WO2012147128A1 - Vehicle power source and vehicle - Google Patents

Vehicle power source and vehicle Download PDF

Info

Publication number
WO2012147128A1
WO2012147128A1 PCT/JP2011/002459 JP2011002459W WO2012147128A1 WO 2012147128 A1 WO2012147128 A1 WO 2012147128A1 JP 2011002459 W JP2011002459 W JP 2011002459W WO 2012147128 A1 WO2012147128 A1 WO 2012147128A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery group
power supply
supply device
temperature
Prior art date
Application number
PCT/JP2011/002459
Other languages
French (fr)
Japanese (ja)
Inventor
崇 村田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/002459 priority Critical patent/WO2012147128A1/en
Publication of WO2012147128A1 publication Critical patent/WO2012147128A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cell temperature rising technique in a power supply device.
  • FIG. 7 is an internal resistance-temperature characteristic diagram showing the relationship between the battery temperature and the internal resistance of the unit cell. Referring to the figure, there is a correlation between the internal resistance and the battery temperature, and the internal resistance increases as the battery temperature decreases. In particular, in the cryogenic region, the internal resistance of the unit cell becomes extremely high.
  • Patent Document 1 has a housing having an inlet and an outlet, in which a unit battery is installed, and a portion exposed to a flow path of a heat transfer medium formed in the housing, and is in contact with the unit battery.
  • a temperature control system for a secondary battery module including a heat transfer member that adjusts the temperature of a unit battery that is installed on the heat transfer member.
  • Patent Document 1 is a configuration in which all of the plurality of unit cells are uniformly heated, energy consumption during temperature adjustment increases. Therefore, the present invention has an object of ensuring a necessary battery output while suppressing power consumption when the battery temperature rises.
  • a power supply device for a vehicle includes (1) a plurality of battery groups each including a plurality of single cells, and a plurality of holding members that respectively hold the battery groups.
  • the plurality of holding members that allow heat exchange between the single cells in each of the battery groups and are spaced apart from each other and a part of the battery groups among the plurality of battery groups are selectively heated.
  • a heating unit a heating unit.
  • the plurality of battery groups include a first battery group and a second battery group, and the plurality of holding members hold the first battery group.
  • the heating unit includes a first holding member and a second holding member that holds the second battery group, and the heating unit selects one of the first battery group and the second battery group. Can be heated. According to the configuration of (2), since only one of the first battery group and the second battery group is heated, compared to the case of heating the entire first battery group and the second battery group. However, the power consumption when the battery temperature rises is reduced.
  • the heating unit can alternately switch the heating target between the first battery group and the second battery group. According to the configuration of (3), since only one of the battery groups can be prevented from being heated intensively, the variation in the degree of deterioration of the single cells included in the first battery group and the second battery group is suppressed. it can.
  • the unit cells have a cylindrical shape, and all the unit cells included in the power supply device are arranged in a plane including the radial direction of the unit cells. Can do. According to the structure of (5), in addition to the said effect, a power supply device can be reduced in size in the longitudinal direction of this cell.
  • the apparatus has a temperature information acquisition unit that acquires information about the temperature of the power supply device, and the heating unit has a temperature acquired by the temperature information acquisition unit equal to or less than a threshold Only in this case, the part of the battery group is selectively heated.
  • the configuration of (6) since the heating unit is driven based on the temperature information of the power supply device, it is possible to accurately specify the situation where the temperature increase is required. Thereby, power consumption is more effectively reduced.
  • the heating unit includes a plurality of heaters respectively disposed on the holding members, and a controller that controls driving of the heaters. According to the configuration of (7), it is possible to achieve both suppression of power consumption at the time of battery temperature rise and securing necessary battery output with a simple configuration.
  • the power supply devices (1) to (7) can be mounted on hybrid vehicles and electric vehicles. In particular, these power supply devices can be used as a power source for a motor that drives a vehicle.
  • FIG. 4 is an internal resistance-temperature characteristic diagram showing a relationship between battery temperature and internal resistance of a single cell.
  • FIG. 1 is an exploded perspective view of the power supply device.
  • FIG. 2 is a cross-sectional view of the assembled battery taken along the YZ plane.
  • the power supply device 1 includes an assembled battery 10, a case 20, and a bus bar 40.
  • the power supply device 1 can be used as a vehicle battery.
  • the assembled battery 10 includes a first battery group 11 and a second battery group 12 positioned below the first battery group 11.
  • the first battery group 11 includes a plurality of unit cells 111.
  • the single battery 111 may be a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • the unit cell 111 is formed in a cylindrical shape, and includes a positive electrode terminal 112 and a gas release valve 114 at one end portion in the longitudinal direction, and a negative electrode terminal (not shown) at the other end portion in the longitudinal direction.
  • the plurality of unit cells 111 are arranged in the radial direction of the unit cells 111 in a state where end portions in the longitudinal direction are aligned. That is, the plurality of unit cells 111 are arranged in a plane including the radial direction of the unit cells 111.
  • Second battery group 12 includes a plurality of single cells 111. The configuration of the unit cells 111 in the second battery group 12 is the same as that of the first battery group 11.
  • the single cells 111 of the first battery group 11 and the second battery group 12 are connected in parallel by the bus bar 40.
  • the bus bar 40 is formed with a plurality of welds 41 to which the negative terminals of the single cells 111 are welded.
  • the welded portion 41 is configured to be elastically deformable in the X-axis direction. Thereby, the dimensional error of each cell 111 can be absorbed.
  • the first battery group 11 is held by the first holding member 31.
  • the first holding member 31 includes a plurality of openings for holding each unit cell 111 and holds the outer surface of each unit cell 111 in the radial direction.
  • the first heater 61 is located on the upper surface of the first holding member 31. When the first heater 61 starts the heating operation, the temperature of the first holding member 31 increases.
  • the first holding member 31 is a solid plate-like member, and transfers the heat flowing from the first heater 61 to each unit cell 111 held by the first holding member 31. As a result, the temperature of the first battery group 11 whose temperature has decreased is increased as a whole, and the battery output can be increased.
  • the first holding member may be a metal.
  • the metal may be aluminum, copper, or iron.
  • the first heater 61 may be a cement-type resistor.
  • the cement-type resistor includes a resistor housing case and a resistor housed in the resistor housing case.
  • the resistor housing case is filled with a cement material.
  • the resistor may be a bent metal plate.
  • the metal plate may be an alloy containing copper and nickel.
  • the resistor housing case may be ceramic.
  • the ceramic may include alumina to increase thermal conductivity.
  • the cement material may be a pasty insulating sealing material containing alumina powder or silica powder.
  • the first heater 61 may be a PTC (Positive Temperature Coefficient) heater or a Peltier heater using a Peltier element.
  • a gas guide portion 31 ⁇ / b> A is formed on the upper surface of the first holding member 31 at a position different from the first heater 61.
  • the gas released from the gas release valve 114 of the unit cell 111 is exhausted from the smoke exhaust port 221 through the gas guide portion 31A.
  • a smoke exhaust duct (not shown) extending outside the vehicle is connected to the smoke exhaust port 221.
  • the second battery group 12 is held by the second holding member 32.
  • the second holding member 32 is disposed at a position separated from the first holding member 31. Therefore, an air layer is formed between the first holding member 31 and the second holding member 32, and heat exchange between these holding members 31 and 32 is suppressed.
  • the second holding member 32 includes a plurality of openings for holding each unit cell 111, and holds the outer surface of each unit cell 111 in the radial direction.
  • the second heater 62 is located on the lower surface of the second holding member 32 (see FIG. 2). When the second heater 62 starts the heating operation, the temperature of the second holding member 32 rises. Similar to the first holding member 31, the second holding member 32 is a solid plate-like member. Therefore, the temperature of the second battery group 12 whose temperature has decreased is increased as a whole, and the battery output can be increased.
  • the case 20 includes a case main body 21 and a lid body 22.
  • the case main body 21 is formed in a bottomed cylindrical shape, and includes a leg portion 211 at the lower end.
  • a fastening hole portion 211 ⁇ / b> A for fixing the power supply device 1 is formed in the leg portion 211.
  • the power supply device 1 may be fixed to the floor panel of the vehicle.
  • a pair of assembling guide portions 212 for assembling the first holding member 31 and the second holding member 32 is formed on the inner surface of the case 20.
  • the built-in guide part 212 extends in the vertical direction.
  • the assembled battery 10 can be housed inside the case body 21 by sliding the first holding member 31 and the second holding member 32 along the pair of built-in guide portions 212.
  • a refrigerant inlet 21A extending in the longitudinal direction (X-axis direction) of the unit cell 111 is formed on one end surface of the case body 21 in the Y-axis direction.
  • a refrigerant discharge port 21B extending in the direction is formed.
  • a plurality of refrigerant inlets 21A and refrigerant outlets 21B are formed at predetermined intervals in the height direction (Z-axis direction) of the power supply device 1.
  • An air intake duct (not shown) is connected to the refrigerant inlet 21A, and air as a refrigerant is introduced into the case 20 through the intake duct and the refrigerant inlet 21A when the blower operates.
  • the heating unit 70 includes a controller 71, a first heater 61, a second heater 62, and a memory 72.
  • the controller 71 performs control to selectively drive one of the first heater 61 and the second heater 62.
  • the controller 71 may be a CPU or MPU.
  • the controller 71 may be an ASIC circuit that executes at least a part of control processing executed in the CPU and MPU in a circuit form.
  • the memory 72 may be a readable / rewritable RAM.
  • the first temperature sensor (temperature information acquisition unit) 82 acquires the temperature information of the first battery group 11.
  • the second temperature sensor (temperature information acquisition unit) 83 acquires the temperature information of the second battery group 12.
  • the first temperature sensor 82 and the second temperature sensor 83 may be a thermistor.
  • the first temperature sensor 82 may have a configuration included in some of the unit cells 111 in the first battery group 11 or a configuration included in each unit cell 111.
  • the second temperature sensor 83 may have a configuration included in some of the unit cells 111 in the second battery group 12 or a configuration included in each unit cell 111.
  • the controller 71 detects the position of the IG switch 81 that is driven between the off position and the on position, and outputs from the first temperature sensor 82 and the second temperature sensor 83 when the IG switch 81 is in the on position. Get temperature information.
  • step S101 the controller 71 determines whether or not the IG switch 81 has moved from the off position to the on position. If the IG switch 81 has moved to the on position, the process proceeds to step S102.
  • step S102 the controller 71 acquires temperature information output from the first temperature sensor 82 and the second temperature sensor 83.
  • step S103 the controller 71 calculates the average temperature based on the temperature information output from the first temperature sensor 82 and the second temperature sensor 83, and the average temperature is a first threshold value (threshold value). It is determined whether or not:
  • the first threshold value can be determined as a set value from the viewpoint of securing a necessary battery output.
  • the average temperature is compared with the first threshold value.
  • the temperature information acquired by either one of the first temperature sensor 82 and the second temperature sensor 83 and the first threshold value are used. You may compare. If the average temperature is equal to or lower than the first threshold value in step S103, the process proceeds to step S104. If the average temperature is higher than the first threshold value, this flow ends.
  • step S104 the controller 71 acquires heater identification information stored in the memory 72, and identifies the previous heating target.
  • the identification information of the first heater 61 is stored in the memory 72.
  • step S105 the controller 71 drives the second heater 62 different from the previous one, and proceeds to step S106.
  • step S106 the controller 71 determines whether or not the second battery group 12 has been heated to a temperature equal to or higher than the target temperature based on the temperature information output from the second temperature sensor 83.
  • the target temperature may be a temperature that can secure a required battery output in any one of the first battery group 11 and the second battery group 12.
  • the target temperature is set to 40 ° C., but the present invention is not limited to this.
  • step S106 when the temperature of the second battery group 12 is raised to a temperature equal to or higher than the target temperature, the process proceeds to step S107, and when the temperature is lower than the target temperature, the driving of the second heater 62 is continued.
  • the number of single cells 111 included in the first battery group 11 is 10 cells
  • the number of single cells 111 included in the second battery group 12 is 10 cells.
  • the output of the single cell 111 at ⁇ 10 ° C. is 0.1 kw
  • the output of the single cell 111 at 20 ° C. is 5 kw
  • the output of the single cell 111 at 30 ° C. is 10 kw.
  • the amount of heat (heat capacity) required to raise the temperature of each unit cell 111 by 1 ° C. is 50 J / k.
  • these numerical values are illustrations, and this invention is not limited to this.
  • step S107 the controller 71 stops the second heater 62.
  • step S ⁇ b> 108 the controller 71 rewrites the identification information of the first heater 61 stored in the memory 72 with the identification information of the second heater 62. Therefore, the first heater 61 is driven the next time the temperature rise control is performed.
  • the first heater 61 and the second heater 62 are driven alternately. That is, since the heated battery group is deteriorated by outputting larger electric power, the first battery group 11 and the second battery group 12 can be changed by alternately changing the battery group to be heated. Variation in the degree of deterioration can be suppressed.
  • the unit cell 111 having a high degree of deterioration is charged by a circulating current flowing from another unit cell 111 having a low degree of deterioration, and the value of this circulating current is allowable in the unit cell 111 having a high degree of deterioration.
  • the upper limit may be exceeded.
  • the cell 111 is made from a circulating current. Can be protected.
  • the heater for raising the temperature is disposed in each of the first holding member 31 and the second holding member 32.
  • the present invention is not limited to this, and other configurations may be used. Good.
  • the heat transfer route of heat generated from one heater is transferred to the first heat transfer route to the first holding member 31 and the second heat transfer route to the second holding member 32. It may be divided into heat transfer routes, and these heat transfer routes may be switched alternately.
  • FIG. 5 is a diagram corresponding to FIG. 2, and is a cross-sectional view of the assembled battery according to the present modification. The same components as those in the above embodiment are given the same reference numerals.
  • the heater 63 is in contact with the first heat transfer plate 64 and the second heat transfer plate 66.
  • the first heat transfer plate 64 extends toward the first holding member 31, and a first piezoelectric element 65 is provided at the tip of the first heat transfer plate 64.
  • the first piezoelectric element 65 extends in the Y-axis direction
  • the first holding member 31 and the first heat transfer plate 64 are connected via the piezoelectric element 65. Accordingly, the first holding member 31 can be heated using the heat of the heater 63.
  • the first piezoelectric element 65 contracts in the Y-axis direction, an air layer is formed between the first holding member 31 and the first piezoelectric element 65, and heat transfer from the heater 63 to the first holding member 31 is performed. It is suppressed.
  • the second heat transfer plate 66 extends toward the second holding member 32, and a second piezoelectric element 67 is provided at the tip of the second heat transfer plate 66.
  • the second piezoelectric element 67 extends in the Y-axis direction
  • the second holding member 32 and the second heat transfer plate 66 are connected via the second piezoelectric element 67.
  • the second holding member 32 can be heated using the heat of the heater 63.
  • the second piezoelectric element 67 contracts in the Y-axis direction, an air layer is formed between the second holding member 32 and the second piezoelectric element 67, and heat transfer from the heater 63 to the second holding member 32 is performed. It is suppressed.
  • the first piezoelectric element 65 and the second piezoelectric element 67 are alternately driven to achieve the same effect as the above embodiment, that is, while suppressing power consumption at the time of temperature rise. Battery output can be obtained. Further, variation in the degree of deterioration between the single cells 111 in the first battery group 11 and the second battery group 12 can be suppressed.
  • the controller 71 may control the first piezoelectric element 65 and the second piezoelectric element 67.
  • the heating unit 70 includes a circuit for driving the piezoelectric element. Since the drive circuit of the piezoelectric element is a well-known technique, description thereof is omitted.
  • the heater 63 is configured to be movable, and alternately moves between a first position that contacts the first holding member 31 and a second position that contacts the second holding member 32.
  • the structure to be made may be sufficient.
  • the heating unit 70 includes a heater 63, a motor that moves the heater 63, a transmission mechanism that transmits the driving force of the motor to the heater 63, a guide portion that guides the heater 63 to the first position and the second position, and
  • the structure provided with the memory 72 may be sufficient.
  • the battery temperature is used as a trigger for driving the heater.
  • the other method may be a method in which a temperature sensor for measuring the outside air temperature is provided in the vehicle, and the heater is driven based on a detection result by the temperature sensor.
  • the other configuration may be a method in which a temperature sensor for measuring the temperature of the engine oil is provided in the vehicle and the heater is driven based on a detection result by the temperature sensor.
  • the other method may be a method of raising a flag when the battery temperature is low and notifying the passenger.
  • the configuration may be such that the occupant instructs the controller 71 to drive the first heater 61 or the second heater 62 by operating a switch provided in the vehicle interior.
  • the first heater 61 and the second heater 62 are driven alternately.
  • the other configuration may be a method in which one heater is continuously driven a plurality of times and then the other heater is continuously driven a plurality of times.
  • the other configuration may be a periodic switching method in which one heater is driven for a predetermined period and then the other heater is driven for a predetermined period.
  • the reference for the heating unit 70 to select the heating target can be set from the viewpoint of suppressing the variation in the heating frequency, and is not necessarily limited to one method.
  • FIG. 6 is a cross-sectional view of an assembled battery according to this modification, and the same reference numerals are given to elements having the same functions as those in the above embodiment.
  • the assembled battery 10 includes a first battery group 11, a second battery group 12, and a third battery group 13.
  • the first battery group 11 includes a plurality of single cells 111 and is held by a first holding member 31.
  • the second battery group 12 includes a plurality of single cells 111 and is held by the second holding member 32.
  • the third battery group 13 includes a plurality of single cells 111 and is held by a third holding member 33.
  • These holding members 31 to 33 are spaced apart from each other. Therefore, the first battery group 11, the second battery group 12, and the third battery group 13 are prevented from exchanging heat with each other, and heat exchange between the single cells 111 included in the holding members 31 to 33 is allowed. .
  • a first heater 61 is disposed on the first holding member 31, a second heater 62 is disposed on the second holding member 32, and a third heater is disposed on the third holding member 33. 68 is arranged.
  • the temperature of the battery is raised by driving some of the heaters 61 to 68, the power consumption at the time of raising the battery can be reduced as compared with the case where all the heaters 61 to 68 are driven.
  • one heater may be driven. If the required battery output can be secured by the two battery groups, the two heaters may be driven.
  • These heaters 61 to 68 may be controlled by the controller 71.
  • the selection criterion of the drive object by the controller 71 can be appropriately set from the viewpoint of suppressing variation in the heating frequency, and is not necessarily limited to one method.
  • the configuration according to this modification may be combined with other modifications in this specification.
  • the first battery group 11 and the second battery group 12 are arranged apart from each other in the vertical direction, but may be separated obliquely or horizontally.
  • the heater is disposed on the holding member.
  • the present invention is not limited to this and may be disposed on another element.
  • the other element may be the outer surface of the unit cell 111.
  • the first heater 61 is installed on the outer surface of the unit cell 111 held by the first holding member 31, the other is held by the first holding member 31 via the first holding member 31. Since the heat of the first heater 61 is transferred to the unit cell 111, the temperature of the first battery group 11 can be increased as a whole.

Abstract

[Problem] To ensure necessary battery output while keeping down energy consumed when the battery temperature rises. [Solution] This vehicle power source is provided with: multiple battery groups each having multiple unit batteries; multiple holding members which are spaced apart from each other, hold each of the aforementioned battery groups, and allow heat exchange between the unit batteries in each battery group; and a heating unit for selectively heating a portion of the battery groups.

Description

車両用の電源装置及び車両Power supply device for vehicle and vehicle
 本発明は、電源装置における単電池の昇温技術に関する。 The present invention relates to a cell temperature rising technique in a power supply device.
 リチウムイオン電池などの複数の単電池からなるバッテリを動力源として用いたハイブリッド自動車、電気自動車などが知られている。単電池は、温度によって内部抵抗が変動する。図7は、単電池の電池温度と内部抵抗との関係を示した内部抵抗-温度特性図である。同図を参照して、内部抵抗及び電池温度には相関関係があり、電池温度が低くなると内部抵抗が大きくなる。特に、極低温領域では、単電池の内部抵抗が極めて高くなる。 Hybrid vehicles, electric vehicles, and the like using a battery composed of a plurality of single cells such as lithium ion batteries as a power source are known. The internal resistance of the cell varies with temperature. FIG. 7 is an internal resistance-temperature characteristic diagram showing the relationship between the battery temperature and the internal resistance of the unit cell. Referring to the figure, there is a correlation between the internal resistance and the battery temperature, and the internal resistance increases as the battery temperature decreases. In particular, in the cryogenic region, the internal resistance of the unit cell becomes extremely high.
 単電池の内部抵抗が高くなると、入出力の電流値が制限される。このため、必要なバッテリ出力を得られなくなるおそれがある。また、車両の制動時に発生するエネルギを回生エネルギとしてバッテリに回収できなくなるおそれがある。この場合、車両のブレーキが、メカブレーキに切り替わるため、制動時のエネルギは熱エネルギとして失われ、エネルギ効率が低下する。 ∙ When the internal resistance of the cell increases, the input / output current value is limited. For this reason, there is a possibility that a necessary battery output cannot be obtained. Moreover, there is a possibility that the energy generated when the vehicle is braked cannot be collected in the battery as regenerative energy. In this case, since the brake of the vehicle is switched to the mechanical brake, the energy at the time of braking is lost as heat energy, and the energy efficiency is lowered.
 特許文献1は、流入口及び排出口を有し,単位電池が内蔵設置されるハウジングと、ハウジング内に形成される熱伝逹媒体の流通路に露出される部位を有し、単位電池と接触する熱伝逹部材と、熱伝逹部材に設置されて単位電池の温度を調節する温度調節器とを含む二次電池モジュールの温度制御システムを開示する。 Patent Document 1 has a housing having an inlet and an outlet, in which a unit battery is installed, and a portion exposed to a flow path of a heat transfer medium formed in the housing, and is in contact with the unit battery. Disclosed is a temperature control system for a secondary battery module, including a heat transfer member that adjusts the temperature of a unit battery that is installed on the heat transfer member.
特開2006-093155号公報JP 2006-093155 A
 しかしながら、特許文献1の構成では、複数の単位電池の全てを均一に加熱する構成であるため、温度調節時の消費エネルギが大きくなる。そこで、本願発明は、電池昇温時の消費電力を抑制しながら、必要な電池出力を確保することを目的とする。 However, since the configuration of Patent Document 1 is a configuration in which all of the plurality of unit cells are uniformly heated, energy consumption during temperature adjustment increases. Therefore, the present invention has an object of ensuring a necessary battery output while suppressing power consumption when the battery temperature rises.
 上記課題を解決するために、本発明に係る車両用の電源装置は、(1)それぞれが複数の単電池を備える複数の電池群と、前記各電池群をそれぞれ保持する複数の保持部材であって、前記各電池群における単電池間の熱交換を許容し、互いに離間して配置される前記複数の保持部材と、前記複数の電池群のうち一部の前記電池群を選択的に加熱するための加熱ユニットと、を有することを特徴とする。 In order to solve the above-described problems, a power supply device for a vehicle according to the present invention includes (1) a plurality of battery groups each including a plurality of single cells, and a plurality of holding members that respectively hold the battery groups. In addition, the plurality of holding members that allow heat exchange between the single cells in each of the battery groups and are spaced apart from each other and a part of the battery groups among the plurality of battery groups are selectively heated. And a heating unit.
 (2)上記(1)の構成において、前記複数の電池群は、第1の電池群と、第2の電池群とからなり、前記複数の保持部材は、前記第1の電池群を保持する第1の保持部材と、前記第2の電池群を保持する第2の保持部材とからなり、前記加熱ユニットは、前記第1の電池群及び前記第2の電池群のうちいずれか一方を選択的に加熱することができる。(2)の構成によれば、第1の電池群及び第2の電池群のうちいずれか一方のみが加熱されるため、第1の電池群及び第2の電池群の全体を加熱する場合よりも、電池昇温時の消費電力が削減される。 (2) In the configuration of (1), the plurality of battery groups include a first battery group and a second battery group, and the plurality of holding members hold the first battery group. The heating unit includes a first holding member and a second holding member that holds the second battery group, and the heating unit selects one of the first battery group and the second battery group. Can be heated. According to the configuration of (2), since only one of the first battery group and the second battery group is heated, compared to the case of heating the entire first battery group and the second battery group. However, the power consumption when the battery temperature rises is reduced.
 (3)上記(2)の構成において、前記加熱ユニットは、加熱対象を前記第1の電池群と前記第2の電池群との間で交互に切り替えることができる。(3)の構成によれば、一方の電池群のみが集中的に加熱されるのを防止できるため、第1の電池群及び第2の電池群に含まれる単電池の劣化度のバラツキを抑制できる。 (3) In the configuration of (2) above, the heating unit can alternately switch the heating target between the first battery group and the second battery group. According to the configuration of (3), since only one of the battery groups can be prevented from being heated intensively, the variation in the degree of deterioration of the single cells included in the first battery group and the second battery group is suppressed. it can.
 (4)上記(3)の構成において、該電源装置に含まれる全ての前記単電池を、並列に接続することができる。(4)の構成によれば、劣化度のバラツキが抑制されることにより、劣化度の高い単電池に許容上限値を超える循環電流が流入するのを抑制できる。 (4) In the configuration of (3) above, all the single cells included in the power supply device can be connected in parallel. According to the configuration of (4), it is possible to suppress the circulation current exceeding the allowable upper limit value from flowing into the unit cell having a high degree of deterioration by suppressing the variation in the degree of deterioration.
 (5)上記(1)~(4)の構成において、前記単電池は円筒形状であり、該電源装置に含まれる全ての前記単電池は該単電池の径方向を含む面内に配列することができる。(5)の構成によれば、上記効果に加えて、電源装置を該単電池の長手方向に小型化することができる。 (5) In the configurations of (1) to (4), the unit cells have a cylindrical shape, and all the unit cells included in the power supply device are arranged in a plane including the radial direction of the unit cells. Can do. According to the structure of (5), in addition to the said effect, a power supply device can be reduced in size in the longitudinal direction of this cell.
 (6)上記(1)~(5)の構成において、該電源装置の温度に関する情報を取得する温度情報取得部を有し、前記加熱ユニットは、前記温度情報取得部により取得した温度が閾値以下である場合にのみ、前記一部の電池群を選択的に加熱する。(6)の構成によれば、該電源装置の温度情報に基づき加熱ユニットが駆動されるため、昇温が必要となる状況を正確に特定することができる。これにより、消費電力がより効果的に削減される。 (6) In the configurations of (1) to (5) above, the apparatus has a temperature information acquisition unit that acquires information about the temperature of the power supply device, and the heating unit has a temperature acquired by the temperature information acquisition unit equal to or less than a threshold Only in this case, the part of the battery group is selectively heated. According to the configuration of (6), since the heating unit is driven based on the temperature information of the power supply device, it is possible to accurately specify the situation where the temperature increase is required. Thereby, power consumption is more effectively reduced.
 (7)上記(1)~(6)の構成において、前記加熱ユニットは、前記各保持部材にそれぞれ配置される複数のヒータと、これらのヒータの駆動を制御するコントローラとを備える。(7)の構成によれば、簡易な構成で、電池昇温時の消費電力の抑制と必要な電池出力の確保とを両立することができる。 (7) In the above configurations (1) to (6), the heating unit includes a plurality of heaters respectively disposed on the holding members, and a controller that controls driving of the heaters. According to the configuration of (7), it is possible to achieve both suppression of power consumption at the time of battery temperature rise and securing necessary battery output with a simple configuration.
 (8))上記(1)~(7)の電源装置は、ハイブリッド自動車、電気自動車に搭載することができる。特に、これらの電源装置は、車両を駆動するモータの動力源として用いることができる。 (8) The power supply devices (1) to (7) can be mounted on hybrid vehicles and electric vehicles. In particular, these power supply devices can be used as a power source for a motor that drives a vehicle.
 本発明によれば、電池昇温時の消費電力を抑制しながら、必要な電池出力を確保することができる。 According to the present invention, necessary battery output can be ensured while suppressing power consumption when the battery temperature rises.
車両用の電源装置の分解斜視図である。It is a disassembled perspective view of the power supply device for vehicles. 組電池の断面図である。It is sectional drawing of an assembled battery. 加熱ユニットの機能ブロック図である。It is a functional block diagram of a heating unit. ヒータの駆動方法を示したフローチャートである。It is the flowchart which showed the drive method of the heater. 変形例1に係る組電池の断面図である。10 is a cross-sectional view of an assembled battery according to modification example 1. 変形例4に係る組電池の断面図である。10 is a cross-sectional view of an assembled battery according to Modification 4. 単電池の電池温度と内部抵抗との関係を示す内部抵抗-温度特性図である。FIG. 4 is an internal resistance-temperature characteristic diagram showing a relationship between battery temperature and internal resistance of a single cell.
(実施形態1)
 図面を参照しながら、本実施形態に係る車両用の電源装置について説明する。図1は、電源装置の分解斜視図である。図2は、組電池をY-Z面で切断した断面図である。電源装置1は、組電池10、ケース20及びバスバ40を含む。電源装置1は、車両の走行用バッテリとして用いることができる。組電池10は、第1の電池群11と、この第1の電池群11の下方に位置する第2の電池群12とを含む。第1の電池群11は、複数の単電池111を含む。単電池111は、リチウムイオン電池、ニッケル水素電池などの二次電池であってもよい。単電池111は、円筒形状に形成されており、長手方向の一端部に正極端子112及びガス放出弁114、長手方向の他端部に負極端子(不図示)を備える。複数の単電池111は、長手方向の端部が揃った状態で単電池111の径方向に配列されている。つまり、複数の単電池111は、該単電池111の径方向を含む面内に配置されている。第2の電池群12は、複数の単電池111を含む。第2の電池群12における単電池111の構成は、第1の電池群11と同様である。
(Embodiment 1)
A power supply device for a vehicle according to the present embodiment will be described with reference to the drawings. FIG. 1 is an exploded perspective view of the power supply device. FIG. 2 is a cross-sectional view of the assembled battery taken along the YZ plane. The power supply device 1 includes an assembled battery 10, a case 20, and a bus bar 40. The power supply device 1 can be used as a vehicle battery. The assembled battery 10 includes a first battery group 11 and a second battery group 12 positioned below the first battery group 11. The first battery group 11 includes a plurality of unit cells 111. The single battery 111 may be a secondary battery such as a lithium ion battery or a nickel metal hydride battery. The unit cell 111 is formed in a cylindrical shape, and includes a positive electrode terminal 112 and a gas release valve 114 at one end portion in the longitudinal direction, and a negative electrode terminal (not shown) at the other end portion in the longitudinal direction. The plurality of unit cells 111 are arranged in the radial direction of the unit cells 111 in a state where end portions in the longitudinal direction are aligned. That is, the plurality of unit cells 111 are arranged in a plane including the radial direction of the unit cells 111. Second battery group 12 includes a plurality of single cells 111. The configuration of the unit cells 111 in the second battery group 12 is the same as that of the first battery group 11.
 第1の電池群11及び第2の電池群12の各単電池111は、バスバ40により並列に接続されている。なお、図1では負極端子に接続されるバスバ40のみを図示し、正極端子112に接続されるバスバについては省略している。バスバ40には、各単電池111の各負極端子がそれぞれ溶接される複数の溶接部41が形成されている。溶接部41は、X軸方向に弾性変形可能に構成されている。これにより、各単電池111の寸法誤差を吸収することができる。 The single cells 111 of the first battery group 11 and the second battery group 12 are connected in parallel by the bus bar 40. In FIG. 1, only the bus bar 40 connected to the negative terminal is shown, and the bus bar connected to the positive terminal 112 is omitted. The bus bar 40 is formed with a plurality of welds 41 to which the negative terminals of the single cells 111 are welded. The welded portion 41 is configured to be elastically deformable in the X-axis direction. Thereby, the dimensional error of each cell 111 can be absorbed.
 第1の電池群11は、第1の保持部材31に保持されている。第1の保持部材31は、各単電池111をそれぞれ保持するための複数の開口部を備え、各単電池111における径方向の外面を保持する。第1の保持部材31の上面には、第1のヒータ61が位置する。第1のヒータ61が加熱動作を開始すると、第1の保持部材31の温度が上昇する。第1の保持部材31は、中実の板状部材であり、第1の保持部材31に保持された各単電池111に対して第1のヒータ61から流入した熱を伝熱する。これにより、温度低下した第1の電池群11の温度が全体的に上昇し、電池出力を増大させることができる。なお、第1の保持部材は、金属であってもよい。金属は、アルミニウム、銅、鉄であってもよい。 The first battery group 11 is held by the first holding member 31. The first holding member 31 includes a plurality of openings for holding each unit cell 111 and holds the outer surface of each unit cell 111 in the radial direction. The first heater 61 is located on the upper surface of the first holding member 31. When the first heater 61 starts the heating operation, the temperature of the first holding member 31 increases. The first holding member 31 is a solid plate-like member, and transfers the heat flowing from the first heater 61 to each unit cell 111 held by the first holding member 31. As a result, the temperature of the first battery group 11 whose temperature has decreased is increased as a whole, and the battery output can be increased. Note that the first holding member may be a metal. The metal may be aluminum, copper, or iron.
 第1のヒータ61は、セメント型の抵抗体であってもよい。セメント型の抵抗体は、抵抗体収容ケースと、抵抗体収容ケースの中に収容される抵抗体とを含む。抵抗体収容ケースの内部には、セメント材が充填される。抵抗体は、折り曲げられた金属板であってもよい。金属板は、銅及びニッケルを含む合金であってもよい。抵抗体収容ケースは、セラミックであってもよい。セラミックは、熱伝導性を高めるためにアルミナを含んでもよい。セメント材は、アルミナ粉末やシリカ粉末を含むペースト状の絶縁封止材であってもよい。第1のヒータ61は、PTC(Positive Temperature Coefficient)ヒータ、或いはペルチェ素子を用いたペルチェヒータであってもよい。 The first heater 61 may be a cement-type resistor. The cement-type resistor includes a resistor housing case and a resistor housed in the resistor housing case. The resistor housing case is filled with a cement material. The resistor may be a bent metal plate. The metal plate may be an alloy containing copper and nickel. The resistor housing case may be ceramic. The ceramic may include alumina to increase thermal conductivity. The cement material may be a pasty insulating sealing material containing alumina powder or silica powder. The first heater 61 may be a PTC (Positive Temperature Coefficient) heater or a Peltier heater using a Peltier element.
 第1の保持部材31の上面には、第1のヒータ61とは異なる位置にガスガイド部31Aが形成されている。単電池111のガス放出弁114から放出されたガスは、ガスガイド部31Aを介して排煙口221から排気される。なお、排煙口221には、車外に延びる図示しない排煙ダクトが接続されている。 A gas guide portion 31 </ b> A is formed on the upper surface of the first holding member 31 at a position different from the first heater 61. The gas released from the gas release valve 114 of the unit cell 111 is exhausted from the smoke exhaust port 221 through the gas guide portion 31A. Note that a smoke exhaust duct (not shown) extending outside the vehicle is connected to the smoke exhaust port 221.
 第2の電池群12は、第2の保持部材32に保持されている。第2の保持部材32は、第1の保持部材31から離間した位置に配置される。したがって、第1の保持部材31と第2の保持部材32との間に空気層が形成され、これらの保持部材31、32間における熱交換が抑制される。第2の保持部材32は、各単電池111をそれぞれ保持するための複数の開口部を備え、各単電池111における径方向の外面を保持する。第2の保持部材32の下面には、第2のヒータ62が位置する(図2参照)。第2のヒータ62が加熱動作を開始すると、第2の保持部材32の温度が上昇する。第2の保持部材32は、第1の保持部材31と同様に中実の板状部材で構成されている。したがって、温度低下した第2の電池群12の温度が全体的に上昇し、電池出力を増大させることができる。 The second battery group 12 is held by the second holding member 32. The second holding member 32 is disposed at a position separated from the first holding member 31. Therefore, an air layer is formed between the first holding member 31 and the second holding member 32, and heat exchange between these holding members 31 and 32 is suppressed. The second holding member 32 includes a plurality of openings for holding each unit cell 111, and holds the outer surface of each unit cell 111 in the radial direction. The second heater 62 is located on the lower surface of the second holding member 32 (see FIG. 2). When the second heater 62 starts the heating operation, the temperature of the second holding member 32 rises. Similar to the first holding member 31, the second holding member 32 is a solid plate-like member. Therefore, the temperature of the second battery group 12 whose temperature has decreased is increased as a whole, and the battery output can be increased.
 ケース20は、ケース本体21、蓋体22を備える。ケース本体21は、有底筒状に形成されており、下端部に脚部211を備える。脚部211には、電源装置1を固定するための締結孔部211Aが形成されている。電源装置1は、車両のフロアパネルに固定してもよい。ケース20の内面には、第1の保持部材31及び第2の保持部材32を組み込むための一対の組み込みガイド部212が形成されている。組み込みガイド部212は、上下方向に延びている。第1の保持部材31及び第2の保持部材32を一対の組み込みガイド部212に沿ってスライドさせることにより、ケース本体21の内部に組電池10を収容することができる。 The case 20 includes a case main body 21 and a lid body 22. The case main body 21 is formed in a bottomed cylindrical shape, and includes a leg portion 211 at the lower end. A fastening hole portion 211 </ b> A for fixing the power supply device 1 is formed in the leg portion 211. The power supply device 1 may be fixed to the floor panel of the vehicle. A pair of assembling guide portions 212 for assembling the first holding member 31 and the second holding member 32 is formed on the inner surface of the case 20. The built-in guide part 212 extends in the vertical direction. The assembled battery 10 can be housed inside the case body 21 by sliding the first holding member 31 and the second holding member 32 along the pair of built-in guide portions 212.
 ケース本体21のY軸方向の一端面には、単電池111の長手方向(X軸方向)に延びる冷媒流入口21Aが形成されており、Y軸方向の他端面には、単電池111の長手方向に延びる冷媒排出口21Bが形成されている。冷媒流入口21A及び冷媒排出口21Bはそれぞれ、電源装置1の高さ方向(Z軸方向)に所定の間隔を隔てて複数形成されている。冷媒流入口21Aには、図示しない吸気ダクトが接続されており、ブロアが作動することにより吸気ダクト及び冷媒流入口21Aを介してケース20の内部に冷媒としての空気が導入される。 A refrigerant inlet 21A extending in the longitudinal direction (X-axis direction) of the unit cell 111 is formed on one end surface of the case body 21 in the Y-axis direction. A refrigerant discharge port 21B extending in the direction is formed. A plurality of refrigerant inlets 21A and refrigerant outlets 21B are formed at predetermined intervals in the height direction (Z-axis direction) of the power supply device 1. An air intake duct (not shown) is connected to the refrigerant inlet 21A, and air as a refrigerant is introduced into the case 20 through the intake duct and the refrigerant inlet 21A when the blower operates.
 次に、図3を参照しながら、第1のヒータ61及び第2のヒータ62の駆動を制御する加熱ユニットの構成について説明する。加熱ユニット70は、コントローラ71、第1のヒータ61、第2のヒータ62及びメモリ72を備える。コントローラ71は、第1のヒータ61及び第2のヒータ62のうちいずれか一方を選択的に駆動する制御を行う。コントローラ71は、CPU、MPUであってもよい。コントローラ71は、CPU、MPUにおいて実行される制御処理の少なくとも一部を回路的に実行するASIC回路であってもよい。メモリ72は、読み出し及び書き換え可能なRAMであってもよい。コントローラ71は、第1のヒータ61及び第2のヒータ62のうちいずれか一方の駆動を制御した際に、駆動したヒータを識別するための識別情報をメモリ72に記憶する。 Next, the configuration of the heating unit that controls the driving of the first heater 61 and the second heater 62 will be described with reference to FIG. The heating unit 70 includes a controller 71, a first heater 61, a second heater 62, and a memory 72. The controller 71 performs control to selectively drive one of the first heater 61 and the second heater 62. The controller 71 may be a CPU or MPU. The controller 71 may be an ASIC circuit that executes at least a part of control processing executed in the CPU and MPU in a circuit form. The memory 72 may be a readable / rewritable RAM. When the controller 71 controls the driving of either the first heater 61 or the second heater 62, the controller 71 stores identification information for identifying the driven heater in the memory 72.
 第1の温度センサ(温度情報取得部)82は、第1の電池群11の温度情報を取得する。第2の温度センサ(温度情報取得部)83は、第2の電池群12の温度情報を取得する。第1の温度センサ82及び第2の温度センサ83は、サーミスタであってもよい。第1の温度センサ82は、第1の電池群11における一部の単電池111が備える構成、或いは個々の単電池111が備える構成であってもよい。第2の温度センサ83は、第2の電池群12における一部の単電池111が備える構成、或いは個々の単電池111が備える構成であってもよい。 The first temperature sensor (temperature information acquisition unit) 82 acquires the temperature information of the first battery group 11. The second temperature sensor (temperature information acquisition unit) 83 acquires the temperature information of the second battery group 12. The first temperature sensor 82 and the second temperature sensor 83 may be a thermistor. The first temperature sensor 82 may have a configuration included in some of the unit cells 111 in the first battery group 11 or a configuration included in each unit cell 111. The second temperature sensor 83 may have a configuration included in some of the unit cells 111 in the second battery group 12 or a configuration included in each unit cell 111.
 コントローラ71は、オフ位置とオン位置との間で駆動されるIGスイッチ81の位置を検出し、IGスイッチ81がオン位置にあるときに第1の温度センサ82及び第2の温度センサ83から出力される温度情報を取得する。 The controller 71 detects the position of the IG switch 81 that is driven between the off position and the on position, and outputs from the first temperature sensor 82 and the second temperature sensor 83 when the IG switch 81 is in the on position. Get temperature information.
 次に、図4のフローチャートを参照しながら、第1のヒータ61及び第2のヒータ62の制御方法について説明する。なお、初期状態において、メモリ72には、前回加熱された電池群を特定するための情報として第1のヒータ61の識別情報が記憶されているものとする。ステップS101において、コントローラ71は、IGスイッチ81がオフ位置からオン位置に移動したか否かを判別する。IGスイッチ81がオン位置に移動した場合には、ステップS102に進む。 Next, a method for controlling the first heater 61 and the second heater 62 will be described with reference to the flowchart of FIG. In the initial state, it is assumed that the memory 72 stores identification information of the first heater 61 as information for specifying the battery group heated last time. In step S101, the controller 71 determines whether or not the IG switch 81 has moved from the off position to the on position. If the IG switch 81 has moved to the on position, the process proceeds to step S102.
 ステップS102において、コントローラ71は、第1の温度センサ82及び第2の温度センサ83から出力される温度情報を取得する。ステップS103において、コントローラ71は、第1の温度センサ82及び第2の温度センサ83から出力された温度情報に基づき、これらの平均温度を算出するとともに、当該平均温度が第1の閾値(閾値)以下であるか否かを判別する。ここで、単電池111が極低温(例えば、-10℃)になると、必要な電池出力が得られなくなる。したがって、当該第1の閾値は、必要な電池出力を確保する観点から設定値として定めることができる。なお、本実施形態では、平均温度と第1の閾値とを比較したが、第1の温度センサ82及び第2の温度センサ83のうちいずれか一方が取得した温度情報と第1の閾値とを比較してもよい。ステップS103において平均温度が第1の閾値以下である場合にはステップS104に進み、平均温度が第1の閾値よりも大きい場合にはこのフローを終了する。 In step S102, the controller 71 acquires temperature information output from the first temperature sensor 82 and the second temperature sensor 83. In step S103, the controller 71 calculates the average temperature based on the temperature information output from the first temperature sensor 82 and the second temperature sensor 83, and the average temperature is a first threshold value (threshold value). It is determined whether or not: Here, when the unit cell 111 becomes extremely low temperature (for example, −10 ° C.), a necessary battery output cannot be obtained. Therefore, the first threshold value can be determined as a set value from the viewpoint of securing a necessary battery output. In the present embodiment, the average temperature is compared with the first threshold value. However, the temperature information acquired by either one of the first temperature sensor 82 and the second temperature sensor 83 and the first threshold value are used. You may compare. If the average temperature is equal to or lower than the first threshold value in step S103, the process proceeds to step S104. If the average temperature is higher than the first threshold value, this flow ends.
 ステップS104において、コントローラ71は、メモリ72に記憶されたヒータの識別情報を取得し、前回の加熱対象を特定する。なお、上述したように、本実施形態では、第1のヒータ61の識別情報がメモリ72に記憶されている。 In step S104, the controller 71 acquires heater identification information stored in the memory 72, and identifies the previous heating target. As described above, in the present embodiment, the identification information of the first heater 61 is stored in the memory 72.
 ステップS105において、コントローラ71は、前回とは異なる第2のヒータ62を駆動し、ステップS106に進む。ステップS106において、コントローラ71は、第2の温度センサ83から出力される温度情報に基づき、第2の電池群12が目標温度以上の温度に昇温したか否かを判別する。ここで、目標温度は、第1の電池群11及び第2の電池群12のうちいずれか一方の電池群で必要な電池出力を確保できるような温度であればよい。本実施形態では、目標温度が40℃に設定されているが、本発明はこれに限られるものではない。 In step S105, the controller 71 drives the second heater 62 different from the previous one, and proceeds to step S106. In step S106, the controller 71 determines whether or not the second battery group 12 has been heated to a temperature equal to or higher than the target temperature based on the temperature information output from the second temperature sensor 83. Here, the target temperature may be a temperature that can secure a required battery output in any one of the first battery group 11 and the second battery group 12. In the present embodiment, the target temperature is set to 40 ° C., but the present invention is not limited to this.
 ステップS106において、第2の電池群12が目標温度以上の温度に昇温した場合には、ステップS107に進み、目標温度未満である場合には第2のヒータ62の駆動を継続する。 In step S106, when the temperature of the second battery group 12 is raised to a temperature equal to or higher than the target temperature, the process proceeds to step S107, and when the temperature is lower than the target temperature, the driving of the second heater 62 is continued.
 このように、本実施形態では、単電池111の温度が極低温である場合、第1の電池群11及び第2の電池群12のうち一方のみを加熱し、他方の加熱を禁止している。これにより、第1の電池群11及び第2の電池群12を全て加熱する場合よりも、ヒータのエネルギ消費量を削減することができる。また、一方の電池群が昇温されることにより、必要な電池出力を確保することができる。この点について、具体例を示して詳細に説明する。 Thus, in this embodiment, when the temperature of the unit cell 111 is extremely low, only one of the first battery group 11 and the second battery group 12 is heated and the other is prohibited. . Thereby, compared with the case where all the 1st battery groups 11 and the 2nd battery groups 12 are heated, the energy consumption of a heater can be reduced. Moreover, a required battery output can be ensured by heating up one battery group. This point will be described in detail with a specific example.
 第1の電池群11が含む単電池111の個数を10セル、第2の電池群12が含む単電池111の個数を10セルとする。また、-10℃における単電池111の出力を0.1kw、20℃における単電池111の出力を5kw、30℃における単電池111の出力を10kwとする。個々の単電池111の温度を1℃上昇させるのに必要な熱量(熱容量)を50J/kとする。第1の電池群11及び第2の電池群12の全体を-10℃から20℃に昇温させるためには、50J/k×20セル×30℃=3000Jの熱エネルギが必要となる。第1の電池群11のみを-10℃から30℃に昇温させるためには、50J/k×10セル×40℃=2000Jのエネルギが必要となる。したがって、第1の電池群11のみを加熱する場合、第1の電池群11及び第2の電池群12の双方を加熱する場合と比較して、昇温に必要なエネルギを2/3に削減することができる。 The number of single cells 111 included in the first battery group 11 is 10 cells, and the number of single cells 111 included in the second battery group 12 is 10 cells. Further, the output of the single cell 111 at −10 ° C. is 0.1 kw, the output of the single cell 111 at 20 ° C. is 5 kw, and the output of the single cell 111 at 30 ° C. is 10 kw. The amount of heat (heat capacity) required to raise the temperature of each unit cell 111 by 1 ° C. is 50 J / k. In order to raise the temperature of the entire first battery group 11 and second battery group 12 from −10 ° C. to 20 ° C., thermal energy of 50 J / k × 20 cells × 30 ° C. = 3000 J is required. In order to raise the temperature of only the first battery group 11 from −10 ° C. to 30 ° C., energy of 50 J / k × 10 cells × 40 ° C. = 2000 J is required. Therefore, when only the first battery group 11 is heated, the energy required for temperature increase is reduced to 2/3 as compared with the case where both the first battery group 11 and the second battery group 12 are heated. can do.
 一方、-10℃から20℃に昇温した第1の電池群11及び第2の電池群12の総電池出力は、20セル×5kw=100kwであり、-10℃から30℃に昇温した第1の電池群11の電池出力は、10セル×10kw=100kwである。したがって、昇温に必要な熱エネルギを2/3に抑えながら、同等の出力を得ることができる。なお、これらの数値は例示であり、本発明はこれに限られるものではない。 On the other hand, the total battery output of the first battery group 11 and the second battery group 12 heated from −10 ° C. to 20 ° C. was 20 cells × 5 kW = 100 kW, and was raised from −10 ° C. to 30 ° C. The battery output of the first battery group 11 is 10 cells × 10 kW = 100 kW. Therefore, it is possible to obtain an equivalent output while suppressing the heat energy required for temperature increase to 2/3. In addition, these numerical values are illustrations, and this invention is not limited to this.
 フローチャートの説明に戻る。ステップS107において、コントローラ71は、第2のヒータ62を停止する。ステップS108において、コントローラ71は、メモリ72に記憶された第1のヒータ61の識別情報を第2のヒータ62の識別情報に書き換える。したがって、次に昇温制御を行う際には、第1のヒータ61が駆動される。このように、本実施形態では第1のヒータ61及び第2のヒータ62が交互に駆動される。すなわち、昇温された電池群は、より大きな電力を出力することにより劣化するため、加熱対象となる電池群を交互に変更することにより、第1の電池群11及び第2の電池群12の劣化度のバラツキを抑制することができる。 Return to the explanation of the flowchart. In step S107, the controller 71 stops the second heater 62. In step S <b> 108, the controller 71 rewrites the identification information of the first heater 61 stored in the memory 72 with the identification information of the second heater 62. Therefore, the first heater 61 is driven the next time the temperature rise control is performed. Thus, in the present embodiment, the first heater 61 and the second heater 62 are driven alternately. That is, since the heated battery group is deteriorated by outputting larger electric power, the first battery group 11 and the second battery group 12 can be changed by alternately changing the battery group to be heated. Variation in the degree of deterioration can be suppressed.
 ここで、並列接続の場合、劣化度の高い単電池111は、劣化度の低い他の単電池111から流入する循環電流によって充電され、この循環電流の値が劣化度の高い単電池111における許容上限値を超えるおそれがある。本実施形態では、加熱対象となる電池群を交互に変更することにより、第1の電池群11及び第2の電池群12の劣化度のバラツキが抑制されるため、単電池111を循環電流から保護することができる。 Here, in the case of parallel connection, the unit cell 111 having a high degree of deterioration is charged by a circulating current flowing from another unit cell 111 having a low degree of deterioration, and the value of this circulating current is allowable in the unit cell 111 having a high degree of deterioration. The upper limit may be exceeded. In this embodiment, since the variation of the deterioration degree of the 1st battery group 11 and the 2nd battery group 12 is suppressed by changing the battery group used as heating object by turns, the cell 111 is made from a circulating current. Can be protected.
 (変形例1)
 上述の実施形態では、第1の保持部材31及び第2の保持部材32のそれぞれに昇温用のヒータを配置したが、本発明はこれに限られるものではなく、他の構成であってもよい。当該他の構成は、一つのヒータから発生する熱の伝熱ルートを、第1の保持部材31に伝熱する第1の伝熱ルートと、第2の保持部材32に伝熱する第2の伝熱ルートとに分け、これらの伝熱ルートを交互に切り替えるものであってもよい。図5は、図2に対応する図であり、本変形例に係る組電池の断面図である。上述の実施形態と同一の構成要素には、同一符合を付している。
(Modification 1)
In the above-described embodiment, the heater for raising the temperature is disposed in each of the first holding member 31 and the second holding member 32. However, the present invention is not limited to this, and other configurations may be used. Good. In this other configuration, the heat transfer route of heat generated from one heater is transferred to the first heat transfer route to the first holding member 31 and the second heat transfer route to the second holding member 32. It may be divided into heat transfer routes, and these heat transfer routes may be switched alternately. FIG. 5 is a diagram corresponding to FIG. 2, and is a cross-sectional view of the assembled battery according to the present modification. The same components as those in the above embodiment are given the same reference numerals.
 ヒータ63は、第1の伝熱板64及び第2の伝熱板66に接触している。第1の伝熱板64は、第1の保持部材31に向かって延びており、第1の伝熱板64の先端部には、第1の圧電素子65が設けられている。第1の圧電素子65がY軸方向に伸びると、圧電素子65を介して第1の保持部材31及び第1の伝熱板64が接続される。これにより、ヒータ63の熱を用いて第1の保持部材31を加熱することができる。第1の圧電素子65がY軸方向に縮むと、第1の保持部材31と第1の圧電素子65との間に空気層が形成され、ヒータ63から第1の保持部材31に対する熱伝達が抑制される。第2の伝熱板66は、第2の保持部材32に向かって延びており、第2の伝熱板66の先端部には、第2の圧電素子67が設けられている。第2の圧電素子67がY軸方向に伸びると、第2の圧電素子67を介して第2の保持部材32及び第2の伝熱板66が接続される。これにより、ヒータ63の熱を用いて第2の保持部材32を加熱することができる。第2の圧電素子67がY軸方向に縮むと、第2の保持部材32と第2の圧電素子67との間に空気層が形成され、ヒータ63から第2の保持部材32に対する熱伝達が抑制される。 The heater 63 is in contact with the first heat transfer plate 64 and the second heat transfer plate 66. The first heat transfer plate 64 extends toward the first holding member 31, and a first piezoelectric element 65 is provided at the tip of the first heat transfer plate 64. When the first piezoelectric element 65 extends in the Y-axis direction, the first holding member 31 and the first heat transfer plate 64 are connected via the piezoelectric element 65. Accordingly, the first holding member 31 can be heated using the heat of the heater 63. When the first piezoelectric element 65 contracts in the Y-axis direction, an air layer is formed between the first holding member 31 and the first piezoelectric element 65, and heat transfer from the heater 63 to the first holding member 31 is performed. It is suppressed. The second heat transfer plate 66 extends toward the second holding member 32, and a second piezoelectric element 67 is provided at the tip of the second heat transfer plate 66. When the second piezoelectric element 67 extends in the Y-axis direction, the second holding member 32 and the second heat transfer plate 66 are connected via the second piezoelectric element 67. Thereby, the second holding member 32 can be heated using the heat of the heater 63. When the second piezoelectric element 67 contracts in the Y-axis direction, an air layer is formed between the second holding member 32 and the second piezoelectric element 67, and heat transfer from the heater 63 to the second holding member 32 is performed. It is suppressed.
 本変形例の構成において、第1の圧電素子65及び第2の圧電素子67を交互に駆動することにより、上記実施形態と同様の効果、つまり、昇温時の消費電力を抑制しながら、十分な電池出力を得ることができる。さらに、第1の電池群11及び第2の電池群12における単電池111間の劣化度のバラツキを抑制することができる。なお、第1の圧電素子65及び第2の圧電素子67の制御は、コントローラ71が行ってもよい。加熱ユニット70は、圧電素子を駆動するための回路を含む。圧電素子の駆動回路は、周知技術であるため説明を省略する。 In the configuration of this modified example, the first piezoelectric element 65 and the second piezoelectric element 67 are alternately driven to achieve the same effect as the above embodiment, that is, while suppressing power consumption at the time of temperature rise. Battery output can be obtained. Further, variation in the degree of deterioration between the single cells 111 in the first battery group 11 and the second battery group 12 can be suppressed. Note that the controller 71 may control the first piezoelectric element 65 and the second piezoelectric element 67. The heating unit 70 includes a circuit for driving the piezoelectric element. Since the drive circuit of the piezoelectric element is a well-known technique, description thereof is omitted.
 他の変形例として、ヒータ63を可動式に構成し、第1の保持部材31に接触する第1の位置と、第2の保持部材32に接触する第2の位置との間で交互に移動させる構成であってもよい。この場合、加熱ユニット70は、ヒータ63、ヒータ63を可動させるモータ、モータの駆動力をヒータ63に伝達する伝達機構、ヒータ63を第1の位置と第2の位置とにガイドするガイド部及びメモリ72を備える構成であってもよい。 As another modification, the heater 63 is configured to be movable, and alternately moves between a first position that contacts the first holding member 31 and a second position that contacts the second holding member 32. The structure to be made may be sufficient. In this case, the heating unit 70 includes a heater 63, a motor that moves the heater 63, a transmission mechanism that transmits the driving force of the motor to the heater 63, a guide portion that guides the heater 63 to the first position and the second position, and The structure provided with the memory 72 may be sufficient.
 (変形例2)
 上述の実施形態では、ヒータを駆動する際のトリガーとして電池温度を用いたが、本発明はこれに限られるものではなく、他の方法であってもよい。当該他の方法は、外気温を測定する温度センサを車両に設けるとともに、この温度センサによる検出結果に基づきヒータを駆動する方法であってもよい。当該他の構成は、エンジンオイルの温度を測定する温度センサを車両に設けるとともに、この温度センサによる検出結果に基づきヒータを駆動する方法であってもよい。さらに、当該他の方法は、電池温度が低い場合にフラグを立ち上げ、乗員に報知する方法であってもよい。この場合、乗員が車室内に設けられたスイッチを操作することにより、コントローラ71に対して第1のヒータ61又は第2のヒータ62の駆動を指示する構成であってもよい。
(Modification 2)
In the above-described embodiment, the battery temperature is used as a trigger for driving the heater. However, the present invention is not limited to this, and other methods may be used. The other method may be a method in which a temperature sensor for measuring the outside air temperature is provided in the vehicle, and the heater is driven based on a detection result by the temperature sensor. The other configuration may be a method in which a temperature sensor for measuring the temperature of the engine oil is provided in the vehicle and the heater is driven based on a detection result by the temperature sensor. Further, the other method may be a method of raising a flag when the battery temperature is low and notifying the passenger. In this case, the configuration may be such that the occupant instructs the controller 71 to drive the first heater 61 or the second heater 62 by operating a switch provided in the vehicle interior.
 (変形例3)
 上述の実施形態では、第1のヒータ61及び第2のヒータ62を交互に駆動したが、本発明はこれに限られるものではなく、他の構成であってもよい。当該他の構成は、一方のヒータを連続的に複数回駆動した後、他方のヒータを連続的に複数回駆動する方法であってもよい。当該他の構成は、一方のヒータを所定期間駆動した後、他方のヒータを所定期間駆動する、周期的な切り替え方法であってもよい。
(Modification 3)
In the above-described embodiment, the first heater 61 and the second heater 62 are driven alternately. However, the present invention is not limited to this, and other configurations may be used. The other configuration may be a method in which one heater is continuously driven a plurality of times and then the other heater is continuously driven a plurality of times. The other configuration may be a periodic switching method in which one heater is driven for a predetermined period and then the other heater is driven for a predetermined period.
 これらの構成であっても、ある期間における第1の電池群11及び第2の電池群12の加熱頻度のバラツキが抑制されるため、第1の電池群11及び第2の電池群12における単電池111の劣化度のバラツキを抑制できる。つまり、加熱ユニット70が加熱対象を選択する基準は、加熱頻度のバラツキを抑制する観点から設定可能であり、必ずしも一つの方法に限定されるものではない。 Even with these configurations, variation in the heating frequency of the first battery group 11 and the second battery group 12 in a certain period is suppressed, so that the first battery group 11 and the second battery group 12 can be Variation in the deterioration degree of the battery 111 can be suppressed. That is, the reference for the heating unit 70 to select the heating target can be set from the viewpoint of suppressing the variation in the heating frequency, and is not necessarily limited to one method.
 (変形例4)
 上述の実施形態では組電池を二つの電池群に分割したが、本発明はこれに限られるものではなく、三つ以上の電池群に分割してもよい。図6は、本変形例に係る組電池の断面図であり、上記実施形態と同一の機能を有する要素には同一符合を付している。組電池10は、第1の電池群11、第2の電池群12及び第3の電池群13を含む。第1の電池群11は、複数の単電池111からなり、第1の保持部材31に保持されている。第2の電池群12は、複数の単電池111からなり、第2の保持部材32に保持されている。第3の電池群13は、複数の単電池111からなり、第3の保持部材33に保持されている。これらの保持部材31~33は互いに離間して配置されている。したがって、第1の電池群11、第2の電池群12及び第3の電池群13は互いに熱交換が抑制され、各保持部材31~33に含まれる単電池111間における熱交換は許容される。
(Modification 4)
In the above embodiment, the assembled battery is divided into two battery groups. However, the present invention is not limited to this, and may be divided into three or more battery groups. FIG. 6 is a cross-sectional view of an assembled battery according to this modification, and the same reference numerals are given to elements having the same functions as those in the above embodiment. The assembled battery 10 includes a first battery group 11, a second battery group 12, and a third battery group 13. The first battery group 11 includes a plurality of single cells 111 and is held by a first holding member 31. The second battery group 12 includes a plurality of single cells 111 and is held by the second holding member 32. The third battery group 13 includes a plurality of single cells 111 and is held by a third holding member 33. These holding members 31 to 33 are spaced apart from each other. Therefore, the first battery group 11, the second battery group 12, and the third battery group 13 are prevented from exchanging heat with each other, and heat exchange between the single cells 111 included in the holding members 31 to 33 is allowed. .
 第1の保持部材31には第1のヒータ61が配置されており、第2の保持部材32には第2のヒータ62が配置されており、第3の保持部材33には第3のヒータ68が配置されている。これらのヒータ61~68のうち一部のヒータを駆動して電池を昇温させる場合、全てのヒータ61~68を駆動する場合よりも、電池昇温時の消費電力を削減することができる。 A first heater 61 is disposed on the first holding member 31, a second heater 62 is disposed on the second holding member 32, and a third heater is disposed on the third holding member 33. 68 is arranged. When the temperature of the battery is raised by driving some of the heaters 61 to 68, the power consumption at the time of raising the battery can be reduced as compared with the case where all the heaters 61 to 68 are driven.
 この場合、一つの電池群で必要な電池出力を確保できる場合には、一つのヒータを駆動すればよい。二つの電池群で必要な電池出力を確保できる場合には、二つのヒータを駆動すればよい。これらのヒータ61~68は、コントローラ71が制御してもよい。なお、コントローラ71による駆動対象の選択基準は、加熱頻度のバラツキを抑制する観点から適宜設定可能であり、必ずしも一つの方法に限定されるものではない。また、本変形例に係る構成は、本明細書の他の変形例と組み合わされても良い。 In this case, if a necessary battery output can be secured by one battery group, one heater may be driven. If the required battery output can be secured by the two battery groups, the two heaters may be driven. These heaters 61 to 68 may be controlled by the controller 71. In addition, the selection criterion of the drive object by the controller 71 can be appropriately set from the viewpoint of suppressing variation in the heating frequency, and is not necessarily limited to one method. In addition, the configuration according to this modification may be combined with other modifications in this specification.
(変形例5)
 上述の実施形態では、第1の電池群11及び第2の電池群12を上下に離間させて配置したが、斜め、或いは水平方向に離間させてもよい。
(Modification 5)
In the above-described embodiment, the first battery group 11 and the second battery group 12 are arranged apart from each other in the vertical direction, but may be separated obliquely or horizontally.
(変形例6)
 上述の実施形態では、単電池111を並列に接続したが、本発明はこれに限られるものではなく、直列に接続してもよい。
(Modification 6)
In the above-described embodiment, the single cells 111 are connected in parallel. However, the present invention is not limited to this, and may be connected in series.
(変形例7)
 上述の実施形態では、ヒータを保持部材に配置したが、本発明はこれに限られるものではなく、他の要素に配置してもよい。当該他の要素は、単電池111の外面であってもよい。例えば、第1の保持部材31に保持される単電池111の外面に対して第1のヒータ61を設置した場合、第1の保持部材31を介して第1の保持部材31に保持される他の単電池111に対して第1のヒータ61の熱が伝熱するため、第1の電池群11を全体的に昇温させることができる。
(Modification 7)
In the above-described embodiment, the heater is disposed on the holding member. However, the present invention is not limited to this and may be disposed on another element. The other element may be the outer surface of the unit cell 111. For example, when the first heater 61 is installed on the outer surface of the unit cell 111 held by the first holding member 31, the other is held by the first holding member 31 via the first holding member 31. Since the heat of the first heater 61 is transferred to the unit cell 111, the temperature of the first battery group 11 can be increased as a whole.
1 電源装置  10 組電池  11 第1の電池群  12 第2の電池群
20 ケース  20A ガス排出路  20B 冷却路  21 ケース本体
21A 冷媒流入口  21B 冷媒排出口 22 蓋体  31 第1の保持部材
32 第2の保持部材  40 バスバ  61 第1のヒータ  62 第2のヒータ
70 加熱ユニット  71 コントローラ  72 メモリ  81 IGスイッチ
82 第1の温度センサ  83 第2の温度センサ  111 単電池
112 正極端子  114 ガス放出弁
DESCRIPTION OF SYMBOLS 1 Power supply device 10 Assembly battery 11 1st battery group 12 2nd battery group 20 Case 20A Gas discharge path 20B Cooling path 21 Case main body 21A Refrigerant inlet 21B Refrigerant outlet 22 Lid 31 First holding member 32 Second Holding member 40 bus bar 61 first heater 62 second heater 70 heating unit 71 controller 72 memory 81 IG switch 82 first temperature sensor 83 second temperature sensor 111 single cell 112 positive electrode terminal 114 gas release valve

Claims (8)

  1.  それぞれが複数の単電池を備える複数の電池群と、
     前記各電池群をそれぞれ保持する複数の保持部材であって、前記各電池群における単電池間の熱交換を許容し、互いに離間して配置される前記複数の保持部材と、
     前記複数の電池群のうち一部の前記電池群を選択的に加熱するための加熱ユニットと、を有することを特徴とする車両用の電源装置。
    A plurality of battery groups each comprising a plurality of single cells;
    A plurality of holding members for holding each of the battery groups, wherein the plurality of holding members are arranged apart from each other, allowing heat exchange between the cells in each of the battery groups;
    A vehicle power supply device comprising: a heating unit for selectively heating a part of the plurality of battery groups.
  2.  前記複数の電池群は、第1の電池群と、第2の電池群とからなり、
     前記複数の保持部材は、前記第1の電池群を保持する第1の保持部材と、前記第2の電池群を保持する第2の保持部材とからなり、
     前記加熱ユニットは、前記第1の電池群及び前記第2の電池群のうちいずれか一方を選択的に加熱することを特徴とする特徴とする請求項1に記載の車両用の電源装置。
    The plurality of battery groups includes a first battery group and a second battery group,
    The plurality of holding members include a first holding member that holds the first battery group and a second holding member that holds the second battery group,
    2. The power supply device for a vehicle according to claim 1, wherein the heating unit selectively heats one of the first battery group and the second battery group.
  3.  前記加熱ユニットは、加熱対象を前記第1の電池群と前記第2の電池群との間で交互に切り替えることを特徴とする請求項2に記載の車両用の電源装置。 The vehicle power supply device according to claim 2, wherein the heating unit switches a heating target alternately between the first battery group and the second battery group.
  4.  該電源装置に含まれる全ての前記単電池は、並列に接続されていることを特徴とする請求項3に記載の車両用の電源装置。 The vehicle power supply device according to claim 3, wherein all of the single cells included in the power supply device are connected in parallel.
  5.  前記単電池は円筒形状であり、該電源装置に含まれる全ての前記単電池は該単電池の径方向を含む面内に配列されていることを特徴とする請求項1乃至4のうちいずれか一つに記載の車両用の電源装置。 The said single cell is cylindrical shape, All the said single cells contained in this power supply device are arranged in the surface containing the radial direction of this single cell, The one of the Claims 1 thru | or 4 characterized by the above-mentioned. The power supply device for vehicles as described in one.
  6.  該電源装置の温度に関する情報を取得する温度情報取得部を有し、
     前記加熱ユニットは、前記温度情報取得部により取得した温度が閾値以下である場合にのみ、前記一部の電池群を選択的に加熱することを特徴とする請求項1乃至5のうちいずれか一つに記載の車両用の電源装置。
    A temperature information acquisition unit for acquiring information on the temperature of the power supply device;
    6. The heating unit according to claim 1, wherein the heating unit selectively heats the partial battery group only when the temperature acquired by the temperature information acquisition unit is equal to or lower than a threshold value. Power supply device for vehicles as described in one.
  7.  前記加熱ユニットは、前記各保持部材にそれぞれ配置される複数のヒータと、これらのヒータの駆動を制御するコントローラとを備えることを特徴とする請求項1乃至6のうちいずれか一つに記載の車両用の電源装置。 The said heating unit is provided with the some heater each arrange | positioned at each said holding member, and the controller which controls the drive of these heaters, The Claim 1 characterized by the above-mentioned. Power supply device for vehicles.
  8.  請求項1乃至7のうちいずれか一つに記載の車両用の電源装置を搭載した車両。 A vehicle equipped with the power supply device for a vehicle according to any one of claims 1 to 7.
PCT/JP2011/002459 2011-04-26 2011-04-26 Vehicle power source and vehicle WO2012147128A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002459 WO2012147128A1 (en) 2011-04-26 2011-04-26 Vehicle power source and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002459 WO2012147128A1 (en) 2011-04-26 2011-04-26 Vehicle power source and vehicle

Publications (1)

Publication Number Publication Date
WO2012147128A1 true WO2012147128A1 (en) 2012-11-01

Family

ID=47071677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002459 WO2012147128A1 (en) 2011-04-26 2011-04-26 Vehicle power source and vehicle

Country Status (1)

Country Link
WO (1) WO2012147128A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178069A (en) * 2015-03-23 2016-10-06 トヨタ自動車株式会社 Battery pack
US11411261B2 (en) * 2017-03-22 2022-08-09 GM Global Technology Operations LLC Self-heating battery
US11631908B2 (en) 2019-12-20 2023-04-18 Ford Global Technologies, Llc Battery systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288950A (en) * 2002-03-28 2003-10-10 Ngk Insulators Ltd Control device for sodium - sulfur battery
JP2006093155A (en) * 2004-09-23 2006-04-06 Samsung Sdi Co Ltd Temperature control system of secondary battery module
JP2010205591A (en) * 2009-03-04 2010-09-16 Calsonic Kansei Corp Device and method for heating in-vehicle battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288950A (en) * 2002-03-28 2003-10-10 Ngk Insulators Ltd Control device for sodium - sulfur battery
JP2006093155A (en) * 2004-09-23 2006-04-06 Samsung Sdi Co Ltd Temperature control system of secondary battery module
JP2010205591A (en) * 2009-03-04 2010-09-16 Calsonic Kansei Corp Device and method for heating in-vehicle battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178069A (en) * 2015-03-23 2016-10-06 トヨタ自動車株式会社 Battery pack
US11411261B2 (en) * 2017-03-22 2022-08-09 GM Global Technology Operations LLC Self-heating battery
US11631908B2 (en) 2019-12-20 2023-04-18 Ford Global Technologies, Llc Battery systems and methods

Similar Documents

Publication Publication Date Title
JP5790767B2 (en) VEHICLE BATTERY CONTROL DEVICE AND VEHICLE BATTERY CONTROL METHOD
JP4564934B2 (en) Secondary battery module
JP4513816B2 (en) Temperature control mechanism and vehicle
JP4569640B2 (en) Battery temperature control device
JP5270326B2 (en) Assembled battery
KR101189566B1 (en) Coolant heating device for fuel cell system
JP5464168B2 (en) Power supply
JP2010097923A (en) Power storage device and vehicle
US20100112419A1 (en) Battery temperature controller for electric vehicle using thermoelectric semiconductor
CN103840233A (en) Battery pack and vehicle heating apparatus
JP2009170370A (en) Temperature adjusting mechanism
JP2009004237A (en) Power storage device and vehicle
JP2012516007A (en) Temperature controlled battery system II
US20160111762A1 (en) Electrical storage apparatus
JP2005295668A (en) Vehicle power supply
WO2009090773A1 (en) Temperature control mechanism
JP2010067386A (en) Temperature raising structure of electricity storing element, and electricity storing device
US20180310365A1 (en) Electric heating device
WO2012147128A1 (en) Vehicle power source and vehicle
JP2014121213A (en) Electrical power system
JP5861623B2 (en) Temperature control system
JP2009140654A (en) Power supply device
US11424494B2 (en) Onboard-battery temperature controller
KR20100098931A (en) Battery pack for self temperature control electromobile using thermoelectric effect
JP7207235B2 (en) battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP