
  • the door 602 has a rectangular flat plate shape having a region that closes the rectangular opening of the storage chamber 604 in a closed state.
  • a door packing 603 is provided on the side of the door 602 facing the outer periphery including the opening of the storage chamber 604 to ensure the sealing of the storage chamber 604 when the door is closed.
  • the storage container 600 includes a heat storage section 553 and 563 provided surrounding the storage chamber 604 with the door 602 closed, and the storage chamber 601 on the bottom side of the storage container body 601. It has a heat storage member 501 provided with a fire fighting section 505 arranged in an empty area 607 provided below 604.
  • the heat storage unit 553 includes a hollow box-shaped heat storage container body 552 and a latent heat storage material 554 filled in the internal space of the heat storage container body 552.
  • the heat storage container body 552 is disposed on the entire inner wall of the storage chamber 604.
  • the heat storage unit 563 includes a hollow flat plate-shaped heat storage container body 562 and a latent heat storage material 554 filled in the internal space of the heat storage container body 562.
  • the heat storage container body 562 is disposed on the entire inner wall of the door 602.
  • the heat storage container bodies 552 and 562 are formed of the same material as the heat storage container body 502 in the heat storage member 501 according to the above embodiment.
  • the heat storage units 553 and 563 are configured to accumulate the heat of the storage chamber 604 when the storage container 600 is operated, and to release the heat accumulated at the time of stoppage to the storage chamber 604.
  • the latent heat storage material 554 filled in the heat storage container bodies 552 and 562 contains paraffin in the same manner as the latent heat storage material 504.
  • the latent heat storage material 554 used for the storage container 600 that is a refrigerator contains normal tetradecane having 14 carbon atoms.
  • the phase transition temperature (melting point) from the liquid phase to the solid phase of normal tetradecane is about 6 ° C.
  • the flash point of normal tetradecane is about 102 ° C.
  • the heat storage unit 553 has a plurality (two in this example) of circular openings 506 in which a part of the bottom surface of the heat storage container body 552 is opened.
  • the latent heat storage material 554 is sealed in the internal space of the heat storage container body 552 by a melting part 540 disposed so as to close the opening 506.
  • the heat storage unit 553 has a funnel-shaped inclined portion 508 in which the bottom surface of the heat storage container body 552 is inclined downward toward the opening 506.
  • the heat storage part 553 has an inclined part 558 in which a heat storage container body 552 disposed above the storage chamber 604 is inclined downward.
  • the heat storage part 553 is connected to the two connection parts 507.
  • the heat storage container body 552 of the heat storage unit 553 is connected to one end of each connection pipe 522 of the two connection units 507.
  • Each of the connecting pipes 522 is open at both ends and has a hollow cylindrical shape.
  • the connection part 507 has a path 524 that moves the latent heat storage material 554 that is provided and fluidized inside the connection pipe 522 from the heat storage part 553 to the fire fighting part 505.
  • a hollow portion of the connection pipe 522 is a path 524.
  • One end of the connection pipe 522 is closely connected to the opening 506 of the heat storage container body 552.
  • a melting part 540 is disposed in a path 524 where the connecting pipe 522 and the opening 506 are connected.
  • the melting part 540 is melted at a temperature higher than the melting point of the latent heat storage material 554 and lower than the flash point or ignition point of the latent heat storage material 554.
  • the melting portion 540 is formed using a Sn-based alloy, an In—Sn based alloy, a Zn—In based alloy, a Bi—In based alloy, or the like.
  • the melting part 540 exhibits the same function as the melting part 520 and has the same effect.
  • the heat storage part 563 provided in the door 602 has a circular opening 506 in which a heat storage container body 562 on a hinge part (not shown) is opened.
  • the latent heat storage material 554 is sealed in the internal space of the heat storage container body 562 by a melting part 540 disposed so as to close the circular opening 506.
  • the heat storage unit 563 has a funnel-shaped inclined portion 508 in which the bottom surface of the heat storage container body 562 is inclined downward toward the opening 506.
  • the heat storage unit 563 has an inclined part 568 in which the heat storage container body 562 disposed above the door 602 is inclined downward.
  • the heat storage part 563 is connected to a connection part 507 provided in the hinge part.
  • the heat storage container body 562 of the heat storage unit 563 is connected to one end of the connection pipe 522 of the connection unit 507.
  • the connecting pipe 522 is disposed at the hinge portion. Thereby, the connection part 507 does not inhibit the opening / closing operation
  • the connecting pipe 522 is open at both ends and has a hollow cylindrical shape.
  • the connection part 507 has a path 524 that moves the latent heat storage material 554 that is provided and fluidized inside the connection pipe 522 from the heat storage part 563 to the fire fighting part 505.
  • a hollow portion of the connection pipe 522 is a path 524.
  • connection pipe 522 is closely connected to the opening 506 of the heat storage container body 562.
  • a melting portion 540 is disposed in a path 524 where the connecting pipe 522 and the opening 506 of the heat storage container body 562 are connected.
  • the melting part 540 is formed of the same material as the melting part 540 provided on the storage chamber 604 side. Note that the connecting pipe 522 may be formed integrally with the rotating shaft portion of the hinge portion.
  • the fire fighting section 505 arranged in the empty area 607 below the storage room 604 has a fire fighting container body 510 formed in a hollow box-like rectangular parallelepiped shape.
  • the fire fighting unit 505 has the same number of circular openings 516 that open a part of the upper surface of the fire fighting container body 510 as the connection parts 507.
  • the opening 516 of the fire fighting container 510 is intimately connected to the other end of the connection pipe 522 of the connection part 507.
  • the fire fighting unit 505 includes a storage unit 514 that stores the fluidized latent heat storage material 554 that has moved from the heat storage units 553 and 563.
  • the accommodating part 514 is provided in the hollow part of the fire fighting container body 510.
  • the accommodating portion 514 is connected to the path 524 of the connecting portion 507 through the opening 516 and is continuous.
  • the accommodating part 514 has a volume larger than the volume when the latent heat storage material 554 sealed by the heat storage parts 553 and 563 is liquefied and has fluidity.
  • the fire fighting unit 505 has a fire extinguishing and fireproofing agent 512 disposed on the bottom surface of the housing unit 514 inside the fire fighting container body 510.
  • the fire extinguishing and fireproofing agent 512 contains a flame retardant.
  • the flame retardant for example, a chlorinated paraffin or a chlorinated phosphate of a halogen compound can be used.
  • the fire extinguishing and fireproofing agent 512 is exposed in the housing portion 514. As a result, the fire extinguishing and fireproofing agent 512 is mixed with the latent heat storage material 554 while being in contact with the latent heat storage material 554 that has moved from the heat storage units 553 and 563.
  • a heat insulating material 605 is disposed between the inner wall and the outer wall of the storage container body 601.
  • the inner wall of the storage container body 601 is a wall part in contact with the heat storage part 553, and the outer wall is a wall part in contact with the outside.
  • the heat insulating material 605 is disposed in a region surrounding the storage chamber 604 excluding the front surface 601 a (see FIG. 28) side of the storage container body 601.
  • a heat insulating material 606 is disposed between the inner wall and the outer wall of the door 602.
  • the inner wall of the door 602 is a wall part in contact with the heat storage part 563
  • the outer wall is a wall part in contact with the outside.
  • the heat insulating material 606 is disposed in a region facing the front surface 601a of the storage container body 601 with the door 602 closed.
  • the entire periphery of the storage chamber 604 is surrounded by the heat insulating material 605 and the heat insulating material 606.
  • the heat insulating materials 605 and 606 can insulate the storage chamber 604 cooled to a predetermined temperature so that heat is not transmitted from the outside of the storage container 600.
  • the heat insulating materials 605 and 606 are formed using a forming material such as a fiber heat insulating material (glass wool or the like) or a foamed resin heat insulating material.
  • a cooler 608 serving as a heat exchanger is disposed above the storage chamber 604 and on the surface of the heat storage container body 552.
  • the cooler 608 has an evaporation mechanism (not shown) for evaporating the refrigerant.
  • a pipe 610 for supplying a refrigerant to an evaporation mechanism (not shown) in the cooler 608 is disposed.
  • the pipe 610 is connected to a compressor 612 accommodated in an empty area 607 arranged on the bottom surface of the storage container body 601.
  • the cooler 608, the pipe 610, and the compressor 612 constitute a gas compression type cooling device. Instead of the gas compression cooling device, a gas absorption cooling device or an electronic cooling device using the Peltier effect may be used.
  • the refrigerant compressed by the compressor 612 is condensed in the pipe 610 and then expanded to reach the cooler 608.
  • the cooler 608 cools the storage chamber 604 by heat of vaporization when the expanded refrigerant evaporates.
  • the cooler 608 can cool the temperature of the storage chamber 604 to about 3 ° C.
  • the heat exchange in the storage chamber 604 is performed between the surface of the cooler 608 and the air in the storage chamber 604.
  • a temperature sensor (not shown) is installed at a predetermined position in the storage chamber 604.
  • a temperature control device (not shown) provided in the storage container 600 controls the temperature of the storage chamber 604 by controlling the driving of the cooling device based on the temperature in the storage chamber 604 measured by the temperature sensor. Movement takes place in the cooler 608.
  • the storage container 600 can efficiently move the heat of relatively high-temperature air to the cooler 608.
  • the cooler 608 can maintain the latent heat storage material 554 included in the heat storage units 553 and 563 in a solid state that is equal to or lower than the phase transition temperature.
  • the latent heat storage material 554 that maintains the solid state exhibits a function of flattening the temporal change distribution of the temperature in the storage chamber 604.
  • the latent heat storage material 554 can be cooled by the cooler 608, and the latent heat storage material 554 can be maintained in a solid phase state equal to or lower than the phase transition temperature.
  • the storage container 600 starts to cool by the latent heat storage material 554 provided in the heat storage units 553 and 563 when the cooling capacity of the cooling device is lost due to a power failure or the like.
  • the temperature of the air in the storage chamber 604 is maintained within a predetermined temperature range for a certain period by the latent heat storage material 554. In the period until the latent heat storage material 554 undergoes a phase transition from the solid phase to the liquid phase, the temperature in the storage chamber 604 is maintained at about 6 ° C., for example.
  • the storage container 600 of the present embodiment can maintain the temperature in the storage chamber 604 at a predetermined low temperature for a certain period even when a power supply (not shown) of the storage container 600 is turned off due to a power failure or the like.
  • the operation of the storage container 600 when the temperature rises due to a fire or the like will be described.
  • the melting part 540 melts before the latent heat storage material 554 reaches the flash point.
  • the internal spaces of the heat storage container bodies 552 and 562 of the heat storage units 553 and 563 are connected to the accommodation unit 514 of the fire fighting unit 505 via the path 524 of the connection unit 507 and are continuously connected.
  • the fluidized latent heat storage material 554 moves to the fire fighting unit 505 through the path 524 of the connection unit 507.
  • the latent heat storage material 554 that has moved to the fire fighting unit 505 is stored in the storage unit 514.
  • the heat storage unit 553 includes inclined portions 508 and 558, and the inner walls of the heat storage container body 552 and the connecting pipe 522 have smooth surfaces. For this reason, the storage container 600 can reliably move all the latent heat storage materials 554 on the storage chamber 604 side to the fire fighting unit 505.
  • the heat storage unit 563 includes inclined portions 508 and 568, and the inner walls of the heat storage container body 562 and the connecting pipe 522 have smooth surfaces. For this reason, the storage container 600 can reliably move all the latent heat storage materials 554 on the door 602 side to the fire fighting unit 505.
  • the fire fighting unit 505 mixes the latent heat storage material 554 that has moved from the heat storage units 553 and 563 by gravity and the fire-extinguishing and fire-proofing agent 512 including the flame retardant in the housing unit 514. Since the fire-extinguishing / extinguishing agent 512 is exposed in the housing portion 514, the fire-extinguishing / fire-preventing agent 512 is mixed while being in contact with the latent heat storage material 554 housed in the housing portion 514.
  • the latent heat storage material 554 is flame-retarded by mixing with the fire-extinguishing and fire-proofing agent 512 and becomes a flame-retarding latent heat storage material.
  • the latent heat storage material 554 has no measures against ignition and ignition. However, the latent heat storage material 554 moves to the fire fighting section 505 and changes to a flame retardant latent heat storage material, so that the flash point and the ignition point become high and it is difficult to burn. Thereby, the storage container 600 can prevent ignition and ignition of the latent heat storage material 554.
  • the latent heat storage material 554 It mixes with the fire extinguishing fireproofing agent 512 and changes to a flame retardant latent heat storage material.
  • the latent heat storage material 554 By changing the latent heat storage material 554 to a flame retardant latent heat storage material, the flame of the latent heat storage material 554 gradually weakens and eventually disappears.
  • the storage container 600 can extinguish the combustion of the latent heat storage material 554.
  • the storage container 600 moves the latent heat storage material 554 from the heat storage units 553 and 563 to the fire fighting unit 505 by gravity when a fire occurs, and changes the latent heat storage material 554 to a flame-retarded latent heat storage material.
  • the ignition and ignition of the heat storage material 554 can be prevented, or the combustion of the latent heat storage material 554 can be extinguished.
  • a microcapsule containing a flame retardant or a flame retardant is mixed in order to suppress the ignition and ignition of normal tetradecane at the time of a temperature rise such as a fire.
  • Latent heat storage material is used.
  • a flame retardant is mixed with the latent heat storage material, the content of the latent heat storage material is reduced in the heat storage member, and the heat storage performance is deteriorated.
  • measures such as covering a heat storage part with a nonflammable material, may be taken in order to suppress the ignition and ignition of normal tetradecane.
  • the heat storage part is covered with a nonflammable material, the heat storage member is difficult to burn in a fire.
  • the thermal conductivity of the heat storage member related to the exchange of heat with the outside decreases. For this reason, as for the storage container, the heat storage performance in a storage room will fall.
  • the part 505 is provided separately.
  • the storage container 600 does not need to mix a flame retardant with the latent heat storage material 554, or to cover the heat storage parts 553 and 563 with a nonflammable material.
  • the heat storage container bodies 552 and 562 of the heat storage units 553 and 563 can be formed of a material having high thermal conductivity.
  • the surface exposed to the storage chamber 604 of the heat storage container bodies 552 and 562 may be the inner wall of the storage chamber 604.
  • the storage container 600 includes the heat storage member 501 in which the heat storage units 553 and 563 that exhibit the heat storage function and the fire fighting unit 505 that exhibits the function of fire fighting are independent. Accordingly, the storage container 600 exhibits an excellent heat storage function and an excellent fire fighting function using the latent heat storage material 554 containing paraffin, which has been difficult to use with conventional storage containers. Can do. Further, the storage container 600 has a fire fighting unit 505 disposed in an empty area 607 provided below the storage room 604. For this reason, the storage container 600 can include the heat storage member 501 without reducing the effective volume of the storage chamber 604.
  • the heat storage units 553 and 563 have inclined portions 508 on the connection portion 507 side, which are inclined so that the fluidized latent heat storage material 554 can easily move to the fire fighting unit 505. Furthermore, the heat storage units 553 and 563 have inclined portions 558 and 559 which are inclined so that the fluidized latent heat storage material 554 can easily move to the fire fighting unit 505. These inclined portions 508, 558, and 568 cause the latent heat storage material 554 to stay in the corners of the heat storage container bodies 552 and 562 when the fluidized latent heat storage material 554 moves by gravity to the fire fighting section 505 below. Can be prevented. Thus, the storage container 600 can reliably move all the latent heat storage materials 554 to the fire fighting unit 505 when the temperature rises, such as a fire, to extinguish or prevent the combustion of the latent heat storage materials 554.
  • FIG. 30 shows a schematic cross-sectional configuration of a building 700 according to the present embodiment.
  • the building 700 according to the present embodiment has a foundation 702 that is provided in a lowermost underfloor region 714 and made of concrete or the like.
  • the building 700 includes a floor plate 704 that is arranged to be supported by a plurality of columns (not shown) provided on the foundation 702.
  • the building 700 has a wall body 706 that is disposed on the foundation 702 and forms an outline of the building 700.
  • the building 700 has a ceiling board 708 arranged vertically above the floor board 704.
  • the ceiling board 708 is disposed opposite to the floor board 704.
  • the building 700 has a ceiling 708 and a roof 710 disposed on the wall body 706.
  • the building 700 has a living space 712 that is a hollow area surrounded by the floor board 704, the wall body 706, and the ceiling board 708.
  • the building 700 is provided so as to surround the living space 712 and extinguishes the combustion of the latent heat storage material 574 provided in the heat storage section 503 including the latent heat storage material 574 that stores the heat of the living space 712 and the underfloor region 714.
  • it has the heat storage member 501 provided with the fire fighting part 505 which prevents fire.
  • the heat storage unit 503 is disposed in an internal space between the inner wall and the outer wall of the wall body 706.
  • the heat storage unit 503 has a heat storage container body 502 filled with a latent heat storage material 574 and a circular opening 506 in which a part of the bottom surface of the heat storage container body 502 is opened. A plurality of openings 506 are arranged at predetermined intervals.
  • the heat storage unit 503 includes a funnel-shaped inclined portion 508 in which the bottom surface of the heat storage container body 502 is inclined downward toward each opening 506. The same number of inclined portions 508 as the openings 506 are provided.
  • the latent heat storage material 574 contains paraffin in the same manner as the latent heat storage material 504.
  • a paraffin mixture obtained by mixing normal heptadecane (carbon number 17), normal octadecane (carbon number 18) and normal nonadecane (carbon number 19) is used.
  • the latent heat storage material 574 having a melting point of about 25 ° C. is obtained.
  • the latent heat storage material 574 is not particularly limited as long as it is a latent heat storage material that fluidizes when the temperature rises such as a fire.
  • an air conditioning device (not shown) having an air conditioning function is arranged.
  • the temperature of the living space 712 is about 24 ° C. to 26 ° C., which is comfortable for consumers.
  • the living space 712 is temperature-controlled using an air-conditioning device with respect to changes in the outside air temperature due to the season.
  • the building 700 has a latent heat storage material 574 having a melting point of about 25 ° C. in a wall 706 surrounding the living space 712.
  • the building 700 is configured to store or dissipate heat in the living space 712 by the latent heat storage material 574 so as to keep the temperature constant.
  • the building 700 can improve the air conditioning efficiency of the air conditioner.
  • the heat storage unit 503 is disposed in the wall body 706, but the heat storage unit 503 may be disposed on the ceiling plate 708.
  • the heat storage unit 503 is connected to the fire department 505 through the same number of connections 507 as the openings 506.
  • the plurality of openings 506 of the heat storage container body 502 of the heat storage unit 503 are closely connected to one end portions of the connection pipes 522 of the plurality of connection portions 507, respectively.
  • the latent heat storage material 574 is sealed in the internal space of the heat storage container body 502 by a melting part 580 that closes the opening 506 and is disposed in the path 524 of the connection pipe 522. .
  • the melting part 580 is designed to melt at a specific temperature.
  • the specific temperature at which the melting part 580 melts is higher than the melting point of the latent heat storage material 574 and lower than the flash point or ignition point of the latent heat storage material 574. Since the melting part 580 melts faster than the latent heat storage material 574 ignites, the same effect as the melting part 520 in the heat storage member 501 according to the above embodiment can be obtained.
  • paraffins contained in the latent heat storage material 574 paraffin having the lowest flash point is normal heptadecane.
  • the flash point of normal heptadecane is about 148 ° C.
  • the melting part 580 is composed of an alloy of In (34): Pb (17): Sn (49) having a melting point of about 130 ° C. (the numerical values in parentheses indicate the ratio of each material included in the alloy). Is used).
  • the melting part 580 formed of this alloy melts at about 130 ° C.
  • the heat storage member 501 provided in the building 700 has a fire fighting unit 505 disposed in an underfloor region 714 provided between the foundation 702 and the floor board 704.
  • the fire fighting unit 505 is connected to the heat storage unit 503 via a plurality of connection units 507.
  • the fire fighting unit 505 includes a fire extinguisher / fireproofing agent 512a containing a flame retardant (for example, chlorinated paraffin) and a fire extinguishing / fireproofing agent 512b containing a suffocating gas generating material (for example, sodium bicarbonate that generates carbon dioxide).
  • the fire extinguishing and fireproofing agent 512 a is disposed on the bottom surface of the fire fighting container 510 of the fire fighting unit 505.
  • the fire extinguishing and fireproofing agent 512b is disposed on the upper surface of the fire fighting container body 10 of the fire fighting section 505.
  • the fire extinguishing and fire-proofing function higher than the case of having one type of fire-extinguishing and fire-proofing agent comes to be exhibited. ing.
  • FIG. 31 is a graph illustrating an example of a temperature change in the heat storage unit 503.
  • the solid line ⁇ in the figure shows an example of the temperature transition of the heat storage unit 503 when the latent heat storage material 574 is in a solid-liquid phase state
  • the solid line ⁇ is the temperature of the heat storage unit 503 when the latent heat storage material 574 is in a liquid phase state.
  • An example of the transition is shown, and a broken line ⁇ indicates an example of the temperature transition of the heat storage unit 503 when the latent heat storage material 574 is in a solid phase.
  • the horizontal axis represents time
  • the vertical axis represents the temperature of the heat storage unit 503.
  • the heat storage member 501 can transfer heat between the heat storage unit 503 and the living space 712, and can keep the temperature in the living space 712 constant.
  • the air conditioner (not shown) is turned on at time t0
  • the temperature of the living space 712 is, for example, 25 ° C.
  • the temperature of the heat storage unit 503 is 25 ° C., which is almost the same as that of the living space 712, and is maintained near the melting point (about 25 ° C.). Accumulate heat at 25 ° C. in a solid-liquid phase.
  • the latent heat storage material 574 is placed in the living space 712.
  • the temperature of the solid-liquid phase is constant ( For example, the temperature of the living space is maintained at 25 ° C.).
  • the latent heat storage material 574 eventually changes to the liquid phase, and the temperature of the heat storage unit 503 increases with time.
  • the latent heat storage material 574 releases the heat accumulated in the living space 712 until the phase transition from the solid-liquid phase to the solid phase (see FIG. 31 from time t1 to time t2), as shown by a straight line ⁇ , a constant temperature (between time t1 and time t2 shown in FIG. 31) is maintained as a solid-liquid phase.
  • a straight line ⁇ after time t2 the latent heat storage material 574 eventually undergoes phase transition to the solid phase, and the temperature of the heat storage unit 503 decreases with time.
  • the heat storage unit 503 can maintain the room temperature of the living space 712 at a comfortable temperature for a certain period. For this reason, the building 700 can maintain the living space 712 at a comfortable temperature for a certain period even when the air conditioner is not used. This allows the building 700 to provide comfort while reducing the energy required for the air conditioning device.
  • FIG. 32 is a cross section similar to the cross section of the building 700 shown in FIG. 30 and shows the state of the building 700 after the melting portion 580 has melted.
  • the latent heat storage material 574 of the heat storage unit 503 is phase-shifted from the solid phase to the liquid phase, and becomes highly fluid.
  • the temperature of the living space 712 further rises and the temperature of the melting part 580 of the connecting part 507 exceeds 130 ° C., the melting part 580 is melted.
  • the melting part 580 is melted before the latent heat storage material 574 reaches the flash point, so that the internal space of the heat storage container body 502 of the heat storage part 503 and the accommodating part 514 of the fire fighting part 505 are connected via the path 524 of the connection part 507. It is conducted and becomes a series. For this reason, as shown in FIG. 32, the latent heat storage material 574 sealed in the heat storage container body 502 by the melting unit 80 moves to the fire fighting unit 505 through the path 524 before reaching the flash point. The latent heat storage material 574 that has moved to the fire fighting unit 505 is accommodated in the accommodating unit 514.
  • the building 700 can prevent the latent heat storage material 574 from being ignited by the fire extinguishing and fireproofing agents 512a and 512b provided in the fire fighting unit 505.
  • the latent heat storage material 574 is mixed with the fire extinguishing and fireproofing agent 512a to be flame retardant, and changes to a flame retardant latent heat storage material 518.
  • the fire extinguishing and fireproofing agent 512b generates a suffocating gas 511, and the containing portion 514 is filled with the suffocating gas 511.
  • the suffocating gas 511 cuts off the supply of oxygen to the latent heat storage material 574 and the flame retardant latent heat storage material 518 before flame retardant in the housing portion 514 to prevent the latent heat storage material 574 and the flame retardant latent heat storage material 518 from flowing. Can prevent ignition.
  • the latent heat storage material 574 is burned and moved to the fire department 505, the latent heat storage material 574 is changed to the flame-retarded latent heat storage material 518, so that the flame heat of the latent heat storage material 574 gradually increases. Weaken.
  • the suffocating gas 511 generated from the fire extinguishing and fireproofing agent 512b blocks the supply of oxygen to the latent heat storage material 574 and the flame retardant heat storage material 518. Thereby, the flame of the latent heat storage material 574 will eventually disappear. Thus, the building 700 can also extinguish the combustion of the latent heat storage material 574.
  • the fire fighting unit 505 may include a pressure valve 526 like the heat storage member 501 shown in FIG.
  • the building 700 is provided with the pressure valve 526 in the fire fighting unit 505, so that the suffocating gas 511 excess for suffocation digestion can be discharged from the fire fighting unit 505 to the underfloor region 714. Since the discharged suffocating gas 511 is heavier than air, it stays in the underfloor region 714. Thereby, the building 700 can prevent the fire department 505 from being damaged when the temperature rises, and can prevent the fire spreading to the underfloor region 714.
  • the building 700 including the heat storage member 501 can maintain the living space 712 at a comfortable temperature during normal times, and can extinguish or prevent the combustion of the latent heat storage material 574 during a fire.
  • the building 700 includes a heat storage member 501 in which a heat storage unit 503 that exhibits heat storage performance and a fire fighting unit 505 that exhibits fire fighting performance are separated and formed independently of each other. For this reason, the building 700 can exhibit an excellent heat storage function and an excellent fire fighting function.
  • the building 700 accumulates heat for adjusting the temperature of the living space 712 discharged by the air conditioner in the heat storage unit 503. When the air conditioner is in an off state, the building 700 stores the heat accumulated by the heat storage unit 503 in the living space 712.
  • the living space 712 can be kept at a comfortable and constant temperature. For this reason, the building 700 can reduce the electric power required for the operation of the air conditioner.
  • the building 700 has a fire department 505 in the underfloor region 714. For this reason, the building 700 can extinguish or prevent the combustion at the time of the fire by the fire fighting unit 505 that is arranged by effectively using the excess space.
  • connection pipe 522 of the connection portion 507 in the heat storage member 501 according to the embodiment and the first to third modifications may be formed integrally with the heat storage container body 502 of the heat storage portion 503.
  • the opening part 506 of the heat storage container body 502 of the heat storage part 503 and the opening part 516 of the fire fighting container body 510 of the fire fighting part 505 may be directly connected without providing the connection part 507.
  • the melting part 520 is arranged at the connection portion between the opening 506 and the opening 516, whereby the same effect as that of the melting part 20 in the heat storage member 501 of the above embodiment can be obtained.
  • the forming material is selected so as to satisfy the relational expression “T1 ⁇ T4 ⁇ T2” in the melting part 20, but the present invention is not limited to this.
  • the forming material may be selected so that the melting portion satisfies the relational expression “T1 ⁇ T4 ⁇ T3”.
  • phase change temperature range of the latent heat storage material suitably used in this embodiment will be exemplified.
  • a heat storage material having a phase change temperature of ⁇ 20 ° C. to ⁇ 5 ° C. can be suitably used for a freezer (including up to JIS one-star standards).
  • a heat storage material having a phase change temperature of 0 ° C. to 10 ° C. can be suitably used for a refrigerator (including a vegetable room).
  • a heat storage material having a phase change temperature of 7 ° C. to 12 ° C. can be used as a heat transfer liquid for air conditioning, and heat transfer can be made more efficient than ice heat storage.
  • a heat storage material having a phase change temperature of 20 ° C. to 30 ° C. is suitable for use as a flooring material or a wall material, can realize a reduction in room temperature change, and can provide a comfortable space with energy saving.
  • a heat storage material having a phase change temperature of 30 ° C. to 40 ° C. is suitable for flooring and wall materials, and can realize night heating by energy saving by daytime heat storage.
  • a heat storage material having a phase change temperature of 40 ° C. to 42 ° C. is suitable for use as a heat storage material for bathtub heat storage, and can realize heat retention for a long time with energy saving.
  • a heat storage material having a phase change temperature of 50 ° C. to 100 ° C. is suitable for use as an alternative to a hot water tank or for a heat pump.
  • the latent heat storage material when used in a refrigerator, it is desirable to determine the optimum phase change temperature range in consideration of the temperature distribution for each cooling region in the refrigerator.
  • the temperature distribution in the refrigerator when the outside air temperature is 30 ° C and the door is closed without any food in the cabinet and becomes stable as a guide
  • the refrigerator compartment is 2 ° C to 5 ° C
  • the chilled chamber is 0 ° C. 2 ° C., 3 ° C. to 7 ° C. in the door pocket, 3 ° C. to 8 ° C. in the vegetable compartment, and ⁇ 17 ° C. to ⁇ 20 ° C. in the freezer compartment.
  • the flame retardant material it is preferable to use a material that passes the combustion test method of the US UL-94HB standard in which a test piece is placed horizontally for combustion as the flame retardant material in this embodiment.
  • the installation position of the flame retardant material will be described.
  • the refrigerator since the refrigerator includes components including a combustible material, it is not required to use all of the heat storage material as a flame retardant material.
  • You may install a flame retardant material only in the power supply which may become an ignition source, or a compressor part.
  • a flame retardant material is installed inside the fireproof structure outer wall or inside the fireproof structure outer wall that requires interior restriction.
  • the outside of the outer wall of the refractory structure may be combustible.
  • the place where the interior restriction request is not required may be a combustible material inside the outer wall of the fireproof structure.
  • the content of the combustion suppressing material for example, when tetradecane (C 14 H 30 ) is used as the heat storage material and magnesium hydroxide is used as the combustion suppressing material, the content of magnesium hydroxide is 10 to 40 wt%. Is desirable. Specifically, the heat of combustion of the heat storage material was calculated from Thornton's law, and the amount of the combustion suppressing material converted to the amount of heat corresponding to 30% to 100% of the heat was used as the content rate.
  • the present invention is widely applicable to a heat storage member using a latent heat storage material, a storage container and a building using the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Combustion & Propulsion (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Operations Research (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)

Abstract

The present invention pertains to a heat storage member that uses a latent heat storage material, and a storage container and building that uses the heat storage member. The purpose of the present invention is to provide said heat storage member, storage container and building that use the heat storage member, which extinguish fires by suppressing the combustion of the latent heat storage material. The heat storage member (1) comprises: a substrate (3); a combustion-suppressing and fire-extinguishing material (7) which is formed on the substrate (3), and extinguishes fires by suppressing the combustion of the latent heat storage material (5); and the latent heat storage material (5) which is formed on the combustion-suppressing and fire-extinguishing material (7), and accumulates or releases thermal energy through phase transitions.

Description

蓄熱部材、それを用いた保管容器及び建造物Heat storage member, storage container and building using the same
 本発明は潜熱蓄熱材を用いた蓄熱部材、それを用いた保管容器及び建造物に関する。 The present invention relates to a heat storage member using a latent heat storage material, a storage container and a building using the same.
 従来、固相及び液相間の相転移に伴う潜熱を利用して熱エネルギーを蓄える潜熱蓄熱材を用いた蓄熱部材を貯蔵室の周りを取り囲むように一様に配置した冷蔵庫が知られている(特許文献3)。一方で、このような蓄熱材を難燃化した材料も知られている(特許文献1及び2)。 Conventionally, a refrigerator in which a heat storage member using a latent heat storage material that stores thermal energy using latent heat associated with a phase transition between a solid phase and a liquid phase is uniformly arranged so as to surround the storage room is known. (Patent Document 3). On the other hand, the material which made such a heat storage material flame-retardant is also known (patent documents 1 and 2).
特開平6-49441号公報JP-A-6-49441 特開平6-41522号公報JP-A-6-41522 特開昭58-219379号公報JP 58-219379 A 特開2008-69293号公報JP 2008-69293 A 特開平9-61078号公報Japanese Patent Laid-Open No. 9-61078 特開平1-135890号公報Japanese Patent Laid-Open No. 1-135890
 特許文献1および2では、蓄熱材に難燃剤を添加した混合物によって材料の難燃化がなされているが、混合物であるため、充分な蓄熱効果が得られない。一方、特許文献3では、パラフィンや1-デカノールなどの可燃性物質が蓄冷型保冷庫の冷蔵室に用いられることが開示されているが、充分な延焼防止対策はなされていない。このため、例えば外部からの炎が可燃性の潜熱蓄熱材を用いた冷蔵庫に着火した場合に、この炎が当該冷蔵庫自体や他の場所に燃え広がるのを防止する延焼防止対策が当該冷蔵庫に施されていることがより望ましい。 In Patent Documents 1 and 2, the material is made flame-retardant by a mixture obtained by adding a flame retardant to a heat storage material, but since it is a mixture, a sufficient heat storage effect cannot be obtained. On the other hand, Patent Document 3 discloses that a flammable substance such as paraffin or 1-decanol is used in a refrigerating room of a cold storage type cold storage, but does not take sufficient measures to prevent the spread of fire. For this reason, for example, when an external flame ignites a refrigerator using a flammable latent heat storage material, measures to prevent the spread of fire to prevent the flame from burning and spreading to the refrigerator itself or other places are applied to the refrigerator. It is more desirable.
 本発明の目的は、潜熱蓄熱材の燃焼を抑制して消火する蓄熱部材、それを用いた保管容器及び建造物を提供することにある。 An object of the present invention is to provide a heat storage member that suppresses combustion of a latent heat storage material and extinguishes fire, and a storage container and a building using the heat storage member.
 上記目的は、相転移により熱エネルギーを蓄積又は放出する潜熱蓄熱材と、前記潜熱蓄熱材の燃焼を抑制して消火する燃焼抑制消火材とを有することを特徴とする蓄熱部材によって達成される。 The above object is achieved by a heat storage member characterized by having a latent heat storage material that accumulates or releases thermal energy by phase transition and a combustion suppression fire extinguishing material that suppresses combustion of the latent heat storage material and extinguishes fire.
 上記本発明の蓄熱部材であって、前記燃焼抑制消火材は、所定のガス又は水を発生して前記潜熱蓄熱材の燃焼を抑制して消火することを特徴とする。 The heat storage member of the present invention, wherein the combustion-suppressing fire extinguishing material generates a predetermined gas or water to suppress the combustion of the latent heat storage material and extinguish the fire.
 上記本発明の蓄熱部材であって、前記燃焼抑制消火材は、自己消火性物質、窒息性気体発生材料及び燃焼抑制物質の少なくともいずれか1つを含むことを特徴とする。 The heat storage member according to the present invention, wherein the combustion-suppressing fire extinguishing material includes at least one of a self-extinguishing substance, a suffocating gas generating material, and a combustion-suppressing substance.
 上記本発明の蓄熱部材であって、前記自己消火性物質は、水和化合物を含むことを特徴とする。 The heat storage member according to the present invention, wherein the self-extinguishing substance includes a hydrated compound.
 上記本発明の蓄熱部材であって、前記窒息性気体発生材料は、アゾ化合物又は燐酸アンモニウム、炭酸塩化合物を含むことを特徴とする。 The heat storage member of the present invention, wherein the suffocating gas generating material contains an azo compound, an ammonium phosphate, or a carbonate compound.
 上記本発明の蓄熱部材であって、前記燃焼抑制物質は、臭化アンチモン、酸化アンチモン、尿素系難燃材、ハロゲン系難燃剤及び、リン系難燃剤、のいずれか1つを含むことを特徴とする。 In the heat storage member of the present invention, the combustion-inhibiting substance includes any one of antimony bromide, antimony oxide, urea-based flame retardant, halogen-based flame retardant, and phosphorus-based flame retardant. And
 前記潜熱蓄熱材は、パラフィン、ポリエチレングリコール、ポリビニルアルコール、エチレンジアミン、及びナフタリンのいずれか1つを含むこと
 を特徴とする。
The latent heat storage material includes any one of paraffin, polyethylene glycol, polyvinyl alcohol, ethylenediamine, and naphthalene.
 上記本発明の蓄熱部材であって、前記潜熱蓄熱材は、前記燃焼抑制消火材に積層されていることを特徴とする。 The heat storage member of the present invention, wherein the latent heat storage material is laminated on the combustion-suppressing fire extinguishing material.
 上記本発明の蓄熱部材であって、前記燃焼抑制消火材は、前記潜熱蓄熱材を囲んで配置されていることを特徴とする。 The heat storage member of the present invention, wherein the combustion-suppressing fire extinguishing material is disposed so as to surround the latent heat storage material.
 上記本発明の蓄熱部材であって、前記潜熱蓄熱材は、マトリクス状に配置されて前記燃焼抑制消火材に埋め込まれていることを特徴とする。 The heat storage member of the present invention is characterized in that the latent heat storage material is arranged in a matrix and embedded in the combustion-suppressing fire extinguishing material.
 上記本発明の蓄熱部材であって、前記燃焼抑制消火材は、燃焼抑制消火材内包用カプセルに内包されていることを特徴とする。 The heat storage member according to the present invention, wherein the combustion-suppressing fire extinguishing material is included in a capsule for combustion-suppressing fire-extinguishing material.
 上記本発明の蓄熱部材であって、前記潜熱蓄熱材は、潜熱蓄熱材内包用カプセルに内包されていることを特徴とする。 The heat storage member of the present invention, wherein the latent heat storage material is contained in a capsule for latent heat storage material inclusion.
 上記本発明の蓄熱部材であって、前記燃焼抑制消火材内包用カプセル及び前記潜熱蓄熱材内包用カプセルが埋め込まれた難燃性材料層をさらに有することを特徴とする。 The heat storage member of the present invention, further comprising a flame retardant material layer in which the capsule for encapsulating a fire suppression fire extinguishing material and the capsule for encapsulating a latent heat storage material are embedded.
 上記本発明の蓄熱部材であって、前記燃焼抑制消火材内包用カプセル及び/又は前記潜熱蓄熱材内包用カプセルの分散濃度は、前記難燃性材料層内でそれぞれ偏りがあることを特徴とする。 In the heat storage member of the present invention, the dispersion concentration of the combustion suppressing fire extinguishing material inclusion capsule and / or the latent heat storage material inclusion capsule is biased in the flame retardant material layer. .
 また、上記目的は、貯蔵物を貯蔵する貯蔵室と、前記貯蔵室を囲んで設けられ、前記貯蔵室と外界との間の熱の移動を遮断する断熱部と、前記貯蔵室と前記断熱部との間に設けられ、前記貯蔵室の熱を蓄積する蓄熱部材とを有する保管容器であって、前記蓄熱部材は、上記本発明の蓄熱部材であることを特徴とする保管容器によって達成される。 In addition, the object is to provide a storage room for storing a stored product, a heat insulating part that surrounds the storage room and blocks heat transfer between the storage room and the outside, and the storage room and the heat insulating part. And a heat storage member that accumulates the heat of the storage chamber, wherein the heat storage member is a heat storage member of the present invention. .
 また、上記目的は、生活空間を囲んで設けられ、前記生活空間と外界との間の熱の移動を遮断する断熱部と、前記生活空間と前記断熱部との間に設けられ、前記生活空間の熱を蓄積する蓄熱部材とを有する建造物であって、前記蓄熱部材は、上記本発明の蓄熱部材であることを特徴とする建造物によって達成される。 In addition, the object is provided around the living space, provided between the living space and the heat insulating portion, a heat insulating portion that blocks heat transfer between the living space and the outside world, and the living space It is a building having a heat storage member for accumulating the heat, and the heat storage member is achieved by a building characterized in that it is the heat storage member of the present invention.
 本発明によれば、潜熱蓄熱材の燃焼を抑制して消火することができる。 According to the present invention, it is possible to extinguish the fire while suppressing the combustion of the latent heat storage material.
本発明の第1の実施の形態による蓄熱部材1の概略の断面構成を示す図である。It is a figure which shows the general | schematic cross-section structure of the thermal storage member 1 by the 1st Embodiment of this invention. 本発明の第1の実施の形態による蓄熱部材1の自己消火を説明する図である。It is a figure explaining self-extinguishing of the thermal storage member 1 by the 1st Embodiment of this invention. 本発明の第1の実施の形態による保管容器100の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the storage container 100 by the 1st Embodiment of this invention. 本発明の第1の実施の形態による保管容器100の概略の断面構成を示す図である。It is a figure which shows schematic cross-sectional structure of the storage container 100 by the 1st Embodiment of this invention. 本発明の第1の実施の形態の変形例による保管容器110の概略の断面構成を示す図である。It is a figure which shows schematic sectional structure of the storage container 110 by the modification of the 1st Embodiment of this invention. 本発明の第2の実施の形態による蓄熱部材11の概略の断面構成を示す図である。It is a figure which shows the general | schematic cross-section structure of the thermal storage member 11 by the 2nd Embodiment of this invention. 本発明の第2の実施の形態による保管容器130の概略の断面構成を示す図である。It is a figure which shows schematic cross-sectional structure of the storage container 130 by the 2nd Embodiment of this invention. 本発明の第3の実施の形態による蓄熱部材21の概略の断面構成を示す図である。It is a figure which shows the general | schematic cross-section structure of the thermal storage member 21 by the 3rd Embodiment of this invention. 本発明の第4の実施の形態による蓄熱部材31の概略の概略構成を示す図である。It is a figure which shows the schematic schematic structure of the thermal storage member 31 by the 4th Embodiment of this invention. 本発明の第4の実施の形態による保管容器140の概略構成を示す図である。It is a figure which shows schematic structure of the storage container 140 by the 4th Embodiment of this invention. 本発明の第5の実施の形態による蓄熱部材41の概略の断面構成を示す図である。It is a figure which shows the general | schematic cross-section structure of the thermal storage member 41 by the 5th Embodiment of this invention. 本発明の第5の実施の形態による保管容器150の概略の断面構成を示す図である。It is a figure which shows schematic cross-sectional structure of the storage container 150 by the 5th Embodiment of this invention. 本発明の第6の実施の形態による蓄熱部材51の概略の断面構成を示す図である。It is a figure which shows the general | schematic cross-section structure of the thermal storage member 51 by the 6th Embodiment of this invention. 本発明の第7の実施の形態による蓄熱部材61の概略の断面構成を示す図である。It is a figure which shows the general | schematic cross-section structure of the heat storage member 61 by the 7th Embodiment of this invention. 本発明の第7の実施の形態による保管容器160の概略の断面構成を示す図である。It is a figure which shows schematic cross-sectional structure of the storage container 160 by the 7th Embodiment of this invention. 本発明の第8の実施の形態による蓄熱部材71の概略の断面構成を示す図である。It is a figure which shows the general | schematic cross-section structure of the thermal storage member 71 by the 8th Embodiment of this invention. 本発明の第8の実施の形態による保管容器170の概略の断面構成を示す図である。It is a figure which shows the general | schematic cross-section structure of the storage container 170 by the 8th Embodiment of this invention. 本発明の第9の実施の形態による保管容器200の概略の断面構成を示す図である。It is a figure which shows schematic cross-sectional structure of the storage container 200 by the 9th Embodiment of this invention. 本発明の第10の実施の形態による蓄熱部材501の概略の断面構成を示す図である。It is a figure which shows the general | schematic cross-section structure of the thermal storage member 501 by the 10th Embodiment of this invention. 本発明の第10の実施の形態による蓄熱部材501の動作を説明する図である。It is a figure explaining operation | movement of the thermal storage member 501 by the 10th Embodiment of this invention. 本発明の第10の実施の形態による蓄熱部材501の動作を説明する図である。It is a figure explaining operation | movement of the thermal storage member 501 by the 10th Embodiment of this invention. 本発明の第10の実施の形態の変形例1による蓄熱部材の概略の断面構成を示す図である。It is a figure which shows schematic cross-sectional structure of the thermal storage member by the modification 1 of the 10th Embodiment of this invention. 本発明の第10の実施の形態の変形例2による蓄熱部材の概略の断面構成を示す図である。It is a figure which shows schematic cross-sectional structure of the heat storage member by the modification 2 of the 10th Embodiment of this invention. 本発明の第10の実施の形態の変形例3による蓄熱部材の概略の断面構成を示す図である。It is a figure which shows schematic cross-sectional structure of the thermal storage member by the modification 3 of the 10th Embodiment of this invention. 本発明の第10の実施の形態の変形例4による蓄熱部材の概略の断面構成を示す図である。It is a figure which shows schematic cross-sectional structure of the thermal storage member by the modification 4 of the 10th Embodiment of this invention. 本発明の第10の実施の形態の変形例5による蓄熱部材の概略の断面構成を示す図である。It is a figure which shows schematic cross-sectional structure of the thermal storage member by the modification 5 of the 10th Embodiment of this invention. 本発明の第10の実施の形態の変形例6による蓄熱部材の概略の断面構成及び動作を説明する図である。It is a figure explaining the rough cross-sectional structure and operation | movement of the heat storage member by the modification 6 of the 10th Embodiment of this invention. 本発明の第10の実施の形態による保管容器600の概略の構成を示す斜視図である。It is a perspective view which shows the schematic structure of the storage container 600 by the 10th Embodiment of this invention. 本発明の第10の実施の形態による保管容器600の概略の断面構成を示す図である。It is a figure which shows schematic sectional structure of the storage container 600 by the 10th Embodiment of this invention. 本発明の第10の実施の形態による建造物700の概略の断面構成を示す図である。It is a figure which shows the general | schematic cross-section structure of the building 700 by the 10th Embodiment of this invention. 本発明の第10の実施の形態による建造物700であって、蓄熱部材501の温度変化の一例を示すグラフである。It is the building 700 by the 10th Embodiment of this invention, Comprising: It is a graph which shows an example of the temperature change of the thermal storage member 501. 本発明の第10の実施の形態による建造物700の動作を説明する図である。It is a figure explaining operation | movement of the building 700 by the 10th Embodiment of this invention.
〔第1の実施の形態〕
 本発明の第1の実施の形態による蓄熱部材及びそれを用いた保管容器について、図1乃至図5を用いて説明する。なお、以下の全ての図面においては、理解を容易にするため、各構成要素の寸法や比率などは適宜異ならせて図示されている。まず、図1乃至図4を用いて本実施の形態による蓄熱部材1及び保管容器100について説明する。図1は、本実施の形態による蓄熱部材1の概略の断面構成を示している。図1に示すように、本実施の形態による蓄熱部材1は、基材3と、基材3上に形成されて潜熱蓄熱材5の燃焼を抑制して消火する燃焼抑制消火材7と、燃焼抑制消火材7上に形成されて相転移により熱エネルギーを蓄積又は放出する潜熱蓄熱材5とを有している。潜熱蓄熱材5は、燃焼抑制消火材7上に積層されて形成されている。蓄熱部材1は、単層の燃焼抑制消火材7と単層の潜熱蓄熱材5とを単純に積層させた構造を有している。蓄熱部材1は、基材3上に潜熱蓄熱材5が形成され、潜熱蓄熱材5上に燃焼抑制消火材7が形成された構造を有していてもよい。図1には、全体として板状(例えば長方形平板状)の形状の蓄熱部材1が例示されているが、蓄熱部材1は適用する場所に応じて適宜異なる外形形状に形成することができる。
[First Embodiment]
A heat storage member according to a first embodiment of the present invention and a storage container using the same will be described with reference to FIGS. 1 to 5. In all of the following drawings, the dimensions and ratios of the constituent elements are appropriately varied for easy understanding. First, the heat storage member 1 and the storage container 100 according to the present embodiment will be described with reference to FIGS. 1 to 4. FIG. 1 shows a schematic cross-sectional configuration of a heat storage member 1 according to the present embodiment. As shown in FIG. 1, the heat storage member 1 according to the present embodiment includes a base material 3, a combustion suppression fire extinguishing material 7 that is formed on the base material 3 and suppresses the combustion of the latent heat storage material 5 and extinguishes the fire. And a latent heat storage material 5 that is formed on the suppression fire extinguishing material 7 and stores or releases thermal energy by phase transition. The latent heat storage material 5 is formed by being laminated on the combustion suppressing fire extinguishing material 7. The heat storage member 1 has a structure in which a single-layer combustion-suppressing fire extinguishing material 7 and a single-layer latent heat storage material 5 are simply laminated. The heat storage member 1 may have a structure in which the latent heat storage material 5 is formed on the base material 3 and the combustion suppressing fire extinguishing material 7 is formed on the latent heat storage material 5. Although FIG. 1 illustrates a heat storage member 1 having a plate shape (for example, a rectangular flat plate shape) as a whole, the heat storage member 1 can be appropriately formed in different outer shapes depending on the place to which it is applied.
 蓄熱部材1は、通常、所定の使用温度範囲及び使用圧力範囲で用いられる。例えば蓄熱部材1は、冷蔵庫が稼動しているときには庫内で冷却されることにより冷熱を蓄え、停電時等に冷蔵庫の稼動が停止したときには冷熱を放出して庫内を所定時間保冷する。この場合、稼働時の冷蔵庫の設定温度(庫内温度)から冷蔵庫設置場所の雰囲気温度(例えば室温)までの温度範囲が、蓄熱部材1の使用温度範囲に含まれる。また、蓄熱部材1の使用圧力は、例えば大気圧である。 The heat storage member 1 is usually used in a predetermined operating temperature range and operating pressure range. For example, when the refrigerator is operating, the heat storage member 1 stores the cold by being cooled in the refrigerator, and when the operation of the refrigerator is stopped during a power failure or the like, the heat storage member 1 releases the cold and keeps the refrigerator in the refrigerator for a predetermined time. In this case, the operating temperature range of the heat storage member 1 includes the temperature range from the set temperature (internal temperature) of the refrigerator during operation to the ambient temperature (for example, room temperature) of the refrigerator installation location. Moreover, the operating pressure of the heat storage member 1 is, for example, atmospheric pressure.
 蓄熱部材1に設けられた潜熱蓄熱材5は、固相及び液相間の相転移(第一種相転移)が可逆的に生じる転移温度(融点)を蓄熱部材1の使用温度範囲内に有している。潜熱蓄熱材5は、転移温度よりも高い温度では液相となり、転移温度よりも低い温度では固相となる。 The latent heat storage material 5 provided in the heat storage member 1 has a transition temperature (melting point) at which the phase transition between the solid phase and the liquid phase (first type phase transition) is reversibly within the operating temperature range of the heat storage member 1. is doing. The latent heat storage material 5 becomes a liquid phase at a temperature higher than the transition temperature, and becomes a solid phase at a temperature lower than the transition temperature.
 本実施の形態における潜熱蓄熱材5はパラフィンを含んでいる。潜熱蓄熱材5には、ノルマル(直鎖型構造)パラフィン(一般式がC2n+2)の単一物又は混合物が用いられる。パラフィンの融点は、炭素数nによって異なる。本実施の形態では、潜熱蓄熱材5として例えばn-テトラデカン(分子式:C1430)が用いられる。n-テトラデカンの融点(5.9℃)は、蓄熱部材1の使用温度範囲内(例えば、冷蔵庫への使用を考えると1℃~8℃)に含まれる。なお、n-テトラデカンの沸点は約250℃である。なお、パラフィンは炭素数が所定数以上になると常温において半透明又は白色の軟らかい固体(蝋状)で水に溶けず、化学的に安定な物質となる。 The latent heat storage material 5 in the present embodiment contains paraffin. As the latent heat storage material 5, a single substance or a mixture of normal (linear structure) paraffin (general formula is C n H 2n + 2 ) is used. The melting point of paraffin varies depending on the number of carbons n. In the present embodiment, for example, n-tetradecane (molecular formula: C 14 H 30 ) is used as the latent heat storage material 5. The melting point (5.9 ° C.) of n-tetradecane is included in the operating temperature range of the heat storage member 1 (for example, 1 ° C. to 8 ° C. when considering use in a refrigerator). The boiling point of n-tetradecane is about 250 ° C. Paraffin is a semi-transparent or white soft solid (wax-like) at room temperature and does not dissolve in water, and becomes a chemically stable substance when the carbon number exceeds a predetermined number.
 潜熱蓄熱材5には、パラフィンをゲル化(固化)するゲル化剤が含有されている。ゲル(化学ゲル)とは、分子が架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲルは、構造を壊さない限り溶けず化学的に安定である。ゲル化剤は、パラフィンに数重量%含有させるだけでゲル化の効果を生じる。 The latent heat storage material 5 contains a gelling agent that gels (solidifies) paraffin. A gel (chemical gel) refers to a gel that is formed by forming a three-dimensional network structure by cross-linking molecules, and absorbing the solvent therein to swell. A gel is chemically stable without melting unless it breaks the structure. A gelling agent produces a gelling effect only by containing it in paraffin by several weight%.
 本実施の形態で用いるゲル化剤はポリマー材料を含んでいる。また、ポリマー材料としてポリエチレンが用いられている。つまり、本実施の形態における潜熱蓄熱材5は、ポリエチレンでゲル化したポリエチレン含有パラフィンである。ポリエチレンの混合割合を調整することにより潜熱蓄熱材5の粘度を変えることができる。本例で用いられるポリエチレンの融点は130℃である。 The gelling agent used in this embodiment includes a polymer material. In addition, polyethylene is used as the polymer material. That is, the latent heat storage material 5 in the present embodiment is polyethylene-containing paraffin gelled with polyethylene. The viscosity of the latent heat storage material 5 can be changed by adjusting the mixing ratio of polyethylene. The melting point of polyethylene used in this example is 130 ° C.
 ポリエチレン含有パラフィンは、少なくとも潜熱蓄熱材5の使用温度範囲内では流動性を有しない。このように、ゲル状の潜熱蓄熱材5は、相転移の前後で全体として固体状態を維持できる。これにより潜熱蓄熱材5は、相転移の前後で燃焼抑制消火材7上に配置され続けることができるようになっている。 Polyethylene-containing paraffin does not have fluidity at least within the operating temperature range of the latent heat storage material 5. Thus, the gel-like latent heat storage material 5 can maintain a solid state as a whole before and after the phase transition. Thereby, the latent heat storage material 5 can continue being arrange | positioned on the combustion suppression fire extinguishing material 7 before and behind a phase transition.
 一般に潜熱蓄熱材は、物質の相転移の際に外部とやり取りされる潜熱を熱エネルギーとして蓄える。例えば、固相及び液相間の相転移を利用した蓄熱では、潜熱蓄熱材の融点での融解熱を利用する。相転移の際に固体と液体の二相が混在する限り一定の転移温度で外部より熱を奪い続けるので、比較的長時間において融点以上に温度が上がるのを抑制できる。このため、潜熱蓄熱の方が物質の比熱を利用した顕熱蓄熱より優れている場合がある。 Generally, a latent heat storage material stores, as heat energy, latent heat exchanged with the outside during a phase transition of a substance. For example, in the heat storage using the phase transition between the solid phase and the liquid phase, the heat of fusion at the melting point of the latent heat storage material is used. As long as two phases of solid and liquid are mixed at the time of phase transition, heat is continuously taken away from the outside at a constant transition temperature, so that it is possible to suppress the temperature from rising above the melting point in a relatively long time. For this reason, the latent heat storage may be superior to the sensible heat storage using the specific heat of the substance.
 燃焼抑制消火材7は、自己消火性物質、窒息性気体発生材料及び燃焼抑制物質の少なくともいずれか1つを含んでいる。燃焼抑制消火材7は、所定のガス又は水を発生し、潜熱蓄熱材5の燃焼を抑制して消火するようになっている。また、燃焼抑制消火材7は、潜熱蓄熱材5自体が延焼すること、及び、潜熱蓄熱材5から基材3に延焼することを防止するようになっている。 The combustion-suppressing fire extinguishing material 7 contains at least one of a self-extinguishing substance, a suffocating gas generating material, and a combustion-suppressing substance. The combustion-suppressing fire extinguishing material 7 generates a predetermined gas or water and suppresses the combustion of the latent heat storage material 5 to extinguish the fire. Moreover, the combustion suppression fire extinguishing material 7 prevents the latent heat storage material 5 itself from spreading, and the latent heat storage material 5 from spreading to the base material 3.
 燃焼抑制消火材7は、自己消火性物質として例えば水和金属化合物を含んでいる。水和金属化合物として例えば水酸化マグネシウム又は水酸化アルミニウムを用いることができる。例えば、水酸化マグネシウム及び水酸化アルミニウムはそれぞれ、式(1)及び式(2)に示す脱水吸熱反応をする。 The combustion-suppressing fire extinguishing material 7 contains, for example, a hydrated metal compound as a self-extinguishing material. For example, magnesium hydroxide or aluminum hydroxide can be used as the hydrated metal compound. For example, magnesium hydroxide and aluminum hydroxide undergo dehydration endothermic reactions shown in Formula (1) and Formula (2), respectively.
 Mg(OH) → MgO+HO     ・・・(1)
 2Al(OH) → Al+3HO  ・・・(2)
Mg (OH) 2 → MgO + H 2 O (1)
2Al (OH) 3 → Al 2 O 3 + 3H 2 O (2)
 これらの水和金属化合物は、この脱水による吸熱により燃焼を遅延及び阻止することができる。さらにこの反応によって水が生成されることで消火機能も有することになる。このように蓄熱部材1では燃焼抑制消火材7の脱水吸熱反応によって自己消火が可能になっている。 These hydrated metal compounds can retard and prevent combustion due to the endothermic effect of this dehydration. Furthermore, it has a fire extinguishing function by producing water by this reaction. Thus, the heat storage member 1 can self-extinguish by the dehydration endothermic reaction of the combustion-suppressing extinguishing material 7.
 図2は、本実施の形態の蓄熱部材1における自己消火を説明する図である。例えば外部で発生した火災が延焼して蓄熱部材1が燃焼したとする。図2(a)に示すように、まず基材3が燃焼し始める。基材3に着火した炎2により蓄熱部材1の温度が上昇し始める。この温度上昇により、燃焼抑制消火材7には熱エネルギーが与えられ、燃焼抑制消火材7は、式(1)及び式(2)に示すように、脱水吸熱反応により水を発生する。図2(b)に示すように、燃焼抑制消火材7から発生した水は、基材3から熱を奪い、基材3の温度を発火点(着火温度)以下に低下させる。これにより、基材3の炎2は沈静化し、その後完全に消火される。図2(c)に示すように、蓄熱部材1は、基材3に燃焼跡4が残るものの、炎2が基材3自体に燃え広がったり潜熱蓄熱材5に燃え広がったりする前に火勢を抑制して自己消火することができる。このように、蓄熱部材1は、燃焼抑制消火材7が基材3や潜熱蓄熱材5の燃焼を遅延、抑制、消火及び阻止して潜熱蓄熱材5の燃焼や延焼を防止できるようになっている。 FIG. 2 is a diagram for explaining self-extinguishing in the heat storage member 1 of the present embodiment. For example, assume that an external fire spreads and the heat storage member 1 burns. As shown in FIG. 2A, first, the base material 3 starts to burn. The temperature of the heat storage member 1 begins to rise due to the flame 2 igniting the base material 3. Due to this temperature rise, thermal energy is given to the combustion-suppressing fire extinguishing material 7, and the combustion-suppressing fire extinguishing material 7 generates water by dehydration endothermic reaction as shown in the equations (1) and (2). As shown in FIG. 2B, the water generated from the combustion-suppressing fire extinguishing material 7 takes heat from the base material 3 and lowers the temperature of the base material 3 below the ignition point (ignition temperature). As a result, the flame 2 of the base material 3 is calmed and then completely extinguished. As shown in FIG. 2C, the heat storage member 1 suppresses the fire force before the flame 2 burns and spreads on the substrate 3 itself or spreads on the latent heat storage material 5 although the combustion mark 4 remains on the substrate 3. Can self-extinguish. As described above, in the heat storage member 1, the combustion-suppressing fire extinguishing material 7 can delay, suppress, extinguish and prevent combustion of the base material 3 and the latent heat storage material 5 to prevent the latent heat storage material 5 from burning and spreading. Yes.
 燃焼抑制消火材7は、水和金属化合物に限られず他の材料も適用可能である。燃焼抑制消火材7には、例えば窒息性気体発生材料を用いることができる。窒息性気体発生材料として例えばアゾ化合物、燐酸アンモニウム又は炭酸塩化合物等がある。このため、例えばアゾ誘導体を用いて形成された燃焼抑制消火材7は、図2(a)に示すように基材3が燃焼して150℃に達すると窒素ガスを発生する。窒素ガスは基材3の燃焼部への酸素の供給を遮断して炎2を消火することができる。また、燐酸アンモニウムは加熱時にアンモニウムガスを発生して基材3の燃焼部への酸素の供給を遮断して炎2を消火することができる。また、炭酸塩化合物は加熱時に二酸化炭素を発生して基材3の燃焼部への酸素の供給を遮断して炎2を消火することができる。このように、蓄熱部材1は、窒息性気体発生材料で形成された燃焼抑制消火材7であっても基材3や潜熱蓄熱材5の燃焼を遅延、消火及び阻止して潜熱蓄熱材5の燃焼や延焼を防止できる。 The combustion-suppressing fire extinguishing material 7 is not limited to a hydrated metal compound, and other materials can be applied. As the combustion suppressing fire extinguishing material 7, for example, a suffocating gas generating material can be used. Examples of suffocating gas generating materials include azo compounds, ammonium phosphates, and carbonate compounds. For this reason, the combustion-suppressing fire extinguishing material 7 formed using, for example, an azo derivative generates nitrogen gas when the base material 3 burns and reaches 150 ° C. as shown in FIG. Nitrogen gas can extinguish the flame 2 by shutting off the supply of oxygen to the combustion part of the substrate 3. Further, ammonium phosphate can generate an ammonium gas when heated to cut off the supply of oxygen to the combustion part of the base material 3 and extinguish the flame 2. Further, the carbonate compound can generate carbon dioxide during heating, shut off the supply of oxygen to the combustion part of the base material 3 and extinguish the flame 2. Thus, even if the heat storage member 1 is the combustion suppression fire extinguishing material 7 formed of the suffocating gas generating material, the combustion of the base material 3 and the latent heat storage material 5 is delayed, extinguished and prevented, and the latent heat storage material 5 Combustion and fire spread can be prevented.
 さらに、燃焼抑制消火材7に適用可能な他の材料として例えば燃焼抑制物質がある。燃焼抑制消火材7に適用可能な燃焼抑制物質として例えば臭化アンチモン、酸化アンチモン、尿素系難燃材、ハロゲン系難燃剤及び、リン系難燃剤、等がある。これらの材料のいずれか1つを含む燃焼抑制消火材7は、潜熱蓄熱材5の燃焼を遅延、消火及び阻止して潜熱蓄熱材5の燃焼や延焼を防止できる。 Furthermore, other materials applicable to the combustion-suppressing fire extinguishing material 7 include, for example, combustion-suppressing substances. Examples of the combustion-suppressing substance applicable to the combustion-suppressing fire extinguishing material 7 include antimony bromide, antimony oxide, urea-based flame retardant, halogen-based flame retardant, and phosphorus-based flame retardant. The combustion-suppressing fire extinguishing material 7 including any one of these materials can delay, extinguish, and prevent the combustion of the latent heat storage material 5 to prevent the latent heat storage material 5 from burning or spreading.
 次に、本実施の形態による保管容器100について図3及び図4を用いて説明する。図3は、本実施の形態による保管容器100の概略構成を説明する斜視図である。図3では、扉部102が開いた状態の保管容器100が図示されているが、理解を容易にするため、閉じられた状態の扉部102が二点鎖線で併せて図示されている。図4は、図3のA-A’線に沿って図示の鉛直方向(A-A’線の矢印の方向)に保管容器100を切断した断面を容器本体104の右側面側から観察した状態を示している。保管容器100は、定常運転時に雰囲気温度(室温)と異なる温度で貯蔵物を保管するために用いられ、例えば冷蔵庫、冷凍庫、温蔵庫などを例示することができる。本実施の形態及び後述の第2乃至第8の実施の形態では、保管容器が直冷式冷蔵庫であることとして説明する。 Next, the storage container 100 according to this embodiment will be described with reference to FIGS. FIG. 3 is a perspective view illustrating a schematic configuration of the storage container 100 according to the present embodiment. In FIG. 3, the storage container 100 with the door portion 102 opened is shown, but the door portion 102 in the closed state is shown together with a two-dot chain line for easy understanding. 4 shows a state in which a cross section of the storage container 100 taken along the line AA ′ in FIG. 3 in the illustrated vertical direction (the direction of the arrow along the line AA ′) is observed from the right side of the container body 104. Is shown. The storage container 100 is used for storing stored items at a temperature different from the ambient temperature (room temperature) during steady operation, and examples thereof include a refrigerator, a freezer, and a warm storage. In the present embodiment and second to eighth embodiments described later, the storage container is described as being a direct-cooling refrigerator.
 図3に示すように、本実施の形態による保管容器100は、直方体形状の容器本体104と、図中両端矢印で示すように、不図示のヒンジ部を介して容器本体104に回転自在に設けられた薄板形状の扉部102とを有している。容器本体104は、長方形状の開口部103と、開口部103で開口された箱状の壁部109と、貯蔵物を貯蔵する貯蔵室105とを有している。貯蔵室105は、扉部102が開いた場合に、開口部103を介して外部と接続されるようになっている。貯蔵室105は壁部109の内側に設けられた空間である。扉部102は、扉部102の外周囲に設けられた枠状のパッキン107を有している。図4に示すように、パッキン107は、扉部102を閉じた場合に、開口部103の外周囲の外側に配置されるようになっている。パッキン107は、扉部102が閉じた場合に、壁部109に対向配置されるようになっている。貯蔵室105は、扉部102が閉じられると、扉部102と、パッキン107と、壁部109とにより囲まれる密閉空間になる。これにより、保管容器100は、貯蔵室105内を設定温度に維持できるようになっている。 As shown in FIG. 3, the storage container 100 according to the present embodiment is provided rotatably on the container main body 104 via a rectangular parallelepiped container main body 104 and a hinge portion (not shown) as indicated by double-ended arrows in the figure. And a thin plate-shaped door 102. The container main body 104 has a rectangular opening 103, a box-shaped wall 109 opened by the opening 103, and a storage chamber 105 for storing stored items. The storage chamber 105 is connected to the outside through the opening 103 when the door 102 is opened. The storage chamber 105 is a space provided inside the wall portion 109. The door part 102 has a frame-shaped packing 107 provided on the outer periphery of the door part 102. As shown in FIG. 4, the packing 107 is arranged outside the outer periphery of the opening 103 when the door 102 is closed. The packing 107 is arranged to face the wall portion 109 when the door portion 102 is closed. When the door portion 102 is closed, the storage chamber 105 becomes a sealed space surrounded by the door portion 102, the packing 107, and the wall portion 109. Thereby, the storage container 100 can maintain the inside of the storage chamber 105 at a preset temperature.
 図4に示すように、壁部109は、外周囲に設けられた断熱部111と、断熱部111と貯蔵室105との間に設けられ、貯蔵室105の熱を蓄積する蓄熱部材101とを有している。蓄熱部材101は、本実施の形態による蓄熱部材1とほぼ同様の構成を有している。蓄熱部材101は、断熱部111上に設けられた燃焼抑制消火材7と、燃焼抑制消火材7上に設けられた潜熱蓄熱材5とを有している。壁部109に用いられた燃焼抑制消火材7及び潜熱蓄熱材5のそれぞれの形成材料には、蓄熱部材1の燃焼抑制消火材7及び潜熱蓄熱材5のそれぞれと同様の形成材料が用いられている。壁部109は、ABS樹脂などの樹脂材料を形成材料とする筐体(不図示)を有している。当該筐体は空洞を有している。断熱部111及び蓄熱部材101は、当該空洞内に収容されている。 As shown in FIG. 4, the wall portion 109 includes a heat insulating portion 111 provided around the outer periphery, and a heat storage member 101 that is provided between the heat insulating portion 111 and the storage chamber 105 and accumulates heat of the storage chamber 105. Have. The heat storage member 101 has substantially the same configuration as the heat storage member 1 according to the present embodiment. The heat storage member 101 includes a combustion-suppressing fire extinguishing material 7 provided on the heat insulating portion 111 and a latent heat storage material 5 provided on the combustion-suppressing fire extinguishing material 7. The respective formation materials of the combustion suppression fire extinguishing material 7 and the latent heat storage material 5 used for the wall 109 are the same as the formation materials of the combustion suppression fire extinguishing material 7 and the latent heat storage material 5 of the heat storage member 1. Yes. The wall 109 has a housing (not shown) made of a resin material such as ABS resin. The housing has a cavity. The heat insulating part 111 and the heat storage member 101 are accommodated in the cavity.
 扉部102は壁部109とほぼ同様の構成を有している。扉部102は、外周囲に設けられた断熱部111と、扉部102を閉じた場合に断熱部111と貯蔵室105との間に設けられ、貯蔵室105の熱を蓄積する蓄熱部材101とを有している。蓄熱部材101は、蓄熱部材1とほぼ同様の構成を有している。蓄熱部材101は、断熱部111上に設けられた燃焼抑制消火材7と、燃焼抑制消火材7上に設けられた潜熱蓄熱材5とを有している。本実施の形態における燃焼抑制消火材7及び潜熱蓄熱材5のそれぞれの形成材料には、本実施の形態による蓄熱部材1の燃焼抑制消火材7及び潜熱蓄熱材5のそれぞれと同様の形成材料が用いられている。扉部102は、壁部109と同様にABS樹脂などの樹脂材料を形成材料とする筐体(不図示)を有している。当該筐体は空洞を有している。断熱部111及び蓄熱部材101は、当該空洞内に収容されている。 The door portion 102 has substantially the same configuration as the wall portion 109. The door part 102 is provided between the heat insulating part 111 provided on the outer periphery and the heat insulating part 111 and the storage room 105 when the door part 102 is closed, and the heat storage member 101 that accumulates the heat of the storage room 105. have. The heat storage member 101 has substantially the same configuration as the heat storage member 1. The heat storage member 101 includes a combustion-suppressing fire extinguishing material 7 provided on the heat insulating portion 111 and a latent heat storage material 5 provided on the combustion-suppressing fire extinguishing material 7. In each of the forming materials of the combustion suppressing fire extinguishing material 7 and the latent heat storage material 5 in the present embodiment, the same forming materials as the combustion suppressing fire extinguishing material 7 and the latent heat storage material 5 of the heat storage member 1 according to the present embodiment are provided. It is used. The door portion 102 has a housing (not shown) that uses a resin material such as ABS resin as a forming material, like the wall portion 109. The housing has a cavity. The heat insulating part 111 and the heat storage member 101 are accommodated in the cavity.
 断熱部111は、定常運転時に冷却されている貯蔵室105及び蓄熱部材101に外界からの熱が筐体を介して伝わらないように断熱するために設けられている。断熱部111は、ガラスウールのような無機繊維系断熱材、ポリウレタンフォームのような発泡樹脂系断熱材、セルロースファイバーのような天然繊維系断熱材など、通常知られた材料を用いて形成することができる。 The heat insulating portion 111 is provided to insulate the storage chamber 105 and the heat storage member 101 that are cooled during steady operation so that heat from the outside world is not transmitted through the housing. The heat insulating portion 111 is formed using a generally known material such as an inorganic fiber heat insulating material such as glass wool, a foamed resin heat insulating material such as polyurethane foam, or a natural fiber heat insulating material such as cellulose fiber. Can do.
 保管容器100は、容器本体104の底部に設けられ、冷媒を圧縮するコンプレッサ115と、貯蔵室105内に一部が露出して設けられ、圧縮された冷媒が蒸発する際の気化熱により周囲を冷却する冷却器113と、コンプレッサ115と冷却器113とを接続する配管117とを有している。コンプレッサ115と、冷却器113と、配管117とによりガス圧縮式の冷却装置が構成される。冷却装置はその他、圧縮された冷媒から放熱するためのコンデンサーや、冷媒中の水分を除去するためのドライヤーなど、通常知られた構成を備えていてもよい。 The storage container 100 is provided at the bottom of the container body 104, and is provided with a compressor 115 that compresses the refrigerant and a part of the storage chamber 105 that is exposed in the storage chamber 105. The storage container 100 is surrounded by heat of vaporization when the compressed refrigerant evaporates. It has a cooler 113 for cooling, and a pipe 117 for connecting the compressor 115 and the cooler 113. The compressor 115, the cooler 113, and the pipe 117 constitute a gas compression type cooling device. In addition, the cooling device may include a normally known configuration such as a condenser for radiating heat from the compressed refrigerant and a dryer for removing moisture in the refrigerant.
 潜熱蓄熱材5は、貯蔵室105の設定温度と雰囲気温度との間の温度で液相と固相との間の相転移が生じる材料を用いて形成されている。ここで、「貯蔵室105の設定温度」は、保管容器100の定常運転における貯蔵室105内の設定温度である。また、「雰囲気温度」は、例えば保管容器100が用いられる環境の外気温として想定される温度である。例えば保管容器100が、設定温度3℃の冷蔵庫であり、想定される外気温を25℃とすると、潜熱蓄熱材5は固-液相転移温度が3℃より高く25℃より低い材料(例えば、上記のn-テトラデカン)を用いて形成されている。 The latent heat storage material 5 is formed using a material that causes a phase transition between the liquid phase and the solid phase at a temperature between the set temperature of the storage chamber 105 and the ambient temperature. Here, the “set temperature of the storage chamber 105” is the set temperature in the storage chamber 105 in the steady operation of the storage container 100. Further, the “atmosphere temperature” is a temperature assumed as an outside air temperature in an environment where the storage container 100 is used, for example. For example, if the storage container 100 is a refrigerator having a set temperature of 3 ° C. and the assumed outside air temperature is 25 ° C., the latent heat storage material 5 has a solid-liquid phase transition temperature higher than 3 ° C. and lower than 25 ° C. (for example, N-tetradecane) as described above.
 次に、本実施の形態による保管容器100の動作について説明する。保管容器100の不図示の電源がオン状態において、コンプレッサ115で圧縮された冷媒は、配管117内を通って冷却器113に達する。冷却器113は、圧縮された冷媒が蒸発する際の気化熱により、貯蔵室105を冷却する。 Next, the operation of the storage container 100 according to this embodiment will be described. When the power supply (not shown) of the storage container 100 is on, the refrigerant compressed by the compressor 115 reaches the cooler 113 through the pipe 117. The cooler 113 cools the storage chamber 105 by heat of vaporization when the compressed refrigerant evaporates.
 貯蔵室105内では、貯蔵室105内に露出した冷却器113の表面と貯蔵室105内の空気との間で熱交換が行われる。貯蔵室105内の所定位置には不図示の温度センサが設置されている。温度センサで計測された貯蔵室105内の温度に基づき保管容器100に設けられた不図示の温度制御装置により冷却装置の駆動が制御され、貯蔵室105内の温度を制御するための熱移動が行われる。 In the storage chamber 105, heat exchange is performed between the surface of the cooler 113 exposed in the storage chamber 105 and the air in the storage chamber 105. A temperature sensor (not shown) is installed at a predetermined position in the storage chamber 105. The driving of the cooling device is controlled by a temperature control device (not shown) provided in the storage container 100 based on the temperature in the storage chamber 105 measured by the temperature sensor, and heat transfer for controlling the temperature in the storage chamber 105 is performed. Done.
 貯蔵室105内の空気に温度分布が生じると対流が生じて相対的に高温の空気は上昇し低温の空気は下降する。冷却器113は、貯蔵室105の内壁上部に配置されているので、効率よく相対的に高温の空気の熱を冷却器113に移動させることができる。 When a temperature distribution is generated in the air in the storage chamber 105, convection occurs, and the relatively hot air rises and the cool air falls. Since the cooler 113 is disposed at the upper part of the inner wall of the storage chamber 105, the heat of relatively high-temperature air can be efficiently moved to the cooler 113.
 壁部109に設けられた潜熱蓄熱材5の一部は、冷却器113の表面の一部に直接接触して設けられている。このため、冷却器113は、潜熱蓄熱材5を直接冷却することができ、潜熱蓄熱材5を比較的短時間で相転移温度以下の固相状態に維持させることができる。壁部109及び扉部102に配置された潜熱蓄熱材5は不図示の筐体を介して貯蔵室105内の温度とほぼ同温度になり徐々に相転移温度以下の固相状態に維持される。固相状態を維持した潜熱蓄熱材5は貯蔵室105内の温度の時間変化分布を平坦化させる機能を発揮する。このように本実施の形態の保管容器100によれば、冷却器113で潜熱蓄熱材5を直接冷却することができ、潜熱蓄熱材5を比較的短時間で相転移温度以下の固相状態に維持することができる。 A part of the latent heat storage material 5 provided on the wall 109 is provided in direct contact with a part of the surface of the cooler 113. For this reason, the cooler 113 can directly cool the latent heat storage material 5, and can maintain the latent heat storage material 5 in a solid phase state having a phase transition temperature or lower in a relatively short time. The latent heat storage material 5 disposed on the wall portion 109 and the door portion 102 becomes substantially the same temperature as the temperature in the storage chamber 105 through a housing (not shown), and is gradually maintained in a solid state below the phase transition temperature. . The latent heat storage material 5 that maintains the solid state exhibits a function of flattening the temporal change distribution of the temperature in the storage chamber 105. As described above, according to the storage container 100 of the present embodiment, the latent heat storage material 5 can be directly cooled by the cooler 113, and the latent heat storage material 5 is brought into a solid phase state below the phase transition temperature in a relatively short time. Can be maintained.
 停電等により保管容器100の不図示の電源がオフ状態になると、不図示の温度制御装置や冷却装置への電力供給が停止して、冷却装置による冷却能力は失われる。本実施の形態による保管容器100は、停電等により冷却装置による冷却能力が失われると、蓄熱部材101による保冷が開始される。貯蔵室105内の空気は、扉部102及び壁部109に張り巡らされて設けられた潜熱蓄熱材5により一定期間、所定温度範囲に維持される。より具体的には、潜熱蓄熱材5が固相から液相へ相転移するまでの期間において、貯蔵室105内の温度が5℃程度に維持される。 When the power supply (not shown) of the storage container 100 is turned off due to a power failure or the like, the power supply to the temperature control device and the cooling device (not shown) is stopped, and the cooling capacity of the cooling device is lost. Storage container 100 according to the present embodiment starts cooling by heat storage member 101 when the cooling capacity of the cooling device is lost due to a power failure or the like. The air in the storage chamber 105 is maintained in a predetermined temperature range for a certain period by the latent heat storage material 5 provided so as to be stretched around the door portion 102 and the wall portion 109. More specifically, the temperature in the storage chamber 105 is maintained at about 5 ° C. until the latent heat storage material 5 undergoes a phase transition from the solid phase to the liquid phase.
 このように、本実施の形態による保管容器100は、定常運転時には貯蔵室105内を所定の設定温度に保つことができる。また、保管容器100は、例えば停電により電力供給が止まり運転を停止した場合であっても、蓄熱部材101により一定時間は貯蔵室105内の温度を設定温度に保冷することが可能となっている。 Thus, the storage container 100 according to the present embodiment can keep the interior of the storage chamber 105 at a predetermined set temperature during steady operation. In addition, the storage container 100 can keep the temperature in the storage chamber 105 at the set temperature for a certain time by the heat storage member 101 even when the power supply is stopped due to a power failure and the operation is stopped. .
 ところで、冷蔵庫が発火原因となる火災事故が起こることがある。例えば冷蔵庫が火元となる火災事故の原因として、老朽化によるコンプレッサ内部の電気的な不具合、不安定な電力事情の地域において許容電流以上の電流が継続して流れること、電流プラグやコンセントに付着した埃によるトラッキング等が報告されている。また、外部で発生した炎が冷蔵庫に燃え移ることにより、冷蔵庫の火災事故が起こることがある。本実施の形態による保管容器100は、蓄熱部材101が燃焼抑制消火材7を有している。このため、本実施の形態による保管容器100は、これらの原因により火災事故が発生し、例えば壁部109の断熱部111が燃焼し始める。断熱部111に着火した炎により壁部109の温度が上昇し始める。この温度上昇により、燃焼抑制消火材7には熱エネルギーが与えられ、燃焼抑制消火材7は、式(1)及び式(2)に示すように、脱水吸熱反応により水を発生する。燃焼抑制消火材7から発生した水は、断熱部111から熱を奪い、断熱部111の温度を発火点(着火温度)以下に低下させる。これにより、断熱部111の炎は沈静化し、その後完全に消火される。保管容器100は、断熱部111の一部に燃焼跡が残るものの、炎が断熱部111自体に燃え広がったり潜熱蓄熱材5に燃え広がったりする前に火勢を抑制して自己消火することができる。保管容器100は、燃焼抑制消火材7が断熱部111や潜熱蓄熱材5の燃焼を遅延、抑制、消火及び阻止して潜熱蓄熱材5の燃焼や延焼を防止できる。このように、保管容器100は、燃焼抑制消火材7の自己消火機能により例えば断熱部111に燃え移った炎の延焼を防止して早期に消火できる。これにより、本実施の形態による保管容器100は、万一火災が発生した場合であっても火災が広がることを防止できる。 By the way, there may be a fire accident that causes the refrigerator to ignite. For example, the cause of a fire accident caused by a refrigerator is an electrical malfunction inside the compressor due to aging, continuous current exceeding the allowable current in areas with unstable power conditions, sticking to current plugs and outlets Tracking with dust has been reported. In addition, a fire accident may occur in the refrigerator due to the flame generated outside burning into the refrigerator. In the storage container 100 according to the present embodiment, the heat storage member 101 has the combustion suppressing fire extinguishing material 7. For this reason, in the storage container 100 according to the present embodiment, a fire accident occurs due to these causes, and for example, the heat insulating portion 111 of the wall portion 109 starts to burn. The temperature of the wall 109 starts to rise due to the flame igniting the heat insulating part 111. Due to this temperature rise, thermal energy is given to the combustion-suppressing fire extinguishing material 7, and the combustion-suppressing fire extinguishing material 7 generates water by dehydration endothermic reaction as shown in the equations (1) and (2). The water generated from the combustion-suppressing fire extinguishing material 7 removes heat from the heat insulating part 111 and lowers the temperature of the heat insulating part 111 below the ignition point (ignition temperature). Thereby, the flame of the heat insulation part 111 calms down, and is extinguished completely after that. The storage container 100 can self-extinguish while suppressing the fire before the flame burns and spreads on the heat insulating part 111 itself or spreads on the latent heat storage material 5, although the combustion mark remains in a part of the heat insulating part 111. In the storage container 100, the combustion-suppressing fire extinguishing material 7 can delay, suppress, extinguish and prevent combustion of the heat insulating portion 111 and the latent heat storage material 5, thereby preventing the latent heat storage material 5 from burning and spreading. In this manner, the storage container 100 can extinguish fire early by preventing, for example, the spread of flame that has burned into the heat insulating portion 111 by the self-extinguishing function of the combustion-suppressing fire extinguishing material 7. Thereby, the storage container 100 according to the present embodiment can prevent the fire from spreading even if a fire occurs.
 次に、本実施の形態の変形例による保管容器110について図5を用いて説明する。図5は、本変形例による保管容器110の概略の断面構成を示している。本変形例による保管容器110は、コンプレッサ115の周囲に燃焼抑制消火材7を有していることを除いて、本実施の形態による保管容器100と同一の構成を有している。 Next, a storage container 110 according to a modification of the present embodiment will be described with reference to FIG. FIG. 5 shows a schematic cross-sectional configuration of the storage container 110 according to this modification. The storage container 110 according to this modification has the same configuration as the storage container 100 according to the present embodiment except that the combustion suppressing fire extinguishing material 7 is provided around the compressor 115.
 本変形例による保管容器110は、発火源となる確率が相対的に高いコンプレッサ115周辺に燃焼抑制消火材7を有している。これにより、保管容器110は例えば老朽化によりコンプレッサ115から出火した炎が他の箇所に延焼しないうちに消火することができる。例えば、加熱されると脱水吸熱反応する水和金属化合物を用いて形成された燃焼抑制消火材7は、コンプレッサ115から炎が発生すると、当該炎による温度上昇により水を発生する。発生した水は重力によりコンプレッサ115に落下して炎を消火する。このように、保管容器110は当該炎を効率よく消火でき、他の個所への延焼を防止できる。 The storage container 110 according to this modification has the combustion-suppressing fire extinguishing material 7 around the compressor 115 that has a relatively high probability of becoming an ignition source. As a result, the storage container 110 can be extinguished before the flame ignited from the compressor 115 due to aging, for example, does not spread to other locations. For example, when a flame is generated from the compressor 115, the combustion-suppressing fire extinguishing material 7 formed using a hydrated metal compound that undergoes a dehydration endothermic reaction when heated generates water due to a temperature rise due to the flame. The generated water falls to the compressor 115 by gravity and extinguishes the flame. Thus, the storage container 110 can extinguish the flame efficiently, and can prevent the fire from spreading to other places.
〔第2の実施の形態〕
 次に、本発明の第2の実施の形態による蓄熱部材及びそれを用いた保管容器について図6及び図7を用いて説明する。本実施の形態による蓄熱部材11は、複数の燃焼抑制消火材7と複数の潜熱蓄熱材5が積層されている点に特徴を有している。図6は、本実施の形態による蓄熱部材11の概略の断面構成を示している。図6に示すように、本実施の形態による蓄熱部材11は、基材3と、基材3上に形成されて交互に積層されたそれぞれ2層の燃焼抑制消火材7及び潜熱蓄熱材5とを有している。図6には、全体として板状(例えば長方形平板状)の形状の蓄熱部材11が例示されているが、蓄熱部材11は適用する場所に応じて適宜異なる外形形状に形成することができる。蓄熱部材11は、燃焼抑制消火材7が基材3に接触しているが、潜熱蓄熱材5が基材3に接触して潜熱蓄熱材5と燃焼抑制消火材7とが交互に積層されていてもよい。また、燃焼抑制消火材7及び潜熱蓄熱材5の積層数はそれぞれ2層に限られず、それぞれ3層以上であってもよい。また、燃焼抑制消火材7及び潜熱蓄熱材5のそれぞれの形成材料には、上記第1の実施の形態による蓄熱部材1の燃焼抑制消火材7及び潜熱蓄熱材5と同様の形成材料がそれぞれ用いられている。本実施の形態における燃焼抑制消火材7及び潜熱蓄熱材5は、蓄熱部材1の燃焼抑制消火材7及び潜熱蓄熱材5とそれぞれ同様の材料で形成されているので、蓄熱部材11は蓄熱部材1と同様の効果が得られる。
[Second Embodiment]
Next, a heat storage member and a storage container using the heat storage member according to the second embodiment of the present invention will be described with reference to FIGS. The heat storage member 11 according to the present embodiment is characterized in that a plurality of combustion-suppressing fire extinguishing materials 7 and a plurality of latent heat storage materials 5 are laminated. FIG. 6 shows a schematic cross-sectional configuration of the heat storage member 11 according to the present embodiment. As shown in FIG. 6, the heat storage member 11 according to this embodiment includes a base material 3, two layers of combustion-suppressing fire extinguishing material 7 and latent heat heat storage material 5 that are formed on the base material 3 and are alternately stacked. have. Although FIG. 6 illustrates the heat storage member 11 having a plate shape (for example, a rectangular flat plate shape) as a whole, the heat storage member 11 can be appropriately formed in different outer shapes depending on the place to be applied. In the heat storage member 11, the combustion suppression fire extinguishing material 7 is in contact with the base material 3, but the latent heat storage material 5 is in contact with the base material 3 and the latent heat storage material 5 and the combustion suppression fire extinguishing material 7 are alternately stacked. May be. In addition, the number of stacks of the combustion suppressing fire extinguishing material 7 and the latent heat storage material 5 is not limited to two layers, but may be three or more. Moreover, the formation material similar to the combustion suppression fire extinguishing material 7 and the latent heat storage material 5 of the heat storage member 1 by the said 1st Embodiment is used for each formation material of the combustion suppression fire extinguishing material 7 and the latent heat storage material 5, respectively. It has been. Since the combustion suppression fire extinguishing material 7 and the latent heat storage material 5 in the present embodiment are formed of the same material as the combustion suppression fire extinguishing material 7 and the latent heat storage material 5 of the heat storage member 1, respectively, the heat storage member 11 is the heat storage member 1. The same effect can be obtained.
 次に、本実施の形態による保管容器130について図7を用いて説明する。図7は、本実施の形態による保管容器130の概略の断面構成を示している。保管容器130の外観構成及び動作は、上記第1の実施の形態による保管容器100と同一であるため説明は省略する。図7に示すように、本実施の形態による保管容器130の壁部109は、外周囲に設けられた断熱部111と、断熱部111と貯蔵室105との間に設けられて貯蔵室105の熱を蓄積する蓄熱部材131とを有している。蓄熱部材131は、本実施の形態による蓄熱部材11とほぼ同様の構成を有している。蓄熱部材131は、断熱部111上に設けられ、交互に積層されたそれぞれ2層の燃焼抑制消火材7と2層の潜熱蓄熱材5とを有している。蓄熱部材131は、燃焼抑制消火材7が断熱部111に接触するように設けられている。 Next, the storage container 130 according to this embodiment will be described with reference to FIG. FIG. 7 shows a schematic cross-sectional configuration of the storage container 130 according to the present embodiment. Since the external configuration and operation of the storage container 130 are the same as those of the storage container 100 according to the first embodiment, description thereof is omitted. As shown in FIG. 7, the wall portion 109 of the storage container 130 according to the present embodiment is provided between the heat insulating portion 111 provided on the outer periphery, and between the heat insulating portion 111 and the storage chamber 105. And a heat storage member 131 for storing heat. The heat storage member 131 has substantially the same configuration as the heat storage member 11 according to the present embodiment. The heat storage member 131 is provided on the heat insulating portion 111 and includes two layers of the combustion suppressing fire extinguishing material 7 and two layers of the latent heat storage material 5 that are alternately stacked. The heat storage member 131 is provided such that the combustion-suppressing fire extinguishing material 7 is in contact with the heat insulating portion 111.
 保管容器130は、燃焼抑制消火材7と潜熱蓄熱材5とを交互に積層させた構成を有している。保管容器130は、燃焼抑制消火材7と潜熱蓄熱材5と交互に積層することにより、蓄熱の機能を発揮するとともに火災時の被害を防止できる。保管容器130は、蓄熱の性能を高くする場合には潜熱蓄熱材5の層数を多くしたり厚さを厚くしたりし、消火の性能を高くする場合には燃焼抑制消火材7の層数を多くしたり厚さを厚くしたりしてももちろんよい。 The storage container 130 has a configuration in which the combustion suppressing fire extinguishing material 7 and the latent heat storage material 5 are alternately stacked. The storage container 130 can alternately stack the combustion-suppressing fire extinguishing material 7 and the latent heat storage material 5 to exhibit a heat storage function and prevent damage during a fire. The storage container 130 increases the number of layers of the latent heat storage material 5 or increases the thickness when the heat storage performance is increased, and increases the number of layers of the combustion suppression fire extinguishing material 7 when the fire suppression performance is increased. Of course, it is possible to increase the thickness or increase the thickness.
〔第3の実施の形態〕
 次に、本発明の第3の実施の形態による蓄熱部材及びそれを用いた保管容器について図8を用いて説明する。本実施の形態による蓄熱部材21は、燃焼抑制消火材7が潜熱蓄熱材5を囲んで配置されている点に特徴を有している。図8は、本実施の形態による蓄熱部材21の概略の断面構成を示している。図8に示すように、蓄熱部材21は、中空板状(例えば長方形平板状)に形成された基材3を有している。基材3の中空部3aには、潜熱蓄熱材5と、潜熱蓄熱材5を囲んで配置された燃焼抑制消火材7とが形成されている。燃焼抑制消火材7の外周囲は基材3に接触している。蓄熱部材21は、燃焼抑制消火材7が潜熱蓄熱材5を囲んで配置された構成を有しているが、潜熱蓄熱材5が燃焼抑制消火材7を囲んで配置された構成を有していてもよい。図8には、全体として板状(例えば長方形平板状)の形状の蓄熱部材21が例示されているが、蓄熱部材21は適用する場所に応じて適宜異なる外形形状に形成することができる。また、潜熱蓄熱材5及び燃焼抑制消火材7のそれぞれの形成材料には、上記第1の実施の形態による蓄熱部材1の潜熱蓄熱材5及び燃焼抑制消火材7とそれぞれ同様の形成材料が用いられている。蓄熱部材21の潜熱蓄熱材5及び燃焼抑制消火材7は、蓄熱部材1の潜熱蓄熱材5及び燃焼抑制消火材7とそれぞれ同様の材料で形成されているので、蓄熱部材21は蓄熱部材1と同様の効果が得られる。
[Third Embodiment]
Next, a heat storage member and a storage container using the heat storage member according to a third embodiment of the present invention will be described with reference to FIG. The heat storage member 21 according to the present embodiment is characterized in that the combustion-suppressing fire extinguishing material 7 is disposed so as to surround the latent heat storage material 5. FIG. 8 shows a schematic cross-sectional configuration of the heat storage member 21 according to the present embodiment. As shown in FIG. 8, the heat storage member 21 has the base material 3 formed in a hollow plate shape (for example, rectangular flat plate shape). A latent heat storage material 5 and a combustion-suppressing fire extinguishing material 7 disposed so as to surround the latent heat storage material 5 are formed in the hollow portion 3 a of the base material 3. The outer periphery of the combustion-suppressing fire extinguishing material 7 is in contact with the base material 3. The heat storage member 21 has a configuration in which the combustion suppression fire extinguishing material 7 is disposed surrounding the latent heat storage material 5, but the latent heat storage material 5 has a configuration disposed around the combustion suppression fire extinguishing material 7. May be. Although FIG. 8 illustrates the heat storage member 21 having a plate-like shape (for example, a rectangular flat plate shape) as a whole, the heat storage member 21 can be appropriately formed in different outer shapes depending on the place to be applied. In addition, as the formation materials of the latent heat storage material 5 and the combustion suppression fire extinguishing material 7, the same formation materials as the latent heat storage material 5 and the combustion suppression fire extinguishing material 7 of the heat storage member 1 according to the first embodiment are used, respectively. It has been. The latent heat storage material 5 and the combustion-suppressing fire extinguishing material 7 of the heat storage member 21 are formed of the same material as the latent heat storage material 5 and the combustion-suppressing fire extinguishing material 7 of the heat storage member 1, respectively. Similar effects can be obtained.
 本実施の形態による保管容器は、上記第1の実施の形態による保管容器100と同様の外観構成を有しており、扉部102及び壁部109に設けられた蓄熱部材の潜熱蓄熱材及び燃焼抑制消火材が蓄熱部材21の潜熱蓄熱材5及び燃焼抑制消火材7と同様の構成を有している。すなわち、本実施の形態による保管容器は、扉部102及び壁部109の筐体の空洞に上記第1の実施の形態による保管容器100と同形状の断熱部と、当該断熱部に接触する燃焼抑制消火材と、当該燃焼抑制消火材に囲まれた潜熱蓄熱材とを有している。本実施の形態による保管容器は、燃焼抑制消火材を有しているので、保管容器100と同様の効果が得られる。 The storage container according to the present embodiment has the same external configuration as the storage container 100 according to the first embodiment, and the latent heat storage material and the combustion of the heat storage member provided on the door portion 102 and the wall portion 109. The suppression fire extinguishing material has the same configuration as the latent heat storage material 5 and the combustion suppression fire extinguishing material 7 of the heat storage member 21. That is, the storage container according to the present embodiment has a heat insulating part having the same shape as the storage container 100 according to the first embodiment in the cavity of the casing of the door part 102 and the wall part 109, and combustion that contacts the heat insulating part. It has a suppression fire extinguishing material and a latent heat storage material surrounded by the combustion suppression fire extinguishing material. Since the storage container according to the present embodiment has the combustion-suppressing fire extinguishing material, the same effect as the storage container 100 can be obtained.
〔第4の実施の形態〕
 次に、本発明の第4の実施の形態よる蓄熱部材及び保管容器について図9及び図10を用いて説明する。本実施の形態による蓄熱部材31は、潜熱蓄熱材5がマトリクス状に配置されて燃焼抑制消火材7に埋め込まれて形成されている点に特徴を有している。図9は、本実施の形態による蓄熱部材31の概略構成を示している。図9(a)は、燃焼抑制消火材7の形成面をその法線方向に見た蓄熱部材31の概略の構成を示している。図9(b)は、図9(a)の図中B-B’線で切断した蓄熱部材31の切断面の概略構成を示している。
[Fourth Embodiment]
Next, a heat storage member and a storage container according to a fourth embodiment of the present invention will be described with reference to FIGS. The heat storage member 31 according to the present embodiment is characterized in that the latent heat storage material 5 is formed in a matrix and embedded in the combustion suppression fire extinguishing material 7. FIG. 9 shows a schematic configuration of the heat storage member 31 according to the present embodiment. FIG. 9A shows a schematic configuration of the heat storage member 31 when the formation surface of the combustion suppressing fire extinguishing material 7 is viewed in the normal direction. FIG. 9B shows a schematic configuration of the cut surface of the heat storage member 31 cut along the line BB ′ in FIG. 9A.
 図9(a)及び図9(b)に示すように、本実施の形態による蓄熱部材31は、基材3と、基材3上のほぼ全面に形成された燃焼抑制消火材7と、燃焼抑制消火材7に埋め込まれて形成され、マトリクス状に配置された複数の潜熱蓄熱材5とを有している。図9には、全体として板状(例えば長方形平板状)の形状の蓄熱部材11が例示されているが、蓄熱部材31は適用する場所に応じて適宜異なる外形形状に形成することができる。 As shown in FIGS. 9A and 9B, the heat storage member 31 according to this embodiment includes a base material 3, a combustion-suppressing fire extinguishing material 7 formed on almost the entire surface of the base material 3, and combustion. It has a plurality of latent heat storage materials 5 that are embedded in the suppression fire extinguishing material 7 and arranged in a matrix. Although FIG. 9 illustrates the heat storage member 11 having a plate shape (for example, a rectangular flat plate shape) as a whole, the heat storage member 31 can be formed in different outer shapes as appropriate depending on the place to which it is applied.
 潜熱蓄熱材5は、例えば板状(例えば長方形平板状)の形状を有している。潜熱蓄熱材5は燃焼抑制消火材7の上面に露出している。潜熱蓄熱材5の上面と燃焼抑制消火材7の上面とはほぼ面一に形成されている。潜熱蓄熱材5の上面及び燃焼抑制消火材7の上面はほぼ平坦に形成されている。潜熱蓄熱材5及び燃焼抑制消火材7のそれぞれの形成材料には、上記第1の実施の形態による蓄熱部材1の潜熱蓄熱材5及び燃焼抑制消火材7と同様の形成材料がそれぞれ用いられている。また、蓄熱部材31は、潜熱蓄熱材5が基材3のほぼ全面に形成され、複数の燃焼抑制消火材7が潜熱蓄熱材5に埋め込まれてマトリクス状に配置された構成を有していてもよい。 The latent heat storage material 5 has, for example, a plate shape (for example, a rectangular flat plate shape). The latent heat storage material 5 is exposed on the upper surface of the combustion-suppressing fire extinguishing material 7. The upper surface of the latent heat storage material 5 and the upper surface of the combustion-suppressing fire extinguishing material 7 are formed substantially flush with each other. The upper surface of the latent heat storage material 5 and the upper surface of the combustion suppression fire extinguishing material 7 are formed substantially flat. As the formation materials of the latent heat storage material 5 and the combustion suppression fire extinguishing material 7, the same formation materials as the latent heat storage material 5 and the combustion suppression fire extinguishing material 7 of the heat storage member 1 according to the first embodiment are used, respectively. Yes. Further, the heat storage member 31 has a configuration in which the latent heat storage material 5 is formed on substantially the entire surface of the base material 3 and a plurality of combustion suppression fire extinguishing materials 7 are embedded in the latent heat storage material 5 and arranged in a matrix. Also good.
 本実施の形態では、燃焼抑制消火材7は潜熱蓄熱材5を囲んでいるので、ある1つの潜熱蓄熱材5に着火した炎が他の潜熱蓄熱材5に延焼する前に火勢を抑制して消火することができる。例えば燃焼抑制消火材7が燃焼抑制物質で形成されている場合、燃焼抑制物質は相対的に燃焼し難い。このため、燃焼抑制消火材7は1つの潜熱蓄熱材5に着火した炎で燃焼せず、当該炎が他の潜熱蓄熱材5に延焼する前に沈静化してしまうようになっている。 In the present embodiment, since the combustion suppression fire extinguishing material 7 surrounds the latent heat storage material 5, the fire is suppressed before the flame ignited on one latent heat storage material 5 spreads to the other latent heat storage material 5. Can be extinguished. For example, when the combustion-suppressing fire extinguishing material 7 is formed of a combustion-suppressing substance, the combustion-suppressing substance is relatively difficult to burn. For this reason, the combustion-suppressing fire extinguishing material 7 does not burn with the flame ignited on one latent heat storage material 5, and settles before the flame spreads to the other latent heat storage material 5.
 次に、本実施の形態による保管容器140について図10を用いて説明する。図10(a)は、本実施の形態による保管容器140の概略の断面構成を示している。図10(b)は、図10(a)の図中に示す領域αを貯蔵室105側から見た蓄熱部材141の概略構成を示している。保管容器140の外観構成及び動作は、上記第1の実施の形態による保管容器100と同一であるため説明は省略する。図10(a)及び図10(b)に示すように、保管容器140の壁部109は、外周囲に設けられた断熱部111と、断熱部111と貯蔵室105との間に設けられ、貯蔵室105の熱を蓄積する蓄熱部材141とを有している。蓄熱部材141は、本実施の形態による蓄熱部材11とほぼ同様の構成を有している。蓄熱部材141は、断熱部111上に設けられた燃焼抑制消火材7と、燃焼抑制消火材7に埋め込まれ、マトリクス状に配置された潜熱蓄熱材5とを有している。また、扉部102に設けられた蓄熱部材141も壁部109に設けられた蓄熱部材141と同様の構成を有している。 Next, the storage container 140 according to this embodiment will be described with reference to FIG. FIG. 10A shows a schematic cross-sectional configuration of the storage container 140 according to the present embodiment. FIG. 10B shows a schematic configuration of the heat storage member 141 when the region α shown in FIG. 10A is viewed from the storage chamber 105 side. Since the external configuration and operation of the storage container 140 are the same as those of the storage container 100 according to the first embodiment, description thereof is omitted. As shown in FIG. 10A and FIG. 10B, the wall 109 of the storage container 140 is provided between the heat insulating part 111 provided on the outer periphery, the heat insulating part 111 and the storage chamber 105, A heat storage member 141 that stores heat of the storage chamber 105. The heat storage member 141 has substantially the same configuration as the heat storage member 11 according to the present embodiment. The heat storage member 141 includes a combustion suppression fire extinguishing material 7 provided on the heat insulating portion 111 and a latent heat storage material 5 embedded in the combustion suppression fire extinguishing material 7 and arranged in a matrix. Further, the heat storage member 141 provided in the door portion 102 has the same configuration as the heat storage member 141 provided in the wall portion 109.
 保管容器140は、潜熱蓄熱材5が燃焼抑制消火材7に埋め込まれてマトリクス状に配置されている。燃焼抑制消火材7は潜熱蓄熱材5の貯蔵室105側に面する面を除く周囲を取り囲むように形成されている。このため、燃焼抑制消火材7は、保管容器140の火災発生時に潜熱蓄熱材5が燃焼したとしても効率的に早期に消火できる。また、蓄熱蓄熱材5は、燃焼抑制消火材7にマトリクス状に小分けされた状態で配置されている。これにより、保管容器140は、潜熱蓄熱材を小分けにしていることによって消火しやすいため、引火や発火の可能性を減少させることができる。また、保管容器140は、潜熱蓄熱材5を個々に消火できるので、燃焼部を効率的に消火することが可能となる。 The storage container 140 is arranged in a matrix with the latent heat storage material 5 embedded in the combustion-suppressing fire extinguishing material 7. The combustion-suppressing fire extinguishing material 7 is formed so as to surround the periphery excluding the surface of the latent heat storage material 5 facing the storage chamber 105 side. For this reason, even if the latent heat storage material 5 burns when the fire of the storage container 140 occurs, the combustion suppressing fire extinguishing material 7 can be extinguished efficiently and quickly. Moreover, the heat storage heat storage material 5 is arrange | positioned in the state subdivided by the combustion suppression fire extinguishing material 7 in the matrix form. Thereby, since the storage container 140 is easily extinguished by subdividing the latent heat storage material, the possibility of ignition or ignition can be reduced. Moreover, since the storage container 140 can extinguish the latent heat storage material 5 individually, it becomes possible to extinguish the combustion part efficiently.
〔第5の実施の形態〕
 次に、本発明の第5の実施の形態による蓄熱部材及びそれを用いた保管容器について図11及び図12を用いて説明する。図11は、本実施の形態による蓄熱部材41の概略の断面構成を示している。図11に示すように、蓄熱部材41は、基材3と、基材3上のほぼ全面に形成された難燃性材料層13と、難燃性材料層13に埋め込まれ、潜熱蓄熱材を内包する複数の潜熱蓄熱材内包用カプセル15とを有している。潜熱蓄熱材内包用カプセル15に内包された潜熱蓄熱材の形成材料には、上記第1の実施の形態による蓄熱部材1の潜熱蓄熱材5と同様の形成材料が用いられている。図11には、全体として板状(例えば長方形平板状)の形状の蓄熱部材41が例示されているが、蓄熱部材41は適用する場所に応じて適宜異なる外形形状に形成することができる。
[Fifth Embodiment]
Next, a heat storage member and a storage container using the same according to a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 11 shows a schematic cross-sectional configuration of the heat storage member 41 according to the present embodiment. As shown in FIG. 11, the heat storage member 41 is embedded in the base material 3, the flame retardant material layer 13 formed on almost the entire surface of the base material 3, and the flame retardant material layer 13. And a plurality of capsules 15 for inclusion of latent heat storage materials. As the formation material of the latent heat storage material contained in the capsule 15 for inclusion of latent heat storage material, the same formation material as the latent heat storage material 5 of the heat storage member 1 according to the first embodiment is used. FIG. 11 illustrates the heat storage member 41 having a plate shape (for example, a rectangular flat plate shape) as a whole, but the heat storage member 41 can be formed in different outer shapes as appropriate depending on the place to be applied.
 潜熱蓄熱材内包用カプセル15は、例えば球状に形成した潜熱蓄熱材の表面に所定の膜(例えば酸化膜)を形成することにより形成することができる。また、蓄熱部材41は、難燃性材料層13が溶融している状態で潜熱蓄熱材内包用カプセル15を埋め込み(例えば散布する)、その後難燃性材料層13を固化することにより形成される。 The latent heat storage material inclusion capsule 15 can be formed by forming a predetermined film (for example, an oxide film) on the surface of the latent heat storage material formed in a spherical shape, for example. In addition, the heat storage member 41 is formed by embedding (for example, spraying) the capsule 15 for latent heat storage material inclusion in a state where the flame retardant material layer 13 is melted, and then solidifying the flame retardant material layer 13. .
 難燃性材料層13は、蓄熱部材1の燃焼抑制消火材7と同様の機能を発揮するようになっている。難燃性材料層13は、蓄熱部材1の燃焼抑制消火材7の形成材料である燃焼抑制物質を含んでいる。難燃性材料層13は例えば臭化アンチモン、酸化アンチモン、尿素系難燃材、ハロゲン系難燃剤及び、リン系難燃剤等で形成されている。難燃性材料層13は潜熱蓄熱材内包用カプセル15の周囲を包囲するように配置されている。このため、難燃性材料層13は、ある1つの潜熱蓄熱材内包用カプセル15が燃焼したとしても、この燃焼による炎が他の潜熱蓄熱材内包用カプセル15に延焼する前に火勢を抑制して消火することができる。このように、難燃性材料層13は、燃焼を遅延、抑制、消火及び阻止することができる。蓄熱部材41は、潜熱蓄熱材内包用カプセル15の周囲を難燃性材料層13で包囲した構成を有しているので、より効果的に潜熱蓄熱材内包用カプセル15の燃焼による炎を消火できる。 The flame retardant material layer 13 exhibits the same function as the combustion suppressing fire extinguishing material 7 of the heat storage member 1. The flame retardant material layer 13 includes a combustion suppressing substance that is a material for forming the combustion suppressing fire extinguishing material 7 of the heat storage member 1. The flame retardant material layer 13 is formed of, for example, antimony bromide, antimony oxide, urea flame retardant, halogen flame retardant, phosphorus flame retardant, or the like. The flame retardant material layer 13 is disposed so as to surround the periphery of the latent heat storage material inclusion capsule 15. For this reason, even if one of the latent heat storage material inclusion capsules 15 burns, the flame retardant material layer 13 suppresses the fire before the flame due to this combustion spreads to the other latent heat storage material inclusion capsules 15. Can be extinguished. Thus, the flame retardant material layer 13 can delay, suppress, extinguish and prevent combustion. Since the heat storage member 41 has a configuration in which the periphery of the latent heat storage material inclusion capsule 15 is surrounded by the flame retardant material layer 13, the flame due to the combustion of the latent heat storage material inclusion capsule 15 can be more effectively extinguished. .
 次に、本実施の形態による保管容器について図12を用いて説明する。図12は、本実施の形態による保管容器150の概略の断面構成を示している。保管容器150の外観構成は、上記第1の実施の形態による保管容器100と同一であるため説明は省略する。図12に示すように、保管容器150の壁部109は、外周囲に設けられた断熱部111と、断熱部111と貯蔵室105との間に設けられ、貯蔵室105の熱を蓄積する蓄熱部材151とを有している。蓄熱部材151は、本実施の形態による蓄熱部材41とほぼ同様の構成を有している。蓄熱部材151は、断熱部111上に設けられた難燃性材料層13と、難燃性材料層13に埋め込まれ、潜熱蓄熱材を内包する複数の潜熱蓄熱材内包用カプセル15とを有している。また、扉部102に設けられた蓄熱部材151も壁部109に設けられた蓄熱部材151と同様の構成を有している。 Next, the storage container according to this embodiment will be described with reference to FIG. FIG. 12 shows a schematic cross-sectional configuration of the storage container 150 according to the present embodiment. Since the external configuration of the storage container 150 is the same as that of the storage container 100 according to the first embodiment, description thereof is omitted. As shown in FIG. 12, the wall 109 of the storage container 150 is provided between the heat insulating portion 111 provided on the outer periphery, and between the heat insulating portion 111 and the storage chamber 105, and stores the heat in the storage chamber 105. Member 151. The heat storage member 151 has substantially the same configuration as the heat storage member 41 according to the present embodiment. The heat storage member 151 includes a flame retardant material layer 13 provided on the heat insulating portion 111 and a plurality of latent heat storage material inclusion capsules 15 embedded in the flame retardant material layer 13 and including the latent heat storage material. ing. Further, the heat storage member 151 provided in the door portion 102 has the same configuration as the heat storage member 151 provided in the wall portion 109.
 難燃性材料層13は潜熱蓄熱材内包用カプセル15の周囲を包囲するように配置されている。このため、難燃性材料層13は、ある1つの潜熱蓄熱材内包用カプセル15が燃焼したとしても、燃焼を遅延、消火及び阻止することができる。これにより、難燃性材料層13は、この燃焼による炎が他の潜熱蓄熱材内包用カプセル15に延焼する前に消火することができる。このように、保管容器150は、潜熱蓄熱材内包用カプセル15の周囲を難燃性材料層13で包囲した構成の蓄熱部材151を有しているので、より効果的に潜熱蓄熱材内包用カプセル15の燃焼を消火できる。 The flame retardant material layer 13 is disposed so as to surround the periphery of the latent heat storage material containing capsule 15. For this reason, the flame retardant material layer 13 can delay, extinguish, and prevent combustion even if one latent heat storage material inclusion capsule 15 burns. Thereby, the flame-retardant material layer 13 can extinguish before the flame by this combustion spreads to the capsule 15 for other latent heat storage material inclusions. Thus, since the storage container 150 includes the heat storage member 151 having a configuration in which the periphery of the latent heat storage material inclusion capsule 15 is surrounded by the flame retardant material layer 13, the latent heat storage material inclusion capsule is more effectively included. Can extinguish 15 combustion.
〔第6の実施の形態〕
 次に、本発明の第6の実施の形態による蓄熱部材及びそれを用いた保管容器について図13を用いて説明する。図13は本実施の形態による蓄熱部材51の概略の断面構成を示している。図13に示すように、蓄熱部材51は、基材3と、基材3上のほぼ全面に形成された潜熱蓄熱材5と、潜熱蓄熱材5に埋め込まれ、燃焼抑制消火材を内包する複数の燃焼抑制消火材内包用カプセル17とを有している。燃焼抑制消火材内包用カプセル17に内包された燃焼抑制消火材の形成材料には、上記第1の実施の形態による蓄熱部材1の燃焼抑制消火材7と同様の形成材料が用いられている。図13には、全体として板状(例えば長方形平板状)の形状の蓄熱部材51が例示されているが、蓄熱部材51は適用する場所に応じて適宜異なる外形形状に形成することができる。
[Sixth Embodiment]
Next, a heat storage member and a storage container using the same according to a sixth embodiment of the present invention will be described with reference to FIG. FIG. 13 shows a schematic cross-sectional configuration of the heat storage member 51 according to the present embodiment. As shown in FIG. 13, the heat storage member 51 includes a base material 3, a latent heat storage material 5 formed on substantially the entire surface of the base material 3, and a plurality of thermal storage members 51 that are embedded in the latent heat storage material 5 and contain a combustion suppression fire extinguishing material. And a combustion suppressing fire extinguishing material-containing capsule 17. The formation material of the combustion suppression fire extinguishing material contained in the capsule 17 for combustion suppression fire extinguishing material inclusion is the same as the formation material of the combustion suppression fire extinguishing material 7 of the heat storage member 1 according to the first embodiment. FIG. 13 illustrates a heat storage member 51 having a plate-like shape (for example, a rectangular flat plate shape) as a whole, but the heat storage member 51 can be appropriately formed in different outer shapes depending on the place to be applied.
 燃焼抑制消火材内包用カプセル17は、例えば球状に形成した燃焼抑制消火材の表面に所定の膜(例えば酸化膜)を形成することにより形成することができる。また、蓄熱部材51は、潜熱蓄熱材5が溶融している状態で燃焼抑制消火材内包用カプセル17を埋め込み(例えば散布する)、その後、潜熱蓄熱材5を固化することにより形成される。 The combustion-suppressing fire extinguishing material-containing capsule 17 can be formed by forming a predetermined film (for example, an oxide film) on the surface of the combustion-suppressing fire-extinguishing material formed in a spherical shape, for example. Moreover, the heat storage member 51 is formed by embedding (for example, spraying) the capsule 17 for containing a combustion-suppressing fire extinguishing material in a state where the latent heat storage material 5 is melted, and then solidifying the latent heat storage material 5.
 燃焼抑制消火材内包用カプセル17は、上記第1の実施の形態による蓄熱部材1の燃焼抑制消火材7と同様の機能を発揮するようになっている。燃焼抑制消火材内包用カプセル17は、例えば潜熱蓄熱材5が燃焼して高温になると燃焼抑制消火材を包んでいる部材が破壊されて燃焼抑制消火材が開放されるようになっている。蓄熱部材51は、燃焼している潜熱蓄熱材5の近傍に配置されている燃焼抑制消火材内包用カプセル17ほど相対的に早く破壊されて燃焼抑制消火材が開放されるようになっている。このため、燃焼抑制消火材内包用カプセル17は、潜熱蓄熱材5に着火した炎が燃え広がる前に消火することができる。このように、蓄熱部材51は、燃焼抑制消火材内包用カプセル17により潜熱蓄熱材5の燃焼部を選択的に消火して潜熱蓄熱材5の燃焼や延焼をより効果的に防止できる。 The combustion-suppressing fire-extinguishing material-containing capsule 17 exhibits the same function as the combustion-suppressing fire-extinguishing material 7 of the heat storage member 1 according to the first embodiment. For example, when the latent heat storage material 5 is combusted and the temperature of the latent heat storage material 5 is increased, the member enclosing the combustion suppression fire extinguishing material is destroyed and the combustion suppression fire extinguishing material is opened. The heat storage member 51 is destroyed relatively earlier as the capsule 17 for containing the combustion suppressing fire extinguishing material disposed near the burning latent heat storage material 5 so that the combustion suppressing fire extinguishing material is opened. For this reason, the capsule 17 for combustion suppression fire extinguishing material inclusion can be extinguished before the flame which ignited the latent heat storage material 5 burns and spreads. In this way, the heat storage member 51 can selectively effectively extinguish the combustion portion of the latent heat storage material 5 by the combustion-suppressing fire-extinguishing material inclusion capsule 17 to prevent the latent heat storage material 5 from burning and spreading more effectively.
 本実施の形態による保管容器は、上記第6の実施の形態による保管容器150と同様の外観構成を有しており、保管容器150の扉部102及び壁部109に設けられた難燃性材料層13に代えて潜熱蓄熱材を有し、複数の潜熱蓄熱材内包用カプセル15に代えて燃焼抑制消火材内包用カプセルを有している。本実施の形態による保管容器は、蓄熱部材51とほぼ同様の構成の潜熱蓄熱材及び複数の燃焼抑制消火材内包用カプセルを有しているので、潜熱蓄熱材の燃焼部を選択的に消火して潜熱蓄熱材の燃焼や延焼を効果的に防止できる。 The storage container according to the present embodiment has the same external configuration as the storage container 150 according to the sixth embodiment, and the flame retardant material provided on the door portion 102 and the wall portion 109 of the storage container 150. In place of the layer 13, a latent heat storage material is provided, and in place of the plurality of latent heat storage material inclusion capsules 15, a combustion suppressing fire extinguishing material inclusion capsule is provided. Since the storage container according to the present embodiment includes the latent heat storage material having a configuration substantially similar to that of the heat storage member 51 and a plurality of capsules containing combustion suppression fire extinguishing materials, the combustion part of the latent heat storage material is selectively extinguished. This effectively prevents the latent heat storage material from burning and spreading.
〔第7の実施の形態〕
 次に、本発明の第7の実施の形態による蓄熱部材及びそれを用いた保管容器について図14及び図15を用いて説明する。図14は、本実施の形態による蓄熱部材61の概略の断面構成を示している。図14に示すように、蓄熱部材61は、基材3と、基材3上のほぼ全面に形成された難燃性材料層13と、難燃性材料層13に埋め込まれた複数の潜熱蓄熱材内包用カプセル15及び複数の燃焼抑制消火材内包用カプセル17とを有している。難燃性材料層13の形成材料には、上記第5の実施の形態による蓄熱部材41の難燃性材料層13と同様の形成材料が用いられている。潜熱蓄熱材内包用カプセル15は、蓄熱部材41の潜熱蓄熱材内包用カプセル15と同様の構成を有している。燃焼抑制消火材内包用カプセル17は、上記第6の実施の形態による蓄熱部材51の燃焼抑制消火材内包用カプセル17と同様の構成を有している。図14には、全体として板状(例えば長方形平板状)の形状の蓄熱部材61が例示されているが、蓄熱部材61は適用する場所に応じて適宜異なる外形形状に形成することができる。
[Seventh Embodiment]
Next, a heat storage member and a storage container using the same according to a seventh embodiment of the present invention will be described with reference to FIGS. FIG. 14 shows a schematic cross-sectional configuration of the heat storage member 61 according to the present embodiment. As shown in FIG. 14, the heat storage member 61 includes a base material 3, a flame retardant material layer 13 formed on almost the entire surface of the base material 3, and a plurality of latent heat storage materials embedded in the flame retardant material layer 13. It has a material inclusion capsule 15 and a plurality of combustion-suppressing fire extinguishing material inclusion capsules 17. As the forming material of the flame retardant material layer 13, the same forming material as that of the flame retardant material layer 13 of the heat storage member 41 according to the fifth embodiment is used. The latent heat storage material inclusion capsule 15 has the same configuration as the latent heat storage material inclusion capsule 15 of the heat storage member 41. The capsule 17 for combustion suppression fire extinguishing material inclusion has the same configuration as the capsule 17 for combustion suppression fire extinguishing material inclusion of the heat storage member 51 according to the sixth embodiment. In FIG. 14, a heat storage member 61 having a plate shape (for example, a rectangular flat plate shape) as a whole is illustrated, but the heat storage member 61 can be appropriately formed in different outer shapes depending on the place to be applied.
 蓄熱部材41は難燃性材料層13が溶融している状態で潜熱蓄熱材内包用カプセル15及び燃焼抑制消火材内包用カプセル17を埋め込み(例えば散布する)、その後、難燃性材料層13を固化することにより形成される。 The heat storage member 41 embeds (for example, sprays) the latent heat storage material-containing capsule 15 and the combustion-suppressing fire-extinguishing material-containing capsule 17 in a state where the flame-retardant material layer 13 is melted, and then the flame-retardant material layer 13 is embedded. It is formed by solidifying.
 蓄熱部材61は、蓄熱部材41と同様に、難燃性材料層13が潜熱蓄熱材内包用カプセル15の周囲に配置されているので、蓄熱部材41と同様の効果が得られる。さらに、蓄熱部材61は、燃焼抑制消火材内包用カプセル17を有しているので、蓄熱部材51と同様の効果が得られる。このように、蓄熱部材61は、蓄熱部材41、51の両方の効果が得られ、より効率的に潜熱蓄熱材内包用カプセル15の燃焼を消火できる。 As with the heat storage member 41, the heat storage member 61 has the same effect as the heat storage member 41 because the flame retardant material layer 13 is disposed around the latent heat storage material inclusion capsule 15. Furthermore, since the heat storage member 61 has the capsule 17 for combustion suppression fire extinguishing material inclusion, the same effect as the heat storage member 51 is acquired. Thus, the heat storage member 61 can obtain the effects of both the heat storage members 41 and 51, and can extinguish the combustion of the latent heat storage material inclusion capsule 15 more efficiently.
 次に、本実施の形態による保管容器について図15を用いて説明する。図15は、本実施の形態による保管容器160の概略の断面構成を示している。保管容器160の外観構成及び動作は、上記第1の実施の形態による保管容器100と同一であるため説明は省略する。図15に示すように、本実施の形態による保管容器160の壁部109は、外周囲に設けられた断熱部111と、断熱部111と貯蔵室105との間に設けられ、貯蔵室105の熱を蓄積する蓄熱部材161とを有している。蓄熱部材161は、本実施の形態による蓄熱部材61とほぼ同様の構成を有している。蓄熱部材161は、断熱部111上に設けられた難燃性材料層13と、難燃性材料層13に混在して埋め込まれた複数の潜熱蓄熱材内包用カプセル15及び複数の燃焼抑制消火材内包用カプセル17とを有している。また、扉部102に設けられた蓄熱部材161も壁部109に設けられた蓄熱部材161と同様の構成を有している。 Next, the storage container according to this embodiment will be described with reference to FIG. FIG. 15 shows a schematic cross-sectional configuration of the storage container 160 according to the present embodiment. Since the external configuration and operation of the storage container 160 are the same as those of the storage container 100 according to the first embodiment, description thereof is omitted. As shown in FIG. 15, the wall portion 109 of the storage container 160 according to the present embodiment is provided between the heat insulating portion 111 provided on the outer periphery, and between the heat insulating portion 111 and the storage chamber 105, and And a heat storage member 161 for storing heat. The heat storage member 161 has substantially the same configuration as the heat storage member 61 according to the present embodiment. The heat storage member 161 includes a flame retardant material layer 13 provided on the heat insulating portion 111, a plurality of latent heat storage material encapsulating capsules 15 embedded in the flame retardant material layer 13, and a plurality of combustion-suppressing fire extinguishing materials. And an internal capsule 17. Further, the heat storage member 161 provided in the door portion 102 has the same configuration as the heat storage member 161 provided in the wall portion 109.
 保管容器160の蓄熱部材161は、難燃性材料層13に複数の潜熱蓄熱材内包用カプセル15及び複数の燃焼抑制消火材内包用カプセル17が埋め込まれた構成を有しているので上記第5及び第6の実施の形態による保管容器の両方の効果が得られる。 The heat storage member 161 of the storage container 160 has a configuration in which a plurality of latent heat storage material inclusion capsules 15 and a plurality of combustion suppression fire extinguishing material inclusion capsules 17 are embedded in the flame retardant material layer 13. And the effect of both the storage containers by 6th Embodiment is acquired.
〔第8の実施の形態〕
 次に、本発明の第8の実施の形態による蓄熱部材及びそれを用いた保管容器について図16及び図17を用いて説明する。図16は、本実施の形態による蓄熱部材71の概略の断面構成を示している。図16に示すように、蓄熱部材71は、難燃性材料層13内で潜熱蓄熱材内包用カプセル15及び燃焼抑制消火材内包用カプセル17の分散濃度にそれぞれ偏りがある点に特徴を有している。蓄熱部材71は、例えば難燃性材料層13内の図中上側に複数の潜熱蓄熱材内包用カプセル15を重点的に有し、難燃性材料層13内の図中下側に複数の燃焼抑制消火材内包用カプセル17を重点的に有している。図16には、全体として板状(例えば長方形平板状)の形状の蓄熱部材71が例示されているが、蓄熱部材71は適用する場所に応じて適宜異なる外形形状に形成することができる。
[Eighth Embodiment]
Next, a heat storage member and a storage container using the same according to an eighth embodiment of the present invention will be described with reference to FIGS. FIG. 16 shows a schematic cross-sectional configuration of the heat storage member 71 according to the present embodiment. As shown in FIG. 16, the heat storage member 71 is characterized in that the dispersion concentrations of the latent heat storage material inclusion capsule 15 and the combustion suppression fire extinguishing material inclusion capsule 17 are uneven in the flame retardant material layer 13. ing. The heat storage member 71 has, for example, a plurality of latent heat storage material inclusion capsules 15 on the upper side in the figure in the flame retardant material layer 13, and a plurality of combustion on the lower side in the figure in the flame retardant material layer 13. The capsule 17 for suppressing fire extinguishing material is preferentially provided. FIG. 16 illustrates a heat storage member 71 having a plate-like shape (for example, a rectangular flat plate shape) as a whole, but the heat storage member 71 can be appropriately formed in different outer shapes depending on the place to which it is applied.
 蓄熱部材51は難燃性材料層13が溶融している状態で潜熱蓄熱材内包用カプセル15及び燃焼抑制消火材内包用カプセル17をそれぞれ所定の場所に重点的に埋め込み(例えば散布する)、その後、難燃性材料層13を固化することにより形成される。 In the state where the flame retardant material layer 13 is melted, the heat storage member 51 mainly embeds (for example, spreads) the latent heat storage material inclusion capsule 15 and the combustion suppression fire extinguishing material inclusion capsule 17 in predetermined places, and then It is formed by solidifying the flame retardant material layer 13.
 例えば潜熱蓄熱材内包用カプセル15は保冷対象物の近傍に重点的に配置される。燃焼抑制消火材内包用カプセル17は相対的に出火元となり易い部材の近傍に重点的に配置される。このように、蓄熱部材71は、難燃性材料層13内における潜熱蓄熱材内包用カプセル15及び燃焼抑制消火材内包用カプセル17の配置密度を必要な箇所で高くしてそれぞれ濃淡をつけて分散されている。これにより、蓄熱部材71は、より効果的に保冷対象物を低温に維持できるとともに、火災発生時に早期に消火して燃焼や延焼を防止できる。本実施の形態による蓄熱部材71は、潜熱蓄熱材内包用カプセル15及び燃焼抑制消火材内包用カプセル17のいずれか一方のみ分散濃度に偏りを有していてもよい。 For example, the latent heat storage material-containing capsule 15 is preferentially disposed in the vicinity of the object to be kept cold. The capsule 17 for containing a fire suppression fire extinguishing material is placed in the vicinity of a member that is relatively likely to become a fire source. As described above, the heat storage member 71 is dispersed by increasing the arrangement density of the latent heat storage material inclusion capsules 15 and the combustion suppressing fire extinguishing material inclusion capsules 17 in the flame retardant material layer 13 at necessary locations. Has been. As a result, the heat storage member 71 can more effectively maintain the cold insulation object at a low temperature, and can extinguish the fire early when a fire occurs and prevent combustion and fire spread. In the heat storage member 71 according to the present embodiment, only one of the latent heat storage material inclusion capsule 15 and the combustion suppression fire extinguishing material inclusion capsule 17 may be biased in the dispersion concentration.
 次に、本実施の形態による保管容器について図17を用いて説明する。図17は、本実施の形態による保管容器170の概略の断面構成を示している。本実施の形態による保管容器170の外観構成及び動作は、上記第1の実施の形態による保管容器100と同一であるため説明は省略する。図17に示すように、保管容器170の壁部109は、外周囲に設けられた断熱部111と、断熱部111と貯蔵室105との間に設けられ、貯蔵室105の熱を蓄積する蓄熱部材171とを有している。蓄熱部材171は、本実施の形態による蓄熱部材71とほぼ同様の構成を有している。蓄熱部材171は、断熱部111上に設けられた所定の樹脂層14と、樹脂層14に混在して埋め込まれた複数の潜熱蓄熱材内包用カプセル15及び複数の燃焼抑制消火材内包用カプセル17とを有している。本例では、燃焼抑制消火材内包用カプセル17は、発火源となる確率が相対的に高いコンプレッサ115の近傍に重点的に設けられている。また、本例では、潜熱蓄熱材内包用カプセル15は、冷気の発生源である冷却器113の周辺に重点的に設けられている。冷気は下降するため、潜熱蓄熱材内包用カプセル15が冷却器113の周辺に設置されていると、蓄熱効果が大きくなる。なお、保管容器170は、樹脂層14に代えて難燃性材料層を有していてもよい。 Next, the storage container according to this embodiment will be described with reference to FIG. FIG. 17 shows a schematic cross-sectional configuration of the storage container 170 according to the present embodiment. Since the external configuration and operation of the storage container 170 according to the present embodiment are the same as those of the storage container 100 according to the first embodiment, description thereof will be omitted. As shown in FIG. 17, the wall portion 109 of the storage container 170 is provided between the heat insulating portion 111 provided on the outer periphery, and between the heat insulating portion 111 and the storage chamber 105, and heat storage for accumulating the heat of the storage chamber 105. Member 171. The heat storage member 171 has substantially the same configuration as the heat storage member 71 according to the present embodiment. The heat storage member 171 includes a predetermined resin layer 14 provided on the heat insulating portion 111, a plurality of latent heat storage material inclusion capsules 15 embedded in the resin layer 14, and a plurality of combustion suppression fire extinguishing material inclusion capsules 17. And have. In this example, the capsule 17 for containing a combustion-suppressing fire extinguishing material is provided in the vicinity of the compressor 115 that has a relatively high probability of becoming an ignition source. In this example, the latent heat storage material inclusion capsule 15 is provided mainly around the cooler 113 that is a source of cold air. Since cold air descends, if the capsule 15 for latent heat storage material inclusion is installed around the cooler 113, the heat storage effect is increased. The storage container 170 may have a flame retardant material layer instead of the resin layer 14.
 保管容器170は、蓄熱機能を重視するか、消火機能を重視するかによって、潜熱蓄熱材内包用カプセル15及び燃焼抑制消火材内包用カプセル17の分布の濃淡を設けるようになっている。例えば、潜熱蓄熱材内包用カプセル15が冷却器113から近いところに多く設けられると蓄熱の効果が高くなる。また、燃焼抑制消火材内包用カプセル17がコンプレッサ115の周辺に多く設けられると消火の効率が高くなる。このように、保管容器170は、潜熱蓄熱材内包用カプセル15及び燃焼抑制消火材内包用カプセル17の配置を調整することにより、蓄熱機能を向上させるとともに消火機能も向上させることができる。 The storage container 170 is provided with light and shade distributions of the latent heat storage material inclusion capsule 15 and the combustion suppression fire extinguishing material inclusion capsule 17 depending on whether the heat storage function is important or the fire extinguishing function is important. For example, if many capsules for latent heat storage material inclusion 15 are provided near the cooler 113, the effect of heat storage is enhanced. In addition, if a large number of capsules 17 containing combustion-suppressing fire extinguishing material are provided around the compressor 115, the efficiency of fire extinguishing becomes high. In this manner, the storage container 170 can improve the heat storage function and the fire extinguishing function by adjusting the arrangement of the latent heat storage material inclusion capsule 15 and the combustion suppressing fire extinguishing material inclusion capsule 17.
〔第9の実施の形態〕
 次に、本発明の第9の実施の形態による蓄熱部材及びそれを用いた保管容器について図18を用いて説明する。本実施の形態による蓄熱部材は、上記第1乃至第8の実施の形態による蓄熱部材のいずれかと同様の構成を有しているため、説明は省略する。
[Ninth Embodiment]
Next, a heat storage member and a storage container using the same according to a ninth embodiment of the present invention will be described with reference to FIG. Since the heat storage member according to the present embodiment has the same configuration as that of any of the heat storage members according to the first to eighth embodiments, description thereof will be omitted.
 図18は、本実施の形態による保管容器200の概略の断面構成を示している。保管容器200は、上記第1乃至第8の実施の形態による保管容器と同様に、定常運転時に雰囲気温度(室温)と異なる温度で貯蔵物を保管するために用いられ、例えば冷蔵庫、冷凍庫、温蔵庫などを例示することができる。本実施の形態では、保管容器がファン式冷凍冷蔵庫であることとして説明する。 FIG. 18 shows a schematic cross-sectional configuration of the storage container 200 according to the present embodiment. Similar to the storage containers according to the first to eighth embodiments, the storage container 200 is used for storing stored items at a temperature different from the atmospheric temperature (room temperature) during steady operation. For example, a refrigerator, a freezer, A warehouse etc. can be illustrated. In the present embodiment, the storage container is described as being a fan-type refrigerator-freezer.
 図18に示すように、保管容器200は直方体形状の容器本体106を有している。保管容器200の容器本体106は、上段に設けられた冷蔵室210と、中段に設けられた冷凍室220と、下段に設けられた野菜室230との3つの領域に分割されている。保管容器200では、冷蔵室210、冷凍室220及び野菜室230のそれぞれの設定温度は、野菜室230、冷蔵室210及び冷凍室220の順に低くなるように予め設定されている。すなわち、保管容器200では、各収容室の庫内設定温度は、「冷凍室220<冷蔵室210<野菜室230」となるように予め設定されている。野菜室230の庫内設定温度は、野菜の貯蔵に適した温度であって例えば3℃~8℃程度である。また、冷蔵室210の庫内設定温度は、野菜室230の庫内設定温度よりも低い温度であって例えば3℃程度である。冷凍室220の庫内設定温度は、冷蔵室210よりもさらに低い温度であって例えば-18℃程度である。 As shown in FIG. 18, the storage container 200 has a rectangular parallelepiped container body 106. The container main body 106 of the storage container 200 is divided into three regions: a refrigerating room 210 provided in the upper stage, a freezing room 220 provided in the middle stage, and a vegetable room 230 provided in the lower stage. In the storage container 200, the set temperatures of the refrigerator compartment 210, the freezer compartment 220, and the vegetable compartment 230 are set in advance so as to decrease in the order of the vegetable compartment 230, the refrigerator compartment 210, and the freezer compartment 220. That is, in the storage container 200, the set temperature in each storage room is set in advance so that “freezer room 220 <refrigeration room 210 <vegetable room 230”. The set temperature in the vegetable compartment 230 is a temperature suitable for storing vegetables, for example, about 3 ° C. to 8 ° C. Moreover, the set temperature in the refrigerator compartment 210 is lower than the set temperature in the vegetable compartment 230, and is about 3 ° C., for example. The set temperature in the freezer compartment 220 is lower than that of the refrigerator compartment 210 and is, for example, about −18 ° C.
 冷蔵室210は、不図示のヒンジ部を介して容器本体106に回転自在に設けられた薄板形状の扉部102aを有している。冷蔵室210における容器本体106は、長方形状の開口部103aと、開口部103aで開口された箱状の壁部109aと、貯蔵物を貯蔵する貯蔵室105aとを有している。貯蔵室105aは、扉部102aが開いた場合に、開口部103aを介して外部と接続されるようになっている。貯蔵室105aは壁部109aの内側に設けられた空間である。扉部102aは、扉部102aの外周囲に設けられた枠状のパッキン107aを有している。パッキン107aは、扉部102aを閉じた場合に、開口部103aの外周囲の外側に配置されるようになっている。パッキン107aは、扉部102aが閉じた場合に、壁部109aに対向配置されるようになっている。貯蔵室105aは、扉部102aが閉じられると、扉部102aと、パッキン107aと、壁部109aとにより囲まれる密閉空間になる。これにより、冷蔵室210は、貯蔵室105a内を設定温度に維持できるようになっている。 The refrigerating chamber 210 has a thin plate-like door portion 102a that is rotatably provided on the container main body 106 via a hinge portion (not shown). The container main body 106 in the refrigerator compartment 210 has a rectangular opening 103a, a box-shaped wall 109a opened by the opening 103a, and a storage chamber 105a for storing stored items. The storage chamber 105a is connected to the outside through the opening 103a when the door 102a is opened. The storage chamber 105a is a space provided inside the wall portion 109a. The door part 102a has a frame-shaped packing 107a provided on the outer periphery of the door part 102a. The packing 107a is arranged outside the outer periphery of the opening 103a when the door 102a is closed. The packing 107a is arranged to face the wall portion 109a when the door portion 102a is closed. When the door portion 102a is closed, the storage chamber 105a becomes a sealed space surrounded by the door portion 102a, the packing 107a, and the wall portion 109a. Thereby, the refrigerator compartment 210 can maintain the inside of the storage chamber 105a at preset temperature.
 冷凍室220は、不図示のヒンジ部を介して容器本体106に回転自在に設けられた薄板形状の扉部102bを有している。冷凍室220における容器本体106は、長方形状の開口部103bと、開口部103bで開口された箱状の壁部109bと、貯蔵物を貯蔵する貯蔵室105bとを有している。貯蔵室105bは、扉部102bが開いた場合に、開口部103bを介して外部と接続されるようになっている。貯蔵室105bは壁部109bの内側に設けられた空間である。扉部102bは、扉部102bの外周囲に設けられた枠状のパッキン107bを有している。パッキン107bは、扉部102bを閉じた場合に、開口部103bの外周囲の外側に配置されるようになっている。パッキン107bは、扉部102bが閉じた場合に、壁部109bに対向配置されるようになっている。貯蔵室105bは、扉部102bが閉じられると、扉部102bと、パッキン107bと、壁部109bとにより囲まれる密閉空間になる。これにより、冷凍室220は、貯蔵室105b内を設定温度に維持できるようになっている。冷凍室220は扉部を開閉する構成ではなく庫内を引き出し可能な引き出し式の構成を有していてもよい。 The freezer compartment 220 has a thin plate-shaped door portion 102b that is rotatably provided on the container body 106 via a hinge portion (not shown). The container main body 106 in the freezer compartment 220 has a rectangular opening 103b, a box-shaped wall 109b opened by the opening 103b, and a storage chamber 105b for storing stored items. The storage chamber 105b is connected to the outside through the opening 103b when the door 102b is opened. The storage chamber 105b is a space provided inside the wall portion 109b. The door part 102b has a frame-shaped packing 107b provided on the outer periphery of the door part 102b. The packing 107b is arranged outside the outer periphery of the opening 103b when the door 102b is closed. The packing 107b is arranged to face the wall portion 109b when the door portion 102b is closed. When the door portion 102b is closed, the storage chamber 105b becomes a sealed space surrounded by the door portion 102b, the packing 107b, and the wall portion 109b. Thereby, the freezer compartment 220 can maintain the inside of the storage compartment 105b at preset temperature. The freezer compartment 220 may have a drawer-type configuration that allows the interior to be pulled out, rather than a configuration that opens and closes the door.
 野菜室230は、不図示のヒンジ部を介して容器本体106に回転自在に設けられた薄板形状の扉部102cを有している。野菜室230における容器本体106は、長方形状の開口部103cと、開口部103cで開口された箱状の壁部109cと、貯蔵物を貯蔵する貯蔵室105cとを有している。貯蔵室105cは、扉部102cが開いた場合に、開口部103cを介して外部と接続されるようになっている。貯蔵室105cは壁部109cの内側に設けられた空間である。扉部102cは、扉部102cの外周囲に設けられた枠状のパッキン107cを有している。パッキン107cは、扉部102cを閉じた場合に、開口部103cの外周囲の外側に配置されるようになっている。パッキン107cは、扉部102cが閉じた場合に、壁部109cに対向配置されるようになっている。貯蔵室105cは、扉部102cが閉じられると、扉部102cと、パッキン107cと、壁部109cとにより囲まれる密閉空間になる。これにより、野菜室230は、貯蔵室105c内を設定温度に維持できるようになっている。野菜室230は扉部を開閉する構成ではなく庫内を引き出し可能な引き出し式の構成を有していてもよい。 The vegetable compartment 230 has a thin plate-like door portion 102c that is rotatably provided on the container body 106 via a hinge portion (not shown). The container main body 106 in the vegetable compartment 230 has a rectangular opening 103c, a box-shaped wall 109c opened by the opening 103c, and a storage chamber 105c for storing stored items. The storage chamber 105c is connected to the outside through the opening 103c when the door 102c is opened. The storage chamber 105c is a space provided inside the wall portion 109c. The door part 102c has the frame-shaped packing 107c provided in the outer periphery of the door part 102c. The packing 107c is arranged outside the outer periphery of the opening 103c when the door 102c is closed. The packing 107c is arranged to face the wall portion 109c when the door portion 102c is closed. When the door portion 102c is closed, the storage chamber 105c becomes a sealed space surrounded by the door portion 102c, the packing 107c, and the wall portion 109c. Thereby, the vegetable compartment 230 can maintain the inside of the storage compartment 105c at preset temperature. The vegetable compartment 230 may have a drawer-type configuration that allows the inside of the cabinet to be pulled out rather than a configuration that opens and closes the door.
 壁部109aは、外周囲に設けられた断熱部111と、断熱部111と貯蔵室105aとの間に設けられ、貯蔵室105aの熱を蓄積する蓄熱部材101aとを有している。蓄熱部材101aは、断熱部111上に設けられた燃焼抑制消火材7aと、燃焼抑制消火材7a上に設けられた潜熱蓄熱材5aとを有している。潜熱蓄熱材5aは、上記第1の実施の形態における潜熱蓄熱材5と同一の形成材料で形成されている。燃焼抑制消火材7aは例えばポリ燐酸アンモニウムで形成されている。燃焼抑制消火材7aは、火災発生時に加熱されるとアンモニアを発生して自己消火できるようになっている(詳細は後述)。壁部109aは、ABS樹脂などの樹脂材料を形成材料とする筐体(不図示)を有している。当該筐体は空洞を有している。断熱部111及び蓄熱部材101aは、当該空洞内に収容されている。 The wall portion 109a includes a heat insulating portion 111 provided on the outer periphery, and a heat storage member 101a that is provided between the heat insulating portion 111 and the storage chamber 105a and accumulates heat of the storage chamber 105a. The heat storage member 101a includes a combustion suppression fire extinguishing material 7a provided on the heat insulating portion 111 and a latent heat storage material 5a provided on the combustion suppression fire extinguishing material 7a. The latent heat storage material 5a is formed of the same forming material as the latent heat storage material 5 in the first embodiment. The combustion suppressing fire extinguishing material 7a is made of, for example, ammonium polyphosphate. The combustion-suppressing fire extinguishing material 7a is capable of self-extinguishing by generating ammonia when heated when a fire occurs (details will be described later). The wall 109a has a housing (not shown) made of a resin material such as ABS resin. The housing has a cavity. The heat insulation part 111 and the heat storage member 101a are accommodated in the cavity.
 扉部102aは壁部109aとほぼ同様の構成を有している。扉部102aは、外側に設けられた断熱部111と、扉部102aを閉じた場合に断熱部111と貯蔵室105aとの間に設けられ、貯蔵室105aの熱を蓄積する蓄熱部材101aとを有している。蓄熱部材101aは、壁部109aに設けられた蓄熱部材101aと同様の構成を有し、同様の形成材料で形成されている。扉部102aは、壁部109aと同様にABS樹脂などの樹脂材料を形成材料とする筐体(不図示)を有している。当該筐体は空洞を有している。断熱部111及び蓄熱部材101aは、当該空洞内に収容されている。 The door 102a has substantially the same configuration as the wall 109a. The door portion 102a includes a heat insulating portion 111 provided outside and a heat storage member 101a that is provided between the heat insulating portion 111 and the storage chamber 105a when the door portion 102a is closed, and accumulates heat of the storage chamber 105a. Have. The heat storage member 101a has the same configuration as the heat storage member 101a provided on the wall portion 109a and is formed of the same forming material. The door portion 102a has a housing (not shown) that uses a resin material such as ABS resin as a forming material, similarly to the wall portion 109a. The housing has a cavity. The heat insulation part 111 and the heat storage member 101a are accommodated in the cavity.
 壁部109bは、外周囲に設けられた断熱部111と、断熱部111と貯蔵室105bとの間に設けられ、貯蔵室105bの熱を蓄積する蓄熱部材101bとを有している。蓄熱部材101bは、断熱部111上に設けられた燃焼抑制消火材7bと、燃焼抑制消火材7b上に設けられた潜熱蓄熱材5bとを有している。例えば潜熱蓄熱材5bは、相変化温度が-15℃程度となる材料で形成されている。燃焼抑制消火材7bは例えば炭酸塩化合物で形成されている。燃焼抑制消火材7bは、火災発生時に加熱されると二酸化炭素を発生して自己消火できるようになっている(詳細は後述)。壁部109bは、ABS樹脂などの樹脂材料を形成材料とする筐体(不図示)を有している。当該筐体は空洞を有している。断熱部111及び蓄熱部材101bは、当該空洞内に収容されている。 The wall portion 109b includes a heat insulating portion 111 provided on the outer periphery, and a heat storage member 101b provided between the heat insulating portion 111 and the storage chamber 105b, for accumulating the heat of the storage chamber 105b. The heat storage member 101b includes a combustion-suppressing fire extinguishing material 7b provided on the heat insulating portion 111 and a latent heat storage material 5b provided on the combustion-suppressing fire extinguishing material 7b. For example, the latent heat storage material 5b is formed of a material having a phase change temperature of about −15 ° C. The combustion suppressing fire extinguishing material 7b is made of, for example, a carbonate compound. The combustion-suppressing fire extinguishing material 7b generates carbon dioxide and can self-extinguish when heated when a fire occurs (details will be described later). The wall 109b has a housing (not shown) made of a resin material such as ABS resin. The housing has a cavity. The heat insulation part 111 and the heat storage member 101b are accommodated in the cavity.
 扉部102bは壁部109bとほぼ同様の構成を有している。扉部102bは、外側に設けられた断熱部111と、扉部102bを閉じた場合に断熱部111と貯蔵室105bとの間に設けられ、貯蔵室105bの熱を蓄積する蓄熱部材101bとを有している。蓄熱部材101bは、壁部109bに設けられた蓄熱部材101bと同様の構成を有し、同様の形成材料で形成されている。扉部102bは、壁部109bと同様にABS樹脂などの樹脂材料を形成材料とする筐体(不図示)を有している。当該筐体は空洞を有している。断熱部111及び蓄熱部材101bは、当該空洞内に収容されている。当該筐体は食塩水が液化した場合に外部に流出しないように密閉構造を有している。 The door 102b has substantially the same configuration as the wall 109b. The door portion 102b includes a heat insulating portion 111 provided outside and a heat storage member 101b that is provided between the heat insulating portion 111 and the storage chamber 105b when the door portion 102b is closed, and accumulates heat of the storage chamber 105b. Have. The heat storage member 101b has the same configuration as the heat storage member 101b provided on the wall 109b, and is formed of the same forming material. The door part 102b has a housing (not shown) made of a resin material such as ABS resin as a forming material like the wall part 109b. The housing has a cavity. The heat insulation part 111 and the heat storage member 101b are accommodated in the cavity. The casing has a sealed structure so that the saline solution does not flow outside when the saline solution is liquefied.
 壁部109cは、外周囲に設けられた断熱部111と、断熱部111と貯蔵室105cとの間に設けられ、貯蔵室105cの熱を蓄積する蓄熱部材101cとを有している。蓄熱部材101cは、断熱部111上に設けられた燃焼抑制消火材7cと、燃焼抑制消火材7c上に設けられたと潜熱蓄熱材5cを有している。潜熱蓄熱材5cは、上記第1の実施の形態における潜熱蓄熱材5と同一の形成材料で形成されている。燃焼抑制消火材7cは例えば水酸化マグネシウム(Mg(OH))で形成されている。燃焼抑制消火材7cは、火災発生時に加熱されると水を発生して自己消火できるようになっている(詳細は後述)。壁部109cは、ABS樹脂などの樹脂材料を形成材料とする筐体(不図示)を有している。当該筐体は空洞を有している。断熱部111及び蓄熱部材101cは、当該空洞内に収容されている。 The wall portion 109c includes a heat insulating portion 111 provided on the outer periphery, and a heat storage member 101c that is provided between the heat insulating portion 111 and the storage chamber 105c and accumulates heat of the storage chamber 105c. The heat storage member 101c includes a combustion suppression fire extinguishing material 7c provided on the heat insulating portion 111 and a latent heat storage material 5c provided on the combustion suppression fire extinguishing material 7c. The latent heat storage material 5c is formed of the same forming material as the latent heat storage material 5 in the first embodiment. The combustion suppressing fire extinguishing material 7c is made of, for example, magnesium hydroxide (Mg (OH) 2 ). The combustion-suppressing fire extinguishing material 7c generates water and can self-extinguish when heated when a fire occurs (details will be described later). The wall 109c has a housing (not shown) made of a resin material such as ABS resin. The housing has a cavity. The heat insulation part 111 and the heat storage member 101c are accommodated in the cavity.
 扉部102cは壁部109cとほぼ同様の構成を有している。扉部102cは、外側に設けられた断熱部111と、扉部102cを閉じた場合に断熱部111と貯蔵室105cとの間に設けられ、貯蔵室105cの熱を蓄積する蓄熱部材101cとを有している。蓄熱部材101cは、壁部109cに設けられた蓄熱部材101cと同様の構成を有し、同様の形成材料で形成されている。扉部102cは、壁部109cと同様にABS樹脂などの樹脂材料を形成材料とする筐体(不図示)を有している。当該筐体は空洞を有している。断熱部111及び蓄熱部材101cは、当該空洞内に収容されている。 The door 102c has substantially the same configuration as the wall 109c. The door portion 102c includes a heat insulating portion 111 provided outside, and a heat storage member 101c that is provided between the heat insulating portion 111 and the storage chamber 105c when the door portion 102c is closed, and accumulates heat of the storage chamber 105c. Have. The heat storage member 101c has the same configuration as the heat storage member 101c provided on the wall 109c, and is formed of the same forming material. The door part 102c has a housing (not shown) made of a resin material such as ABS resin as the wall part 109c. The housing has a cavity. The heat insulation part 111 and the heat storage member 101c are accommodated in the cavity.
 断熱部111は、定常運転時に冷却されている貯蔵室105a~105c及び蓄熱部材101a~101cに外部からの熱が筐体を介して伝わらないように断熱するために設けられている。断熱部111は、ガラスウールのような無機繊維系断熱材、ポリウレタンフォームのような発泡樹脂系断熱材、セルロースファイバーのような天然繊維系断熱材など、通常知られた材料を用いて形成することができる。 The heat insulating portion 111 is provided to insulate the storage chambers 105a to 105c and the heat storage members 101a to 101c that are cooled during steady operation so that heat from the outside is not transmitted through the housing. The heat insulating portion 111 is formed using a generally known material such as an inorganic fiber heat insulating material such as glass wool, a foamed resin heat insulating material such as polyurethane foam, or a natural fiber heat insulating material such as cellulose fiber. Can do.
 保管容器200は、容器本体106の底部に設けられ、冷媒を圧縮するコンプレッサ115と、コンプレッサ115に接続され、コンプレッサ115で圧縮された高温高圧のガス冷媒が流通する配管118と、保管容器200の背面側に設けられて配管118に接続され、配管118を流通したガス冷媒を液化しながら放熱する放熱器114と、放熱器114に接続され、液化した冷媒を気化し易いように減圧するキャピラリーチューブ120と、キャピラリーチューブ120に接続されて貯蔵室105b内に露出して設けられ、液化した冷媒が蒸発する際の気化熱により周囲を冷却する冷却器113と、冷却器113とコンプレッサ115とを接続し、冷却器113で気化された冷媒を再び圧縮するために当該冷媒を流通するサクションパイプ122とを有している。コンプレッサ115と、配管118と、放熱器114と、キャピラリーチューブ120と、冷却器113と、サクションパイプ122とによりガス圧縮式の冷却装置が構成される。冷却装置はその他、冷媒中の水分を除去するためのドライヤーなど、通常知られた構成を備えていてもよい。 The storage container 200 is provided at the bottom of the container main body 106 and is connected to the compressor 115 that compresses the refrigerant, the pipe 118 that is connected to the compressor 115 and through which the high-temperature and high-pressure gas refrigerant compressed by the compressor 115 flows, and the storage container 200. A radiator 114 provided on the back side and connected to the pipe 118 to dissipate heat while liquefying the gas refrigerant flowing through the pipe 118, and a capillary tube connected to the radiator 114 to reduce the pressure so that the liquefied refrigerant can be easily vaporized. 120, a cooler 113 connected to the capillary tube 120 and exposed in the storage chamber 105b to cool the surroundings by the heat of vaporization when the liquefied refrigerant evaporates, and the cooler 113 and the compressor 115 are connected. Suction that circulates the refrigerant in order to compress the refrigerant vaporized by the cooler 113 again And a type 122. The compressor 115, the pipe 118, the radiator 114, the capillary tube 120, the cooler 113, and the suction pipe 122 constitute a gas compression type cooling device. In addition, the cooling device may have a normally known configuration such as a dryer for removing moisture in the refrigerant.
 保管容器200は、冷却器113からの冷気を貯蔵室105bを介して貯蔵室105aに導くダクト205baを有している。ダクト205baは、貯蔵室105b側に設けられ、冷気をダクト205ba内に送風するファン201baを有している。また、ダクト205baは、貯蔵室105a側に設けられ、ダクト205ba内に送風された冷気の貯蔵室105aへの送風量を調整するダンパ203baを有している。保管容器200はダンパ203baの開閉を制御することにより貯蔵室105a内の温度を設定温度に維持するようになっている。 The storage container 200 has a duct 205ba that guides cold air from the cooler 113 to the storage chamber 105a through the storage chamber 105b. The duct 205ba is provided on the storage chamber 105b side, and has a fan 201ba that blows cool air into the duct 205ba. The duct 205ba has a damper 203ba that is provided on the side of the storage chamber 105a and adjusts the amount of cool air blown into the duct 205ba to the storage chamber 105a. The storage container 200 is configured to maintain the temperature in the storage chamber 105a at a set temperature by controlling the opening and closing of the damper 203ba.
 保管容器200は、冷却器113からの冷気を貯蔵室105bを介して貯蔵室105cに導くダクト205bcを有している。ダクト205bcは、貯蔵室105b側に設けられ、冷気をダクト205bc内に送風するファン201bcを有している。また、ダクト205bcは、貯蔵室105c側に設けられ、ダクト205bc内に送風された冷気の貯蔵室105cへの送風量を調整するダンパ203bcを有している。保管容器200はダンパ203bcの開閉を制御することにより貯蔵室105c内の温度を設定温度に維持するようになっている。 The storage container 200 has a duct 205bc that guides the cool air from the cooler 113 to the storage chamber 105c through the storage chamber 105b. The duct 205bc is provided on the storage chamber 105b side, and has a fan 201bc that blows cool air into the duct 205bc. The duct 205bc is provided on the storage chamber 105c side, and includes a damper 203bc that adjusts the amount of cool air blown into the duct 205bc to the storage chamber 105c. The storage container 200 is configured to maintain the temperature in the storage chamber 105c at a set temperature by controlling the opening and closing of the damper 203bc.
 次に、本実施の形態による保管容器200の動作について説明する。保管容器200の不図示の電源がオン状態において、コンプレッサ115で圧縮された高温高圧のガス冷媒は、配管118内を通って放熱器114に達する。放熱器114はガス冷媒を放熱しながら液化する。液化した冷媒はキャピラリーチューブ120で気化し易いように減圧されて冷却器113に達する。冷却器113は、減圧された冷媒が気化する際の気化熱により、貯蔵室105bを冷却する。 Next, the operation of the storage container 200 according to this embodiment will be described. When the power supply (not shown) of the storage container 200 is on, the high-temperature and high-pressure gas refrigerant compressed by the compressor 115 passes through the pipe 118 and reaches the radiator 114. The radiator 114 liquefies while radiating the gas refrigerant. The liquefied refrigerant is reduced in pressure so as to be easily vaporized in the capillary tube 120 and reaches the cooler 113. The cooler 113 cools the storage chamber 105b by heat of vaporization when the decompressed refrigerant is vaporized.
 貯蔵室105b内では、貯蔵室105b内に露出した冷却器113の表面と貯蔵室105b内の空気との間で熱交換が行われる。貯蔵室105b内の所定位置には不図示の温度センサが設置されている。温度センサで計測された貯蔵室105b内の温度に基づき保管容器200に設けられた不図示の温度制御装置により冷却装置の駆動が制御され、貯蔵室105b内の温度を制御するための熱移動が行われる。 In the storage chamber 105b, heat exchange is performed between the surface of the cooler 113 exposed in the storage chamber 105b and the air in the storage chamber 105b. A temperature sensor (not shown) is installed at a predetermined position in the storage chamber 105b. The drive of the cooling device is controlled by a temperature control device (not shown) provided in the storage container 200 based on the temperature in the storage chamber 105b measured by the temperature sensor, and heat transfer for controlling the temperature in the storage chamber 105b is performed. Done.
 冷却器113は、壁部109bに設けられ、筐体を介して対向配置された潜熱蓄熱材5bの領域を直接冷却することができ、相転移温度以下の固相状態に維持させることができる。冷却器113に対向配置された領域以外の壁部109bに配置された潜熱蓄熱材5b及び扉部102bに配置された潜熱蓄熱材5bは、不図示の筐体を介して貯蔵室105b内とほぼ同温度になり徐々に相転移温度以下の固相状態に維持される。固相状態を維持した潜熱蓄熱材5bは貯蔵室105b内の温度の時間変化分布を平坦化させる機能を発揮する。 The cooler 113 is provided on the wall portion 109b and can directly cool the region of the latent heat storage material 5b arranged opposite to each other via the housing, and can be maintained in a solid phase state equal to or lower than the phase transition temperature. The latent heat storage material 5b disposed on the wall portion 109b other than the region disposed opposite to the cooler 113 and the latent heat storage material 5b disposed on the door portion 102b are substantially in the storage chamber 105b via a housing (not shown). It becomes the same temperature and is gradually maintained in the solid phase state below the phase transition temperature. The latent heat storage material 5b that maintains the solid state exhibits the function of flattening the temporal change distribution of the temperature in the storage chamber 105b.
 貯蔵室105a内の所定位置には不図示の温度センサが設置されている。温度センサで計測された貯蔵室105a内の温度に基づき保管容器200は、ファン201ba及びダンパ203baを動作させて貯蔵室105b内の冷気をダクトbaを通して貯蔵室105aに送風し、貯蔵室105a内の温度を制御するようになっている。扉部102a及び壁部109aに設けられた潜熱蓄熱材5aは、不図示の筐体を介して貯蔵室105a内とほぼ同温度になり徐々に相転移温度以下の固相状態に維持される。固相状態を維持した潜熱蓄熱材5aも貯蔵室105a内の温度の時間変化分布を平坦化させる機能を発揮する。 A temperature sensor (not shown) is installed at a predetermined position in the storage chamber 105a. Based on the temperature in the storage chamber 105a measured by the temperature sensor, the storage container 200 operates the fan 201ba and the damper 203ba to blow cool air in the storage chamber 105b to the storage chamber 105a through the duct ba, The temperature is controlled. The latent heat storage material 5a provided on the door portion 102a and the wall portion 109a becomes substantially the same temperature as the inside of the storage chamber 105a through a housing (not shown) and is gradually maintained in a solid state below the phase transition temperature. The latent heat storage material 5a that maintains the solid state also exhibits the function of flattening the temporal change distribution of the temperature in the storage chamber 105a.
 貯蔵室105c内の所定位置には不図示の温度センサが設置されている。温度センサで計測された貯蔵室105c内の温度に基づき保管容器200は、ファン201bc及びダンパ203bcを動作させて貯蔵室105c内の冷気をダクトbcを通して貯蔵室105cに送風し、貯蔵室105c内の温度を制御するようになっている。扉部102c及び壁部109cに設けられた潜熱蓄熱材5cは、不図示の筐体を介して貯蔵室105c内とほぼ同温度になり徐々に相転移温度以下の固相状態に維持される。固相状態を維持した潜熱蓄熱材5cも貯蔵室105c内の温度の時間変化分布を平坦化させる機能を発揮する。 A temperature sensor (not shown) is installed at a predetermined position in the storage chamber 105c. Based on the temperature in the storage chamber 105c measured by the temperature sensor, the storage container 200 operates the fan 201bc and the damper 203bc to blow cool air in the storage chamber 105c through the duct bc to the storage chamber 105c, The temperature is controlled. The latent heat storage material 5c provided on the door portion 102c and the wall portion 109c becomes substantially the same temperature as that in the storage chamber 105c through a housing (not shown) and is gradually maintained in a solid phase state below the phase transition temperature. The latent heat storage material 5c that maintains the solid state also exhibits a function of flattening the temporal change distribution of the temperature in the storage chamber 105c.
 停電等により保管容器200の不図示の電源がオフ状態になると、不図示の温度制御装置や冷却装置への電力供給が停止して、冷却装置による冷却能力は失われる。本実施の形態による保管容器200は、停電等により冷却装置による冷却能力が失われると、蓄熱部材101a、101b、101cによる保冷が開始される。貯蔵室105a~105c内の空気は、扉部102a~102c及び壁部109a~109cに張り巡らされてそれぞれ設けられた潜熱蓄熱材5a~5cにより一定期間、所定温度範囲に維持される。より具体的には、潜熱蓄熱材5a~5cが固相から液相へそれぞれ相転移するまでの期間において、貯蔵室105a内の温度が5℃程度に維持され、貯蔵室105b内の温度が-15℃程度に維持され、貯蔵室105c内の温度が5℃程度に維持される。 When the power supply (not shown) of the storage container 200 is turned off due to a power failure or the like, the power supply to the temperature control device or the cooling device (not shown) is stopped, and the cooling capacity of the cooling device is lost. The storage container 200 according to the present embodiment starts cooling by the heat storage members 101a, 101b, and 101c when the cooling capacity of the cooling device is lost due to a power failure or the like. The air in the storage chambers 105a to 105c is maintained in a predetermined temperature range for a certain period by the latent heat storage materials 5a to 5c provided around the doors 102a to 102c and the walls 109a to 109c. More specifically, the temperature in the storage chamber 105a is maintained at about 5 ° C. and the temperature in the storage chamber 105b is − during the period until each of the latent heat storage materials 5a to 5c transitions from the solid phase to the liquid phase. The temperature in the storage chamber 105c is maintained at about 5 ° C.
 本実施の形態による保管容器200では、冷蔵室210の庫内設定温度と野菜室230の庫内設定温度とは、定常運転時では異なるように設定されている。しかしながら、冷蔵室210に用いられている潜熱蓄熱材5aと、野菜室230に用いられている潜熱蓄熱材5cとは同一の材料で形成されている。このため、停電等による保冷時には、冷蔵室210と野菜室230とはほぼ同じ温度に維持されるようになっている。保管容器200は、冷蔵室210に用いる潜熱蓄熱材5aの形成材料と、野菜室230に用いる潜熱蓄熱材5cの形成材料とを異ならせることにより、保冷時の冷蔵室210の庫内温度が保冷時の野菜室230の庫内温度よりも低くなるように構成することもできる。 In the storage container 200 according to the present embodiment, the set temperature in the refrigerator compartment 210 and the set temperature in the vegetable compartment 230 are set to be different during steady operation. However, the latent heat storage material 5a used in the refrigerator compartment 210 and the latent heat storage material 5c used in the vegetable compartment 230 are formed of the same material. For this reason, the refrigerator compartment 210 and the vegetable compartment 230 are maintained at substantially the same temperature during cold insulation due to a power failure or the like. The storage container 200 keeps the inside temperature of the refrigerating chamber 210 during cold storage by differentiating the forming material of the latent heat storage material 5a used for the refrigerator compartment 210 and the forming material of the latent heat storage material 5c used for the vegetable compartment 230. It can also comprise so that it may become lower than the internal temperature of the vegetable compartment 230 at the time.
 保管容器200は、野菜室230に設けられて水酸化マグネシウムで形成された燃焼抑制消火材7cを有している。このため、例えばコンプレッサ115から出火した場合には、燃焼抑制消火材7cから水が発生し、当該水が重力落下で直ちにコンプレッサ115を冷却して消火するようになっている。また、保管容器200は、冷凍室220に設けられて炭酸塩化合物で形成された燃焼抑制消火材7bを有している。燃焼抑制消火材7bは、火災発生時に加熱されると空気よりも重い二酸化炭素を発生する。当該二酸化炭素はコンプレッサ115に向かって落下し、コンプレッサ115の燃焼部への酸素の供給を遮断して炎を消火するようになっている。また、保管容器200は、冷蔵室210に設けられてポリ燐酸アンモニウムで形成された燃焼抑制消火材7cを有している。保管容器200の上部に外部からの炎が延焼した場合、燃焼抑制消火材7aは、火災発生時に加熱されると空気よりも軽いアンモニアを発生する。当該アンモニアは上部へ流れ込み燃焼部への酸素の供給を遮断して炎を消火するようになっている。 The storage container 200 has a combustion-suppressing fire extinguishing material 7c provided in the vegetable compartment 230 and formed of magnesium hydroxide. For this reason, for example, when a fire breaks out from the compressor 115, water is generated from the combustion-suppressing fire extinguishing material 7c, and the water immediately cools down and extinguishes the compressor 115 when the water falls by gravity. Moreover, the storage container 200 has the combustion suppression fire extinguishing material 7b provided in the freezer compartment 220 and formed with the carbonate compound. The combustion-suppressing fire extinguishing material 7b generates carbon dioxide that is heavier than air when heated when a fire occurs. The carbon dioxide falls toward the compressor 115, shuts off the supply of oxygen to the combustion part of the compressor 115, and extinguishes the flame. Moreover, the storage container 200 has the combustion suppression fire extinguishing material 7c provided in the refrigerator compartment 210 and formed with ammonium polyphosphate. When a flame from the outside spreads over the upper part of the storage container 200, the combustion-suppressing fire extinguishing material 7a generates ammonia that is lighter than air when heated in the event of a fire. The ammonia flows into the upper part, shuts off the supply of oxygen to the combustion part, and extinguishes the flame.
 このように、本実施の形態による保管容器200は、貯蔵室105a~105c毎に適した蓄熱部材及び燃焼抑制消火材を設置することにより、より高い蓄熱機能及び消火機能を有する。 Thus, the storage container 200 according to the present embodiment has a higher heat storage function and fire extinguishing function by installing a heat storage member and a combustion suppressing fire extinguishing material suitable for each of the storage chambers 105a to 105c.
 また、本実施の形態では、蓄熱部材及び燃焼抑制消火材は互いに積層された構成を有しているがこれに限られない。例えば、上記第8の実施の形態のように、潜熱蓄熱材内包用カプセルを冷却器113周辺に重点的に配置してもよい。また、燃焼抑制消火材内包用カプセルをコンプレッサ115の周辺に重点的に配置してもよい。 In the present embodiment, the heat storage member and the combustion-suppressing fire extinguishing material have a configuration in which they are stacked on each other, but this is not a limitation. For example, as in the eighth embodiment, the latent heat storage material-encapsulating capsules may be arranged around the cooler 113. In addition, the capsule for combustion-suppressing fire extinguishing material may be placed in the vicinity of the compressor 115.
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 上記実施の形態では、潜熱蓄熱材はパラフィンを含んでいるが、本発明はこれに限られない。例えば、潜熱蓄熱材は、ポリエチレングリコール、ポリビニルアルコール、エチレンジアミン、及びナフタリンのいずれか1つを含んでいても、上記実施の形態と同様の効果が得られる。
The present invention is not limited to the above embodiment, and various modifications can be made.
In the said embodiment, although the latent heat storage material contains the paraffin, this invention is not limited to this. For example, even if the latent heat storage material contains any one of polyethylene glycol, polyvinyl alcohol, ethylenediamine, and naphthalene, the same effect as the above embodiment can be obtained.
 上記第7及び第8の実施の形態による蓄熱部材61、71は、難燃性材料層13を有しているが、本発明はこれに限られない。蓄熱部材61、71は、潜熱蓄熱材内包用カプセル15の延焼を防止できる材料であれば所定の樹脂層に潜熱蓄熱材内包用カプセル15及び燃焼抑制消火材内包用カプセル17が埋め込まれていてもよい。 Although the heat storage members 61 and 71 according to the seventh and eighth embodiments have the flame retardant material layer 13, the present invention is not limited thereto. Even if the latent heat storage material inclusion capsule 15 and the combustion suppression fire extinguishing material inclusion capsule 17 are embedded in a predetermined resin layer, the heat storage members 61 and 71 may be any material capable of preventing the spread of the latent heat storage material inclusion capsule 15. Good.
 上記第1乃至第8の実施の形態による蓄熱部材は、家屋の壁や天井等に使用してももちろんよい。例えば当該家屋は、生活空間を囲んで設けられて当該生活空間と外界との間の熱の移動を遮断する断熱部を有し、蓄熱部材は当該生活空間と当該断熱部との間に設けられ、当該生活空間の熱を蓄積するようになっている。例えば、潜熱蓄熱材として炭素数が17~18のパラフィンを用い、図8に示したような蓄熱部材を用いることにより、当該蓄熱部材を有する家屋は、外気温に大きな変化が生じても快適な室温を長時間維持することができる。 Of course, the heat storage member according to the first to eighth embodiments may be used for a wall or ceiling of a house. For example, the house has a heat insulating part that surrounds the living space and blocks heat transfer between the living space and the outside world, and the heat storage member is provided between the living space and the heat insulating part. The heat of the living space is accumulated. For example, by using paraffin having 17 to 18 carbon atoms as a latent heat storage material and using a heat storage member as shown in FIG. 8, a house having the heat storage member is comfortable even if a large change occurs in the outside air temperature. Room temperature can be maintained for a long time.
〔第10の実施の形態〕
 本発明の第10の実施の形態による蓄熱部材、それを用いた保管容器及び建造物について説明する。近年、潜熱を利用した蓄熱材を備えた蓄熱部材が知られている。当該蓄熱部材は、蓄熱や蓄冷等の用途で使用されている。当該蓄熱部材は、蓄熱能力の高い材料としてパラフィン等の炭化水素系の蓄熱材を有している。当該パラフィンは、引火性及び発火性を有する材料が多く、火災時の引火及び発火が問題となる可能性がある。このため、パラフィン等の炭化水素系の蓄熱材をそのまま蓄熱部材に使用することが困難である。
[Tenth embodiment]
A heat storage member according to a tenth embodiment of the present invention, a storage container using the heat storage member, and a building will be described. In recent years, a heat storage member including a heat storage material using latent heat has been known. The heat storage member is used for applications such as heat storage and cold storage. The heat storage member has a hydrocarbon heat storage material such as paraffin as a material having a high heat storage capacity. The paraffin has many flammable and ignitable materials, and there is a possibility that ignition and ignition at the time of a fire may be a problem. For this reason, it is difficult to directly use a hydrocarbon-based heat storage material such as paraffin for the heat storage member.
 そこで、炭化水素系の蓄熱材料を使用する場合、難燃性素材で蓄熱材を被覆したり、消火機能を持つ物質と混合したりして火災時の引火等を防止した蓄熱部材が提案されている。例えば、特許文献4には蓄熱部材として、「蓄熱材を内包するマイクロカプセルや難燃剤等の添加剤を含有する蓄熱性アクリル系樹脂組成物、及び、それを用いた蓄熱性シート状成形体」が開示されている。また、特許文献5には蓄熱部材として、「蓄熱体がラミネートフィルムで被覆されており、当該ラミネートフィルムの外表面に、無機微粒子からなる断熱層又は加熱すると不燃性気体を発生する熱発泡性塗料被膜のいずれかを備える蓄熱ボード」が開示されている。 Therefore, when using a hydrocarbon-based heat storage material, a heat storage member has been proposed in which the heat storage material is covered with a flame-retardant material or mixed with a substance having a fire extinguishing function to prevent ignition in the event of a fire. Yes. For example, in Patent Document 4, as a heat storage member, “a heat storage acrylic resin composition containing an additive such as a microcapsule containing a heat storage material or a flame retardant, and a heat storage sheet-like molded body using the same” Is disclosed. Patent Document 5 discloses, as a heat storage member, “a heat storage body is covered with a laminate film, and a heat insulating layer made of inorganic fine particles is formed on the outer surface of the laminate film, or a heat-foamable paint that generates a nonflammable gas when heated. A “heat storage board comprising any of the coatings” is disclosed.
 特許文献4に記載された蓄熱性シート状成形体は、蓄熱材を内包するマイクロカプセルと難燃剤とを混合して難燃化がなされている。蓄熱性シート状成形体の蓄熱性及び難燃性は、蓄熱材内包マイクロカプセルと難燃剤との比率によって決まる。当該マイクロカプセル及び難燃剤のいずれかを無制限に増加又は減少させることはできず、蓄熱性能と難燃性との間にはトレードオフの関係がある。また、蓄熱性シート状成形体は、蓄熱材と難燃剤との混合物であるため、蓄熱材のみで形成されて同形状の蓄熱部材と比較すると十分な蓄熱効果が得られないという問題がある。 The heat storage sheet-like molded body described in Patent Document 4 is made flame retardant by mixing a microcapsule containing a heat storage material and a flame retardant. The heat storage property and flame retardancy of the heat storage sheet-like molded body are determined by the ratio between the heat storage material-encapsulated microcapsules and the flame retardant. Either the microcapsule or the flame retardant cannot be increased or decreased without limitation, and there is a trade-off relationship between the heat storage performance and the flame retardancy. Moreover, since a heat storage sheet-like molded object is a mixture of a heat storage material and a flame retardant, there exists a problem that sufficient heat storage effect is not obtained compared with the heat storage member of the same shape formed only with a heat storage material.
 特許文献5に記載された蓄熱ボードが、表面に無機粒子からなる断熱層を備える場合、当該断熱層は蓄熱体と外部との熱の出入りを阻害する。このため、当該蓄熱ボードは、蓄熱体としての性能を十分に発揮できないという問題を有している。また、蓄熱ボードが、表面に不燃性気体を発生する熱発泡性塗料被膜を備える場合、発生した不燃性気体は蓄熱ボードの周囲に放出され、蓄熱ボードの周囲に留まることなく周囲に拡散する。このため、発生した不燃性気体は、一時的に蓄熱ボードの燃焼を抑制することができても、燃焼抑制の効果を持続させることはできない。したがって、蓄熱ボードは蓄熱体の引火や発火を効果的に防止することは困難であるという問題を有している。 When the heat storage board described in Patent Document 5 is provided with a heat insulating layer made of inorganic particles on the surface, the heat insulating layer inhibits heat transfer between the heat storage body and the outside. For this reason, the said thermal storage board has the problem that the performance as a thermal storage body cannot fully be exhibited. Further, when the heat storage board is provided with a heat-foamable coating film that generates non-combustible gas on the surface, the generated non-combustible gas is released around the heat storage board and diffuses around without staying around the heat storage board. For this reason, even if the generated incombustible gas can temporarily suppress the combustion of the heat storage board, the effect of suppressing the combustion cannot be maintained. Therefore, the heat storage board has a problem that it is difficult to effectively prevent ignition and ignition of the heat storage body.
 特許文献4に開示された蓄熱部材のように、難燃性を付与した新たな蓄熱材料の開発が行われている。しかしながら、当該蓄熱部材は、難燃剤という異材料が混合されて単位体積あたりの蓄熱材料が減少してしまい蓄熱材料自身の性能を十分に発揮できないという問題を有している。また、当該蓄熱部材は、蓄熱材料自身の性能を十分に発揮させるために難燃剤の混合率を低くすると蓄熱部材の引火等を十分に防止できないという問題を有している。このように、当該蓄熱部材は、蓄熱性能を向上しようとすると難燃性能が劣化し、難燃性能を向上しようとすると蓄熱性能が劣化してしまい、蓄熱性能と難燃性能との両立は困難であるという問題を有している。また、特許文献5に開示された蓄熱部材は、厳重な被覆や被覆に用いる材質により熱伝達性能が低下してしまい、蓄熱部材の引火等を防止するための機能を付加すると蓄熱材料自身の性能を十分に発揮できないという問題を有している。 As in the heat storage member disclosed in Patent Document 4, a new heat storage material imparted with flame retardancy has been developed. However, the heat storage member has a problem that a different material called a flame retardant is mixed and the heat storage material per unit volume is reduced, so that the performance of the heat storage material itself cannot be fully exhibited. In addition, the heat storage member has a problem that if the mixing rate of the flame retardant is lowered in order to sufficiently exhibit the performance of the heat storage material itself, the heat storage member cannot be sufficiently ignited. As described above, the heat storage member deteriorates the flame retardance performance when trying to improve the heat storage performance, and deteriorates when trying to improve the flame retardance performance, and it is difficult to achieve both the heat storage performance and the flame retardance performance. Has the problem of being. In addition, the heat storage member disclosed in Patent Document 5 has a heat transfer performance that is deteriorated due to a strict covering or a material used for the covering, and if a function for preventing ignition of the heat storage member is added, the performance of the heat storage material itself Has the problem that it cannot fully demonstrate.
 このように従来、潜熱蓄熱材を有する蓄熱部材は、防火対策がなされているが、防火対策を施すことにより十分な蓄熱性能を得ることができないという問題を有している。このため、蓄熱性能に優れるとともに、防火対策のなされた蓄熱部材及びそれを用いた冷蔵庫や建築資材等の開発が望まれている。 Thus, conventionally, a heat storage member having a latent heat storage material has been subjected to fire prevention measures, but has a problem that sufficient heat storage performance cannot be obtained by taking fire prevention measures. For this reason, development of a heat storage member excellent in heat storage performance and a fire prevention measure, and a refrigerator or a building material using the heat storage member is desired.
 本実施形態の目的は、優れた蓄熱の機能を発揮するとともに、優れた消火及び防火の機能を発揮する蓄熱部材、それを用いた保管容器及び建造物を提供することにある。 An object of the present embodiment is to provide a heat storage member that exhibits an excellent heat storage function and an excellent fire extinguishing and fire prevention function, and a storage container and a building using the heat storage member.
 上記目的は、所定の温度で固相から液相へ可逆的に相転移する潜熱蓄熱材を備えた蓄熱部と、前記蓄熱部と分離して設けられ、前記潜熱蓄熱材の燃焼を消火し又は防火する消防部とを有することを特徴とする蓄熱部材によって達成される。 The above object is provided separately from the heat storage unit provided with a latent heat storage material that reversibly transitions from a solid phase to a liquid phase at a predetermined temperature, and extinguishes the combustion of the latent heat storage material, or This is achieved by a heat storage member characterized by having a fire-fighting part for fire prevention.
 上記蓄熱部材であって、前記蓄熱部と前記消防部との間に配置され、特定の温度で溶融する溶融部をさらに有することを特徴とする。 The heat storage member further includes a melting part that is disposed between the heat storage part and the fire fighting part and melts at a specific temperature.
 上記蓄熱部材であって、前記特定の温度は、前記潜熱蓄熱材の融点より高く、かつ前記潜熱蓄熱材の引火点又は発火点より低いことを特徴とする。 The heat storage member, wherein the specific temperature is higher than a melting point of the latent heat storage material and lower than a flash point or ignition point of the latent heat storage material.
 上記蓄熱部材であって、前記消防部は、前記蓄熱部から移動してくる前記潜熱蓄熱材を収容する収容部を有することを特徴とする。 The heat storage member, wherein the fire fighting unit includes a storage unit that stores the latent heat storage material moving from the heat storage unit.
 上記蓄熱部材であって、前記蓄熱部は、前記潜熱蓄熱材が移動し易いように傾斜させた傾斜部を有することを特徴とする。 The heat storage member, wherein the heat storage part has an inclined part inclined so that the latent heat storage material can easily move.
 上記蓄熱部材であって、前記消防部は、実使用時に前記蓄熱部の鉛直下方に配置されることを特徴とする。 The heat storage member, wherein the fire department is arranged vertically below the heat storage part during actual use.
 上記蓄熱部材であって、前記消防部は、実使用時に前記蓄熱部の鉛直上方に配置されることを特徴とする。 The heat storage member, wherein the fire department is arranged vertically above the heat storage part during actual use.
 上記蓄熱部材であって、前記消防部は、前記潜熱蓄熱材の燃焼を消火し又は防火する消火防火剤を有することを特徴とする。 The above-mentioned heat storage member, wherein the fire department has a fire extinguishing fireproofing agent that extinguishes or prevents the combustion of the latent heat storage material.
 上記蓄熱部材であって、前記消火防火剤は、難燃剤及び窒息性気体発生材料の少なくともいずれか1つを含むことを特徴とする。 The heat storage member, wherein the fire-extinguishing and fire-proofing agent includes at least one of a flame retardant and a suffocating gas generating material.
 上記蓄熱部材であって、前記難燃剤は、臭素系難燃剤、尿素系難燃剤、ハロゲン系難燃剤及びアンチモン等の無機系難燃剤のいずれか1つを含むことを特徴とする。 The heat storage member, wherein the flame retardant includes one of a brominated flame retardant, a urea flame retardant, a halogen flame retardant, and an inorganic flame retardant such as antimony.
 上記蓄熱部材であって、前記窒息性気体発生材料は、所定の気体を発生して前記潜熱蓄熱材の燃焼を抑制することを特徴とする。 The heat storage member, wherein the suffocating gas generating material generates a predetermined gas and suppresses combustion of the latent heat storage material.
 上記蓄熱部材であって、前記潜熱蓄熱材はパラフィンを含んでいることを特徴とする。 The heat storage member described above, wherein the latent heat storage material includes paraffin.
 また、上記目的は、貯蔵物を貯蔵する貯蔵室と、前記貯蔵室を囲んで設けられ、前記貯蔵室の熱を蓄積する蓄熱部材とを有する保管容器であって、前記蓄熱部材は、上記蓄熱部材であることを特徴とする保管容器によって達成される。 Further, the object is a storage container having a storage chamber for storing a stored item, and a heat storage member that surrounds the storage chamber and accumulates heat of the storage chamber, and the heat storage member includes the heat storage member. This is achieved by a storage container that is a member.
 上記保管容器であって、前記消防部は、前記貯蔵室の下方に設けられた空き領域に配置されていることを特徴とする。 The above-mentioned storage container, wherein the fire department is arranged in an empty area provided below the storage room.
 また、上記目的は、生活空間を囲んで設けられ、前記生活空間の熱を蓄積する蓄熱部材を有する建造物であって、前記蓄熱部材は、上記蓄熱部材であることを特徴とする建造物によって達成される。 According to another aspect of the present invention, there is provided a building having a heat storage member that surrounds a living space and stores heat of the living space, wherein the heat storage member is the heat storage member. Achieved.
 上記建造物であって、前記消防部は床下領域に配置されていることを特徴とする。 In the above-mentioned building, the fire department is arranged in an underfloor area.
 本実施形態によれば、優れた蓄熱の機能を発揮するとともに、優れた消火及び防火の機能を発揮することができる。 According to this embodiment, it is possible to exhibit an excellent heat storage function and an excellent fire extinguishing and fire prevention function.
 本実施の形態による蓄熱部材、それを用いた保管容器及び建造物について図19から図32を用いて説明する。なお、図31を除いて、以下の図面においては、理解を容易にするため、各構成要素の寸法や比率などは適宜異ならせて図示されている。まず、図19を用いて本実施形態の蓄熱部材501の構成について説明する。図19(a)及び図19(b)は、蓄熱部材501の概略の断面構成を示している。図19(a)は、蓄熱部材501を正面から観察した図であって、接続管522の中心軸を含む平面で切断した断面を示している。図19(b)は、蓄熱部材501を側面から観察した図であって、接続管522の中心軸を含む平面で切断した断面を示している。図19(a)及び図19(b)に示すように、蓄熱部材501は、所定の温度で固相から液相へ可逆的に相転移する潜熱蓄熱材504を備えた蓄熱部503と、蓄熱部503と分離して設けられ、潜熱蓄熱材504の燃焼を消火し又は防火する消防部505とを有している。蓄熱部材501は、蓄熱部503と消防部505との間に配置され、特定の温度で溶融する溶融部520を有している。蓄熱部材501は、蓄熱部503と消防部505とを接続する接続部507を有している。 A heat storage member according to the present embodiment, a storage container and a building using the heat storage member will be described with reference to FIGS. Note that, with the exception of FIG. 31, in the following drawings, the dimensions and ratios of the constituent elements are appropriately varied for easy understanding. First, the structure of the heat storage member 501 of this embodiment is demonstrated using FIG. FIG. 19A and FIG. 19B show a schematic cross-sectional configuration of the heat storage member 501. FIG. 19A is a view of the heat storage member 501 observed from the front, and shows a cross section cut along a plane including the central axis of the connecting pipe 522. FIG. 19B is a view of the heat storage member 501 observed from the side, and shows a cross section cut along a plane including the central axis of the connection pipe 522. As shown in FIGS. 19A and 19B, the heat storage member 501 includes a heat storage unit 503 including a latent heat storage material 504 that reversibly changes phase from a solid phase to a liquid phase at a predetermined temperature, A fire fighting unit 505 that is provided separately from the unit 503 and extinguishes or prevents the combustion of the latent heat storage material 504. The heat storage member 501 is disposed between the heat storage unit 503 and the fire fighting unit 505, and has a melting unit 520 that melts at a specific temperature. The heat storage member 501 has a connection portion 507 that connects the heat storage portion 503 and the fire fighting portion 505.
 次に、蓄熱部503についてより詳細に説明する。蓄熱部503は蓄熱容器体502を有している。蓄熱容器体502は、中空平板状の直方体形状を有している。蓄熱部503は、蓄熱容器体502の底面のほぼ中央を開口した円形の開口部506を有している。また、蓄熱部503は、開口部506に向かって蓄熱容器体502の底面を下方に傾斜させた傾斜部508を有している。傾斜部508は漏斗状に形成されている。蓄熱部503は、蓄熱容器体502の中空部である内部空間に充填された潜熱蓄熱材504を有している。蓄熱部材501の通常の使用時において、潜熱蓄熱材504は、開口部506を塞いで配置された溶融部520により、蓄熱容器体502の内部空間に封止されている。潜熱蓄熱材504が接触する蓄熱容器体502の内壁は凹凸のない滑らかな表面を有していることが望ましい。 Next, the heat storage unit 503 will be described in more detail. The heat storage unit 503 has a heat storage container body 502. The heat storage container body 502 has a hollow flat rectangular parallelepiped shape. The heat storage unit 503 has a circular opening 506 that has an opening at substantially the center of the bottom surface of the heat storage container body 502. In addition, the heat storage unit 503 has an inclined part 508 in which the bottom surface of the heat storage container body 502 is inclined downward toward the opening 506. The inclined portion 508 is formed in a funnel shape. The heat storage unit 503 includes a latent heat storage material 504 filled in an internal space that is a hollow portion of the heat storage container body 502. During normal use of the heat storage member 501, the latent heat storage material 504 is sealed in the internal space of the heat storage container body 502 by a melting part 520 disposed so as to close the opening 506. It is desirable that the inner wall of the heat storage container body 502 with which the latent heat storage material 504 comes into contact has a smooth surface without unevenness.
 蓄熱とは、熱を一時的に蓄え、必要に応じてその熱を取り出す技術をいう。蓄熱方式としては、顕熱蓄熱、潜熱蓄熱、化学蓄熱等があるが、本実施形態では、潜熱蓄熱を利用する。潜熱蓄熱は、物質の潜熱を利用して、物質の相転移の熱エネルギーを蓄える。蓄熱密度が高く、出力温度が一定である。潜熱蓄熱材504としては、氷(水)、パラフィン、無機塩高級アルコール、エステル系材料などが用いられる。 “Heat storage” refers to a technology that temporarily stores heat and extracts the heat as needed. Examples of the heat storage method include sensible heat storage, latent heat storage, chemical heat storage, and the like. In this embodiment, latent heat storage is used. Latent heat storage uses the latent heat of a substance to store thermal energy of the phase transition of the substance. The heat storage density is high and the output temperature is constant. As the latent heat storage material 504, ice (water), paraffin, an inorganic salt higher alcohol, an ester material, or the like is used.
 本実施形態の潜熱蓄熱材504はパラフィンを含んでいる。パラフィンとは、一般式C2n+2で表される飽和鎖式炭化水素の総称をいう。パラフィンを含んだ潜熱蓄熱材504は、所定の温度で固相から液相へ可逆的に相転移する。また、潜熱蓄熱材504に含ませるパラフィンの種類を変更することによって、潜熱蓄熱材504の相転移温度の調整が可能である。また、パラフィンを含んだ潜熱蓄熱材504は、相転移によって蓄熱や放熱を繰り返しても劣化が起こり難い。パラフィンを含んだ潜熱蓄熱材504は、中低温域(数℃~数10℃)において使用可能である。また、パラフィンを含んだ潜熱蓄熱材504は相対的に高い蓄熱密度を有している。 The latent heat storage material 504 of this embodiment contains paraffin. Paraffin is a generic name for saturated chain hydrocarbons represented by the general formula C n H 2n + 2 . The latent heat storage material 504 containing paraffin reversibly transitions from a solid phase to a liquid phase at a predetermined temperature. Further, the phase transition temperature of the latent heat storage material 504 can be adjusted by changing the type of paraffin included in the latent heat storage material 504. Moreover, the latent heat storage material 504 containing paraffin hardly deteriorates even if heat storage and heat dissipation are repeated due to phase transition. The latent heat storage material 504 containing paraffin can be used in a medium to low temperature range (several to several tens of degrees Celsius). Moreover, the latent heat storage material 504 containing paraffin has a relatively high heat storage density.
 潜熱蓄熱材504に含まれるパラフィンは、蓄熱部材501の用途によって適宜選択される。例えば、冷蔵庫に用いられる蓄熱部材501では、潜熱蓄熱材504に含まれるパラフィンは、炭素数14のノルマルテトラデカンが適している。ノルマルテトラデカンの液相から固相への相転移温度(融点)は、約6℃である。また、ノルマルテトラデカンの引火点は約102℃である。建造物に用いられる蓄熱部材501では、潜熱蓄熱材504に含まれるパラフィンは、炭素数17のノルマルヘプタデカンが適している。ノルマルヘプタデカンの液相から固相への相転移温度(融点)は、約22℃である。また、ノルマルヘプタデカンの引火点は約148℃である。このように、ノルマルパラフィンは炭素数の増加に伴って、融点及び引火点が上昇する。以下、潜熱蓄熱材504に含まれるパラフィンとして、融点が約10℃、引火点が約132℃のノルマルペンタデカン(炭素数15)を例にとって説明する。 The paraffin contained in the latent heat storage material 504 is appropriately selected depending on the application of the heat storage member 501. For example, in the heat storage member 501 used in the refrigerator, normal tetradecane having 14 carbon atoms is suitable for the paraffin contained in the latent heat storage material 504. The phase transition temperature (melting point) from the liquid phase to the solid phase of normal tetradecane is about 6 ° C. The flash point of normal tetradecane is about 102 ° C. In the heat storage member 501 used in the building, normal heptadecane having 17 carbon atoms is suitable for the paraffin contained in the latent heat storage material 504. The phase transition temperature (melting point) from the liquid phase to the solid phase of normal heptadecane is about 22 ° C. The flash point of normal heptadecane is about 148 ° C. Thus, the normal paraffin increases in melting point and flash point as the carbon number increases. Hereinafter, as the paraffin contained in the latent heat storage material 504, normal pentadecane (carbon number 15) having a melting point of about 10 ° C. and a flash point of about 132 ° C. will be described as an example.
 また、潜熱蓄熱材504は、パラフィンをゲル化(固化)するゲル化剤を含んでいてもよい。ゲルとは、分子が架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲル化剤はパラフィンに数重量%含有させるだけでゲル化の効果を生じる。ゲル化された潜熱蓄熱材は、火災等による温度上昇時に溶解して流動性を有するのであれば、蓄熱部503に用いることが可能である。  Also, the latent heat storage material 504 may include a gelling agent that gels (solidifies) paraffin. A gel refers to a gel that has a three-dimensional network structure formed by cross-linking molecules, and has absorbed and swelled a solvent therein. A gelling agent produces a gelling effect only by being contained in paraffin by several weight%. The gelled latent heat storage material can be used for the heat storage unit 503 as long as it melts and has fluidity when the temperature rises due to a fire or the like. *
 蓄熱容器体502は、液相時に流動性を有する潜熱蓄熱材504が蓄熱部材501の外部に漏出しない密閉性を有している。蓄熱容器体502は外部との熱交換がし易い材料で形成されている。蓄熱容器体502は、一般的に用いられている金属箔が貼り合わされた樹脂膜、樹脂板又は金属板などを用いて形成されている。蓄熱容器体502は、少なくとも潜熱蓄熱材504の引火点以上の温度に耐える耐熱性を有している。このため、蓄熱容器体502は、火災等による温度上昇時に固相から液相に相転移して潜熱蓄熱材504が接続部507を通って消防部505へ移動するまでの間に、熱によって容器が溶融又は破損しないようになっている。蓄熱容器体502は、形状の自由度があるので用途に応じて様々な形状に形成することができる。  The heat storage container body 502 has a sealing property that prevents the latent heat storage material 504 having fluidity during the liquid phase from leaking out of the heat storage member 501. The heat storage container body 502 is formed of a material that can easily exchange heat with the outside. The heat storage container body 502 is formed using a resin film, a resin plate, a metal plate, or the like to which a commonly used metal foil is bonded. The heat storage container body 502 has heat resistance that can withstand at least a temperature higher than the flash point of the latent heat storage material 504. Therefore, the heat storage container body 502 is heated by the heat until the latent heat storage material 504 moves from the solid phase to the liquid phase through the connection portion 507 to the fire fighting portion 505 when the temperature rises due to a fire or the like. Does not melt or break. Since the heat storage container body 502 has a degree of freedom in shape, it can be formed in various shapes depending on the application. *
 次に、接続部507についてより詳細に説明する。接続部507は接続管522を有している。接続管522は両端が開口された、例えば中空円筒形状を有している。接続管522の内方には、火災等による温度上昇時に流動化した潜熱蓄熱材504を蓄熱部503から消防部505へと移動させるための経路524が形成されている。接続管522は円筒に限らず、必要に応じて他の断面形状を有していても良い。 Next, the connection unit 507 will be described in more detail. The connection unit 507 has a connection pipe 522. The connecting pipe 522 has, for example, a hollow cylindrical shape with both ends opened. A path 524 for moving the latent heat storage material 504 fluidized when the temperature rises due to a fire or the like from the heat storage unit 503 to the fire fighting unit 505 is formed inside the connection pipe 522. The connecting pipe 522 is not limited to a cylinder, and may have another cross-sectional shape as necessary.
 経路524は、凹凸のない滑らかな表面形状の内壁を有している。このため、経路524は、流動化した潜熱蓄熱材504が接続部507の経路524を通って消防部505へ移動する際、潜熱蓄熱材504が経路524の途中で滞留したり、部分的に残留したりすることを防ぐことができる。また、接続管522は、潜熱蓄熱材504の引火温度より低い温度で溶融や破れ等の変形及び損傷が起こらない材料で形成されている。接続管522は引火点以上の温度に耐える耐熱性を有している。このため、接続管522は、火災等による温度上昇時に蓄熱部503から消防部505に潜熱蓄熱材504を確実に移動させることができる。 The path 524 has an inner wall with a smooth surface shape without unevenness. For this reason, when the fluidized latent heat storage material 504 moves to the fire fighting section 505 through the path 524 of the connection portion 507, the latent heat storage material 504 stays in the middle of the path 524 or partially remains. Can be prevented. Further, the connecting pipe 522 is formed of a material that does not cause deformation and damage such as melting and tearing at a temperature lower than the ignition temperature of the latent heat storage material 504. The connecting pipe 522 has heat resistance that can withstand temperatures above the flash point. For this reason, the connecting pipe 522 can reliably move the latent heat storage material 504 from the heat storage unit 503 to the fire fighting unit 505 when the temperature rises due to a fire or the like.
 接続管522の一端部は、蓄熱容器体502の開口部506と密接に接続されている。接続管522と開口部506との接続箇所であって、経路524には、溶融部520が配置されている。溶融部520として例えば熱シールを用いることができる。 One end of the connection pipe 522 is intimately connected to the opening 506 of the heat storage container body 502. A melting part 520 is disposed in a path 524 where the connecting pipe 522 and the opening 506 are connected. For example, a heat seal can be used as the melting portion 520.
 溶融部520は、蓄熱部材501の通常使用の温度範囲内では固体であり、この温度範囲よりも高い特定の温度で分解又は溶融する材料で形成されている。溶融部520の形成材料には、例えば、蓄熱部503の潜熱蓄熱材504の融点よりも高い融点を有する潜熱蓄熱材、電子機器の温度ヒューズ等に用いられるSn系合金、In-Sn系合金、Zn-In系合金又はBi-In系合金等が用いられる。溶融部520が溶融する特定の温度は、潜熱蓄熱材504の融点より高く、かつ潜熱蓄熱材504の引火点又は発火点より低い温度である。潜熱蓄熱材504の融点をT1、引火点をT2、発火点をT3、溶融部520が溶融する温度をT4とする、蓄熱部材501は、「T1<T4<T2」又は「T1<T4<T3」の関係式を満たすようになっている。詳細は後述するが、本実施の形態では、火災時に潜熱蓄熱材504が燃焼する前に、流動化した潜熱蓄熱材504を消防部505に移動させること及び/又は潜熱蓄熱材504を消火防火剤512と混合させることが望ましい。また、一般に、引火点は発火点より低く、潜熱蓄熱材504は火災時に、潜熱蓄熱材504の温度が発火点に到達する前に引火点に到達した時点で燃焼する可能性がある。そこで、本実施の形態による蓄熱部材501は、潜熱蓄熱材504に含まれるノルマルペンタデカンの引火点より低い融点を有する材料で形成された溶融部520を有し、「T1<T4<T2」の関係式を満たしている。ノルマルペンタデカンの引火点は約132℃であるため、例えば溶融部520は、融点が118℃のIn-Sn合金(In52:Sn48)で形成されている。 The melting part 520 is solid within the normal temperature range of the heat storage member 501, and is formed of a material that decomposes or melts at a specific temperature higher than this temperature range. Examples of the forming material of the melting part 520 include a latent heat storage material having a melting point higher than the melting point of the latent heat storage material 504 of the heat storage unit 503, a Sn-based alloy used for a temperature fuse of an electronic device, an In-Sn alloy, A Zn—In alloy or Bi—In alloy is used. The specific temperature at which the melting part 520 melts is higher than the melting point of the latent heat storage material 504 and lower than the flash point or ignition point of the latent heat storage material 504. The latent heat storage material 504 has a melting point T1, a flash point T2, an ignition point T3, and a temperature at which the melting part 520 is melted T4. The heat storage member 501 is “T1 <T4 <T2” or “T1 <T4 <T3”. "Is satisfied. Although details will be described later, in the present embodiment, before the latent heat storage material 504 burns in the event of a fire, the fluidized latent heat storage material 504 is moved to the fire fighting section 505 and / or the latent heat storage material 504 is extinguished. It is desirable to mix with 512. In general, the flash point is lower than the ignition point, and the latent heat storage material 504 may burn in the event of a fire when the temperature of the latent heat storage material 504 reaches the flash point before reaching the ignition point. Therefore, the heat storage member 501 according to the present embodiment has a melting portion 520 formed of a material having a melting point lower than the flash point of normal pentadecane contained in the latent heat storage material 504, and a relationship of “T1 <T4 <T2”. The expression is satisfied. Since the flash point of normal pentadecane is about 132 ° C., for example, the melting part 520 is formed of an In—Sn alloy (In52: Sn48) having a melting point of 118 ° C.
 次に、接続管522の他端部に接続される消防部505についてより詳細に説明する。消防部505は、蓄熱部材501の実使用時において蓄熱部503の鉛直下方に配置される。消防部505は消防容器体510を有している。消防容器体510は例えば中空箱状の直方体形状を有している。消防部505は、正面から観察した場合には蓄熱部503とほぼ同じ長さの幅を有し、側面から観察した場合には蓄熱部503の幅よりも長い幅を有している。消防部505は、消防容器体510の上面の一部を開口した円形の開口部516を有している。消防容器体510の開口部516は、接続部507の接続管522の他端部と密接に接続されている。消防容器体510は、直方体以外の形状を有していても良く、用途に応じて様々な形状とすることが可能である。 Next, the fire fighting unit 505 connected to the other end of the connecting pipe 522 will be described in more detail. The fire fighting unit 505 is disposed vertically below the heat storage unit 503 when the heat storage member 501 is actually used. The fire department 505 has a fire container body 510. The fire-fighting container 510 has, for example, a hollow box-like rectangular parallelepiped shape. The fire fighting unit 505 has a width of almost the same length as the heat storage unit 503 when observed from the front, and has a width longer than the width of the heat storage unit 503 when observed from the side. The fire fighting section 505 has a circular opening 516 in which a part of the upper surface of the fire fighting container body 510 is opened. The opening 516 of the fire fighting container 510 is closely connected to the other end of the connection pipe 522 of the connection part 507. The fire-fighting container body 510 may have a shape other than a rectangular parallelepiped, and can have various shapes depending on the application.
 消防容器体510は蓄熱部503の蓄熱容器体502と同じ材料で形成されている。また、消防容器体510は、蓄熱部503から移動してきて収容部514(詳細は後述)に収容されている潜熱蓄熱材504の引火または発火を抑制するために、火災等による温度上昇時に外部からの熱を受け難くする必要がある。この条件を満たせば、消防容器体510は、蓄熱部503の蓄熱容器体502と異なる材料で形成されていてもよい。例えば、消防容器体510は、熱伝導性の低い材料である空孔が内外で導通していない多孔質セラミックで形成されてもよい。また、消防容器体510の外方を断熱材で覆うようにしてもよい。 The fire fighting container 510 is formed of the same material as the heat storage container 502 of the heat storage unit 503. In addition, the fire-fighting container 510 is moved from the heat storage unit 503 and externally when the temperature rises due to a fire or the like in order to suppress the ignition or ignition of the latent heat storage material 504 stored in the storage unit 514 (details will be described later). It is necessary to make it difficult to receive the heat. If this condition is satisfied, the fire fighting container body 510 may be formed of a material different from that of the heat storage container body 502 of the heat storage unit 503. For example, the fire-fighting container body 510 may be formed of a porous ceramic in which pores, which are materials having low thermal conductivity, are not conducted inside and outside. Moreover, you may make it cover the outer side of the fire fighting container body 510 with a heat insulating material.
 消防部505は、蓄熱部503から移動してくる潜熱蓄熱材504を収容する収容部514を有している。収容部514は消防容器体510の内方に形成されている。収容部514は消防容器体510の内部空間に設けられている。収容部514は、開口部516を介して接続部507の経路524と導通して一続きになっている。収容部514は、潜熱蓄熱材504が固相から液相に相転移して流動性を有する場合の体積より大きい容積を有している。これにより、消防部505は、蓄熱部503から流出した潜熱蓄熱材504の全てを収容部514内に収容できるようになっている。 The fire fighting unit 505 includes a storage unit 514 that stores the latent heat storage material 504 moving from the heat storage unit 503. The accommodating part 514 is formed inside the fire fighting container body 510. The accommodating portion 514 is provided in the internal space of the fire fighting container body 510. The accommodating portion 514 is connected to the path 524 of the connecting portion 507 through the opening 516 and is continuous. The accommodating part 514 has a volume larger than the volume in the case where the latent heat storage material 504 has a fluidity by phase transition from the solid phase to the liquid phase. Accordingly, the fire fighting unit 505 can accommodate all of the latent heat storage material 504 flowing out from the heat storage unit 503 in the storage unit 514.
 消防部505は、潜熱蓄熱材504の燃焼を消火し又は防火する消火防火剤512を有している。消火防火剤512は消防容器体510の内方に配置されている。消火防火剤512は、消防容器体510内壁であって、蓄熱部503から移動してくる潜熱蓄熱材504と接触するように、例えば開口部516形成箇所以外の上面及び側面の全面に配置されている。消火防火剤512は収容部514に露出している。 The fire department 505 has a fire-extinguishing / fire-proofing agent 512 that extinguishes or prevents the combustion of the latent heat storage material 504. The fire extinguishing and fireproofing agent 512 is disposed inside the fire fighting container 510. The fire extinguishing and fireproofing agent 512 is an inner wall of the fire fighting container 510, and is disposed on the entire upper surface and side surfaces other than the opening 516 formation portion so as to come into contact with the latent heat storage material 504 moving from the heat storage unit 503, for example. Yes. The fire extinguishing and fireproofing agent 512 is exposed in the housing portion 514.
 消防部505に配置される消火防火剤512は、潜熱蓄熱材504と消火防火剤512とが混合されることで潜熱蓄熱材504の引火や発火を抑制する難燃剤を含んでいる。難燃剤とは、可燃性の物質に難燃性の物質を添加して、可燃性の物質を難燃性の物質に変える薬剤をいう。消火防火剤512は、潜熱蓄熱材504に含まれるパラフィン、高級アルコール又はエステル系材料等を難燃化できる難燃剤を含んでいる。当該難燃剤として例えば、臭素系や尿素系又はハロゲン系難燃剤あるいはアンチモン等の無機系の難燃剤等を用いることができる。 The fire-extinguishing and fire-proofing agent 512 disposed in the fire fighting unit 505 includes a flame retardant that suppresses the ignition and ignition of the latent heat-storing material 504 by mixing the latent heat-storing material 504 and the fire-extinguishing and fire-preventing agent 512. A flame retardant refers to an agent that adds a flame retardant substance to a flammable substance and changes the flammable substance into a flame retardant substance. The fire extinguishing and fireproofing agent 512 includes a flame retardant capable of making the paraffin, higher alcohol, ester material, or the like contained in the latent heat storage material 504 flame retardant. As the flame retardant, for example, a bromine-based, urea-based, halogen-based flame retardant, or an inorganic flame retardant such as antimony can be used.
 次に、本実施形態による蓄熱部材501の動作について説明する。蓄熱部材501の通常の使用時に、潜熱蓄熱材504は蓄熱部503の外方との間で熱エネルギーの蓄積又は放出を行う。例えば、潜熱部503は、保冷や保温等の温度維持、冷房や暖房等の冷気や熱気との間で熱の授受を行う。 Next, the operation of the heat storage member 501 according to this embodiment will be described. During normal use of the heat storage member 501, the latent heat storage material 504 accumulates or releases thermal energy with the outside of the heat storage unit 503. For example, the latent heat unit 503 exchanges heat with cold air or hot air such as cooling or heating, maintaining temperature such as cold or warm.
 次に、火災等による温度上昇時の蓄熱部材501の動作について図19を参照しつつ図20を用いて説明する。図20は、図19(a)に示す蓄熱部材501の断面と同様の断面であって、溶融部520が溶融した後の蓄熱部材501の状態を示している。蓄熱部503付近の温度が火災等により上昇し、この温度上昇に伴い蓄熱容器体502の内部温度が上昇する。蓄熱容器体502の内部温度が潜熱蓄熱材504の融点以上になると、ノルマルペンタデカンを含む潜熱蓄熱材504は固相から液相へと相転移する。液相化した潜熱蓄熱材504は流動性が高くなる。さらに温度が上昇して、蓄熱容器体502の内部温度が潜熱蓄熱材504に含まれるノルマルペンタデカンの引火点に近づくと、潜熱蓄熱材504が引火する可能性が高くなる。 Next, the operation of the heat storage member 501 when the temperature rises due to a fire or the like will be described with reference to FIG. 19 and FIG. FIG. 20 is a cross section similar to the cross section of the heat storage member 501 shown in FIG. 19A, and shows the state of the heat storage member 501 after the melting part 520 is melted. The temperature near the heat storage unit 503 rises due to a fire or the like, and the internal temperature of the heat storage container body 502 rises with this temperature rise. When the internal temperature of the heat storage container 502 becomes equal to or higher than the melting point of the latent heat storage material 504, the latent heat storage material 504 containing normal pentadecane undergoes a phase transition from the solid phase to the liquid phase. The liquid phase latent heat storage material 504 has high fluidity. When the temperature further rises and the internal temperature of the heat storage container body 502 approaches the flash point of normal pentadecane contained in the latent heat storage material 504, the possibility of the latent heat storage material 504 igniting increases.
 例えば火災等により蓄熱容器体502の内部温度が約10℃を超えると、ノルマルペンタデカンを含む潜熱蓄熱材504は、固相から液相へと相転移して流動性が高くなる。さらに温度上昇して、蓄熱容器体502の内部温度が132℃に近づくと潜熱蓄熱材504が引火する可能性が高まる。溶融部520は、融点が118℃のIn-Sn合金(In52:Sn48)で形成されている。このため、溶融部520の温度が118℃を超えると溶融部520が溶融する。潜熱蓄熱材504が引火点に達する前に溶融部520が溶融することによって蓄熱部503と消防部505とが接続部507を介して導通される。これにより、蓄熱容器体502の内部空間と、接続部507の経路524と、消防部505の収容部514とは一続きになる。このため、図20に示すように、溶融部20により蓄熱容器体502の内部空間に封止されていた潜熱蓄熱材504は、引火点に達する前に接続部507の経路524を通って消防部505へ移動する。消防部505へ移動してきた潜熱蓄熱材504は、収容部514に収容される。 For example, if the internal temperature of the heat storage container body 502 exceeds about 10 ° C. due to a fire or the like, the latent heat storage material 504 containing normal pentadecane is phase-shifted from the solid phase to the liquid phase and becomes highly fluid. When the temperature further rises and the internal temperature of the heat storage container body 502 approaches 132 ° C., the possibility that the latent heat storage material 504 will ignite increases. The melting part 520 is formed of an In—Sn alloy (In52: Sn48) having a melting point of 118 ° C. For this reason, when the temperature of the melting part 520 exceeds 118 ° C., the melting part 520 is melted. The melting part 520 is melted before the latent heat storage material 504 reaches the flash point, whereby the heat storage part 503 and the fire fighting part 505 are brought into conduction through the connection part 507. Thereby, the internal space of the heat storage container body 502, the path 524 of the connection part 507, and the accommodating part 514 of the fire fighting part 505 are connected. Therefore, as shown in FIG. 20, the latent heat storage material 504 sealed in the internal space of the heat storage container body 502 by the melting unit 20 passes through the path 524 of the connection unit 507 before reaching the flash point. Move to 505. The latent heat storage material 504 that has moved to the fire fighting unit 505 is accommodated in the accommodating unit 514.
 蓄熱部503は、流動化した潜熱蓄熱材504が消防部505へ移動し易いように開口部506に向かって傾斜した傾斜部508を接続部507側に有している。このため、流動化した潜熱蓄熱材504が下方の消防部505へと重力によって移動する際、傾斜部508は潜熱蓄熱材504を蓄熱容器体502の開口部506に向かって流すことができる。また、傾斜部508を含む蓄熱容器体502の内壁は滑らかな表面を有している。このため、蓄熱部503は潜熱蓄熱材504が蓄熱容器体502の隅などに滞留するのを防ぐことができる。 The heat storage unit 503 has an inclined part 508 on the connection part 507 side inclined toward the opening 506 so that the fluidized latent heat storage material 504 can easily move to the fire fighting part 505. For this reason, when the fluidized latent heat storage material 504 moves by gravity to the fire fighting section 505 below, the inclined section 508 can flow the latent heat storage material 504 toward the opening 506 of the heat storage container body 502. Moreover, the inner wall of the heat storage container body 502 including the inclined portion 508 has a smooth surface. For this reason, the heat storage unit 503 can prevent the latent heat storage material 504 from staying in a corner of the heat storage container body 502 or the like.
 消防部505の収容部514には、消火防火剤512が露出している。このため、消防部505の収容部514に移動した潜熱蓄熱材504は、消火防火剤512と接触することができ、消火防火剤512と混合される。消火防火剤512には難燃剤が含まれているので、潜熱蓄熱材504は消火防火剤512と混合することにより難燃化されて難燃化潜熱蓄熱材518となる。潜熱蓄熱材504は発火及び引火に対する対策が何ら施されていない。しかしながら、潜熱蓄熱材504は消防部505に移動して難燃化潜熱蓄熱材518に変化することにより引火点及び発火点が高くなって燃え難くなる。これにより、蓄熱部材501は潜熱蓄熱材504の引火及び発火を防止できる。また、火災等により蓄熱部材501の温度が急激に上昇し、潜熱蓄熱材504が消防部505に移動する前に引火して燃焼した状態で消防部505に移動してきても、潜熱蓄熱材504は消火防火剤512と混合して難燃化潜熱蓄熱材518に変化する。潜熱蓄熱材504が難燃化潜熱蓄熱材518に変化することにより、潜熱蓄熱材504の炎の火勢は徐々に弱まって最終的には消えてしまう。蓄熱部材501は、潜熱蓄熱材504の燃焼を消火することもできる。 The fire extinguishing and fireproofing agent 512 is exposed in the housing part 514 of the fire department 505. For this reason, the latent heat storage material 504 moved to the housing part 514 of the fire fighting part 505 can come into contact with the fire extinguishing fire prevention agent 512 and is mixed with the fire extinguishing fire prevention agent 512. Since the fire-extinguishing and fire-proofing agent 512 contains a flame retardant, the latent heat storage material 504 is flame-retarded by mixing with the fire-extinguishing and fire-proofing agent 512 and becomes a flame-retarding latent heat storage material 518. The latent heat storage material 504 has no measures against ignition and ignition. However, the latent heat storage material 504 moves to the fire fighting section 505 and changes to the flame retardant latent heat storage material 518, so that the flash point and the ignition point are increased and it is difficult to burn. Thereby, the heat storage member 501 can prevent ignition and ignition of the latent heat storage material 504. In addition, even if the temperature of the heat storage member 501 suddenly rises due to a fire or the like and the latent heat storage material 504 moves to the fire fighting unit 505 in a state where it is ignited and burned before moving to the fire fighting unit 505, the latent heat storage material 504 is It is mixed with the fire extinguishing and fireproofing agent 512 and changed to a flame retardant latent heat storage material 518. When the latent heat storage material 504 is changed to the flame retardant latent heat storage material 518, the flame of the latent heat storage material 504 gradually weakens and eventually disappears. The heat storage member 501 can also extinguish the combustion of the latent heat storage material 504.
 このように、蓄熱部材501は、火災発生時に潜熱蓄熱材504を重力により蓄熱部503から消防部505に移動させ、潜熱蓄熱材504を難燃化潜熱蓄熱材518に変化させることにより、潜熱蓄熱材504の引火及び発火を防止したり潜熱蓄熱材504の燃焼を消火したりすることができる。 Thus, the heat storage member 501 moves the latent heat storage material 504 from the heat storage section 503 to the fire fighting section 505 by gravity when a fire occurs, and changes the latent heat storage material 504 to the flame-retarded latent heat storage material 518, thereby latent heat storage. The ignition and ignition of the material 504 can be prevented, and the combustion of the latent heat storage material 504 can be extinguished.
 ところで、ノルマルパラフィンを含む潜熱蓄熱材を使用する従来の蓄熱部材は、火災等による温度上昇時にノルマルパラフィンの引火や発火を防止するために、添加剤による潜熱蓄熱材の固形化がなされている場合がある。この場合、当該蓄熱部材は、添加物により潜熱蓄熱材の性質が変化して蓄熱性能が低下する。また、従来の蓄熱部材は、火災等による温度上昇時にノルマルパラフィンの引火や発火を防止するために難燃剤又は難燃剤を内包したマイクロカプセル等が潜熱蓄熱材に混合されている場合がある。この場合、当該蓄熱部材は、単位体積当たりの潜熱蓄熱材の含有量が減少するので蓄熱性能が低下する。また、従来の蓄熱部材は、不燃材料による潜熱蓄熱材の包み込みがなされている場合がある。この場合、包み込みに用いる容器は熱伝達性よりも不燃性が優先される。このため、当該蓄熱部材では、当該容器が不燃性であることを要するため、当該容器の素材が制限されて外部との熱授受性能が低下してしまうという問題を有している。 By the way, the conventional heat storage member using the latent heat storage material containing normal paraffin is used to solidify the latent heat storage material with an additive in order to prevent the normal paraffin from igniting or igniting when the temperature rises due to a fire or the like. There is. In this case, in the heat storage member, the properties of the latent heat storage material are changed by the additive, and the heat storage performance is lowered. Moreover, in the conventional heat storage member, a flame retardant or a microcapsule containing the flame retardant may be mixed with the latent heat storage material in order to prevent normal paraffin from being ignited or ignited when the temperature rises due to a fire or the like. In this case, since the content of the latent heat storage material per unit volume is reduced, the heat storage performance of the heat storage member is deteriorated. Moreover, the conventional heat storage member may be wrapped with the latent heat storage material by a nonflammable material. In this case, the container used for wrapping has priority on nonflammability over heat transfer. For this reason, since the said heat storage member requires that the said container is nonflammable, it has the problem that the raw material of the said container will be restrict | limited and the heat transfer performance with the exterior will fall.
 これに対し、本実施の形態による蓄熱部材501は、蓄熱の機能を発揮する蓄熱部503と、消火や防火(消防)の機能を発揮する消防部505とを分離してそれぞれ別個独立に有している。蓄熱部503と消防部505とは離れて配置されている。蓄熱部503は、消防の機能を発揮する必要がなく難燃剤が不要であるため、蓄熱のために必要な量の潜熱蓄熱材504を備えることができる。また、蓄熱部材501の通常の使用時では、潜熱蓄熱材504と消火防火剤512とは接触又は混合されていない。このため、蓄熱部材501の通常使用時では、蓄熱部503の蓄熱の機能は低下しない。さらに、蓄熱部材501は、火災時に潜熱蓄熱材504を消防部505へ移動させて潜熱蓄熱材504と消火防火剤12とを混合させる構造を有している。このため、蓄熱部材501は、潜熱蓄熱材504の燃焼を消火し又は防火するのに必要な量の消火防火剤512を消防部505に備えることができる。蓄熱部材501は、蓄熱の機能と消防の機能とにトレードオフの関係を有していないので、蓄熱性能に優れ、潜熱蓄熱材の燃焼を消火し又は防火をすることができるという効果が得られる。 On the other hand, the heat storage member 501 according to the present embodiment has a heat storage unit 503 that exhibits a heat storage function and a fire fighting unit 505 that performs a fire extinguishing or fire prevention (fire fighting) function, and has each independently. ing. The heat storage unit 503 and the fire fighting unit 505 are arranged apart from each other. The heat storage unit 503 does not need to exhibit a fire fighting function and does not require a flame retardant. Therefore, the heat storage unit 503 can include the amount of latent heat storage material 504 necessary for heat storage. Further, during normal use of the heat storage member 501, the latent heat storage material 504 and the fire-extinguishing / fire-retardant agent 512 are not in contact with or mixed with each other. For this reason, during normal use of the heat storage member 501, the heat storage function of the heat storage unit 503 does not deteriorate. Furthermore, the heat storage member 501 has a structure in which the latent heat storage material 504 is moved to the fire fighting unit 505 in the event of a fire to mix the latent heat storage material 504 and the fire extinguishing and fireproofing agent 12. For this reason, the heat storage member 501 can be provided with a fire extinguishing / fireproofing agent 512 in an amount necessary to extinguish or prevent the combustion of the latent heat storage material 504 in the fire fighting unit 505. Since the heat storage member 501 does not have a trade-off relationship between the heat storage function and the fire fighting function, the heat storage member 501 is excellent in heat storage performance, and the effect that the combustion of the latent heat storage material can be extinguished or prevented can be obtained. .
 次に、消火防火剤512が難燃剤に代えて窒息性気体発生材料を含む場合の蓄熱部材501について、図21を用いて説明する。まず、図21(a)を用いて、蓄熱部材501の構成について説明する。図21(a)は、蓄熱部材501を正面から観察した図であって、接続管522の中心軸を含む平面で切断した断面を示している。図21(a)に示すように、消防部505に備えられた消火防火剤512は、窒息性気体発生材料を含んでいる。窒息性気体発生材料は、加熱によって窒息性の気体を発生させて潜熱蓄熱材504の燃焼を窒息消火により消火又は防火する。窒息消火とは、空気中の酸素濃度を燃焼の維持又は引火や発火に必要な量より少なくすることにより燃焼を消火又は防火することをいう。可燃物の燃焼は空気中の酸素濃度が15%以下になると維持できなくなる。また、可燃物の引火や発火は空気中の酸素濃度が15%以下になると抑制される。 Next, the heat storage member 501 in the case where the fire extinguishing and fireproofing agent 512 includes a suffocating gas generating material instead of the flame retardant will be described with reference to FIG. First, the configuration of the heat storage member 501 will be described with reference to FIG. FIG. 21A is a view of the heat storage member 501 observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522. As shown to Fig.21 (a), the fire extinguishing fire prevention agent 512 with which the fire fighting part 505 was equipped contains the suffocating gas generating material. The suffocating gas generating material generates a suffocating gas by heating to extinguish or prevent the combustion of the latent heat storage material 504 by suffocation extinction. Suffocation extinction refers to extinguishing or preventing combustion by reducing the oxygen concentration in the air below the amount necessary for maintaining combustion, or for ignition or ignition. Combustion of combustibles cannot be maintained when the oxygen concentration in the air is 15% or less. In addition, ignition and ignition of combustible materials are suppressed when the oxygen concentration in the air is 15% or less.
 窒息性気体発生材料には、例えば、加熱によって二酸化炭素を発生する炭酸カルシウムや炭酸ナトリウムのような炭酸塩類、アンモニアを発生するポリ燐酸アンモニウム、窒素を発生するアゾ系化合物などを用いることができる。消火防火剤512は、二酸化炭素、アンモニア及び窒素等のいずれかの窒息性気体を発生させる無機系発泡材料や有機系発泡材料等で形成される。以下、消火防火剤512に含まれる窒息性気体発生材料として、炭酸アンモニウムを例にとって説明する。 As the suffocating gas generating material, for example, carbonates such as calcium carbonate and sodium carbonate that generate carbon dioxide by heating, ammonium polyphosphate that generates ammonia, azo compounds that generate nitrogen, and the like can be used. The fire extinguishing and fireproofing agent 512 is formed of an inorganic foam material, an organic foam material, or the like that generates any suffocating gas such as carbon dioxide, ammonia, and nitrogen. Hereinafter, ammonium carbonate will be described as an example of the suffocating gas generating material contained in the fire extinguishing and fireproofing agent 512.
 消防部505は、収容部514が消火防火剤512から発生する窒息性気体の全てを十分に収容できるだけの大きさを有していれば、当該窒息性気体が発生しても消防容器体510が破損するほど消防容器体510の内部圧力が上昇することはない。しかしながら、蓄熱部材501の設置場所によっては、消防容器体510は、当該窒息性気体を収容するのに十分な大きさの収容部514を確保できない場合がある。この場合には、消防容器体510の内部圧力は、当該窒息性気体発生によって消防容器体510が破損してしまうほどに上昇してしまう恐れがある。 If the storage unit 514 has a size that allows the storage unit 514 to sufficiently store all of the suffocating gas generated from the fire-extinguishing and fire-preventing agent 512, the fire-fighting container body 510 can be used even if the suffocating gas is generated. The internal pressure of the fire fighting container 510 does not increase so as to be damaged. However, depending on the installation location of the heat storage member 501, the fire fighting container 510 may not be able to secure a storage portion 514 that is large enough to store the suffocating gas. In this case, there is a risk that the internal pressure of the fire fighting container 510 will rise to such an extent that the fire fighting container 510 is damaged by the generation of the suffocating gas.
 そこで、図21(a)に示すように、当該窒息性気体を収容するのに十分な大きさの収容部514を確保できない場合には、消防部505は、消防容器体510が破損してしまうのを防止するために、一方向型の圧力弁526を有していてもよい。圧力弁526は、余分な窒息性気体を収容部514から消防部505の外方へ流出させるとともに外部から収容部514内方への気体流入を防止することができるようになっている。 Therefore, as shown in FIG. 21 (a), when the storage portion 514 large enough to store the suffocating gas cannot be secured, the fire fighting portion 505 causes the fire fighting vessel body 510 to be damaged. In order to prevent this, a one-way type pressure valve 526 may be provided. The pressure valve 526 allows excess suffocating gas to flow out from the housing portion 514 to the outside of the fire fighting portion 505 and to prevent gas from flowing into the housing portion 514 from the outside.
 次に、窒息性気体発生材料を含む消火防火剤512を有する蓄熱部材501の動作について説明する。蓄熱部材501の通常の使用時の動作は難燃剤を含む消火防火剤512の場合と同様なので、その説明は省略する。 Next, the operation of the heat storage member 501 having the fire extinguishing and fireproofing agent 512 containing a suffocating gas generating material will be described. Since the operation | movement at the time of normal use of the thermal storage member 501 is the same as that of the case of the fire-extinguishing fireproofing agent 512 containing a flame retardant, the description is abbreviate | omitted.
 次に、火災等による温度上昇時の蓄熱部材501の動作について図21(a)を参照しつつ図21(b)を用いて説明する。図21(b)は、図21(a)と同様の蓄熱部材501の断面であって、溶融部520が溶融した後の蓄熱部材501を示している。火災等により蓄熱部503の蓄熱容器体502の内部温度が潜熱蓄熱材504の融点以上に上昇すると、潜熱蓄熱材504が固相から液相へと相転移し流動性が高くなる。さらに温度が上昇すると、蓄熱容器体502の内部温度が潜熱蓄熱材504の引火点に達する前に、溶融部520は溶融する。このため、蓄熱部503の蓄熱容器体502の内部空間と、消防部505の収容部514とが接続部507の経路524を介して導通されて一続きになる。潜熱蓄熱材504は、固相から液相に相転移して流動化しているので重力により経路524を通って消防部505に移動する。 Next, the operation of the heat storage member 501 when the temperature rises due to a fire or the like will be described with reference to FIG. 21 (b) with reference to FIG. 21 (a). FIG. 21B is a cross-section of the heat storage member 501 similar to FIG. 21A, and shows the heat storage member 501 after the melting part 520 has melted. When the internal temperature of the heat storage container body 502 of the heat storage unit 503 rises above the melting point of the latent heat storage material 504 due to a fire or the like, the latent heat storage material 504 changes from a solid phase to a liquid phase and the fluidity increases. When the temperature further rises, the melting part 520 is melted before the internal temperature of the heat storage container body 502 reaches the flash point of the latent heat storage material 504. For this reason, the internal space of the heat storage container body 502 of the heat storage unit 503 and the accommodation unit 514 of the fire fighting unit 505 are electrically connected via the path 524 of the connection unit 507 to be connected. Since the latent heat storage material 504 is fluidized by phase transition from the solid phase to the liquid phase, the latent heat storage material 504 moves to the fire fighting unit 505 through the path 524 by gravity.
 消防部505は、加熱によって窒息性気体を発生させる炭酸アンモニウムを含んだ消火防火剤512を有している。図21(b)に示すように、消火防火剤512は、消防部505の消防容器体510の内部温度が60℃程度に上昇すると、窒息性気体511として二酸化炭素及びアンモニア並びに水蒸気を発生し始める。発生した窒息性気体511は、収容部514内に充満するので収容部514内の酸素濃度を低下させることができる。このため、収容部514内の酸素濃度は、収容部514に移動した潜熱蓄熱材504の燃焼の維持又は引火や発火に必要な濃度より低くなる。これにより、蓄熱部材501は、潜熱蓄熱材504の燃焼、引火又は発火を防止できる。このように、蓄熱部材501は、消防部505においてパラフィンを含んだ潜熱蓄熱材504の消火に適した窒息消火を行うことができる。 The fire department 505 has a fire extinguishing and fire-proofing agent 512 containing ammonium carbonate that generates a suffocating gas by heating. As shown in FIG. 21 (b), the fire-extinguishing and fire-proofing agent 512 starts to generate carbon dioxide, ammonia, and water vapor as the suffocating gas 511 when the internal temperature of the fire fighting container 510 of the fire fighting unit 505 rises to about 60 ° C. . Since the generated suffocating gas 511 is filled in the storage portion 514, the oxygen concentration in the storage portion 514 can be reduced. For this reason, the oxygen concentration in the accommodating part 514 becomes lower than a density | concentration required for the maintenance of combustion of the latent heat storage material 504 moved to the accommodating part 514, or ignition or ignition. Thereby, the heat storage member 501 can prevent combustion, ignition, or ignition of the latent heat storage material 504. Thus, the heat storage member 501 can perform suffocation fire extinguishing suitable for extinguishing the latent heat storage material 504 including paraffin in the fire fighting unit 505.
 二酸化炭素等のように空気より重たい窒息性気体511は、蓄熱部材501の下方へ滞留し易い。このため、潜熱蓄熱材504の消防部505への移動が完了した後の蓄熱部材501の状態は、収容部514内の最下方に潜熱蓄熱材504が配置され、潜熱蓄熱材504の直上に窒息性気体511が充満し、窒息性気体511の上方に空気が充満する。窒息性気体511は、潜熱蓄熱材504と空気との間に留まって潜熱蓄熱材504に酸素が供給されるのを遮断することができる。これにより、蓄熱部材501は潜熱蓄熱材504の引火、発火及び燃焼を防止できる。このように、空気よりも重い窒息性気体511を用いることにより、蓄熱部材501は潜熱蓄熱材504の窒息消火の効果を高めることができる。 Suffocating gas 511 heavier than air, such as carbon dioxide, tends to stay below heat storage member 501. For this reason, the state of the heat storage member 501 after the movement of the latent heat storage material 504 to the fire fighting unit 505 is completed, the latent heat storage material 504 is disposed at the lowermost position in the storage unit 514, and suffocation is directly above the latent heat storage material 504. The gas 511 is filled, and the air is filled above the suffocating gas 511. The suffocating gas 511 can stay between the latent heat storage material 504 and the air and block the supply of oxygen to the latent heat storage material 504. Thereby, the heat storage member 501 can prevent ignition, ignition and combustion of the latent heat storage material 504. Thus, by using the suffocating gas 511 heavier than air, the heat storage member 501 can enhance the effect of suffocation extinction of the latent heat storage material 504.
 また、消防部505は、発生した窒息性気体511を収容するのに十分な大きさの収容部514を確保できない場合には、圧力弁526を有している。蓄熱部材501は、窒息性気体511の発生に伴って消防容器体510、接続管522及び蓄熱容器体502の内部圧力が所定値より高くなったことを不図示の圧力計が検知すると、圧力弁526を開いて収容部514内の空気及び窒息性気体511を蓄熱部材501の外部へと放出するようになっている。これにより、蓄熱部材501は、消防部505の破裂を防止することができる。また、蓄熱部材501は、収容部514内の内部圧力が所定値より低くなると圧力弁526を閉じて消防容器体510、接続管522及び蓄熱容器体502の密閉性を確保するようになっている。また、圧力弁526は一方向型であるため、空気や窒息性気体511の放出時に外部の空気が収容部514内に流入することを防止できる。圧力弁526としては、これ以外にも、容器内圧が特定の圧力より高くなることにより、圧力弁526に設けられた圧力調整用ばね(図示せず)が変形し、圧力弁526を開いて内部の気体を放出し、圧力が下がることにより、再度ばねの力で圧力弁が閉じるような、一般的なばね式の圧力調製弁を圧力弁526として用いても良い。このように、蓄熱部材501は、収容部514の容積が小さくても潜熱蓄熱材504の燃焼を消火し又は防火することができる。本実施の形態による蓄熱部材501は、難燃剤及び窒息性気体発生材料のいずれか一方を含む消火防火剤512が用いられているが、難燃剤及び窒息性気体発生材料の両方を含む消火防火剤512が用いられてももちろんよい。 In addition, the fire fighting unit 505 has a pressure valve 526 when it is not possible to secure a storage unit 514 large enough to store the generated suffocating gas 511. When a pressure gauge (not shown) detects that the internal pressure of the fire fighting vessel body 510, the connecting pipe 522, and the heat storage vessel body 502 has become higher than a predetermined value as the suffocating gas 511 is generated, the heat storage member 501 526 is opened to release the air in the housing portion 514 and the suffocating gas 511 to the outside of the heat storage member 501. Thereby, the heat storage member 501 can prevent the fire department 505 from bursting. Further, the heat storage member 501 closes the pressure valve 526 when the internal pressure in the accommodating portion 514 becomes lower than a predetermined value, and ensures the sealing of the fire fighting vessel body 510, the connecting pipe 522, and the heat storage vessel body 502. . Further, since the pressure valve 526 is a one-way type, external air can be prevented from flowing into the housing portion 514 when the air or the suffocating gas 511 is released. In addition to this, as the pressure inside the container becomes higher than a specific pressure, the pressure adjusting spring (not shown) provided in the pressure valve 526 is deformed, and the pressure valve 526 is opened to open the pressure valve 526. A general spring-type pressure regulating valve may be used as the pressure valve 526 in which the pressure valve is closed again by the force of the spring when the gas is released and the pressure drops. Thus, the heat storage member 501 can extinguish or prevent the combustion of the latent heat storage material 504 even if the volume of the housing portion 514 is small. The heat storage member 501 according to the present embodiment uses the fire-extinguishing and fire-preventing agent 512 containing either one of a flame retardant or a suffocating gas generating material, but the fire-extinguishing and fire-proofing agent containing both the flame retardant and the suffocating gas generating material. Of course, 512 may be used.
 以上説明したように、本実施形態によれば、蓄熱部材501は、外部との熱の授受に使用する蓄熱部503と、蓄熱部503と分離して設けられ、火災等による温度上昇時に潜熱蓄熱材504の燃焼を消火し又は防火する消防部505とを有している。蓄熱部503は、消防部505と分離して設けられているので、従来のように難燃剤を潜熱蓄熱材に混合したり、蓄熱部503の外周を不燃性材料で覆ったりする必要はない。このため、蓄熱部503は、蓄熱機能を最大限高めるための潜熱蓄熱材及び蓄熱容器体502の材料を選択することができる。 As described above, according to the present embodiment, the heat storage member 501 is provided separately from the heat storage unit 503 and the heat storage unit 503 used for heat exchange with the outside, and latent heat storage is performed when the temperature rises due to a fire or the like. And a fire fighting unit 505 that extinguishes or prevents the combustion of the material 504. Since the heat storage unit 503 is provided separately from the fire fighting unit 505, it is not necessary to mix a flame retardant with the latent heat storage material or to cover the outer periphery of the heat storage unit 503 with a non-combustible material as in the past. For this reason, the heat storage part 503 can select the material of the latent heat storage material and the heat storage container body 502 for maximizing the heat storage function.
 さらに、蓄熱部材501は、火災時に潜熱蓄熱材504が引火点に達する前に潜熱蓄熱材504を消防部505へ移動させて潜熱蓄熱材504の燃焼を消火し又は防火するようになっている。消防部505に移動してきた潜熱蓄熱材504は最早蓄熱性を発揮する必要がない。また、消防部505に移動してきた潜熱蓄熱材504の蓄熱性能の劣化は考慮しなくてもよい。このため、消防部505は、潜熱蓄熱材504の劣化を補うための材料を消火防火剤12に添加しておく必要がない。したがって、消防部505は、潜熱蓄熱材504の燃焼を消火し又は防火するために十分な量の難燃剤や窒息性気体発生材料を含んだ消火防火剤512を備えることができる。 Further, the heat storage member 501 extinguishes or prevents the combustion of the latent heat storage material 504 by moving the latent heat storage material 504 to the fire department 505 before the latent heat storage material 504 reaches the flash point in the event of a fire. The latent heat storage material 504 that has moved to the fire department 505 no longer needs to exhibit heat storage. Moreover, it is not necessary to consider deterioration of the heat storage performance of the latent heat storage material 504 that has moved to the fire department 505. For this reason, the fire fighting part 505 does not need to add the material for supplementing deterioration of the latent heat storage material 504 to the fire-extinguishing fire prevention agent 12. Therefore, the fire fighting unit 505 can be provided with a fire extinguishing fire prevention agent 512 containing a sufficient amount of a flame retardant and a suffocating gas generating material to extinguish or prevent the combustion of the latent heat storage material 504.
 このように、蓄熱部材501は、蓄熱の機能を発揮する蓄熱部503と、消防の機能を発揮する消防部505とに機能をそれぞれ分離して有している。これにより、蓄熱部材501は、優れた蓄熱の機能を備え、潜熱蓄熱材504の引火や発火を防止するとともに潜熱蓄熱材504の燃焼を早期に抑制して消火することができる。蓄熱部材501は、蓄熱性と難燃性とのバランスを考慮していた従来の蓄熱部材と比較して、優れた蓄熱性能を備えつつ潜熱蓄熱材504の引火や発火の可能性を十分に低減することができる。 As described above, the heat storage member 501 has the heat storage unit 503 that exhibits the heat storage function and the fire fighting unit 505 that exhibits the fire fighting function. Thereby, the heat storage member 501 has an excellent heat storage function, can prevent ignition and ignition of the latent heat storage material 504, and can suppress the combustion of the latent heat storage material 504 at an early stage and extinguish the fire. The heat storage member 501 sufficiently reduces the possibility of ignition or ignition of the latent heat storage material 504 while having excellent heat storage performance as compared with a conventional heat storage member that takes into consideration the balance between heat storage and flame retardancy. can do.
 本実施形態の蓄熱部材501は、引火や発火の可能性の増大する温度上昇時に固相から液相へと相転移して流動性を有するような潜熱蓄熱材504を有している。蓄熱部材501は、蓄熱部503の鉛直下方に消防部505を有している。潜熱蓄熱材504が引火点に達する前に溶融部520が溶融して、蓄熱容器体502の内部空間と消防容器体510の収容部514とが接続管522の経路524を介して導通される。蓄熱部材501は、温度上昇時に蓄熱容器体510内に内包されている潜熱蓄熱材504を重力によって鉛直下方の収容部514に経路524を通して移動させることができる。このため、蓄熱部材501は、潜熱蓄熱材504を蓄熱部503から消防部505に移動させるための移動機構が不要になる。したがって、蓄熱部材501は、簡易な構造により実現可能となる。 The heat storage member 501 of the present embodiment has a latent heat storage material 504 that has a fluidity by causing a phase transition from a solid phase to a liquid phase when the temperature rises where the possibility of ignition or ignition increases. The heat storage member 501 has a fire fighting unit 505 vertically below the heat storage unit 503. Before the latent heat storage material 504 reaches the flash point, the melting part 520 is melted, and the internal space of the heat storage container body 502 and the housing part 514 of the fire fighting container body 510 are brought into conduction via the path 524 of the connection pipe 522. The heat storage member 501 can move the latent heat storage material 504 contained in the heat storage container 510 when the temperature rises to the accommodation portion 514 vertically below through the path 524 by gravity. For this reason, the heat storage member 501 does not require a moving mechanism for moving the latent heat storage material 504 from the heat storage unit 503 to the fire fighting unit 505. Therefore, the heat storage member 501 can be realized with a simple structure.
 蓄熱部材501は、蓄熱部503と消防部505との間に特定の温度で溶融する溶融部520を有している。溶融部520は、潜熱蓄熱材504が引火や発火の可能性が高まる温度に達する前に溶ける。これにより、蓄熱部材501は、潜熱蓄熱材504が引火する前に蓄熱部503から消防部505へ移動させることができる。 The heat storage member 501 has a melting part 520 that melts at a specific temperature between the heat storage part 503 and the fire fighting part 505. The melting part 520 melts before the latent heat storage material 504 reaches a temperature at which the possibility of ignition or ignition increases. Thereby, the heat storage member 501 can be moved from the heat storage unit 503 to the fire fighting unit 505 before the latent heat storage material 504 ignites.
 また、蓄熱部503は、開口部506に向かって蓄熱容器体502の底面を下方に傾斜させた傾斜部508を有している。蓄熱部材501は、流動化した潜熱蓄熱材504を蓄熱容器体502の内側の隅などに残留することなく消防部505へ移動させることができる。 Further, the heat storage unit 503 has an inclined part 508 in which the bottom surface of the heat storage container body 502 is inclined downward toward the opening 506. The heat storage member 501 can move the fluidized latent heat storage material 504 to the fire fighting unit 505 without remaining in the inner corner of the heat storage container body 502 or the like.
 次に、本実施形態の変形例による蓄熱部材501について、図22乃至図27を用いて説明する。図22は、本実施の形態の変形例1による蓄熱部材501を正面から観察した概略図であって、接続管522の中心軸を含む平面で切断した断面を示している。本変形例による蓄熱部材501は、複数の接続管522を備えている点に特徴を有している。 Next, a heat storage member 501 according to a modification of this embodiment will be described with reference to FIGS. FIG. 22 is a schematic view of the heat storage member 501 according to the first modification of the present embodiment observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522. The heat storage member 501 according to this modification is characterized in that it includes a plurality of connecting pipes 522.
 図22に示すように、本変形例による蓄熱部材501は、複数(本例では、2つ)の接続部507を有している。本例の接続部507はそれぞれ、図19に示す蓄熱部材501の接続部507と同様の構成を有し、同様の形成材料で形成されているので、詳細な説明は省略する。2つの接続部507は、互いに同一の蓄熱部503に接続され、互いに同一の消防部505に接続されている。なお、蓄熱部503と消防部505とは、2つの接続部507で接続されていることに限られず、3つ以上の接続部507で接続されていてももちろんよい。 As shown in FIG. 22, the heat storage member 501 according to this modification has a plurality (two in this example) of connecting portions 507. Each of the connection portions 507 in this example has the same configuration as the connection portion 507 of the heat storage member 501 shown in FIG. 19 and is formed of the same forming material, and thus detailed description thereof is omitted. The two connection parts 507 are connected to the same heat storage part 503 and are connected to the same fire fighting part 505. Note that the heat storage unit 503 and the fire fighting unit 505 are not limited to being connected by the two connection units 507, and may be connected by three or more connection units 507.
 次に、本実施の形態の変形例2による蓄熱部材501について図23を用いて説明する。図23は、本変形例による蓄熱部材501を正面から観察した概略図であって、接続管522の中心軸を含む平面で切断した断面を示している。本変形例による蓄熱部材501は、上記変形例1による蓄熱部材501の特徴に加えさらに複数の消防部505を備えている点に特徴を有している。 Next, a heat storage member 501 according to the second modification of the present embodiment will be described with reference to FIG. FIG. 23 is a schematic view of the heat storage member 501 according to this modification observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522. The heat storage member 501 according to the present modification is characterized in that a plurality of fire fighting units 505 are further provided in addition to the characteristics of the heat storage member 501 according to the first modification.
 図23に示すように、本変形例による蓄熱部材501は、複数(本例では2つ)の消防部505を有している。消防部505のそれぞれは、図19に示す蓄熱部材501の消防部505と同様の構成を有し、同様の形成材料で形成されているので、詳細な説明は省略する。消防部505は、接続部507と同数設けられている。2つの消防部505は、互いに異なる接続部507を介して同一の蓄熱部503に接続されている。なお、消防部505の数は2つに限られず、蓄熱部材501は接続部507と同数であれば3つ以上の消防部505を有していてももちろんよい。 As shown in FIG. 23, the heat storage member 501 according to this modification has a plurality (two in this example) of fire fighting units 505. Since each of the fire fighting units 505 has the same configuration as the fire fighting unit 505 of the heat storage member 501 shown in FIG. 19 and is formed of the same forming material, detailed description thereof is omitted. The same number of fire departments 505 as the connection parts 507 are provided. The two fire fighting parts 505 are connected to the same heat storage part 503 via different connection parts 507. Note that the number of fire fighting units 505 is not limited to two, and the heat storage members 501 may have three or more fire fighting units 505 as long as the number of the heat storage members 501 is the same as the number of connection units 507.
 次に、本実施の形態の変形例3による蓄熱部材501について図24を用いて説明する。図24は、本変形例による蓄熱部材501を正面から観察した概略図であって、接続管522の中心軸を含む平面で切断した断面を示している。本変形例による蓄熱部材501は、上記変形例1による蓄熱部材501の特徴に加えさらに複数の蓄熱部503を備えている点に特徴を有している。 Next, a heat storage member 501 according to the third modification of the present embodiment will be described with reference to FIG. FIG. 24 is a schematic view of the heat storage member 501 according to this modification observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522. The heat storage member 501 according to the present modification is characterized in that in addition to the characteristics of the heat storage member 501 according to the first modification, a plurality of heat storage portions 503 are further provided.
 図24に示すように、本変形例による蓄熱部材501は、複数(本例では2つ)の蓄熱部503を有している。蓄熱部503のそれぞれは、図19に示す蓄熱部材501の蓄熱部503と同様の構成を有し、同様の形成材料で形成されているので、詳細な説明は省略する。蓄熱部503は、接続部507と同数設けられている。2つの蓄熱部503は、互いに異なる接続部507を介して同一の消防部505に接続されている。なお、蓄熱部503の数は2つに限られず、蓄熱部材501は接続部507と同数であれば3つ以上の蓄熱部503を有していてももちろんよい。 As shown in FIG. 24, the heat storage member 501 according to this modification has a plurality (two in this example) of heat storage units 503. Since each of the heat storage units 503 has the same configuration as the heat storage unit 503 of the heat storage member 501 shown in FIG. 19 and is formed of the same forming material, detailed description thereof is omitted. The same number of heat storage units 503 as the connection units 507 are provided. The two heat storage parts 503 are connected to the same fire fighting part 505 through different connection parts 507. Note that the number of the heat storage units 503 is not limited to two, and the heat storage member 501 may have three or more heat storage units 503 as long as the number of the heat storage members 501 is the same as the number of the connection units 507.
 次に、本実施の形態の変形例4による蓄熱部材501について図25を用いて説明する。図25は、本変形例による蓄熱部材501を正面から観察した概略図であって、接続管522の中心軸を含む平面で切断した断面を示している。本変形例による蓄熱部材501は、蓄熱部503と消防部505との間にさらに蓄熱部503を備えている点に特徴を有している。 Next, a heat storage member 501 according to Modification 4 of the present embodiment will be described with reference to FIG. FIG. 25 is a schematic view of the heat storage member 501 according to this modification observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522. The heat storage member 501 according to this modification is characterized in that a heat storage unit 503 is further provided between the heat storage unit 503 and the fire fighting unit 505.
 図25に示すように、本変形例による蓄熱部材501に備えられた蓄熱部503は、蓄熱部503とほぼ同一の構成を有している。蓄熱部533の蓄熱容器体532は、蓄熱部503の蓄熱容器体502とほぼ同一の形状を有し、同一の形成材料で形成されている。蓄熱部533は、蓄熱容器体532の上面のほぼ中央を開口した円形の開口部539を有している。開口部539は蓄熱部503の開口部506と密接に接続されている。蓄熱部503の開口部506と、蓄熱部533の開口部539との接続箇所には、溶融部520が配置されている。蓄熱部503と蓄熱部533とは接続部507と同一の形成材料で同一形状に形成された接続部を介して接続されていてももちろんよい。 As shown in FIG. 25, the heat storage unit 503 provided in the heat storage member 501 according to this modification has substantially the same configuration as the heat storage unit 503. The heat storage container body 532 of the heat storage unit 533 has substantially the same shape as the heat storage container body 502 of the heat storage unit 503 and is formed of the same forming material. The heat storage unit 533 includes a circular opening 539 that is opened at the substantially center of the upper surface of the heat storage container body 532. The opening 539 is closely connected to the opening 506 of the heat storage unit 503. A melting portion 520 is disposed at a connection point between the opening 506 of the heat storage unit 503 and the opening 539 of the heat storage unit 533. Of course, the heat storage part 503 and the heat storage part 533 may be connected via a connection part formed in the same shape with the same forming material as the connection part 507.
 蓄熱部533は、蓄熱容器体532の底面のほぼ中央を開口した円形の開口部536を有している。蓄熱部533は、開口部536に向かって蓄熱容器体532の底面を下方に傾斜させた漏斗状の傾斜部538を有している。蓄熱容器体532の内部空間には、潜熱蓄熱材534が充填されている。蓄熱部533の開口部536は、接続部507の接続管522の一端部と密接して接続されている。開口部536と接続管522との接続箇所には、溶融部520が配置されている。 The heat storage unit 533 has a circular opening 536 having an opening at substantially the center of the bottom surface of the heat storage container body 532. The heat storage unit 533 includes a funnel-shaped inclined portion 538 in which the bottom surface of the heat storage container body 532 is inclined downward toward the opening 536. The internal space of the heat storage container body 532 is filled with a latent heat storage material 534. The opening 536 of the heat storage unit 533 is closely connected to one end of the connection pipe 522 of the connection unit 507. A melting portion 520 is disposed at a connection portion between the opening 536 and the connection pipe 522.
 潜熱蓄熱材534は、開口部536を塞いで配置された溶融部520と、開口部539近傍の接続箇所に配置された溶融部520とにより蓄熱容器体532の内部空間に封止されている。潜熱蓄熱材504は、開口部506近傍の接続箇所に配置された溶融部520により蓄熱容器体502の内部空間に封止されている。 The latent heat storage material 534 is sealed in the internal space of the heat storage container body 532 by a melting portion 520 disposed so as to close the opening 536 and a melting portion 520 disposed at a connection location in the vicinity of the opening 539. The latent heat storage material 504 is sealed in the internal space of the heat storage container body 502 by a melting portion 520 disposed at a connection location near the opening 506.
 潜熱蓄熱材534は、潜熱蓄熱材504と同様にパラフィンを含んでいる。潜熱蓄熱材534に含まれるパラフィンは、潜熱蓄熱材504に含まれるパラフィンの融点と異なっている。蓄熱部材501は、蓄熱部503、533を備えることにより、融点の異なる複数(本例では2つ)の潜熱蓄熱材を有することができる。また、溶融部520が溶融する特定の温度は、潜熱蓄熱材504、534の融点より高く、かつ潜熱蓄熱材504、534の引火点又は発火点より低くなっている。このため、蓄熱部材501は、火災等による温度上昇時では、潜熱蓄熱材504、534が引火点に達する前に溶融部520が溶融するようになっている。 The latent heat storage material 534 includes paraffin as with the latent heat storage material 504. The paraffin contained in the latent heat storage material 534 is different from the melting point of the paraffin contained in the latent heat storage material 504. The heat storage member 501 can include a plurality of (two in this example) latent heat storage materials having different melting points by including the heat storage units 503 and 533. Further, the specific temperature at which the melting part 520 melts is higher than the melting point of the latent heat storage materials 504 and 534 and lower than the flash point or ignition point of the latent heat storage materials 504 and 534. For this reason, in the heat storage member 501, when the temperature rises due to a fire or the like, the melting part 520 is melted before the latent heat storage materials 504 and 534 reach the flash point.
 また、本変形例による蓄熱部材501の収容部514は、潜熱蓄熱材504、534が固相から液相に相転移して流動性を有する場合の体積より大きい容積を有している。これにより、消防部505は、蓄熱部503、533から流出した潜熱蓄熱材504、534の全てを収容部514に収容できる。蓄熱部材501は、火災時等の温度上昇時では潜熱蓄熱材504、534の全てを消防部505へ移動させて、潜熱蓄熱材504、534の燃焼を消火又は防火することができる。本変形例による蓄熱部材501は、蓄熱部503と蓄熱部533との間にさらに別の1個又は複数個の蓄熱部を備え、それぞれの蓄熱部ごとに融点の異なる潜熱蓄熱材を有していてもよい。 Further, the accommodating portion 514 of the heat storage member 501 according to this modification has a volume larger than the volume in the case where the latent heat storage materials 504 and 534 have a fluidity by phase transition from the solid phase to the liquid phase. Accordingly, the fire fighting unit 505 can accommodate all of the latent heat storage materials 504 and 534 that have flowed out of the heat storage units 503 and 533 in the storage unit 514. The heat storage member 501 can extinguish or prevent the combustion of the latent heat storage materials 504 and 534 by moving all of the latent heat storage materials 504 and 534 to the fire fighting unit 505 when the temperature rises during a fire or the like. The heat storage member 501 according to the present modified example includes one or more other heat storage units between the heat storage unit 503 and the heat storage unit 533, and each of the heat storage units has a latent heat storage material having a different melting point. May be.
 次に、本実施の形態の変形例5による蓄熱部材501について図26を用いて説明する。図26は、本変形例による蓄熱部材501の概略の断面構成を示している。本変形例による蓄熱部材501は、2枚の中空平板状の部材を接続し、断面L字状の蓄熱部543を備えている点に特徴を有している。 Next, a heat storage member 501 according to Modification 5 of the present embodiment will be described with reference to FIG. FIG. 26 shows a schematic cross-sectional configuration of a heat storage member 501 according to this modification. The heat storage member 501 according to this modification is characterized in that two hollow flat plate-like members are connected and a heat storage part 543 having an L-shaped cross section is provided.
 図26に示すように、本変形例による蓄熱部材501は、潜熱蓄熱材504を備えた蓄熱部543と、蓄熱部543と分離して設けられ、潜熱蓄熱材504の燃焼を消火又は防火する消防部505とを有している。蓄熱部543は、部材543aと部材43bとを有している。部材543aは中空平板状の直方体形状を有している。部材543bは、中空平板状の直方体形状を有している。潜熱蓄熱材504は、部材543a、543bの中空の内部空間に充填されている。部材543aは、蓄熱部材501の実使用時に長手方向が鉛直方向に向かって配置される。蓄熱部543は、部材543aの底面の全面を開口した開口部546aを有している。また、蓄熱部543は、部材543aの上面の全面を開口した開口部549aを有している。 As shown in FIG. 26, the heat storage member 501 according to this modification is provided separately from the heat storage unit 543 provided with the latent heat storage material 504 and the heat storage unit 543, and fire fighting that extinguishes or prevents the combustion of the latent heat storage material 504. Part 505. The heat storage unit 543 includes a member 543a and a member 43b. The member 543a has a hollow flat rectangular parallelepiped shape. The member 543b has a hollow flat plate shape. The latent heat storage material 504 is filled in the hollow internal space of the members 543a and 543b. The member 543a is arranged such that the longitudinal direction is directed in the vertical direction when the heat storage member 501 is actually used. The heat storage unit 543 has an opening 546a that opens the entire bottom surface of the member 543a. Further, the heat storage unit 543 has an opening 549a that opens the entire upper surface of the member 543a.
 部材543bは、蓄熱部材501の実使用時に、長手方向が水平方向に対してやや下方に傾くようにして配置される。このように、蓄熱部材501は、潜熱蓄熱材504を消防部505へ移動し易いように部材543bが下方に傾斜している。本変形例による蓄熱部材501は、部材543b自体で構成された傾斜部548を有している。 The member 543b is arranged so that the longitudinal direction is slightly inclined downward with respect to the horizontal direction when the heat storage member 501 is actually used. Thus, the heat storage member 501 has the member 543b inclined downward so that the latent heat storage material 504 can be easily moved to the fire fighting section 505. The heat storage member 501 according to the present modification includes an inclined portion 548 configured by the member 543b itself.
 蓄熱部543は、部材543bの一側面の全面を開口した開口部549bを有している。部材543a、543bは、開口部549aの周囲と開口部549bの周囲とを一致させて密接に接続されている。これにより、部材543bの内部空間と部材543aの内部空間とは導通されて一続きの空間となる。 The heat storage unit 543 has an opening 549b that opens on the entire surface of one side surface of the member 543b. The members 543a and 543b are closely connected with the periphery of the opening 549a and the periphery of the opening 549b being aligned. Thereby, the internal space of the member 543b and the internal space of the member 543a are electrically connected to form a continuous space.
 部材543a、543bの内部空間には潜熱蓄熱材504が充填されている。蓄熱部材501の通常の使用時において、潜熱蓄熱材504は、開口部546aを塞いで配置され、特定の温度で溶融する溶融部520により、部材543a、543bの内部空間に封止されている。 The internal space of the members 543a and 543b is filled with a latent heat storage material 504. During normal use of the heat storage member 501, the latent heat storage material 504 is disposed in the interior space of the members 543 a and 543 b by a melting portion 520 that is disposed so as to close the opening 546 a and melts at a specific temperature.
 次に消防部505について説明する。消防部505は、実使用時に蓄熱部543の鉛直下方に配置される。消防部505は、消防容器体510の上面を開口して設けられ、部材543aの開口部546aの大きさと同じ大きさに形成された開口部519を有している。消防部505と蓄熱部543とは、開口部519の周囲と開口部546aの周囲とを一致させて密接に接続されている。 Next, the fire department 505 will be described. The fire fighting unit 505 is disposed vertically below the heat storage unit 543 during actual use. The fire fighting section 505 is provided with an opening on the upper surface of the fire fighting container body 510, and has an opening 519 formed in the same size as the opening 546a of the member 543a. The fire fighting unit 505 and the heat storage unit 543 are closely connected with the periphery of the opening 519 and the periphery of the opening 546a being aligned.
 本実施形態の蓄熱部材501では、火災等による温度上昇時に、潜熱蓄熱材504が引火点に達する前に溶融部520が溶融して、蓄熱部543の部材543a、543bの内部空間と消防部505の収容部514とが導通されて一続きになる。これにより、蓄熱部材501は、潜熱蓄熱材504を消防部505の収容部514に移動させて潜熱蓄熱材504の燃焼を消火し又は防火することができる。 In the heat storage member 501 of this embodiment, when the temperature rises due to a fire or the like, the melting part 520 melts before the latent heat storage material 504 reaches the flash point, and the internal space of the members 543a and 543b of the heat storage part 543 and the fire fighting part 505 The housing portion 514 is electrically connected to be connected. Thereby, the heat storage member 501 can extinguish or prevent the combustion of the latent heat storage material 504 by moving the latent heat storage material 504 to the housing section 514 of the fire fighting section 505.
 蓄熱部543は傾斜部548を有している。また、蓄熱部543は、凹凸のない滑らかな表面の内壁を備えた部材543a、543bを有している。このため、蓄熱部材501は、蓄熱部543から消防部505に全ての潜熱蓄熱材504を確実に移動させ、潜熱蓄熱材504が部材543bの隅などに滞留することを防ぐことができる。また、蓄熱部543の部材543a、543bは、一体となって形成されていてもよい。また、蓄熱部543の開口部546a及び消防容器体510の開口部519は円形に形成されていてもよい。この場合、蓄熱部543は、開口部546aに向かって部材543aを漏斗状に傾斜させた傾斜部を有していればよい。蓄熱部材501は、この傾斜部により潜熱蓄熱材504が部材543a、543bの内包に滞留又は残留することを防止することができる。 The heat storage part 543 has an inclined part 548. In addition, the heat storage unit 543 includes members 543a and 543b having inner walls with smooth surfaces without unevenness. For this reason, the heat storage member 501 can reliably move all the latent heat storage materials 504 from the heat storage unit 543 to the fire fighting unit 505, and can prevent the latent heat storage materials 504 from staying in the corners of the member 543b. Moreover, the members 543a and 543b of the heat storage unit 543 may be integrally formed. Moreover, the opening part 546a of the heat storage part 543 and the opening part 519 of the fire fighting container 510 may be formed in a circle. In this case, the heat storage unit 543 may have an inclined portion in which the member 543a is inclined in a funnel shape toward the opening 546a. The heat storage member 501 can prevent the latent heat storage material 504 from staying or remaining in the inclusions of the members 543a and 543b by the inclined portion.
 変形例1から5による蓄熱部材501のいずれの動作も、本実施形態による蓄熱部材501の動作と同様なので、その説明は省略する。また、変形例1から5による蓄熱部材501によれば、本実施形態による蓄熱部材501と同様の効果を得ることができる。 Any operation of the heat storage member 501 according to Modifications 1 to 5 is the same as the operation of the heat storage member 501 according to the present embodiment, and thus description thereof is omitted. Moreover, according to the heat storage member 501 by the modifications 1 to 5, the same effect as that of the heat storage member 501 according to the present embodiment can be obtained.
 次に、本実施の形態の変形例6による蓄熱部材501について図27を用いて説明する。図27は、本変形例による蓄熱部材501を正面から観察した概略図であって、接続管522の中心軸を含む平面で切断した断面を示している。図27(a)は、本変形例による蓄熱部材501の概略の断面構成を説明する図であり、図27(b)は、本変形例による蓄熱部材501の火災等による温度上昇時の動作を説明する図である。本変形例による蓄熱部材501は、上記変形例4による蓄熱部材501とほぼ同様の構成を有しているが、変形例4の蓄熱部材501と比較して、蓄熱部材533に代えて蓄熱部材503を備え、蓄熱部503に代えて消防部590を備えている点が異なっている。また、本変形例による蓄熱部材501は、消防部590が実使用時に蓄熱部503の鉛直上方に配置される点に特徴を有している。 Next, a heat storage member 501 according to Modification 6 of the present embodiment will be described with reference to FIG. FIG. 27 is a schematic view of the heat storage member 501 according to this modification observed from the front, and shows a cross section cut along a plane including the central axis of the connection pipe 522. Fig.27 (a) is a figure explaining the general | schematic cross-section structure of the heat storage member 501 by this modification, FIG.27 (b) shows the operation | movement at the time of the temperature rise by the fire etc. of the heat storage member 501 by this modification. It is a figure explaining. The heat storage member 501 according to the present modification has substantially the same configuration as the heat storage member 501 according to the fourth modification, but the heat storage member 503 is replaced with the heat storage member 533 as compared with the heat storage member 501 according to the fourth modification. Is different from the heat storage unit 503 in that a fire fighting unit 590 is provided. Further, the heat storage member 501 according to this modification is characterized in that the fire fighting unit 590 is arranged vertically above the heat storage unit 503 during actual use.
 蓄熱部503は、蓄熱容器体502の上面のほぼ中央を開口した円形の開口部539を有している点を除いて、変形例4の蓄熱部材501に備えられた蓄熱部503と同様の構成を有しているため、説明は省略する。 The heat storage unit 503 has the same configuration as that of the heat storage unit 503 provided in the heat storage member 501 of Modification 4 except that the heat storage unit 503 has a circular opening 539 having a substantially central opening on the upper surface of the heat storage container body 502. Description is omitted.
 図27(a)に示すように、蓄熱部材501に備えられた消防部590は、蓄熱部503とほぼ同様の構成を有している。消防部590の消防容器体592は、高さが若干低いものの、例えば蓄熱部503の蓄熱容器体502とほぼ同様の形状を有し、例えば同一の形成材料で形成されている。消防部590は、消防容器体592の底面のほぼ中央を開口した円形の開口部596を有している。消防部590は、開口部596に向かって消防容器体592の底面を下方に傾斜させた漏斗状の傾斜部598を有している。消防容器体592の内部空間には、消火防火剤591が充填されている。 As shown in FIG. 27A, the fire fighting unit 590 provided in the heat storage member 501 has substantially the same configuration as the heat storage unit 503. Although the fire-fighting container body 592 of the fire-fighting unit 590 has a slightly low height, it has, for example, substantially the same shape as the heat-storage container body 502 of the heat-storage part 503 and is formed of, for example, the same forming material. The fire fighting section 590 has a circular opening 596 having an opening at substantially the center of the bottom surface of the fire fighting container body 592. The fire fighting part 590 has a funnel-shaped inclined part 598 in which the bottom face of the fire fighting container body 592 is inclined downward toward the opening part 596. A fire extinguishing and fireproofing agent 591 is filled in the internal space of the fire fighting container body 592.
 蓄熱部材501は、消防部590と蓄熱部503とを接続する接続部597を有している。接続部597は、長さが短いものの、例えば接続部507とほぼ同様の構成を有し、例えば同様の形成材料で形成されている。接続部597は接続管592を有している。接続管592は両端が開口された、例えば中空円筒形状を有している。接続管592の内方には、火災等による温度上昇時に消火防火剤591を消防部590から蓄熱部503へと移動させるための経路594が形成されている。蓄熱部材501は、経路594のほぼ全体を塞ぐように配置された溶融部520を有している。接続管592は円筒に限らず、必要に応じて他の断面形状を有していてもよい。 The heat storage member 501 has a connection part 597 for connecting the fire fighting part 590 and the heat storage part 503. Although the connection part 597 has a short length, it has substantially the same configuration as the connection part 507, for example, and is formed of, for example, the same forming material. The connection portion 597 has a connection pipe 592. The connecting pipe 592 has, for example, a hollow cylindrical shape with both ends opened. A path 594 for moving the fire extinguishing and fireproofing agent 591 from the fire fighting section 590 to the heat storage section 503 is formed inside the connection pipe 592 when the temperature rises due to a fire or the like. The heat storage member 501 has a melting part 520 disposed so as to close almost the entire path 594. The connecting pipe 592 is not limited to a cylinder, and may have other cross-sectional shapes as necessary.
 接続部597の接続管592の一端部は、消防部590の開口部596と密接して接続されている。接続管592の他端部は、蓄熱部503の開口部539と密接に接続されている。溶融部520は、接続管592の一端部と開口部596との接続個所から接続管592の他端部と開口部539との接続個所に亘って配置されている。消防部590と蓄熱部503とは接続部597を介して接続されずに直接接続されていてももちろんよい。 One end of the connecting pipe 592 of the connecting part 597 is in close contact with the opening 596 of the fire fighting part 590. The other end of the connection pipe 592 is closely connected to the opening 539 of the heat storage unit 503. The melting part 520 is arranged from a connection point between one end of the connection pipe 592 and the opening 596 to a connection point between the other end of the connection pipe 592 and the opening 539. Of course, the fire fighting unit 590 and the heat storage unit 503 may be directly connected without being connected via the connection unit 597.
 本変形例による蓄熱部材501の消防部505は、消火防火剤512として窒息性気体発生材料が配置されている点を除いて、上記変形例4による蓄熱部材501の消防部505と同様の構成を有し、同様の形成材料で形成されている。 The fire fighting unit 505 of the heat storage member 501 according to the present modification has the same configuration as the fire fighting unit 505 of the heat storage member 501 according to the modification 4 except that a suffocating gas generating material is disposed as the fire extinguishing and fire prevention agent 512. And is formed of the same forming material.
 次に、火災等の温度上昇時における本変形例の蓄熱部材501の動作について図27(b)を用いて説明する。火災等による温度上昇によって蓄熱部503に備えられた潜熱蓄熱材504は固相から液相へと相転移することで流動性が高まる。蓄熱部503と消防部505及び消防部590とを隔てる溶融部520は、潜熱蓄熱材504の融点より高く、かつ潜熱蓄熱材504の引火点又は発火点よりも低い融点を持つ材料で形成されている。このため、溶融部520は、潜熱蓄熱材504が引火点又は発火点に達する前に溶融する。これにより、消防部505及び消防部590と蓄熱部503とが接続され、消防容器体592の内部空間と、接続管592の経路594と、容器本体502の内部空間と、接続管522の経路524と、収容部514とが導通して一続きになる。液相に相転移して流動性が高まった潜熱蓄熱材504は消防部505に流れ込み、消火防火剤512が発生して収容部514内に充満した窒息性気体511で覆われる。これにより、窒息性気体511は、潜熱蓄熱材504への酸素の供給を遮断するようになっている。 Next, the operation of the heat storage member 501 of the present modification when the temperature rises due to a fire or the like will be described with reference to FIG. The fluidity of the latent heat storage material 504 provided in the heat storage unit 503 is increased by a phase transition from a solid phase to a liquid phase due to a temperature rise due to a fire or the like. The melting part 520 that separates the heat storage part 503 from the fire fighting part 505 and the fire fighting part 590 is made of a material having a melting point that is higher than the melting point of the latent heat storage material 504 and lower than the flash point or ignition point of the latent heat storage material 504. Yes. For this reason, the melting part 520 melts before the latent heat storage material 504 reaches the flash point or the ignition point. Thereby, the fire fighting section 505 and the fire fighting section 590 and the heat storage section 503 are connected, the internal space of the fire fighting container body 592, the path 594 of the connecting pipe 592, the internal space of the container main body 502, and the path 524 of the connecting pipe 522. And the accommodating part 514 conduct | electrically_connects and it continues. The latent heat storage material 504 whose phase is changed to the liquid phase and has increased fluidity flows into the fire fighting unit 505, and the fire extinguishing and fireproofing agent 512 is generated and covered with the suffocating gas 511 filled in the housing unit 514. Thereby, the suffocating gas 511 blocks the supply of oxygen to the latent heat storage material 504.
 蓄熱部503に充填された全ての潜熱蓄熱材504は一度に消防部505へ流れ込み難くなっている。このため、蓄熱部503には一時的に潜熱蓄熱材504が残留する。本変形例による蓄熱部材501は、蓄熱部503に残留している潜熱蓄熱材504に対して、その上部に設けられた消防部590より、消火防火剤591を混合することができる。消防部590は傾斜部598を有しているので、消火防火剤591を効率よく蓄熱部503に流出することができる。本変形例では、例えば消火防火剤591は難燃性添加剤を含んでいる。このため、潜熱蓄熱材504に消火防火剤591が混合されて難燃性添加材が添加される。これにより、図27(b)に示すように、蓄熱部503内部の潜熱蓄熱材504の上部側は、消火防火剤591と混合することにより難燃化されて難燃化潜熱蓄熱材518となる。このように、本変形例による蓄熱部材501によれば、消防部505に設けられた収納部514に全ての潜熱蓄熱材504が流れ込むまでに生じる温度上昇に対しても潜熱蓄熱材504の引火や発火の可能性を低減できるという効果が得られる。 It is difficult for all the latent heat storage materials 504 filled in the heat storage unit 503 to flow into the fire fighting unit 505 at a time. For this reason, the latent heat storage material 504 temporarily remains in the heat storage unit 503. The heat storage member 501 according to the present modification can mix the fire extinguishing and fireproofing agent 591 with the latent heat storage material 504 remaining in the heat storage unit 503 from the fire fighting unit 590 provided on the upper part thereof. Since the fire fighting part 590 has the inclined part 598, the fire-extinguishing and fire-proofing agent 591 can efficiently flow out to the heat storage part 503. In this modification, for example, the fire extinguishing and fireproofing agent 591 includes a flame retardant additive. For this reason, the fire-extinguishing fireproofing agent 591 is mixed with the latent heat storage material 504, and a flame-retardant additive is added. Thereby, as shown in FIG.27 (b), the upper part side of the latent heat storage material 504 inside the thermal storage part 503 is flame-retarded by mixing with the fire-extinguishing fireproofing agent 591 and becomes the flame-retarded latent heat storage material 518. . As described above, according to the heat storage member 501 according to the present modification, the latent heat storage material 504 is ignited even when the temperature rises until all the latent heat storage material 504 flows into the storage section 514 provided in the fire fighting section 505. The effect that the possibility of ignition can be reduced is obtained.
 本変形例による蓄熱部材501は、消防部505、590と蓄熱部503とを隔てる溶融部520が同じ温度で溶融するようになっているが、これに限られない。本変形例による蓄熱部材501は、それぞれの溶融部520の材質を異ならせることによって、例えば最初に消防部590より消火防火剤591を潜熱蓄熱材504に添加した後に、潜熱蓄熱材504を消防部505へ流し込むことによって、複数の消火防火剤を組み合わせて効果的な防火機能を提供することも可能となる。 In the heat storage member 501 according to this modification, the melting part 520 that separates the fire fighting parts 505 and 590 and the heat storage part 503 is melted at the same temperature, but is not limited thereto. In the heat storage member 501 according to this modification, for example, the fire extinguishing / extinguishing agent 591 is first added to the latent heat storage material 504 from the fire fighting unit 590 by changing the material of each melting part 520, and then the latent heat storage material 504 is changed to the fire fighting unit. By pouring into 505, it becomes possible to provide an effective fire prevention function by combining a plurality of fire extinguishing and fireproofing agents.
 次に、本実施形態による保管容器600について図28及び図29を用いて説明する。図28は、本実施の形態による保管容器600の外観を示す斜視図である。図29は、図28のA-A’線に沿って図示の鉛直方向(A-A’線の矢印の方向)に保管容器600を切断した断面を右側面601b側から観察した状態を示している。また、図29では、扉602を閉じた状態の保管容器600が示されている。本例では保管容器600として直冷式の冷蔵庫を例にとって説明する。図28に示すように、保管容器600は設置状態で鉛直方向に高い直方体形状の保管容器体601を有している。図28では保管容器体601の正面601aを斜め左上方から観察した状態を示している。保管容器体601の正面601aには長方形の開口が設けられている。保管容器600は、長方形開口を開口端として、保管容器体601内に設けられた中空箱状の貯蔵物を貯蔵する貯蔵室604を有している。 Next, the storage container 600 according to the present embodiment will be described with reference to FIGS. FIG. 28 is a perspective view showing an appearance of the storage container 600 according to the present embodiment. FIG. 29 shows a state in which a cross section of the storage container 600 taken along the line AA ′ in FIG. 28 in the illustrated vertical direction (the direction of the arrow along the line AA ′) is observed from the right side 601b side. Yes. 29 shows the storage container 600 with the door 602 closed. In this example, a direct cooling refrigerator will be described as an example of the storage container 600. As shown in FIG. 28, the storage container 600 includes a storage container body 601 having a rectangular parallelepiped shape that is vertically high in the installed state. FIG. 28 shows a state where the front surface 601a of the storage container body 601 is observed obliquely from the upper left. A rectangular opening is provided in the front surface 601 a of the storage container body 601. The storage container 600 has a storage chamber 604 for storing a hollow box-shaped storage product provided in the storage container body 601 with a rectangular opening as an opening end.
 正面601aの貯蔵室604の開口端右側には不図示のヒンジ部を介して扉602が開閉可能に取り付けられている。図28では、扉602は、開いた状態が実線で示され、閉じた状態が2点鎖線で示されている。扉602は閉じた状態で貯蔵室604の長方形開口を塞ぐ領域を備えた長方形平板形状を有している。また、扉602の貯蔵室604の開口を含む外周囲との対面側には、扉閉鎖時に貯蔵室604の密閉性を確保するためのドアパッキン603が配置されている。 A door 602 is attached to the right side of the opening end of the storage chamber 604 on the front surface 601a through an unillustrated hinge so as to be opened and closed. In FIG. 28, the door 602 is shown in an open state by a solid line, and closed in a two-dot chain line. The door 602 has a rectangular flat plate shape having a region that closes the rectangular opening of the storage chamber 604 in a closed state. Further, a door packing 603 is provided on the side of the door 602 facing the outer periphery including the opening of the storage chamber 604 to ensure the sealing of the storage chamber 604 when the door is closed.
 図29に示すように、保管容器600は、扉602を閉じた状態で、貯蔵室604の周囲を囲んで設けられた蓄熱部553、563と、保管容器体601の底面側であって貯蔵室604の下方に設けられた空き領域607に配置された消防部505とを備えた蓄熱部材501を有している。蓄熱部553は、中空箱形状の蓄熱容器体552と、蓄熱容器体552の内部空間に充填された潜熱蓄熱材554とを有している。蓄熱容器体552は、貯蔵室604の内壁全面に配置されている。蓄熱部563は、中空平板形状の蓄熱容器体562と、蓄熱容器体562の内部空間に充填された潜熱蓄熱材554とを有している。蓄熱容器体562は扉602の内壁全面に配置されている。蓄熱容器体552、562は、上記実施の形態による蓄熱部材501における蓄熱容器体502と同様の形成材料で形成されている。蓄熱部553、563は、保管容器600の動作時に貯蔵室604の熱を蓄積するとともに、停止時に蓄積した熱を貯蔵室604に放出するようになっている。 As shown in FIG. 29, the storage container 600 includes a heat storage section 553 and 563 provided surrounding the storage chamber 604 with the door 602 closed, and the storage chamber 601 on the bottom side of the storage container body 601. It has a heat storage member 501 provided with a fire fighting section 505 arranged in an empty area 607 provided below 604. The heat storage unit 553 includes a hollow box-shaped heat storage container body 552 and a latent heat storage material 554 filled in the internal space of the heat storage container body 552. The heat storage container body 552 is disposed on the entire inner wall of the storage chamber 604. The heat storage unit 563 includes a hollow flat plate-shaped heat storage container body 562 and a latent heat storage material 554 filled in the internal space of the heat storage container body 562. The heat storage container body 562 is disposed on the entire inner wall of the door 602. The heat storage container bodies 552 and 562 are formed of the same material as the heat storage container body 502 in the heat storage member 501 according to the above embodiment. The heat storage units 553 and 563 are configured to accumulate the heat of the storage chamber 604 when the storage container 600 is operated, and to release the heat accumulated at the time of stoppage to the storage chamber 604.
 蓄熱容器体552、562に充填された潜熱蓄熱材554は、潜熱蓄熱材504と同様にパラフィンを含んでいる。冷蔵庫である保管容器600に使用する潜熱蓄熱材554は、炭素数14のノルマルテトラデカンを含んでいる。ノルマルテトラデカンの液相から固相への相転移温度(融点)は約6℃である。また、ノルマルテトラデカンの引火点は約102℃である。 The latent heat storage material 554 filled in the heat storage container bodies 552 and 562 contains paraffin in the same manner as the latent heat storage material 504. The latent heat storage material 554 used for the storage container 600 that is a refrigerator contains normal tetradecane having 14 carbon atoms. The phase transition temperature (melting point) from the liquid phase to the solid phase of normal tetradecane is about 6 ° C. The flash point of normal tetradecane is about 102 ° C.
 蓄熱部553は、蓄熱容器体552の底面の一部を開口した円形の開口部506を複数(本例では2つ)有している。保管容器600の通常の使用時において、潜熱蓄熱材554は、開口部506を塞いで配置された溶融部540により蓄熱容器体552の内部空間に封止されている。 The heat storage unit 553 has a plurality (two in this example) of circular openings 506 in which a part of the bottom surface of the heat storage container body 552 is opened. During normal use of the storage container 600, the latent heat storage material 554 is sealed in the internal space of the heat storage container body 552 by a melting part 540 disposed so as to close the opening 506.
 蓄熱部553は、開口部506に向かって蓄熱容器体552の底面を下方に傾斜させた漏斗状の傾斜部508を有している。蓄熱部553は、貯蔵室604内の上方に配置された蓄熱容器体552を下方に傾斜させた傾斜部558を有している。 The heat storage unit 553 has a funnel-shaped inclined portion 508 in which the bottom surface of the heat storage container body 552 is inclined downward toward the opening 506. The heat storage part 553 has an inclined part 558 in which a heat storage container body 552 disposed above the storage chamber 604 is inclined downward.
 蓄熱部553は2つの接続部507に接続されている。蓄熱部553の蓄熱容器体552は、2つの接続部507のそれぞれの接続管522の一端部と接続されている。接続管522はそれぞれ、両端が開口されて中空円筒形状を有している。接続部507は、接続管522の内方に設けられて流動化した潜熱蓄熱材554を蓄熱部553から消防部505に移動させる経路524を有している。接続管522の中空部が経路524になっている。接続管522の一端部は、蓄熱容器体552の開口部506と密接に接続されている。接続管522と開口部506との接続箇所であって経路524には、溶融部540が配置されている。溶融部540は、潜熱蓄熱材554の融点より高く、かつ潜熱蓄熱材554の引火点又は発火点より低い温度で溶融するようになっている。また、溶融部540は、Sn系合金、In-Sn系合金、Zn-In系合金又はBi-In系合金等を用いて形成されている。溶融部540は、溶融部520と同様の機能を発揮するとともに、同様の効果を有している。 The heat storage part 553 is connected to the two connection parts 507. The heat storage container body 552 of the heat storage unit 553 is connected to one end of each connection pipe 522 of the two connection units 507. Each of the connecting pipes 522 is open at both ends and has a hollow cylindrical shape. The connection part 507 has a path 524 that moves the latent heat storage material 554 that is provided and fluidized inside the connection pipe 522 from the heat storage part 553 to the fire fighting part 505. A hollow portion of the connection pipe 522 is a path 524. One end of the connection pipe 522 is closely connected to the opening 506 of the heat storage container body 552. A melting part 540 is disposed in a path 524 where the connecting pipe 522 and the opening 506 are connected. The melting part 540 is melted at a temperature higher than the melting point of the latent heat storage material 554 and lower than the flash point or ignition point of the latent heat storage material 554. In addition, the melting portion 540 is formed using a Sn-based alloy, an In—Sn based alloy, a Zn—In based alloy, a Bi—In based alloy, or the like. The melting part 540 exhibits the same function as the melting part 520 and has the same effect.
 扉602に設けられた蓄熱部563は、不図示のヒンジ部上の蓄熱容器体562を開口した円形の開口部506を有している。保管容器600の通常の使用時において、潜熱蓄熱材554は、円形の開口部506を塞いで配置される溶融部540により蓄熱容器体562の内部空間に封止されている。 The heat storage part 563 provided in the door 602 has a circular opening 506 in which a heat storage container body 562 on a hinge part (not shown) is opened. During normal use of the storage container 600, the latent heat storage material 554 is sealed in the internal space of the heat storage container body 562 by a melting part 540 disposed so as to close the circular opening 506.
 蓄熱部563は、開口部506に向かって蓄熱容器体562の底面を下方に傾斜させた漏斗状の傾斜部508を有している。また、蓄熱部563は、扉602内の上方に配置された蓄熱容器体562を下方に傾斜させた傾斜部568を有している。 The heat storage unit 563 has a funnel-shaped inclined portion 508 in which the bottom surface of the heat storage container body 562 is inclined downward toward the opening 506. In addition, the heat storage unit 563 has an inclined part 568 in which the heat storage container body 562 disposed above the door 602 is inclined downward.
 蓄熱部563はヒンジ部に設けられた接続部507に接続されている。蓄熱部563の蓄熱容器体562は、接続部507の接続管522の一端部と接続されている。接続管522は、当該ヒンジ部に配置されている。これにより、接続部507は扉602の開閉動作を阻害しないようになっている。接続管522は両端が開口されて中空円筒形状を有している。接続部507は、接続管522の内方に設けられて流動化した潜熱蓄熱材554を蓄熱部563から消防部505に移動させる経路524を有している。接続管522の中空部が経路524になっている。接続管522の一端部は、蓄熱容器体562の開口部506と密接に接続されている。接続管522と蓄熱容器体562の開口部506との接続箇所であって、経路524には、溶融部540が配置されている。溶融部540は、貯蔵室604側に設けられた溶融部540と同一の材料で形成されている。なお、接続管522は、当該ヒンジ部の回転軸部と一体となって形成されていてもよい。 The heat storage part 563 is connected to a connection part 507 provided in the hinge part. The heat storage container body 562 of the heat storage unit 563 is connected to one end of the connection pipe 522 of the connection unit 507. The connecting pipe 522 is disposed at the hinge portion. Thereby, the connection part 507 does not inhibit the opening / closing operation | movement of the door 602. FIG. The connecting pipe 522 is open at both ends and has a hollow cylindrical shape. The connection part 507 has a path 524 that moves the latent heat storage material 554 that is provided and fluidized inside the connection pipe 522 from the heat storage part 563 to the fire fighting part 505. A hollow portion of the connection pipe 522 is a path 524. One end of the connection pipe 522 is closely connected to the opening 506 of the heat storage container body 562. A melting portion 540 is disposed in a path 524 where the connecting pipe 522 and the opening 506 of the heat storage container body 562 are connected. The melting part 540 is formed of the same material as the melting part 540 provided on the storage chamber 604 side. Note that the connecting pipe 522 may be formed integrally with the rotating shaft portion of the hinge portion.
 貯蔵室604下方の空き領域607に配置された消防部505は、中空箱状の直方体形状に形成された消防容器体510を有している。消防部505は、消防容器体510の上面の一部を開口した円形の開口部516を接続部507と同数だけ有している。消防容器体510の開口部516は、接続部507の接続管522の他端部とそれぞれ密接に接続されている。消防部505は、蓄熱部553、563から移動してきた流動化した潜熱蓄熱材554を収容する収容部514を有している。収容部514は消防容器体510の中空部に設けられている。収容部514は、開口部516を介して接続部507の経路524と導通して一続きになっている。収容部514は、蓄熱部553、563に封止された潜熱蓄熱材554が液化して流動性を有する場合の体積より大きい容積を有している。消防部505は、消防容器体510の内方であって収容部514の底面に配置された消火防火剤512を有している。消火防火剤512は難燃剤を含んでいる。難燃剤として、例えばハロゲン化合物の塩素化パラフィンや塩素化リン酸エステル等を用いることができる。消火防火剤512は収容部514に露出している。これにより、消火防火剤512は、蓄熱部553、563から移動してきた潜熱蓄熱材554と接触しながら潜熱蓄熱材554と混合されるようになっている。 The fire fighting section 505 arranged in the empty area 607 below the storage room 604 has a fire fighting container body 510 formed in a hollow box-like rectangular parallelepiped shape. The fire fighting unit 505 has the same number of circular openings 516 that open a part of the upper surface of the fire fighting container body 510 as the connection parts 507. The opening 516 of the fire fighting container 510 is intimately connected to the other end of the connection pipe 522 of the connection part 507. The fire fighting unit 505 includes a storage unit 514 that stores the fluidized latent heat storage material 554 that has moved from the heat storage units 553 and 563. The accommodating part 514 is provided in the hollow part of the fire fighting container body 510. The accommodating portion 514 is connected to the path 524 of the connecting portion 507 through the opening 516 and is continuous. The accommodating part 514 has a volume larger than the volume when the latent heat storage material 554 sealed by the heat storage parts 553 and 563 is liquefied and has fluidity. The fire fighting unit 505 has a fire extinguishing and fireproofing agent 512 disposed on the bottom surface of the housing unit 514 inside the fire fighting container body 510. The fire extinguishing and fireproofing agent 512 contains a flame retardant. As the flame retardant, for example, a chlorinated paraffin or a chlorinated phosphate of a halogen compound can be used. The fire extinguishing and fireproofing agent 512 is exposed in the housing portion 514. As a result, the fire extinguishing and fireproofing agent 512 is mixed with the latent heat storage material 554 while being in contact with the latent heat storage material 554 that has moved from the heat storage units 553 and 563.
 保管容器体601の内壁と外壁との間には断熱材605が配置されている。保管容器体601の内壁は蓄熱部553に接する壁部であり、外壁は外部と接する壁部である。断熱材605は、保管容器体601の正面601a(図28参照)側を除く貯蔵室604を囲む領域に配置されている。また、扉602の内壁と外壁との間には断熱材606が配置されている。扉602の内壁は蓄熱部563に接する壁部であり、外壁は外部と接する壁部である。断熱材606は、扉602を閉じた状態で、保管容器体601の正面601aと対向する領域に配置されている。扉602が閉じられると、貯蔵室604の全周囲は断熱材605及び断熱材606に囲まれる。これにより、断熱材605、606は、所定温度に冷却されている貯蔵室604に保管容器600の外部から熱が伝わらないように断熱することができる。断熱材605、606は、繊維系断熱材(グラスウール等)や発泡樹脂系断熱材等の形成材料を用いて形成される。 A heat insulating material 605 is disposed between the inner wall and the outer wall of the storage container body 601. The inner wall of the storage container body 601 is a wall part in contact with the heat storage part 553, and the outer wall is a wall part in contact with the outside. The heat insulating material 605 is disposed in a region surrounding the storage chamber 604 excluding the front surface 601 a (see FIG. 28) side of the storage container body 601. Further, a heat insulating material 606 is disposed between the inner wall and the outer wall of the door 602. The inner wall of the door 602 is a wall part in contact with the heat storage part 563, and the outer wall is a wall part in contact with the outside. The heat insulating material 606 is disposed in a region facing the front surface 601a of the storage container body 601 with the door 602 closed. When the door 602 is closed, the entire periphery of the storage chamber 604 is surrounded by the heat insulating material 605 and the heat insulating material 606. Thereby, the heat insulating materials 605 and 606 can insulate the storage chamber 604 cooled to a predetermined temperature so that heat is not transmitted from the outside of the storage container 600. The heat insulating materials 605 and 606 are formed using a forming material such as a fiber heat insulating material (glass wool or the like) or a foamed resin heat insulating material.
 貯蔵室604内の上方であって、蓄熱容器体552の表面には熱交換器としての冷却器608が配置されている。冷却器608は冷媒を蒸発させる蒸発機構(不図示)を内部に有している。保管容器体601の内壁と外壁との間には冷却器608内の不図示の蒸発機構に冷媒を供給する配管610が配置されている。配管610は保管容器体601の底面に配置された空き領域607内に収容されているコンプレッサ612に接続されている。冷却器608、配管610及びコンプレッサ612によりガス圧縮式の冷却装置が構成されている。なお、ガス圧縮式の冷却装置に代えて、ガス吸収式の冷却装置やペルチェ効果を用いた電子式の冷却装置を用いることも可能である。 A cooler 608 serving as a heat exchanger is disposed above the storage chamber 604 and on the surface of the heat storage container body 552. The cooler 608 has an evaporation mechanism (not shown) for evaporating the refrigerant. Between the inner wall and the outer wall of the storage container body 601, a pipe 610 for supplying a refrigerant to an evaporation mechanism (not shown) in the cooler 608 is disposed. The pipe 610 is connected to a compressor 612 accommodated in an empty area 607 arranged on the bottom surface of the storage container body 601. The cooler 608, the pipe 610, and the compressor 612 constitute a gas compression type cooling device. Instead of the gas compression cooling device, a gas absorption cooling device or an electronic cooling device using the Peltier effect may be used.
 次に、保管容器600の通常使用時の動作について説明する。保管容器600の不図示の電源がオン状態において、コンプレッサ612で圧縮された冷媒は、配管610内で凝縮され次いで膨張させられて冷却器608に達する。冷却器608は、膨張した冷媒が蒸発する際の気化熱により、貯蔵室604を冷却する。例えば冷却器608は貯蔵室604の温度を約3℃に冷却することができる。 Next, the operation of the storage container 600 during normal use will be described. When the power supply (not shown) of the storage container 600 is on, the refrigerant compressed by the compressor 612 is condensed in the pipe 610 and then expanded to reach the cooler 608. The cooler 608 cools the storage chamber 604 by heat of vaporization when the expanded refrigerant evaporates. For example, the cooler 608 can cool the temperature of the storage chamber 604 to about 3 ° C.
 貯蔵室604内での熱交換は、冷却器608の表面と貯蔵室604内の空気との間で行われる。貯蔵室604内の所定位置には不図示の温度センサが設置されている。保管容器600に設けられた不図示の温度制御装置は、温度センサで計測された貯蔵室604内の温度に基づいて冷却装置の駆動を制御して、貯蔵室604の温度を制御するための熱移動が冷却器608で行われる。 The heat exchange in the storage chamber 604 is performed between the surface of the cooler 608 and the air in the storage chamber 604. A temperature sensor (not shown) is installed at a predetermined position in the storage chamber 604. A temperature control device (not shown) provided in the storage container 600 controls the temperature of the storage chamber 604 by controlling the driving of the cooling device based on the temperature in the storage chamber 604 measured by the temperature sensor. Movement takes place in the cooler 608.
 貯蔵室604内の空気に温度分布が生じると対流が生じて相対的に高温の空気は上昇し低温の空気は下降する。冷却器608は貯蔵室604内の上方に配置されているので、保管容器600は、効率よく相対的に高温の空気の熱を冷却器608に移動させることができる。 When a temperature distribution occurs in the air in the storage chamber 604, convection occurs, and the relatively hot air rises and the cool air falls. Since the cooler 608 is disposed above the storage chamber 604, the storage container 600 can efficiently move the heat of relatively high-temperature air to the cooler 608.
 冷却器608は、蓄熱部553、563が備えている潜熱蓄熱材554を相転移温度以下の固相状態に維持させることができる。固相状態を維持した潜熱蓄熱材554は貯蔵室604内の温度の時間変化分布を平坦化させる機能を発揮する。このように本実施の形態の保管容器600によれば、冷却器608で潜熱蓄熱材554を冷却することができ、潜熱蓄熱材554を相転移温度以下の固相状態に維持することができる。 The cooler 608 can maintain the latent heat storage material 554 included in the heat storage units 553 and 563 in a solid state that is equal to or lower than the phase transition temperature. The latent heat storage material 554 that maintains the solid state exhibits a function of flattening the temporal change distribution of the temperature in the storage chamber 604. As described above, according to the storage container 600 of the present embodiment, the latent heat storage material 554 can be cooled by the cooler 608, and the latent heat storage material 554 can be maintained in a solid phase state equal to or lower than the phase transition temperature.
 停電等により保管容器600の不図示の電源がオフ状態になると、不図示の温度制御装置や冷却装置への電力供給が停止して、冷却装置による冷却能力は失われる。本実施の形態による保管容器600は、停電等により冷却装置による冷却能力が失われると、蓄熱部553、563が備えている潜熱蓄熱材554によって保冷が開始される。貯蔵室604内の空気の温度は、潜熱蓄熱材554により一定期間、所定温度範囲に維持される。潜熱蓄熱材554が固相から液相へ相転移するまでの期間において、貯蔵室604内の温度は例えば約6℃に維持される。本実施の形態の保管容器600は、停電等により保管容器600の不図示の電源がオフ状態になっても、貯蔵室604内の温度を所定の低温度に一定期間維持することができる。 When the power supply (not shown) of the storage container 600 is turned off due to a power failure or the like, the power supply to the temperature control device and the cooling device (not shown) is stopped, and the cooling capacity of the cooling device is lost. The storage container 600 according to the present embodiment starts to cool by the latent heat storage material 554 provided in the heat storage units 553 and 563 when the cooling capacity of the cooling device is lost due to a power failure or the like. The temperature of the air in the storage chamber 604 is maintained within a predetermined temperature range for a certain period by the latent heat storage material 554. In the period until the latent heat storage material 554 undergoes a phase transition from the solid phase to the liquid phase, the temperature in the storage chamber 604 is maintained at about 6 ° C., for example. The storage container 600 of the present embodiment can maintain the temperature in the storage chamber 604 at a predetermined low temperature for a certain period even when a power supply (not shown) of the storage container 600 is turned off due to a power failure or the like.
 次に、火災等による温度上昇時の保管容器600の動作について説明する。火災等で保管容器600の温度が上昇すると、潜熱蓄熱材554が引火する可能性が高まる。溶融部540は、潜熱蓄熱材554が引火点に達する前に溶融する。これにより、蓄熱部553、563の蓄熱容器体552、562の内部空間は接続部507の経路524を介して消防部505の収容部514と導通されて一続きになる。流動化した潜熱蓄熱材554は、接続部507の経路524を通って消防部505に移動する。消防部505に移動してきた潜熱蓄熱材554は収容部514に収容される。蓄熱部553は傾斜部508、558を有し、蓄熱容器体552及び接続管522の内壁は滑らかな表面を有している。このため、保管容器600は貯蔵室604側の全ての潜熱蓄熱材554を消防部505に確実に移動させることができる。蓄熱部563は傾斜部508、568を有し、蓄熱容器体562及び接続管522の内壁は滑らかな表面を有している。このため、保管容器600は、扉602側の全ての潜熱蓄熱材554を消防部505に確実に移動させることができる。 Next, the operation of the storage container 600 when the temperature rises due to a fire or the like will be described. When the temperature of the storage container 600 rises due to a fire or the like, the possibility that the latent heat storage material 554 ignites increases. The melting part 540 melts before the latent heat storage material 554 reaches the flash point. As a result, the internal spaces of the heat storage container bodies 552 and 562 of the heat storage units 553 and 563 are connected to the accommodation unit 514 of the fire fighting unit 505 via the path 524 of the connection unit 507 and are continuously connected. The fluidized latent heat storage material 554 moves to the fire fighting unit 505 through the path 524 of the connection unit 507. The latent heat storage material 554 that has moved to the fire fighting unit 505 is stored in the storage unit 514. The heat storage unit 553 includes inclined portions 508 and 558, and the inner walls of the heat storage container body 552 and the connecting pipe 522 have smooth surfaces. For this reason, the storage container 600 can reliably move all the latent heat storage materials 554 on the storage chamber 604 side to the fire fighting unit 505. The heat storage unit 563 includes inclined portions 508 and 568, and the inner walls of the heat storage container body 562 and the connecting pipe 522 have smooth surfaces. For this reason, the storage container 600 can reliably move all the latent heat storage materials 554 on the door 602 side to the fire fighting unit 505.
 消防部505は、重力によって蓄熱部553、563から移動してきた潜熱蓄熱材554と難燃剤を含む消火防火剤512を収容部514内で混合させる。消火防火剤512は収容部514に露出しているので、消火防火剤512は、収容部514に収容された潜熱蓄熱材554と接触しながら混合される。消火防火剤512には難燃剤が含まれているので、潜熱蓄熱材554は消火防火剤512と混合することにより難燃化されて難燃化潜熱蓄熱材となる。潜熱蓄熱材554は発火及び引火に対する対策が何ら施されていない。しかしながら、潜熱蓄熱材554は消防部505に移動して難燃化潜熱蓄熱材に変化することにより引火点及び発火点が高くなって燃え難くなる。これにより、保管容器600は潜熱蓄熱材554の引火及び発火を防止できる。また、火災等により保管容器600の温度が急激に上昇し、潜熱蓄熱材554が消防部505に移動する前に引火して燃焼した状態で消防部505に移動してきても、潜熱蓄熱材554は消火防火剤512と混合して難燃化潜熱蓄熱材に変化する。潜熱蓄熱材554が難燃化潜熱蓄熱材に変化することにより、潜熱蓄熱材554の炎の火勢は徐々に弱まって最終的には消えてしまう。このように、保管容器600は、潜熱蓄熱材554の燃焼を消火することもできる。 The fire fighting unit 505 mixes the latent heat storage material 554 that has moved from the heat storage units 553 and 563 by gravity and the fire-extinguishing and fire-proofing agent 512 including the flame retardant in the housing unit 514. Since the fire-extinguishing / extinguishing agent 512 is exposed in the housing portion 514, the fire-extinguishing / fire-preventing agent 512 is mixed while being in contact with the latent heat storage material 554 housed in the housing portion 514. Since the fire-extinguishing and fire-proofing agent 512 contains a flame retardant, the latent heat storage material 554 is flame-retarded by mixing with the fire-extinguishing and fire-proofing agent 512 and becomes a flame-retarding latent heat storage material. The latent heat storage material 554 has no measures against ignition and ignition. However, the latent heat storage material 554 moves to the fire fighting section 505 and changes to a flame retardant latent heat storage material, so that the flash point and the ignition point become high and it is difficult to burn. Thereby, the storage container 600 can prevent ignition and ignition of the latent heat storage material 554. Further, even if the temperature of the storage container 600 suddenly rises due to a fire or the like, and the latent heat storage material 554 moves to the fire fighting unit 505 in a state where it is ignited and burned before moving to the fire fighting unit 505, the latent heat storage material 554 It mixes with the fire extinguishing fireproofing agent 512 and changes to a flame retardant latent heat storage material. By changing the latent heat storage material 554 to a flame retardant latent heat storage material, the flame of the latent heat storage material 554 gradually weakens and eventually disappears. Thus, the storage container 600 can extinguish the combustion of the latent heat storage material 554.
 このように、保管容器600は、火災発生時に潜熱蓄熱材554を重力により蓄熱部553、563から消防部505に移動させ、潜熱蓄熱材554を難燃化潜熱蓄熱材に変化させることにより、潜熱蓄熱材554の引火及び発火を防止したり潜熱蓄熱材554の燃焼を消火したりすることができる。 In this manner, the storage container 600 moves the latent heat storage material 554 from the heat storage units 553 and 563 to the fire fighting unit 505 by gravity when a fire occurs, and changes the latent heat storage material 554 to a flame-retarded latent heat storage material. The ignition and ignition of the heat storage material 554 can be prevented, or the combustion of the latent heat storage material 554 can be extinguished.
 ところで、従来の保管容器では、ノルマルテトラデカンを潜熱蓄熱材に含ませる場合、火災等の温度上昇時においてノルマルテトラデカンの引火及び発火を抑制するために、難燃剤や難燃剤を含むマイクロカプセルを混合させた潜熱蓄熱材が用いられている。潜熱蓄熱材に難燃剤を混合すると、蓄熱部材は潜熱蓄熱材の含有量が減少して蓄熱性能が低下してしまう。また、従来の保管容器では、ノルマルテトラデカンの引火及び発火の抑制するために不燃性材料により蓄熱部を覆うなどの対策がなされている場合がある。不燃性材料で蓄熱部を覆うと蓄熱部材は火災時に燃焼し難くなる。しかしながら、蓄熱部材は外部との熱の授受に関する熱伝導率が低下する。このため、保管容器は、貯蔵室での蓄熱性能が低下してしまう。 By the way, in a conventional storage container, when normal tetradecane is included in the latent heat storage material, a microcapsule containing a flame retardant or a flame retardant is mixed in order to suppress the ignition and ignition of normal tetradecane at the time of a temperature rise such as a fire. Latent heat storage material is used. When a flame retardant is mixed with the latent heat storage material, the content of the latent heat storage material is reduced in the heat storage member, and the heat storage performance is deteriorated. Moreover, in the conventional storage container, measures, such as covering a heat storage part with a nonflammable material, may be taken in order to suppress the ignition and ignition of normal tetradecane. If the heat storage part is covered with a nonflammable material, the heat storage member is difficult to burn in a fire. However, the thermal conductivity of the heat storage member related to the exchange of heat with the outside decreases. For this reason, as for the storage container, the heat storage performance in a storage room will fall.
 これに対し、本実施形態の保管容器600では、貯蔵室604内での熱の授受を行う蓄熱部553、563と、火災等の温度上昇時に潜熱蓄熱材554の燃焼を消火し又は防火する消防部505とが分離して設けられている。このため、保管容器600は、潜熱蓄熱材554に難燃剤を混合させたり、蓄熱部553、563を不燃性材料で覆ったりする必要がない。また、蓄熱部553、563の蓄熱容器体552、562は熱伝導率の高い材料で形成することができる。これにより、保管容器600は、ノルマルテトラデカンを含む潜熱蓄熱材554であっても、優れた蓄熱性能を維持しつつ、的確に潜熱蓄熱材554の燃焼を消火し又は防火することができる。なお、蓄熱容器体552、562の貯蔵室604に対して露出する表面は貯蔵室604の内壁であってもよい。 In contrast, in the storage container 600 of this embodiment, the heat storage units 553 and 563 that transfer heat in the storage chamber 604, and the fire fighting that extinguishes or prevents the combustion of the latent heat storage material 554 when the temperature rises such as a fire. The part 505 is provided separately. For this reason, the storage container 600 does not need to mix a flame retardant with the latent heat storage material 554, or to cover the heat storage parts 553 and 563 with a nonflammable material. Moreover, the heat storage container bodies 552 and 562 of the heat storage units 553 and 563 can be formed of a material having high thermal conductivity. Thereby, even if the storage container 600 is the latent heat storage material 554 containing normal tetradecane, it can extinguish or prevent the combustion of the latent heat storage material 554 accurately while maintaining excellent heat storage performance. The surface exposed to the storage chamber 604 of the heat storage container bodies 552 and 562 may be the inner wall of the storage chamber 604.
 以上説明したように、本実施形態による保管容器600は、蓄熱の機能を発揮する蓄熱部553、563と、消防の機能を発揮する消防部505とが独立した蓄熱部材501を有している。これにより、保管容器600は、従来の保管容器では用いることが困難であったパラフィンを含む潜熱蓄熱材554を用いて、優れた蓄熱の機能を発揮するとともに、優れた消防の機能を発揮することができる。また、保管容器600は、貯蔵室604の下方に設けられた空き領域607に消防部505を配置している。このため、保管容器600は、貯蔵室604の有効容積を減らすことなく蓄熱部材501を備えることができる。 As described above, the storage container 600 according to the present embodiment includes the heat storage member 501 in which the heat storage units 553 and 563 that exhibit the heat storage function and the fire fighting unit 505 that exhibits the function of fire fighting are independent. Accordingly, the storage container 600 exhibits an excellent heat storage function and an excellent fire fighting function using the latent heat storage material 554 containing paraffin, which has been difficult to use with conventional storage containers. Can do. Further, the storage container 600 has a fire fighting unit 505 disposed in an empty area 607 provided below the storage room 604. For this reason, the storage container 600 can include the heat storage member 501 without reducing the effective volume of the storage chamber 604.
 また、蓄熱部553、563は、流動化した潜熱蓄熱材554が消防部505へ移動し易いように傾斜させた傾斜部508をそれぞれ接続部507側に有している。さらに、蓄熱部553、563は流動化した潜熱蓄熱材554が消防部505へ移動し易いように傾斜させた傾斜部558、559を有している。これらの傾斜部508、558、568は、流動化した潜熱蓄熱材554が下方の消防部505へと重力によって移動する際、潜熱蓄熱材554が蓄熱容器体552、562の隅などに滞留するのを防ぐことができる。これにより、保管容器600は、火災等の温度上昇時に全ての潜熱蓄熱材554を消防部505に確実に移動させて潜熱蓄熱材554の燃焼を消火し又は防火することができる。 Further, the heat storage units 553 and 563 have inclined portions 508 on the connection portion 507 side, which are inclined so that the fluidized latent heat storage material 554 can easily move to the fire fighting unit 505. Furthermore, the heat storage units 553 and 563 have inclined portions 558 and 559 which are inclined so that the fluidized latent heat storage material 554 can easily move to the fire fighting unit 505. These inclined portions 508, 558, and 568 cause the latent heat storage material 554 to stay in the corners of the heat storage container bodies 552 and 562 when the fluidized latent heat storage material 554 moves by gravity to the fire fighting section 505 below. Can be prevented. Thus, the storage container 600 can reliably move all the latent heat storage materials 554 to the fire fighting unit 505 when the temperature rises, such as a fire, to extinguish or prevent the combustion of the latent heat storage materials 554.
 次に、本実施形態による建造物700について図30乃至図32を用いて説明する。図30は、本実施形態による建造物700の概略の断面構成を示している。図30に示すように、本実施形態による建造物700は、最下部の床下領域714に設けられてコンクリート等で形成された基礎702を有している。建造物700は、基礎702上に設けられた複数の柱(不図示)に支えられて配置された床板704を有している。建造物700は、基礎702上に配置されて建造物700の外郭を成す壁体706を有している。建造物700は、床板704の鉛直上方に配置された天井板708を有している。天井板708は床板704に対向配置されている。建造物700は、天井板708及び壁体706上に配置された屋根710を有している。 Next, the building 700 according to the present embodiment will be described with reference to FIGS. FIG. 30 shows a schematic cross-sectional configuration of a building 700 according to the present embodiment. As shown in FIG. 30, the building 700 according to the present embodiment has a foundation 702 that is provided in a lowermost underfloor region 714 and made of concrete or the like. The building 700 includes a floor plate 704 that is arranged to be supported by a plurality of columns (not shown) provided on the foundation 702. The building 700 has a wall body 706 that is disposed on the foundation 702 and forms an outline of the building 700. The building 700 has a ceiling board 708 arranged vertically above the floor board 704. The ceiling board 708 is disposed opposite to the floor board 704. The building 700 has a ceiling 708 and a roof 710 disposed on the wall body 706.
 建造物700は、床板704と壁体706と天井板708とに囲まれた中空領域である生活空間712を有している。建造物700は、生活空間712を囲んで設けられ、生活空間712の熱を蓄積する潜熱蓄熱材574を備えた蓄熱部503と、床下領域714に設けられて潜熱蓄熱材574の燃焼を消火し又は防火する消防部505とを備えた蓄熱部材501を有している。蓄熱部503は、壁体706の内壁と外壁との間の内部空間に配置されている。 The building 700 has a living space 712 that is a hollow area surrounded by the floor board 704, the wall body 706, and the ceiling board 708. The building 700 is provided so as to surround the living space 712 and extinguishes the combustion of the latent heat storage material 574 provided in the heat storage section 503 including the latent heat storage material 574 that stores the heat of the living space 712 and the underfloor region 714. Or it has the heat storage member 501 provided with the fire fighting part 505 which prevents fire. The heat storage unit 503 is disposed in an internal space between the inner wall and the outer wall of the wall body 706.
 蓄熱部503は、潜熱蓄熱材574が充填された蓄熱容器体502と、蓄熱容器体502の底面の一部を開口した円形の開口部506とを有している。開口部506は所定間隔で複数配置されている。蓄熱部503は、それぞれの開口部506に向かって蓄熱容器体502の底面を下方に傾斜させた漏斗状の傾斜部508を有している。傾斜部508は開口部506と同数設けられている。 The heat storage unit 503 has a heat storage container body 502 filled with a latent heat storage material 574 and a circular opening 506 in which a part of the bottom surface of the heat storage container body 502 is opened. A plurality of openings 506 are arranged at predetermined intervals. The heat storage unit 503 includes a funnel-shaped inclined portion 508 in which the bottom surface of the heat storage container body 502 is inclined downward toward each opening 506. The same number of inclined portions 508 as the openings 506 are provided.
 潜熱蓄熱材574は潜熱蓄熱材504と同様にパラフィンを含んでいる。潜熱蓄熱材574に含まれるパラフィンには、ノルマルヘプタデカン(炭素数17)とノルマルオクタデカン(炭素数18)とノルマルノナデカン(炭素数19)とを混合したパラフィン混合物が用いられる。パラフィン混合物に含まれる各パラフィンの混合比(wt%)は、「ノルマルヘプタデカン:ノルマルオクタデカン:ノルマルノナデカン=19:76:5」である。このように、ノルマルパラフィンを混合させることで、融点が約25℃の潜熱蓄熱材574が得られる。なお、潜熱蓄熱材574は、火災等の温度上昇時に流動化する潜熱蓄熱材であれば特に限定されない。 The latent heat storage material 574 contains paraffin in the same manner as the latent heat storage material 504. As the paraffin contained in the latent heat storage material 574, a paraffin mixture obtained by mixing normal heptadecane (carbon number 17), normal octadecane (carbon number 18) and normal nonadecane (carbon number 19) is used. The mixing ratio (wt%) of each paraffin contained in the paraffin mixture is “normal heptadecane: normal octadecane: normal nonadecane = 19: 76: 5”. Thus, by mixing normal paraffin, the latent heat storage material 574 having a melting point of about 25 ° C. is obtained. The latent heat storage material 574 is not particularly limited as long as it is a latent heat storage material that fluidizes when the temperature rises such as a fire.
 生活空間712には、冷暖房機能を備える不図示の空気調節装置が配置されている。生活空間712の温度は、24℃~26℃程度が生活者にとって快適である。生活空間712は一般的に、季節による外気温の変化に対して空気調節装置を用いて温度調節が行われる。建造物700は、生活空間712を囲む壁体706内に融点が約25℃の潜熱蓄熱材574を有している。建造物700は、潜熱蓄熱材574によって生活空間712内の熱を蓄熱又は放熱して温度を一定に保つようになっている。建造物700は、空気調節装置の冷暖房効率を向上させることができる。本実施形態の建造物700は、壁体706内に蓄熱部503を配置しているが、蓄熱部503を天井板708上に配置してもよい。 In the living space 712, an air conditioning device (not shown) having an air conditioning function is arranged. The temperature of the living space 712 is about 24 ° C. to 26 ° C., which is comfortable for consumers. In general, the living space 712 is temperature-controlled using an air-conditioning device with respect to changes in the outside air temperature due to the season. The building 700 has a latent heat storage material 574 having a melting point of about 25 ° C. in a wall 706 surrounding the living space 712. The building 700 is configured to store or dissipate heat in the living space 712 by the latent heat storage material 574 so as to keep the temperature constant. The building 700 can improve the air conditioning efficiency of the air conditioner. In the building 700 of the present embodiment, the heat storage unit 503 is disposed in the wall body 706, but the heat storage unit 503 may be disposed on the ceiling plate 708.
 蓄熱部503は、開口部506と同数の接続部507を介して消防部505に接続されている。蓄熱部503の蓄熱容器体502の複数の開口部506は複数の接続部507の接続管522の一端部と密接にそれぞれ接続されている。蓄熱部材501の通常の使用時において、潜熱蓄熱材574は、開口部506を塞いで接続管522の経路524に配置された溶融部580により、蓄熱容器体502の内部空間に封止されている。 The heat storage unit 503 is connected to the fire department 505 through the same number of connections 507 as the openings 506. The plurality of openings 506 of the heat storage container body 502 of the heat storage unit 503 are closely connected to one end portions of the connection pipes 522 of the plurality of connection portions 507, respectively. During normal use of the heat storage member 501, the latent heat storage material 574 is sealed in the internal space of the heat storage container body 502 by a melting part 580 that closes the opening 506 and is disposed in the path 524 of the connection pipe 522. .
 溶融部580は特定の温度で溶融するようになっている。溶融部580が溶融する特定の温度は、潜熱蓄熱材574の融点より高く、かつ潜熱蓄熱材574の引火点又は発火点より低くなっている。溶融部580は、潜熱蓄熱材574が引火するよりも早く溶融するので、上記実施形態による蓄熱部材501における溶融部520と同様の効果が得られる。潜熱蓄熱材574に含まれるパラフィンの中で最も引火点の低いパラフィンは、ノルマルヘプタデカンである。ノルマルヘプタデカンの引火点は約148℃である。このため、溶融部580は、融点が約130℃のIn(34):Pb(17):Sn(49)の合金等(カッコ内の数値は、当該合金に含まれる各材料の比率を表している)を用いて形成されている。この合金で形成された溶融部580は約130℃で溶融する。 The melting part 580 is designed to melt at a specific temperature. The specific temperature at which the melting part 580 melts is higher than the melting point of the latent heat storage material 574 and lower than the flash point or ignition point of the latent heat storage material 574. Since the melting part 580 melts faster than the latent heat storage material 574 ignites, the same effect as the melting part 520 in the heat storage member 501 according to the above embodiment can be obtained. Among the paraffins contained in the latent heat storage material 574, paraffin having the lowest flash point is normal heptadecane. The flash point of normal heptadecane is about 148 ° C. For this reason, the melting part 580 is composed of an alloy of In (34): Pb (17): Sn (49) having a melting point of about 130 ° C. (the numerical values in parentheses indicate the ratio of each material included in the alloy). Is used). The melting part 580 formed of this alloy melts at about 130 ° C.
 建造物700に備えられた蓄熱部材501は、基礎702と床板704の間に設けられた床下領域714に配置された消防部505を有している。消防部505は、複数の接続部507を介して蓄熱部503と接続されている。消防部505は、難燃剤(例えば塩化パラフィン)を含む消火防火剤512aと、窒息性気体発生材料(例えば炭酸ガスを発生する重炭酸ナトリウム)を含む消火防火剤512bとを有している。消火防火剤512aは消防部505の消防容器体510の底面に配置されている。消火防火剤512bは消防部505の消防容器体10の上面に配置されている。このように、建造物700は、2種類の消火防火剤512a、512bを消防部505に有しているので、1種類の消火防火剤を有する場合よりも高い消火防火機能を発揮するようになっている。 The heat storage member 501 provided in the building 700 has a fire fighting unit 505 disposed in an underfloor region 714 provided between the foundation 702 and the floor board 704. The fire fighting unit 505 is connected to the heat storage unit 503 via a plurality of connection units 507. The fire fighting unit 505 includes a fire extinguisher / fireproofing agent 512a containing a flame retardant (for example, chlorinated paraffin) and a fire extinguishing / fireproofing agent 512b containing a suffocating gas generating material (for example, sodium bicarbonate that generates carbon dioxide). The fire extinguishing and fireproofing agent 512 a is disposed on the bottom surface of the fire fighting container 510 of the fire fighting unit 505. The fire extinguishing and fireproofing agent 512b is disposed on the upper surface of the fire fighting container body 10 of the fire fighting section 505. Thus, since the building 700 has the two types of fire-extinguishing and fire-proofing agents 512a and 512b in the fire fighting unit 505, the fire extinguishing and fire-proofing function higher than the case of having one type of fire-extinguishing and fire-proofing agent comes to be exhibited. ing.
 次に、建造物700の動作について図31及び図32を用いて説明する。図31は、蓄熱部503の温度変化の一例を示すグラフである。図中の実線の直線αは潜熱蓄熱材574が固液相状態での蓄熱部503の温度推移の一例を示し、実線の直線βは潜熱蓄熱材574が液相状態での蓄熱部503の温度推移の一例を示し、破線の直線γは潜熱蓄熱材574が固相状態での蓄熱部503の温度推移の一例を示している。横軸は時間を表し、縦軸は蓄熱部503の温度を表している。まず、建造物700の通常時の動作について説明する。通常時では、蓄熱部材501は、蓄熱部503と生活空間712とで熱の授受を行い、生活空間712内の温度を一定に保つことができる。時刻t0において不図示の空気調節装置の電源がオン状態になると、生活空間712の温度は例えば25℃となる。直線αで示すように、蓄熱部503の温度は生活空間712とほぼ同様の25℃になり融点(約25℃)付近に保たれて、潜熱蓄熱材574は固相と液相とが混合された固液相の状態で25℃の熱を蓄積する。 Next, the operation of the building 700 will be described with reference to FIGS. FIG. 31 is a graph illustrating an example of a temperature change in the heat storage unit 503. The solid line α in the figure shows an example of the temperature transition of the heat storage unit 503 when the latent heat storage material 574 is in a solid-liquid phase state, and the solid line β is the temperature of the heat storage unit 503 when the latent heat storage material 574 is in a liquid phase state. An example of the transition is shown, and a broken line γ indicates an example of the temperature transition of the heat storage unit 503 when the latent heat storage material 574 is in a solid phase. The horizontal axis represents time, and the vertical axis represents the temperature of the heat storage unit 503. First, the normal operation of the building 700 will be described. In normal times, the heat storage member 501 can transfer heat between the heat storage unit 503 and the living space 712, and can keep the temperature in the living space 712 constant. When the air conditioner (not shown) is turned on at time t0, the temperature of the living space 712 is, for example, 25 ° C. As indicated by the straight line α, the temperature of the heat storage unit 503 is 25 ° C., which is almost the same as that of the living space 712, and is maintained near the melting point (about 25 ° C.). Accumulate heat at 25 ° C. in a solid-liquid phase.
 ここで、図31に示すように、時刻t1において不図示の空気調節装置の電源をオフにした後、例えば外気温等によって室温が上昇する場合には、潜熱蓄熱材574は、生活空間712内の熱を吸熱しながら固液相から液相へと相転移するまでの間(図31に示す時刻t1から時刻t2までの間)、直線αで示すように、固液相として一定の温度(例えば生活空間の温度である25℃)を保つ。潜熱蓄熱材574は、時刻t2以降に直線βで示すように、やがて液相へと相変化し、蓄熱部503の温度は時間の経過とともに上昇する。 Here, as shown in FIG. 31, after turning off the air conditioning device (not shown) at time t1, for example, when the room temperature rises due to the outside temperature or the like, the latent heat storage material 574 is placed in the living space 712. Until the phase transition from the solid-liquid phase to the liquid phase while absorbing the heat (from time t1 to time t2 shown in FIG. 31), as indicated by a straight line α, the temperature of the solid-liquid phase is constant ( For example, the temperature of the living space is maintained at 25 ° C.). As indicated by the straight line β after time t2, the latent heat storage material 574 eventually changes to the liquid phase, and the temperature of the heat storage unit 503 increases with time.
 一方、生活空間712の温度が下降する場合には、潜熱蓄熱材574は、生活空間712内に蓄積している熱を放出しながら固液相から固相へと相転移するまでの間(図31に示す時刻t1から時刻t2までの間)、直線αで示すように、固液相として一定の温度(図31に示す時刻t1から時刻t2までの間)を保つ。潜熱蓄熱材574は、時刻t2以降に直線γで示すように、やがて固相へと相転移し、蓄熱部503の温度は時間の経過とともに下降する。このように、蓄熱部503は、生活空間712の室温を快適温度に一定期間維持することができる。このため、建造物700は、空気調節装置を使用しない場合であっても生活空間712を快適温度に一定期間維持できる。これにより、建造物700は、空気調節装置に必要とするエネルギーを削減しながら快適性を提供することが可能になる。 On the other hand, when the temperature of the living space 712 decreases, the latent heat storage material 574 releases the heat accumulated in the living space 712 until the phase transition from the solid-liquid phase to the solid phase (see FIG. 31 from time t1 to time t2), as shown by a straight line α, a constant temperature (between time t1 and time t2 shown in FIG. 31) is maintained as a solid-liquid phase. As indicated by a straight line γ after time t2, the latent heat storage material 574 eventually undergoes phase transition to the solid phase, and the temperature of the heat storage unit 503 decreases with time. Thus, the heat storage unit 503 can maintain the room temperature of the living space 712 at a comfortable temperature for a certain period. For this reason, the building 700 can maintain the living space 712 at a comfortable temperature for a certain period even when the air conditioner is not used. This allows the building 700 to provide comfort while reducing the energy required for the air conditioning device.
 次に、建造物700の火災時の動作について図32を用いて説明する。図32は、図30に示す建造物700の断面と同様の断面であって、溶融部580が溶融した後の建造物700の状態を示している。火災等により生活空間712の温度が上昇すると蓄熱部503の潜熱蓄熱材574は、固相から液相に相転移して、流動性が高い状態になる。生活空間712の温度がさらに上昇して、それに伴い接続部507の溶融部580の温度が130℃を超えると、溶融部580は溶融する。 Next, the operation of the building 700 during a fire will be described with reference to FIG. FIG. 32 is a cross section similar to the cross section of the building 700 shown in FIG. 30 and shows the state of the building 700 after the melting portion 580 has melted. When the temperature of the living space 712 rises due to a fire or the like, the latent heat storage material 574 of the heat storage unit 503 is phase-shifted from the solid phase to the liquid phase, and becomes highly fluid. When the temperature of the living space 712 further rises and the temperature of the melting part 580 of the connecting part 507 exceeds 130 ° C., the melting part 580 is melted.
 潜熱蓄熱材574が引火点に達する前に溶融部580が溶融することにより、蓄熱部503の蓄熱容器体502の内部空間と消防部505の収容部514とが接続部507の経路524を介して導通されて一続きになる。このため、図32に示すように、溶融部80により蓄熱容器体502に封止されていた潜熱蓄熱材574は、引火点に達する前に経路524を通って消防部505に移動する。消防部505に移動してきた潜熱蓄熱材574は収容部514に収容される。 The melting part 580 is melted before the latent heat storage material 574 reaches the flash point, so that the internal space of the heat storage container body 502 of the heat storage part 503 and the accommodating part 514 of the fire fighting part 505 are connected via the path 524 of the connection part 507. It is conducted and becomes a series. For this reason, as shown in FIG. 32, the latent heat storage material 574 sealed in the heat storage container body 502 by the melting unit 80 moves to the fire fighting unit 505 through the path 524 before reaching the flash point. The latent heat storage material 574 that has moved to the fire fighting unit 505 is accommodated in the accommodating unit 514.
 建造物700は、消防部505に備えられている消火防火剤512a、512bにより潜熱蓄熱材574の引火を防止することができる。具体的には、潜熱蓄熱材574は、消火防火剤512aと混合されて難燃化されて難燃化潜熱蓄熱材518に変化する。さらに、消火防火剤512bは窒息性気体511を発生し、窒息性気体511で収容部514が充満される。窒息性気体511は、収容部514内の難燃化前の潜熱蓄熱材574及び難燃化潜熱蓄熱材518への酸素の供給を遮断して潜熱蓄熱材574及び難燃化潜熱蓄熱材518の引火を防止できる。また、潜熱蓄熱材574が燃焼した状態で消防部505に移動した場合には、潜熱蓄熱材574が難燃化潜熱蓄熱材518に変化することにより、潜熱蓄熱材574の炎の火勢は徐々に弱まる。さらに、消火防火剤512bから発生した窒息性気体511は、潜熱蓄熱材574及び難燃化蓄熱材518への酸素の供給を遮断する。これにより、潜熱蓄熱材574の炎は最終的には消えてしまう。このように、建造物700は、潜熱蓄熱材574の燃焼を消火することもできる。 The building 700 can prevent the latent heat storage material 574 from being ignited by the fire extinguishing and fireproofing agents 512a and 512b provided in the fire fighting unit 505. Specifically, the latent heat storage material 574 is mixed with the fire extinguishing and fireproofing agent 512a to be flame retardant, and changes to a flame retardant latent heat storage material 518. Further, the fire extinguishing and fireproofing agent 512b generates a suffocating gas 511, and the containing portion 514 is filled with the suffocating gas 511. The suffocating gas 511 cuts off the supply of oxygen to the latent heat storage material 574 and the flame retardant latent heat storage material 518 before flame retardant in the housing portion 514 to prevent the latent heat storage material 574 and the flame retardant latent heat storage material 518 from flowing. Can prevent ignition. When the latent heat storage material 574 is burned and moved to the fire department 505, the latent heat storage material 574 is changed to the flame-retarded latent heat storage material 518, so that the flame heat of the latent heat storage material 574 gradually increases. Weaken. Further, the suffocating gas 511 generated from the fire extinguishing and fireproofing agent 512b blocks the supply of oxygen to the latent heat storage material 574 and the flame retardant heat storage material 518. Thereby, the flame of the latent heat storage material 574 will eventually disappear. Thus, the building 700 can also extinguish the combustion of the latent heat storage material 574.
 また、消防部505は、図21に示す蓄熱部材501のように圧力弁526を備えていてもよい。建造物700は、消防部505に圧力弁526を備えることにより、窒息消化に余分な窒息性気体511を消防部505から床下領域714に排出することができる。排出された窒息性気体511は空気より重いので、床下領域714に滞留する。これにより、建造物700は、温度上昇時に消防部505の破損を防止するとともに、床下領域714への延焼を防止することができる。 Moreover, the fire fighting unit 505 may include a pressure valve 526 like the heat storage member 501 shown in FIG. The building 700 is provided with the pressure valve 526 in the fire fighting unit 505, so that the suffocating gas 511 excess for suffocation digestion can be discharged from the fire fighting unit 505 to the underfloor region 714. Since the discharged suffocating gas 511 is heavier than air, it stays in the underfloor region 714. Thereby, the building 700 can prevent the fire department 505 from being damaged when the temperature rises, and can prevent the fire spreading to the underfloor region 714.
 以上説明したように、蓄熱部材501を備える建造物700は、通常時には生活空間712を快適な温度に維持し、火災時には潜熱蓄熱材574の燃焼を消火し又は防火することができる。また、建造物700は、蓄熱の性能を発揮する蓄熱部503と、消防の性能を発揮する消防部505とが、分離してそれぞれ別個独立に形成された蓄熱部材501を有している。このため、建造物700は、優れた蓄熱の機能及び優れた消防の機能を発揮することができる。また、建造物700は、空気調節装置が排出した生活空間712の温度調節のための熱を蓄熱部503に蓄積し、空気調節装置がオフ状態時には生活空間712に蓄熱部503が蓄積した熱を放出し、生活空間712内を快適な一定の温度に保つことができる。このため、建造物700は、空気調節装置の運転に必要な電力を削減することができる。また、建造物700は、床下領域714に消防部505を設けている。このため、建造物700は、余剰な空間を有効に利用して配置される消防部505により火災時の燃焼を消火し又は防火することができる。 As described above, the building 700 including the heat storage member 501 can maintain the living space 712 at a comfortable temperature during normal times, and can extinguish or prevent the combustion of the latent heat storage material 574 during a fire. In addition, the building 700 includes a heat storage member 501 in which a heat storage unit 503 that exhibits heat storage performance and a fire fighting unit 505 that exhibits fire fighting performance are separated and formed independently of each other. For this reason, the building 700 can exhibit an excellent heat storage function and an excellent fire fighting function. In addition, the building 700 accumulates heat for adjusting the temperature of the living space 712 discharged by the air conditioner in the heat storage unit 503. When the air conditioner is in an off state, the building 700 stores the heat accumulated by the heat storage unit 503 in the living space 712. The living space 712 can be kept at a comfortable and constant temperature. For this reason, the building 700 can reduce the electric power required for the operation of the air conditioner. The building 700 has a fire department 505 in the underfloor region 714. For this reason, the building 700 can extinguish or prevent the combustion at the time of the fire by the fire fighting unit 505 that is arranged by effectively using the excess space.
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 上記実施形態および上記変形例1から3による蓄熱部材501における接続部507の接続管522は、蓄熱部503の蓄熱容器体502と一体に形成されていてもよい。また、接続部507を設けずに、蓄熱部503の蓄熱容器体502の開口部506と、消防部505の消防容器体510の開口部516とを直接接続されていてもよい。この場合は、溶融部520は、開口部506と開口部516との接続箇所に配置されることにより、上記実施の形態の蓄熱部材501における溶融部20と同様の効果が得られる。
The present invention is not limited to the above embodiment, and various modifications can be made.
The connection pipe 522 of the connection portion 507 in the heat storage member 501 according to the embodiment and the first to third modifications may be formed integrally with the heat storage container body 502 of the heat storage portion 503. Moreover, the opening part 506 of the heat storage container body 502 of the heat storage part 503 and the opening part 516 of the fire fighting container body 510 of the fire fighting part 505 may be directly connected without providing the connection part 507. In this case, the melting part 520 is arranged at the connection portion between the opening 506 and the opening 516, whereby the same effect as that of the melting part 20 in the heat storage member 501 of the above embodiment can be obtained.
 上記実施の形態では、溶融部20は、「T1<T4<T2」の関係式を満たすように形成材料が選択されているが、本発明はこれに限られない。例えば、蓄熱部材が常時高温化に晒される環境で使用される場合には、溶融部は「T1<T4<T3」の関係式を満たすように形成材料が選択されていてもよい。火災やその他の要因で蓄熱部材の周囲温度が上昇し、当該蓄熱部材の温度が潜熱蓄熱材の発火点に近づいた場合、当該蓄熱部材は上記実施の形態による蓄熱部材501と同様に動作して潜熱蓄熱材の発火を防止できる。 In the above embodiment, the forming material is selected so as to satisfy the relational expression “T1 <T4 <T2” in the melting part 20, but the present invention is not limited to this. For example, when the heat storage member is used in an environment where the heat storage member is constantly exposed to high temperature, the forming material may be selected so that the melting portion satisfies the relational expression “T1 <T4 <T3”. When the ambient temperature of the heat storage member rises due to fire or other factors and the temperature of the heat storage member approaches the ignition point of the latent heat storage material, the heat storage member operates in the same manner as the heat storage member 501 according to the above embodiment. The ignition of the latent heat storage material can be prevented.
 ここで、本実施形態で好適に用いられる潜熱蓄熱材の相変化温度範囲について例示する。相変化温度が-20℃~-5℃の蓄熱材であれば、冷凍庫(JISワンスター規格まで含む)に好適に使用できる。また、相変化温度が0℃~10℃の蓄熱材であれば、冷蔵庫(野菜室を含む)に好適に使用できる。相変化温度が7℃~12℃の蓄熱材であれば、空調用熱搬送液に利用でき、氷蓄熱に比較して熱搬送の効率化を図ることができる。相変化温度が15℃~18℃の蓄熱材であれば、輸送コンテナに用いて好適であり、例えば医薬品の適温輸送を実現できる。相変化温度が20℃~30℃の蓄熱材であれば、床材や壁材に用いて好適であり、室温変化の低減を実現でき、省エネルギーで快適空間を得ることができる。相変化温度が30℃~40℃の蓄熱材であれば、床材や壁材に用いて好適であり、昼間蓄熱による省エネルギー化による夜間暖房を実現できる。相変化温度が40℃~42℃の蓄熱材であれば、バスタブ蓄熱保温材に用いて好適であり、省エネルギーで長時間保温を実現できる。相変化温度が50℃~100℃の蓄熱材であれば、貯湯槽の代替手段として、あるいはヒートポンプ用に利用して好適である。 Here, the phase change temperature range of the latent heat storage material suitably used in this embodiment will be exemplified. A heat storage material having a phase change temperature of −20 ° C. to −5 ° C. can be suitably used for a freezer (including up to JIS one-star standards). A heat storage material having a phase change temperature of 0 ° C. to 10 ° C. can be suitably used for a refrigerator (including a vegetable room). A heat storage material having a phase change temperature of 7 ° C. to 12 ° C. can be used as a heat transfer liquid for air conditioning, and heat transfer can be made more efficient than ice heat storage. A heat storage material having a phase change temperature of 15 ° C. to 18 ° C. is suitable for use in a transportation container. For example, it can realize proper temperature transportation of pharmaceuticals. A heat storage material having a phase change temperature of 20 ° C. to 30 ° C. is suitable for use as a flooring material or a wall material, can realize a reduction in room temperature change, and can provide a comfortable space with energy saving. A heat storage material having a phase change temperature of 30 ° C. to 40 ° C. is suitable for flooring and wall materials, and can realize night heating by energy saving by daytime heat storage. A heat storage material having a phase change temperature of 40 ° C. to 42 ° C. is suitable for use as a heat storage material for bathtub heat storage, and can realize heat retention for a long time with energy saving. A heat storage material having a phase change temperature of 50 ° C. to 100 ° C. is suitable for use as an alternative to a hot water tank or for a heat pump.
 また、潜熱蓄熱材を冷蔵庫に用いる場合には冷蔵庫内の冷却領域ごとの温度分布を考慮して最適な相変化温度範囲を決めるのが望ましい。例えば外気温度が30℃で庫内に食品を入れずに扉を閉じて安定状態になったときの冷蔵庫内の温度分布は、目安として、冷蔵室内が2℃~5℃、チルド室内が0℃~2℃、ドアポケット部が3℃~7℃、野菜室が3℃~8℃、冷凍室が-17℃~-20℃である。 Also, when the latent heat storage material is used in a refrigerator, it is desirable to determine the optimum phase change temperature range in consideration of the temperature distribution for each cooling region in the refrigerator. For example, the temperature distribution in the refrigerator when the outside air temperature is 30 ° C and the door is closed without any food in the cabinet and becomes stable, as a guide, the refrigerator compartment is 2 ° C to 5 ° C, and the chilled chamber is 0 ° C. 2 ° C., 3 ° C. to 7 ° C. in the door pocket, 3 ° C. to 8 ° C. in the vegetable compartment, and −17 ° C. to −20 ° C. in the freezer compartment.
 また、難燃材料に関しては、試験片を水平に置いて燃焼させる米国UL-94HB規格の燃焼試験方法に合格する材料を本実施形態での難燃材料とするのが好ましい。 In addition, regarding the flame retardant material, it is preferable to use a material that passes the combustion test method of the US UL-94HB standard in which a test piece is placed horizontally for combustion as the flame retardant material in this embodiment.
 ここで、難燃材料の設置位置について説明する。例えば冷蔵庫の場合は、冷蔵庫に可燃材を含む構成部品が含まれているので、蓄熱材全てを難燃材料にすることは要求されない。発火源となる可能性のある電源や、コンプレッサ部分にのみ難燃材料を設置してもよい。また、建材としての耐火構造外壁の場合は、耐火構造外壁内部や内装制限要求がかかる耐火構造外壁の内側に難燃材料を設置する。耐火構造物外壁の外側は可燃物でも構わない。なお、内装制限要求がかからない場所は耐火構造外壁の内側は可燃物で構わない。 Here, the installation position of the flame retardant material will be described. For example, in the case of a refrigerator, since the refrigerator includes components including a combustible material, it is not required to use all of the heat storage material as a flame retardant material. You may install a flame retardant material only in the power supply which may become an ignition source, or a compressor part. In the case of a fireproof structure outer wall as a building material, a flame retardant material is installed inside the fireproof structure outer wall or inside the fireproof structure outer wall that requires interior restriction. The outside of the outer wall of the refractory structure may be combustible. In addition, the place where the interior restriction request is not required may be a combustible material inside the outer wall of the fireproof structure.
 また、燃焼抑制材料の含有率については、例えば、蓄熱材料としてテトラデカン(C1430)を、燃焼抑制材料として水酸化マグネシウムをそれぞれ用いた場合、水酸化マグネシウムの含有率は、10~40wt%が望ましい。具体的には、蓄熱材料の燃焼熱をThorntonの法則から算出し、その30%~100%に相当する熱量を吸収熱として換算した燃焼抑制材料の量を含有率とした。 As for the content of the combustion suppressing material, for example, when tetradecane (C 14 H 30 ) is used as the heat storage material and magnesium hydroxide is used as the combustion suppressing material, the content of magnesium hydroxide is 10 to 40 wt%. Is desirable. Specifically, the heat of combustion of the heat storage material was calculated from Thornton's law, and the amount of the combustion suppressing material converted to the amount of heat corresponding to 30% to 100% of the heat was used as the content rate.
 なお、上記詳細な説明で説明した事項、特に実施形態および変形例等で説明した事項は組み合わせることが可能である。 It should be noted that the items described in the detailed description above, in particular, the items described in the embodiment and the modified examples can be combined.
 本発明は、潜熱蓄熱材を用いた蓄熱部材、それを用いた保管容器及び建造物に広く利用可能である。 The present invention is widely applicable to a heat storage member using a latent heat storage material, a storage container and a building using the same.
1、11、21、31、41、51、61、71、101、101a、101b、101c、131、141、151、161、171 蓄熱部材
2 炎
4 燃焼跡
3 基材
3a 中空部
5、5a、5b、5c 潜熱蓄熱材
7、7a、7b、7c 燃焼抑制消火材
13 難燃性材料層
14 樹脂層
100、110、130、140、150、160、170、200 保管容器
102、102a、102b、102c 扉部
103、103a、103b、103c 開口部
104、106 容器本体
105、105a、105b、105c 貯蔵室
107、107a、107b、107c パッキン
109、109a、109b、109c 壁部
111 断熱部
113 冷熱器
115 コンプレッサ
117、118 配管
120 キャピラリーチューブ
122 サクションパイプ
201ba、201bc ファン
203ba、203bc ダンパ
205ba、205bc ダクト
210 冷蔵室
220 冷凍室
230 野菜室
501 蓄熱部材
502、532、552、562 蓄熱容器体
503、533、543、553、563 蓄熱部
504、534、554、574 潜熱蓄熱材
505、590 消防部
506、516、519、536、539 546a、549a、549b 開口部
507、597 接続部
508、538、548、558、568、598 傾斜部
510、592 消防容器体
511 窒息性気体
512、512a、512b、591 消火防火剤
514 収容部
518 難燃化潜熱蓄熱材
520、540、580 溶融部
522、592 接続管
524、594 経路
526 圧力弁
543a、543b 部材
600 保管容器
601 保管容器体 
602 扉
603 ドアパッキン
604 貯蔵室
605、606 断熱材
607 空き領域
608 冷却器
610 配管
612 コンプレッサ
700 建造物
702 基礎
704 床板
706 壁体
708 天井板
710 屋根
712 生活空間
714 床下領域
1, 11, 21, 31, 41, 51, 61, 71, 101, 101a, 101b, 101c, 131, 141, 151, 161, 171 Thermal storage member 2 Flame 4 Combustion trace 3 Base material 3a Hollow part 5, 5a, 5b, 5c Latent heat storage material 7, 7a, 7b, 7c Combustion suppressing fire extinguishing material 13 Flame retardant material layer 14 Resin layer 100, 110, 130, 140, 150, 160, 170, 200 Storage container 102, 102a, 102b, 102c Door 103, 103a, 103b, 103c Opening 104, 106 Container body 105, 105a, 105b, 105c Storage chamber 107, 107a, 107b, 107c Packing 109, 109a, 109b, 109c Wall 111 Heat insulation 113 Cooler 115 Compressor 117, 118 Piping 120 Capillary tube 122 Suction pad Type 201ba, 201bc fan 203ba, 203bc damper 205ba, 205bc duct 210 refrigerator room 220 freezer room 230 vegetable room 501 heat storage member 502, 532, 552, 562 heat storage container bodies 503, 533, 543, 553, 563 heat storage units 504, 534, 554, 574 Latent heat storage material 505, 590 Fire fighting part 506, 516, 519, 536, 539 546a, 549a, 549b Opening part 507, 597 Connection part 508, 538, 548, 558, 568, 598 Inclined part 510, 592 Fire fighting container Body 511 Asphyxiating gas 512, 512a, 512b, 591 Fire extinguisher and fire extinguishing agent 514 Storage part 518 Flame retardant latent heat storage material 520, 540, 580 Melting part 522, 592 Connection pipe 524, 594 Path 526 Pressure valve 543a, 543b Member 600 Storage container 601 Storage container body
602 Door 603 Door packing 604 Storage room 605, 606 Heat insulating material 607 Empty area 608 Cooler 610 Pipe 612 Compressor 700 Building 702 Foundation 704 Floor board 706 Wall body 708 Ceiling board 710 Roof 712 Living space 714 Under floor area

Claims (32)

  1.  相転移により熱エネルギーを蓄積又は放出する潜熱蓄熱材と、
     前記潜熱蓄熱材の燃焼を抑制して消火する燃焼抑制消火材と
     を有することを特徴とする蓄熱部材。
    A latent heat storage material that stores or releases thermal energy by phase transition;
    And a combustion-suppressing fire extinguishing material that suppresses the combustion of the latent heat storage material and extinguishes the fire.
  2.  請求項1記載の蓄熱部材であって、
     前記燃焼抑制消火材は、所定のガス又は水を発生して前記潜熱蓄熱材の燃焼を抑制して消火すること
     を特徴とする蓄熱部材。
    The heat storage member according to claim 1,
    The said combustion suppression fire extinguishing material generates predetermined gas or water, suppresses combustion of the said latent heat storage material, and extinguishes fire, The heat storage member characterized by the above-mentioned.
  3.  請求項1又は2に記載の蓄熱部材であって、
     前記燃焼抑制消火材は、自己消火性物質、窒息性気体発生材料及び燃焼抑制物質の少なくともいずれか1つを含むこと
     を特徴とする蓄熱部材。
    The heat storage member according to claim 1 or 2,
    The said heat suppression fire extinguishing material contains at least any one of a self-extinguishing substance, a suffocating gas generating material, and a combustion suppression substance.
  4.  請求項3記載の蓄熱部材であって、
     前記自己消火性物質は、水和化合物を含むこと
     を特徴とする蓄熱部材。
    The heat storage member according to claim 3,
    The heat storage member, wherein the self-extinguishing substance contains a hydrated compound.
  5.  請求項3記載の蓄熱部材であって、
     前記窒息性気体発生材料は、アゾ化合物又は燐酸アンモニウム、炭酸塩化合物を含むこと
     を特徴とする蓄熱部材。
    The heat storage member according to claim 3,
    The heat storage member, wherein the suffocating gas generating material contains an azo compound, ammonium phosphate, or a carbonate compound.
  6.  請求項3記載の蓄熱部材であって、
     前記燃焼抑制物質は、臭化アンチモン、酸化アンチモン、尿素系難燃材、ハロゲン系難燃剤及び、リン系難燃剤、のいずれか1つを含むこと
     を特徴とする蓄熱部材。
    The heat storage member according to claim 3,
    The heat storage member, wherein the combustion-suppressing substance includes any one of antimony bromide, antimony oxide, urea-based flame retardant, halogen-based flame retardant, and phosphorus-based flame retardant.
  7.  請求項1から6までのいずれか一項に記載の蓄熱部材であって、
     前記潜熱蓄熱材は、パラフィン、ポリエチレングリコール、ポリビニルアルコール、エチレンジアミン、及びナフタリンのいずれか1つを含むこと
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 1 to 6,
    The latent heat storage material includes any one of paraffin, polyethylene glycol, polyvinyl alcohol, ethylenediamine, and naphthalene.
  8.  請求項1から7までのいずれか一項に記載の蓄熱部材であって、
     前記潜熱蓄熱材は、前記燃焼抑制消火材に積層されていること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 1 to 7,
    The latent heat storage material is laminated on the combustion-suppressing fire extinguishing material.
  9.  請求項1から7までのいずれか一項に記載の蓄熱部材であって、
     前記燃焼抑制消火材は、前記潜熱蓄熱材を囲んで配置されていること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 1 to 7,
    The heat storage member, wherein the combustion-suppressing fire extinguishing material is disposed so as to surround the latent heat storage material.
  10.  請求項1から7までのいずれか一項に記載の蓄熱部材であって、
     前記潜熱蓄熱材は、マトリクス状に配置されて前記燃焼抑制消火材に埋め込まれていること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 1 to 7,
    The latent heat storage material is arranged in a matrix and embedded in the combustion-suppressing fire extinguishing material.
  11.  請求項1から7までのいずれか一項に記載の蓄熱部材であって、
     前記燃焼抑制消火材は、燃焼抑制消火材内包用カプセルに内包されていること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 1 to 7,
    The said heat suppression fire extinguishing material is included in the capsule for combustion suppression fire extinguishing material inclusion. The heat storage member characterized by the above-mentioned.
  12.  請求項1から8までのいずれか一項に記載の蓄熱部材であって、
     前記潜熱蓄熱材は、潜熱蓄熱材内包用カプセルに内包されていること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 1 to 8,
    The latent heat storage material is contained in a capsule for latent heat storage material inclusion.
  13.  請求項11から12までのいずれか一項に記載の蓄熱部材であって、
     前記燃焼抑制消火材内包用カプセル及び前記潜熱蓄熱材内包用カプセルが埋め込まれた難燃性材料層をさらに有すること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 11 to 12,
    A heat storage member, further comprising a flame retardant material layer in which the capsule for combustion-suppressing fire extinguishing material and the capsule for latent heat storage material are embedded.
  14.  請求項13記載の蓄熱部材であって、
     前記燃焼抑制消火材内包用カプセル及び/又は前記潜熱蓄熱材内包用カプセルの分散濃度は、前記難燃性材料層内でそれぞれ偏りがあること
     を特徴とする蓄熱部材。
    The heat storage member according to claim 13,
    The heat storage member according to claim 1, wherein the dispersion concentration of the capsule for suppressing combustion and / or the capsule for latent heat storage material is uneven in the flame retardant material layer.
  15.  貯蔵物を貯蔵する貯蔵室と、
     前記貯蔵室を囲んで設けられ、前記貯蔵室と外界との間の熱の移動を遮断する断熱部と、
     前記貯蔵室と前記断熱部との間に設けられ、前記貯蔵室の熱を蓄積する蓄熱部材と
     を有する保管容器であって、
     前記蓄熱部材は、請求項1から14までのいずれか一項に記載の蓄熱部材であること
     を特徴とする保管容器。
    A storage room for storing stored items;
    A heat insulating part that surrounds the storage room and blocks heat transfer between the storage room and the outside;
    A storage container provided between the storage chamber and the heat insulating portion, and having a heat storage member that accumulates heat of the storage chamber,
    The said heat storage member is a heat storage member as described in any one of Claim 1-14. The storage container characterized by the above-mentioned.
  16.  生活空間を囲んで設けられ、前記生活空間と外界との間の熱の移動を遮断する断熱部と、
     前記生活空間と前記断熱部との間に設けられ、前記生活空間の熱を蓄積する蓄熱部材と
     を有する建造物であって、
     前記蓄熱部材は、請求項1から14までのいずれか一項に記載の蓄熱部材であること
     を特徴とする建造物。
    A heat insulating part that surrounds the living space and blocks heat transfer between the living space and the outside world;
    A heat storage member that is provided between the living space and the heat insulating portion and accumulates heat of the living space,
    The said heat storage member is a heat storage member as described in any one of Claim 1-14. The building characterized by the above-mentioned.
  17.  所定の温度で固相から液相へ可逆的に相転移する潜熱蓄熱材を備えた蓄熱部と、
     前記蓄熱部と分離して設けられ、前記潜熱蓄熱材の燃焼を消火し又は防火する消防部と
     を有することを特徴とする蓄熱部材。
    A heat storage section comprising a latent heat storage material that reversibly transitions from a solid phase to a liquid phase at a predetermined temperature;
    A heat storage member provided separately from the heat storage unit and having a fire-fighting unit that extinguishes or prevents the combustion of the latent heat storage material.
  18.  請求項17記載の蓄熱部材であって、
     前記蓄熱部と前記消防部との間に配置され、特定の温度で溶融する溶融部をさらに有すること
     を特徴とする蓄熱部材。
    The heat storage member according to claim 17,
    A heat storage member, further comprising a melting section that is disposed between the heat storage section and the fire fighting section and melts at a specific temperature.
  19.  請求項18記載の蓄熱部材であって、
     前記特定の温度は、前記潜熱蓄熱材の融点より高く、かつ前記潜熱蓄熱材の引火点又は発火点より低いこと
     を特徴とする蓄熱部材。
    The heat storage member according to claim 18,
    The specific temperature is higher than the melting point of the latent heat storage material and lower than the flash point or ignition point of the latent heat storage material.
  20.  請求項17から19のいずれか一項に記載の蓄熱部材であって、
     前記消防部は、前記蓄熱部から移動してくる前記潜熱蓄熱材を収容する収容部を有すること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 17 to 19,
    The said fire fighting part has an accommodating part which accommodates the said latent heat storage material which moves from the said thermal storage part. The thermal storage member characterized by the above-mentioned.
  21.  請求項17から20のいずれか一項に記載の蓄熱部材であって、
     前記蓄熱部は、前記潜熱蓄熱材が移動し易いように傾斜させた傾斜部を有すること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 17 to 20,
    The heat storage member has an inclined portion that is inclined so that the latent heat storage material can easily move.
  22.  請求項17から21のいずれか一項に記載の蓄熱部材であって、
     前記消防部は、実使用時に前記蓄熱部の鉛直下方に配置されること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 17 to 21,
    The fire storage unit is disposed vertically below the heat storage unit during actual use.
  23.  請求項17から21のいずれか一項に記載の蓄熱部材であって、
     前記消防部は、実使用時に前記蓄熱部の鉛直上方に配置されること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 17 to 21,
    The fire storage unit is disposed vertically above the heat storage unit during actual use.
  24.  請求項17から23のいずれか一項に記載の蓄熱部材であって、
     前記消防部は、前記潜熱蓄熱材の燃焼を消火し又は防火する消火防火剤を有すること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 17 to 23,
    The said fire-fighting part has a fire extinguishing fire prevention agent which extinguishes or prevents the combustion of the said latent heat storage material.
  25.  請求項24記載の蓄熱部材であって、
     前記消火防火剤は、難燃剤及び窒息性気体発生材料の少なくともいずれか1つを含むこと
     を特徴とする蓄熱部材。
    A heat storage member according to claim 24,
    The fire extinguishing and fireproofing agent includes at least one of a flame retardant and a suffocating gas generating material.
  26.  請求項25記載の蓄熱部材であって、
     前記難燃剤は、臭素系難燃剤、尿素系難燃剤、ハロゲン系難燃剤及びアンチモン等の無機系難燃剤のいずれか1つを含むこと
     を特徴とする蓄熱部材。
    The heat storage member according to claim 25,
    The heat storage member, wherein the flame retardant includes one of a brominated flame retardant, a urea flame retardant, a halogen flame retardant, and an inorganic flame retardant such as antimony.
  27.  請求項25又は26に記載の蓄熱部材であって、
     前記窒息性気体発生材料は、所定の気体を発生して前記潜熱蓄熱材の燃焼を抑制すること
     を特徴とする蓄熱部材。
    The heat storage member according to claim 25 or 26,
    The suffocating gas generating material generates a predetermined gas and suppresses combustion of the latent heat storage material.
  28.  請求項17から27のいずれか一項に記載の蓄熱部材であって、
     前記潜熱蓄熱材はパラフィンを含んでいること
     を特徴とする蓄熱部材。
    The heat storage member according to any one of claims 17 to 27,
    The latent heat storage material includes paraffin.
  29.  貯蔵物を貯蔵する貯蔵室と、
     前記貯蔵室を囲んで設けられ、前記貯蔵室の熱を蓄積する蓄熱部材とを有する保管容器であって、
     前記蓄熱部材は、請求項17から28までのいずれか一項に記載の蓄熱部材であること
     を特徴とする保管容器。
    A storage room for storing stored items;
    A storage container provided around the storage chamber and having a heat storage member for accumulating heat of the storage chamber,
    The storage container according to any one of claims 17 to 28, wherein the heat storage member is the heat storage member according to any one of claims 17 to 28.
  30.  請求項29記載の保管容器であって、
     前記消防部は、前記貯蔵室の下方に設けられた空き領域に配置されていること
     を特徴とする保管容器。
    A storage container according to claim 29,
    The fire fighting section is disposed in an empty area provided below the storage room.
  31.  生活空間を囲んで設けられ、前記生活空間の熱を蓄積する蓄熱部材を有する建造物であって、
     前記蓄熱部材は、請求項17から28までのいずれか一項に記載の蓄熱部材であること
     を特徴とする建造物。
    A building having a heat storage member that surrounds the living space and accumulates heat of the living space,
    The said heat storage member is a heat storage member as described in any one of Claim 17-28. The building characterized by the above-mentioned.
  32.  請求項31記載の建造物であって、
     前記消防部は床下領域に配置されていること
     を特徴とする建造物。
    A building according to claim 31, wherein
    The fire department is located in the underfloor area.
PCT/JP2012/060830 2011-04-26 2012-04-23 Heat storage member, and storage container and building using same WO2012147677A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-098765 2011-04-26
JP2011098765 2011-04-26
JP2011-151700 2011-07-08
JP2011151700 2011-07-08

Publications (1)

Publication Number Publication Date
WO2012147677A1 true WO2012147677A1 (en) 2012-11-01

Family

ID=47072196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060830 WO2012147677A1 (en) 2011-04-26 2012-04-23 Heat storage member, and storage container and building using same

Country Status (1)

Country Link
WO (1) WO2012147677A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104629691A (en) * 2015-01-13 2015-05-20 天津市建筑科学研究院有限公司 Stabilized phase change material for floor heating heat storage
CN108365268A (en) * 2018-02-10 2018-08-03 安徽唯诗杨信息科技有限公司 A kind of lithium ion battery aging equipment and aging method
US20190331411A1 (en) * 2017-01-18 2019-10-31 Fridge-To-Go Limited Mobile Storage Apparatus
US10653904B2 (en) 2017-12-02 2020-05-19 M-Fire Holdings, Llc Methods of suppressing wild fires raging across regions of land in the direction of prevailing winds by forming anti-fire (AF) chemical fire-breaking systems using environmentally clean anti-fire (AF) liquid spray applied using GPS-tracking techniques
WO2020174929A1 (en) * 2019-02-28 2020-09-03 富士フイルム株式会社 Heat storage member, electronic device, heat storage member manufacturing method, and protective layer-forming composition
JPWO2020196239A1 (en) * 2019-03-25 2020-10-01
US10814150B2 (en) 2017-12-02 2020-10-27 M-Fire Holdings Llc Methods of and system networks for wireless management of GPS-tracked spraying systems deployed to spray property and ground surfaces with environmentally-clean wildfire inhibitor to protect and defend against wildfires
CN113914457A (en) * 2021-11-26 2022-01-11 苏州栖地工程设计顾问有限公司 Main body structure and main body rapid cooling device of green assembly type building
US11395931B2 (en) 2017-12-02 2022-07-26 Mighty Fire Breaker Llc Method of and system network for managing the application of fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition
WO2022264979A1 (en) 2021-06-14 2022-12-22 パナソニックホールディングス株式会社 Cold storage material
US11826592B2 (en) 2018-01-09 2023-11-28 Mighty Fire Breaker Llc Process of forming strategic chemical-type wildfire breaks on ground surfaces to proactively prevent fire ignition and flame spread, and reduce the production of smoke in the presence of a wild fire
US11865390B2 (en) 2017-12-03 2024-01-09 Mighty Fire Breaker Llc Environmentally-clean water-based fire inhibiting biochemical compositions, and methods of and apparatus for applying the same to protect property against wildfire
US11865394B2 (en) 2017-12-03 2024-01-09 Mighty Fire Breaker Llc Environmentally-clean biodegradable water-based concentrates for producing fire inhibiting and fire extinguishing liquids for fighting class A and class B fires
US11911643B2 (en) 2021-02-04 2024-02-27 Mighty Fire Breaker Llc Environmentally-clean fire inhibiting and extinguishing compositions and products for sorbing flammable liquids while inhibiting ignition and extinguishing fire

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219379A (en) * 1982-06-15 1983-12-20 松下電器産業株式会社 Cold accumulation type cool keeping box
JPH01135890A (en) * 1987-11-20 1989-05-29 Matsushita Electric Works Ltd Thermal energy storing building material
JPH0641522A (en) * 1992-07-24 1994-02-15 Matsushita Electric Works Ltd Heat storage material
JPH0649441A (en) * 1992-07-28 1994-02-22 Matsushita Electric Works Ltd Flame-retardant thermal storage material
JPH0961078A (en) * 1995-08-30 1997-03-07 Matsushita Electric Works Ltd Thermal accumulating board
JP2001082816A (en) * 1999-09-16 2001-03-30 Sanyo Electric Co Ltd Refrigerating device
JP2002095764A (en) * 2000-09-26 2002-04-02 Japan Field Kk Method and device for fire extinguishing or pilot-ignition prevention for combustible liquid
JP2005249377A (en) * 2004-02-04 2005-09-15 Sk Kaken Co Ltd Floor heating structure
JP2008069293A (en) * 2006-09-15 2008-03-27 Achilles Corp Heat storage acrylic resin composition and heat storage sheet-like molding using it
JP2009051549A (en) * 2007-08-28 2009-03-12 Casio Comput Co Ltd Fuel storage part, fuel cell device, electronic instrument and lighting device
JP2009208355A (en) * 2008-03-04 2009-09-17 Furukawa Electric Co Ltd:The Fire proof resin foaming laminate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219379A (en) * 1982-06-15 1983-12-20 松下電器産業株式会社 Cold accumulation type cool keeping box
JPH01135890A (en) * 1987-11-20 1989-05-29 Matsushita Electric Works Ltd Thermal energy storing building material
JPH0641522A (en) * 1992-07-24 1994-02-15 Matsushita Electric Works Ltd Heat storage material
JPH0649441A (en) * 1992-07-28 1994-02-22 Matsushita Electric Works Ltd Flame-retardant thermal storage material
JPH0961078A (en) * 1995-08-30 1997-03-07 Matsushita Electric Works Ltd Thermal accumulating board
JP2001082816A (en) * 1999-09-16 2001-03-30 Sanyo Electric Co Ltd Refrigerating device
JP2002095764A (en) * 2000-09-26 2002-04-02 Japan Field Kk Method and device for fire extinguishing or pilot-ignition prevention for combustible liquid
JP2005249377A (en) * 2004-02-04 2005-09-15 Sk Kaken Co Ltd Floor heating structure
JP2008069293A (en) * 2006-09-15 2008-03-27 Achilles Corp Heat storage acrylic resin composition and heat storage sheet-like molding using it
JP2009051549A (en) * 2007-08-28 2009-03-12 Casio Comput Co Ltd Fuel storage part, fuel cell device, electronic instrument and lighting device
JP2009208355A (en) * 2008-03-04 2009-09-17 Furukawa Electric Co Ltd:The Fire proof resin foaming laminate

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104629691A (en) * 2015-01-13 2015-05-20 天津市建筑科学研究院有限公司 Stabilized phase change material for floor heating heat storage
US10955188B2 (en) * 2017-01-18 2021-03-23 Fridge-To-Go Limited Mobile storage apparatus
US20190331411A1 (en) * 2017-01-18 2019-10-31 Fridge-To-Go Limited Mobile Storage Apparatus
US11697040B2 (en) 2017-12-02 2023-07-11 Mighty Fire Breaker Llc Wild fire defense system network using a command center, spraying systems and mobile computing systems configured to proactively defend homes and neighborhoods against threat of wild fire by spraying environmentally-safe anti-fire chemical liquid on property surfaces before presence of wild fire
US11794044B2 (en) 2017-12-02 2023-10-24 Mighty Fire Breaker Llc Method of proactively forming and maintaining GPS-tracked and mapped environmentally-clean chemical firebreaks and fire protection zones that inhibit fire ignition and flame spread in the presence of wild fire
US11633636B2 (en) 2017-12-02 2023-04-25 Mighty Fire Breaker Llc Wireless neighborhood wildfire defense system network supporting proactive protection of life and property in a neighborhood through GPS-tracking and mapping of environmentally-clean anti-fire (AF) chemical liquid spray applied to the property before wild fires reach the neighborhood
US11654314B2 (en) 2017-12-02 2023-05-23 Mighty Fire Breaker Llc Method of managing the proactive spraying of environment ally-clean anti-fire chemical liquid on GPS-specified property surfaces so as to inhibit fire ignition and flame spread in the presence of wild fire
US10814150B2 (en) 2017-12-02 2020-10-27 M-Fire Holdings Llc Methods of and system networks for wireless management of GPS-tracked spraying systems deployed to spray property and ground surfaces with environmentally-clean wildfire inhibitor to protect and defend against wildfires
US10653904B2 (en) 2017-12-02 2020-05-19 M-Fire Holdings, Llc Methods of suppressing wild fires raging across regions of land in the direction of prevailing winds by forming anti-fire (AF) chemical fire-breaking systems using environmentally clean anti-fire (AF) liquid spray applied using GPS-tracking techniques
US11642555B2 (en) 2017-12-02 2023-05-09 Mighty Fire Breaker Llc Wireless wildfire defense system network for proactively defending homes and neighborhoods against wild fires by spraying environmentally-clean anti-fire chemical liquid on property and buildings and forming GPS-tracked and mapped chemical fire breaks about the property
US11697041B2 (en) 2017-12-02 2023-07-11 Mighty Fire Breaker Llc Method of proactively defending combustible property against fire ignition and flame spread in the presence of wild fire
US11638844B2 (en) 2017-12-02 2023-05-02 Mighty Fire Breaker Llc Method of proactively protecting property from wild fire by spraying environmentally-clean anti-fire chemical liquid on property surfaces prior to wild fire arrival using remote sensing and GPS-tracking and mapping enabled spraying
US11654313B2 (en) 2017-12-02 2023-05-23 Mighty Fire Breaker Llc Wireless communication network, GPS-tracked ground-based spraying tanker vehicles and command center configured for proactively spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire
US11395931B2 (en) 2017-12-02 2022-07-26 Mighty Fire Breaker Llc Method of and system network for managing the application of fire and smoke inhibiting compositions on ground surfaces before the incidence of wild-fires, and also thereafter, upon smoldering ambers and ashes to reduce smoke and suppress fire re-ignition
US11400324B2 (en) 2017-12-02 2022-08-02 Mighty Fire Breaker Llc Method of protecting life, property, homes and businesses from wild fire by proactively applying environmentally-clean anti-fire (AF) chemical liquid spray in advance of wild fire arrival and managed using a wireless network with GPS-tracking
US11730987B2 (en) 2017-12-02 2023-08-22 Mighty Fire Breaker Llc GPS tracking and mapping wildfire defense system network for proactively defending homes and neighborhoods against threat of wild fire by spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire
US11707639B2 (en) 2017-12-02 2023-07-25 Mighty Fire Breaker Llc Wireless communication network, GPS-tracked mobile spraying systems, and a command system configured for proactively spraying environmentally-safe anti-fire chemical liquid on combustible property surfaces to protect property against fire ignition and flame spread in the presence of wild fire
US11697039B2 (en) 2017-12-02 2023-07-11 Mighty Fire Breaker Llc Wireless communication network, GPS-tracked back-pack spraying systems and command center configured for proactively spraying environmentally-safe anti-fire chemical liquid on property surfaces to inhibit fire ignition and flame spread in the presence of wild fire
US11865390B2 (en) 2017-12-03 2024-01-09 Mighty Fire Breaker Llc Environmentally-clean water-based fire inhibiting biochemical compositions, and methods of and apparatus for applying the same to protect property against wildfire
US11865394B2 (en) 2017-12-03 2024-01-09 Mighty Fire Breaker Llc Environmentally-clean biodegradable water-based concentrates for producing fire inhibiting and fire extinguishing liquids for fighting class A and class B fires
US11826592B2 (en) 2018-01-09 2023-11-28 Mighty Fire Breaker Llc Process of forming strategic chemical-type wildfire breaks on ground surfaces to proactively prevent fire ignition and flame spread, and reduce the production of smoke in the presence of a wild fire
CN108365268A (en) * 2018-02-10 2018-08-03 安徽唯诗杨信息科技有限公司 A kind of lithium ion battery aging equipment and aging method
JPWO2020174929A1 (en) * 2019-02-28 2021-12-16 富士フイルム株式会社 Heat storage member, electronic device, manufacturing method of heat storage member, composition for forming protective layer
WO2020174929A1 (en) * 2019-02-28 2020-09-03 富士フイルム株式会社 Heat storage member, electronic device, heat storage member manufacturing method, and protective layer-forming composition
JP7161027B2 (en) 2019-02-28 2022-10-25 富士フイルム株式会社 Heat storage member, electronic device, method for producing heat storage member, composition for forming protective layer
CN113498381A (en) * 2019-02-28 2021-10-12 富士胶片株式会社 Heat storage member, electronic device, method for producing heat storage member, and composition for forming protective layer
US11959010B2 (en) 2019-03-25 2024-04-16 Fujifilm Corporation Heat storage composition, heat storage member, electronic device, and manufacturing method of heat storage member
JPWO2020196239A1 (en) * 2019-03-25 2020-10-01
JP7163484B2 (en) 2019-03-25 2022-10-31 富士フイルム株式会社 Heat storage composition, heat storage member, electronic device, method for producing heat storage member
CN113646412A (en) * 2019-03-25 2021-11-12 富士胶片株式会社 Heat storage composition, heat storage member, electronic device, and method for producing heat storage member
WO2020196239A1 (en) * 2019-03-25 2020-10-01 富士フイルム株式会社 Heat-storage composition, heat-storage member, electronic device, and method for producing heat-storage member
US11911643B2 (en) 2021-02-04 2024-02-27 Mighty Fire Breaker Llc Environmentally-clean fire inhibiting and extinguishing compositions and products for sorbing flammable liquids while inhibiting ignition and extinguishing fire
WO2022264979A1 (en) 2021-06-14 2022-12-22 パナソニックホールディングス株式会社 Cold storage material
CN113914457A (en) * 2021-11-26 2022-01-11 苏州栖地工程设计顾问有限公司 Main body structure and main body rapid cooling device of green assembly type building

Similar Documents

Publication Publication Date Title
WO2012147677A1 (en) Heat storage member, and storage container and building using same
CN104919623B (en) Method for the accumulator of portable dam and for manufacturing the accumulator for portable dam
CN207587926U (en) The heat absorption heat insulation structural of battery module
US5370814A (en) Dry powder mixes comprising phase change materials
US7571758B2 (en) Building conditioning technique using phase change materials in the roof structure
CN101605573B (en) Method and device for fire prevention and/or fire extinguishing in enclosed spaces
CN110935128B (en) Fireproof cooling hydrogel and preparation method thereof
MXPA04008768A (en) Refrigerator.
CN103125039A (en) Electrochemical energy store having a multiplicity of electrochemical cells
US20120196040A1 (en) Refractory material impregnated with phase change material, method for making the same, and temperature controlled chamber formed by the same
KR20190040624A (en) Flame Retardant Cable Tray for Fire Spreading Prevention
CN102405270A (en) Phase change material composition
JP2011254906A (en) Fire extinguishing apparatus
CN103155140A (en) Disaster resistant server enclosure with cold thermal storage device and server cooling device
KR20130028842A (en) Vacuum heat insulation material and apparatus using the same
KR20180039834A (en) Capsule containing fire extinguishing compositions and coating composition containing the same
US20140196917A1 (en) Method and system to avoid fire of an electrical device
KR102509175B1 (en) Distributing board with fire spread prevention function
CN211037531U (en) Fireproof sound-insulation wallboard
WO1999020946A1 (en) Explosion preventing apparatus for refrigerating machines using inflammable refrigerant
CN211924971U (en) Fire control is with high temperature resistant fire prevention valve
CN212466889U (en) Multifunctional accidental explosion fire-extinguishing protection device for battery
CN113975676A (en) Multifunctional accidental explosion fire-extinguishing protection device for battery
JP2006153350A (en) Refrigerator
JP5274684B1 (en) In-vehicle fire extinguishing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP