WO2012147641A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012147641A1
WO2012147641A1 PCT/JP2012/060684 JP2012060684W WO2012147641A1 WO 2012147641 A1 WO2012147641 A1 WO 2012147641A1 JP 2012060684 W JP2012060684 W JP 2012060684W WO 2012147641 A1 WO2012147641 A1 WO 2012147641A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
phosphor
display device
crystal display
Prior art date
Application number
PCT/JP2012/060684
Other languages
French (fr)
Japanese (ja)
Inventor
博敏 安永
壮史 石田
真也 門脇
一弥 甲斐田
龍三 結城
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012147641A1 publication Critical patent/WO2012147641A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a direct type backlight.
  • Patent Document 1 is a prior art document that discloses a liquid crystal display device including a phosphor layer including a phosphor that absorbs light from a light source and emits predetermined light.
  • a liquid crystal display device described in Japanese Patent Application Laid-Open No. 2010-250259 (Patent Document 1) includes a pair of substrates that sandwich a liquid crystal layer, a backlight device disposed on the back surface on one side of the pair of substrates, and a pair of substrates And a polarizing plate formed on the other side of the substrate.
  • a light emitting diode that emits light having a peak wavelength in the range of 380 nm to 420 nm is used as a backlight device. Fluorescence that emits light of a predetermined color by absorbing light having a peak wavelength in the range of 380 nm to 420 nm for each unit pixel on the side opposite to the liquid crystal layer side of the polarizing plate formed on the other side of the pair of substrates.
  • a body layer is arranged.
  • a filter layer that reflects or absorbs light having a wavelength of 420 nm or less is formed on the surface of the phosphor layer opposite to the liquid crystal layer.
  • the light irradiated from the light source and passed through the liquid crystal layer is not incident on the desired subpixel and is not incident on the surrounding subpixels. May be incident.
  • this so-called crosstalk occurs, the displayed image is disturbed and the light that is effectively used is reduced, so that the light use efficiency is lowered.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid crystal display device capable of displaying a high-quality image while improving light utilization efficiency and reducing power consumption.
  • a liquid crystal display device includes a liquid crystal layer, a first substrate and a second substrate facing each other across the liquid crystal layer, and a light source located on the opposite side of the first substrate facing the liquid crystal layer.
  • the liquid crystal display device includes a plurality of types of pixel phosphors that are located on the opposite side of the second substrate facing the liquid crystal layer and that absorb light emitted from the light source and emit light of different colors.
  • a phosphor layer that emits light of a predetermined color for each unit pixel, a first polarizing plate positioned between the light source and the liquid crystal layer, and a second polarizing plate positioned between the phosphor layer and the liquid crystal layer, Is provided.
  • the phosphor layer includes light-shielding portions that are arranged in a grid around each pixel phosphor.
  • Each of the pixel phosphors has a rectangular outer shape composed of a short side and a long side having a length three times the short side in plan view.
  • the distance between the phosphor layer and the liquid crystal layer is not more than twice the length of the short side of the pixel phosphor.
  • the light source emits visible light having a peak wavelength in a range of 380 nm to 420 nm.
  • the plurality of types of pixel phosphors include a red phosphor that absorbs visible light and emits red light and green light, each of which constitutes a plurality of subpixels included in a unit pixel.
  • a green phosphor that emits light and a blue phosphor that emits blue light are included in a unit pixel.
  • the light source emits blue light.
  • the plurality of types of pixel phosphors include a red phosphor that absorbs blue light and emits red light and green light that respectively constitute a plurality of subpixels included in the unit pixel.
  • a green phosphor that emits light.
  • a fluorescent substance layer contains the scatterer which scatters the blue light which comprises the sub pixel contained in a unit pixel.
  • the liquid crystal display device further includes a color filter that is located on the opposite side of the phosphor layer from the side facing the liquid crystal layer and that is arranged with a desired color as a color emitted from the subpixel. .
  • the liquid crystal display device includes red light and green light at a position of a subpixel that emits red light and green light on the side opposite to the side facing the liquid crystal layer of the phosphor layer. Is further provided with a shielding layer that transmits blue light.
  • the liquid crystal display device further includes a lens that is positioned between the first substrate and the light source, and that condenses the light emitted from the light source onto the sub-pixels.
  • the present invention it is possible to display a high-quality image while improving light utilization efficiency and reducing power consumption.
  • FIG. 2 is a partially enlarged plan view of the liquid crystal display device of FIG. 1 as viewed from an arrow II line arrow direction.
  • FIG. 4 is a cross-sectional view schematically showing a state in which light is emitted from a pixel phosphor by light emitted from a light source in the liquid crystal display device according to the embodiment.
  • the liquid crystal display device It is the enlarged view which looked at the lens of the modification from the arrow XII direction of FIG.
  • it is a partial cross-sectional view schematically showing a state in which light is output from a scatterer by light emitted from a light source.
  • FIG. 1 is a cross-sectional view showing a configuration of a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a partially enlarged plan view of the liquid crystal display device of FIG. 1 viewed from the direction of the arrow II line.
  • the liquid crystal display device 100 includes a liquid crystal layer 130, and a first substrate 120 and a second substrate 140 that face each other with the liquid crystal layer 130 interposed therebetween.
  • substrate 140 are bonded together by the sealing material which is not shown in figure.
  • the first substrate 120 is formed with a TFT (Thin Film Transistor) (not shown) and a transparent electrode.
  • a transparent electrode (not shown) is formed on the second substrate 140.
  • the first substrate 120 and the second substrate 140 are formed of a glass substrate.
  • the first substrate 120 and the second substrate 140 are not limited to this, and are formed of a material having translucency and capable of sealing liquid crystal. If it is.
  • the liquid crystal display device 100 is positioned on the side opposite to the side facing the liquid crystal layer 130 of the second substrate 140 and the light source 110 located on the side opposite to the side facing the liquid crystal layer 130 of the first substrate 120.
  • a phosphor layer 170 that includes three types of pixel phosphors 170R, 170G, and 170B that absorb light emitted from the light source 110 and emit light of different colors, and emit light of a predetermined color for each unit pixel. Prepare. Note that the number of pixel phosphors may be four or more, and may be two or more.
  • an LED Light Emitting Diode
  • the light source 110 is not limited to this, and any light that can excite phosphors such as ultraviolet rays to emit light may be used.
  • the light source 110 is not limited to the LED, and for example, a fluorescent tube may be used.
  • the plural types of pixel phosphors absorb the visible light and emit red light so as to emit white light or arbitrary color light for each unit pixel, and green fluorescence that emits green light.
  • Body 170G and blue phosphor 170B emitting blue light.
  • the red phosphor 170R, the green phosphor 170G, and the blue phosphor 170B constitute a plurality of subpixels included in the unit pixel.
  • Eu-activated sulfide-based red phosphor was used as the red phosphor 170R.
  • Eu-activated sulfide green phosphor was used as the green phosphor 170G.
  • Eu-activated phosphate blue phosphor was used as the blue phosphor 170B.
  • the red phosphor 170R, the green phosphor 170G, and the blue phosphor 170B are not limited to the above-described materials, and are composed of phosphors that emit light of a desired color upon receiving light from the light source 110. It only has to be done.
  • the liquid crystal display device 100 includes a first polarizing plate 150 positioned between the light source 110 and the liquid crystal layer 130 and a second polarizing plate 160 positioned between the phosphor layer 170 and the liquid crystal layer 130.
  • the first polarizing plate 150 is located between the first substrate 120 and the light source 110, but is not limited to this position, and is located between the first substrate 120 and the liquid crystal layer 130. May be.
  • the second polarizing plate 160 is located between the second substrate 140 and the phosphor layer 170, but is not limited to this position, and may be located between the liquid crystal layer 130 and the second substrate 140.
  • the phosphor layer 170 includes light-shielding portions 170 ⁇ / b> M that are arranged in a grid surrounding each of the pixel phosphors 170 ⁇ / b> R, 170 ⁇ / b> G, and 170 ⁇ / b> B.
  • Each of the pixel phosphors 170R, 170G, and 170B has a rectangular outer shape that includes a short side and a long side that is three times as long as the short side in plan view.
  • the long side length L 2 is about three times the short side length L 1 .
  • the distance D between the phosphor layer 170 and the liquid crystal layer 130 is not more than twice the short side length L 1 of each of the pixel phosphors 170R, 170G, and 170B.
  • the thickness of the two substrates 140 is determined.
  • FIG. 3 is a cross-sectional view schematically showing a state in which light is emitted from the pixel phosphor by the light emitted from the light source in the liquid crystal display device according to the present embodiment.
  • FIG. 3 only a part of the light emitted from the light source is exemplified and indicated by arrows.
  • the light 200, 201, 202 emitted from the light source 110 travels toward the liquid crystal layer 130.
  • the light 200 travels in a direction orthogonal to the liquid crystal layer 130.
  • the light 201 travels diagonally upward to the left in the figure.
  • the light 202 travels diagonally upward to the right in the figure.
  • Part of the light that has passed through the liquid crystal layer 130 and entered the phosphor layer 170 is absorbed by the pixel phosphors 170R, 170G, and 170B.
  • the pixel phosphors 170R, 170G, and 170B that have absorbed the light are excited to emit light in their respective colors.
  • the red phosphor 170R emits red light 210, 211, 212 as shown in FIG.
  • the light emitted from the red phosphor 170R is scattered light.
  • the light 210 travels in a direction orthogonal to the phosphor layer 170.
  • the light 211 travels obliquely upward to the left in the figure.
  • the light 212 travels obliquely upward to the right in the drawing.
  • the light that has passed through the liquid crystal layer 130 and entered the phosphor layer 170 is the opposite side of the phosphor layer 170 that faces the liquid crystal layer 130. It is desirable to be absorbed by a sorting filter (not shown) located in the area. It is not essential to provide a sorting filter. Note that the sorting filter does not absorb light emitted from the pixel phosphors 170R, 170G, and 170B.
  • the sorting filter can be replaced by a color filter described later.
  • a pseudo white light can be obtained by emitting light from each of the red phosphor 170R, the green phosphor 170G, and the blue phosphor 170B. Further, by selecting a phosphor that emits light, the liquid crystal display device 100 having unit pixels that emit an arbitrary color can be obtained.
  • the distance D between the phosphor layer 170 and the liquid crystal layer 130 is set to be not more than twice the short side length L 1 of each of the pixel phosphors 170R, 170G, and 170B.
  • a simulation result indicating that the light use efficiency can be maintained high will be described.
  • FIG. 4 is a cross-sectional view showing the configuration of the light source unit of the simulation model.
  • the simulation model light source unit 300 includes a light source 310, a lower substrate 320, a light absorber 330, an upper substrate 340, and a phosphor 370.
  • the full width at half maximum of the light intensity of the first light source is 5 °.
  • the full width at half maximum of the light intensity of the second light source is 15 °.
  • the full width at half maximum of the light intensity of the third light source is 27 °.
  • the full width at half maximum of the light intensity of the fourth light source is 34 °.
  • the directivity of the light source 310 decreases in order from the first to the fourth.
  • the lower substrate 320 is disposed at a predetermined interval from the light source 310.
  • the thickness d 1 of the lower substrate 320 was 0.5 mm.
  • a light absorber 330 having an opening 331 is disposed on the lower substrate 320.
  • the light absorber 330 has an opening 331 of 0.12 mm ⁇ 0.38 mm in plan view, and all of the light emitted from the light source 310 other than the light passing through the opening 331 is light. It is set to be absorbed by the absorber 330.
  • An upper substrate 340 is disposed on the light absorber 330.
  • a phosphor 370 constituting one subpixel is arranged on the upper substrate 340.
  • the phosphor 370 is formed with the same dimensions as the opening 331 of the light absorber 330. In a direction orthogonal to the upper surface of the light absorber 330, the projection area where the phosphor 370 is projected onto the upper surface of the light absorber 330 and the opening 331 overlap.
  • the thickness d 2 of the upper substrate 340 is varied from 0.1mm to 0.7 mm, were simulated incident efficiency (%).
  • the light incident efficiency (%) is the ratio of the light that has entered the phosphor 370 out of the light that has passed through the opening 331.
  • the light distribution of the light source 310 is an ideal Gaussian distribution.
  • FIG. 5 is a graph showing the relationship between the thickness of the upper substrate and the light incident efficiency for each light source having a different directivity.
  • the vertical axis indicates the light incident efficiency (%)
  • the horizontal axis indicates the thickness d 2 (mm) of the upper substrate.
  • the result of the first light source with the full width at half maximum of the light intensity of 5 ° is a solid line
  • the result of the second light source with the full width at half maximum of the light intensity of 15 ° is a dotted line
  • the full width at half maximum of the light intensity is 27 °.
  • the result of the third light source is indicated by a one-dot chain line
  • the result of the fourth light source having a full width at half maximum of 34 ° is indicated by a two-dot chain line.
  • the light incident efficiency increases as the thickness d 2 of the upper substrate 340 decreases.
  • the light incident efficiency is 53% when the thickness d 2 of the upper substrate 340 is 0.7 mm, whereas the light incident efficiency is when the thickness d 2 of the upper substrate 340 is 0.1 mm. Has improved to 86%.
  • the light incident efficiency is 63.2% when the thickness d 2 of the upper substrate 340 is 0.7 mm, whereas the light incident efficiency is 63.2% when the thickness d 2 of the upper substrate 340 is 0.1 mm.
  • the light efficiency is improved to 88%.
  • the change in the light incident efficiency due to the difference in the thickness d 2 of the upper substrate 340 is small.
  • the full width at half maximum of the light intensity of the light source was changed from 5 ° to 35 °, and the light incident efficiency (%) was simulated.
  • FIG. 6 is a graph showing the relationship between the full width at half maximum of the light intensity of the light source and the light incident efficiency for each thickness of the upper substrate.
  • the vertical axis represents the light incident efficiency (%)
  • the horizontal axis represents the full width at half maximum (°) of the light intensity of the light source.
  • the result when the upper substrate thickness is 0.1 mm is a solid line
  • the result when the upper substrate thickness is 0.25 mm is the dotted line
  • the result when the upper substrate thickness is 0.5 mm Is shown by a one-dot chain line
  • the result when the thickness of the upper substrate is 0.7 mm is shown by a two-dot chain line.
  • the light incident efficiency is 80% or more for a light source having a full width at half maximum of 30 ° or less. If the thickness d 2 of the upper substrate 340 is 0.1 mm or less, the change in the light incident efficiency due to the difference in the full width at half maximum of the light intensity is small.
  • the relationship between the thickness d 2 of the upper substrate 340 and the full width at half maximum of the light intensity of the light source 310 and the light incident efficiency depends on the sizes of the opening 331 and the phosphor 370.
  • the phosphor 370 has a rectangular outer shape composed of a short side and a long side having a length about three times shorter than the short side in a plan view as in this experimental example
  • the thickness d of the upper substrate 340 If 2 is about twice or less the length of the short side of the phosphor 370, the light incident efficiency can be maintained at 80% or more in a light source having a full width at half maximum of light intensity of 30 ° or less.
  • the thickness d 2 of the upper substrate 340 corresponds to the distance D between the lower surface of the phosphor layer 170 and the upper surface of the liquid crystal layer 130. Therefore, when the distance D between the phosphor layer 170 and the liquid crystal layer 130 is not more than twice the short side length L 1 of the pixel phosphors 170R, 170G, 170B, the full width at half maximum of the light intensity is 30 ° or less. The light incident efficiency can be maintained at 80% or more in the light source.
  • the liquid crystal display device 100 having the above-described configuration can display a high-quality image with reduced crosstalk.
  • liquid crystal display device 400 according to the second embodiment is related to the first embodiment only in that the blue phosphor 170B included in the phosphor layer 170 replaces the scatterer 471 and that the blue light is emitted from the light source. Since it is different from the liquid crystal display device 100, description of other configurations will not be repeated.
  • FIG. 7 is a cross-sectional view showing a configuration of a liquid crystal display device according to Embodiment 2 of the present invention. In FIG. 7, only a part of the light emitted from the light source is illustrated and indicated by arrows. As shown in FIG. 7, in the liquid crystal display device 400 according to Embodiment 2 of the present invention, an LED that emits blue light is used as the light source 410.
  • the liquid crystal display device 400 includes a phosphor layer 470.
  • the phosphor layer 470 includes two types of pixel phosphors 170R and 170G that absorb blue light emitted from the light source 410 and emit light of different colors, and emit light of a predetermined color for each unit pixel. Specifically, the phosphor layer 470 includes a red phosphor 170R that absorbs blue light and emits red light, and a green phosphor 170G that emits green light. The red phosphor 170R and the green phosphor 170G constitute a plurality of subpixels included in the unit pixel.
  • the phosphor layer 470 includes a scatterer 471 that scatters the blue light emitted from the light source 410.
  • the scatterer 471 constitutes a subpixel included in a unit pixel.
  • the scatterer 471 is configured by dispersing and arranging TiO 2 particles.
  • the scatterer 471 is not limited to this, and may be made of a material exhibiting scattering characteristics such as hollow silica.
  • the light 203, 204, 205 emitted from the light source 410 travels toward the liquid crystal layer 130.
  • the light 203 travels in a direction orthogonal to the liquid crystal layer 130.
  • the light 204 travels obliquely upward to the left in the figure.
  • the light 205 travels diagonally upward to the right in the drawing.
  • Part of the light that has passed through the liquid crystal layer 130 and entered the phosphor layer 470 is absorbed by the pixel phosphors 170R and 170G.
  • the pixel phosphors 170R and 170G that have absorbed light are excited to emit light in their respective colors.
  • the scatterer 471 outputs blue light as scattered light 213, 214, and 215, as shown in FIG.
  • the scattered light 213 travels in a direction orthogonal to the phosphor layer 470.
  • Scattered light 214 travels obliquely upward to the left in the figure.
  • the scattered light 215 travels obliquely upward to the right in the drawing.
  • the sorting filter is provided only at the positions of the pixel phosphors 170R and 170G. In other words, it is desirable that no sorting filter is provided at the position of the scatterer 471.
  • the pseudo white light can be obtained by emitting light from each of the red phosphor 170R, the green phosphor 170G, and the scatterer 471.
  • a phosphor that emits light and a scatterer that outputs a liquid crystal display device 400 having unit pixels that emit any color can be obtained.
  • the blue pixel portion of the phosphor layer 470 may be opened without providing the scatterer 471.
  • liquid crystal display device 400 having the above-described configuration light utilization efficiency can be improved and power consumption can be reduced. Further, the liquid crystal display device 400 having the above configuration can display a high-quality image with reduced crosstalk.
  • liquid crystal display device 500 according to the third embodiment is different from the liquid crystal display device 400 according to the second embodiment only in that the color filter 570 is provided, and thus the description of other configurations will not be repeated.
  • FIG. 8 is a cross-sectional view showing a configuration of a liquid crystal display device according to Embodiment 3 of the present invention.
  • the liquid crystal display device 500 according to the third embodiment of the present invention further includes a color filter 570 in which a desired color is arranged as a color emitted from the subpixel.
  • the color filter 570 is located on the opposite side of the phosphor layer 470 from the side facing the liquid crystal layer 130.
  • the red filter portion 570R of the color filter 570 is disposed at the position of the red phosphor 170R.
  • the green filter portion 570G of the color filter 570 is disposed at the position of the green phosphor 170G.
  • the blue filter portion 570B of the color filter 570 is disposed.
  • the black filter portion 570M of the color filter 570 is disposed at the position of the light shielding portion 170M.
  • the color filter 570 By arranging the color filter 570, the light that has passed through the phosphor layer 470 passes through the color filter 570 and is emitted in a desired color. Therefore, when the chromaticity of light emitted from the pixel phosphors 170R and 170G and the scatterer 471 is insufficient as light desired for each subpixel, the chromaticity of the light can be optimized by the color filter 570.
  • liquid crystal display device 500 having the above configuration it is possible to improve light utilization efficiency and reduce power consumption. Further, the liquid crystal display device 500 having the above configuration can display a high-quality image with reduced crosstalk.
  • the liquid crystal display device 600 according to the fourth embodiment is different from the liquid crystal display device 400 according to the second embodiment only in that the shielding layer 680 is provided. Therefore, the description of the other configurations will not be repeated.
  • FIG. 9 is a cross-sectional view showing a configuration of a liquid crystal display device according to Embodiment 4 of the present invention.
  • the liquid crystal display device 600 according to the fourth embodiment of the present invention includes subpixels that emit red light and green light on the side opposite to the side facing the liquid crystal layer 130 of the phosphor layer 470.
  • a shielding layer 680 that transmits red light and green light and shields blue light is further provided.
  • the shielding layer 680 is disposed at the positions of the red phosphor 170R and the green phosphor 170G.
  • the shielding layer 680 reflects or absorbs blue light.
  • the shielding layer 680 is composed of a layer containing a yellow pigment, for example.
  • the shielding layer 680 when the light having a wavelength that can excite the pixel phosphors 170R and 170G is included in the external light, the light can be shielded by the shielding layer 680, and thus the pixel phosphors 170R and 170G. Can be suppressed from being excited by the light. Further, it is possible to suppress the deterioration of the pixel phosphors 170R and 170G due to the light.
  • the shielding layer 680 may also be used as a sorting filter.
  • liquid crystal display device 600 having the above-described configuration it is possible to improve light utilization efficiency and reduce power consumption. Further, the liquid crystal display device 600 having the above configuration can display a high-quality image with reduced crosstalk.
  • liquid crystal display device 700 according to the fifth embodiment is different from the liquid crystal display device 400 according to the second embodiment only in that a lens is provided, and thus the description of the other components will not be repeated.
  • FIG. 10 is a cross-sectional view showing a configuration of a liquid crystal display device according to Embodiment 5 of the present invention.
  • FIG. 11 is an enlarged view of the lens viewed from the direction of the arrow XI in FIG.
  • FIG. 12 is an enlarged view of the lens of the modification example viewed from the direction of the arrow XII.
  • the liquid crystal display device 700 is located between the first substrate 120 and the light source 410 and collects the light emitted from the light source 410 onto the sub-pixels. 790, 791 are further provided.
  • lenses 790 and 791 are provided on the main surface of the first polarizing plate 150 facing the light source 410.
  • the lenses 790 and 791 have a convex shape on the light source 410 side. Further, the lenses 790 and 791 are formed with the same width as the width of the short side of the subpixel. Further, the lenses 790 and 791 are arranged so as to correspond to all the subpixels.
  • the lens 790 extends in a direction parallel to the long side of the subpixel so as to straddle the plurality of subpixels.
  • the lens 791 is formed with the same length as the long side of the subpixel.
  • FIG. 13 is a partial cross-sectional view schematically showing a state in which light is output from a scatterer by light irradiated from a light source in the liquid crystal display device according to the present embodiment.
  • FIG. 13 only a part of the light emitted from the light source is exemplified and indicated by arrows.
  • light 206, 207, 208 emitted from the light source 410 travels toward the liquid crystal layer 130 while being collected by lenses 790, 791. At this time, the light 206 travels in a direction orthogonal to the liquid crystal layer 130. The light 207 travels diagonally upward to the left in the figure. The light 208 travels obliquely upward to the right in the drawing.
  • Part of the light that has passed through the liquid crystal layer 130 and entered the phosphor layer 470 is absorbed by the pixel phosphors 170R and 170G.
  • the pixel phosphors 170R and 170G that have absorbed light are excited to emit light in their respective colors.
  • the scatterer 471 outputs blue light as scattered light 216, 217, and 218, as shown in FIG.
  • Scattered light 216 travels in a direction orthogonal to phosphor layer 470.
  • Scattered light 217 travels obliquely upward to the left in the figure.
  • Scattered light 218 travels diagonally upward to the right in the drawing.
  • the light use efficiency can be improved.
  • a light source with high directivity is preferably used as the light source 410.
  • liquid crystal display device 700 having the above-described configuration it is possible to improve light utilization efficiency and reduce power consumption.
  • the liquid crystal display device 700 having the above structure can display a high-quality image with reduced crosstalk.
  • liquid crystal display device 110, 310, 410 light source, 120 first substrate, 130 liquid crystal layer, 140 second substrate, 150 first polarizing plate, 160 second polarizing plate, 170, 470 fluorescence Body layer, 170B blue phosphor, 170G green phosphor, 170M light shielding part, 170R red phosphor, 300 light source unit, 320 lower substrate, 330 light absorber, 331 opening, 340 upper substrate, 370 phosphor, 471 scattering Body, 570 color filter, 570B blue filter part, 570G green filter part, 570M black filter part, 570R red filter part, 680 shielding layer, 790, 791 lens.

Abstract

This liquid crystal display device is provided with a liquid crystal layer (130), a first substrate (120), a second substrate (140), and a light source (110). The liquid crystal display device is also provided with: a phosphor layer (170), which includes a plurality of kinds of pixel fluorescent bodies (170R, 170G, 170B), which absorb light emitted from the light source (110) and emit light of different colors, said phosphor layer emitting light of a predetermined color to each unit pixel; a first polarization plate (150); and a second polarization plate (160). The phosphor layer (170) includes light blocking sections (170M), which are positioned in a lattice shape by surrounding the circumference of each of the pixel fluorescent bodies (170R, 170G, 170B). Each of the pixel fluorescent bodies (170R, 170G, 170B) has a rectangular outer shape that is composed of a short side, and a long side having a length three times the length of the short side in planar view. A distance between the phosphor layer (170) and the liquid crystal layer (130) is double the length of the short side of the pixel fluorescent bodies (170R, 170G, 170B) or less.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関し、直下型方式のバックライトを有する液晶表示装置に関する。 The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a direct type backlight.
 光源からの光を吸収して所定の光を発する蛍光体を含む蛍光体層を備えた液晶表示装置を開示した先行文献として特開2010-250259号公報(特許文献1)がある。特開2010-250259号公報(特許文献1)に記載された液晶表示装置は、液晶層を挟持する一対の基板と、一対の基板の一方側の背面に配置されたバックライト装置と、一対の基板の他方側に形成された偏光板とを備える。 Japanese Patent Application Laid-Open No. 2010-250259 (Patent Document 1) is a prior art document that discloses a liquid crystal display device including a phosphor layer including a phosphor that absorbs light from a light source and emits predetermined light. A liquid crystal display device described in Japanese Patent Application Laid-Open No. 2010-250259 (Patent Document 1) includes a pair of substrates that sandwich a liquid crystal layer, a backlight device disposed on the back surface on one side of the pair of substrates, and a pair of substrates And a polarizing plate formed on the other side of the substrate.
 バックライト装置として、ピーク波長が380nm~420nmの範囲にある光を発する発光ダイオードが用いられている。一対の基板の他方側に形成された偏光板の液晶層側とは反対側に、単位ピクセル毎に、ピーク波長が380nm~420nmの範囲にある光を吸収して所定の色の光を発する蛍光体層が配置されている。蛍光体層の液晶層側とは反対側の面に、波長420nm以下の波長の光を反射または吸収するフィルター層が形成されている。 A light emitting diode that emits light having a peak wavelength in the range of 380 nm to 420 nm is used as a backlight device. Fluorescence that emits light of a predetermined color by absorbing light having a peak wavelength in the range of 380 nm to 420 nm for each unit pixel on the side opposite to the liquid crystal layer side of the polarizing plate formed on the other side of the pair of substrates. A body layer is arranged. A filter layer that reflects or absorbs light having a wavelength of 420 nm or less is formed on the surface of the phosphor layer opposite to the liquid crystal layer.
特開2010-250259号公報JP 2010-250259 A
 1対の基板のうち液晶層と蛍光体層との間に位置する基板が厚い場合、光源から照射されて液晶層を通過した光が所望のサブピクセルに入射せずにその周囲のサブピクセルに入射することがある。このいわゆるクロストークが発生すると、表示される画像が乱れるとともに、有効に利用される光が減少するため光利用効率が低下する。 When the substrate located between the liquid crystal layer and the phosphor layer is thick among the pair of substrates, the light irradiated from the light source and passed through the liquid crystal layer is not incident on the desired subpixel and is not incident on the surrounding subpixels. May be incident. When this so-called crosstalk occurs, the displayed image is disturbed and the light that is effectively used is reduced, so that the light use efficiency is lowered.
 本発明は上記の問題点に鑑みてなされたものであって、光利用効率を向上して消費電力を低減しつつ高品質の画像を表示できる、液晶表示装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid crystal display device capable of displaying a high-quality image while improving light utilization efficiency and reducing power consumption.
 本発明に基づく液晶表示装置は、液晶層と、液晶層を挟んで互いに対向する第1基板および第2基板と、第1基板の液晶層と面する側とは反対側に位置する光源とを備える。また、液晶表示装置は、第2基板の液晶層と面する側とは反対側に位置し、光源から照射される光を吸収してそれぞれ異なる色の光を発する複数種の画素蛍光体を含み、単位ピクセル毎に所定の色の光を発する蛍光体層と、光源と液晶層との間に位置する第1偏光板と、蛍光体層と液晶層との間に位置する第2偏光板とを備える。蛍光体層は、画素蛍光体のそれぞれの周囲を囲んで格子状に位置する遮光部を含む。画素蛍光体の各々は、平面視において、短辺と該短辺の3倍の長さを有する長辺とからなる矩形状の外形を有する。蛍光体層と液晶層との間の距離が画素蛍光体の短辺の長さの2倍以下である。 A liquid crystal display device according to the present invention includes a liquid crystal layer, a first substrate and a second substrate facing each other across the liquid crystal layer, and a light source located on the opposite side of the first substrate facing the liquid crystal layer. Prepare. The liquid crystal display device includes a plurality of types of pixel phosphors that are located on the opposite side of the second substrate facing the liquid crystal layer and that absorb light emitted from the light source and emit light of different colors. A phosphor layer that emits light of a predetermined color for each unit pixel, a first polarizing plate positioned between the light source and the liquid crystal layer, and a second polarizing plate positioned between the phosphor layer and the liquid crystal layer, Is provided. The phosphor layer includes light-shielding portions that are arranged in a grid around each pixel phosphor. Each of the pixel phosphors has a rectangular outer shape composed of a short side and a long side having a length three times the short side in plan view. The distance between the phosphor layer and the liquid crystal layer is not more than twice the length of the short side of the pixel phosphor.
 本発明の一形態においては、光源が、380nm以上420nm以下の範囲にピーク波長を有する可視光を照射する。 In one embodiment of the present invention, the light source emits visible light having a peak wavelength in a range of 380 nm to 420 nm.
 本発明の一形態においては、複数種の画素蛍光体は、単位ピクセルに含まれる複数のサブピクセルをそれぞれ構成する、上記可視光を吸収して赤色の光を発する赤色蛍光体と緑色の光を発する緑色蛍光体と青色の光を発する青色蛍光体とを含む。 In one aspect of the present invention, the plurality of types of pixel phosphors include a red phosphor that absorbs visible light and emits red light and green light, each of which constitutes a plurality of subpixels included in a unit pixel. A green phosphor that emits light and a blue phosphor that emits blue light.
 本発明の一形態においては、光源が、青色の光を照射する。
 本発明の一形態においては、複数種の画素蛍光体は、単位ピクセルに含まれる複数のサブピクセルをそれぞれ構成する、青色の光を吸収して赤色の光を発する赤色蛍光体と緑色の光を発する緑色蛍光体とを含む。蛍光体層は、単位ピクセルに含まれるサブピクセルを構成する、青色の光を散乱させる散乱体を含む。
In one embodiment of the present invention, the light source emits blue light.
In one aspect of the present invention, the plurality of types of pixel phosphors include a red phosphor that absorbs blue light and emits red light and green light that respectively constitute a plurality of subpixels included in the unit pixel. A green phosphor that emits light. A fluorescent substance layer contains the scatterer which scatters the blue light which comprises the sub pixel contained in a unit pixel.
 本発明の一形態においては、液晶表示装置は、蛍光体層の液晶層と面する側とは反対側に位置し、サブピクセルから発する色として所望される色が配色されたカラーフィルタをさらに備える。 In one embodiment of the present invention, the liquid crystal display device further includes a color filter that is located on the opposite side of the phosphor layer from the side facing the liquid crystal layer and that is arranged with a desired color as a color emitted from the subpixel. .
 本発明の一形態においては、液晶表示装置は、蛍光体層の液晶層と面する側とは反対側において赤色の光および緑色の光を発するサブピクセルの位置に、赤色の光および緑色の光は透過させて青色の光は遮蔽する遮蔽層をさらに備える。 In one embodiment of the present invention, the liquid crystal display device includes red light and green light at a position of a subpixel that emits red light and green light on the side opposite to the side facing the liquid crystal layer of the phosphor layer. Is further provided with a shielding layer that transmits blue light.
 本発明の一形態においては、液晶表示装置は、第1基板と光源との間に位置し、光源から照射された光をサブピクセルに集光させるレンズをさらに備える。 In one embodiment of the present invention, the liquid crystal display device further includes a lens that is positioned between the first substrate and the light source, and that condenses the light emitted from the light source onto the sub-pixels.
 本発明によれば、光利用効率を向上して消費電力を低減しつつ高品質の画像を表示できる。 According to the present invention, it is possible to display a high-quality image while improving light utilization efficiency and reducing power consumption.
本発明の実施形態1に係る液晶表示装置の構成を示す断面図である。It is sectional drawing which shows the structure of the liquid crystal display device which concerns on Embodiment 1 of this invention. 図1の液晶表示装置を矢印II線矢印方向から見た一部拡大平面図である。FIG. 2 is a partially enlarged plan view of the liquid crystal display device of FIG. 1 as viewed from an arrow II line arrow direction. 同実施形態に係る液晶表示装置において、光源から照射された光により画素蛍光体から光が発する状態を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a state in which light is emitted from a pixel phosphor by light emitted from a light source in the liquid crystal display device according to the embodiment. シミュレーション用モデルの光源ユニットの構成を示す断面図である。It is sectional drawing which shows the structure of the light source unit of the model for simulation. 上側基板の厚さと入光効率との関係を指向性の異なる光源ごとに示すグラフである。It is a graph which shows the relationship between the thickness of an upper board | substrate, and light-incidence efficiency for every light source from which directivity differs. 光源の光強度の半値全幅と入光効率との関係を上側基板の厚さごとに示すグラフである。It is a graph which shows the relationship between the full width at half maximum of the light intensity of a light source, and light incident efficiency for every thickness of an upper board | substrate. 本発明の実施形態2に係る液晶表示装置の構成を示す断面図である。It is sectional drawing which shows the structure of the liquid crystal display device which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る液晶表示装置の構成を示す断面図である。It is sectional drawing which shows the structure of the liquid crystal display device which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る液晶表示装置の構成を示す断面図である。It is sectional drawing which shows the structure of the liquid crystal display device which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る液晶表示装置の構成を示す断面図である。It is sectional drawing which shows the structure of the liquid crystal display device which concerns on Embodiment 5 of this invention. 図10の矢印XI方向からレンズを見た拡大図である。It is the enlarged view which looked at the lens from the arrow XI direction of FIG. 図10の矢印XII方向から変形例のレンズを見た拡大図である。It is the enlarged view which looked at the lens of the modification from the arrow XII direction of FIG. 同実施形態に係る液晶表示装置において、光源から照射された光により散乱体から光が出力する状態を模式的に示す一部断面図である。In the liquid crystal display device according to the embodiment, it is a partial cross-sectional view schematically showing a state in which light is output from a scatterer by light emitted from a light source.
 以下、本発明の実施形態1に係る液晶表示装置について説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。 Hereinafter, the liquid crystal display device according to Embodiment 1 of the present invention will be described. In the following description of the embodiments, the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 (実施形態1)
 図1は、本発明の実施形態1に係る液晶表示装置の構成を示す断面図である。図2は、図1の液晶表示装置を矢印II線矢印方向から見た一部拡大平面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a configuration of a liquid crystal display device according to Embodiment 1 of the present invention. FIG. 2 is a partially enlarged plan view of the liquid crystal display device of FIG. 1 viewed from the direction of the arrow II line.
 図1に示すように、本発明の実施形態1に係る液晶表示装置100は、液晶層130と、液晶層130を挟んで互いに対向する第1基板120および第2基板140とを備える。第1基板120と第2基板140とは、図示しないシール材により貼り合わされている。 As shown in FIG. 1, the liquid crystal display device 100 according to the first embodiment of the present invention includes a liquid crystal layer 130, and a first substrate 120 and a second substrate 140 that face each other with the liquid crystal layer 130 interposed therebetween. The 1st board | substrate 120 and the 2nd board | substrate 140 are bonded together by the sealing material which is not shown in figure.
 第1基板120には、図示しないTFT(Thin Film Transistor)および透明電極などが形成されている。第2基板140には、図示しない透明電極などが形成されている。第1基板120および第2基板140は、本実施形態においてはガラス基板で構成されているが、これに限られず、透光性を有し、かつ、液晶を封止できる材料から形成された基板であればよい。 The first substrate 120 is formed with a TFT (Thin Film Transistor) (not shown) and a transparent electrode. A transparent electrode (not shown) is formed on the second substrate 140. In the present embodiment, the first substrate 120 and the second substrate 140 are formed of a glass substrate. However, the first substrate 120 and the second substrate 140 are not limited to this, and are formed of a material having translucency and capable of sealing liquid crystal. If it is.
 また、液晶表示装置100は、第1基板120の液晶層130と面する側とは反対側に位置する光源110と、第2基板140の液晶層130と面する側とは反対側に位置し、光源110から照射される光を吸収してそれぞれ異なる色の光を発する3種類の画素蛍光体170R,170G,170Bを含み、単位ピクセル毎に所定の色の光を発する蛍光体層170とを備える。なお、画素蛍光体の種類は4種類以上でもよく、2種類以上であればよい。 In addition, the liquid crystal display device 100 is positioned on the side opposite to the side facing the liquid crystal layer 130 of the second substrate 140 and the light source 110 located on the side opposite to the side facing the liquid crystal layer 130 of the first substrate 120. A phosphor layer 170 that includes three types of pixel phosphors 170R, 170G, and 170B that absorb light emitted from the light source 110 and emit light of different colors, and emit light of a predetermined color for each unit pixel. Prepare. Note that the number of pixel phosphors may be four or more, and may be two or more.
 本実施形態においては、光源110として、380nm以上420nm以下の範囲にピーク波長を有する可視光を照射するLED(Light Emitting Diode)を用いた。ただし、光源が照射する光はこれに限られず、紫外線など蛍光体を励起して発光させることができる光であればよい。また、光源110としては、LEDに限られず、たとえば蛍光管などを用いてもよい。 In this embodiment, an LED (Light Emitting Diode) that emits visible light having a peak wavelength in a range of 380 nm to 420 nm is used as the light source 110. However, the light emitted from the light source is not limited to this, and any light that can excite phosphors such as ultraviolet rays to emit light may be used. Further, the light source 110 is not limited to the LED, and for example, a fluorescent tube may be used.
 複数種の画素蛍光体は、単位ピクセル毎に白色の光または任意の色の光を発するように、上記可視光を吸収して赤色の光を発する赤色蛍光体170Rと緑色の光を発する緑色蛍光体170Gと青色の光を発する青色蛍光体170Bとを含む。赤色蛍光体170Rと緑色蛍光体170Gと青色蛍光体170Bとは、単位ピクセルに含まれる複数のサブピクセルをそれぞれ構成する。 The plural types of pixel phosphors absorb the visible light and emit red light so as to emit white light or arbitrary color light for each unit pixel, and green fluorescence that emits green light. Body 170G and blue phosphor 170B emitting blue light. The red phosphor 170R, the green phosphor 170G, and the blue phosphor 170B constitute a plurality of subpixels included in the unit pixel.
 赤色蛍光体170Rとしては、Eu付活硫化物系赤色蛍光体を用いた。緑色蛍光体170Gとしては、Eu付活硫化物系緑色蛍光体を用いた。青色蛍光体170Bとしては、Eu付活燐酸塩系青色蛍光体を用いた。ただし、赤色蛍光体170Rと緑色蛍光体170Gと青色蛍光体170Bとは、上記の材料から構成される場合に限られず、光源110からの光を受けて所望の色の光を発する蛍光体から構成されていればよい。 Eu-activated sulfide-based red phosphor was used as the red phosphor 170R. Eu-activated sulfide green phosphor was used as the green phosphor 170G. Eu-activated phosphate blue phosphor was used as the blue phosphor 170B. However, the red phosphor 170R, the green phosphor 170G, and the blue phosphor 170B are not limited to the above-described materials, and are composed of phosphors that emit light of a desired color upon receiving light from the light source 110. It only has to be done.
 液晶表示装置100は、光源110と液晶層130との間に位置する第1偏光板150と、蛍光体層170と液晶層130との間に位置する第2偏光板160とを備える。 The liquid crystal display device 100 includes a first polarizing plate 150 positioned between the light source 110 and the liquid crystal layer 130 and a second polarizing plate 160 positioned between the phosphor layer 170 and the liquid crystal layer 130.
 本実施形態においては、第1偏光板150は、第1基板120と光源110との間に位置しているが、この位置に限られず、第1基板120と液晶層130との間に位置してもよい。 In the present embodiment, the first polarizing plate 150 is located between the first substrate 120 and the light source 110, but is not limited to this position, and is located between the first substrate 120 and the liquid crystal layer 130. May be.
 第2偏光板160は、第2基板140と蛍光体層170との間に位置しているが、この位置に限られず、液晶層130と第2基板140との間に位置してもよい。 The second polarizing plate 160 is located between the second substrate 140 and the phosphor layer 170, but is not limited to this position, and may be located between the liquid crystal layer 130 and the second substrate 140.
 図2に示すように、蛍光体層170は、画素蛍光体170R,170G,170Bのそれぞれの周囲を囲んで格子状に位置する遮光部170Mを含む。画素蛍光体170R,170G,170Bの各々は、平面視において、短辺と該短辺の3倍の長さを有する長辺とからなる矩形状の外形を有している。本実施形態においては、長辺の長さL2が短辺の長さL1の約3倍である。 As shown in FIG. 2, the phosphor layer 170 includes light-shielding portions 170 </ b> M that are arranged in a grid surrounding each of the pixel phosphors 170 </ b> R, 170 </ b> G, and 170 </ b> B. Each of the pixel phosphors 170R, 170G, and 170B has a rectangular outer shape that includes a short side and a long side that is three times as long as the short side in plan view. In the present embodiment, the long side length L 2 is about three times the short side length L 1 .
 本実施形態においては、蛍光体層170と液晶層130との間の距離Dが、画素蛍光体170R,170G,170Bの各々の短辺の長さL1の2倍以下となるように、第2基板140の厚さが決定されている。 In the present embodiment, the distance D between the phosphor layer 170 and the liquid crystal layer 130 is not more than twice the short side length L 1 of each of the pixel phosphors 170R, 170G, and 170B. The thickness of the two substrates 140 is determined.
 図3は、本実施形態に係る液晶表示装置において、光源から照射された光により画素蛍光体から光が発する状態を模式的に示す断面図である。図3においては、光源から照射された光のうちの一部のみを例示して矢印で示している。 FIG. 3 is a cross-sectional view schematically showing a state in which light is emitted from the pixel phosphor by the light emitted from the light source in the liquid crystal display device according to the present embodiment. In FIG. 3, only a part of the light emitted from the light source is exemplified and indicated by arrows.
 図3に示すように、光源110から照射された光200,201,202は、液晶層130に向かって進行する。このとき、光200は、液晶層130に対して直交する方向に進行する。光201は、図中の左斜め上方に向けて進行する。光202は、図中の右斜め上方に向けて進行する。 As shown in FIG. 3, the light 200, 201, 202 emitted from the light source 110 travels toward the liquid crystal layer 130. At this time, the light 200 travels in a direction orthogonal to the liquid crystal layer 130. The light 201 travels diagonally upward to the left in the figure. The light 202 travels diagonally upward to the right in the figure.
 液晶層130を通過して蛍光体層170に入射した光の一部は、画素蛍光体170R,170G,170Bに吸収される。光を吸収した画素蛍光体170R,170G,170Bは、励起してそれぞれの色で発光する。 Part of the light that has passed through the liquid crystal layer 130 and entered the phosphor layer 170 is absorbed by the pixel phosphors 170R, 170G, and 170B. The pixel phosphors 170R, 170G, and 170B that have absorbed the light are excited to emit light in their respective colors.
 たとえば、赤色蛍光体170Rは、図3に示すように、赤色の光210,211,212を発する。赤色蛍光体170Rから発光する光は散乱光である。光210は蛍光体層170に対して直交する方向に進行する。光211は、図中の左斜め上方に向けて進行する。光212は、図中の右斜め上方に向けて進行する。 For example, the red phosphor 170R emits red light 210, 211, 212 as shown in FIG. The light emitted from the red phosphor 170R is scattered light. The light 210 travels in a direction orthogonal to the phosphor layer 170. The light 211 travels obliquely upward to the left in the figure. The light 212 travels obliquely upward to the right in the drawing.
 液晶層130を通過して蛍光体層170に入射した光のうち、画素蛍光体170R,170G,170Bに吸収されなかった光は、蛍光体層170の液晶層130と面する側とは反対側に位置する、図示しない選別フィルターにより吸収されることが望ましい。選別フィルターを設けることは必須ではない。なお、選別フィルターは、画素蛍光体170R,170G,170Bから発せられた光は吸収しない。また、選別フィルターは、後述するカラーフィルタによって代用することが可能である。 Of the light that has passed through the liquid crystal layer 130 and entered the phosphor layer 170, the light that has not been absorbed by the pixel phosphors 170R, 170G, and 170B is the opposite side of the phosphor layer 170 that faces the liquid crystal layer 130. It is desirable to be absorbed by a sorting filter (not shown) located in the area. It is not essential to provide a sorting filter. Note that the sorting filter does not absorb light emitted from the pixel phosphors 170R, 170G, and 170B. The sorting filter can be replaced by a color filter described later.
 赤色蛍光体170R、緑色蛍光体170Gおよび青色蛍光体170Bの各々から光が発せられることにより、擬似的に白色光を得ることができる。また、発光する蛍光体を選択することにより、任意の色を発する単位ピクセルを有する液晶表示装置100を得ることができる。 A pseudo white light can be obtained by emitting light from each of the red phosphor 170R, the green phosphor 170G, and the blue phosphor 170B. Further, by selecting a phosphor that emits light, the liquid crystal display device 100 having unit pixels that emit an arbitrary color can be obtained.
 以下、蛍光体層170と液晶層130との間の距離Dを、画素蛍光体170R,170G,170Bの各々の短辺の長さL1の2倍以下にすることにより、液晶表示装置100の光の利用効率を高く維持できることを示すシミュレーション結果について説明する。 Hereinafter, the distance D between the phosphor layer 170 and the liquid crystal layer 130 is set to be not more than twice the short side length L 1 of each of the pixel phosphors 170R, 170G, and 170B. A simulation result indicating that the light use efficiency can be maintained high will be described.
 図4は、シミュレーション用モデルの光源ユニットの構成を示す断面図である。図4に示すように、シミュレーション用モデルの光源ユニット300は、光源310と、下側基板320と、光吸収体330と、上側基板340と、蛍光体370とを備えている。 FIG. 4 is a cross-sectional view showing the configuration of the light source unit of the simulation model. As shown in FIG. 4, the simulation model light source unit 300 includes a light source 310, a lower substrate 320, a light absorber 330, an upper substrate 340, and a phosphor 370.
 光源310としては、指向性の異なる光源を4つ設定した。第1の光源の光強度の半値全幅は、5°である。第2の光源の光強度の半値全幅は、15°である。第3の光源の光強度の半値全幅は、27°である。第4の光源の光強度の半値全幅は、34°である。第1から第4まで順に、光源310の指向性が低くなっている。 As the light source 310, four light sources having different directivities were set. The full width at half maximum of the light intensity of the first light source is 5 °. The full width at half maximum of the light intensity of the second light source is 15 °. The full width at half maximum of the light intensity of the third light source is 27 °. The full width at half maximum of the light intensity of the fourth light source is 34 °. The directivity of the light source 310 decreases in order from the first to the fourth.
 下側基板320は、光源310から所定の間隔を置いて配置されている。下側基板320の厚さd1は、0.5mmとした。下側基板320上に、開口部331を有する光吸収体330が配置されている。 The lower substrate 320 is disposed at a predetermined interval from the light source 310. The thickness d 1 of the lower substrate 320 was 0.5 mm. A light absorber 330 having an opening 331 is disposed on the lower substrate 320.
 光吸収体330は、平面視において、0.12mm×0.38mmの開口部331を有しており、光源310から照射された光のうち、開口部331を通過する光以外の光は全て光吸収体330に吸収されるように設定されている。光吸収体330上に、上側基板340が配置されている。 The light absorber 330 has an opening 331 of 0.12 mm × 0.38 mm in plan view, and all of the light emitted from the light source 310 other than the light passing through the opening 331 is light. It is set to be absorbed by the absorber 330. An upper substrate 340 is disposed on the light absorber 330.
 上側基板340上に、1つのサブピクセルを構成する蛍光体370が配置されている。蛍光体370は、光吸収体330の開口部331と同一の寸法で形成されている。光吸収体330の上面と直交する方向において、蛍光体370を光吸収体330の上面に投影した投影領域と開口部331とは重なっている。 On the upper substrate 340, a phosphor 370 constituting one subpixel is arranged. The phosphor 370 is formed with the same dimensions as the opening 331 of the light absorber 330. In a direction orthogonal to the upper surface of the light absorber 330, the projection area where the phosphor 370 is projected onto the upper surface of the light absorber 330 and the opening 331 overlap.
 上記の光源ユニット300において、上側基板340の厚さd2を0.1mmから0.7mmまで変化させて、入光効率(%)をシミュレーションした。なお、入光効率(%)とは、開口部331を通過した光のうち、蛍光体370に入射した光の割合である。光源310の配光分布は、理想的なガウス分布とした。 In the light source unit 300, the thickness d 2 of the upper substrate 340 is varied from 0.1mm to 0.7 mm, were simulated incident efficiency (%). The light incident efficiency (%) is the ratio of the light that has entered the phosphor 370 out of the light that has passed through the opening 331. The light distribution of the light source 310 is an ideal Gaussian distribution.
 図5は、上側基板の厚さと入光効率との関係を指向性の異なる光源ごとに示すグラフである。図5においては、縦軸に入光効率(%)、横軸に上側基板の厚さd2(mm)を示している。 FIG. 5 is a graph showing the relationship between the thickness of the upper substrate and the light incident efficiency for each light source having a different directivity. In FIG. 5, the vertical axis indicates the light incident efficiency (%), and the horizontal axis indicates the thickness d 2 (mm) of the upper substrate.
 光強度の半値全幅が5°である第1の光源の結果を実線で、光強度の半値全幅が15°である第2の光源の結果を点線で、光強度の半値全幅が27°である第3の光源の結果を1点鎖線で、光強度の半値全幅が34°である第4の光源の結果を2点鎖線で示している。 The result of the first light source with the full width at half maximum of the light intensity of 5 ° is a solid line, the result of the second light source with the full width at half maximum of the light intensity of 15 ° is a dotted line, and the full width at half maximum of the light intensity is 27 °. The result of the third light source is indicated by a one-dot chain line, and the result of the fourth light source having a full width at half maximum of 34 ° is indicated by a two-dot chain line.
 図5に示すように、指向性の低い第3の光源および第4の光源では、上側基板340の厚さd2が薄くなるに従って、入光効率(%)が高くなる。第4の光源では、上側基板340の厚さd2が0.7mmのとき入光効率が53%であるのに対して、上側基板340の厚さd2が0.1mmのとき入光効率は86%まで向上している。 As shown in FIG. 5, in the third light source and the fourth light source with low directivity, the light incident efficiency (%) increases as the thickness d 2 of the upper substrate 340 decreases. In the fourth light source, the light incident efficiency is 53% when the thickness d 2 of the upper substrate 340 is 0.7 mm, whereas the light incident efficiency is when the thickness d 2 of the upper substrate 340 is 0.1 mm. Has improved to 86%.
 第3の光源では、上側基板340の厚さd2が0.7mmのとき入光効率が63.2%であるのに対して、上側基板340の厚さd2が0.1mmのとき入光効率は88%まで向上している。指向性の高い第1の光源および第2の光源では、上側基板340の厚さd2の違いによる入光効率の変化は小さい。 In the third light source, the light incident efficiency is 63.2% when the thickness d 2 of the upper substrate 340 is 0.7 mm, whereas the light incident efficiency is 63.2% when the thickness d 2 of the upper substrate 340 is 0.1 mm. The light efficiency is improved to 88%. In the first light source and the second light source with high directivity, the change in the light incident efficiency due to the difference in the thickness d 2 of the upper substrate 340 is small.
 次に、上記の光源ユニット300において、光源の光強度の半値全幅を5°から35°まで変化させて、入光効率(%)をシミュレーションした。 Next, in the light source unit 300 described above, the full width at half maximum of the light intensity of the light source was changed from 5 ° to 35 °, and the light incident efficiency (%) was simulated.
 図6は、光源の光強度の半値全幅と入光効率との関係を上側基板の厚さごとに示すグラフである。図6においては、縦軸に入光効率(%)、横軸に光源の光強度の半値全幅(°)を示している。 FIG. 6 is a graph showing the relationship between the full width at half maximum of the light intensity of the light source and the light incident efficiency for each thickness of the upper substrate. In FIG. 6, the vertical axis represents the light incident efficiency (%), and the horizontal axis represents the full width at half maximum (°) of the light intensity of the light source.
 上側基板の厚さが0.1mmであるときの結果を実線で、上側基板の厚さが0.25mmであるときの結果を点線で、上側基板の厚さが0.5mmであるときの結果を一点鎖線で、上側基板の厚さが0.7mmであるときの結果を2点鎖線で示している。 The result when the upper substrate thickness is 0.1 mm is a solid line, the result when the upper substrate thickness is 0.25 mm is the dotted line, and the result when the upper substrate thickness is 0.5 mm Is shown by a one-dot chain line, and the result when the thickness of the upper substrate is 0.7 mm is shown by a two-dot chain line.
 図6に示すように、上側基板340の厚さd2が0.25mm以下であれば、光強度の半値全幅が30°以下の光源では入光効率が80%以上である。上側基板340の厚さd2が0.1mm以下であれば、光強度の半値全幅の違いによる入光効率の変化は小さい。 As shown in FIG. 6, when the thickness d 2 of the upper substrate 340 is 0.25 mm or less, the light incident efficiency is 80% or more for a light source having a full width at half maximum of 30 ° or less. If the thickness d 2 of the upper substrate 340 is 0.1 mm or less, the change in the light incident efficiency due to the difference in the full width at half maximum of the light intensity is small.
 上側基板340の厚さd2および光源310の光強度の半値全幅と入光効率との関係は、開口部331および蛍光体370の大きさに依存する。本実験例のように、蛍光体370が、平面視において、短辺と短辺の約3倍の長さを有する長辺とからなる矩形状の外形を有する場合、上側基板340の厚さd2が蛍光体370の短辺の長さの約2倍以下であれば、光強度の半値全幅が30°以下である光源において入光効率を80%以上維持することができる。 The relationship between the thickness d 2 of the upper substrate 340 and the full width at half maximum of the light intensity of the light source 310 and the light incident efficiency depends on the sizes of the opening 331 and the phosphor 370. When the phosphor 370 has a rectangular outer shape composed of a short side and a long side having a length about three times shorter than the short side in a plan view as in this experimental example, the thickness d of the upper substrate 340 If 2 is about twice or less the length of the short side of the phosphor 370, the light incident efficiency can be maintained at 80% or more in a light source having a full width at half maximum of light intensity of 30 ° or less.
 液晶表示装置100においては、上側基板340の厚さd2は、蛍光体層170の下面と液晶層130の上面との間の距離Dに相当する。そのため、蛍光体層170と液晶層130との間の距離Dが画素蛍光体170R,170G,170Bの短辺の長さL1の2倍以下である場合、光強度の半値全幅が30°以下である光源において入光効率を80%以上維持することができる。 In the liquid crystal display device 100, the thickness d 2 of the upper substrate 340 corresponds to the distance D between the lower surface of the phosphor layer 170 and the upper surface of the liquid crystal layer 130. Therefore, when the distance D between the phosphor layer 170 and the liquid crystal layer 130 is not more than twice the short side length L 1 of the pixel phosphors 170R, 170G, 170B, the full width at half maximum of the light intensity is 30 ° or less. The light incident efficiency can be maintained at 80% or more in the light source.
 よって、上記の構成を有する液晶表示装置100では、光利用効率を向上して消費電力を低減することができる。また、上記の構成を有する液晶表示装置100は、クロストークを低減して高品質の画像を表示できる。 Therefore, in the liquid crystal display device 100 having the above-described configuration, light utilization efficiency can be improved and power consumption can be reduced. Further, the liquid crystal display device 100 having the above configuration can display a high-quality image with reduced crosstalk.
 以下、本発明の実施形態2に係る液晶表示装置について説明する。なお、実施形態2に係る液晶表示装置400は、蛍光体層170に含まれる青色蛍光体170Bが散乱体471に代わる点、および、光源から青色の光が照射される点のみ実施形態1に係る液晶表示装置100と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a liquid crystal display device according to Embodiment 2 of the present invention will be described. Note that the liquid crystal display device 400 according to the second embodiment is related to the first embodiment only in that the blue phosphor 170B included in the phosphor layer 170 replaces the scatterer 471 and that the blue light is emitted from the light source. Since it is different from the liquid crystal display device 100, description of other configurations will not be repeated.
 (実施形態2)
 図7は、本発明の実施形態2に係る液晶表示装置の構成を示す断面図である。図7においては、光源から照射された光のうちの一部のみを例示して矢印で示している。図7に示すように、本発明の実施形態2に係る液晶表示装置400においては、光源410として、青色の光を照射するLEDを用いた。液晶表示装置400は、蛍光体層470を備えている。
(Embodiment 2)
FIG. 7 is a cross-sectional view showing a configuration of a liquid crystal display device according to Embodiment 2 of the present invention. In FIG. 7, only a part of the light emitted from the light source is illustrated and indicated by arrows. As shown in FIG. 7, in the liquid crystal display device 400 according to Embodiment 2 of the present invention, an LED that emits blue light is used as the light source 410. The liquid crystal display device 400 includes a phosphor layer 470.
 蛍光体層470は、光源410から照射される青色の光を吸収してそれぞれ異なる色の光を発する2種類の画素蛍光体170R,170Gを含み、単位ピクセル毎に所定の色の光を発する。具体的には、蛍光体層470は、青色の光を吸収して赤色の光を発する赤色蛍光体170Rと、緑色の光を発する緑色蛍光体170Gとを含む。赤色蛍光体170Rおよび緑色蛍光体170Gは、単位ピクセルに含まれる複数のサブピクセルをそれぞれ構成する。 The phosphor layer 470 includes two types of pixel phosphors 170R and 170G that absorb blue light emitted from the light source 410 and emit light of different colors, and emit light of a predetermined color for each unit pixel. Specifically, the phosphor layer 470 includes a red phosphor 170R that absorbs blue light and emits red light, and a green phosphor 170G that emits green light. The red phosphor 170R and the green phosphor 170G constitute a plurality of subpixels included in the unit pixel.
 また、蛍光体層470は、光源410から照射された青色の光を散乱させる散乱体471を含む。散乱体471は、単位ピクセルに含まれるサブピクセルを構成する。本実施形態においては、散乱体471は、TiO2粒子が分散配置されて構成されている。散乱体471は、これに限られず、たとえば中空シリカなど散乱特性を示す材料から構成されていればよい。 The phosphor layer 470 includes a scatterer 471 that scatters the blue light emitted from the light source 410. The scatterer 471 constitutes a subpixel included in a unit pixel. In the present embodiment, the scatterer 471 is configured by dispersing and arranging TiO 2 particles. The scatterer 471 is not limited to this, and may be made of a material exhibiting scattering characteristics such as hollow silica.
 図7に示すように、光源410から照射された光203,204,205は、液晶層130に向かって進行する。このとき、光203は、液晶層130に対して直交する方向に進行する。光204は、図中の左斜め上方に向けて進行する。光205は、図中の右斜め上方に向けて進行する。 As shown in FIG. 7, the light 203, 204, 205 emitted from the light source 410 travels toward the liquid crystal layer 130. At this time, the light 203 travels in a direction orthogonal to the liquid crystal layer 130. The light 204 travels obliquely upward to the left in the figure. The light 205 travels diagonally upward to the right in the drawing.
 液晶層130を通過して蛍光体層470に入射した光の一部は、画素蛍光体170R,170Gに吸収される。光を吸収した画素蛍光体170R,170Gは、励起してそれぞれの色で発光する。 Part of the light that has passed through the liquid crystal layer 130 and entered the phosphor layer 470 is absorbed by the pixel phosphors 170R and 170G. The pixel phosphors 170R and 170G that have absorbed light are excited to emit light in their respective colors.
 液晶層130を通過して散乱体471に入射した光の一部は、散乱体471により散乱される。たとえば、散乱体471は、図7に示すように、散乱光213,214,215として青色の光を出力する。散乱光213は蛍光体層470に対して直交する方向に進行する。散乱光214は、図中の左斜め上方に向けて進行する。散乱光215は、図中の右斜め上方に向けて進行する。 Part of the light that has passed through the liquid crystal layer 130 and entered the scatterer 471 is scattered by the scatterer 471. For example, the scatterer 471 outputs blue light as scattered light 213, 214, and 215, as shown in FIG. The scattered light 213 travels in a direction orthogonal to the phosphor layer 470. Scattered light 214 travels obliquely upward to the left in the figure. The scattered light 215 travels obliquely upward to the right in the drawing.
 本実施形態においては、選別フィルターが画素蛍光体170R,170Gの位置にのみ設けられていることが望ましい。言い換えると、散乱体471の位置には、選別フィルターが設けられていないことが望ましい。 In this embodiment, it is desirable that the sorting filter is provided only at the positions of the pixel phosphors 170R and 170G. In other words, it is desirable that no sorting filter is provided at the position of the scatterer 471.
 赤色蛍光体170R、緑色蛍光体170Gおよび散乱体471の各々から光が発せられることにより、擬似的に白色光を得ることができる。また、発光する蛍光体および出力する散乱体を選択することにより、任意の色を発する単位ピクセルを有する液晶表示装置400を得ることができる。 The pseudo white light can be obtained by emitting light from each of the red phosphor 170R, the green phosphor 170G, and the scatterer 471. In addition, by selecting a phosphor that emits light and a scatterer that outputs, a liquid crystal display device 400 having unit pixels that emit any color can be obtained.
 なお、光源410から照射される光が完全散乱光である場合、散乱体471を設けずに、蛍光体層470の青色画素部分を開口にしてもよい。 If the light emitted from the light source 410 is completely scattered light, the blue pixel portion of the phosphor layer 470 may be opened without providing the scatterer 471.
 上記の構成を有する液晶表示装置400においても、光利用効率を向上して消費電力を低減することができる。また、上記の構成を有する液晶表示装置400は、クロストークを低減して高品質の画像を表示できる。 Also in the liquid crystal display device 400 having the above-described configuration, light utilization efficiency can be improved and power consumption can be reduced. Further, the liquid crystal display device 400 having the above configuration can display a high-quality image with reduced crosstalk.
 以下、本発明の実施形態3に係る液晶表示装置について説明する。なお、実施形態3に係る液晶表示装置500は、カラーフィルタ570を備えている点のみ実施形態2に係る液晶表示装置400と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a liquid crystal display device according to Embodiment 3 of the present invention will be described. Note that the liquid crystal display device 500 according to the third embodiment is different from the liquid crystal display device 400 according to the second embodiment only in that the color filter 570 is provided, and thus the description of other configurations will not be repeated.
 (実施形態3)
 図8は、本発明の実施形態3に係る液晶表示装置の構成を示す断面図である。図8に示すように、本発明の実施形態3に係る液晶表示装置500は、サブピクセルから発する色として所望される色が配色されたカラーフィルタ570をさらに備える。カラーフィルタ570は、蛍光体層470の液晶層130と面する側とは反対側に位置している。
(Embodiment 3)
FIG. 8 is a cross-sectional view showing a configuration of a liquid crystal display device according to Embodiment 3 of the present invention. As shown in FIG. 8, the liquid crystal display device 500 according to the third embodiment of the present invention further includes a color filter 570 in which a desired color is arranged as a color emitted from the subpixel. The color filter 570 is located on the opposite side of the phosphor layer 470 from the side facing the liquid crystal layer 130.
 具体的には、赤色蛍光体170Rの位置に、カラーフィルタ570の赤色フィルタ部570Rが配置されている。緑色蛍光体170Gの位置に、カラーフィルタ570の緑色フィルタ部570Gが配置されている。散乱体471の位置に、カラーフィルタ570の青色フィルタ部570Bが配置されている。遮光部170Mの位置に、カラーフィルタ570の黒色フィルタ部570Mが配置されている。 Specifically, the red filter portion 570R of the color filter 570 is disposed at the position of the red phosphor 170R. The green filter portion 570G of the color filter 570 is disposed at the position of the green phosphor 170G. At the position of the scatterer 471, the blue filter portion 570B of the color filter 570 is disposed. The black filter portion 570M of the color filter 570 is disposed at the position of the light shielding portion 170M.
 カラーフィルタ570を配置することにより、蛍光体層470を通過した光は、カラーフィルタ570を通過して所望される色となって出射する。そのため、画素蛍光体170R,170Gおよび散乱体471から発する光の色度が各サブピクセルに所望される光として不十分である場合、カラーフィルタ570によりその光の色度を最適化できる。 By arranging the color filter 570, the light that has passed through the phosphor layer 470 passes through the color filter 570 and is emitted in a desired color. Therefore, when the chromaticity of light emitted from the pixel phosphors 170R and 170G and the scatterer 471 is insufficient as light desired for each subpixel, the chromaticity of the light can be optimized by the color filter 570.
 上記の構成を有する液晶表示装置500においても、光利用効率を向上して消費電力を低減することができる。また、上記の構成を有する液晶表示装置500は、クロストークを低減して高品質の画像を表示できる。 Also in the liquid crystal display device 500 having the above configuration, it is possible to improve light utilization efficiency and reduce power consumption. Further, the liquid crystal display device 500 having the above configuration can display a high-quality image with reduced crosstalk.
 以下、本発明の実施形態4に係る液晶表示装置について説明する。なお、実施形態4に係る液晶表示装置600は、遮蔽層680を備える点のみ実施形態2に係る液晶表示装置400と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a liquid crystal display device according to Embodiment 4 of the present invention will be described. The liquid crystal display device 600 according to the fourth embodiment is different from the liquid crystal display device 400 according to the second embodiment only in that the shielding layer 680 is provided. Therefore, the description of the other configurations will not be repeated.
 (実施形態4)
 図9は、本発明の実施形態4に係る液晶表示装置の構成を示す断面図である。図9に示すように、本発明の実施形態4に係る液晶表示装置600は、蛍光体層470の液晶層130と面する側とは反対側において赤色の光および緑色の光を発するサブピクセルの位置に、赤色の光および緑色の光は透過させて青色の光は遮蔽する遮蔽層680をさらに備える。
(Embodiment 4)
FIG. 9 is a cross-sectional view showing a configuration of a liquid crystal display device according to Embodiment 4 of the present invention. As shown in FIG. 9, the liquid crystal display device 600 according to the fourth embodiment of the present invention includes subpixels that emit red light and green light on the side opposite to the side facing the liquid crystal layer 130 of the phosphor layer 470. In the position, a shielding layer 680 that transmits red light and green light and shields blue light is further provided.
 具体的には、赤色蛍光体170Rおよび緑色蛍光体170Gの位置に、遮蔽層680が配置されている。遮蔽層680は、青色の光を反射または吸収する。遮蔽層680は、たとえば、黄色顔料を含む層から構成されている。 Specifically, the shielding layer 680 is disposed at the positions of the red phosphor 170R and the green phosphor 170G. The shielding layer 680 reflects or absorbs blue light. The shielding layer 680 is composed of a layer containing a yellow pigment, for example.
 遮蔽層680を配置することにより、外光に画素蛍光体170R,170Gを励起可能な波長の光が含まれている場合に、遮蔽層680でその光を遮蔽できるため、画素蛍光体170R,170Gがその光によって励起されることを抑制できる。また、その光によって画素蛍光体170R,170Gが劣化することも抑制できる。なお、遮蔽層680を選別フィルターと兼用してもよい。 By disposing the shielding layer 680, when the light having a wavelength that can excite the pixel phosphors 170R and 170G is included in the external light, the light can be shielded by the shielding layer 680, and thus the pixel phosphors 170R and 170G. Can be suppressed from being excited by the light. Further, it is possible to suppress the deterioration of the pixel phosphors 170R and 170G due to the light. Note that the shielding layer 680 may also be used as a sorting filter.
 上記の構成を有する液晶表示装置600においても、光利用効率を向上して消費電力を低減することができる。また、上記の構成を有する液晶表示装置600は、クロストークを低減して高品質の画像を表示できる。 Also in the liquid crystal display device 600 having the above-described configuration, it is possible to improve light utilization efficiency and reduce power consumption. Further, the liquid crystal display device 600 having the above configuration can display a high-quality image with reduced crosstalk.
 以下、本発明の実施形態5に係る液晶表示装置について説明する。なお、実施形態5に係る液晶表示装置700は、レンズを備える点のみ実施形態2に係る液晶表示装置400と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a liquid crystal display device according to Embodiment 5 of the present invention will be described. Note that the liquid crystal display device 700 according to the fifth embodiment is different from the liquid crystal display device 400 according to the second embodiment only in that a lens is provided, and thus the description of the other components will not be repeated.
 (実施形態5)
 図10は、本発明の実施形態5に係る液晶表示装置の構成を示す断面図である。図11は、図10の矢印XI方向からレンズを見た拡大図である。図12は、矢印XII方向から変形例のレンズを見た拡大図である。
(Embodiment 5)
FIG. 10 is a cross-sectional view showing a configuration of a liquid crystal display device according to Embodiment 5 of the present invention. FIG. 11 is an enlarged view of the lens viewed from the direction of the arrow XI in FIG. FIG. 12 is an enlarged view of the lens of the modification example viewed from the direction of the arrow XII.
 図10に示すように、本発明の実施形態5に係る液晶表示装置700は、第1基板120と光源410との間に位置し、光源410から照射された光をサブピクセルに集光させるレンズ790,791をさらに備える。 As shown in FIG. 10, the liquid crystal display device 700 according to the fifth embodiment of the present invention is located between the first substrate 120 and the light source 410 and collects the light emitted from the light source 410 onto the sub-pixels. 790, 791 are further provided.
 本実施形態においては、第1偏光板150の光源410と面する側の主面にレンズ790,791が設けられている。レンズ790,791は、光源410側に凸状の形状を有している。また、レンズ790,791は、サブピクセルの短辺の幅と同一の幅で形成されている。さらに、レンズ790,791は、全てのサブピクセルに対応するように配置されている。 In the present embodiment, lenses 790 and 791 are provided on the main surface of the first polarizing plate 150 facing the light source 410. The lenses 790 and 791 have a convex shape on the light source 410 side. Further, the lenses 790 and 791 are formed with the same width as the width of the short side of the subpixel. Further, the lenses 790 and 791 are arranged so as to correspond to all the subpixels.
 図11に示すように、本実施形態においては、レンズ790は、複数のサブピクセルに跨るようにサブピクセルの長辺に平行な方向に延在している。本実施形態の変形例においては、図12に示すように、レンズ791は、サブピクセルの長辺の長さと同一の長さで形成されている。 As shown in FIG. 11, in the present embodiment, the lens 790 extends in a direction parallel to the long side of the subpixel so as to straddle the plurality of subpixels. In the modification of this embodiment, as shown in FIG. 12, the lens 791 is formed with the same length as the long side of the subpixel.
 図13は、本実施形態に係る液晶表示装置において、光源から照射された光により散乱体から光が出力する状態を模式的に示す一部断面図である。図13においては、光源から照射された光のうちの一部のみを例示して矢印で示している。 FIG. 13 is a partial cross-sectional view schematically showing a state in which light is output from a scatterer by light irradiated from a light source in the liquid crystal display device according to the present embodiment. In FIG. 13, only a part of the light emitted from the light source is exemplified and indicated by arrows.
 図13に示すように、光源410から照射された光206,207,208は、レンズ790,791によって集光されつつ液晶層130に向かって進行する。このとき、光206は、液晶層130に対して直交する方向に進行する。光207は、図中の左斜め上方に向けて進行する。光208は、図中の右斜め上方に向けて進行する。 As shown in FIG. 13, light 206, 207, 208 emitted from the light source 410 travels toward the liquid crystal layer 130 while being collected by lenses 790, 791. At this time, the light 206 travels in a direction orthogonal to the liquid crystal layer 130. The light 207 travels diagonally upward to the left in the figure. The light 208 travels obliquely upward to the right in the drawing.
 液晶層130を通過して蛍光体層470に入射した光の一部は、画素蛍光体170R,170Gに吸収される。光を吸収した画素蛍光体170R,170Gは、励起してそれぞれの色で発光する。 Part of the light that has passed through the liquid crystal layer 130 and entered the phosphor layer 470 is absorbed by the pixel phosphors 170R and 170G. The pixel phosphors 170R and 170G that have absorbed light are excited to emit light in their respective colors.
 液晶層130を通過して散乱体471に入射した光の一部は、散乱体471により散乱される。たとえば、散乱体471は、図13に示すように、散乱光216,217,218として青色の光を出力する。散乱光216は蛍光体層470に対して直交する方向に進行する。散乱光217は、図中の左斜め上方に向けて進行する。散乱光218は、図中の右斜め上方に向けて進行する。 Part of the light that has passed through the liquid crystal layer 130 and entered the scatterer 471 is scattered by the scatterer 471. For example, the scatterer 471 outputs blue light as scattered light 216, 217, and 218, as shown in FIG. Scattered light 216 travels in a direction orthogonal to phosphor layer 470. Scattered light 217 travels obliquely upward to the left in the figure. Scattered light 218 travels diagonally upward to the right in the drawing.
 本実施形態においては、サブピクセルに光源410から照射された光を集光できるため、光の利用効率を向上することができる。なお、光源410として、指向性の高い光源を用いることが好ましい。 In this embodiment, since the light emitted from the light source 410 to the sub-pixel can be condensed, the light use efficiency can be improved. Note that a light source with high directivity is preferably used as the light source 410.
 上記の構成を有する液晶表示装置700においても、光利用効率を向上して消費電力を低減することができる。また、上記の構成を有する液晶表示装置700は、クロストークを低減して高品質の画像を表示できる。 Also in the liquid crystal display device 700 having the above-described configuration, it is possible to improve light utilization efficiency and reduce power consumption. In addition, the liquid crystal display device 700 having the above structure can display a high-quality image with reduced crosstalk.
 なお、上記の実施形態において組合せ可能な構成をそれぞれ組合せすることは当然に想定される。 Note that it is naturally assumed that the configurations that can be combined in the above embodiment are combined.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 100,400,500,600,700 液晶表示装置、110,310,410 光源、120 第1基板、130 液晶層、140 第2基板、150 第1偏光板、160 第2偏光板、170,470 蛍光体層、170B 青色蛍光体、170G 緑色蛍光体、170M 遮光部、170R 赤色蛍光体、300 光源ユニット、320 下側基板、330 光吸収体、331 開口部、340 上側基板、370 蛍光体、471 散乱体、570 カラーフィルタ、570B 青色フィルタ部、570G 緑色フィルタ部、570M 黒色フィルタ部、570R 赤色フィルタ部、680 遮蔽層、790,791 レンズ。 100, 400, 500, 600, 700 liquid crystal display device, 110, 310, 410 light source, 120 first substrate, 130 liquid crystal layer, 140 second substrate, 150 first polarizing plate, 160 second polarizing plate, 170, 470 fluorescence Body layer, 170B blue phosphor, 170G green phosphor, 170M light shielding part, 170R red phosphor, 300 light source unit, 320 lower substrate, 330 light absorber, 331 opening, 340 upper substrate, 370 phosphor, 471 scattering Body, 570 color filter, 570B blue filter part, 570G green filter part, 570M black filter part, 570R red filter part, 680 shielding layer, 790, 791 lens.

Claims (8)

  1.  液晶層(130)と、
     前記液晶層(130)を挟んで互いに対向する第1基板(120)および第2基板(140)と、
     前記第1基板(120)の前記液晶層(130)と面する側とは反対側に位置する光源(110,410)と、
     前記第2基板(140)の前記液晶層(130)と面する側とは反対側に位置し、前記光源(110,410)から照射される光を吸収してそれぞれ異なる色の光を発する複数種の画素蛍光体を含み、単位ピクセル毎に所定の色の光を発する蛍光体層(170,470)と、
     前記光源(110,410)と前記液晶層(130)との間に位置する第1偏光板(150)と、
     前記蛍光体層(170,470)と前記液晶層(130)との間に位置する第2偏光板(160)と
    を備え、
     前記蛍光体層(170,470)は、前記画素蛍光体のそれぞれの周囲を囲んで格子状に位置する遮光部(170M)を含み、
     前記画素蛍光体の各々は、平面視において、短辺と該短辺の3倍の長さを有する長辺とからなる矩形状の外形を有し、
     前記蛍光体層(170,470)と前記液晶層(130)との間の距離が前記画素蛍光体の前記短辺の長さの2倍以下である、液晶表示装置。
    A liquid crystal layer (130);
    A first substrate (120) and a second substrate (140) facing each other across the liquid crystal layer (130);
    A light source (110, 410) located on the opposite side of the first substrate (120) from the side facing the liquid crystal layer (130);
    A plurality of second substrates (140) that are located on the opposite side of the second substrate (140) facing the liquid crystal layer (130) and that absorb light emitted from the light sources (110, 410) and emit light of different colors. A phosphor layer (170, 470) that includes a seed pixel phosphor and emits light of a predetermined color for each unit pixel;
    A first polarizing plate (150) positioned between the light source (110, 410) and the liquid crystal layer (130);
    A second polarizing plate (160) positioned between the phosphor layer (170, 470) and the liquid crystal layer (130),
    The phosphor layer (170, 470) includes a light shielding part (170M) positioned in a grid surrounding each pixel phosphor.
    Each of the pixel phosphors has a rectangular outer shape composed of a short side and a long side having a length three times the short side in plan view,
    The liquid crystal display device, wherein a distance between the phosphor layer (170, 470) and the liquid crystal layer (130) is not more than twice the length of the short side of the pixel phosphor.
  2.  前記光源(110)が、380nm以上420nm以下の範囲にピーク波長を有する可視光を照射する、請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the light source (110) emits visible light having a peak wavelength in a range of 380 nm to 420 nm.
  3.  前記複数種の画素蛍光体は、前記単位ピクセルに含まれる複数のサブピクセルをそれぞれ構成する、前記可視光を吸収して赤色の光を発する赤色蛍光体(170R)と緑色の光を発する緑色蛍光体(170G)と青色の光を発する青色蛍光体(170B)とを含む、請求項2に記載の液晶表示装置。 The plurality of types of pixel phosphors include a red phosphor (170R) that absorbs visible light and emits red light, and green phosphor that emits green light, which respectively constitute a plurality of subpixels included in the unit pixel. The liquid crystal display device according to claim 2, comprising a body (170G) and a blue phosphor (170B) that emits blue light.
  4.  前記光源(410)が、青色の光を照射する、請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the light source (410) emits blue light.
  5.  前記複数種の画素蛍光体は、前記単位ピクセルに含まれる複数のサブピクセルをそれぞれ構成する、前記青色の光を吸収して赤色の光を発する赤色蛍光体(170R)と緑色の光を発する緑色蛍光体(170G)とを含み、
     前記蛍光体層(470)は、前記単位ピクセルに含まれるサブピクセルを構成する、前記青色の光を散乱させる散乱体(471)を含む、請求項4に記載の液晶表示装置。
    The plurality of types of pixel phosphors include a red phosphor (170R) that absorbs blue light and emits red light, and constitutes a plurality of subpixels included in the unit pixel, and green that emits green light. Phosphor (170G),
    The liquid crystal display device according to claim 4, wherein the phosphor layer (470) includes a scatterer (471) that scatters the blue light and constitutes a sub-pixel included in the unit pixel.
  6.  前記蛍光体層(470)の前記液晶層(130)と面する側とは反対側に位置し、前記サブピクセルから発する色として所望される色が配色されたカラーフィルタ(570)をさらに備える、請求項3または5に記載の液晶表示装置。 A color filter (570) located on the opposite side of the phosphor layer (470) from the side facing the liquid crystal layer (130) and arranged with a desired color as a color emitted from the subpixel; The liquid crystal display device according to claim 3 or 5.
  7.  前記蛍光体層(470)の前記液晶層(130)と面する側とは反対側において赤色の光および緑色の光を発する前記サブピクセルの位置に、赤色の光および緑色の光は透過させて青色の光は遮蔽する遮蔽層(680)をさらに備える、請求項5に記載の液晶表示装置。 Red light and green light are transmitted through the position of the sub-pixel that emits red light and green light on the side opposite to the side facing the liquid crystal layer (130) of the phosphor layer (470). The liquid crystal display device according to claim 5, further comprising a shielding layer (680) that shields blue light.
  8.  前記第1基板(120)と前記光源(410)との間に位置し、前記光源(410)から照射された光を前記サブピクセルに集光させるレンズ(790,791)をさらに備える、請求項1から7のいずれかに記載の液晶表示装置。 The lens further comprising a lens (790, 791) positioned between the first substrate (120) and the light source (410), and condensing the light emitted from the light source (410) on the sub-pixel. The liquid crystal display device according to any one of 1 to 7.
PCT/JP2012/060684 2011-04-27 2012-04-20 Liquid crystal display device WO2012147641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011099404 2011-04-27
JP2011-099404 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147641A1 true WO2012147641A1 (en) 2012-11-01

Family

ID=47072161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060684 WO2012147641A1 (en) 2011-04-27 2012-04-20 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012147641A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255320A (en) * 2002-02-28 2003-09-10 Hitachi Ltd Liquid crystal display
JP2007042314A (en) * 2005-08-01 2007-02-15 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting device
JP2007079565A (en) * 2005-09-10 2007-03-29 Samsung Electronics Co Ltd Liquid crystal display
JP2010197791A (en) * 2009-02-26 2010-09-09 Sony Corp Color liquid crystal display assembly and photo-conversion device
JP2010250259A (en) * 2009-03-27 2010-11-04 Epson Imaging Devices Corp Liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255320A (en) * 2002-02-28 2003-09-10 Hitachi Ltd Liquid crystal display
JP2007042314A (en) * 2005-08-01 2007-02-15 Konica Minolta Holdings Inc Organic electroluminescent element, display device, and lighting device
JP2007079565A (en) * 2005-09-10 2007-03-29 Samsung Electronics Co Ltd Liquid crystal display
JP2010197791A (en) * 2009-02-26 2010-09-09 Sony Corp Color liquid crystal display assembly and photo-conversion device
JP2010250259A (en) * 2009-03-27 2010-11-04 Epson Imaging Devices Corp Liquid crystal display device

Similar Documents

Publication Publication Date Title
KR101652512B1 (en) Color liquid crystal display device assembly
TWI597546B (en) Photoluminescence color display
JP6377254B2 (en) Lighting device, display device, and television receiver
JP6131434B2 (en) Color conversion layer, organic EL light emitting display panel having color conversion layer, and liquid crystal display panel
JP5574359B2 (en) Liquid crystal display
TWI544620B (en) Display panel
JP6259443B2 (en) Liquid crystal display
WO2010106704A1 (en) Display panel and display device
WO2016143682A1 (en) Illumination device, display device, and television receiver
JP2009115924A (en) Color liquid crystal display device assembly
JP2020534560A5 (en)
JP2010156899A (en) Color liquid crystal display device assembly and light converting device
JP2009145657A (en) Color liquid crystal display assembly and light-emitting device
JP5906986B2 (en) LIGHTING DEVICE, ELECTRONIC DEVICE, AND PROJECTION TYPE DISPLAY DEVICE
WO2017191687A1 (en) Display device
JP2010151880A (en) Color liquid crystal display assembly and optical conversion device
WO2012147641A1 (en) Liquid crystal display device
JP2010134303A (en) Color liquid crystal display assembly
JP2010134270A (en) Color liquid crystal display device assembly, optical conversion device, luminescent particle layered structure, and forming method of luminescent particle layered structure
JP2010197791A (en) Color liquid crystal display assembly and photo-conversion device
WO2013183753A1 (en) Display device
JP5662815B2 (en) Color filter substrate and display device
JP2009115925A (en) Color liquid crystal display device assembly
WO2012073830A1 (en) Illumination device, display device and television receiving device
WO2016054618A1 (en) Filterless color display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12775944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12775944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP