WO2013183753A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2013183753A1
WO2013183753A1 PCT/JP2013/065792 JP2013065792W WO2013183753A1 WO 2013183753 A1 WO2013183753 A1 WO 2013183753A1 JP 2013065792 W JP2013065792 W JP 2013065792W WO 2013183753 A1 WO2013183753 A1 WO 2013183753A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor layer
polar angle
display device
phosphor
Prior art date
Application number
PCT/JP2013/065792
Other languages
French (fr)
Japanese (ja)
Inventor
博敏 安永
壮史 石田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013183753A1 publication Critical patent/WO2013183753A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell

Definitions

  • the present invention relates to a display device.
  • Patent Document 1 An example of a liquid crystal display element used as a light source that emits blue light is described in Japanese Patent Application Laid-Open No. 11-52371 (Patent Document 1).
  • the liquid crystal display element includes a back light source, a first polarizing layer disposed on the back light source, a first transparent substrate formed on the first polarizing layer, and a first transparent substrate formed on the first transparent substrate.
  • 1 transparent electrode the liquid crystal arrange
  • the 2nd transparent electrode arrange
  • the 2nd transparent substrate arrange
  • the liquid crystal display element includes a second polarizing layer disposed on the second transparent substrate, a phosphor layer formed on the second polarizing layer, and a third transparent substrate formed on the phosphor layer. Including.
  • the rear light source emits light in the blue region.
  • the phosphor layer includes a red light emitting phosphor that emits red light by light from the back light source, a green phosphor that emits green light by the light from the back light source, and a transparent film for allowing light from the back light source to pass through as it is. Including.
  • Such a liquid crystal display element is promising as a liquid crystal display device with high light utilization efficiency because it can significantly reduce the light absorption loss in the color filter.
  • a fluorescent excitation display is a device that displays blue or near-ultraviolet light, performs gradation adjustment by a shutter layer, and performs color conversion by a phosphor to perform color image display. Fluorescent excitation displays retain the advantages of ideally low power consumption and wide viewing angle compared to the current mainstream liquid crystal displays.
  • the emission wavelength range of the green phosphor and the wavelength range of the emitted light from the blue backlight are close, and part of the blue light from the blue backlight may pass through the green phosphor. As a result, there are cases where good outgoing light cannot be obtained.
  • the present invention has been made in view of the above-mentioned problems, and a main object thereof is to provide a display device capable of suppressing deterioration of display quality due to light transmitted through a phosphor layer.
  • the display device includes a light source unit, an optical shutter, a phosphor layer, and a filter.
  • the light source unit emits first light.
  • the optical shutter selectively emits light incident from the light source unit.
  • the phosphor layer is arranged so that light from the optical shutter is incident, and includes a phosphor that absorbs light incident from the optical shutter and fluoresces the second light.
  • the filter is disposed between the light source unit and the phosphor layer, and transmits light having a wavelength that maximizes the emission intensity of the first light, and suppresses transmission of light having a wavelength that maximizes the emission intensity of the second light. To do.
  • the polar angle ⁇ preferably, the polar angle ⁇ , the luminous intensity spectrum P ⁇ of the second light emitted from the phosphor layer at the polar angle ⁇ , the luminous intensity spectrum i ⁇ of the first light at the polar angle ⁇ , and the transmittance spectrum T of the filter.
  • the polar angle ⁇ and the luminous intensity l ⁇ of the emitted light from the phosphor layer at the polar angle ⁇ 0.90 ⁇
  • a ⁇ cos ⁇ is satisfied for an arbitrary real number A in the range of 0.91 times to 1.11 times the luminous intensity of the emitted light.
  • 0.93 ⁇ B ⁇ cos ⁇ ⁇ l ⁇ ⁇ 1.07 ⁇ B ⁇ cos ⁇ is satisfied for an arbitrary real number B in the range of 0.93 to 1.076 times the luminous intensity of the light emitted from.
  • the first light is blue light
  • the phosphor layer includes a green phosphor that emits green light
  • the filter is disposed between the light source unit and the green phosphor.
  • the display device includes a color filter that is disposed on the opposite side of the phosphor layer from the light source unit and selectively transmits light emitted from the phosphor layer.
  • the polar angle ⁇ preferably, the polar angle ⁇ , the luminous intensity spectrum P ⁇ of the second light emitted from the phosphor layer at the polar angle ⁇ , the luminous intensity spectrum i ⁇ of the first light at the polar angle ⁇ , and the transmittance spectrum T of the filter.
  • the polar angle ⁇ and the luminous intensity L ⁇ of the light transmitted through the color filter at the polar angle ⁇ are transmitted through the color filter at a polar angle of 0 ° in the range of ⁇ 85 ° ⁇ ⁇ ⁇ 85 °.
  • 0.93 ⁇ B ⁇ cos ⁇ ⁇ L ⁇ ⁇ 1.07 ⁇ B ⁇ cos ⁇ is satisfied for an arbitrary real number B in the range of 0.93 to 1.076 times the luminous intensity of the light.
  • the display device of the present invention it is possible to suppress the deterioration of the display quality due to the light transmitted through the phosphor layer and improve the display quality.
  • FIG. 1 is a cross-sectional view illustrating a display device according to a first embodiment. It is sectional drawing which shows the outline
  • a display device composed of RGB pixels when the output light from the B pixel has an error of 0% from the conditional expression, the white display chromaticity changes by ⁇ 0.02 or more when the RG deviates from the conditional expression. It is a graph which shows. It is a graph which shows the luminous intensity polar angle distribution of the emitted light from R fluorescent substance. It is a graph which shows the luminous intensity polar angle distribution of the emitted light from G fluorescent substance. It is a graph which shows luminous intensity polar angle distribution of the emitted light from the scattering material in B pixel.
  • 7 is a cross-sectional view illustrating a display device according to Embodiment 3.
  • FIG. FIG. 6 is a cross-sectional view illustrating a display device according to a fourth embodiment.
  • FIG. 10 is a cross-sectional view illustrating a display device according to a fifth embodiment.
  • FIG. 1 is a cross-sectional view showing a display device 200 according to the first embodiment.
  • the display device 200 shown in FIG. 1 includes a backlight 20 as a light source unit, an optical shutter 150, and a color conversion board 100.
  • the backlight 20 includes a blue LED as a light source and a light guide plate, and emits substantially parallel blue light toward the optical shutter 150.
  • the backlight 20 is a highly directional light source that emits light having a blue wavelength.
  • the backlight 20 may include a plurality of blue light sources arranged in a plane without including a light guide plate.
  • the backlight 20 may be a light source that generates near-ultraviolet light.
  • the optical shutter 150 selectively emits blue light incident from the backlight 20 and selectively causes the blue light to enter the color conversion substrate 100. By passing through the optical shutter 150, the gradation of the light generated in the backlight 20 is adjusted.
  • a liquid crystal panel a liquid crystal panel using an in-cell polarizing plate, a device using MEMS, or the like can be used.
  • MEMS a liquid crystal panel or MEMS is used as the optical shutter 150, it is desirable that the backlight 20 has high directivity.
  • an organic EL panel As an alternative to the optical shutter 150 and the backlight 20, it is also conceivable to use an organic EL panel.
  • the color conversion substrate 100 includes a phosphor layer 3 and a transparent substrate 4.
  • the phosphor layer 3 includes a main surface 1 and a main surface 2.
  • the transparent substrate 4 is disposed on the main surface 1 of the phosphor layer 3.
  • Incident light in a predetermined frequency region is incident on the main surface 2 of the phosphor layer 3 from the backlight 20, and light is emitted from the main surface 1 of the phosphor layer 3.
  • the main surface 2 is an incident surface on which light enters the phosphor layer 3, and the main surface 1 is an exit surface from which light is emitted from the phosphor layer 3.
  • the phosphor layer 3 includes a phosphor such as an organic phosphor, an inorganic phosphor, or a nanophosphor.
  • the phosphor absorbs light incident through the optical shutter 150 and emits fluorescence of each color isotropically.
  • the phosphor layer 3 is formed by arranging and molding a mixture of a phosphor and a binder resin. The phosphor is arranged so that light incident on the phosphor layer 3 from the optical shutter 150 is irradiated to the phosphor.
  • the type of phosphor to be used is preferably selected in consideration of the concentration of the phosphor added, the thickness of the phosphor layer 3 to be formed, the absorption rate, and the like.
  • the phosphor layer 3 includes at least a green phosphor that absorbs incident light incident on the phosphor layer 3 and emits green light.
  • the phosphor layer 3 may include phosphors of other colors.
  • the phosphor layer 3 may include a scattering material together with the phosphor or instead of the phosphor.
  • the transparent substrate 4 for example, a glass substrate, a transparent film, or a transparent resin can be employed.
  • the transparent substrate 4 is disposed on the phosphor layer 3 and has an emission surface 9 on the side opposite to the side facing the phosphor layer 3. Light extracted from the display device 200 to the outside is emitted from the emission surface 9.
  • a color filter layer can be provided on the emission surface 9 side with respect to the phosphor layer 3.
  • the display device 200 can be applied as an image display device that displays an image from the exit surface 9 or an illumination device that emits illumination light of an arbitrary hue from the exit surface 9.
  • the wavelength range of the blue light emitted from the backlight 20 is 390 nm or more and 510 nm or less.
  • the wavelength when the emission intensity of blue light is maximum is about 450 nm.
  • the phosphor layer 3 includes a green phosphor that absorbs blue light and emits green fluorescence when blue light is incident thereon. The green phosphor emits green light isotropically.
  • the wavelength region of green light emitted from the green phosphor is not less than 460 nm and not more than 580 nm.
  • the wavelength when the emission intensity of green light is maximum is 520 nm.
  • the phosphor layer 3 may include phosphors of other colors.
  • the phosphor layer 3 needs to transmit light having a wavelength emitted by the phosphor. This is because if it does not pass through, the fluorescence will not be emitted from the main surface 1 side, which is the emission surface of the fluorescence, to the outside of the phosphor layer 3. Therefore, the phosphor layer 3 containing the green phosphor transmits a certain amount of light with respect to light having a wavelength of 520 nm and the vicinity thereof where the emission intensity of green light is maximum, for example, light in a wavelength region of 500 nm to 560 nm. Need to have a rate. The higher the transmittance, the greater the amount of energy of light emitted from the main surface 1 side to the outside of the phosphor layer 3, which is desirable for use in a fluorescence excitation display.
  • the blue light generated in the backlight 20 ideally has a spectrum in which a peak exists in a delta function in the blue wavelength region.
  • the actual backlight 20 has an intensity in a wavelength region other than the target wavelength. Since the wavelengths of blue light and green light are close, the blue light emitted from the backlight 20 has a weak intensity in the wavelength region of green light (for example, a wavelength region of 500 nm or more).
  • the blue light in the wavelength region of green light reaches the phosphor layer 3, it passes through the phosphor layer 3, and is emitted from the main surface 1 to the outside of the phosphor layer 3 as so-called exit light.
  • the phosphor contained in the phosphor layer 3 absorbs all of the blue light of the backlight 20, it is actually difficult to produce such a phosphor material.
  • the green light emitted from the green phosphor has a wavelength close to that of the blue light of the backlight 20, the influence of the blue light transmitted through the phosphor layer 3 containing the green phosphor and emitted to the outside as emitted light is large. Become.
  • the amount of energy of fluorescence emitted by the phosphor is lower than the amount of energy of excitation light absorbed by the phosphor. For this reason, the ratio of the missing light in the total energy of the light emitted from the phosphor increases depending on the light distribution characteristics of the backlight 20 so as to affect the display quality of the display device 200.
  • the backlight 20 has high directivity, that is, when the light intensity in the front direction of the backlight 20 is extremely large compared to the light intensity in the oblique direction, if the light exits from the phosphor layer 3, As for the incident light, the luminance in the front direction is much larger than that in the oblique direction due to the combination of the fluorescence and the exit light.
  • the luminance of the display device 200 may change depending on the viewing angle.
  • Such a luminance change is more likely to occur as the directivity of the backlight 20 is higher, and it is desirable to use the backlight 20 having a higher directivity in the fluorescence excitation display. Therefore, it is necessary to remove this lost light.
  • the display device 200 includes the filter 30 disposed between the backlight 20 and the phosphor layer 3.
  • the filter 30 is disposed on the light source side with respect to the phosphor layer 3. Light generated by the backlight 20 passes through the filter 30 and enters the phosphor layer 3.
  • the filter 30 suppresses passage of light in a part of the wavelength range among the light generated in the backlight 20.
  • the filter 30 transmits light having a wavelength that maximizes the emission intensity of blue light emitted from the backlight 20, and suppresses transmission of light having a wavelength that maximizes the emission intensity of green light emitted by the phosphor.
  • the filter 30 is a wavelength selective cut filter that suppresses transmission of light having a wavelength of at least 500 nm to 560 nm and transmits light having a wavelength of 430 nm to 470 nm.
  • the blue light in the main wavelength region passes through the filter 30.
  • the filter 30 is disposed between the backlight 20 and the phosphor layer 3 containing the green phosphor. Unnecessary blue light that passes through the phosphor layer 3 and becomes exiting light is cut by the filter 30.
  • the Incorporating a filter 30 that cuts light in a wavelength range of at least 500 nm to 560 nm and transmits light in a wavelength range of 430 nm to 470 nm closer to the backlight 20 than the color conversion substrate 100 greatly impairs light utilization efficiency. It is possible to remove light leakage without any problem. As a result, it is possible to realize the display device 200 that does not change in luminance depending on the viewing angle.
  • FIG. 2 is a cross-sectional view showing an outline of the emitted light from the phosphor layer 3.
  • part of the blue light generated in the backlight 20 excites the phosphor in the phosphor layer 3, and as a result, fluorescence is emitted, and part of the blue light passes through the phosphor layer 3 as light.
  • a state of transmission is schematically illustrated.
  • the blue light L1 generated by the backlight 20 passes through the filter 30 and enters the phosphor layer 3 as the blue light L4.
  • the phosphor absorbs part of the blue light L4 and emits fluorescence.
  • Green lights F1 to F5 Fluorescence is emitted in an isotropic manner as shown by green lights F1 to F5.
  • the green light F1 travels toward the main surface 1 in the thickness direction of the phosphor layer 3 and exits from the phosphor layer 3 along the normal direction of the planar main surface 1.
  • the green lights F ⁇ b> 2 and F ⁇ b> 3 travel to the main surface 1 side along the oblique direction with respect to the normal direction of the main surface 1 and are emitted from the phosphor layer 3.
  • the green lights F4 and F5 travel to the main surface 2 side.
  • the blue light L7 light that has not been used as excitation light for exciting the phosphor is emitted from the phosphor layer 3 as exit light, as is the blue light L7.
  • the blue light L7 travels in the same direction as the green light F1, that is, along the normal direction of the main surface 1, and is emitted from the phosphor layer 3.
  • FIG. 3 is a schematic diagram showing an outline of the polar angle ⁇ and the azimuth angle ⁇ .
  • the polar angle ⁇ refers to an angle with respect to the planar exit surface 9 of the display device 200 and refers to an angle formed with respect to the normal line of the exit surface 9.
  • the polar angle ⁇ formed by the straight line extending in one direction with respect to the normal is 90 °.
  • the polar angle ⁇ formed by the straight line extending in the other direction in the direction opposite to the one direction is ⁇ 90 °.
  • the azimuth angle ⁇ refers to a declination angle with respect to one direction of a straight line extending on the emission surface 9. That is, as shown in FIG. 3, when assuming a normal to the exit surface 9 from one point on the straight line extending on the exit surface 9, the azimuth angle on one side of the straight line with respect to the intersection of the normal and the straight line is It is 0 ° (or 360 °), and the azimuth angle on the other side of the straight line is 180 °.
  • a part of the blue light L2 generated in the backlight 20 is incident on the phosphor layer 3 as the blue light L5 through the filter 30 and the green light F2 travels in the traveling direction.
  • the light travels along the same direction as the blue light L8, and is emitted from the phosphor layer 3 as exiting light like the blue light L8.
  • Green light F2 and blue light F8 indicate the fluorescence emitted from the phosphor and the exit light transmitted through the phosphor layer 3 at the same polar angle ⁇ .
  • Green light F3 and blue light F9 indicate the fluorescence emitted from the phosphor and the light passing through the phosphor layer 3 at the same polar angle ⁇ .
  • the luminous intensity of green light emitted from the phosphor at the polar angle ⁇ is defined as a luminous intensity spectrum P ⁇ .
  • the luminous intensity of the blue light generated by the backlight 20 and transmitted through the phosphor layer 3 is i ⁇ ⁇ T F ⁇ T ph .
  • i ⁇ is a luminous spectrum of blue light generated in the backlight 20 at a polar angle ⁇ for a specific wavelength
  • TF is a transmittance spectrum of the filter 30 for a specific wavelength.
  • T ph is the transmittance spectrum of the phosphor layer 3 for a specific wavelength.
  • the luminous intensity of the light emitted from the phosphor layer 3 is P ⁇ + (i ⁇ ⁇ T F ⁇ T ph ), that is, the luminous intensity of the fluorescence and the luminous intensity of the missing light. Is the sum of
  • the sum of ⁇ P ⁇ + (i ⁇ ⁇ T F ⁇ T ph ) ⁇ integrated over all wavelengths is the luminous intensity l ⁇ of the emitted light from the phosphor layer 3 at the polar angle ⁇ .
  • the luminous intensity l theta of the light emitted from the phosphor layer 3 at a polar angle theta is expressed by the following equation (1).
  • the luminous intensity l ⁇ represents the luminous intensity of the light that is emitted from the phosphor layer 3 in the polar angle ⁇ direction and that is the sum of the fluorescence of all wavelengths and the light of all wavelengths.
  • FIG. 4 is a diagram illustrating the relationship between the polar angle ⁇ and the luminous intensity when the luminance is uniform regardless of the viewing angle of the display device 200.
  • the horizontal axis in FIG. 4 indicates the polar angle. In the direction directly in front of the emission surface 9 of the display device 200, the polar angle ⁇ is 0 °.
  • the vertical axis in FIG. 4 indicates the luminous intensity, that is, the size of the light beam emitted from the display device 200 in the polar angle ⁇ direction.
  • the luminous intensity of the emitted light from the display device 200 in the direction where the polar angle ⁇ is 0 ° is defined as l 0 .
  • the luminous intensity 10 is the luminous intensity obtained by integrating the sum of the luminous intensity of fluorescence and the luminous intensity of light at all polarities at a polar angle of 0 °.
  • FIG. 4 shows the luminous intensity of the emitted light from the point when the position of the origin in FIG. 4 is considered as a certain point on the emission surface 9 of the display device 200.
  • the display device 200 has a uniform luminance regardless of the observation angle. Evaluate that there is. That is, in the display device 200 that can be evaluated as having uniform brightness regardless of the observation angle, the polar angle distribution of the luminous intensity of the emitted light from the phosphor layer 3 is in a certain range.
  • the display device 200 When the display device 200 satisfies this relational expression, the display device 200 is realized in which the change in luminance is sufficiently small regardless of the angle at which the display device 200 is viewed, and the luminance is uniform at all viewing angles. Can be evaluated.
  • This conditional expression clarifies conditions for achieving uniform luminance of the display device 200.
  • FIG. 5 is a graph showing the luminous intensity polar angle distribution of the light emitted from the phosphor layer 3.
  • the horizontal axis indicates the polar angle
  • the vertical axis indicates the relative luminous intensity.
  • a curve drawn with a solid line in FIG. 5 is an actual measurement value of the luminous intensity distribution of the emitted light from the phosphor layer 3. Note that, with respect to the light emitted from the phosphor layer 3, the range outside the polar angle ⁇ 70% cannot be measured due to the measurement limit, so in FIG. 5, the light emitted in the polar angle range of ⁇ 70 ° to 70 ° is used. The light intensity distribution is shown.
  • the light emitted from the phosphor layer 3 shows an actually measured value of the luminous intensity distribution as shown in FIG.
  • the A 0.96 ⁇ l 0 in the conditional expression.
  • Two curves drawn with a chain line in FIG. 5 indicate 0.90 times and 1.10 times of the function f ( ⁇ ).
  • the luminous intensity l of the emitted light indicated by the solid line in FIG. 5 ⁇ is in the range of 0.90 times or more and 1.10 times or less of A ⁇ cos ⁇ when the polar angle ⁇ is in the range of ⁇ 85 ° to 85 °. Therefore, since the polar angle luminous intensity of the light emitted from the phosphor layer 3 in the theta l theta is to satisfy the condition described above, the display device 200 can be evaluated to be uniform luminance regardless of the viewing angle.
  • the characteristics of the filter 30 greatly depend on the orientation characteristics of the backlight 20 and the transmittance of the phosphor layer 3.
  • the filter 30 only needs to have a transmittance that transmits blue light. It is desirable that the transmittance of blue light is as high as possible.
  • the luminous intensity of light passing through the phosphor layer 3 can be reduced.
  • the characteristics of the filter 30 so as to satisfy the above formulas (1) and (2) without depending on the azimuth angle ⁇ , the entire viewing angle can be obtained regardless of the observation angle even if light leakage occurs.
  • the display device 200 with uniform luminance can be realized, and the display device 200 with uniform luminance can be intentionally manufactured. Therefore, it is possible to prevent display quality from being deteriorated due to light passing through the phosphor layer 3.
  • the display device 200 includes the phosphor layer 3 including a plurality of pixels that can emit red light, green light, and blue light, respectively, and the display device 200 is white light by superimposing these colors. Can be displayed.
  • the error of the chromaticity xy needs to be within ⁇ 0.02 in order to suppress the color change depending on the observation angle to such an extent that it cannot be felt by human eyes.
  • a condition for evaluating that the change in chromaticity of the display device 200 is within ⁇ 0.02 and that the display device 200 has uniform chromaticity regardless of the observation angle will be described.
  • FIG. 6 shows that in the display device 200 configured by RGB pixels, when the output light from the B pixel has an error of 0% from the conditional expression, the white display chromaticity is ⁇ 0 when the RG deviates from the conditional expression. It is a graph which shows whether it changes more than 0.02.
  • the G coefficient on the horizontal axis of the graph of FIG. 6 indicates an error from the conditional expression of the luminous intensity of light emitted from the G pixel.
  • the R coefficient on the vertical axis indicates an error from the conditional expression of the luminous intensity of light emitted from the R pixel.
  • the G coefficient of 1.05 means that the error from the conditional expression of the luminous intensity of light emitted from the G pixel is + 5%.
  • the chromaticity change is ⁇ 0.02 on the line plotted in the graph shown in FIG. 6 (inner line when there is a double line). In the graph of FIG. 6, if it is within the area surrounded by the plot line, the chromaticity change is within ⁇ 0.02 from the state in accordance with the conditional expression for all RGB.
  • the chromaticity change of the display device 200 is 0.02. Fits within.
  • the chromaticity xy falls within an error of ⁇ 0.02, and if the chromaticity xy is within ⁇ 0.02, it is unlikely that a human will feel a color change. Therefore, it can be evaluated that the display device 200 having uniform brightness and chromaticity at all viewing angles has been realized.
  • This conditional expression clarifies the conditions for achieving chromaticity uniformity of the display device 200, and it can be evaluated that a display apparatus that satisfies the conditional expression has a characteristic that the chromaticity does not change depending on the observation angle.
  • FIG. 7 is a graph showing the polar angle distribution of light emitted from the R phosphor.
  • FIG. 8 is a graph showing the luminous intensity polar angle distribution of the emitted light from the G phosphor.
  • FIG. 9 is a graph showing the luminous intensity polar angle distribution of the emitted light from the scattering material in the B pixel. 7, 8, and 9, the horizontal axis indicates the polar angle, and the vertical axis indicates the relative luminous intensity.
  • the display device 200 can be evaluated to be uniform chromaticity irrespective of the viewing angle.
  • the filter 30 only needs to have a transmittance that allows blue light to pass therethrough. It is desirable that the transmittance of blue light is as high as possible.
  • the luminous intensity of light passing through the phosphor layer 3 can be reduced.
  • the chromaticity is uniform regardless of the observation angle even if light leakage occurs.
  • Display device 200 can be realized, and display device 200 whose luminance and chromaticity do not change depending on the observation angle can be intentionally manufactured. Therefore, it is possible to prevent display quality from being deteriorated due to light passing through the phosphor layer 3.
  • FIG. 10 is a cross-sectional view showing the display device 200 according to the third embodiment.
  • the backlight 20 emits light having a blue wavelength.
  • the phosphor layer 3 includes a red phosphor layer 5r and a green phosphor layer 5g.
  • the phosphor layer 3 also includes a diffusion layer 6.
  • the red phosphor layer 5r, the green phosphor layer 5g, and the diffusion layer 6 are partitioned by the partition wall 7, and are arranged in an array with a space therebetween.
  • the phosphor layer 3 is coated with phosphor and scattering material for each pixel.
  • the red phosphor layer 5r includes a red phosphor that absorbs incident light incident on the red phosphor layer 5r and emits red light.
  • the green phosphor layer 5g includes a green phosphor that absorbs incident light incident on the green phosphor layer 5g and emits green light.
  • the diffusion layer 6 diffuses the incident light incident on the diffusion layer 6 and emits it to the outside.
  • the diffusion layer 6 includes a transparent resin as a binder and a plurality of scattering particles as fillers scattered in the resin.
  • the filler may be any material that reflects and scatters light supplied to the phosphor layer 3 via the optical shutter 150.
  • the phosphor layer 3 includes a red phosphor layer 5r that absorbs blue light and excites red light, a green phosphor layer 5g that absorbs blue light and excites green light, and a diffusion layer that completely scatters blue light. 6 are included. Blue light from the backlight 20 is incident on the red phosphor layer 5r, the green phosphor layer 5g, and the diffusion layer 6 to cause red and green light fluorescence and blue light scattering. The light exits from the exit surface 9. Accordingly, the display device 200 is provided as a video display device capable of displaying a full color video.
  • the optical shutter 150 a liquid crystal display panel is used.
  • the optical shutter 150 is a glass substrate 22 that is a TFT (Thin Film ⁇ Transistor) substrate disposed on the backlight 20 side and a counter substrate disposed on the color conversion substrate 100 side.
  • the glass substrate 24 and the liquid crystal layer 23 enclosed between the glass substrate 22 and the glass substrate 24 are included.
  • An annular seal member (not shown) for sealing the liquid crystal layer 23 is provided between the glass substrates 22 and 24 along the outer peripheral edge portions of the glass substrates 22 and 24.
  • a polarizing plate 21 is attached to the outer surface of the glass substrate 22, and a polarizing plate 25 is attached to the outer surface of the glass substrate 24.
  • a source wiring is formed on the surface of the glass substrate 22 on the liquid crystal layer 23 side, and an insulating layer is formed so as to cover the source wiring. Further, pixel electrodes are arranged on the surface of the insulating layer so as to correspond to the respective pixels.
  • the pixel electrode is formed of a transparent conductive film such as an ITO (indium tin oxide) film.
  • a counter electrode is formed on the surface of the glass substrate 24 on the liquid crystal layer 23 side.
  • the counter electrode is formed of a transparent conductive film such as an ITO film, for example.
  • the optical shutter 150 controls the light transmittance in the pixel by a combination of the change in the polarization state by the liquid crystal layer 23 and the polarizing plates 21 and 25.
  • the filter 30 in the display device 200 having the above-described configuration, the filter 30 satisfies the above expressions (1) and (2) without depending on the azimuth angle ⁇ , or the above expressions (1) and (3). ) And possesses a transmittance that transmits blue light.
  • the display device 200 with uniform brightness regardless of the observation angle or the display device 200 without further chromaticity change can be realized, and the display device 200 with uniform brightness is intentionally manufactured. can do. Therefore, it is possible to prevent display quality from being deteriorated due to light passing through the phosphor layer 3.
  • the filter 30 is not limited to the arrangement shown in FIG. 10, and for example, a filter may be installed between the optical shutter 150 and the phosphor layer 3.
  • FIG. 11 is a cross-sectional view showing a display device 200 according to the fourth embodiment.
  • the display device 200 according to the fourth embodiment has basically the same configuration as that of the display device according to the third embodiment shown in FIG. 10, and the emission surface 9 side opposite to the backlight 20 with respect to the phosphor layer 3. 1 in that a color filter 8 is provided.
  • the color filter 8 includes a color filter 8r disposed between the red phosphor layer 5r and the transparent substrate 4, a color filter 8g disposed between the green phosphor layer 5g and the transparent substrate 4, and a diffusion layer 6. And a color filter 8 b disposed between the transparent substrate 4 and the transparent substrate 4.
  • the color filter 8 By installing the color filter 8, the emitted light from the phosphor layer 3 is selectively transmitted, so that the color characteristics of the image can be improved.
  • the color filter 8 is installed between all the color pixels and the transparent substrate 4, but the configuration is not limited thereto.
  • the color filter 8b on the diffusion layer 6 may be omitted, and the color filter 8 may be formed only on the red phosphor layer 5r and the green phosphor layer 5g.
  • the light emitted from the phosphor layer 3 is further emitted from the emission surface 9 to the outside of the display device 200 via the color filter 8.
  • the transmittance spectrum T CF of the color filter the luminous intensity of light emitted from the phosphor layer 3 at a polar angle ⁇ is P ⁇ ⁇ T CF + (i ⁇ ⁇ T F * Tph * TCF ). Therefore, the light intensity L ⁇ of the light transmitted through the color filter 8 at the polar angle ⁇ is expressed by the following relational expression (4).
  • L ⁇ ⁇ ⁇ P ⁇ ⁇ T CF + (i ⁇ ⁇ T F ⁇ T ph ⁇ T CF ) ⁇ d ⁇
  • the luminosity L theta i.e., emitted through the color filter 8 in the polar angle theta direction indicates the intensity of leakage light and the light obtained by summing the fluorescence and all wavelengths of all wavelengths.
  • the display device It can be evaluated that the display device 200 in which the change in luminance is sufficiently small regardless of the angle at which 200 is viewed and the luminance is uniform at all viewing angles has been realized.
  • C is an arbitrary real number in the range of 0.91 to 1.11 times the light intensity L 0 of the light transmitted through the color filter 8 at the polar angle 0 °, and the light intensity L at the polar angle 0 °.
  • the range is within ⁇ 10% of 0 .
  • the filter 30 satisfies the above expressions (4) and (5) without depending on the azimuth angle ⁇ and has a transmittance that transmits blue light. Good.
  • the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured. Therefore, it is possible to prevent display quality from being deteriorated due to light passing through the phosphor layer 3.
  • D is an arbitrary real number in the range of 0.93 times or more and 1.076 times or less of the light intensity L 0 of the light transmitted through the color filter 8 at the polar angle 0 °, and the light intensity L at the polar angle 0 °.
  • the range is within ⁇ 7% with respect to 0 .
  • Conditional expression (6) clarifies the conditions for achieving uniform chromaticity of the display device 200, and it can be evaluated that a display device that satisfies the conditional expression has a characteristic that the chromaticity does not change depending on the observation angle. it can.
  • FIG. 12 is a cross-sectional view showing display device 200 according to the fifth embodiment.
  • the display device 200 according to the fifth embodiment has basically the same configuration as the display device according to the third embodiment shown in FIG. 10, and the light source side filter is omitted from the red phosphor layer 5r and the diffusion layer 6. However, the difference is that the filter 30 is disposed only between the green phosphor layer 5g and the backlight 20, and the filter is disposed only in the green pixel.
  • the filter 30 in the red pixel that is the region of the red phosphor layer 5 r or the blue pixel that is the region of the diffusion layer 6, it is difficult to make the transmittance 100% wavelength selective. Is only reduced, and there is no merit. Therefore, it is desirable to have the filter 30 only in the green pixel. In this case, the efficiency of light can be improved because the efficiency of the red and blue pixels is not impaired by the filter 30.
  • the position of the filter 30 is not limited to the example shown in FIG. 12, and may be disposed anywhere between the backlight 20 and the green phosphor layer 5g.
  • the filter 30 satisfies the above formulas (1) and (2) without depending on the azimuth angle ⁇ , or satisfies the above formulas (1) and (3), and emits blue light. As long as it has such a transmittance as to transmit light.
  • the filter 30 By determining the characteristics of the filter 30 in this manner, the display device 200 with uniform brightness regardless of the observation angle or the display device 200 without further chromaticity change can be realized, and the display device 200 with uniform brightness is intentionally manufactured. can do. Therefore, it is possible to prevent display quality from being deteriorated due to light passing through the phosphor layer 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)

Abstract

Provided is a display device with which it is possible to alleviate a degradation of display quality from light which has passed through a fluorescent light body layer. A display device (200) comprises a backlight (20), a light shutter (150), a fluorescent light body layer (3), and a filter (30). The backlight (20) emits a blue light. The light shutter (150) selectively discharges light which enters therein from the backlight (20). The fluorescent light body layer (3) is positioned such that the light from the light shutter (150) enters therein, and further comprises a fluorescent light body which absorbs the light which enters from the light shutter (150) and emits a green fluorescent light. The filter (30) is positioned between the backlight (20) and the fluorescent light body layer (3), passes therethrough light of a wavelength at which the light emission intensity of the blue light is at maximum, and alleviates the passing therethrough of light of a wavelength at which the light emission intensity of the green light is at maximum.

Description

表示装置Display device
 本発明は、表示装置に関する。 The present invention relates to a display device.
 青色光を発する光源として用いた液晶表示素子の一例が、特開平11-52371号公報(特許文献1)に記載されている。 An example of a liquid crystal display element used as a light source that emits blue light is described in Japanese Patent Application Laid-Open No. 11-52371 (Patent Document 1).
 この液晶表示素子は、背面光源と、背面光源上に配置された第1偏光層と、第1偏光層上に形成された第1透明性基板と、第1透明性基板上に形成された第1透明電極と、第1透明性基板上に配置された液晶と、液晶上に配置された第2透明電極と、第2透明電極上に配置された第2透明性基板とを備える。さらに、液晶表示素子は、第2透明性基板上に配置された第2偏光層と、第2偏光層上に形成された蛍光体層と、蛍光体層上に形成された第3透明性基板とを含む。 The liquid crystal display element includes a back light source, a first polarizing layer disposed on the back light source, a first transparent substrate formed on the first polarizing layer, and a first transparent substrate formed on the first transparent substrate. 1 transparent electrode, the liquid crystal arrange | positioned on a 1st transparent substrate, the 2nd transparent electrode arrange | positioned on a liquid crystal, and the 2nd transparent substrate arrange | positioned on a 2nd transparent electrode. Furthermore, the liquid crystal display element includes a second polarizing layer disposed on the second transparent substrate, a phosphor layer formed on the second polarizing layer, and a third transparent substrate formed on the phosphor layer. Including.
 背面光源は、青色領域の光を出射する。蛍光体層は、背面光源からの光によって赤色に発光する赤色発光蛍光体と、背面光源からの光によって緑色に発光する緑色蛍光体と、背面光源からの光をそのまま通すための透明膜とを含む。 The rear light source emits light in the blue region. The phosphor layer includes a red light emitting phosphor that emits red light by light from the back light source, a green phosphor that emits green light by the light from the back light source, and a transparent film for allowing light from the back light source to pass through as it is. Including.
 このような液晶表示素子によれば、カラーフィルタでの光吸収ロスを大幅に低減することが可能であるので、光の利用効率が高い液晶表示装置として有望視されている。 Such a liquid crystal display element is promising as a liquid crystal display device with high light utilization efficiency because it can significantly reduce the light absorption loss in the color filter.
特開平11-52371号公報Japanese Patent Laid-Open No. 11-52371
 近年、ディスプレイ分野において、蛍光励起ディスプレイが注目を集めている。蛍光励起ディスプレイとは、バックライトが青色または近紫外の光を発生し、シャッタ層によって階調調整を行い、蛍光体によって色変換することでカラー映像表示を行う装置である。蛍光励起ディスプレイは現在主流である液晶ディスプレイと比較して、理想的には低消費電力で視野角が広いというメリットを保持する。 In recent years, fluorescent excitation displays have attracted attention in the display field. A fluorescent excitation display is a device that displays blue or near-ultraviolet light, performs gradation adjustment by a shutter layer, and performs color conversion by a phosphor to perform color image display. Fluorescent excitation displays retain the advantages of ideally low power consumption and wide viewing angle compared to the current mainstream liquid crystal displays.
 蛍光励起ディスプレイの方式の一つとして、青色バックライトを使用し、赤・緑の画素においては蛍光体によって色変換を行い、青画素においては散乱材料によって拡散させる構造が過去に提案されている。 As a fluorescence excitation display system, a structure has been proposed in the past in which a blue backlight is used, color conversion is performed by phosphors in red and green pixels, and diffusion is performed by scattering materials in blue pixels.
 しかし、この方式においては、緑色蛍光体の発光波長域と、青色バックライトの出射光の波長域とが近く、青色バックライトからの青色光の一部が緑色蛍光体を通過する場合がある。その結果、良好な出射光を得ることができない場合がある。 However, in this method, the emission wavelength range of the green phosphor and the wavelength range of the emitted light from the blue backlight are close, and part of the blue light from the blue backlight may pass through the green phosphor. As a result, there are cases where good outgoing light cannot be obtained.
 本発明は上記の課題に鑑みてなされたものであり、その主たる目的は、蛍光体層を透過した光による表示品位の低下を抑制できる、表示装置を提供することである。 The present invention has been made in view of the above-mentioned problems, and a main object thereof is to provide a display device capable of suppressing deterioration of display quality due to light transmitted through a phosphor layer.
 本発明に係る表示装置は、光源ユニットと、光シャッタと、蛍光体層と、フィルタとを備える。光源ユニットは、第一光を発光する。光シャッタは、光源ユニットから入射した光を選択的に出射する。蛍光体層は、光シャッタからの光が入射するように配置され、光シャッタから入射した光を吸収して第二光を蛍光発光する蛍光体を含む。フィルタは、光源ユニットと蛍光体層との間に配置され、第一光の発光強度が最大となる波長の光を透過し、第二光の発光強度が最大となる波長の光の透過を抑制する。 The display device according to the present invention includes a light source unit, an optical shutter, a phosphor layer, and a filter. The light source unit emits first light. The optical shutter selectively emits light incident from the light source unit. The phosphor layer is arranged so that light from the optical shutter is incident, and includes a phosphor that absorbs light incident from the optical shutter and fluoresces the second light. The filter is disposed between the light source unit and the phosphor layer, and transmits light having a wavelength that maximizes the emission intensity of the first light, and suppresses transmission of light having a wavelength that maximizes the emission intensity of the second light. To do.
 上記表示装置において好ましくは、極角θ、極角θにおける蛍光体層から発光される第二光の光度スペクトルPθ、極角θにおける第一光の光度スペクトルiθ、フィルタの透過率スペクトルT、蛍光体層の透過率スペクトルTphとした場合、極角θにおける蛍光体層からの出射光の光度lθは、lθ=∫{Pθ+(iθ・T・Tph)}dλで表され、極角θと、極角θにおける蛍光体層からの出射光の光度lθとが、-85°≦θ≦85°の範囲において、極角0°における蛍光体層からの出射光の光度の0.91倍以上1.11倍以下の範囲にある任意の実数Aに対し、0.90・A・cosθ≦lθ≦1.10・A・cosθを満たす。 In the display device, preferably, the polar angle θ, the luminous intensity spectrum P θ of the second light emitted from the phosphor layer at the polar angle θ, the luminous intensity spectrum i θ of the first light at the polar angle θ , and the transmittance spectrum T of the filter. When F is the transmittance spectrum T ph of the phosphor layer, the luminous intensity l θ of the emitted light from the phosphor layer at the polar angle θ is l θ = ∫ {P θ + (i θ · T F · T ph ) } In the range of −85 ° ≦ θ ≦ 85 °, the polar angle θ and the luminous intensity l θ of the emitted light from the phosphor layer at the polar angle θ 0.90 · A · cos θ ≦ l θ ≦ 1.10 · A · cos θ is satisfied for an arbitrary real number A in the range of 0.91 times to 1.11 times the luminous intensity of the emitted light.
 上記表示装置において好ましくは、極角θと、極角θにおける蛍光体層からの出射光の光度lθとが、-85°≦θ≦85°の範囲において、極角0°における蛍光体層からの出射光の光度の0.93倍以上1.076倍以下の範囲にある任意の実数Bに対し、0.93・B・cosθ≦lθ≦1.07・B・cosθを満たす。 Preferably, in the display device, the phosphor layer at a polar angle of 0 ° in a range where the polar angle θ and the luminous intensity l θ of the light emitted from the phosphor layer at the polar angle θ are in the range of −85 ° ≦ θ ≦ 85 °. 0.93 · B · cos θ ≦ l θ ≦ 1.07 · B · cos θ is satisfied for an arbitrary real number B in the range of 0.93 to 1.076 times the luminous intensity of the light emitted from.
 上記表示装置において好ましくは、第一光は青色光であり、蛍光体層は、緑色光を蛍光発光する緑色蛍光体を含み、フィルタは、光源ユニットと緑色蛍光体との間に配置される。 Preferably, in the display device, the first light is blue light, the phosphor layer includes a green phosphor that emits green light, and the filter is disposed between the light source unit and the green phosphor.
 上記表示装置において好ましくは、蛍光体層に対し光源ユニットと反対側に配置され、蛍光体層からの出射光を選択的に透過させるカラーフィルタを備える。 Preferably, the display device includes a color filter that is disposed on the opposite side of the phosphor layer from the light source unit and selectively transmits light emitted from the phosphor layer.
 上記表示装置において好ましくは、極角θ、極角θにおける蛍光体層から発光される第二光の光度スペクトルPθ、極角θにおける第一光の光度スペクトルiθ、フィルタの透過率スペクトルT、蛍光体層の透過率スペクトルTph、カラーフィルタの透過率スペクトルTCFとした場合、極角θにおけるカラーフィルタを透過した光の光度Lθは、Lθ=∫{Pθ・TCF+(iθ・T・Tph・TCF)}dλで表され、極角θと、極角θにおけるカラーフィルタを透過した光の光度Lθとが、-85°≦θ≦85°の範囲において、極角0°における蛍光体層からの出射光の光度の0.91倍以上1.11倍以下の範囲にある任意の実数Cに対し、0.90・C・cosθ≦Lθ≦1.10・C・cosθを満たす。 In the display device, preferably, the polar angle θ, the luminous intensity spectrum P θ of the second light emitted from the phosphor layer at the polar angle θ, the luminous intensity spectrum i θ of the first light at the polar angle θ , and the transmittance spectrum T of the filter. When F is the transmittance spectrum T ph of the phosphor layer and the transmittance spectrum T CF of the color filter, the light intensity L θ of the light transmitted through the color filter at the polar angle θ is L θ = ∫ {P θ · T CF + (I θ · T F · T ph · T CF )} dλ, and the polar angle θ and the luminous intensity L θ of the light transmitted through the color filter at the polar angle θ are −85 ° ≦ θ ≦ 85 ° , 0.90 · C · cos θ ≦ L θ for an arbitrary real number C in the range of 0.91 to 1.11 times the luminous intensity of the light emitted from the phosphor layer at a polar angle of 0 °. ≦ 1.10 · C · cos θ is satisfied.
 上記表示装置において好ましくは、極角θと、極角θにおけるカラーフィルタを透過した光の光度Lθとが、-85°≦θ≦85°の範囲において、極角0°におけるカラーフィルタを透過した光の光度の0.93倍以上1.076倍以下の範囲にある任意の実数Bに対し、0.93・B・cosθ≦Lθ≦1.07・B・cosθを満たす。 Preferably, in the above display device, the polar angle θ and the luminous intensity L θ of the light transmitted through the color filter at the polar angle θ are transmitted through the color filter at a polar angle of 0 ° in the range of −85 ° ≦ θ ≦ 85 °. 0.93 · B · cos θ ≦ L θ ≦ 1.07 · B · cos θ is satisfied for an arbitrary real number B in the range of 0.93 to 1.076 times the luminous intensity of the light.
 本発明の表示装置によると、蛍光体層を透過した光による表示品位の低下を抑制し、表示品位を向上することができる。 According to the display device of the present invention, it is possible to suppress the deterioration of the display quality due to the light transmitted through the phosphor layer and improve the display quality.
実施の形態1に係る表示装置を示す断面図である。1 is a cross-sectional view illustrating a display device according to a first embodiment. 蛍光体層からの出射光の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the emitted light from a fluorescent substance layer. 極角および方位角の概略を示す模式図である。It is a schematic diagram which shows the outline of a polar angle and an azimuth. 表示装置の観察角度に依らず輝度均一な場合の、極角と光度との関係を示す図である。It is a figure which shows the relationship between a polar angle and a luminous intensity in case brightness | luminance is uniform irrespective of the observation angle of a display apparatus. 蛍光体層からの出射光の光度極角分布を示すグラフである。It is a graph which shows the luminous intensity polar angle distribution of the emitted light from a fluorescent substance layer. RGB画素によって構成される表示装置において、B画素からの出射光が条件式から誤差0%の際に、RGが条件式からどの程度ずれた場合に白表示色度が±0.02以上変化するかを示すグラフである。In a display device composed of RGB pixels, when the output light from the B pixel has an error of 0% from the conditional expression, the white display chromaticity changes by ± 0.02 or more when the RG deviates from the conditional expression. It is a graph which shows. R蛍光体からの出射光の光度極角分布を示すグラフである。It is a graph which shows the luminous intensity polar angle distribution of the emitted light from R fluorescent substance. G蛍光体からの出射光の光度極角分布を示すグラフである。It is a graph which shows the luminous intensity polar angle distribution of the emitted light from G fluorescent substance. B画素における散乱材からの出射光の光度極角分布を示すグラフである。It is a graph which shows luminous intensity polar angle distribution of the emitted light from the scattering material in B pixel. 実施の形態3に係る表示装置を示す断面図である。7 is a cross-sectional view illustrating a display device according to Embodiment 3. FIG. 実施の形態4に係る表示装置を示す断面図である。FIG. 6 is a cross-sectional view illustrating a display device according to a fourth embodiment. 実施の形態5に係る表示装置を示す断面図である。FIG. 10 is a cross-sectional view illustrating a display device according to a fifth embodiment.
 以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 図1は、実施の形態1に係る表示装置200を示す断面図である。図1に示す表示装置200は、光源ユニットとしてのバックライト20と、光シャッタ150と、色変換基板100とを備える。バックライト20は、光源である青色LEDと導光板とを備え、略平行光の青色光を光シャッタ150に向けて出射する。バックライト20は、青色波長の光を放射する高指向性の光源である。バックライト20は、導光板を備えずに複数の青色光源を平面的に配列したものであってもよい。またバックライト20は、近紫外光を発生する光源であってもよい。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a display device 200 according to the first embodiment. The display device 200 shown in FIG. 1 includes a backlight 20 as a light source unit, an optical shutter 150, and a color conversion board 100. The backlight 20 includes a blue LED as a light source and a light guide plate, and emits substantially parallel blue light toward the optical shutter 150. The backlight 20 is a highly directional light source that emits light having a blue wavelength. The backlight 20 may include a plurality of blue light sources arranged in a plane without including a light guide plate. The backlight 20 may be a light source that generates near-ultraviolet light.
 光シャッタ150は、バックライト20から入射した青色光を選択的に出射して、選択的に青色光を色変換基板100に入射させる。光シャッタ150を通過することによって、バックライト20で発生した光の階調が調整される。光シャッタ150としては、液晶パネル、インセル偏光板を用いた液晶パネル、またはMEMSを用いたものなどを適用することができる。光シャッタ150として液晶パネルまたはMEMSを用いる場合、バックライト20は高指向性であることが望ましい。光シャッタ150およびバックライト20の代替として、有機ELパネルを使用することも考えられる。 The optical shutter 150 selectively emits blue light incident from the backlight 20 and selectively causes the blue light to enter the color conversion substrate 100. By passing through the optical shutter 150, the gradation of the light generated in the backlight 20 is adjusted. As the optical shutter 150, a liquid crystal panel, a liquid crystal panel using an in-cell polarizing plate, a device using MEMS, or the like can be used. When a liquid crystal panel or MEMS is used as the optical shutter 150, it is desirable that the backlight 20 has high directivity. As an alternative to the optical shutter 150 and the backlight 20, it is also conceivable to use an organic EL panel.
 色変換基板100は、蛍光体層3と、透明基板4とを備える。蛍光体層3は、主表面1および主表面2を含む。透明基板4は、蛍光体層3の主表面1上に配置されている。蛍光体層3の主表面2には、バックライト20から所定の周波数領域の入射光が入射され、蛍光体層3の主表面1から光が出射される。主表面2は蛍光体層3へ光が入射する入射面であり、主表面1は蛍光体層3から光が出射される出射面である。 The color conversion substrate 100 includes a phosphor layer 3 and a transparent substrate 4. The phosphor layer 3 includes a main surface 1 and a main surface 2. The transparent substrate 4 is disposed on the main surface 1 of the phosphor layer 3. Incident light in a predetermined frequency region is incident on the main surface 2 of the phosphor layer 3 from the backlight 20, and light is emitted from the main surface 1 of the phosphor layer 3. The main surface 2 is an incident surface on which light enters the phosphor layer 3, and the main surface 1 is an exit surface from which light is emitted from the phosphor layer 3.
 蛍光体層3は、たとえば有機蛍光体、無機蛍光体、ナノ蛍光体などの、蛍光体を含む。蛍光体は、光シャッタ150を介して入射した光を吸収して、各色の蛍光を等方に発光する。蛍光体層3は、蛍光体とバインダ樹脂とを混合したものを配置して成形することによって形成されている。蛍光体は、光シャッタ150から蛍光体層3へ入射する光が蛍光体に照射されるように、配置される。使用する蛍光体の種類は、蛍光体の添加濃度、形成すべき蛍光体層3の膜厚、吸収率などを考慮して選択することが望ましい。 The phosphor layer 3 includes a phosphor such as an organic phosphor, an inorganic phosphor, or a nanophosphor. The phosphor absorbs light incident through the optical shutter 150 and emits fluorescence of each color isotropically. The phosphor layer 3 is formed by arranging and molding a mixture of a phosphor and a binder resin. The phosphor is arranged so that light incident on the phosphor layer 3 from the optical shutter 150 is irradiated to the phosphor. The type of phosphor to be used is preferably selected in consideration of the concentration of the phosphor added, the thickness of the phosphor layer 3 to be formed, the absorption rate, and the like.
 蛍光体層3は、蛍光体層3に入射された入射光を吸収して緑色光を蛍光発光する緑色蛍光体を少なくとも含む。蛍光体層3は、その他の色の蛍光体を含んでもよい。蛍光体層3は、蛍光体とともに、または蛍光体に替えて、散乱材料を含んでもよい。 The phosphor layer 3 includes at least a green phosphor that absorbs incident light incident on the phosphor layer 3 and emits green light. The phosphor layer 3 may include phosphors of other colors. The phosphor layer 3 may include a scattering material together with the phosphor or instead of the phosphor.
 透明基板4としては、たとえば、ガラス基板、透明フィルムまたは透明樹脂などを採用することができる。透明基板4は、蛍光体層3上に配置されており、蛍光体層3に対向する側と反対側に出射面9を有する。表示装置200から外部へ取り出される光は、出射面9から出射される。 As the transparent substrate 4, for example, a glass substrate, a transparent film, or a transparent resin can be employed. The transparent substrate 4 is disposed on the phosphor layer 3 and has an emission surface 9 on the side opposite to the side facing the phosphor layer 3. Light extracted from the display device 200 to the outside is emitted from the emission surface 9.
 表示装置200において、映像の色特性向上手段として、蛍光体層3に対し出射面9側にカラーフィルタ層を設けることも可能である。表示装置200は、出射面9から映像を表示する映像表示装置、または、出射面9から任意の色相の照明光を出射する照明装置などとして、適用することができる。 In the display device 200, as a means for improving the color characteristics of an image, a color filter layer can be provided on the emission surface 9 side with respect to the phosphor layer 3. The display device 200 can be applied as an image display device that displays an image from the exit surface 9 or an illumination device that emits illumination light of an arbitrary hue from the exit surface 9.
 本実施の形態において、バックライト20が発する青色光の波長領域は、390nm以上510nm以下である。青色光の発光強度が最大となるときの波長は、450nm程度である。蛍光体層3は、青色光が入射されると青色光を吸収して緑色の蛍光を発する緑色蛍光体を含む。緑色蛍光体は、緑色光を等方に発光する。緑色蛍光体の発光する緑色光の波長領域は、460nm以上580nm以下である。緑色光の発光強度が最大となるときの波長は、520nmである。蛍光体層3は、その他の色の蛍光体を含んでもよい。 In the present embodiment, the wavelength range of the blue light emitted from the backlight 20 is 390 nm or more and 510 nm or less. The wavelength when the emission intensity of blue light is maximum is about 450 nm. The phosphor layer 3 includes a green phosphor that absorbs blue light and emits green fluorescence when blue light is incident thereon. The green phosphor emits green light isotropically. The wavelength region of green light emitted from the green phosphor is not less than 460 nm and not more than 580 nm. The wavelength when the emission intensity of green light is maximum is 520 nm. The phosphor layer 3 may include phosphors of other colors.
 蛍光体層3は、蛍光体が発光する波長の光を透過する必要がある。透過しなければ、蛍光の出射面である主表面1側から蛍光体層3の外部へ蛍光が出射されなくなるためである。そのため、緑色蛍光体を含む蛍光体層3は、緑色光の発光強度が最大となる520nmおよびその近傍の波長を有する光、たとえば500nm以上560nm以下の波長領域にある光に対し、ある程度以上の透過率を有する必要がある。透過率が高いほど、主表面1側から蛍光体層3の外部へ出射される光のエネルギー量が大きくなるので、蛍光励起ディスプレイへの使用に望ましい。 The phosphor layer 3 needs to transmit light having a wavelength emitted by the phosphor. This is because if it does not pass through, the fluorescence will not be emitted from the main surface 1 side, which is the emission surface of the fluorescence, to the outside of the phosphor layer 3. Therefore, the phosphor layer 3 containing the green phosphor transmits a certain amount of light with respect to light having a wavelength of 520 nm and the vicinity thereof where the emission intensity of green light is maximum, for example, light in a wavelength region of 500 nm to 560 nm. Need to have a rate. The higher the transmittance, the greater the amount of energy of light emitted from the main surface 1 side to the outside of the phosphor layer 3, which is desirable for use in a fluorescence excitation display.
 一方、バックライト20で発生する青色光は、理想的には青色波長域にてデルタ関数的にピークが存在するようなスペクトルを有することが望ましい。しかし、そのようなバックライト20の実現は困難であり、実際のバックライト20では、目的の波長以外の波長域にも強度が存在する。青色光と緑色光とは波長が近いため、バックライト20から出射される青色光は、緑色光の波長領域(たとえば500nm以上の波長領域)にも微弱な強度が存在する。この緑色光の波長領域の青色光が蛍光体層3へ到達すると、蛍光体層3を透過し、いわゆる抜け光として主表面1から蛍光体層3の外部へ出射してしまう。 On the other hand, it is desirable that the blue light generated in the backlight 20 ideally has a spectrum in which a peak exists in a delta function in the blue wavelength region. However, it is difficult to realize such a backlight 20, and the actual backlight 20 has an intensity in a wavelength region other than the target wavelength. Since the wavelengths of blue light and green light are close, the blue light emitted from the backlight 20 has a weak intensity in the wavelength region of green light (for example, a wavelength region of 500 nm or more). When the blue light in the wavelength region of green light reaches the phosphor layer 3, it passes through the phosphor layer 3, and is emitted from the main surface 1 to the outside of the phosphor layer 3 as so-called exit light.
 蛍光体層3に含まれる蛍光体がバックライト20の青色光を全て吸収することが望ましいが、実際にはそのような蛍光体材料の作製は困難である。特に、緑色蛍光体の発光する緑色光はバックライト20の青色光と波長が近いため、緑色蛍光体を含む蛍光体層3を透過して抜け光として外部へ出射される青色光の影響が大きくなる。 Although it is desirable that the phosphor contained in the phosphor layer 3 absorbs all of the blue light of the backlight 20, it is actually difficult to produce such a phosphor material. In particular, since the green light emitted from the green phosphor has a wavelength close to that of the blue light of the backlight 20, the influence of the blue light transmitted through the phosphor layer 3 containing the green phosphor and emitted to the outside as emitted light is large. Become.
 蛍光体が発光する蛍光のエネルギー量は、蛍光体が吸収する励起光のエネルギー量に対して低い。そのため、蛍光体から出射される光の全エネルギーにおける抜け光の割合は、バックライト20の配光特性によっては、表示装置200の表示品位に影響を及ぼすほどに大きくなる。たとえばバックライト20が高指向性である場合、すなわち、バックライト20の正面方向への光度が斜め方向への光度と比較して極めて大きい場合において抜け光が存在すると、蛍光体層3からの出射光は、蛍光と抜け光との合成によって、正面方向の輝度が斜め方向と比較してはるかに大きくなる。 The amount of energy of fluorescence emitted by the phosphor is lower than the amount of energy of excitation light absorbed by the phosphor. For this reason, the ratio of the missing light in the total energy of the light emitted from the phosphor increases depending on the light distribution characteristics of the backlight 20 so as to affect the display quality of the display device 200. For example, when the backlight 20 has high directivity, that is, when the light intensity in the front direction of the backlight 20 is extremely large compared to the light intensity in the oblique direction, if the light exits from the phosphor layer 3, As for the incident light, the luminance in the front direction is much larger than that in the oblique direction due to the combination of the fluorescence and the exit light.
 このように極角による輝度変化が存在するバックライト20を用いた場合、観賞角度によって表示装置200の輝度が変化する可能性がある。このような輝度変化はバックライト20の指向性が高いほど生じやすく、そして蛍光励起ディスプレイにおいては指向性の高いバックライト20を使用することが望ましい。よって、この抜け光は除去する必要がある。 In this way, when the backlight 20 having the luminance change due to the polar angle is used, the luminance of the display device 200 may change depending on the viewing angle. Such a luminance change is more likely to occur as the directivity of the backlight 20 is higher, and it is desirable to use the backlight 20 having a higher directivity in the fluorescence excitation display. Therefore, it is necessary to remove this lost light.
 そのため、本実施の形態の表示装置200は、バックライト20と蛍光体層3との間に配置されたフィルタ30を備える。フィルタ30は、蛍光体層3に対し、光源側に配置される。バックライト20で発生した光は、フィルタ30を通過して、蛍光体層3へ入射する。フィルタ30は、バックライト20で発生した光のうち、一部の波長域の光の通過を抑制する。フィルタ30は、バックライト20が発光する青色光の発光強度が最大となる波長の光を透過し、蛍光体が蛍光発光する緑色光の発光強度が最大となる波長の光の透過を抑制する。フィルタ30は、少なくとも500nm以上560nm以下の波長の光の透過を抑制し、430nm以上470nm以下の波長の光を透過する、波長選択カットフィルタである。 Therefore, the display device 200 according to the present embodiment includes the filter 30 disposed between the backlight 20 and the phosphor layer 3. The filter 30 is disposed on the light source side with respect to the phosphor layer 3. Light generated by the backlight 20 passes through the filter 30 and enters the phosphor layer 3. The filter 30 suppresses passage of light in a part of the wavelength range among the light generated in the backlight 20. The filter 30 transmits light having a wavelength that maximizes the emission intensity of blue light emitted from the backlight 20, and suppresses transmission of light having a wavelength that maximizes the emission intensity of green light emitted by the phosphor. The filter 30 is a wavelength selective cut filter that suppresses transmission of light having a wavelength of at least 500 nm to 560 nm and transmits light having a wavelength of 430 nm to 470 nm.
 バックライト20で発生した青色光のうち、主となる波長領域の青色光はフィルタ30を通過する。フィルタ30は、バックライト20と緑色蛍光体を含む蛍光体層3との間に配置されており、蛍光体層3を透過して抜け光となる不必要な青色光は、フィルタ30によりカットされる。少なくとも500nm以上560nm以下の波長域の光をカットし、430nm以上470nm以下の波長域の光を透過するフィルタ30を色変換基板100よりもバックライト20側に組み込むことで、光利用効率を大きく損なうことなく抜け光を除去することが可能である。結果として、観賞角度による輝度変化の無い表示装置200を実現することができる。 Of the blue light generated in the backlight 20, the blue light in the main wavelength region passes through the filter 30. The filter 30 is disposed between the backlight 20 and the phosphor layer 3 containing the green phosphor. Unnecessary blue light that passes through the phosphor layer 3 and becomes exiting light is cut by the filter 30. The Incorporating a filter 30 that cuts light in a wavelength range of at least 500 nm to 560 nm and transmits light in a wavelength range of 430 nm to 470 nm closer to the backlight 20 than the color conversion substrate 100 greatly impairs light utilization efficiency. It is possible to remove light leakage without any problem. As a result, it is possible to realize the display device 200 that does not change in luminance depending on the viewing angle.
 以下、フィルタ30の特性の詳細について説明する。図2は、蛍光体層3からの出射光の概要を示す断面図である。図2には、バックライト20で発生した青色光のうち一部が蛍光体層3において蛍光体を励起し、その結果蛍光が発光され、青色光の一部が抜け光として蛍光体層3を透過する状態が模式的に図示されている。 Details of the characteristics of the filter 30 will be described below. FIG. 2 is a cross-sectional view showing an outline of the emitted light from the phosphor layer 3. In FIG. 2, part of the blue light generated in the backlight 20 excites the phosphor in the phosphor layer 3, and as a result, fluorescence is emitted, and part of the blue light passes through the phosphor layer 3 as light. A state of transmission is schematically illustrated.
 図2に示すように、バックライト20で発生した青色光L1は、フィルタ30を透過して青色光L4として蛍光体層3に入射する。蛍光体層3において、蛍光体が青色光L4の一部を吸収して蛍光を発光する。 As shown in FIG. 2, the blue light L1 generated by the backlight 20 passes through the filter 30 and enters the phosphor layer 3 as the blue light L4. In the phosphor layer 3, the phosphor absorbs part of the blue light L4 and emits fluorescence.
 蛍光は、緑色光F1~F5に示すように、等方に発光する。緑色光F1は、蛍光体層3の厚み方向に主表面1側へ進み、平面状の主表面1の法線方向に沿って、蛍光体層3から出射する。緑色光F2,F3は、主表面1の法線方向に対する斜め方向に沿って主表面1側へ進み、蛍光体層3から出射する。緑色光F4,F5は、主表面2側へ進む。 Fluorescence is emitted in an isotropic manner as shown by green lights F1 to F5. The green light F1 travels toward the main surface 1 in the thickness direction of the phosphor layer 3 and exits from the phosphor layer 3 along the normal direction of the planar main surface 1. The green lights F <b> 2 and F <b> 3 travel to the main surface 1 side along the oblique direction with respect to the normal direction of the main surface 1 and are emitted from the phosphor layer 3. The green lights F4 and F5 travel to the main surface 2 side.
 青色光L4のうち、蛍光体を励起する励起光として使用されなかった光は、青色光L7のように、抜け光として蛍光体層3から出射する。青色光L7は、緑色光F1と同じ方向、すなわち主表面1の法線方向に沿って進み、蛍光体層3から出射する。 Of the blue light L4, light that has not been used as excitation light for exciting the phosphor is emitted from the phosphor layer 3 as exit light, as is the blue light L7. The blue light L7 travels in the same direction as the green light F1, that is, along the normal direction of the main surface 1, and is emitted from the phosphor layer 3.
 ここで、極角θおよび方位角φを以下の通り定義する。図3は、極角θおよび方位角φの概略を示す模式図である。本明細書において、極角θとは、表示装置200の平面状の出射面9に対する角度のことを指し、出射面9の法線に対して形成する角度のことをいう。図3に示すように、出射面9上に延びる直線上の一点から出射面9に対する法線を想定した場合、その法線に対し一方向側に延びる当該直線が成す極角θは90°であり、上記一方向と反対方向の他方向側に延びる当該直線が成す極角θは-90°である。 Here, polar angle θ and azimuth angle φ are defined as follows. FIG. 3 is a schematic diagram showing an outline of the polar angle θ and the azimuth angle φ. In the present specification, the polar angle θ refers to an angle with respect to the planar exit surface 9 of the display device 200 and refers to an angle formed with respect to the normal line of the exit surface 9. As shown in FIG. 3, when assuming a normal to the emission surface 9 from one point on a straight line extending on the emission surface 9, the polar angle θ formed by the straight line extending in one direction with respect to the normal is 90 °. The polar angle θ formed by the straight line extending in the other direction in the direction opposite to the one direction is −90 °.
 また本明細書において、方位角φとは、出射面9上に延びる直線の一方向に対する偏角をいう。つまり、図3に示すように、出射面9上に延びる直線上の一点から出射面9に対する法線を想定した場合、その法線と直線との交点に対し直線の一方向側の方位角は0°(または360°)であり、直線の他方向側の方位角は180°である。 Further, in this specification, the azimuth angle φ refers to a declination angle with respect to one direction of a straight line extending on the emission surface 9. That is, as shown in FIG. 3, when assuming a normal to the exit surface 9 from one point on the straight line extending on the exit surface 9, the azimuth angle on one side of the straight line with respect to the intersection of the normal and the straight line is It is 0 ° (or 360 °), and the azimuth angle on the other side of the straight line is 180 °.
 図2に戻って、バックライト20で発生した青色光のうちの一部の青色光L2は、フィルタ30を経由して青色光L5として蛍光体層3に入射し、上記緑色光F2の進む方向と同じ方向に沿って進み、青色光L8のように抜け光として蛍光体層3から出射される。緑色光F2と青色光F8とは、同一の極角θにおける、蛍光体から発光した蛍光と蛍光体層3を透過した抜け光とを示す。 Returning to FIG. 2, a part of the blue light L2 generated in the backlight 20 is incident on the phosphor layer 3 as the blue light L5 through the filter 30 and the green light F2 travels in the traveling direction. The light travels along the same direction as the blue light L8, and is emitted from the phosphor layer 3 as exiting light like the blue light L8. Green light F2 and blue light F8 indicate the fluorescence emitted from the phosphor and the exit light transmitted through the phosphor layer 3 at the same polar angle θ.
 バックライト20で発生した青色光のうちの一部の青色光L3は、フィルタ30を経由して青色光L6として蛍光体層3に入射し、上記緑色光F3の進む方向と同じ方向に沿って進み、青色光L9のように抜け光として蛍光体層3から出射される。緑色光F3と青色光F9とは、同一の極角θにおける、蛍光体から発光した蛍光と蛍光体層3を透過した抜け光とを示す。 A part of the blue light L3 generated in the backlight 20 passes through the filter 30 and enters the phosphor layer 3 as the blue light L6, along the same direction as the green light F3 travels. Then, the light is emitted from the phosphor layer 3 as exit light like the blue light L9. Green light F3 and blue light F9 indicate the fluorescence emitted from the phosphor and the light passing through the phosphor layer 3 at the same polar angle θ.
 ある特定の波長について、極角θにおいて、蛍光体から発光される緑色光の光度を、光度スペクトルPθとする。同じ波長について、極角θにおいて、バックライト20で発生した青色光が蛍光体層3を透過した抜け光の光度は、iθ・T・Tphである。ここで、iθとは、ある特定の波長について極角θにおいてバックライト20で発生した青色光の光度スペクトルであり、Tとは、ある特定の波長についてのフィルタ30の透過率スペクトルであり、Tphとは、ある特定の波長についての蛍光体層3の透過率スペクトルである。つまり、ある特定の波長について、極角θにおいて、蛍光体層3から出射される光の光度は、Pθ+(iθ・T・Tph)、すなわち蛍光の光度と抜け光の光度とを加算した和である。 For a specific wavelength, the luminous intensity of green light emitted from the phosphor at the polar angle θ is defined as a luminous intensity spectrum P θ . For the same wavelength, at the polar angle θ, the luminous intensity of the blue light generated by the backlight 20 and transmitted through the phosphor layer 3 is i θ · T F · T ph . Here, is a luminous spectrum of blue light generated in the backlight 20 at a polar angle θ for a specific wavelength, and TF is a transmittance spectrum of the filter 30 for a specific wavelength. , T ph is the transmittance spectrum of the phosphor layer 3 for a specific wavelength. That is, for a specific wavelength, at the polar angle θ, the luminous intensity of the light emitted from the phosphor layer 3 is P θ + (i θ · T F · T ph ), that is, the luminous intensity of the fluorescence and the luminous intensity of the missing light. Is the sum of
 {Pθ+(iθ・T・Tph)}を全波長について積分した和が、極角θにおける蛍光体層3からの出射光の光度lθとなる。つまり、極角θにおける蛍光体層3からの出射光の光度lθは、以下の関係式(1)で表される。
(1) lθ=∫{Pθ+(iθ・T・Tph)}dλ
光度lθはすなわち、蛍光体層3から極角θ方向に出射する、全ての波長の蛍光と全ての波長の抜け光とを合算した光の光度を示す。
The sum of {P θ + (i θ · T F · T ph )} integrated over all wavelengths is the luminous intensity l θ of the emitted light from the phosphor layer 3 at the polar angle θ. In other words, the luminous intensity l theta of the light emitted from the phosphor layer 3 at a polar angle theta is expressed by the following equation (1).
(1) l θ = ∫ { P θ + (i θ · T F · T ph)} dλ
That is, the luminous intensity lθ represents the luminous intensity of the light that is emitted from the phosphor layer 3 in the polar angle θ direction and that is the sum of the fluorescence of all wavelengths and the light of all wavelengths.
 図4は、表示装置200の観察角度に依らず輝度均一な場合の、極角θと光度との関係を示す図である。図4の横軸は極角を示す。表示装置200の出射面9に対し真正面の方向において、極角θは0°である。図4の縦軸は光度、すなわち極角θの方向における表示装置200から放出された光束の大きさを示す。極角θが0°の方向における表示装置200からの出射光の光度をlとする。光度lは、極角0°における、蛍光の光度と抜け光の光度との和を全波長について積算した光度である。 FIG. 4 is a diagram illustrating the relationship between the polar angle θ and the luminous intensity when the luminance is uniform regardless of the viewing angle of the display device 200. The horizontal axis in FIG. 4 indicates the polar angle. In the direction directly in front of the emission surface 9 of the display device 200, the polar angle θ is 0 °. The vertical axis in FIG. 4 indicates the luminous intensity, that is, the size of the light beam emitted from the display device 200 in the polar angle θ direction. The luminous intensity of the emitted light from the display device 200 in the direction where the polar angle θ is 0 ° is defined as l 0 . The luminous intensity 10 is the luminous intensity obtained by integrating the sum of the luminous intensity of fluorescence and the luminous intensity of light at all polarities at a polar angle of 0 °.
 図4には、図4中の原点の位置を表示装置200の出射面9上のある一点と考えた場合の、当該点からの出射光の光度が示される。表示装置200の輝度が観察角度に依らず真に均一であれば、極角と光度との関係は、図4中に示すf(θ)=l・cosθの式に従う。本実施の形態では、出射面9を介して表示装置200から出射される光が図4中に示すf(θ)に対し一定範囲にあれば、表示装置200は観察角度に依らず輝度均一であると評価する。つまり、観察角度に依らず輝度均一と評価され得る表示装置200では、蛍光体層3からの出射光の光度の極角分布が一定範囲にある。 FIG. 4 shows the luminous intensity of the emitted light from the point when the position of the origin in FIG. 4 is considered as a certain point on the emission surface 9 of the display device 200. If the luminance of the display device 200 is truly uniform regardless of the observation angle, the relationship between the polar angle and the luminous intensity follows the equation f (θ) = l 0 · cos θ shown in FIG. In the present embodiment, if the light emitted from the display device 200 via the emission surface 9 is within a certain range with respect to f (θ) shown in FIG. 4, the display device 200 has a uniform luminance regardless of the observation angle. Evaluate that there is. That is, in the display device 200 that can be evaluated as having uniform brightness regardless of the observation angle, the polar angle distribution of the luminous intensity of the emitted light from the phosphor layer 3 is in a certain range.
 より具体的には、極角θと、極角θにおける蛍光体層3からの出射光の光度lθとが、-85°≦θ≦85°の範囲で、以下の関係式(2)を満たすかどうかを評価する。
(2) 0.90・A・cosθ≦lθ≦1.10・A・cosθ
ここでAは、極角0°における蛍光体層3からの出射光の光度lの0.91倍以上1.11倍以下の範囲にある任意の実数であり、極角0°での光度lに対して±10%に収まる範囲である。表示装置200がこの関係式を満たす場合には、表示装置200をどのような角度から観賞しても輝度の変化が十分に小さく、あらゆる観賞角度において輝度が均一である表示装置200が実現されたと評価できる。この条件式により、表示装置200の輝度均一化を達成するための条件が明確化される。
More specifically, when the polar angle θ and the luminous intensity l θ of the emitted light from the phosphor layer 3 at the polar angle θ are in the range of −85 ° ≦ θ ≦ 85 °, the following relational expression (2) is satisfied. Evaluate whether to meet.
(2) 0.90 · A · cos θ ≦ l θ ≦ 1.10 · A · cos θ
Wherein A is any real number in the 1.11 times the range of 0.91 or more times the intensity l 0 of the light emitted from the phosphor layer 3 at a polar angle 0 °, the luminous intensity in the polar angle 0 ° ranges that will fit in ± 10% with respect to l 0. When the display device 200 satisfies this relational expression, the display device 200 is realized in which the change in luminance is sufficiently small regardless of the angle at which the display device 200 is viewed, and the luminance is uniform at all viewing angles. Can be evaluated. This conditional expression clarifies conditions for achieving uniform luminance of the display device 200.
 図5は、蛍光体層3からの出射光の光度極角分布を示すグラフである。図5の横軸は極角を示し、縦軸は相対光度を示す。図5中に実線で描かれる曲線は、蛍光体層3からの出射光の光度分布の実測値である。なお、蛍光体層3からの出射光に関し、極角±70%より外側の範囲は測定限界のために測定不可であるので、図5では極角-70°~70°の範囲における出射光の光度分布が図示されている。 FIG. 5 is a graph showing the luminous intensity polar angle distribution of the light emitted from the phosphor layer 3. In FIG. 5, the horizontal axis indicates the polar angle, and the vertical axis indicates the relative luminous intensity. A curve drawn with a solid line in FIG. 5 is an actual measurement value of the luminous intensity distribution of the emitted light from the phosphor layer 3. Note that, with respect to the light emitted from the phosphor layer 3, the range outside the polar angle ± 70% cannot be measured due to the measurement limit, so in FIG. 5, the light emitted in the polar angle range of −70 ° to 70 ° is used. The light intensity distribution is shown.
 たとえば、蛍光体層3からの出射光が図5に示すような光度分布の実測値を示したとする。この場合、実数Aを極角0°における蛍光体層3からの出射光の光度lの0.96倍とする。すなわち、条件式中のA=0.96・lとする。図5中に点線で描かれる曲線は、極角θの関数f(θ)=A・cosθ=0.96・l・cosθを示す。図5中に鎖線で描かれる二つの曲線は、上記の関数f(θ)の0.90倍および1.10倍を示す。 For example, it is assumed that the light emitted from the phosphor layer 3 shows an actually measured value of the luminous intensity distribution as shown in FIG. In this case, the real A and 0.96 times the intensity l 0 of the light emitted from the phosphor layer 3 at a polar angle 0 °. In other words, the A = 0.96 · l 0 in the conditional expression. A curve drawn by a dotted line in FIG. 5 indicates a function f (θ) = A · cos θ = 0.96 · l 0 · cos θ of the polar angle θ. Two curves drawn with a chain line in FIG. 5 indicate 0.90 times and 1.10 times of the function f (θ).
 このように、極角0°における光度lの0.91倍以上1.11倍以下の範囲にある実数Aを適切に選定することにより、図5中に実線で示される出射光の光度lθは、極角θが-85°以上85°以下の範囲で、A・cosθの0.90倍以上1.10倍以下の範囲にあることになる。そのため、極角θにおける蛍光体層3からの出射光の光度lθが上述した条件式を満たすことになるため、この表示装置200は観賞角度に依らず輝度均一であると評価できる。 Thus, by appropriately selecting the real A in 1.11 times or less in the range 0.91 times the intensity l 0 of the polar angle 0 °, the luminous intensity l of the emitted light indicated by the solid line in FIG. 5 θ is in the range of 0.90 times or more and 1.10 times or less of A · cos θ when the polar angle θ is in the range of −85 ° to 85 °. Therefore, since the polar angle luminous intensity of the light emitted from the phosphor layer 3 in the theta l theta is to satisfy the condition described above, the display device 200 can be evaluated to be uniform luminance regardless of the viewing angle.
 フィルタ30の特性は、バックライト20の配向特性と蛍光体層3の透過率とに大きく左右される。フィルタ30は、青色光を透過するような透過率を保有するものであればよい。青色光の透過率は可能な限り高いことが望ましい。フィルタ30を設けることにより、蛍光体層3を透過する抜け光の光度を低減できる。また、フィルタ30の特性を、方位角φへの依存なく上記式(1)および式(2)を満たすように決定することにより、抜け光が発生しても、観察角度に依らず全視野角において輝度均一な表示装置200を実現でき、意図的に輝度均一な表示装置200を作製することができる。したがって、蛍光体層3を透過した抜け光による表示品位の低下を防ぐことができる。 The characteristics of the filter 30 greatly depend on the orientation characteristics of the backlight 20 and the transmittance of the phosphor layer 3. The filter 30 only needs to have a transmittance that transmits blue light. It is desirable that the transmittance of blue light is as high as possible. By providing the filter 30, the luminous intensity of light passing through the phosphor layer 3 can be reduced. In addition, by determining the characteristics of the filter 30 so as to satisfy the above formulas (1) and (2) without depending on the azimuth angle φ, the entire viewing angle can be obtained regardless of the observation angle even if light leakage occurs. The display device 200 with uniform luminance can be realized, and the display device 200 with uniform luminance can be intentionally manufactured. Therefore, it is possible to prevent display quality from being deteriorated due to light passing through the phosphor layer 3.
 (実施の形態2)
 実施の形態2の表示装置200は、赤色光、緑色光および青色光をそれぞれ出射可能な複数の画素を含む蛍光体層3を備えており、これらの色の重ね合わせによって表示装置200は白色光を表示可能であるものとする。表示装置200が白色光を表示するとき、観察角度に依る色変化を人の目で感じられない程度に抑えるには、色度xyの誤差を±0.02以内にする必要がある。実施の形態2では、表示装置200の色度変化が±0.02以内であり、当該表示装置200は観察角度に依らず色度が均一である、と評価するための条件について説明する。
(Embodiment 2)
The display device 200 according to the second embodiment includes the phosphor layer 3 including a plurality of pixels that can emit red light, green light, and blue light, respectively, and the display device 200 is white light by superimposing these colors. Can be displayed. When the display device 200 displays white light, the error of the chromaticity xy needs to be within ± 0.02 in order to suppress the color change depending on the observation angle to such an extent that it cannot be felt by human eyes. In the second embodiment, a condition for evaluating that the change in chromaticity of the display device 200 is within ± 0.02 and that the display device 200 has uniform chromaticity regardless of the observation angle will be described.
 図6は、RGB画素によって構成される表示装置200において、B画素からの出射光が条件式から誤差0%の際に、RGが条件式からどの程度ずれた場合に白表示色度が±0.02以上変化するかを示すグラフである。図6のグラフの横軸のG係数とは、G画素からの出射光光度の条件式からの誤差を示す。縦軸のR係数とは、R画素からの出射光光度の条件式からの誤差を示す。たとえばG係数が1.05というのは、G画素からの出射光光度の条件式からの誤差が+5%ということである。 FIG. 6 shows that in the display device 200 configured by RGB pixels, when the output light from the B pixel has an error of 0% from the conditional expression, the white display chromaticity is ± 0 when the RG deviates from the conditional expression. It is a graph which shows whether it changes more than 0.02. The G coefficient on the horizontal axis of the graph of FIG. 6 indicates an error from the conditional expression of the luminous intensity of light emitted from the G pixel. The R coefficient on the vertical axis indicates an error from the conditional expression of the luminous intensity of light emitted from the R pixel. For example, the G coefficient of 1.05 means that the error from the conditional expression of the luminous intensity of light emitted from the G pixel is + 5%.
 図6に示すグラフにプロットされた線上(二重にある場合は内側の線)にて、色度変化が±0.02となる。図6のグラフにおいて、プロット線で囲まれた領域内であれば、RGB全て条件式通りの状態から色度変化±0.02以内となる。B画素の条件式からの誤差を変動させて、同様のグラフを作成していくと、RGB全ての光度が条件式から±7%以内であれば、表示装置200の色度変化は0.02以内に収まる。よって、光度分布の実測値が条件式に対し±7%の範囲に収まれば、色度が±0.02以内であって、観察角度に依らず色度が均一な表示装置が実現される、と評価することができる。 The chromaticity change is ± 0.02 on the line plotted in the graph shown in FIG. 6 (inner line when there is a double line). In the graph of FIG. 6, if it is within the area surrounded by the plot line, the chromaticity change is within ± 0.02 from the state in accordance with the conditional expression for all RGB. When a similar graph is created by varying the error from the conditional expression of the B pixel, if the luminance of all RGB is within ± 7% of the conditional expression, the chromaticity change of the display device 200 is 0.02. Fits within. Therefore, if the measured value of the luminous intensity distribution falls within a range of ± 7% with respect to the conditional expression, a display device in which the chromaticity is within ± 0.02 and the chromaticity is uniform regardless of the observation angle is realized. Can be evaluated.
 すなわち、極角θにおける蛍光体層3からの出射光の光度lθが、-85°≦θ≦85°の範囲で、関係式(3)を満たすかどうかを評価する。
(3) 0.93・B・cosθ≦lθ≦1.07・B・cosθ
 ここでBは、極角0°における蛍光体層3からの出射光の光度lの0.93倍以上1.076倍以下の範囲にある任意の実数であり、極角0°での光度lに対して±7%に収まる範囲である。表示装置200がこの関係式を満たす場合には、色度xyは±0.02以内の誤差に収まり、色度xyが±0.02以内であれば色変化を人の目で感じることは不可能となるため、あらゆる観賞角度において輝度および色度が均一である表示装置200が実現されたと評価できる。この条件式により、表示装置200の色度均一化を達成するための条件が明確化され、上記条件式を満たす表示装置は観察角度によって色度が変化しない特性を有すると評価することができる。
That is, it is evaluated whether the luminous intensity l θ of the light emitted from the phosphor layer 3 at the polar angle θ satisfies the relational expression (3) in the range of −85 ° ≦ θ ≦ 85 °.
(3) 0.93 · B · cos θ ≦ l θ ≦ 1.07 · B · cos θ
Wherein B is any real number in the 1.076 times the range 0.93 times the intensity l 0 of the light emitted from the phosphor layer 3 at a polar angle 0 °, the luminous intensity in the polar angle 0 ° ranges that fall ± 7% with respect to l 0. When the display device 200 satisfies this relational expression, the chromaticity xy falls within an error of ± 0.02, and if the chromaticity xy is within ± 0.02, it is unlikely that a human will feel a color change. Therefore, it can be evaluated that the display device 200 having uniform brightness and chromaticity at all viewing angles has been realized. This conditional expression clarifies the conditions for achieving chromaticity uniformity of the display device 200, and it can be evaluated that a display apparatus that satisfies the conditional expression has a characteristic that the chromaticity does not change depending on the observation angle.
 図7は、R蛍光体からの出射光の光度極角分布を示すグラフである。図8は、G蛍光体からの出射光の光度極角分布を示すグラフである。図9は、B画素における散乱材からの出射光の光度極角分布を示すグラフである。図7、図8および図9の横軸は極角を示し、縦軸は相対光度を示す。 FIG. 7 is a graph showing the polar angle distribution of light emitted from the R phosphor. FIG. 8 is a graph showing the luminous intensity polar angle distribution of the emitted light from the G phosphor. FIG. 9 is a graph showing the luminous intensity polar angle distribution of the emitted light from the scattering material in the B pixel. 7, 8, and 9, the horizontal axis indicates the polar angle, and the vertical axis indicates the relative luminous intensity.
 R蛍光体からの出射光が図7中の実線に示すような光度分布である場合、実数Bを極角0°におけるR蛍光体からの出射光の光度lの1.06倍とする。すなわち、条件式中のB=1.06・lとする。図7中に点線で描かれる曲線は、極角θの関数f(θ)=B・cosθ=1.06・l・cosθを示す。図7中に鎖線で描かれる二つの曲線は、上記の関数f(θ)の0.93倍および1.07倍を示す。 If light emitted from the R phosphor is luminous intensity distribution as shown in solid line in FIG. 7, the real B 1.06 times the intensity l 0 of the light emitted from the R phosphor in the polar angle 0 °. That is, the B = 1.06 · l 0 in conditional expressions. A curve drawn with a dotted line in FIG. 7 represents a function f (θ) = B · cos θ = 1.06 · l 0 · cos θ of the polar angle θ. Two curves drawn with a chain line in FIG. 7 indicate 0.93 times and 1.07 times the above function f (θ).
 G蛍光体からの出射光が図8中の実線に示すような光度分布である場合、実数Bを極角0°におけるG蛍光体からの出射光の光度lの1.006倍とする。すなわち、条件式中のB=1.006・lとする。図8中に点線で描かれる曲線は、極角θの関数f(θ)=B・cosθ=1.006・l・cosθを示す。図8中に鎖線で描かれる二つの曲線は、上記の関数f(θ)の0.93倍および1.07倍を示す。 If light emitted from the G phosphor is a luminous intensity distribution as shown in solid line in FIG. 8, the real B and 1.006 times the intensity l 0 of the light emitted from the G phosphor in the polar angle 0 °. That is, B in the conditional expression is set to 1.006 · 10 . A curve drawn by a dotted line in FIG. 8 indicates a function f (θ) = B · cos θ = 1.006 · l 0 · cos θ of the polar angle θ. Two curves drawn with a chain line in FIG. 8 indicate 0.93 times and 1.07 times the above function f (θ).
 B画素における散乱材からの出射光が図9中の実線に示すような光度分布である場合、実数Bを極角0°における散乱材からの出射光の光度lの0.93倍とする。すなわち、条件式中のB=0.93・lとする。図9中に点線で描かれる曲線は、極角θの関数f(θ)=B・cosθ=0.93・l・cosθを示す。図9中に鎖線で描かれる二つの曲線は、上記の関数f(θ)の0.93倍および1.07倍を示す。 When the light emitted from the scattering material in the B pixel is light intensity distribution as shown by the solid line in FIG. 9, the real B 0.93 times the intensity l 0 of the light emitted from the scattering material at a polar angle 0 ° . That is, the B = 0.93 · l 0 in conditional expressions. A curve drawn by a dotted line in FIG. 9 indicates a function f (θ) = B · cos θ = 0.93 · l 0 · cos θ of the polar angle θ. Two curves drawn with a chain line in FIG. 9 indicate 0.93 times and 1.07 times the above function f (θ).
 このように、極角0°における光度lの0.93倍以上1.076倍以下の範囲にある実数Bを適切に選定することにより、RGBの各蛍光体からの出射光の光度lθは、極角θが-85°以上85°以下の範囲で、B・cosθの0.93倍以上1.07倍以下の範囲にあることになる。そのため、極角θにおける蛍光体層3からの出射光の光度lθが上述した条件式を満たすことになるため、この表示装置200は観賞角度に依らず色度均一であると評価できる。 Thus, by appropriately selecting the real B in 1.076 times the range 0.93 times the intensity l 0 of the polar angle 0 °, the light emitted from each phosphor of RGB luminous intensity l theta The polar angle θ is in the range of not less than −85 ° and not more than 85 °, and in the range of not less than 0.93 times and not more than 1.07 times B · cos θ. Therefore, since the polar angle theta intensity l theta of the light emitted from the phosphor layer 3 in is to satisfy the condition described above, the display device 200 can be evaluated to be uniform chromaticity irrespective of the viewing angle.
 フィルタ30は、青色光を透過するような透過率を保有するものであればよい。青色光の透過率は可能な限り高いことが望ましい。フィルタ30を設けることにより、蛍光体層3を透過する抜け光の光度を低減できる。また、フィルタ30の特性を、方位角φへの依存なく上記式(1)および式(3)を満たすように決定することにより、抜け光が発生しても、観察角度に依らず色度均一な表示装置200を実現でき、観察角度によって輝度および色度が変化しない表示装置200を意図的に作製することができる。したがって、蛍光体層3を透過した抜け光による表示品位の低下を防ぐことができる。 The filter 30 only needs to have a transmittance that allows blue light to pass therethrough. It is desirable that the transmittance of blue light is as high as possible. By providing the filter 30, the luminous intensity of light passing through the phosphor layer 3 can be reduced. Further, by determining the characteristics of the filter 30 so as to satisfy the above formulas (1) and (3) without depending on the azimuth angle φ, the chromaticity is uniform regardless of the observation angle even if light leakage occurs. Display device 200 can be realized, and display device 200 whose luminance and chromaticity do not change depending on the observation angle can be intentionally manufactured. Therefore, it is possible to prevent display quality from being deteriorated due to light passing through the phosphor layer 3.
 (実施の形態3)
 図10は、実施の形態3に係る表示装置200を示す断面図である。実施の形態3の表示装置200において、バックライト20は、青色波長の光を放射する。図10に示すように、蛍光体層3は、赤色蛍光体層5rと、緑色蛍光体層5gとを含む。蛍光体層3はまた、拡散層6を含む。赤色蛍光体層5rと、緑色蛍光体層5gと、拡散層6とは、隔壁部7により仕切られており、互いに間隔をあけてアレイ状に配置されている。蛍光体層3には、画素毎に蛍光体および散乱材料が塗り分けられている。
(Embodiment 3)
FIG. 10 is a cross-sectional view showing the display device 200 according to the third embodiment. In the display device 200 according to the third embodiment, the backlight 20 emits light having a blue wavelength. As shown in FIG. 10, the phosphor layer 3 includes a red phosphor layer 5r and a green phosphor layer 5g. The phosphor layer 3 also includes a diffusion layer 6. The red phosphor layer 5r, the green phosphor layer 5g, and the diffusion layer 6 are partitioned by the partition wall 7, and are arranged in an array with a space therebetween. The phosphor layer 3 is coated with phosphor and scattering material for each pixel.
 赤色蛍光体層5rは、赤色蛍光体層5rに入射された入射光を吸収して赤色光を出射する赤色蛍光体を含む。緑色蛍光体層5gは、緑色蛍光体層5gに入射された入射光を吸収して緑色光を出射する緑色蛍光体を含む。拡散層6は、拡散層6に入射された入射光を拡散して外部に出射する。拡散層6は、バインダとしての透明樹脂と、樹脂内に散乱するフィラとしての複数の散乱粒子とを含む。フィラは、光シャッタ150を経由して蛍光体層3に供給される光を反射および散乱させる材料であればよい。 The red phosphor layer 5r includes a red phosphor that absorbs incident light incident on the red phosphor layer 5r and emits red light. The green phosphor layer 5g includes a green phosphor that absorbs incident light incident on the green phosphor layer 5g and emits green light. The diffusion layer 6 diffuses the incident light incident on the diffusion layer 6 and emits it to the outside. The diffusion layer 6 includes a transparent resin as a binder and a plurality of scattering particles as fillers scattered in the resin. The filler may be any material that reflects and scatters light supplied to the phosphor layer 3 via the optical shutter 150.
 蛍光体層3は、青色光を吸収して赤色光を励起する赤色蛍光体層5rと、青色光を吸収して緑色光を励起する緑色蛍光体層5gと、青色光を完全散乱する拡散層6と、を含む。バックライト20からの青色光が赤色蛍光体層5r、緑色蛍光体層5gおよび拡散層6へと入射し、赤色光および緑色光の蛍光、ならびに青色光の散乱が生じ、RGB各画素の光が出射面9から出射される。これにより、表示装置200は、フルカラーでの映像表示が可能な映像表示装置として設けられている。 The phosphor layer 3 includes a red phosphor layer 5r that absorbs blue light and excites red light, a green phosphor layer 5g that absorbs blue light and excites green light, and a diffusion layer that completely scatters blue light. 6 are included. Blue light from the backlight 20 is incident on the red phosphor layer 5r, the green phosphor layer 5g, and the diffusion layer 6 to cause red and green light fluorescence and blue light scattering. The light exits from the exit surface 9. Accordingly, the display device 200 is provided as a video display device capable of displaying a full color video.
 光シャッタ150としては、液晶表示パネルが用いられる。この場合、図10に示すように、光シャッタ150は、バックライト20側に配置されたTFT(Thin Film Transistor)基板であるガラス基板22と、色変換基板100側に配置された対向基板であるガラス基板24と、ガラス基板22とガラス基板24との間に封入された液晶層23とを含む。ガラス基板22,24の間には、液晶層23を封止するための図示しない環状のシール部材が、ガラス基板22,24の外周縁部に沿って設けられている。ガラス基板22の外側の面には偏光板21が貼られており、ガラス基板24の外側の面には偏光板25が貼られている。 As the optical shutter 150, a liquid crystal display panel is used. In this case, as shown in FIG. 10, the optical shutter 150 is a glass substrate 22 that is a TFT (Thin Film 基板 Transistor) substrate disposed on the backlight 20 side and a counter substrate disposed on the color conversion substrate 100 side. The glass substrate 24 and the liquid crystal layer 23 enclosed between the glass substrate 22 and the glass substrate 24 are included. An annular seal member (not shown) for sealing the liquid crystal layer 23 is provided between the glass substrates 22 and 24 along the outer peripheral edge portions of the glass substrates 22 and 24. A polarizing plate 21 is attached to the outer surface of the glass substrate 22, and a polarizing plate 25 is attached to the outer surface of the glass substrate 24.
 ガラス基板22の液晶層23側の表面には、ソース配線が形成され、このソース配線を覆うように絶縁層が形成される。さらに絶縁層の表面に、各画素に対応するように画素電極が配置されている。画素電極は、たとえば、ITO(酸化インジウムスズ)膜などの透明導電膜によって形成されている。ガラス基板24の液晶層23側の表面には、対向電極が形成されている。対向電極は、たとえば、ITO膜などの透明導電膜から形成されている。 A source wiring is formed on the surface of the glass substrate 22 on the liquid crystal layer 23 side, and an insulating layer is formed so as to cover the source wiring. Further, pixel electrodes are arranged on the surface of the insulating layer so as to correspond to the respective pixels. The pixel electrode is formed of a transparent conductive film such as an ITO (indium tin oxide) film. A counter electrode is formed on the surface of the glass substrate 24 on the liquid crystal layer 23 side. The counter electrode is formed of a transparent conductive film such as an ITO film, for example.
 ガラス基板22側の画素電極とガラス基板24側の対向電極との間に電圧が印加されることによって、当該画素における液晶層23の分子配向が変化する。光シャッタ150は、液晶層23による偏光状態の変化と偏光板21,25との組合せによって、当該画素における光の透過率を制御する。 When a voltage is applied between the pixel electrode on the glass substrate 22 side and the counter electrode on the glass substrate 24 side, the molecular orientation of the liquid crystal layer 23 in the pixel changes. The optical shutter 150 controls the light transmittance in the pixel by a combination of the change in the polarization state by the liquid crystal layer 23 and the polarizing plates 21 and 25.
 実施の形態3では、上記の構成を備える表示装置200において、フィルタ30は、方位角φへの依存なく上記式(1)および式(2)を満たし、または上記式(1)および式(3)を満たし、青色光を透過するような透過率を保有するものであればよい。このようにフィルタ30の特性を決定することにより、観察角度に依らず輝度均一な表示装置200、またはさらに色度変化のない表示装置200を実現でき、意図的に輝度均一な表示装置200を作製することができる。したがって、蛍光体層3を透過した抜け光による表示品位の低下を防ぐことができる。 In the third embodiment, in the display device 200 having the above-described configuration, the filter 30 satisfies the above expressions (1) and (2) without depending on the azimuth angle φ, or the above expressions (1) and (3). ) And possesses a transmittance that transmits blue light. By determining the characteristics of the filter 30 in this manner, the display device 200 with uniform brightness regardless of the observation angle or the display device 200 without further chromaticity change can be realized, and the display device 200 with uniform brightness is intentionally manufactured. can do. Therefore, it is possible to prevent display quality from being deteriorated due to light passing through the phosphor layer 3.
 なおフィルタ30は、図10に示す配置に限定されず、たとえば光シャッタ150と蛍光体層3との間にフィルタを設置することも考えられる。 Note that the filter 30 is not limited to the arrangement shown in FIG. 10, and for example, a filter may be installed between the optical shutter 150 and the phosphor layer 3.
 (実施の形態4)
 図11は、実施の形態4に係る表示装置200を示す断面図である。実施の形態4の表示装置200は、図10に示す実施の形態3の表示装置と基本的に同等の構成を備えており、蛍光体層3に対しバックライト20と反対側の出射面9側にカラーフィルタ8を設けた点において異なっている。カラーフィルタ8は、赤色蛍光体層5rと透明基板4との間に配置されたカラーフィルタ8rと、緑色蛍光体層5gと透明基板4との間に配置されたカラーフィルタ8gと、拡散層6と透明基板4との間に配置されたカラーフィルタ8bとを含む。
(Embodiment 4)
FIG. 11 is a cross-sectional view showing a display device 200 according to the fourth embodiment. The display device 200 according to the fourth embodiment has basically the same configuration as that of the display device according to the third embodiment shown in FIG. 10, and the emission surface 9 side opposite to the backlight 20 with respect to the phosphor layer 3. 1 in that a color filter 8 is provided. The color filter 8 includes a color filter 8r disposed between the red phosphor layer 5r and the transparent substrate 4, a color filter 8g disposed between the green phosphor layer 5g and the transparent substrate 4, and a diffusion layer 6. And a color filter 8 b disposed between the transparent substrate 4 and the transparent substrate 4.
 カラーフィルタ8を設置することにより、蛍光体層3からの出射光が選択的に透過されるので、映像の色特性を向上できる。図11では、カラーフィルタ8を全色画素と透明基板4との間に設置しているが、この構成に限られない。たとえば、拡散層6上のカラーフィルタ8bを省略し、赤色蛍光体層5rおよび緑色蛍光体層5gの上にのみカラーフィルタ8を形成することも考えられる。 By installing the color filter 8, the emitted light from the phosphor layer 3 is selectively transmitted, so that the color characteristics of the image can be improved. In FIG. 11, the color filter 8 is installed between all the color pixels and the transparent substrate 4, but the configuration is not limited thereto. For example, the color filter 8b on the diffusion layer 6 may be omitted, and the color filter 8 may be formed only on the red phosphor layer 5r and the green phosphor layer 5g.
 実施の形態4では、蛍光体層3から出射された光が、カラーフィルタ8をさらに経由して、出射面9から表示装置200の外部へ出射される。この場合、カラーフィルタの透過率スペクトルTCFとすると、ある特定の波長について、極角θにおいて、蛍光体層3から出射される光の光度は、Pθ・TCF+(iθ・T・Tph・TCF)となる。そのため、極角θにおけるカラーフィルタ8を透過した光の光度Lθは、以下の関係式(4)で表される。
(4) Lθ=∫{Pθ・TCF+(iθ・T・Tph・TCF)}dλ
光度Lθはすなわち、極角θ方向においてカラーフィルタ8を経由して出射する、全ての波長の蛍光と全ての波長の抜け光とを合算した光の光度を示す。
In the fourth embodiment, the light emitted from the phosphor layer 3 is further emitted from the emission surface 9 to the outside of the display device 200 via the color filter 8. In this case, assuming that the transmittance spectrum T CF of the color filter, the luminous intensity of light emitted from the phosphor layer 3 at a polar angle θ is P θ · T CF + (i θ · T F * Tph * TCF ). Therefore, the light intensity L θ of the light transmitted through the color filter 8 at the polar angle θ is expressed by the following relational expression (4).
(4) = ∫ { · T CF + (i θ · T F · T ph · T CF )} dλ
The luminosity L theta i.e., emitted through the color filter 8 in the polar angle theta direction indicates the intensity of leakage light and the light obtained by summing the fluorescence and all wavelengths of all wavelengths.
 極角θと、極角θにおけるカラーフィルタ8を透過した光の光度Lθとが、-85°≦θ≦85°の範囲で、以下の関係式(5)を満たすのであれば、表示装置200をどのような角度から観賞しても輝度の変化が十分に小さく、あらゆる観賞角度において輝度が均一である表示装置200が実現されたと評価できる。
(5) 0.90・C・cosθ≦Lθ≦1.10・C・cosθ
ここでCは、極角0°におけるカラーフィルタ8を透過した光の光度Lの0.91倍以上1.11倍以下の範囲にある任意の実数であり、極角0°での光度Lに対して±10%に収まる範囲である。
If the polar angle θ and the luminous intensity L θ of the light transmitted through the color filter 8 at the polar angle θ satisfy the following relational expression (5) in the range of −85 ° ≦ θ ≦ 85 °, the display device: It can be evaluated that the display device 200 in which the change in luminance is sufficiently small regardless of the angle at which 200 is viewed and the luminance is uniform at all viewing angles has been realized.
(5) 0.90 · C · cos θ ≦ L θ ≦ 1.10 · C · cos θ
Here, C is an arbitrary real number in the range of 0.91 to 1.11 times the light intensity L 0 of the light transmitted through the color filter 8 at the polar angle 0 °, and the light intensity L at the polar angle 0 °. The range is within ± 10% of 0 .
 上記の構成を備える表示装置200において、フィルタ30は、方位角φへの依存なく上記式(4)および式(5)を満たし、青色光を透過するような透過率を保有するものであればよい。このようにフィルタ30の特性を決定することにより、観察角度に依らず輝度均一な表示装置200を実現でき、意図的に輝度均一な表示装置200を作製することができる。したがって、蛍光体層3を透過した抜け光による表示品位の低下を防ぐことができる。 In the display device 200 having the above-described configuration, the filter 30 satisfies the above expressions (4) and (5) without depending on the azimuth angle φ and has a transmittance that transmits blue light. Good. By determining the characteristics of the filter 30 in this manner, the display device 200 with uniform brightness regardless of the observation angle can be realized, and the display device 200 with uniform brightness can be intentionally manufactured. Therefore, it is possible to prevent display quality from being deteriorated due to light passing through the phosphor layer 3.
 また、極角θと、極角θにおけるカラーフィルタ8を透過した光の光度Lθとが、-85°≦θ≦85°の範囲で、以下の関係式(6)を満たすのであれば、表示装置200をどのような角度から観賞しても色度変化が0.02以内に収まり、あらゆる観賞角度において色度が均一である表示装置200が実現されたと評価できる。
(6) 0.93・D・cosθ≦Lθ≦1.07・D・cosθ
ここでDは、極角0°におけるカラーフィルタ8を透過した光の光度Lの0.93倍以上1.076倍以下の範囲にある任意の実数であり、極角0°での光度Lに対して±7%に収まる範囲である。
If the polar angle θ and the luminous intensity L θ of the light transmitted through the color filter 8 at the polar angle θ satisfy the following relational expression (6) in the range of −85 ° ≦ θ ≦ 85 °: Even if the display device 200 is viewed from any angle, the change in chromaticity is within 0.02, and it can be evaluated that the display device 200 having uniform chromaticity at any viewing angle has been realized.
(6) 0.93 · D · cos θ ≦ L θ ≦ 1.07 · D · cos θ
Here, D is an arbitrary real number in the range of 0.93 times or more and 1.076 times or less of the light intensity L 0 of the light transmitted through the color filter 8 at the polar angle 0 °, and the light intensity L at the polar angle 0 °. The range is within ± 7% with respect to 0 .
 表示装置200が関係式(6)を満たす場合には、色度xyは±0.02以内の誤差に収まり、色度xyが±0.02以内であれば色変化を人の目で感じることは不可能となるため、あらゆる観賞角度において輝度および色度が均一である表示装置200が実現されたと評価できる。条件式(6)により、表示装置200の色度均一化を達成するための条件が明確化され、上記条件式を満たす表示装置は観察角度によって色度が変化しない特性を有すると評価することができる。 When the display device 200 satisfies the relational expression (6), the chromaticity xy falls within an error of ± 0.02, and when the chromaticity xy is within ± 0.02, the color change is perceived by human eyes. Therefore, it can be evaluated that the display device 200 having uniform brightness and chromaticity at all viewing angles has been realized. Conditional expression (6) clarifies the conditions for achieving uniform chromaticity of the display device 200, and it can be evaluated that a display device that satisfies the conditional expression has a characteristic that the chromaticity does not change depending on the observation angle. it can.
 (実施の形態5)
 図12は、実施の形態5に係る表示装置200を示す断面図である。実施の形態5の表示装置200は、図10に示す実施の形態3の表示装置と基本的に同等の構成を備えており、赤色蛍光体層5rおよび拡散層6に対し光源側のフィルタが省略され、緑色蛍光体層5gとバックライト20の間にのみフィルタ30が配置され、緑画素にのみフィルタを設置した点において異なっている。
(Embodiment 5)
FIG. 12 is a cross-sectional view showing display device 200 according to the fifth embodiment. The display device 200 according to the fifth embodiment has basically the same configuration as the display device according to the third embodiment shown in FIG. 10, and the light source side filter is omitted from the red phosphor layer 5r and the diffusion layer 6. However, the difference is that the filter 30 is disposed only between the green phosphor layer 5g and the backlight 20, and the filter is disposed only in the green pixel.
 赤色蛍光体層5rの領域である赤画素、または拡散層6の領域である青画素にフィルタ30があると、波長選択的に透過率を100%にするのは難しいため、バックライト20の光量が減らしてしまうだけであり、メリットは存在しない。よって、緑画素にのみフィルタ30があることが望ましく、この場合、赤および青画素の効率をフィルタ30によって損なうことがないので、光の利用効率を向上することができる。 If there is a filter 30 in the red pixel that is the region of the red phosphor layer 5 r or the blue pixel that is the region of the diffusion layer 6, it is difficult to make the transmittance 100% wavelength selective. Is only reduced, and there is no merit. Therefore, it is desirable to have the filter 30 only in the green pixel. In this case, the efficiency of light can be improved because the efficiency of the red and blue pixels is not impaired by the filter 30.
 フィルタ30の位置は図12に示す例に限られず、バックライト20と緑色蛍光体層5gとの間であれば、どこに配置されてもよい。たとえば、光シャッタ150として機能する液晶パネルの内部にフィルタ30を形成することも考えられる。 The position of the filter 30 is not limited to the example shown in FIG. 12, and may be disposed anywhere between the backlight 20 and the green phosphor layer 5g. For example, it is conceivable to form the filter 30 inside a liquid crystal panel that functions as the optical shutter 150.
 上記の構成を備える表示装置200において、フィルタ30は、方位角φへの依存なく上記式(1)および式(2)を満たし、または上記式(1)および式(3)を満たし、青色光を透過するような透過率を保有するものであればよい。このようにフィルタ30の特性を決定することにより、観察角度に依らず輝度均一な表示装置200、またはさらに色度変化のない表示装置200を実現でき、意図的に輝度均一な表示装置200を作製することができる。したがって、蛍光体層3を透過した抜け光による表示品位の低下を防ぐことができる。 In the display device 200 having the above configuration, the filter 30 satisfies the above formulas (1) and (2) without depending on the azimuth angle φ, or satisfies the above formulas (1) and (3), and emits blue light. As long as it has such a transmittance as to transmit light. By determining the characteristics of the filter 30 in this manner, the display device 200 with uniform brightness regardless of the observation angle or the display device 200 without further chromaticity change can be realized, and the display device 200 with uniform brightness is intentionally manufactured. can do. Therefore, it is possible to prevent display quality from being deteriorated due to light passing through the phosphor layer 3.
 以上のように本発明の実施の形態について説明を行なったが、各実施の形態の構成を適宜組み合わせてもよい。また、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments of the present invention have been described above, the configurations of the embodiments may be combined as appropriate. In addition, it should be considered that the embodiment disclosed this time is illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,2 主表面、3 蛍光体層、4 透明基板、5g 緑色蛍光体層、5r 赤色蛍光体層、6 拡散層、7 隔壁部、8,8b,8g,8r カラーフィルタ、9 出射面、20 バックライト、21,25 偏光板、22,24 ガラス基板、23 液晶層、30 フィルタ、100 色変換基板、150 光シャッタ、200 表示装置。 1, 2 main surface, 3 phosphor layer, 4 transparent substrate, 5g green phosphor layer, 5r red phosphor layer, 6 diffusion layer, 7 partition wall, 8, 8b, 8g, 8r color filter, 9 exit surface, 20 Backlight, 21, 25 polarizing plate, 22, 24 glass substrate, 23 liquid crystal layer, 30 filter, 100 color conversion substrate, 150 optical shutter, 200 display device.

Claims (7)

  1.  第一光を発光する光源ユニットと、
     前記光源ユニットから入射した光を選択的に出射する光シャッタと、
     前記光シャッタからの光が入射するように配置され、前記光シャッタから入射した光を吸収して第二光を蛍光発光する蛍光体を含む蛍光体層と、
     前記光源ユニットと前記蛍光体層との間に配置され、前記第一光の発光強度が最大となる波長の光を透過し、前記第二光の発光強度が最大となる波長の光の透過を抑制する、フィルタと、を備える、表示装置。
    A light source unit that emits first light;
    An optical shutter that selectively emits light incident from the light source unit;
    A phosphor layer that is arranged so that light from the optical shutter is incident thereon, and includes a phosphor that absorbs light incident from the optical shutter and emits fluorescent light of the second light;
    It is disposed between the light source unit and the phosphor layer, transmits light having a wavelength that maximizes the emission intensity of the first light, and transmits light having a wavelength that maximizes the emission intensity of the second light. A display device comprising a filter.
  2.  極角θ、極角θにおける前記蛍光体層から発光される第二光の光度スペクトルPθ、極角θにおける第一光の光度スペクトルiθ、前記フィルタの透過率スペクトルT、前記蛍光体層の透過率スペクトルTphとした場合、極角θにおける前記蛍光体層からの出射光の光度lθは、
     lθ=∫{Pθ+(iθ・T・Tph)}dλ
     で表され、
     極角θと、極角θにおける前記蛍光体層からの出射光の光度lθとが、-85°≦θ≦85°の範囲において、極角0°における前記蛍光体層からの出射光の光度の0.91倍以上1.11倍以下の範囲にある任意の実数Aに対し、
     0.90・A・cosθ≦lθ≦1.10・A・cosθ
     を満たす、請求項1に記載の表示装置。
    Polarity angle θ, luminous intensity spectrum P θ of the second light emitted from the phosphor layer at polar angle θ, luminous intensity spectrum i θ of the first light at polar angle θ, transmittance spectrum T F of the filter, phosphor When the transmittance spectrum T ph of the layer is used, the luminous intensity l θ of the emitted light from the phosphor layer at the polar angle θ is
    l θ = ∫ {P θ + (i θ · T F · T ph)} dλ
    Represented by
    When the polar angle θ and the luminous intensity l θ of the emitted light from the phosphor layer at the polar angle θ are in the range of −85 ° ≦ θ ≦ 85 °, the emitted light from the phosphor layer at the polar angle of 0 ° For any real number A in the range of 0.91 to 1.11 times the luminous intensity,
    0.90 · A · cos θ ≤ l θ ≤ 1.10 · A · cos θ
    The display device according to claim 1, wherein:
  3.  極角θと、極角θにおける前記蛍光体層からの出射光の光度lθとが、-85°≦θ≦85°の範囲において、極角0°における前記蛍光体層からの出射光の光度の0.93倍以上1.076倍以下の範囲にある任意の実数Bに対し、
     0.93・B・cosθ≦lθ≦1.07・B・cosθ
     を満たす、請求項2に記載の表示装置。
    When the polar angle θ and the luminous intensity l θ of the emitted light from the phosphor layer at the polar angle θ are in the range of −85 ° ≦ θ ≦ 85 °, the emitted light from the phosphor layer at the polar angle of 0 ° For any real number B in the range of 0.93 times to 1.076 times the luminous intensity,
    0.93 ・ B ・cosθ ≦ l θ ≦ 1.07 ・ B ・cosθ
    The display device according to claim 2, wherein:
  4.  前記第一光は青色光であり、
     前記蛍光体層は、緑色光を蛍光発光する緑色蛍光体を含み、
     前記フィルタは、前記光源ユニットと前記緑色蛍光体との間に配置される、請求項1から請求項3のいずれかに記載の表示装置。
    The first light is blue light;
    The phosphor layer includes a green phosphor that emits green light.
    The display device according to claim 1, wherein the filter is disposed between the light source unit and the green phosphor.
  5.  前記蛍光体層に対し前記光源ユニットと反対側に配置され、前記蛍光体層からの出射光を選択的に透過させるカラーフィルタを備える、請求項1から請求項4のいずれかに記載の表示装置。 5. The display device according to claim 1, further comprising a color filter that is disposed on the opposite side of the light source unit with respect to the phosphor layer and selectively transmits light emitted from the phosphor layer. .
  6.  極角θ、極角θにおける前記蛍光体層から発光される第二光の光度スペクトルPθ、極角θにおける第一光の光度スペクトルiθ、前記フィルタの透過率スペクトルT、前記蛍光体層の透過率スペクトルTph、前記カラーフィルタの透過率スペクトルTCFとした場合、極角θにおける前記カラーフィルタを透過した光の光度Lθは、
     Lθ=∫{Pθ・TCF+(iθ・T・Tph・TCF)}dλ
     で表され、
     極角θと、極角θにおける前記カラーフィルタを透過した光の光度Lθとが、-85°≦θ≦85°の範囲において、極角0°における前記カラーフィルタを透過した光の光度の0.91倍以上1.11倍以下の範囲にある任意の実数Cに対し、
     0.90・C・cosθ≦Lθ≦1.10・C・cosθ
     を満たす、請求項5に記載の表示装置。
    Polarity angle θ, luminous intensity spectrum P θ of the second light emitted from the phosphor layer at polar angle θ, luminous intensity spectrum i θ of the first light at polar angle θ, transmittance spectrum T F of the filter, phosphor When the transmittance spectrum T ph of the layer and the transmittance spectrum T CF of the color filter are used, the light intensity L θ of the light transmitted through the color filter at the polar angle θ is
    L θ = ∫ {P θ · T CF + (i θ · T F · T ph · T CF )} dλ
    Represented by
    The polar angle θ and the light intensity L θ of the light transmitted through the color filter at the polar angle θ are the light intensity of the light transmitted through the color filter at a polar angle of 0 ° in the range of −85 ° ≦ θ ≦ 85 °. For any real number C in the range of 0.91 times or more and 1.11 times or less,
    0.90 · C · cos θ ≤ L θ ≤ 1.10 · C · cos θ
    The display device according to claim 5, wherein:
  7.  極角θと、極角θにおける前記カラーフィルタを透過した光の光度Lθとが、-85°≦θ≦85°の範囲において、極角0°における前記カラーフィルタを透過した光の光度の0.93倍以上1.076倍以下の範囲にある任意の実数Dに対し、
     0.93・D・cosθ≦Lθ≦1.07・D・cosθ
     を満たす、請求項6に記載の表示装置。
    The polar angle θ and the light intensity L θ of the light transmitted through the color filter at the polar angle θ are the light intensity of the light transmitted through the color filter at a polar angle of 0 ° in the range of −85 ° ≦ θ ≦ 85 °. For any real number D in the range of 0.93 times or more and 1.076 times or less,
    0.93 · D · cos θ ≤ L θ ≤ 1.07 · D · cos θ
    The display device according to claim 6, wherein:
PCT/JP2013/065792 2012-06-07 2013-06-07 Display device WO2013183753A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-129891 2012-06-07
JP2012129891A JP2015158523A (en) 2012-06-07 2012-06-07 display device

Publications (1)

Publication Number Publication Date
WO2013183753A1 true WO2013183753A1 (en) 2013-12-12

Family

ID=49712139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065792 WO2013183753A1 (en) 2012-06-07 2013-06-07 Display device

Country Status (2)

Country Link
JP (1) JP2015158523A (en)
WO (1) WO2013183753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114077088A (en) * 2020-08-20 2022-02-22 爱思开希高科技材料有限公司 Optical composite sheet and display device comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116559A (en) * 2008-11-11 2010-05-27 Mitsubishi Polyester Film Gmbh Hydrolysis-resistance biaxially stretching polyester film having epoxidized fatty acid derivative, and its manufacturing method
WO2010106704A1 (en) * 2009-03-19 2010-09-23 シャープ株式会社 Display panel and display device
JP2010225373A (en) * 2009-03-23 2010-10-07 Sony Corp Color conversion sheet, illumination device, and display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116559A (en) * 2008-11-11 2010-05-27 Mitsubishi Polyester Film Gmbh Hydrolysis-resistance biaxially stretching polyester film having epoxidized fatty acid derivative, and its manufacturing method
WO2010106704A1 (en) * 2009-03-19 2010-09-23 シャープ株式会社 Display panel and display device
JP2010225373A (en) * 2009-03-23 2010-10-07 Sony Corp Color conversion sheet, illumination device, and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114077088A (en) * 2020-08-20 2022-02-22 爱思开希高科技材料有限公司 Optical composite sheet and display device comprising same
CN114077088B (en) * 2020-08-20 2024-05-31 爱思开迈克沃解决方案有限公司 Optical composite sheet and display device including the same

Also Published As

Publication number Publication date
JP2015158523A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
TWI597546B (en) Photoluminescence color display
CN104145210B (en) Photo-luminescence color display
JP5574359B2 (en) Liquid crystal display
US20200011508A1 (en) Method and apparatus to enhance spectral purity of a light source
US20130002986A1 (en) Display device
WO2016056485A1 (en) Liquid crystal display apparatus
JP2015219272A (en) Display device
JP2008112154A (en) Display
KR20090033891A (en) Photo-luminescence color liquid crystal display
TW201510977A (en) Display
KR20140021258A (en) Display device
KR20110075548A (en) Liquid crystal display device
JP5294667B2 (en) Liquid crystal display
US20130162934A1 (en) Liquid crystal display device, and color reproduction method thereof
KR101132947B1 (en) Backlight unit and liquid crystal display device including the same
WO2019019570A1 (en) Quantum dot liquid crystal panel and liquid crystal display device
WO2013183753A1 (en) Display device
WO2013180152A1 (en) Display device evaluation method and display device
JPH10282494A (en) Liquid crystal display device
KR101513157B1 (en) Back light and liquid crystal display device having thereof
US10976609B2 (en) Lighting device and liquid crystal display apparatus
JP4622615B2 (en) Electro-optical device and electronic apparatus
KR102130553B1 (en) Liquid crystal display device
WO2016054618A1 (en) Filterless color display
WO2012046407A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP