WO2012147118A1 - 風力発電システム及び風力発電システムを用いた装置及びそれらの運転方法 - Google Patents
風力発電システム及び風力発電システムを用いた装置及びそれらの運転方法 Download PDFInfo
- Publication number
- WO2012147118A1 WO2012147118A1 PCT/JP2011/002399 JP2011002399W WO2012147118A1 WO 2012147118 A1 WO2012147118 A1 WO 2012147118A1 JP 2011002399 W JP2011002399 W JP 2011002399W WO 2012147118 A1 WO2012147118 A1 WO 2012147118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wind
- power generation
- power
- generation system
- windmill
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 166
- 238000000034 method Methods 0.000 title claims description 24
- 210000003746 feather Anatomy 0.000 claims description 26
- 230000005284 excitation Effects 0.000 claims description 14
- 238000011017 operating method Methods 0.000 claims 3
- 230000007423 decrease Effects 0.000 description 10
- 238000013459 approach Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J11/00—Circuit arrangements for providing service supply to auxiliaries of stations in which electric power is generated, distributed or converted
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/02—Wind motors with rotation axis substantially parallel to the air flow entering the rotor having a plurality of rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/026—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for starting-up
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/007—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/10—Combinations of wind motors with apparatus storing energy
- F03D9/11—Combinations of wind motors with apparatus storing energy storing electrical energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
- F03D9/255—Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/04—Control effected upon non-electric prime mover and dependent upon electric output value of the generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/70—Application in combination with
- F05B2220/706—Application in combination with an electrical generator
- F05B2220/7068—Application in combination with an electrical generator equipped with permanent magnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/221—Rotors for wind turbines with horizontal axis
- F05B2240/2213—Rotors for wind turbines with horizontal axis and with the rotor downwind from the yaw pivot axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/70—Adjusting of angle of incidence or attack of rotating blades
- F05B2260/76—Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/85—Starting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Definitions
- the present invention relates to a wind power generation system, a device using the wind power generation system, and an operation method thereof.
- Patent Document 1 describes a technique using an uninterruptible power supply for a wind power generation system.
- the power system supplies power to the wind turbine control system when the power system is normal, and it is necessary to provide an uninterruptible power supply to cover the control system power supply when the power system is abnormal. was there. Since the uninterruptible power supply has a supplyable time, the control system operation cannot be continued for a long-term power failure that exceeds the uninterruptible power supply supply time. In this case, since the start-up time occurs, the generated power cannot be immediately supplied to the power system even in the wind speed range where power generation is possible.
- the present invention has been made in view of the above points, and an object of the present invention is to provide a wind turbine that enables a power generation operation in distinction from the presence or absence of the power system and the state of the power system.
- a wind power generation system controls a blade that rotates by receiving wind, a generator that rotates and rotates with the rotation of the blade, and a pitch angle of the blade.
- FIG. 3 The structure of a wind power generation system which concerns on Example 3, and a single wire connection diagram are shown. It is a figure which shows the time chart of the wind power generation system which concerns on Example 3.
- FIG. It is a figure explaining the operation
- FIG. It is a figure explaining a vertical axis type windmill. It is a figure explaining a vertical axis type windmill. It is a figure explaining a windmill with a tail.
- Example 1 will be described with reference to FIGS.
- the wind power generation system according to the present embodiment includes a main windmill 1 that sends generated power to the load side and the power system side as shown in FIG. 1 and an auxiliary device that is installed on the windmill 1 and supplies power to an auxiliary machine that will be described later.
- the wind turbine 2 is roughly configured.
- the windmill 1 is constructed on a foundation, and is disposed at the tip of the nacelle 4, a column 3 that supports the entire windmill 1, a nacelle 4 that is installed on the top of the column 3 so as to be rotatable in a horizontal direction with respect to the column 3.
- the three wings 5 are rotated by receiving wind.
- a shaft 6 and a generator 7 connected to the wing 5 are arranged, and the shaft 6 is connected to a rotating shaft of a rotor of the generator 7.
- the rotor of the generator 7 rotates through the shaft 6 as the blades 5 rotate, and the windmill 1 performs a power generation operation.
- the windmill 1 in this embodiment is a downwind type windmill that performs power generation operation with the blades 5 facing downwind.
- the windmill 2 is a small windmill with respect to the windmill installed on the nacelle 4 of the windmill 1, and the windmill 2 has a support 8 that supports the entire windmill 2 on the nacelle 4, and the support 8 at the top of the support 8.
- the nacelle 9 is installed horizontally, and the three wings 10 are arranged at the tip of the nacelle 9 and rotate by receiving wind. Unlike the nacelle 4, the nacelle 9 is fixed on a support and is not rotatable in the horizontal direction.
- a shaft 11 connected to the blade 10 and a permanent magnet generator 12 that does not require an exciting current are disposed inside the nacelle 9, a shaft 11 connected to the blade 10 and a permanent magnet generator 12 that does not require an exciting current are disposed.
- the shaft 11 is a rotating shaft of a rotor of the generator 12. It is connected with. Thereby, the rotor of the generator 12 rotates through the shaft 11 as the blades 10 rotate, and the windmill 2 performs a power generation operation.
- the wing 10 is fixed so as to face the same direction as the wing 5, and the power generation operation is performed with the wing 5 facing downwind, so the windmill 2 is also a downwind type windmill.
- a power converter 13 is connected to the generator 12 and converts a voltage having an irregular frequency according to a temporal change in wind from the generator 12 into a rated frequency.
- a yaw rotational motion in a horizontal plane perpendicular to the support column 3
- the yaw driver 14 is a device that adjusts the rotation angle of the nacelle 4 in the horizontal plane, and adjusts the blade 5 so that it faces the leeward according to the wind direction obtained from the wind direction anemometer (not shown). Yes.
- the wind speed may be measured by the wind direction anemometer, and the wind direction anemometer can be installed around the wind power generation system or the wind power generation system.
- the pitch driving device 15 changes the area where the blades 5 receive the wind with respect to the wind direction.
- fine the position where the wind receiving area that receives the wind is widest and the blade 5 faces in the direction perpendicular to the wind direction
- feather the position where the wind receiving area is the narrowest
- the yaw drive machine 14 and the pitch drive machine 15 are connected to the generator 12 via the power converter 13.
- the devices that control the wind turbine such as the yaw drive machine 14 and the pitch drive machine 15, are generally referred to as auxiliary machines.
- the generator 7 of the wind turbine 1 serving as a main wind turbine for supplying generated power to the load side is connected to the switch 17 via the power converter 16 and further connected to the transformer 18 via the switch 17. After converting to the required voltage, it is connected to the load 19.
- each embodiment in the present specification describes a case where power is directly supplied to a load such as a microgrid or an offshore wind turbine, and generated power is not transmitted to the power system. This is different from the conventional method in which the auxiliary power source is not supplied from the conventional power system, or when the auxiliary power source is temporarily provided using the uninterruptible power source when the auxiliary power source is disconnected.
- the existence of a power system is not an essential requirement, so it can be used as a power source for an independent power network, and can be installed in an area where the power network is not widespread, for example. It becomes possible.
- a power grid even if there is a power grid, it can be used as a (further) emergency power source when the original power source (including emergency power source) is lost in the event of a disaster, etc. . This is because, especially in an environment where cooling stagnation due to power loss can lead to a serious accident, as in the case of nuclear power generation equipment, it is connected to the nuclear power generation equipment so that power can be supplied to the nuclear power generation equipment. It is more effective when used as a power generation system.
- this power supply can immediately switch the power supply circuit to the wind power generation system when any power supply to the nuclear power generation facility is interrupted, so that no blank is generated in the power supply. It can be confirmed that the power supply has been interrupted by, for example, installing a voltage value or current value measuring device in the middle of a power supply circuit other than the wind power generation system, and the signal from this measuring device is a predetermined threshold value. It is sufficient to provide a changeover switch so as to switch the power supply circuit to the wind power generation system side when the signal from the measuring instrument is interrupted or the signal from the measuring instrument is cut off, and control to send a command to this changeover switch.
- auxiliary power storage battery for nuclear power generation equipment, and the generated power from both power generation systems simultaneously contribute to the charging of the auxiliary power storage battery.
- the generated power from the wind power generation system is supplied to the nuclear power generation facility and the auxiliary power storage battery within the wind speed capable of generating power.
- the generated power from the solar power generation system and / or power from the auxiliary power storage battery may be supplied.
- each complementarity is further enhanced.
- FIGS. 3 The operation method for the wind power generation system configured as described above will be described with reference to FIGS.
- the upper part of Fig. 3 shows the time variation of the wind speed measured with the anemometer, and cut-in wind ⁇ speed (hereinafter referred to as cut-in wind speed) is the lower limit wind speed or load at which the wind turbine 1 does not make the pitch angle a feather and performs power generation operation.
- cut-in wind speed is the lower limit wind speed for supplying generated power to the side
- cut-out wind speed (hereinafter referred to as cut-out wind speed) is the upper wind speed at which the wind turbine 1 does not make the pitch angle a feather or the generated power to the load side.
- the upper limit wind speed for supply is shown. That is, the wind turbine 1 performs the power generation operation in a range from the cut-in wind speed to the cut-out wind speed.
- the initial wind speed shows a constant value in the wind speed region where power generation operation is possible, and is in a normal state.
- the pitch angle of the blades 5 is maintained at an angle near the middle between the fine and the feather, and the generator 7 of the main wind turbine and the generator 12 of the auxiliary wind turbine generate power while maintaining a substantially constant rotational speed.
- the switch 17 is closed (ON state), and the generated power from the generator 7 is supplied to the load 19. Further, the generated power from the generator 12 is also supplied to the auxiliary machine.
- the pitch angle of the blades 5 is made a feather from the viewpoint of safety so that the wind does not hit the blades 5.
- the rotation of the blade 5 is stopped, and the generator 7 that rotates with the rotation of the blade 5 and performs the power generation operation stops the power generation operation.
- the switch 17 is opened (off state) so that power is not exchanged between the generator 7 and the load 19 side. Further, yaw control is not performed, and the yaw moves freely according to the wind direction (free yaw).
- the main windmill 1 is a downwind type windmill
- the wings 5 face the leeward in the case of a free yaw, like a so-called weathercock.
- the pitch angle control is not performed for the auxiliary wind turbine, and the blades 10 rotate while being gentle, and the generator 12 continues to generate power.
- the auxiliary windmill 2 is not yaw-driven and is fixed to the nacelle 4, but the fixed nacelle 4 itself rotates according to the wind direction, and further, the blade 5 of the windmill 1, which is a downwind type windmill, Since the blades 10 of the auxiliary wind turbine 2 are facing the same direction, the blades 10 are also facing the leeward, and the power generation operation can be continued. Since the auxiliary machine only controls pitch angle and yaw, and does not require a large amount of power, it is possible to cover the auxiliary power source with a small amount of generated power.
- the pitch angle of the blade 5 is switched to the feather.
- blade 5 stops rotation and the generator 7 also stops rotation.
- the switch 17 is opened (off state) so that power is not exchanged between the generator 7 and the load 19 side.
- the free yaw is set in the same manner as when the wind speed is below the cut-in wind speed. Since the main windmill 1 is a downwind type windmill, if it is set to free yaw, the wings 5 face leeward in the same manner as a so-called weathercock.
- the auxiliary windmill is not yaw-driven and is fixed to the nacelle 4, and the blades 10 are directed in the same direction as the blades 5 of the downwind type windmill, so they face the downwind. Since the pitch angle of the blades 10 is not controlled, and power is generated when the wind blows, the power generation operation can be continued even when the wind speed is higher than the cutout wind speed. Therefore, it is possible to cover the driving power of the auxiliary machine.
- the pitch angle of the blade 5 is shifted from the feather in the direction of increasing the wind receiving area, and the blade 5 is rotated.
- yaw control is also performed by the yaw driver 14.
- the generator 7 rotates and the power generation operation is resumed.
- the switch 17 is switched to the closed state so that the generated power is supplied to the load side.
- the generator 7 maintains a certain rotational speed while adjusting the pitch angle.
- the auxiliary power is supplied only from the auxiliary wind turbine, but this does not exclude the supply from the generator 7 side of the main wind turbine. Rather, when the main wind turbine is normal and some trouble occurs in the auxiliary wind turbine, it is desired to supply the generated power to the load side, but if the auxiliary power source is covered only by the auxiliary wind turbine, the generated power is supplied to the load side. It will be impossible. Therefore, it is desirable that auxiliary power can be supplied from both the auxiliary wind turbine and the main wind turbine.
- the auxiliary wind turbine is made smaller than the main wind turbine.
- the wing 10 becomes lighter than the wing 5 and can be rotated even in a weak wind.
- the blades 10 of the auxiliary wind turbine can rotate even when the wind is lower than the cut-in wind speed, and the auxiliary power supply can be provided.
- the stress applied to the windmill also contributes to the diameter of the blade in the n-th power even for a strong wind, the larger the blade, the greater the stress applied to the windmill. Therefore, by using a small windmill, it is possible to cover the auxiliary power supply even during a storm exceeding the cutout wind speed.
- the main windmill when the main windmill is not less than the cut-in wind speed and not more than the cut-out wind speed, the small windmill is rotating, so that auxiliary power is always supplied. That is, regardless of the state of the power system, power can be generated when the main windmill can generate power, and the operating time during which the windmill contributes to power generation can be maximized.
- the yaw drive can be set to free yaw so as not to be fixed.
- the auxiliary wind turbine is used as a downwind type wind turbine and the yaw drive is set to free yaw, it is not necessary to install the auxiliary wind turbine on the nacelle 4 of the main wind turbine, and the wind turbine can be installed in other places.
- Example 2 will be described with reference to FIGS.
- the most different point of the present embodiment from the first embodiment is that it is an upwind type windmill that performs a power generation operation with the main windmill 20 facing upwind.
- the yaw drive is set to free yaw for the nacelle of the auxiliary wind turbine 21.
- the configuration of the wind power generation system is the same as that of the first embodiment except for the difference between the downwind type windmill and the upwind type windmill.
- FIG. 6 shows a time chart. In the course of rough time, the same operation as in the first embodiment is possible.
- Fig. 7 shows the operation procedure as a flowchart.
- the yaw is fixed and stopped so that it does not rotate naturally due to the wind. Further, when the wind speed is once lower than the cut-in wind speed or higher than the cut-out wind speed and the wind speed returns to the cut-in wind speed or lower than the cut-out wind speed, first, the blade 5 of the main wind turbine 20 first moves upwind. It is necessary to control the yaw so that it faces. The auxiliary power supply at this time is covered by the power generated by the auxiliary wind turbine.
- the blades 10 of the auxiliary wind turbine 21 face the downwind regardless of the nacelle 4 of the main wind turbine 20 being fixed, as in the so-called weathercock. Can be rotated.
- the main windmill is an upwind windmill as in this embodiment, it can be operated by generating power if the wind blows, and it is possible not to be affected by the presence or state of the power system. . *
- Example 3 will be described with reference to FIGS. A description of the same parts as in the above embodiment is omitted.
- the main windmill 23 which is a downwind type windmill is provided, and no auxiliary windmill is provided.
- a permanent magnet generator is used as the generator 24 in this embodiment.
- the generator 24 is connected to the power converters 25 and 26.
- the power converter 25 corresponds to the power converter 13 of each of the above embodiments, and the yaw driver 14 and the pitch driver 15 are connected to the tip of the power converter 25.
- the power converter 26 corresponds to the power converter 16 of each of the above embodiments, and a switch 28 is connected to the tip of the power converter 26, and a load 30 is connected to the tip of the switch 28 via a transformer 29. Is connected.
- the main windmill 23 in this embodiment is a main windmill and also has the role of the auxiliary windmill in each of the above embodiments.
- the pitch angle of the blades 5 is set to the feather in each of the above embodiments so that the wind does not hit the blades 5. Leave fine.
- the switch 28 is opened (off state) so that power is not exchanged between the generator 24 and the load 30 side.
- yaw control is not performed, and the yaw moves freely according to the wind direction (free yaw). Since the main windmill 23 is a downwind type windmill, if it is set to free yaw, the blade 5 always faces the leeward, the blade 5 continues to rotate, and the generator 24 continues to generate power. Since the auxiliary machine only controls pitch angle and yaw, and does not require a large amount of power, it is possible to cover the auxiliary power source with a small amount of generated power.
- the switch 28 When the wind speed further rises and exceeds the cut-in wind speed again, the switch 28 is moved to the closed state. Thus, the generated power is supplied to the load side. Thereafter, when the wind speed is between the cut-in wind speed and the cut-out wind speed, the generator 7 is maintained to maintain a certain rotational speed while adjusting the pitch angle.
- the pitch angle of the blade 5 is switched to a state close to a feather.
- the reason for expressing the state close to the feather instead of the feather is that if the feather is completely made, the rotation of the blade 5 is stopped and cannot be restarted.
- the pitch is such that the rotation speed is high enough to cover the auxiliary power supply by the power generated by the generator 24. Just make it to the corner. Further, in this case, the yaw control of the main wind turbine 23 is canceled and free yaw is set.
- the pitch angle of the blade 5 is shifted from the feather in the direction of increasing the wind receiving area, and the blade 5 is rotated.
- yaw control is also performed by the yaw driver 14.
- the switch 28 is also switched to the closed state so that the generated power is supplied to the load side.
- the generator 24 is maintained so as to maintain a certain rotational speed while adjusting the pitch angle.
- the pitch angle of the main windmill is made close to the feather and the yaw control is shifted to free yaw.
- the auxiliary power supply is a downwind type windmill that generates power while facing the downwind even if the main windmill 23 does not perform yaw control. There is no hindrance. Thereafter, when the wind speed becomes equal to or lower than the cut-out wind speed, the pitch angle control and the yaw control are immediately performed, and the power generation operation can be resumed by shifting the switch 28 to the closed state.
- the power generation operation can be performed if the wind blows without using the auxiliary wind turbine, and it is not affected by the presence or state of the power system. Is possible.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
Abstract
Description
3,8 支柱
4,9,22 ナセル
5,10 翼
6,11 シャフト
7,12,24 発電機
13,16,25,26 電力変換器
14,27 ヨー駆動機
15 ピッチ駆動機
17,28 スイッチ
18,29 変圧器
19,30 負荷
Claims (23)
- 風を受けて回転する翼と、該翼の回転に伴って回転し、発電する発電機と、前記翼のピッチ角を制御する補機とを有する風車を備える風力発電システムであって、
永久磁石式発電機を搭載し、かつ風を受けて回転する翼が風下を向いた状態で発電運転するダウンウインド型風車の発電電力によって、前記補機を駆動することを特徴とする風力発電システム。 - 風を受けて回転する翼と、該翼の回転に伴って回転し、発電する発電機と、前記翼のピッチ角を制御する補機とを有する風車を備える風力発電システムであって、
励磁式発電機及び該励磁式発電機の初期励磁電力を賄うバッテリを搭載し、
該励磁式発電機は発電中における該励磁式発電機の励磁電力は該励磁式発電機の発電電力で賄うと共に、該該励磁式発電機の発電電力で前記バッテリの充電を行い、
かつ風を受けて回転する翼が風下を向いた状態で発電運転するダウンウインド型風車の発電電力によって、前記補機を駆動することを特徴とする風力発電システム。 - 請求項1または2に記載の風力発電システムであって、該風力発電システムは、電力系統を介さずに負荷側へと接続されることを特徴とする風力発電システム。
- 請求項1ないし3のいずれか一つに記載の風力発電システムであって、
前記風車と前記ダウンウインド型風車は別の風車であり、前記風車よりも前記ダウンウインド型風車は小型であることを特徴とする風力発電システム。 - 請求項4に記載の風力発電システムであって、
前記風車は、支柱と、前記翼が取り付けられて、水平面内で回転可能に前記支柱に支持されるナセルとを更に有しており、
前記ダウンウインド型風車は、前記ナセルに設置されていることを特徴とする風力発電システム。 - 請求項5に記載の風力発電システムであって、
前記風車は、前記翼が風下を向いた状態で発電運転する第2のダウンウインド型風車であることを特徴とする風力発電システム。 - 請求項6に記載の風力発電システムであって、
前記ダウンウインド型風車の前記翼が、前記第2のダウンウインド型風車の前記翼と同じ方向を向く様に、前記ダウンウインド型風車は前記ナセルに設置されていることを特徴とする風力発電システム。 - 請求項4に記載の風力発電システムであって、
前記風車は、前記翼が風上を向いた状態で発電運転するアップウインド型風車であることを特徴とする風力発電システム。 - 請求項8に記載の風力発電システムであって、
前記ダウンウインド型風車の前記翼は、ヨー制御なしに水平面内で回転可能に配置されていることを特徴とする風力発電システム。 - 請求項1ないし3のいずれか一つに記載の風力発電システムであって、
前記風車と前記ダウンウインド型風車は同一の風車であることを特徴とする風力発電システム。 - 請求項1ないし10のいずれか一つに記載の風力発電システムであって、
該風力発電システムは原子力発電設備に接続されて電力を供給可能とすることを特徴とする風力発電システム。 - 請求項11に記載の風力発電システムと、
前記原子力発電設備に対する前記風力発電システムからの電源供給回路と他の電源供給回路とを切り換えるスイッチと、
前記他の電源供給回路内に設けられて、該回路内における電圧値または電流値を測定する測定器と、
前記測定器からの測定値が所定の閾値を下回った場合、または前記測定器からの信号が途絶えた場合に前記スイッチを切り換える信号を出力する手段と、
を備えることを特徴とする非常用電源供給システム。 - 請求項11に記載の風力発電システムと、前記原子力発電設備に接続されて該原子力発電設備に電力を供給可能とする太陽光発電システムと、前記原子力発電設備に接続されて該原子力発電設備に電力を供給可能とする充電池とを備え、
前記充電池は、前記風力発電システムまたは前記太陽光発電システムの発電電力により充電可能であることを特徴とする非常用電源供給システム。 - 負荷及び/または電力系統側に供給する電力を主として発電する主風車と、該主風車のピッチ角とヨー制御を行う補機に発電電力を供給すると共に、翼が風下を向いた状態で発電運転するダウンウインド型風車であり、かつ永久磁石式発電機を搭載する補助風車と、風速を測定する風向風速計を有する風力発電システムの運転方法であって、
前記ダウンウインド型風車は前記主風車の発電可能風速より広範囲な風速で発電可能であり、
風速が前記主風車の発電可能風速から外れた後、発電可能風速内に復帰するまでは前記補助風車がフリーヨーで回転する状態にし、風速が前記主風車の発電可能風速内に復帰した場合、前記補助風車の発電電力によって補機を駆動して前記主風車のピッチ角及びヨー制御を行い、主風車による発電運転を再開することを特徴とする風力発電システムの運転方法。 - 請求項14に記載の風力発電システムの運転方法であって、
前記ダウンウインド型風車は前記主風車の発電可能風速のうち、カットイン風速より小さい風速で発電可能であり、
風速が前記主風車のカットイン風速を下回った後、カットイン風速以上に復帰するまでは前記補助風車がフリーヨーで回転できる状態にし、カットイン風速以上に復帰した場合、前記補助風車の発電電力によって補機を駆動して前記主風車のピッチ角及びヨー制御を行い、主風車による発電運転を再開することを特徴とする風力発電システムの運転方法。 - 請求項14または15に記載の風力発電システムの運転方法であって、
前記ダウンウインド型風車は前記主風車の発電可能風速のうち、カットアウト風速より大きい風速で発電可能であり、
風速が前記主風車のカットアウト風速を上回った後、カットアウト風速以下に復帰するまでは前記補助風車がフリーヨーで回転できる状態にし、カットアウト風速以下に復帰した場合、前記補助風車の発電電力によって補機を駆動して前記主風車のピッチ角及びヨー制御を行い、主風車による発電運転を再開することを特徴とする風力発電システムの運転方法。 - 請求項16に記載の風力発電システムの運転方法であって、
風速が前記主風車のカットアウト風速を上回った後、カットアウト風速以下に復帰するまでの間は主風車のピッチ角をフェザーにすることを特徴とする風力発電システムの運転方法。 - 請求項14ないし請求項17のいずれか一つに記載の風力発電システムの運転方法であって、
前記主風車は翼が風下を向いた状態で発電運転するダウンウインド型風車であることを特徴とする風力発電システムの運転方法。 - 請求項14ないし請求項17のいずれか一つに記載の風力発電システムの運転方法であって、
前記主風車は翼が風上を向いた状態で発電運転するアップウインド型風車であり、
主風車による発電運転の再開の前に前記主風車の翼が風上を向く様に制御することを特徴とする風力発電システムの運転方法。 - 負荷及び/または電力系統側に供給する電力を主として発電する主風車と、該主風車のピッチ角とヨー制御を行う補機に発電電力を供給すると共に、翼が風下を向いた状態で発電運転するダウンウインド型風車であり、かつ永久磁石式発電機を搭載する補助風車と、風速を測定する風向風速計を有する風力発電システムの運転方法であって、
風速が前記主風車の発電可能風速から外れた後、発電可能風速内に復帰するまでは前記主風車がフリーヨーで回転できる状態にし、風速が前記主風車の発電可能風速内に復帰した場合、前記主風車の発電電力によって補機を駆動して前記主風車のピッチ角及びヨー制御を行い、主風車による発電運転を再開することを特徴とする風力発電システムの運転方法。 - 請求項18に記載の風力発電システムの運転方法であって、
前記主風車は風速が前記主風車のカットイン風速を下回った後、カットイン風速以上に復帰するまでは、
翼のピッチ角をファインにしておくことを特徴とする風力発電システムの運転方法。 - 請求項20または21に記載の風力発電システムの運転方法であって、
前記主風車は風速が前記主風車のカットアウト風速を上回った後、カットアウト風速以下に復帰するまでは、
翼のピッチ角をフェザーに近い状態にしておくことを特徴とする風力発電システムの運転方法。 - 請求項14ないし22のいずれか一つに記載の風力発電システムの運転方法を用いた原子力発電設備の運転方法であって、
前記風力発電システムは、原子力発電設備に接続され、該原子力発電設備に電力供給可能であり、
該原子力発電設備は、太陽光発電システムにも接続され、該太陽光発電システムからの電力供給を受けることが可能であり、
前記風力発電システム及び前記太陽光発電システムは原子力発電設備の補助電源用蓄電池に接続されており、
前記風力発電システムは発電可能風速内では、発電電力を前記原子力発電設備及び/または前記補助電源用蓄電池に供給し、
発電可能風速外では、前記太陽光発電システムからの発電電力または前記補助電源用蓄電池からの電力が前記原子力発電設備に供給されることを特徴とする原子力発電設備の運転方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11864572.0A EP2703643B1 (en) | 2011-04-25 | 2011-04-25 | Wind power generation system, device using wind power generation system, and method for operating same |
AU2011366415A AU2011366415A1 (en) | 2011-04-25 | 2011-04-25 | Wind power generation system, device using wind power generation system, and method for operating same |
KR1020137027932A KR20140003608A (ko) | 2011-04-25 | 2011-04-25 | 풍력 발전 시스템 및 풍력 발전 시스템을 이용한 장치 및 그들의 운전 방법 |
CN201180070410.8A CN103518060A (zh) | 2011-04-25 | 2011-04-25 | 风力发电系统、利用风力发电系统的装置以及它们的运转方法 |
JP2013511792A JP5619278B2 (ja) | 2011-04-25 | 2011-04-25 | 風力発電システム及び風力発電システムを用いた装置及びそれらの運転方法 |
US14/113,770 US9231441B2 (en) | 2011-04-25 | 2011-04-25 | Wind power generation system, device using wind power generation system, and method for operating same |
PCT/JP2011/002399 WO2012147118A1 (ja) | 2011-04-25 | 2011-04-25 | 風力発電システム及び風力発電システムを用いた装置及びそれらの運転方法 |
CA2834361A CA2834361A1 (en) | 2011-04-25 | 2011-04-25 | An auxiliary downwind turbine combined with a wind power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/002399 WO2012147118A1 (ja) | 2011-04-25 | 2011-04-25 | 風力発電システム及び風力発電システムを用いた装置及びそれらの運転方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147118A1 true WO2012147118A1 (ja) | 2012-11-01 |
Family
ID=47071672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/002399 WO2012147118A1 (ja) | 2011-04-25 | 2011-04-25 | 風力発電システム及び風力発電システムを用いた装置及びそれらの運転方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9231441B2 (ja) |
EP (1) | EP2703643B1 (ja) |
JP (1) | JP5619278B2 (ja) |
KR (1) | KR20140003608A (ja) |
CN (1) | CN103518060A (ja) |
AU (1) | AU2011366415A1 (ja) |
CA (1) | CA2834361A1 (ja) |
WO (1) | WO2012147118A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103795184A (zh) * | 2014-02-21 | 2014-05-14 | 北京交通大学 | 一种混合励磁发电机与感应发电机共轴联合运行发电机 |
JP2014181705A (ja) * | 2013-03-15 | 2014-09-29 | Frontier Wind Llc | 分散制御システム |
JP2014214604A (ja) * | 2013-04-22 | 2014-11-17 | 株式会社Ihi | 海流発電装置 |
JP2017008848A (ja) * | 2015-06-24 | 2017-01-12 | 株式会社日立製作所 | 風力発電装置、ウィンドファームおよびウィンドファームの制御方法 |
JP2017025713A (ja) * | 2015-07-15 | 2017-02-02 | 誠太 一色 | 風力発電装置 |
JP2020002781A (ja) * | 2018-06-25 | 2020-01-09 | 株式会社日立製作所 | 風力発電装置の制御方法 |
CN111306001A (zh) * | 2020-03-02 | 2020-06-19 | 西安交通大学 | 一种风光反应堆系统及其工作方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITRM20110516A1 (it) * | 2011-09-30 | 2013-03-31 | Enel Green Power Spa | Generatore eolico ad asse orizzontale con rotore eolico secondario |
US20140286776A1 (en) * | 2011-10-28 | 2014-09-25 | General Electric Company | Blade Pitch System for a Wind Turbine Generator and Method of Operating the Same |
DK2645530T3 (en) * | 2012-03-27 | 2018-11-12 | Siemens Ag | Method for controlling a wind farm, wind farm controller, wind farm, computer-readable medium and program element |
US20140312620A1 (en) * | 2013-04-17 | 2014-10-23 | General Electric Company | Method and apparatus for improving grid stability in a wind farm |
JP6227490B2 (ja) * | 2014-07-03 | 2017-11-08 | 株式会社日立製作所 | ダウンウインド型風車及びその停止方法 |
DE102016103254A1 (de) * | 2016-02-24 | 2017-08-24 | Wobben Properties Gmbh | Verfahren zum Bestimmen einer äquivalenten Windgeschwindigkeit |
DK201800097U3 (da) * | 2018-12-21 | 2020-03-24 | Cotes A/S | Vindmølleaffugter omfattende en sekundær strømkilde |
CN114233564A (zh) * | 2021-11-16 | 2022-03-25 | 上海致远绿色能源股份有限公司 | 兆瓦级风机利用小风机变桨供电装置 |
CN116221027A (zh) * | 2023-02-16 | 2023-06-06 | 华能新能源股份有限公司河北分公司 | 一种基于风力发电机的风力发电系统 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61167482U (ja) * | 1985-04-09 | 1986-10-17 | ||
JPH06289189A (ja) * | 1993-04-06 | 1994-10-18 | Toshiba Corp | 原子力発電所の直流電源設備 |
JPH0960575A (ja) * | 1995-08-22 | 1997-03-04 | Matsuo Kyoryo Kk | 風力発電設備 |
JPH1194988A (ja) * | 1997-09-19 | 1999-04-09 | Toshiba Eng Co Ltd | 原子力発電所の非常用電源設備 |
JP2004108163A (ja) * | 2002-09-13 | 2004-04-08 | Mitsubishi Heavy Ind Ltd | 翼通過面積調整装置を備えた風車及びその運転方法 |
JP2005033915A (ja) * | 2003-07-14 | 2005-02-03 | Fuji Heavy Ind Ltd | 風力発電機の保護システム |
US6921985B2 (en) | 2003-01-24 | 2005-07-26 | General Electric Company | Low voltage ride through for wind turbine generators |
JP2006002726A (ja) * | 2004-06-21 | 2006-01-05 | Fuji Heavy Ind Ltd | 水平軸風車 |
JP2007064062A (ja) * | 2005-08-30 | 2007-03-15 | Fuji Heavy Ind Ltd | 水平軸風車 |
JP2007239599A (ja) * | 2006-03-08 | 2007-09-20 | Mitsubishi Heavy Ind Ltd | 風力発電システム、及び風力発電システムの非常用電力供給方法 |
JP2007252028A (ja) * | 2006-03-14 | 2007-09-27 | Hitachi Ltd | 風力発電水素製造装置 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2742559C2 (de) * | 1977-09-22 | 1979-06-13 | Voith Getriebe Kg, 7920 Heidenheim | Windenergie-Konverter |
KR960007401B1 (ko) * | 1994-06-27 | 1996-05-31 | 신찬 | 복합 입력형 풍력장치(The Multi-unit Rotor Blade system Integrated wind Turbine) |
DE10009472C2 (de) | 2000-02-28 | 2002-06-13 | Norbert Hennchen | Vorrichtung zum Verstellen der Anstellwinkel der auf einer Nabe einer Rotorwelle verdrehbar angeordneten Rotorblätter einer Windkraftanlage |
DE20020232U1 (de) * | 2000-11-29 | 2002-01-17 | Siemens AG, 80333 München | Windkraftanlage mit Hilfsenergieeinrichtung zur Verstellung von Rotorblättern in einem Fehlerfall |
DE10136974A1 (de) * | 2001-04-24 | 2002-11-21 | Aloys Wobben | Verfahren zum Betreiben einer Windenergieanlage |
US7436083B2 (en) * | 2001-12-28 | 2008-10-14 | Mitsubishi Heavy Industries, Ltd. | Up-wind type windmill and operating method therefor |
US7071578B1 (en) | 2002-01-10 | 2006-07-04 | Mitsubishi Heavy Industries, Ltd. | Wind turbine provided with a controller for adjusting active annular plane area and the operating method thereof |
JP2004044508A (ja) * | 2002-07-12 | 2004-02-12 | Toshiba Corp | 風力発電プラント |
US8072584B2 (en) * | 2002-08-02 | 2011-12-06 | Ophir Corporation | Optical air data systems and methods |
US20040096327A1 (en) * | 2002-11-14 | 2004-05-20 | Kari Appa | Method of increasing wind farm energy production |
US8167555B2 (en) * | 2005-05-31 | 2012-05-01 | Fuji Jukogyo Kabushiki Kaisha | Horizontal axis wind turbine |
ES2265771B1 (es) * | 2005-07-22 | 2008-01-16 | GAMESA INNOVATION & TECHNOLOGY, S.L. | Metodo para mantener operativos los componentes de una turbina eolica y una turbina eolica con componentes que permitan el mantenimiento operativo. |
NZ556760A (en) * | 2007-07-26 | 2008-12-24 | Auckland Uniservices Ltd | An electric generator |
EP2166225B1 (en) * | 2008-09-19 | 2016-08-10 | Vestas Wind Systems A/S | A wind park having an auxiliary power supply |
CN102177336B (zh) * | 2008-10-09 | 2013-12-04 | 比罗空气能源公司 | 具有对立旋转叶片的风力设备 |
US20100090463A1 (en) * | 2008-10-10 | 2010-04-15 | Jacob Johannes Nies | Combined environmental monitoring and power supply device |
US20110082598A1 (en) * | 2009-10-02 | 2011-04-07 | Tod Boretto | Electrical Power Time Shifting |
US8866334B2 (en) * | 2010-03-02 | 2014-10-21 | Icr Turbine Engine Corporation | Dispatchable power from a renewable energy facility |
US8378516B2 (en) * | 2010-04-07 | 2013-02-19 | Tai Koan Lee | Continuous wind power system with auxiliary blades |
WO2012001739A1 (ja) * | 2010-06-30 | 2012-01-05 | 株式会社 日立製作所 | 風力発電システム及び風力発電システムの制御方法 |
ES2545692T3 (es) * | 2011-02-04 | 2015-09-15 | Vestas Wind Systems A/S | Disposición de turbinas eólicas con una turbina eólica principal y al menos una turbina eólica secundaria |
US9404479B2 (en) * | 2011-03-22 | 2016-08-02 | Tufts University | Systems, devices and methods for improving efficiency of wind power generation systems |
ITRM20110516A1 (it) * | 2011-09-30 | 2013-03-31 | Enel Green Power Spa | Generatore eolico ad asse orizzontale con rotore eolico secondario |
US20130270823A1 (en) * | 2012-04-17 | 2013-10-17 | Clipper Windpower, Llc | Method for Enhancing Low Voltage Ride Through Capability on a Wind Turbine |
-
2011
- 2011-04-25 CN CN201180070410.8A patent/CN103518060A/zh active Pending
- 2011-04-25 JP JP2013511792A patent/JP5619278B2/ja active Active
- 2011-04-25 EP EP11864572.0A patent/EP2703643B1/en active Active
- 2011-04-25 KR KR1020137027932A patent/KR20140003608A/ko active Search and Examination
- 2011-04-25 AU AU2011366415A patent/AU2011366415A1/en not_active Abandoned
- 2011-04-25 US US14/113,770 patent/US9231441B2/en not_active Expired - Fee Related
- 2011-04-25 WO PCT/JP2011/002399 patent/WO2012147118A1/ja active Application Filing
- 2011-04-25 CA CA2834361A patent/CA2834361A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61167482U (ja) * | 1985-04-09 | 1986-10-17 | ||
JPH06289189A (ja) * | 1993-04-06 | 1994-10-18 | Toshiba Corp | 原子力発電所の直流電源設備 |
JPH0960575A (ja) * | 1995-08-22 | 1997-03-04 | Matsuo Kyoryo Kk | 風力発電設備 |
JPH1194988A (ja) * | 1997-09-19 | 1999-04-09 | Toshiba Eng Co Ltd | 原子力発電所の非常用電源設備 |
JP2004108163A (ja) * | 2002-09-13 | 2004-04-08 | Mitsubishi Heavy Ind Ltd | 翼通過面積調整装置を備えた風車及びその運転方法 |
US6921985B2 (en) | 2003-01-24 | 2005-07-26 | General Electric Company | Low voltage ride through for wind turbine generators |
JP2005033915A (ja) * | 2003-07-14 | 2005-02-03 | Fuji Heavy Ind Ltd | 風力発電機の保護システム |
JP2006002726A (ja) * | 2004-06-21 | 2006-01-05 | Fuji Heavy Ind Ltd | 水平軸風車 |
JP2007064062A (ja) * | 2005-08-30 | 2007-03-15 | Fuji Heavy Ind Ltd | 水平軸風車 |
JP2007239599A (ja) * | 2006-03-08 | 2007-09-20 | Mitsubishi Heavy Ind Ltd | 風力発電システム、及び風力発電システムの非常用電力供給方法 |
JP2007252028A (ja) * | 2006-03-14 | 2007-09-27 | Hitachi Ltd | 風力発電水素製造装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2703643A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014181705A (ja) * | 2013-03-15 | 2014-09-29 | Frontier Wind Llc | 分散制御システム |
US9388792B2 (en) | 2013-03-15 | 2016-07-12 | Frontier Wind, Llc | Distributed control system |
JP2014214604A (ja) * | 2013-04-22 | 2014-11-17 | 株式会社Ihi | 海流発電装置 |
CN103795184A (zh) * | 2014-02-21 | 2014-05-14 | 北京交通大学 | 一种混合励磁发电机与感应发电机共轴联合运行发电机 |
JP2017008848A (ja) * | 2015-06-24 | 2017-01-12 | 株式会社日立製作所 | 風力発電装置、ウィンドファームおよびウィンドファームの制御方法 |
JP2017025713A (ja) * | 2015-07-15 | 2017-02-02 | 誠太 一色 | 風力発電装置 |
JP2020002781A (ja) * | 2018-06-25 | 2020-01-09 | 株式会社日立製作所 | 風力発電装置の制御方法 |
CN111306001A (zh) * | 2020-03-02 | 2020-06-19 | 西安交通大学 | 一种风光反应堆系统及其工作方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2834361A1 (en) | 2012-11-01 |
CN103518060A (zh) | 2014-01-15 |
EP2703643A1 (en) | 2014-03-05 |
KR20140003608A (ko) | 2014-01-09 |
EP2703643A4 (en) | 2014-10-08 |
JPWO2012147118A1 (ja) | 2014-07-28 |
JP5619278B2 (ja) | 2014-11-05 |
US20140103656A1 (en) | 2014-04-17 |
AU2011366415A1 (en) | 2013-11-14 |
US9231441B2 (en) | 2016-01-05 |
EP2703643B1 (en) | 2018-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5619278B2 (ja) | 風力発電システム及び風力発電システムを用いた装置及びそれらの運転方法 | |
JP4764422B2 (ja) | 風力タービンの制御および調節方法 | |
JP6491756B2 (ja) | ウィンド・ファームを動作させるための方法 | |
EP1865198B1 (en) | Emergency pitch drive power supply for a wind turbine | |
AU2007219781B2 (en) | Wind power generator system and control method of the same | |
JP4619409B2 (ja) | 補助発電機を有する風力発電設備およびその制御方法 | |
DK2275676T3 (en) | Wind farm that can start from dead grid | |
US8115330B2 (en) | Wind turbine and method for operating a wind turbine | |
US9416772B2 (en) | Motor load reduction in a wind power plant | |
JPWO2003058062A1 (ja) | アップウィンド型風車及びその運転方法 | |
KR20180019499A (ko) | 계통 연계가 없는 풍력 터빈의 작동 방법 및 풍력 터빈 | |
WO2012001739A1 (ja) | 風力発電システム及び風力発電システムの制御方法 | |
CA2905643A1 (en) | Wind park and method for controlling a wind park | |
JP4568735B2 (ja) | アップウィンド型風車の運転装置及びその運転方法 | |
KR20150019461A (ko) | 풍력발전시스템 및 그것의 구동 정지 방법 | |
KR101475274B1 (ko) | 풍력발전기의 피치 제어 시스템 및 그 방법 | |
TWI485324B (zh) | 下風型風車 | |
KR20100114387A (ko) | 선택적 발전방식을 사용하는 풍력 발전기 및 그의 발전 제어방법 | |
KR20140052447A (ko) | 정지풍속 구간에서의 풍력발전 제어 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11864572 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013511792 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20137027932 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2834361 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011864572 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011366415 Country of ref document: AU Date of ref document: 20110425 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14113770 Country of ref document: US |