WO2012144654A1 - Fluorescent probe for measuring hydrogen sulfide - Google Patents

Fluorescent probe for measuring hydrogen sulfide Download PDF

Info

Publication number
WO2012144654A1
WO2012144654A1 PCT/JP2012/061300 JP2012061300W WO2012144654A1 WO 2012144654 A1 WO2012144654 A1 WO 2012144654A1 JP 2012061300 W JP2012061300 W JP 2012061300W WO 2012144654 A1 WO2012144654 A1 WO 2012144654A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen atom
group
salt
general formula
compound represented
Prior art date
Application number
PCT/JP2012/061300
Other languages
French (fr)
Japanese (ja)
Inventor
哲雄 長野
健二郎 花岡
潔 篠倉
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2012144654A1 publication Critical patent/WO2012144654A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to a fluorescent probe for measuring hydrogen sulfide.
  • H 2 S hydrogen sulfide
  • NO nitrogen monoxide
  • CO carbon monoxide
  • H 2 S play is being studied using NaHS and Na 2 S is H 2 S donor, the roles that are best studied is an operation related to relaxation of smooth muscle.
  • H 2 S causes relaxation of vascular smooth muscle and intestinal smooth muscle, and causes symptoms such as headache and blood pressure reduction at the individual level.
  • H 2 S is involved in memory formation in nerve cells, and there is also a report that H 2 S is involved in O 2 sensing and control of insulin secretion in the carotid body.
  • H 2 S contributes to intracellular signal transduction
  • identification of molecules that are targets of H 2 S has not progressed, and there are many unresolved points in specific intracellular signal transduction mechanisms. From such a background, development of a means for visualizing H 2 S in a living body is eagerly desired.
  • This fluorescent probe can detect sulfide ions in water, and is highly specific and sensitive even in the presence of various anions (such as halogen ions, sulfate ions, acetate ions, nitrate ions, hypochlorite ions). 2 It has the characteristic that S can be measured. However, according to a follow-up test by the present inventors, this compound has low selectivity with reduced glutathione, and H 2 S present in cells or the like in vivo due to glutathione present in large quantities in the living body. There is a problem that it cannot be measured specifically and with high sensitivity. A compound using a cyclic polyamine as a zinc ion capturing group is known (dansylaminoethylcyclene: J.
  • An object of the present invention is to provide a fluorescent probe capable of specifically visualizing hydrogen sulfide in a living body and performing highly sensitive measurement.
  • R 1 represents the following formula (A): (In the formula, p, q, r, and s each independently represent an integer of 2 or 3, t represents 0 or 1, and R 11 , R 12 , and R 13 each independently represent a hydrogen atom or a carbon atom.
  • R 2 represents a hydrogen atom or 1 to 3 monovalent substituents substituted on a benzene ring
  • R 3 and R 4 represent Each independently represents a hydrogen atom or a halogen atom
  • R 5 and R 6 each independently represent a hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxyalkyl group
  • R 7 represents a hydrogen atom, an alkyl group, or an alkoxyalkyl group.
  • R 8 and R 9 are each independently a hydrogen atom, a halogen atom, or — (CH 2 ) x —N (R 14 ) (R 15 ) (wherein x represents an integer of 1 to 4; R 14 and R 15 are each The standing - (CH 2) y -COOR 16 ( wherein, y represents an integer of 1 4, R 16 is a hydrogen atom, an alkylcarbonyl group, or an alkyl carbonyl an oxy alkyl group) a group represented by Or a salt thereof is provided.
  • p, q, r, and s are 2, t is 1, and R 11 , R 12 , and R 13 are hydrogen atoms, A compound represented by (IB) or a salt thereof; p, q, r, and s are 2, t is 1, R 11 , R 12 , and R 13 are hydrogen atoms, and R 2 is A compound represented by the above general formula (IA) or (IB) which is a hydrogen atom or a salt thereof; and R 1 present on the benzene ring is bonded to the para-position relative to the binding site of the xanthene ring, p, q, r, and s are 2, t is 1, R 11 , R 12 , and R 13 are hydrogen atoms, and R 2 is a hydrogen atom, or the above general formula (IA) or ( A compound represented by IB) or a salt thereof is provided.
  • the compound represented by the above general formula (IA) or (IB) or a salt thereof wherein R 3 and R 4 are hydrogen atoms; R 5 and R 6 are each independently a hydrogen atom, an acetyl group; Or a compound represented by the above general formula (IA) or (IB), which is an acetyloxymethyl group, or a salt thereof; R 7 is a hydrogen atom, an alkyl group, or a methoxymethyl group; And a compound represented by the above general formula (IA) or (IB) or a salt thereof, wherein both R 8 and R 9 are hydrogen atoms.
  • R 21 represents the following formula (B): (In the formula, d, e, f, and g each independently represent an integer of 2 or 3, h represents 0 or 1, and R 31 , R 32 , and R 33 each independently represent a hydrogen atom or a carbon atom.
  • R 22 represents a hydrogen atom or 1 to 3 monovalent substituents substituted on a benzene ring
  • R 23 and R 24 represent Each independently represents a hydrogen atom or a halogen atom
  • R 25 and R 26 each independently represent a hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxyalkyl group
  • R 27 represents a hydrogen atom, an alkyl group, or an alkoxyalkyl group
  • R 28 and R 29 are each independently a hydrogen atom, a halogen atom, or — (CH 2 ) m —N (R 34 ) (R 35 ) (wherein m represents an integer of 1 to 4; R 34 as well as 35 are each independently - (CH 2) n -COOR 36 ( wherein, n represents an integer of 1 to 4, R 36 is a hydrogen atom, an alkyl group, or an alkylcarbonyloxy group) is represented by Or a salt thereof is provided.
  • d, e, f, and g are 2, h is 1, and R 31 , R 32 , and R 33 are hydrogen atoms, A compound represented by (IIB) or a salt thereof; d, e, f, and g are 2, h is 1, R 31 , R 32 , and R 33 are hydrogen atoms, and R 22 is A compound represented by the above general formula (IIA) or (IIB) which is a hydrogen atom or a salt thereof; and R 21 present on the benzene ring is bonded to the para-position relative to the binding site of the xanthene ring, wherein d, e, f, and g are 2, h is 1, R 31 , R 32 , and R 33 are hydrogen atoms, and R 22 is a hydrogen atom, the above general formula (IIA) or ( A compound represented by IIB) or a salt thereof is provided.
  • the compound represented by the above general formula (IIA) or (IIB) or a salt thereof wherein R 23 and R 24 are hydrogen atoms; R 25 and R 26 are each independently a hydrogen atom, an acetyl group; Or a compound represented by the above general formula (IIA) or (IIB), which is an acetyloxymethyl group, or a salt thereof; R 27 is a hydrogen atom, an alkyl group, or a methoxymethyl group; IIB) or a salt thereof; and a compound represented by the above general formula (IIA) or (IIB) or a salt thereof, in which R 28 and R 29 are both hydrogen atoms.
  • a reagent for measuring hydrogen sulfide containing the compound or a salt thereof is provided.
  • the present invention also provides use of the compound represented by the above general formula (IA) or (IB) or a salt thereof for the production of a fluorescent probe for measuring hydrogen sulfide or a reagent for measuring hydrogen sulfide.
  • a fluorescent probe for measuring hydrogen sulfide containing a compound represented by the above general formula (IIA) or (IIB) or a salt thereof, and a compound represented by the above general formula (IIA) or (IIB) or A reagent for measuring hydrogen sulfide containing the salt is provided.
  • the present invention also provides use of the compound represented by the above general formula (IIA) or (IIB) or a salt thereof for the production of a fluorescent probe for measuring hydrogen sulfide or a reagent for measuring hydrogen sulfide.
  • This fluorescent probe and reagent react with divalent copper ions in the measurement system to generate a compound represented by the above general formula (IA) or (IB) or a salt thereof in situ in the measurement system. It is useful as a fluorescent probe or reagent for measurement.
  • a method for measuring hydrogen sulfide comprising the following steps: (a) contacting a compound represented by the above general formula (IA) or (IB) or a salt thereof with hydrogen sulfide And (b) a method of measuring the fluorescence of the compound represented by the general formula (IIA) or (IIB) produced in the step (a) or a salt thereof.
  • a method for measuring hydrogen sulfide comprising the steps of: (a) reacting a compound represented by the general formula (IIA) or (IIB) or a salt thereof with a divalent copper ion. A step of producing a compound represented by the above general formula (IA) or (IB) or a salt thereof; (b) a compound represented by the above general formula (IA) or (IB) produced in the above step (a); A step of contacting the salt with hydrogen sulfide; and (c) a step of measuring the fluorescence of the compound represented by the general formula (IIA) or (IIB) generated in the step (b) or the salt thereof. Is provided.
  • the compound represented by the general formula (IA) or (IB) provided by the present invention or a salt thereof has high reactivity to hydrogen sulfide, and is a general formula having strong fluorescence in the presence of hydrogen sulfide. It has the property of producing a compound represented by (IIA) or (IIB) or a salt thereof.
  • the compound represented by the general formula (IA) or (IB) or a salt thereof since the compound represented by the general formula (IA) or (IB) or a salt thereof has substantially no reactivity with reduced glutathione, it can be sulfided with high sensitivity even in the presence of reduced glutathione. Hydrogen can be measured.
  • the compound represented by the general formula (IA) or (IB) or a salt thereof is specific even in the presence of various anions (halogen ion, sulfate ion, acetate ion, nitrate ion, hypochlorite ion, etc.). It can react with hydrogen sulfide with high sensitivity. Therefore, the fluorescent probe for measuring hydrogen sulfide containing the compound represented by the general formula (IA) or (IB) or a salt thereof is a fluorescence for measuring a small amount of hydrogen sulfide existing in a living body with high sensitivity and high accuracy. It is useful as a probe and extremely useful as a reagent for imaging hydrogen sulfide in cells and tissues in an in vivo environment.
  • the upper part shows before Na 2 S addition (0 sec), the middle part shows after Na 2 S addition (240 sec), and the lower part shows the change in fluorescence intensity over time.
  • 100 ⁇ M Na 2 S (red), 10 ⁇ M Na 2 S (green), or 10 mM GSH (yellow) was added, and the results of examining the reactivity with the addition-free experiment as a negative control (blue) (lower) are shown. It is a figure.
  • FIG. 5 is a diagram showing the results of examining the reactivity of an additive-free experiment as a negative control (blue).
  • R 1 represents a group represented by the formula (A).
  • p, q, r, and s each independently represent an integer of 2 or 3, preferably p, q, r, and s are all 2.
  • . t represents 0 or 1, but is preferably 1.
  • R 11 , R 12 , and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and any or all of R 11 , R 12 , and R 13 are hydrogen atoms. It is preferable that R 11 , R 12 , and R 13 are all hydrogen atoms.
  • alkyl group includes an alkyl group composed of linear, branched, cyclic, and combinations thereof. The same applies to the alkyl part of other substituents having an alkyl part (for example, an alkylcarbonyl group or an alkoxyalkyl group).
  • R 2 represents a hydrogen atom or 1 to 3 monovalent substituents substituted on the benzene ring, preferably 1 or 2 monovalent substituents substituted on the hydrogen atom or benzene ring. More preferably, it represents one monovalent substituent substituted on a hydrogen atom or a benzene ring.
  • R 2 is a monovalent substituent
  • substituents include a halogen atom (in this specification, the term halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), a hydroxyl group, Examples thereof include, but are not limited to, an oxo group, a carboxyl group, an alkoxycarbonyl group, an acyl group, an amino group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryl group, and an aralkyl group. These substituents may be further substituted with another substituent. Examples of such include, but are not limited to, a fluoroalkyl group, a fluoroacetyl group, a methoxybenzyl group, and the like.
  • R 2 is particularly preferably a hydrogen atom.
  • R 3 and R 4 each independently represent a hydrogen atom or a halogen atom, but it is preferable that both R 3 and R 4 are hydrogen atoms.
  • R 5 and R 6 each independently represent a hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxyalkyl group.
  • the alkylcarbonyl group is preferably an alkylcarbonyl group having about 2 to 7 carbon atoms, and for example, an acetyl group can be preferably used.
  • alkylcarbonyloxyalkyl group for example, an alkylcarbonyloxyalkyl group in which an alkylcarbonyloxy group having about 2 to 7 carbon atoms is substituted with an alkyl group having about 1 to 6 carbon atoms is preferable.
  • an acetoxymethyl group Etc. can be preferably used.
  • R 7 represents a hydrogen atom, an alkyl group, or an alkoxyalkyl group.
  • the alkoxyalkyl group is preferably an alkoxyalkyl group in which an alkoxy group having about 1 to 6 carbon atoms is substituted with an alkyl group having about 1 to 6 carbon atoms.
  • a methoxymethyl group or an ethoxymethyl group is preferably used. Can do.
  • R 8 and R 9 each independently represent a hydrogen atom, a halogen atom, or a group represented by — (CH 2 ) x —N (R 14 ) (R 15 ).
  • x represents an integer of 1 to 4, but x is preferably 1 or 2, and x is particularly preferably 1.
  • R 14 and R 15 each independently represent a group represented by — (CH 2 ) y —COOR 16 .
  • y represents an integer of 1 to 4, and y is preferably 1 or 2, and y is particularly preferably 1.
  • R 16 represents a hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxyalkyl group, and the alkylcarbonyl group and the alkylcarbonyloxyalkyl group are the same as those described for R 5 above.
  • a hydrogen atom or an acetoxymethyl group can be used as R 16 .
  • R 11 , R 12 , R 13 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , x, R 14 , R 15 , n, and R 16 are the same.
  • the compound represented by general formula (IA) or (IB), or general formula (IIA) or (IIB) may form an acid addition salt or a base addition salt.
  • acid addition salts include mineral acid salts such as hydrochloride, sulfate, and nitrate, and organic acid salts such as p-toluenesulfonate, oxalate, and malate.
  • base addition salt include metal salts such as sodium salt, potassium salt, magnesium salt, or calcium salt, ammonium salts, and organic amine salts such as triethylamine salt or ethanolamine salt.
  • physiologically acceptable salts are preferable when the compound of the present invention is used as a reagent for measuring hydrogen sulfide in a living body, cell or tissue.
  • the compound represented by general formula (IA) or (IB), or general formula (IIA) or (IIB) may have one or two or more asymmetric carbons depending on the type of the substituent.
  • Arbitrary optical isomers based on these asymmetric carbons, arbitrary mixtures of optical isomers, racemates, diastereoisomers based on two or more asymmetric carbons, arbitrary mixtures of diastereoisomers, etc. Are included in the scope of the present invention. Any hydrate or solvate of the free compound or salt form of the compound is also encompassed within the scope of the present invention.
  • R 7 is a hydrogen atom
  • the carboxy group may form a lactone, but such structural isomers are also included in the scope of the present invention.
  • the compound in which R 5 is a hydrogen atom in the general formula (IA) and the compound in which R 7 is a hydrogen atom in the general formula (IB) correspond to tautomers, but such tautomers exist. Is easily understood by those skilled in the art, and any tautomer is included in the scope of the present invention.
  • a fluorescein derivative such as 4-aminofluorescein that can be used as a raw material compound can be produced according to the method described in, for example, Tetsuji Kameya, Synthetic Organic Chemistry IX, Nanedo, page 215 (1977).
  • cyclic polyamine partial structure J.A. Am. Chem. Soc. , 118, 12696, 1996, can be referred to the synthesis of the partial structure of the zinc probe.
  • the method for measuring hydrogen sulfide generally comprises (a) a step of reacting a compound represented by the general formula (IA) or (IB) or a salt thereof with hydrogen sulfide, and (b) the above step.
  • the compound represented by the general formula (IA) or (IB) is quenched by the coordination of divalent copper ions, and is itself non-fluorescent or weakly fluorescent. Copper ions react with hydrogen sulfide to form insoluble CuS, which is removed from the cyclic polyamine moiety to produce a strongly fluorescent compound represented by the general formula (IIA) or (IIB) or a salt thereof.
  • a compound represented by the general formula (IA) or (IB) in which a divalent copper ion is coordinated or a salt thereof is dissolved in an appropriate aqueous medium such as water.
  • an appropriate aqueous medium such as water.
  • a compound represented by the general formula (IIA) or (IIB) or a salt thereof and a divalent copper ion are reacted to represent in situ the general formula (IA) or (IB).
  • a salt thereof may be produced in a measurement system and the compound represented by the general formula (IA) or (IB) or a salt thereof may be reacted with hydrogen sulfide. It goes without saying that such a measuring method is also included in the scope of the present invention.
  • the fluorescence measuring means using the hydrogen sulfide measuring reagent of the present invention is not particularly limited, but a method of measuring a fluorescence spectrum in vitro, a method of measuring a fluorescence spectrum in vivo using a bioimaging technique, etc. Can be adopted. For example, when quantification is performed, it is desirable to prepare a calibration curve in advance according to a conventional method. If the reagent of the present invention is incorporated into cells by a microinjection method or the like, hydrogen sulfide localized in individual cells can be measured with high sensitivity in real time by a bioimaging technique, and a cell culture solution or tissue slice The hydrogen sulfide released from cells and living tissues can be measured by using it in a culture solution or perfusate.
  • the hydrogen sulfide measurement reagent of the present invention it is possible to measure the behavior of hydrogen sulfide in cells or living tissues in real time. In addition to elucidating the mechanism of signal transmission by hydrogen sulfide, It can be suitably used for investigating the cause of the disease and developing therapeutic agents.
  • ester group that can be hydrolyzed by esterase or the like when introduced into any one or more of R 5 , R 6 , R 7 , R 8 , or R 9 , the entire molecule becomes fat-soluble. Thus, it easily penetrates the cell membrane and reaches the cytoplasm.
  • a hydrophilic carboxyl group is generated by esterase hydrolysis in the cytoplasm, the cell membrane cannot be easily penetrated. Accordingly, such ester-introduced compounds (for example, compounds into which acetoxymethyl ester or methoxymethyl ester is introduced as an ester) are extremely useful as reagents for measuring the concentration of hydrogen sulfide in the cytoplasm.
  • the reagent of the present invention may be used as a composition by blending additives usually used in the preparation of the reagent as necessary.
  • additives such as a solubilizer, pH adjuster, buffer, and isotonic agent can be used as an additive for using the reagent in a physiological environment. Is possible.
  • These compositions are provided as a composition in an appropriate form such as a mixture in a powder form, a lyophilized product, a granule, a tablet, or a liquid.
  • Example 1 Cyclen-4-AF and Cyclen-4-AF-Cu were synthesized according to the following synthesis scheme.
  • Cyclen-4-AF Chloroacetylamido-4-aminofluorescein (106.6 mg, 251.5 ⁇ mol) was dissolved in 30 mL of dehydrated acetonitrile, cyclen (368.0 mg, 2.14 mmol) and diisopropylethylamine (DIEA, 300 ⁇ L, 1.72 mmol) were added, Stir at 70 ° C. for 8 hours under argon. After removing the solvent, the residue was purified by HPLC to obtain Cyclen-4-AF (TFA salt) (103.3 mg, 109.0 ⁇ mol, y.43%).
  • DIEA diisopropylethylamine
  • Cyclen-4-AF-Cu CuSO 4 pentahydrate was dissolved in 30 mM HEPES buffer (pH 7.4) to prepare a 1M CuSO 4 aqueous solution.
  • Cyclen-4-AF (73.8 mg, 77.9 ⁇ mol) was dissolved in an aqueous CuSO 4 solution (7792 ⁇ L, 7.79 mmol), stirred overnight at room temperature, purified by HPLC, and purified with Cyclen-4-AF-Cu ( 65.2 mg, quant yield).
  • Cyclen-4-AF-Cu diacetate Cyclen-4-AF-Cu (5.60 ⁇ mol) was dissolved in 4 mL of dehydrated acetonitrile, pyridine (4.14 mmol) and acetic anhydride (41.9 mmol) were added, and the mixture was stirred at 60 ° C. for 6 hours under argon. After removing the solvent, the residue was purified by HPLC to obtain Cyclen-4-AF-Cu diacetate (3.6 mg, 5.1 ⁇ mol, y. 91%).
  • Example 2 TACN-4-AF was synthesized by the following scheme.
  • Chloroacetylamide-4-aminofluorescein (53.8 mg, 126.9 ⁇ mol) was dissolved in 8 mL of dehydrated acetonitrile, and 1,4,7-triazacyclononane (TACN, 101.4 mg, 784.8 ⁇ mol), potassium iodide. (6.8 mg, 41.0 ⁇ mol) and K 2 CO 3 (111.0 mg, 803.1 ⁇ mol) were added and stirred overnight at room temperature under argon. After removing the solvent, the product was purified by HPLC to obtain TACN-4-AF (TFA salt) (47.4 mg, 55.2 ⁇ mol, y.44%).
  • TACN 1,4,7-triazacyclononane
  • K 2 CO 3 111.0 mg, 803.1 ⁇ mol
  • TMCyclen-4-AF and TMCyclen-4-AF-Cu were synthesized by the following scheme.
  • step (B) The compound obtained in the above step (a) (669.7 mg, 1.82 mmol) was dissolved in 5 mL of concentrated sulfuric acid and stirred at 110 ° C. for 11 hours under argon. After dilution with water, the solution was made basic with 2N NaOH solution and extracted with dichloromethane. After dehydration, the solvent was removed to obtain the desired product (348.7 mg, 1.63 mmol, y.89%).
  • TMCyclen-4-AF-Cu CuSO 4 pentahydrate was dissolved in 30 mM HEPES buffer (pH 7.4) to prepare a 1M CuSO 4 aqueous solution.
  • TMCyclen-AF (12.1 mg, 12.2 ⁇ mol) was dissolved in an aqueous CuSO 4 solution (1220 ⁇ L, 1.22 mmol), stirred at room temperature for 4 hours, purified by HPLC, and purified by TMCyclen-4-AF-Cu. (9.52 mg, y.quant) was obtained.
  • Example 6 The reactivity of Cyclen-4-AF-Cu was evaluated. 10 ⁇ M Na 2 S (red), 10 ⁇ M Na 2 S, 10 mM GSH (green), and 10 mM GSH (yellow) were added to 1 ⁇ M Cyclen-4-AF-Cu 300 seconds later, and the experiment without addition was negative control The reactivity was investigated as (blue). Excitation was performed at 491 nm in 30 mM HEPES buffer (pH 7.4), and the fluorescence intensity at 516 nm was measured. The results are shown in FIG. Cyclen-4-AF-Cu showed an increase in fluorescence after reaction with Na 2 S, indicating that it has selectivity compared to GSH. Cyclen-4-AF-Cu was also found to increase in fluorescence intensity when 10 ⁇ M Na 2 S was added even in the presence of 10 mM GSH.
  • Example 7 It was evaluated whether or not hydrogen sulfide in vivo can be measured using Cyclen-4-AF-Cu.
  • HeLa cells were cultured in a medium supplemented with 10% fetal bovine serum (FBS), 1% penicillin, and 1% streptomycin in Dulbecco's modified Eagle medium (DMEM) at 37 ° C. in 5% CO 2 mixed air. Washed twice with Hanks balanced salt solution (HBSS). HBSS (0.1% DMSO) containing 100 ⁇ M Cyclen-4-AF-Cu was microinjected (region 1-4) into HeLa cells in HBSS. Excitation was performed at 470-490 nm with a fluorescence microscope, and the fluorescence intensity at 515-550 nm was measured.
  • FBS fetal bovine serum
  • DMEM Dulbecco's modified Eagle medium
  • FIG. 6 shows the results of measurement of hydrogen sulfide by incorporation into HeLa cells using Cyclen-4-AF-Cu diacetate.
  • Hela cells cultured as described above were incubated at 37 ° C. for 2 hours in HBSS containing 100 ⁇ M Cyclen-4-AF-Cu diacetate. Excitation was performed at 470-490 nm with a fluorescence microscope, and the fluorescence intensity at 515-550 nm was measured. 210 mM after the start of measurement, 10 mM Na 2 S was added to the extracellular fluid. Increased fluorescence intensity was observed inside and outside HeLa cells.
  • the upper part of FIG. 6 shows before Na 2 S addition (0 sec), the middle part after Na 2 S addition (240 sec), and the lower part shows the change in fluorescence intensity with time.
  • Example 8 The absorption spectrum and fluorescence spectrum of TACN-4-AF alone and TACN-4-AF added with 2 equivalents of Cu 2+ were measured. The measurement was performed in 30 mM HEPES buffer (pH 7.4), and excitation was performed at 491 nm in the measurement of the fluorescence spectrum. Addition of Cu 2+ significantly reduced the fluorescence intensity (FIG. 7, upper left: absorption spectrum, upper right: fluorescence spectrum).
  • Example 9 The absorption spectrum and fluorescence spectrum of Cyclam-4-AF alone and Cyclam-4-AF added with 2 equivalents of Cu 2+ were measured. The measurement was performed in 30 mM HEPES buffer (pH 7.4), and excitation was performed at 491 nm in the measurement of the fluorescence spectrum. Addition of Cu 2+ significantly decreased the fluorescence intensity (FIG. 8).
  • Example 10 2 ⁇ M CuSO 4 was added to 1 ⁇ M Cyclam-4-AF, and after 300 seconds, 100 ⁇ M Na 2 S (red), 10 ⁇ M Na 2 S (green), or 10 mM GSH (yellow) was added. The reactivity was investigated as blue). Excitation was performed at 491 nm in 30 mM HEPES buffer (pH 7.4), and the fluorescence intensity at 516 nm was measured. As a result, Cyclam-4-AF + Cu 2+ after the reaction with Na 2 S, shows the fluorescence increase was shown to have a selectivity compared with GSH (Fig. 9 top).
  • TMCyclen-4-AF-Cu 100 ⁇ M Na 2 S (red), 10 ⁇ M Na 2 S (green), or 10 mM GSH (yellow) was added to 1 ⁇ M TMCyclen-4-AF-Cu after 300 seconds.
  • TMCyclen-4-AF-Cu also showed an increase in fluorescence after reaction with Na 2 S, indicating that it has selectivity compared to GSH (lower part of FIG. 9). ).
  • Example 11 Detection of hydrogen sulfide using cell lysate of 3MST-expressing cells Express 3-mercaptopyruvate sulfate transferase (3MST), an enzyme that produces H 2 S using 3-mercaptopyruvate (3MP) as a substrate
  • 3MST 3-mercaptopyruvate sulfate transferase
  • the plasmid was introduced into HEK293 cells by a method described in the literature (Antioxid. Redox Signal, 11, 703, 2009). The cells were suspended in 30 mM HEPES buffer (pH 7.4) containing 100 ⁇ M dithiothreitol and 1% protease inhibitor cocktail (Sigma), lysed using an ultrasonic crusher, and used for experiments.
  • HEK293 cells into which no plasmid was introduced were also lysed and used for the experiment. Then, 1 ⁇ M Cycle-4-AF-Cu was added, and 100 ⁇ M 3MP was added after 180 seconds to evaluate the responsiveness. As a result of excitation at 491 nm and measurement of fluorescence intensity at 516 nm, it was shown that when 3MP was added to a lysate containing 3MST, the fluorescence intensity significantly increased (left figure in FIG. 10). Further, after 10 minutes in the presence of 3-mercaptopyruvic acid, a difference was observed in fluorescence intensity with a significant difference (p ⁇ 0.05) depending on the presence or absence of 3MST (the right diagram in FIG. 10).
  • Example 12 Detection of hydrogen sulfide using purified 3MST Glutathione-S-transferase (GST) -tagged 3-mercaptopyruvate sulfatransferase (3MST) purified protein and 3-mercaptopyruvate (3MP) as substrate It was evaluated whether the produced H 2 S was detectable by Cyclen-4-AF-Cu. 1 ⁇ M Cyclen-4-AF-Cu was added, and GST tag fusion 3MST (red, green) or GST tag (yellow, blue) was added 60 seconds later.
  • GST Glutathione-S-transferase
  • 3MST 3-mercaptopyruvate sulfatransferase
  • Cyclen-4-AF-Cu showed a significant increase in fluorescence intensity in response to H 2 S produced by the addition of GST-tag-fused 3MST and 3MP, which are purified proteins (left panel in FIG. 11).
  • H 2 S produced by an enzyme reaction could be detected in a 96-well plate. Then, 3MP or the same amount of HEPES buffer (pH 7.4) was added and incubated at 37 ° C.
  • the compound of the present invention can be used as a fluorescent probe capable of measuring hydrogen sulfide with high sensitivity and specificity without being affected by reduced glutathione present in large quantities in the living body.

Abstract

A compound represented by formula (I) (wherein R1 represents a group represented by formula (A); R2 represents a hydrogen atom or a univalent substituent; R3 and R4 independently represent a hydrogen atom or a halogen atom; R5 and R6 independently represent a hydrogen atom, an alkylcarbonyl group or the like; R7 represents a hydrogen atom, an alkyl group or an alkoxyalkyl group; and R8 and R9 independently represent a hydrogen atom, a halogen atom or the like), which is useful as a fluorescent probe that can measure hydrogen sulfide specifically and with high sensitivity without being subjected to the influence of reduced glutathione.

Description

硫化水素測定用蛍光プローブFluorescent probe for hydrogen sulfide measurement
 本発明は硫化水素測定用の蛍光プローブに関する。 The present invention relates to a fluorescent probe for measuring hydrogen sulfide.
 硫化水素(HS)の毒性については300年前から知られており、今までに数多くの毒性に関する報告がなされてきた。一方、近年、HSが生理的シグナル伝達物質として機能していることが明らかとなってきており、一酸化窒素(NO)や一酸化炭素(CO)に次ぐ第三のガス性シグナル伝達物質として注目されている。 The toxicity of hydrogen sulfide (H 2 S) has been known for 300 years, and many reports on toxicity have been made so far. On the other hand, in recent years, it has become clear that H 2 S functions as a physiological signal transmitter, and is the third gaseous signal transmitter after nitrogen monoxide (NO) and carbon monoxide (CO). It is attracting attention as.
 HSが果たす役割はHSドナーであるNaHSやNaSを用いて種々検討されているが、最もよく研究されている役割は平滑筋の弛緩に関する作用である。HSは血管平滑筋及び腸管平滑筋などの弛緩をもたらし、個体レベルでは頭痛や血圧低下などの症状を引き起こす。一方、神経細胞においてはHSが記憶形成に関与することが報告されており、さらに頸動脈小体におけるO sensingやインスリンの分泌制御にHSが関与しているという報告もある。 Role H 2 S play is being studied using NaHS and Na 2 S is H 2 S donor, the roles that are best studied is an operation related to relaxation of smooth muscle. H 2 S causes relaxation of vascular smooth muscle and intestinal smooth muscle, and causes symptoms such as headache and blood pressure reduction at the individual level. On the other hand, it has been reported that H 2 S is involved in memory formation in nerve cells, and there is also a report that H 2 S is involved in O 2 sensing and control of insulin secretion in the carotid body.
 このように、HSが細胞内シグナル伝達に寄与していることが示唆されているが、生理的なHSが本当に存在しているかについてもまだ疑いの余地がある。また、HSのターゲットとなる分子の同定も進んでおらず、具体的な細胞内のシグナル伝達機構には未解決の点が多い。このような背景から、生体内のHSを可視化する手段の開発が切望されている。 Thus, although it has been suggested that H 2 S contributes to intracellular signal transduction, there is still room for doubt as to whether physiological H 2 S really exists. In addition, identification of molecules that are targets of H 2 S has not progressed, and there are many unresolved points in specific intracellular signal transduction mechanisms. From such a background, development of a means for visualizing H 2 S in a living body is eagerly desired.
 蛍光プローブを用いて生体内のHSを特異的に可視化して高感度な測定を行うためには、水中でHSを測定することができること、他のアニオン種との間に選択性を有すること、及び還元型グルタチオン(GSH)との間で選択性を有することなどの条件が必須となる。従来、HSを可視化して測定するための蛍光プローブとしてp−位にアミノ基を有する吸収変化型プローブである2,4,6−トリアリールピリリウムカチオン(Journal of the American Chemical Society,125,9000,2003)が提案されているが、GSHとの反応の競合を避けられないという問題がある。また、蛍光増大型プローブとして2,4−ジニトロベンゼンスルホニルフルオレセインを用いる方法も提案されているが(Analytica Chimica Acta,631,91,2009)、経時的にスルホン酸エステルが加水分解して蛍光強度が変化するという問題を有している。 In order to specifically visualize H 2 S in a living body using a fluorescent probe and perform highly sensitive measurement, it is possible to measure H 2 S in water, and selectivity between other anion species And a condition such as having selectivity with reduced glutathione (GSH) are essential. Conventionally, a 2,4,6-triarylpyrylium cation (Journal of the American Chemical Society, 125) which is an absorption change type probe having an amino group at the p-position as a fluorescent probe for visualizing and measuring H 2 S. , 9000, 2003) has been proposed, but there is a problem that competition of reaction with GSH cannot be avoided. A method using 2,4-dinitrobenzenesulfonylfluorescein as a fluorescence-enhanced probe has also been proposed (Analytica Chimica Acta, 631, 91, 2009). However, the sulfonic acid ester is hydrolyzed over time and the fluorescence intensity is increased. Have the problem of changing.
 また、別の蛍光増大型プローブとして、二価銅イオン(Cu2+)を配位させた2,2’−ジピコリルアミン部分を有するアミノフルオレセイン化合物(DPA−4−AF)が提案されている(Chem.Commun.,pp.7390−7392,2009)。この化合物では、Cu2+の配位によって蛍光が消光されているが、スルフィドイオン(HS)が作用するとCu2+がCuSとなって不溶化し、消光が解除されて強蛍光を発する。この蛍光プローブは水中においてスルフィドイオンを検出することができ、種々のアニオン(ハロゲンイオン、硫酸イオン、酢酸イオン、硝酸イオン、次亜塩素酸イオンなど)の存在下においても特異的かつ高感度にHSを測定できるという特徴がある。しかしながら、本発明者らの追試によれば、この化合物は還元型グルタチオンとの間で選択性が低く、生体内に大量に存在するグルタチオンによりイン・ビボにおいて細胞内などに存在するHSを特異的かつ高感度に測定することができないという問題がある。なお、環状ポリアミンを亜鉛イオンの捕捉基として用いた化合物が知られているが(ダンシルアミノエチルサイクレン:J.Am.Chem.Soc.,118,12696,1996)、この捕捉基に銅イオンを配位させた化合物は知られておらず、HSとの反応性についても全く報告がない。また、環状ポリアミンをカドミウムイオンの捕捉基として用いた化合物も知られているが、この化合物とHSとの反応性についても知られていない(J.Am.Chem.Soc.,124,pp.3920−3925,2002)。 As another fluorescence-enhancing probe, an aminofluorescein compound (DPA-4-AF) having a 2,2′-dipicolylamine moiety coordinated with divalent copper ion (Cu 2+ ) has been proposed ( Chem. Commun., Pp. 7390-7392, 2009). In this compound, the fluorescence is quenched by the coordination of Cu 2+ , but when the sulfide ion (HS ) acts, Cu 2+ becomes CuS and is insolubilized, the quenching is canceled and strong fluorescence is emitted. This fluorescent probe can detect sulfide ions in water, and is highly specific and sensitive even in the presence of various anions (such as halogen ions, sulfate ions, acetate ions, nitrate ions, hypochlorite ions). 2 It has the characteristic that S can be measured. However, according to a follow-up test by the present inventors, this compound has low selectivity with reduced glutathione, and H 2 S present in cells or the like in vivo due to glutathione present in large quantities in the living body. There is a problem that it cannot be measured specifically and with high sensitivity. A compound using a cyclic polyamine as a zinc ion capturing group is known (dansylaminoethylcyclene: J. Am. Chem. Soc., 118, 12696, 1996). The coordinated compound is not known, and there is no report on the reactivity with H 2 S. Further, a compound using a cyclic polyamine as a cadmium ion capturing group is also known, but the reactivity between this compound and H 2 S is not known (J. Am. Chem. Soc., 124, pp. 3920-3925, 2002).
 本発明の課題は、生体内の硫化水素を特異的に可視化して高感度な測定を行うことができる蛍光プローブを提供することにある。特に、生体内に大量に存在する還元型グルタチオンの影響を受けることなく高感度かつ特異的に硫化水素を測定することができる蛍光プローブを提供することが本発明の課題である。 An object of the present invention is to provide a fluorescent probe capable of specifically visualizing hydrogen sulfide in a living body and performing highly sensitive measurement. In particular, it is an object of the present invention to provide a fluorescent probe capable of measuring hydrogen sulfide with high sensitivity and specificity without being affected by reduced glutathione present in large quantities in a living body.
 本発明者らは上記の課題を解決すべく鋭意研究を行った結果、下記の一般式(I)で表される化合物を硫化水素測定用の蛍光プローブとして用いると、還元型グルタチオンの存在下においても極めて高感度かつ特異的に硫化水素を測定することができることを見出した。本発明は上記の知見を基にして完成されたものである。 As a result of intensive studies to solve the above problems, the present inventors have used the compound represented by the following general formula (I) as a fluorescent probe for measuring hydrogen sulfide in the presence of reduced glutathione. It was also found that hydrogen sulfide can be measured with extremely high sensitivity and specificity. The present invention has been completed based on the above findings.
 すなわち、本発明により、下記の一般式(IA)又は(IB):
Figure JPOXMLDOC01-appb-C000005
〔式中、Rは下記式(A):
Figure JPOXMLDOC01-appb-C000006
(式中、p、q、r、及びsはそれぞれ独立に2又は3の整数を示し、tは0又は1を示し、R11、R12、及びR13はそれぞれ独立に水素原子又は炭素原子数1~6のアルキル基を示す)で表される基を示し;Rは水素原子又はベンゼン環上に置換する1個ないし3個の一価の置換基を示し;R及びRはそれぞれ独立に水素原子又はハロゲン原子を示し;R及びRはそれぞれ独立に水素原子、アルキルカルボニル基、又はアルキルカルボニルオキシアルキル基を示し;Rは水素原子、アルキル基、又はアルコキシアルキル基を示し;R及びRはそれぞれ独立に水素原子、ハロゲン原子、又は−(CH−N(R14)(R15)(式中、xは1ないし4の整数を示し、R14及びR15はそれぞれ独立に−(CH−COOR16(式中、yは1ないし4の整数を示し、R16は水素原子、アルキルカルボニル基、又はアルキルカルボニルオキシアルキル基を示す)で表される基を示す)で表される基を示す〕で表される化合物又はその塩が提供される。
That is, according to the present invention, the following general formula (IA) or (IB):
Figure JPOXMLDOC01-appb-C000005
[Wherein R 1 represents the following formula (A):
Figure JPOXMLDOC01-appb-C000006
(In the formula, p, q, r, and s each independently represent an integer of 2 or 3, t represents 0 or 1, and R 11 , R 12 , and R 13 each independently represent a hydrogen atom or a carbon atom. R 2 represents a hydrogen atom or 1 to 3 monovalent substituents substituted on a benzene ring; R 3 and R 4 represent Each independently represents a hydrogen atom or a halogen atom; R 5 and R 6 each independently represent a hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxyalkyl group; and R 7 represents a hydrogen atom, an alkyl group, or an alkoxyalkyl group. R 8 and R 9 are each independently a hydrogen atom, a halogen atom, or — (CH 2 ) x —N (R 14 ) (R 15 ) (wherein x represents an integer of 1 to 4; R 14 and R 15 are each The standing - (CH 2) y -COOR 16 ( wherein, y represents an integer of 1 4, R 16 is a hydrogen atom, an alkylcarbonyl group, or an alkyl carbonyl an oxy alkyl group) a group represented by Or a salt thereof is provided.
 上記発明の好ましい態様によれば、p、q、r、及びsが2であり、tが1であり、かつR11、R12、及びR13が水素原子である上記一般式(IA)又は(IB)で表される化合物又はその塩;p、q、r、及びsが2であり、tが1であり、R11、R12、及びR13が水素原子であり、かつRが水素原子である上記一般式(IA)又は(IB)で表される化合物又はその塩;並びに、ベンゼン環上に存在するRがキサンテン環の結合部位に対してパラ位に結合しており、p、q、r、及びsが2であり、tが1であり、R11、R12、及びR13が水素原子であり、かつRが水素原子である上記一般式(IA)又は(IB)で表される化合物又はその塩が提供される。 According to a preferred aspect of the present invention, p, q, r, and s are 2, t is 1, and R 11 , R 12 , and R 13 are hydrogen atoms, A compound represented by (IB) or a salt thereof; p, q, r, and s are 2, t is 1, R 11 , R 12 , and R 13 are hydrogen atoms, and R 2 is A compound represented by the above general formula (IA) or (IB) which is a hydrogen atom or a salt thereof; and R 1 present on the benzene ring is bonded to the para-position relative to the binding site of the xanthene ring, p, q, r, and s are 2, t is 1, R 11 , R 12 , and R 13 are hydrogen atoms, and R 2 is a hydrogen atom, or the above general formula (IA) or ( A compound represented by IB) or a salt thereof is provided.
 さらに好ましい態様によれば、R及びRが水素原子である上記一般式(IA)又は(IB)で表される化合物又はその塩;R及びRがそれぞれ独立に水素原子、アセチル基、又はアセチルオキシメチル基である上記一般式(IA)又は(IB)で表される化合物又はその塩;Rが水素原子、アルキル基、又はメトキシメチル基である上記一般式(IA)又は(IB)で表される化合物又はその塩;並びにR及びRがともに水素原子である上記一般式(IA)又は(IB)で表される化合物又はその塩が提供される。 According to a further preferred embodiment, the compound represented by the above general formula (IA) or (IB) or a salt thereof, wherein R 3 and R 4 are hydrogen atoms; R 5 and R 6 are each independently a hydrogen atom, an acetyl group; Or a compound represented by the above general formula (IA) or (IB), which is an acetyloxymethyl group, or a salt thereof; R 7 is a hydrogen atom, an alkyl group, or a methoxymethyl group; And a compound represented by the above general formula (IA) or (IB) or a salt thereof, wherein both R 8 and R 9 are hydrogen atoms.
また、本発明により、下記の一般式(IIA)又は(IIB):
Figure JPOXMLDOC01-appb-C000007
〔式中、R21は下記式(B):
Figure JPOXMLDOC01-appb-C000008
(式中、d、e、f、及びgはそれぞれ独立に2又は3の整数を示し、hは0又は1を示し、R31、R32、及びR33はそれぞれ独立に水素原子又は炭素原子数1~6のアルキル基を示す)で表される基を示し;R22は水素原子又はベンゼン環上に置換する1個ないし3個の一価の置換基を示し;R23及びR24はそれぞれ独立に水素原子又はハロゲン原子を示し;R25及びR26はそれぞれ独立に水素原子、アルキルカルボニル基、又はアルキルカルボニルオキシアルキル基を示し;R27は水素原子、アルキル基、又はアルコキシアルキル基を示し;R28及びR29はそれぞれ独立に水素原子、ハロゲン原子、又は−(CH−N(R34)(R35)(式中、mは1ないし4の整数を示し、R34及びR35はそれぞれ独立に−(CH−COOR36(式中、nは1ないし4の整数を示し、R36は水素原子、アルキルカルボニル基、又はアルキルカルボニルオキシアルキル基を示す)で表される基を示す)で表される基を示す〕で表される化合物又はその塩が提供される。
Further, according to the present invention, the following general formula (IIA) or (IIB):
Figure JPOXMLDOC01-appb-C000007
[Wherein R 21 represents the following formula (B):
Figure JPOXMLDOC01-appb-C000008
(In the formula, d, e, f, and g each independently represent an integer of 2 or 3, h represents 0 or 1, and R 31 , R 32 , and R 33 each independently represent a hydrogen atom or a carbon atom. R 22 represents a hydrogen atom or 1 to 3 monovalent substituents substituted on a benzene ring; R 23 and R 24 represent Each independently represents a hydrogen atom or a halogen atom; R 25 and R 26 each independently represent a hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxyalkyl group; R 27 represents a hydrogen atom, an alkyl group, or an alkoxyalkyl group; R 28 and R 29 are each independently a hydrogen atom, a halogen atom, or — (CH 2 ) m —N (R 34 ) (R 35 ) (wherein m represents an integer of 1 to 4; R 34 as well as 35 are each independently - (CH 2) n -COOR 36 ( wherein, n represents an integer of 1 to 4, R 36 is a hydrogen atom, an alkyl group, or an alkylcarbonyloxy group) is represented by Or a salt thereof is provided.
 上記発明の好ましい態様によれば、d、e、f、及びgが2であり、hが1であり、かつR31、R32、及びR33が水素原子である上記一般式(IIA)又は(IIB)で表される化合物又はその塩;d、e、f、及びgが2であり、hが1であり、R31、R32、及びR33が水素原子であり、かつR22が水素原子である上記一般式(IIA)又は(IIB)で表される化合物又はその塩;並びに、ベンゼン環上に存在するR21がキサンテン環の結合部位に対してパラ位に結合しており、d、e、f、及びgが2であり、hが1であり、R31、R32、及びR33が水素原子であり、かつR22が水素原子である上記一般式(IIA)又は(IIB)で表される化合物又はその塩が提供される。 According to a preferred aspect of the present invention, d, e, f, and g are 2, h is 1, and R 31 , R 32 , and R 33 are hydrogen atoms, A compound represented by (IIB) or a salt thereof; d, e, f, and g are 2, h is 1, R 31 , R 32 , and R 33 are hydrogen atoms, and R 22 is A compound represented by the above general formula (IIA) or (IIB) which is a hydrogen atom or a salt thereof; and R 21 present on the benzene ring is bonded to the para-position relative to the binding site of the xanthene ring, wherein d, e, f, and g are 2, h is 1, R 31 , R 32 , and R 33 are hydrogen atoms, and R 22 is a hydrogen atom, the above general formula (IIA) or ( A compound represented by IIB) or a salt thereof is provided.
 さらに好ましい態様によれば、R23及びR24が水素原子である上記一般式(IIA)又は(IIB)で表される化合物又はその塩;R25及びR26がそれぞれ独立に水素原子、アセチル基、又はアセチルオキシメチル基である上記一般式(IIA)又は(IIB)で表される化合物又はその塩;R27が水素原子、アルキル基、又はメトキシメチル基である上記一般式(IIA)又は(IIB)で表される化合物又はその塩;並びにR28及びR29がともに水素原子である上記一般式(IIA)又は(IIB)で表される化合物又はその塩が提供される。 According to a further preferred embodiment, the compound represented by the above general formula (IIA) or (IIB) or a salt thereof, wherein R 23 and R 24 are hydrogen atoms; R 25 and R 26 are each independently a hydrogen atom, an acetyl group; Or a compound represented by the above general formula (IIA) or (IIB), which is an acetyloxymethyl group, or a salt thereof; R 27 is a hydrogen atom, an alkyl group, or a methoxymethyl group; IIB) or a salt thereof; and a compound represented by the above general formula (IIA) or (IIB) or a salt thereof, in which R 28 and R 29 are both hydrogen atoms.
 別の観点からは、本発明により、上記一般式(IA)又は(IB)で表される化合物又はその塩を含む硫化水素測定用蛍光プローブ、及び上記一般式(IA)又は(IB)で表される化合物又はその塩を含む硫化水素測定用試薬が提供される。また、硫化水素測定用蛍光プローブ又は硫化水素測定用試薬の製造のための上記上記一般式(IA)又は(IB)で表される化合物又はその塩の使用も本発明により提供される。 From another point of view, according to the present invention, a fluorescent probe for measuring hydrogen sulfide containing the compound represented by the above general formula (IA) or (IB) or a salt thereof, and the above general formula (IA) or (IB). Provided is a reagent for measuring hydrogen sulfide containing the compound or a salt thereof. The present invention also provides use of the compound represented by the above general formula (IA) or (IB) or a salt thereof for the production of a fluorescent probe for measuring hydrogen sulfide or a reagent for measuring hydrogen sulfide.
 また、本発明により、上記一般式(IIA)又は(IIB)で表される化合物又はその塩を含む硫化水素測定用蛍光プローブ、及び上記一般式(IIA)又は(IIB)で表される化合物又はその塩を含む硫化水素測定用試薬が提供される。また、硫化水素測定用蛍光プローブ又は硫化水素測定用試薬の製造のための上記上記一般式(IIA)又は(IIB)で表される化合物又はその塩の使用も本発明により提供される。この蛍光プローブ及び試薬は、測定系内において二価銅イオンと反応させて上記一般式(IA)又は(IB)で表される化合物又はその塩を測定系内において生成させるin situ型の硫化水素測定用蛍光プローブ又は試薬として有用である。 In addition, according to the present invention, a fluorescent probe for measuring hydrogen sulfide containing a compound represented by the above general formula (IIA) or (IIB) or a salt thereof, and a compound represented by the above general formula (IIA) or (IIB) or A reagent for measuring hydrogen sulfide containing the salt is provided. The present invention also provides use of the compound represented by the above general formula (IIA) or (IIB) or a salt thereof for the production of a fluorescent probe for measuring hydrogen sulfide or a reagent for measuring hydrogen sulfide. This fluorescent probe and reagent react with divalent copper ions in the measurement system to generate a compound represented by the above general formula (IA) or (IB) or a salt thereof in situ in the measurement system. It is useful as a fluorescent probe or reagent for measurement.
 さらに別の観点からは、本発明により、硫化水素の測定方法であって、下記の工程:(a)上記一般式(IA)又は(IB)で表される化合物又はその塩を硫化水素と接触させる工程;及び(b)上記工程(a)で生成した上記一般式(IIA)又は(IIB)で表される化合物又はその塩の蛍光を測定する工程を含む方法が提供される。 From another aspect, according to the present invention, there is provided a method for measuring hydrogen sulfide, comprising the following steps: (a) contacting a compound represented by the above general formula (IA) or (IB) or a salt thereof with hydrogen sulfide And (b) a method of measuring the fluorescence of the compound represented by the general formula (IIA) or (IIB) produced in the step (a) or a salt thereof.
 また、本発明により、硫化水素の測定方法であって、下記の工程:(a)上記一般式(IIA)又は(IIB)で表される化合物又はその塩と二価銅イオンとを反応させて上記一般式(IA)又は(IB)で表される化合物又はその塩を生成させる工程;(b)上記工程(a)で生成した上記一般式(IA)又は(IB)で表される化合物又はその塩と硫化水素とを接触させる工程;及び(c)上記工程(b)で生成した上記一般式(IIA)又は(IIB)で表される化合物又はその塩の蛍光を測定する工程を含む方法が提供される。 According to the present invention, there is also provided a method for measuring hydrogen sulfide, comprising the steps of: (a) reacting a compound represented by the general formula (IIA) or (IIB) or a salt thereof with a divalent copper ion. A step of producing a compound represented by the above general formula (IA) or (IB) or a salt thereof; (b) a compound represented by the above general formula (IA) or (IB) produced in the above step (a); A step of contacting the salt with hydrogen sulfide; and (c) a step of measuring the fluorescence of the compound represented by the general formula (IIA) or (IIB) generated in the step (b) or the salt thereof. Is provided.
 本発明により提供される一般式(IA)又は(IB)で表される化合物又はその塩は硫化水素に対して高い反応性を有しており、硫化水素の存在下において強蛍光性の一般式(IIA)又は(IIB)で表される化合物又はその塩を生成する性質を有している。また、一般式(IA)又は(IB)で表される化合物又はその塩は還元型グルタチオンに対しては実質的に反応性を有しないことから、還元型グルタチオンの存在下においても高感度に硫化水素を測定することができる。さらに、一般式(IA)又は(IB)で表される化合物又はその塩は種々のアニオン(ハロゲンイオン、硫酸イオン、酢酸イオン、硝酸イオン、次亜塩素酸イオンなど)の存在下においても特異的かつ高感度に硫化水素と反応することができる。従って、一般式(IA)又は(IB)で表される化合物又はその塩を含む硫化水素測定用蛍光プローブは、生体内に存在する微量の硫化水素を高感度かつ高精度に測定するための蛍光プローブとして有用であり、イン・ビボ環境下において細胞内や組織内における硫化水素をイメージングするための試薬として極めて有用である。 The compound represented by the general formula (IA) or (IB) provided by the present invention or a salt thereof has high reactivity to hydrogen sulfide, and is a general formula having strong fluorescence in the presence of hydrogen sulfide. It has the property of producing a compound represented by (IIA) or (IIB) or a salt thereof. In addition, since the compound represented by the general formula (IA) or (IB) or a salt thereof has substantially no reactivity with reduced glutathione, it can be sulfided with high sensitivity even in the presence of reduced glutathione. Hydrogen can be measured. Furthermore, the compound represented by the general formula (IA) or (IB) or a salt thereof is specific even in the presence of various anions (halogen ion, sulfate ion, acetate ion, nitrate ion, hypochlorite ion, etc.). It can react with hydrogen sulfide with high sensitivity. Therefore, the fluorescent probe for measuring hydrogen sulfide containing the compound represented by the general formula (IA) or (IB) or a salt thereof is a fluorescence for measuring a small amount of hydrogen sulfide existing in a living body with high sensitivity and high accuracy. It is useful as a probe and extremely useful as a reagent for imaging hydrogen sulfide in cells and tissues in an in vivo environment.
Cyclne−4−AF−Cu(左側)及びCyclen−4−AF(右側)の吸光及び蛍光スペクトルを測定した結果を示した図である。It is the figure which showed the result of having measured the absorption and fluorescence spectrum of Cyclne-4-AF-Cu (left side) and Cyclen-4-AF (right side). TACN−4−AF(左側)及びCyclam−4−AF(右側)の吸光及び蛍光スペクトルを測定した結果を示した図である。It is the figure which showed the result of having measured the absorption and fluorescence spectrum of TACN-4-AF (left side) and Cyclam-4-AF (right side). TMCyclen−4−AF(左側)及びTMCyclen−4−AF−Cu(右側)の吸光及び蛍光スペクトルを測定した結果を示した図である。It is the figure which showed the result of having measured the absorption and fluorescence spectrum of TMCyclen-AF (left side) and TMCyclen-4-AF-Cu (right side). Cyclen−4−AF−Cuの反応性の評価を行った結果を示した図である。10μM NaS(赤)、10μM NaSと10mM GSH(緑)、又は10mM GSH(黄)を添加した結果、及び無添加のネガティブコントロール(青)の結果を示した。It is the figure which showed the result of having evaluated the reactivity of Cyclen-4-AF-Cu. The result of adding 10 μM Na 2 S (red), 10 μM Na 2 S and 10 mM GSH (green), or 10 mM GSH (yellow) and the result of adding no negative control (blue) are shown. Cyclen−4−AF−CuをHeLa細胞内にマイクロインジェクションにより導入して硫化水素を測定した結果を示した図である。上段はNaS添加前(0sec)、中段はNaS添加後(360sec)、及び下段は蛍光強度の経時変化を示し、領域5及び6はマイクロインジェクションをしていない領域を示す。It is the figure which showed the result of having introduced Cyclen-4-AF-Cu in a HeLa cell by microinjection and measuring hydrogen sulfide. The upper row shows before Na 2 S addition (0 sec), the middle row shows after Na 2 S addition (360 sec), and the lower row shows changes in fluorescence intensity over time, and regions 5 and 6 show regions where microinjection is not performed. Cyclen−4−AF−Cu diacetateを用いてHeLa細胞への取り込みによる硫化水素の測定を行った結果を示した図である。上段はNaS添加前(0sec)、中段はNaS添加後(240sec)、及び下段は蛍光強度の経時変化を示す。It is the figure which showed the result of having measured the hydrogen sulfide by the uptake | capture to a HeLa cell using Cyclen-4-AF-Cu diacetate. The upper part shows before Na 2 S addition (0 sec), the middle part shows after Na 2 S addition (240 sec), and the lower part shows the change in fluorescence intensity over time. TACN−4−AF単独、及び2当量のCu2+を加えたTACN−4−AFの吸収スペクトル(上段左)と蛍光スペクトル(上段右)を測定した結果、及びTACN−4−AFにCuSOを加えて100μM NaS(赤)、10μM NaS(緑)、又は10mM GSH(黄)を添加し、無添加の実験をネガティブコントロール(青)として反応性を調べた結果(下段)を示した図である。TACN-4-AF alone and 2 the absorption spectrum of the equivalent of TACN-4-AF plus Cu 2+ and (upper left) fluorescence spectrum results obtained by measuring the (upper right), and TACN-4-AF of CuSO 4 In addition, 100 μM Na 2 S (red), 10 μM Na 2 S (green), or 10 mM GSH (yellow) was added, and the results of examining the reactivity with the addition-free experiment as a negative control (blue) (lower) are shown. It is a figure. Cyclam−4−AF単独、及び2当量のCu2+を加えたCyclam−4−AFの吸収スペクトル(左)と蛍光スペクトル(右)を測定した結果を示した図である。It is the figure which showed the result of having measured the absorption spectrum (left) and the fluorescence spectrum (right) of Cyclam-4-AF which added Cyclam-4-AF independent and 2 equivalent Cu2 + . Cyclam−4−AF(上段)にCuSOを加え、又はTMCyclen−4−AF−Cu(下段)に100μM NaS(赤)、10μM NaS(緑)、又は10mM GSH(黄)を添加し、無添加の実験をネガティブコントロール(青)として反応性を調べた結果を示した図である。The CuSO 4 was added to Cyclam-4-AF (top), or TMCyclen-4-AF-Cu (lower) 100 [mu] M Na 2 S (red), 10 [mu] M Na 2 S (green), or added 10 mM GSH (yellow) FIG. 5 is a diagram showing the results of examining the reactivity of an additive-free experiment as a negative control (blue). 3−メルカプトピルビン酸サルファートランスフェラーゼ(3MST)発現細胞のセルライセートを用いて硫化水素を検出した結果を示した図である。It is the figure which showed the result of having detected hydrogen sulfide using the cell lysate of the 3-mercaptopyruvate sulfate transferase (3MST) expression cell. グルタチオン−S−トランスフェラーゼ(GST)タグ融合3−メルカプトピルビン酸スルファトランスフェラーゼ(3MST)精製タンパク質を用いて、3−メルカプトピルビン酸(3MP)を基質として産生される硫化水素をCyclen−4−AF−Cuによって検出した結果を示した図である。Using glutathione-S-transferase (GST) tag fusion 3-mercaptopyruvate sulfatransferase (3MST) purified protein, hydrogen sulfide produced using 3-mercaptopyruvate (3MP) as a substrate is Cyclen-4-AF- It is the figure which showed the result detected by Cu.
 一般式(IA)又は(IB)においてRは式(A)で表される基を示す。式(A)で表される基において、p、q、r、及びsはそれぞれ独立に2又は3の整数を示すが、好ましくはp、q、r、及びsがいずれも2の場合である。tは0又は1を示すが、1であることが好ましい。R11、R12、及びR13はそれぞれ独立に水素原子又は炭素原子数1~6のアルキル基を示すが、R11、R12、及びR13のうちいずれか又は全部が水素原子であることが好ましく、R11、R12、及びR13が全て水素原子であることが好ましい。式(A)で表される基はベンゼン環上の任意の位置に結合することができるが、好ましくはRとキサンテン環が結合するベンゼン環において、Rとキサンテン環との結合位置がパラ位になることが好ましい。 In the general formula (IA) or (IB), R 1 represents a group represented by the formula (A). In the group represented by the formula (A), p, q, r, and s each independently represent an integer of 2 or 3, preferably p, q, r, and s are all 2. . t represents 0 or 1, but is preferably 1. R 11 , R 12 , and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and any or all of R 11 , R 12 , and R 13 are hydrogen atoms. It is preferable that R 11 , R 12 , and R 13 are all hydrogen atoms. Of the group represented by the formula (A) can be bonded to any position on the benzene ring, preferably a benzene ring R 1 and xanthene ring are bonded, the bonding position of R 1 and xanthene ring para It is preferable to be in a position.
 本明細書において、アルキル基の用語は直鎖状、分枝鎖状、環状、及びそれらの組み合わせからなるアルキル基を包含する。アルキル部分を有する他の置換基(例えばアルキルカルボニル基やアルコキシアルキル基)のアルキル部分についても同様である。 In the present specification, the term “alkyl group” includes an alkyl group composed of linear, branched, cyclic, and combinations thereof. The same applies to the alkyl part of other substituents having an alkyl part (for example, an alkylcarbonyl group or an alkoxyalkyl group).
 Rは水素原子又はベンゼン環上に置換する1個ないし3個の一価の置換基を示し、好ましくは水素原子又はベンゼン環上に置換する1個又は2個の一価の置換基を示し、さらに好ましくは水素原子又はベンゼン環上に置換する1個の一価の置換基を示す。Rが一価の置換基である場合、置換基としては、例えば、ハロゲン原子(本明細書においてハロゲン原子の用語はフッ素原子、塩素原子、臭素原子、又はヨウ素原子を包含する)、水酸基、オキソ基、カルボキシル基、アルコキシカルボニル基、アシル基、アミノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基、又はアラルキル基などが挙げられるが、これらに限定されることはない。これらの置換基はさらに別の置換基で置換されていてもよい。このような例として、例えば、フルオロアルキル基、フルオロアセチル基、メトキシベンジル基などを挙げることができるが、これらに限定されることはない。Rは水素原子であることが特に好ましい。 R 2 represents a hydrogen atom or 1 to 3 monovalent substituents substituted on the benzene ring, preferably 1 or 2 monovalent substituents substituted on the hydrogen atom or benzene ring. More preferably, it represents one monovalent substituent substituted on a hydrogen atom or a benzene ring. When R 2 is a monovalent substituent, examples of the substituent include a halogen atom (in this specification, the term halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), a hydroxyl group, Examples thereof include, but are not limited to, an oxo group, a carboxyl group, an alkoxycarbonyl group, an acyl group, an amino group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryl group, and an aralkyl group. These substituents may be further substituted with another substituent. Examples of such include, but are not limited to, a fluoroalkyl group, a fluoroacetyl group, a methoxybenzyl group, and the like. R 2 is particularly preferably a hydrogen atom.
 R及びRはそれぞれ独立に水素原子又はハロゲン原子を示すが、R及びRがともに水素原子であることが好ましい。
 R及びRはそれぞれ独立に水素原子、アルキルカルボニル基、又はアルキルカルボニルオキシアルキル基を示す。アルキルカルボニル基としては、炭素数2~7個程度のアルキルカルボニル基が好ましく、例えば、アセチル基などを好ましく用いることができる。アルキルカルボニルオキシアルキル基としては、例えば、炭素数2~7個程度のアルキルカルボニルオキシ基が炭素数1~6個程度のアルキル基に置換したアルキルカルボニルオキシアルキル基が好ましいが、例えば、アセトキシメチル基などを好ましく用いることができる。
R 3 and R 4 each independently represent a hydrogen atom or a halogen atom, but it is preferable that both R 3 and R 4 are hydrogen atoms.
R 5 and R 6 each independently represent a hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxyalkyl group. The alkylcarbonyl group is preferably an alkylcarbonyl group having about 2 to 7 carbon atoms, and for example, an acetyl group can be preferably used. As the alkylcarbonyloxyalkyl group, for example, an alkylcarbonyloxyalkyl group in which an alkylcarbonyloxy group having about 2 to 7 carbon atoms is substituted with an alkyl group having about 1 to 6 carbon atoms is preferable. For example, an acetoxymethyl group Etc. can be preferably used.
 Rは水素原子、アルキル基、又はアルコキシアルキル基を示す。アルコキシアルキル基としては、炭素数1~6個程度のアルコキシ基が炭素数1~6程度のアルキル基に置換したアルコキシアルキル基が好ましいが、例えば、メトキシメチル基やエトキシメチル基などを好ましく用いることができる。 R 7 represents a hydrogen atom, an alkyl group, or an alkoxyalkyl group. The alkoxyalkyl group is preferably an alkoxyalkyl group in which an alkoxy group having about 1 to 6 carbon atoms is substituted with an alkyl group having about 1 to 6 carbon atoms. For example, a methoxymethyl group or an ethoxymethyl group is preferably used. Can do.
 R及びRはそれぞれ独立に水素原子、ハロゲン原子、又は−(CH−N(R14)(R15)で表される基を示す。xは1ないし4の整数を示すが、xは1又は2であることが好ましく、xが1であることが特に好ましい。R14及びR15はそれぞれ独立に−(CH−COOR16で表される基を示す。yは1ないし4の整数を示すが、yは1又は2であることが好ましく、yが1であることが特に好ましい。R16は水素原子、アルキルカルボニル基、又はアルキルカルボニルオキシアルキル基を示すが、アルキルカルボニル基及びアルキルカルボニルオキシアルキル基は上記Rについて説明したものと同様である。好ましくはR16として水素原子又はアセトキシメチル基などを用いることができる。 R 8 and R 9 each independently represent a hydrogen atom, a halogen atom, or a group represented by — (CH 2 ) x —N (R 14 ) (R 15 ). x represents an integer of 1 to 4, but x is preferably 1 or 2, and x is particularly preferably 1. R 14 and R 15 each independently represent a group represented by — (CH 2 ) y —COOR 16 . y represents an integer of 1 to 4, and y is preferably 1 or 2, and y is particularly preferably 1. R 16 represents a hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxyalkyl group, and the alkylcarbonyl group and the alkylcarbonyloxyalkyl group are the same as those described for R 5 above. Preferably, a hydrogen atom or an acetoxymethyl group can be used as R 16 .
 一般式(IIA)又は(IIB)における式(B)で表される基、d、e、f、g、h、R31、R32、R33、R22、R23、R24、R25、R26、R27、R28、R29、m、R34、R35、n、R36は、それぞれ、一般式(IA)又は(IB)において対応する式(A)で表される基、p、q、r、s、t、R11、R12、R13、R、R、R、R、R、R、R、R、x、R14、R15、n、及びR16と同様である。 Group represented by formula (B) in general formula (IIA) or (IIB), d, e, f, g, h, R 31 , R 32 , R 33 , R 22 , R 23 , R 24 , R 25 , R 26 , R 27 , R 28 , R 29 , m, R 34 , R 35 , n, and R 36 are groups represented by the corresponding formula (A) in the general formula (IA) or (IB), respectively. , P, q, r, s, t, R 11 , R 12 , R 13 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , x, R 14 , R 15 , n, and R 16 are the same.
 一般式(IA)又は(IB)、あるいは一般式(IIA)又は(IIB)で表される化合物は酸付加塩又は塩基付加塩を形成する場合がある。酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩などの鉱酸塩、p−トルエンスルホン酸塩、シュウ酸塩、リンゴ酸塩などの有機酸塩などを用いることができるが、これらに限定されることはない。塩基付加塩としては、例えば、ナトリウム塩、カリウム塩、マグネシウム塩、若しくはカルシウム塩などの金属塩、アンモニウム塩、又はトリエチルアミン塩若しくはエタノールアミン塩などの有機アミン塩などを挙げることができるが、これらに限定されることはない。これらの塩のうち、生理学的に許容される塩は本発明の化合物を生体内や細胞又は組織内の硫化水素測定用試薬として用いる場合に好ましい。 The compound represented by general formula (IA) or (IB), or general formula (IIA) or (IIB) may form an acid addition salt or a base addition salt. Examples of acid addition salts include mineral acid salts such as hydrochloride, sulfate, and nitrate, and organic acid salts such as p-toluenesulfonate, oxalate, and malate. There is no limit. Examples of the base addition salt include metal salts such as sodium salt, potassium salt, magnesium salt, or calcium salt, ammonium salts, and organic amine salts such as triethylamine salt or ethanolamine salt. There is no limit. Among these salts, physiologically acceptable salts are preferable when the compound of the present invention is used as a reagent for measuring hydrogen sulfide in a living body, cell or tissue.
 また、一般式(IA)又は(IB)、あるいは一般式(IIA)又は(IIB)で表される化合物は、置換基の種類に応じて1個又は2個以上の不斉炭素を有する場合があるが、これらの不斉炭素に基づく任意の光学異性体、光学異性体の任意の混合物、ラセミ体、2個以上の不斉炭素に基づくジアステレオ異性体、ジアステレオ異性体の任意の混合物などは、いずれも本発明の範囲に包含される。遊離化合物又は塩の形態の化合物の任意の水和物又は溶媒和物も本発明の範囲に包含される。また、Rが水素原子の場合にはカルボキシ基がラクトンを形成する場合もあるが、本発明の範囲にはこのような構造異性体も包含される。一般式(IA)においてRが水素原子である化合物と一般式(IB)においてRが水素原子である化合物は互変異性体に相当しているが、このような互変異性体の存在は当業者に容易に理解されることであり、いずれの互変異性体も本発明の範囲に包含される。 Moreover, the compound represented by general formula (IA) or (IB), or general formula (IIA) or (IIB) may have one or two or more asymmetric carbons depending on the type of the substituent. Arbitrary optical isomers based on these asymmetric carbons, arbitrary mixtures of optical isomers, racemates, diastereoisomers based on two or more asymmetric carbons, arbitrary mixtures of diastereoisomers, etc. Are included in the scope of the present invention. Any hydrate or solvate of the free compound or salt form of the compound is also encompassed within the scope of the present invention. Further, when R 7 is a hydrogen atom, the carboxy group may form a lactone, but such structural isomers are also included in the scope of the present invention. The compound in which R 5 is a hydrogen atom in the general formula (IA) and the compound in which R 7 is a hydrogen atom in the general formula (IB) correspond to tautomers, but such tautomers exist. Is easily understood by those skilled in the art, and any tautomer is included in the scope of the present invention.
 本発明の化合物の代表的化合物の製造方法を本明細書の実施例に詳細かつ具体的に示した。当業者は、本実施例の説明を基にして反応原料、反応条件、及び反応試薬などを適宜選択し、必要に応じてこれらの方法に修飾や改変を加えることによって、上記一般式で表される本発明の化合物をいずれも製造することができる。なお、原料化合物として用いることができる4−アミノフルオレセインなどのフルオレセイン誘導体は、例えば、亀谷哲治著、有機合成化学IX、南江堂、215頁(1977年)等に記載の方法に準じて製造できる。また、環状ポリアミン部分構造に関してはJ.Am.Chem.Soc.,118,12696,1996に開示された亜鉛プローブの部分構造の合成を参照することができる。 The production methods of representative compounds of the compounds of the present invention are shown in detail and specifically in the examples of the present specification. Those skilled in the art can appropriately select the reaction raw materials, reaction conditions, reaction reagents, and the like based on the description of the present example, and modify or modify these methods as necessary. Any of the compounds of the present invention can be prepared. A fluorescein derivative such as 4-aminofluorescein that can be used as a raw material compound can be produced according to the method described in, for example, Tetsuji Kameya, Synthetic Organic Chemistry IX, Nanedo, page 215 (1977). In addition, regarding the cyclic polyamine partial structure, J.A. Am. Chem. Soc. , 118, 12696, 1996, can be referred to the synthesis of the partial structure of the zinc probe.
 本明細書において用いられる「測定」という用語は、定量、定性、又は診断などの目的で行われる測定、検査、検出などを含めて、最も広義に解釈しなければならない。本発明による硫化水素の測定方法は、一般的には、(a)一般式(IA)又は(IB)で表される化合物又はその塩と硫化水素とを反応させる工程、及び(b)上記工程(a)で生成した一般式(IIA)又は(IIB)で表される化合物又はその塩に由来する蛍光を測定する工程を含んでいる。上記一般式(IA)又は(IB)で表される化合物は二価銅イオンの配位により消光されており、それ自体は無蛍光性又は弱蛍光性であるが、硫化水素と接触すると二価銅イオンが硫化水素と反応して不溶性のCuSとなり環状ポリアミン部分から脱落し、強蛍光性の一般式(IIA)又は(IIB)で表される化合物又はその塩を生成する。 As used herein, the term “measurement” should be interpreted in the broadest sense, including measurement, examination, detection, etc. performed for the purpose of quantitative, qualitative, or diagnostic purposes. The method for measuring hydrogen sulfide according to the present invention generally comprises (a) a step of reacting a compound represented by the general formula (IA) or (IB) or a salt thereof with hydrogen sulfide, and (b) the above step. A step of measuring fluorescence derived from the compound represented by the general formula (IIA) or (IIB) generated in (a) or a salt thereof. The compound represented by the general formula (IA) or (IB) is quenched by the coordination of divalent copper ions, and is itself non-fluorescent or weakly fluorescent. Copper ions react with hydrogen sulfide to form insoluble CuS, which is removed from the cyclic polyamine moiety to produce a strongly fluorescent compound represented by the general formula (IIA) or (IIB) or a salt thereof.
 硫化水素測定用の試薬としては、二価銅イオンが配位した状態の一般式(IA)又は(IB)で表される化合物又はその塩を水などの適宜の水性媒体に溶解して使用することができるが、測定系内で一般式(IIA)又は(IIB)で表される化合物又はその塩と二価銅イオンとを反応させてin situに一般式(IA)又は(IB)で表される化合物又はその塩を測定系内で生成させ、その一般式(IA)又は(IB)で表される化合物又はその塩と硫化水素とを反応させてもよい。このような測定方法も本発明の範囲に包含されることは言うまでもない。 As a reagent for measuring hydrogen sulfide, a compound represented by the general formula (IA) or (IB) in which a divalent copper ion is coordinated or a salt thereof is dissolved in an appropriate aqueous medium such as water. In a measurement system, a compound represented by the general formula (IIA) or (IIB) or a salt thereof and a divalent copper ion are reacted to represent in situ the general formula (IA) or (IB). Or a salt thereof may be produced in a measurement system and the compound represented by the general formula (IA) or (IB) or a salt thereof may be reacted with hydrogen sulfide. It goes without saying that such a measuring method is also included in the scope of the present invention.
 本発明の硫化水素測定用試薬を用いた蛍光測定手段は特に限定されないが、イン・ビトロで蛍光スペクトルを測定する方法や、バイオイメージングの手法を用いてイン・ビボで蛍光スペクトルを測定する方法などを採用することができる。例えば、定量を行う場合には、常法に従って予め検量線を作成しておくことが望ましい。本発明の試薬をマイクロインジェクション法等により細胞内に取り込ませれば、個々の細胞内に局在する硫化水素をバイオイメージング手法により高感度にリアルタイムで測定することができるほか、細胞培養液又は組織切片等の培養液又は灌流液中に用いることで細胞や生体組織が放出する硫化水素を測定できる。従って、本発明の硫化水素測定用試薬を用いることにより、細胞又は生体組織での硫化水素の挙動をリアルタイムに測定することが可能であり、硫化水素によるシグナル伝達のメカニズムの解明のほか、疾患病態の原因究明や治療薬の開発などに好適に利用することができる。 The fluorescence measuring means using the hydrogen sulfide measuring reagent of the present invention is not particularly limited, but a method of measuring a fluorescence spectrum in vitro, a method of measuring a fluorescence spectrum in vivo using a bioimaging technique, etc. Can be adopted. For example, when quantification is performed, it is desirable to prepare a calibration curve in advance according to a conventional method. If the reagent of the present invention is incorporated into cells by a microinjection method or the like, hydrogen sulfide localized in individual cells can be measured with high sensitivity in real time by a bioimaging technique, and a cell culture solution or tissue slice The hydrogen sulfide released from cells and living tissues can be measured by using it in a culture solution or perfusate. Therefore, by using the hydrogen sulfide measurement reagent of the present invention, it is possible to measure the behavior of hydrogen sulfide in cells or living tissues in real time. In addition to elucidating the mechanism of signal transmission by hydrogen sulfide, It can be suitably used for investigating the cause of the disease and developing therapeutic agents.
 また、例えば、R、R、R、R、又はRのいずれか又は2箇所以上にエステラーゼなどにより加水分解可能なエステル基を導入しておくと、分子全体が脂溶性になって細胞膜を容易に透過して細胞質内に到達するが、細胞質内においてエステラーゼにより加水分解を受けて親水性のカルボキシル基が生成すると細胞膜を容易に透過できなくなる。従って、このようなエステル導入型の化合物(例えばエステルとしてアセトキシメチルエステルやメトキシメチルエステルなどを導入した化合物)は、細胞質内における硫化水素の濃度を測定するための試薬として極めて有用である。 For example, when an ester group that can be hydrolyzed by esterase or the like is introduced into any one or more of R 5 , R 6 , R 7 , R 8 , or R 9 , the entire molecule becomes fat-soluble. Thus, it easily penetrates the cell membrane and reaches the cytoplasm. However, when a hydrophilic carboxyl group is generated by esterase hydrolysis in the cytoplasm, the cell membrane cannot be easily penetrated. Accordingly, such ester-introduced compounds (for example, compounds into which acetoxymethyl ester or methoxymethyl ester is introduced as an ester) are extremely useful as reagents for measuring the concentration of hydrogen sulfide in the cytoplasm.
 本発明の試薬は、必要に応じて試薬の調製に通常用いられる添加剤を配合して組成物として用いてもよい。例えば、生理的環境で試薬を用いるための添加剤として、溶解補助剤、pH調節剤、緩衝剤、等張化剤などの添加剤を用いることができ、これらの配合量は当業者に適宜選択可能である。これらの組成物は、粉末形態の混合物、凍結乾燥物、顆粒剤、錠剤、液剤など適宜の形態の組成物として提供される。 The reagent of the present invention may be used as a composition by blending additives usually used in the preparation of the reagent as necessary. For example, additives such as a solubilizer, pH adjuster, buffer, and isotonic agent can be used as an additive for using the reagent in a physiological environment. Is possible. These compositions are provided as a composition in an appropriate form such as a mixture in a powder form, a lyophilized product, a granule, a tablet, or a liquid.
 以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
例1
 下記合成スキームによりCyclen−4−AF及びCyclen−4−AF−Cuを合成した。
Figure JPOXMLDOC01-appb-C000009
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example.
Example 1
Cyclen-4-AF and Cyclen-4-AF-Cu were synthesized according to the following synthesis scheme.
Figure JPOXMLDOC01-appb-C000009
(a)クロロアセチルアミド−4−AF
 4−アミノフルオレセイン(948.5mg,2.73mmol)を脱水テトラヒドロフラン(THF)30mLに溶解し、NaHCO(761.5mg,9.06mmol)を加えた。脱水THF40mLに溶解したClCHCOCl(436.8mg,3.87mmol)を攪拌しながら10分以上かけて滴下した。その後、室温にてアルゴン下で一晩攪拌し、濾過後に溶媒を除去し、残渣をカラムクロマトグラフィー(silica gel、酢酸エチル/ヘキサン=6/4)で精製して目的物(756.9mg,1.79mmol,y.65%)を得た。
H NMR(300MHz,CDOD):δ 8.34(d,1H,J=1.5Hz),7.86(dd,1H,J=8.1,1.5Hz),7.16(d,1H,J=8.1Hz),6.67(d,2H,J=2.9Hz),6.61(d,2H,J=8.8Hz),6.52(dd,2H,J=8.8,2.9Hz),4.24(s,2H)
13C NMR(75MHz,CDOD):δ 171.1,167.8,161.4,154.1,149.5,141.2,130.2,129.1,128.3,125.9,116.4,113.6,111.3,103.5,44.0
HRMS(ESI):Calcd for[M+H],424.0588,Found,424.0578(−1.0mmu)
(A) Chloroacetylamide-4-AF
4-Aminofluorescein (948.5 mg, 2.73 mmol) was dissolved in 30 mL of dehydrated tetrahydrofuran (THF), and NaHCO 3 (761.5 mg, 9.06 mmol) was added. ClCH 2 COCl (436.8 mg, 3.87 mmol) dissolved in 40 mL of dehydrated THF was added dropwise over 10 minutes with stirring. Thereafter, the mixture was stirred overnight at room temperature under argon, the solvent was removed after filtration, and the residue was purified by column chromatography (silica gel, ethyl acetate / hexane = 6/4) to obtain the desired product (756.9 mg, 1 .79 mmol, y.65%).
1 H NMR (300 MHz, CD 3 OD): δ 8.34 (d, 1H, J = 1.5 Hz), 7.86 (dd, 1H, J = 8.1, 1.5 Hz), 7.16 ( d, 1H, J = 8.1 Hz), 6.67 (d, 2H, J = 2.9 Hz), 6.61 (d, 2H, J = 8.8 Hz), 6.52 (dd, 2H, J = 8.8, 2.9 Hz), 4.24 (s, 2H)
13 C NMR (75 MHz, CD 3 OD): δ 171.1, 167.8, 161.4, 154.1, 149.5, 141.2, 130.2, 129.1, 128.3, 125. 9,116.4,113.6,111.3,103.5,44.0
HRMS (ESI + ): Calcd for [M + H] + , 424.0588, Found, 424.0578 (-1.0mmu)
(b)Cyclen−4−AF
 クロロアセチルアミド−4−アミノフルオレセイン(106.6mg,251.5μmol)を脱水アセトニトリル30mLに溶解し、cyclen(368.0mg,2.14mmol)とジイソプロピルエチルアミン(DIEA,300μL,1.72mmol)を加え、アルゴン下において70℃で8時間攪拌した。溶媒を除去した後、HPLCにて精製してCyclen−4−AF(TFA塩)(103.3mg,109.0μmol,y.43%)を得た。
H NMR(300MHz,DO):δ 8.34(d,1H,J=2.2Hz),7.83(dd,1H,J=8.1,2.2Hz),7.28(d,2H,J=8.8Hza),7.23(d,1H,J=8.1Hz),6.92(dd,2H,J=8.8,2.2H),6.86(d,2H,J=2.2Hz),3.69(s,2H),3.05−3.16(m,16H)
13C NMR(100MHz,DO):δ 170.9,167.5,165.9,155.8,137.8,131.7,130.5,129.2,128.1,124.1,120.2,116.8,116.3,113.7,113.4,100.9,54.5,48.3,42.9,41.2,40.7
HRMS(ESI):Calcd for[M+H],560.2509,Found,560.2506(−0.3mmu)
(B) Cyclen-4-AF
Chloroacetylamido-4-aminofluorescein (106.6 mg, 251.5 μmol) was dissolved in 30 mL of dehydrated acetonitrile, cyclen (368.0 mg, 2.14 mmol) and diisopropylethylamine (DIEA, 300 μL, 1.72 mmol) were added, Stir at 70 ° C. for 8 hours under argon. After removing the solvent, the residue was purified by HPLC to obtain Cyclen-4-AF (TFA salt) (103.3 mg, 109.0 μmol, y.43%).
1 H NMR (300 MHz, D 2 O): δ 8.34 (d, 1H, J = 2.2 Hz), 7.83 (dd, 1H, J = 8.1, 2.2 Hz), 7.28 ( d, 2H, J = 8.8 Hza), 7.23 (d, 1H, J = 8.1 Hz), 6.92 (dd, 2H, J = 8.8, 2.2H), 6.86 (d , 2H, J = 2.2 Hz), 3.69 (s, 2H), 3.05 to 3.16 (m, 16H)
13 C NMR (100 MHz, D 2 O): δ 170.9, 167.5, 165.9, 155.8, 137.8, 131.7, 130.5, 129.2, 128.1, 124. 1,120.2,116.8,116.3,113.7,113.4,100.9,54.5,48.3,42.9,41.2,40.7
HRMS (ESI + ): Calcd for [M + H] + , 560.2509, Found, 560.2506 (−0.3 mmu)
(c)Cyclen−4−AF−Cu
 CuSO五水和物を30mM HEPES緩衝液(pH7.4)に溶解し、1M CuSO水溶液を調製した。Cyclen−4−AF(73.8mg,77.9μmol)をCuSO水溶液(7792μL,7.79mmol)に溶解し、室温にて一晩攪拌し、HPLCで精製してCyclen−4−AF−Cu(65.2mg,quant yield)を得た。
HRMS(ESI):Calcd for[M−H],621.1649,Found,621.1690(4.1mmu)
(C) Cyclen-4-AF-Cu
CuSO 4 pentahydrate was dissolved in 30 mM HEPES buffer (pH 7.4) to prepare a 1M CuSO 4 aqueous solution. Cyclen-4-AF (73.8 mg, 77.9 μmol) was dissolved in an aqueous CuSO 4 solution (7792 μL, 7.79 mmol), stirred overnight at room temperature, purified by HPLC, and purified with Cyclen-4-AF-Cu ( 65.2 mg, quant yield).
HRMS (ESI + ): Calcd for [M−H] + , 621.1649, Found, 621.1690 (4.1 mmu)
(d)Cyclen−4−AF−Cu diacetate
 Cyclen−4−AF−Cu(5.60μmol)を脱水アセトニトリル4mLに溶解し、ピリジン(4.14mmol)と無水酢酸(41.9mmol)を加え、アルゴン下、60℃で6時間攪拌した。溶媒を除去後、HPLCで精製してCyclen−4−AF−Cu diacetate(3.6mg,5.1μmol,y.91%)を得た。
HRMS(ESI):Calcd for[M−H],705.1860,Found,705.1843(−1.7mmu)
(D) Cyclen-4-AF-Cu diacetate
Cyclen-4-AF-Cu (5.60 μmol) was dissolved in 4 mL of dehydrated acetonitrile, pyridine (4.14 mmol) and acetic anhydride (41.9 mmol) were added, and the mixture was stirred at 60 ° C. for 6 hours under argon. After removing the solvent, the residue was purified by HPLC to obtain Cyclen-4-AF-Cu diacetate (3.6 mg, 5.1 μmol, y. 91%).
HRMS (ESI + ): Calcd for [M−H] + , 705.1860, Found, 705.1843 (−1.7 mmu)
例2
 TACN−4−AFを以下のスキームで合成した。
Figure JPOXMLDOC01-appb-C000010
Example 2
TACN-4-AF was synthesized by the following scheme.
Figure JPOXMLDOC01-appb-C000010
 クロロアセチルアミド−4−アミノフルオレセイン(53.8mg,126.9μmol)を脱水アセトニトリル8mLに溶解し、1,4,7−トリアザシクロノナン(TACN,101.4mg,784.8μmol)、ヨウ化カリウム(6.8mg,41.0μmol)及び、KCO(111.0mg,803.1μmol)を加え、アルゴン下において室温で一晩攪拌した。溶媒を除去後、HPLCで精製し、TACN−4−AF(TFA塩)(47.4mg,55.2μmol,y.44%)を得た。
H NMR(300MHz,DO):δ 8.35(d,1H,J=2.2Hz),7.84(dd,1H,J=8.4,2.2Hz),7.27−7.30(m,3H),6.98(d,2H,J=1.5Hz),6.93(dd,2H,J=9.2,1.5Hz),3.80(s,2H),3.71(s,4H),3.36(t,4H,J=5.5Hz),3.15(t,4H,J=5.5Hz)
13C NMR(100MHz,DO):δ 171.4,168.1,165.4,155.6,137.5,132.6,130.2,129.6,127.8,123.9,119.6,116.3,116.2,113.3,113.3,100.9,55.1,47.6,42.8,41.5
HRMS(ESI):Calcd for[M+H],517.2087,Found,517.2106(1.9mmu)
Chloroacetylamide-4-aminofluorescein (53.8 mg, 126.9 μmol) was dissolved in 8 mL of dehydrated acetonitrile, and 1,4,7-triazacyclononane (TACN, 101.4 mg, 784.8 μmol), potassium iodide. (6.8 mg, 41.0 μmol) and K 2 CO 3 (111.0 mg, 803.1 μmol) were added and stirred overnight at room temperature under argon. After removing the solvent, the product was purified by HPLC to obtain TACN-4-AF (TFA salt) (47.4 mg, 55.2 μmol, y.44%).
1 H NMR (300 MHz, D 2 O): δ 8.35 (d, 1H, J = 2.2 Hz), 7.84 (dd, 1H, J = 8.4, 2.2 Hz), 7.27− 7.30 (m, 3H), 6.98 (d, 2H, J = 1.5 Hz), 6.93 (dd, 2H, J = 9.2, 1.5 Hz), 3.80 (s, 2H) ), 3.71 (s, 4H), 3.36 (t, 4H, J = 5.5 Hz), 3.15 (t, 4H, J = 5.5 Hz)
13 C NMR (100 MHz, D 2 O): δ 171.4, 168.1, 165.4, 155.6, 137.5, 132.6, 130.2, 129.6, 127.8, 123. 9, 119.6, 116.3, 116.2, 113.3, 113.3, 100.9, 55.1, 47.6, 42.8, 41.5
HRMS (ESI + ): Calcd for [M + H] + , 517.2087, Found, 517.2106 (1.9 mmu)
例3
 Cyclam−4−AFを以下のスキームで合成した。
Figure JPOXMLDOC01-appb-C000011
Example 3
Cyclam-4-AF was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000011
 クロロアセチルアミド−4−アミノフルオレセイン(51.5mg,121.5μmol)を脱水アセトニトリル8mLに溶解し、1,4,8,11−テトラアザシクロテトラデカン(cyclam,191.2mg,954.5μmol)、ヨウ化カリウム(8.7mg,52.4μmol)及び、KCO(136.7mg,989.1μmol)を加え、アルゴン下において室温で一晩攪拌した。溶媒を除去後、HPLCで精製し、Cyclam−4−AF(TFA塩)(22.5mg,21.6μmol,y.18%)を得た。
H NMR(300MHz,DO):δ 8.53(d,1H,J=2.2Hz),7.89(dd,1H,J=8.8,2.2Hz),7.49(d,2H,J=8.4Hz),7.37(d,1H,J=8.8Hz),7.18(d,2H,J=2.2Hz),7.09(dd,2H,J=8.4,2.2Hz),3.56(s,2H),3.13−3.25(m,12H),2.86−2.91(m,4h),1.94−1.98(m,4H)
13C NMR(100MHz,DO):δ171.1,167.2,166.7,156.4,138.1,130.7,130.5,128.6,123.6,120.4,117.3,116.3,114.3,113.4,100.9,54.4,53.6,52.7,46.5,46.0,45.7,44.8,43.6,42.0,22.7,21.4
HRMS(ESI):Calcd for[M+M],588.2822,Found,588.2794(−2.8mmu).
Chloroacetylamido-4-aminofluorescein (51.5 mg, 121.5 μmol) was dissolved in 8 mL of dehydrated acetonitrile, and 1,4,8,11-tetraazacyclotetradecane (cyclam, 191.2 mg, 954.5 μmol), iodine Potassium chloride (8.7 mg, 52.4 μmol) and K 2 CO 3 (136.7 mg, 989.1 μmol) were added, and the mixture was stirred overnight at room temperature under argon. After removing the solvent, the residue was purified by HPLC to obtain Cyclam-4-AF (TFA salt) (22.5 mg, 21.6 μmol, y.18%).
1 H NMR (300 MHz, D 2 O): δ 8.53 (d, 1H, J = 2.2 Hz), 7.89 (dd, 1H, J = 8.8, 2.2 Hz), 7.49 ( d, 2H, J = 8.4 Hz), 7.37 (d, 1H, J = 8.8 Hz), 7.18 (d, 2H, J = 2.2 Hz), 7.09 (dd, 2H, J = 8.4, 2.2 Hz), 3.56 (s, 2H), 3.13-3.25 (m, 12H), 2.86-2.91 (m, 4h), 1.94-1 .98 (m, 4H)
13 C NMR (100 MHz, D 2 O): δ 171.1, 167.2, 166.7, 156.4, 138.1, 130.7, 130.5, 128.6, 123.6, 120.4 , 117.3, 116.3, 114.3, 113.4, 100.9, 54.4, 53.6, 52.7, 46.5, 46.0, 45.7, 44.8, 43 .6, 42.0, 22.7, 21.4
HRMS (ESI + ): Calcd for [M + M] + , 588.8222, Found, 5888.2794 (-2.8mmu).
例4
 TMCyclen−4−AF及びTMCyclen−4−AF−Cuを以下のスキームで合成した。
Figure JPOXMLDOC01-appb-C000012
Example 4
TMCyclen-4-AF and TMCyclen-4-AF-Cu were synthesized by the following scheme.
Figure JPOXMLDOC01-appb-C000012
(a)1,4,7,10−テトラアザシクロドデカン(cyclen,614.6mg,3.57mmol)を脱水ジクロロメタン15mLに溶解し、ジイソプロピルエチルアミン(1.86g,14.35mmol)を加え、0℃にて攪拌した。そして、脱水ジクロロメタン10mLに溶解したp−トルエンスルホン酸クロリド(699.2mg,3.67mmol)を10分以上かけて滴下した。その後室温にて、アルゴン下で16時間攪拌し、2N NaOH水溶液で液性を塩基性にし、ジクロロメタンで抽出後に脱水し、溶媒を除去した。99%ギ酸(1.83g)に溶解し、37% ホルムアルデヒド水溶液(3.10mL,41.6mmol)を加え、110℃において8.5時間攪拌した。塩酸を加え、50℃で3.5時間攪拌した後、液性を塩基性にし、ジクロロメタンで抽出後脱水し、溶媒を除去した。さらに、HPLCで精製して、液性を塩基性にした後、ジクロロメタンで抽出後に脱水し、溶媒を除去して目的物(669.7mg,1.82mmol,y.51%)を得た。
H NMR(300MHz,CDCl)δ:7.53(d,2H,J=8.1Hz),7.14(d,2H,J=8.1Hz),3.10(t,4H,J=6.2Hz),2.65(t,4H,J=6.2Hz),2.32−2.36(m,8H),2.26(s,3H),2.11(s,6H),2.07(s,3H)
13C NMR(75MHz,CDCl)δ:142.8,135.8,129.4,126.9,56.0,55.3,55.1,47.5,43.5,43.0,21.2
HRMS(ESI):Calcd for[M+H],369.2324,Found,369.2298(−2.6mmu)
(A) 1,4,7,10-tetraazacyclododecane (cyclen, 614.6 mg, 3.57 mmol) was dissolved in 15 mL of dehydrated dichloromethane, and diisopropylethylamine (1.86 g, 14.35 mmol) was added thereto. Was stirred. Then, p-toluenesulfonic acid chloride (699.2 mg, 3.67 mmol) dissolved in 10 mL of dehydrated dichloromethane was added dropwise over 10 minutes. Thereafter, the mixture was stirred at room temperature under argon for 16 hours, basified with 2N NaOH aqueous solution, extracted with dichloromethane and dehydrated to remove the solvent. It was dissolved in 99% formic acid (1.83 g), 37% aqueous formaldehyde solution (3.10 mL, 41.6 mmol) was added, and the mixture was stirred at 110 ° C. for 8.5 hours. Hydrochloric acid was added and the mixture was stirred at 50 ° C. for 3.5 hours. The solution was made basic, extracted with dichloromethane and dehydrated, and the solvent was removed. Further, the product was purified by HPLC to make the liquid basic, followed by extraction with dichloromethane and dehydration. The solvent was removed to obtain the desired product (669.7 mg, 1.82 mmol, y. 51%).
1 H NMR (300 MHz, CDCl 3 ) δ: 7.53 (d, 2H, J = 8.1 Hz), 7.14 (d, 2H, J = 8.1 Hz), 3.10 (t, 4H, J = 6.2 Hz), 2.65 (t, 4H, J = 6.2 Hz), 2.32-2.36 (m, 8H), 2.26 (s, 3H), 2.11 (s, 6H) ), 2.07 (s, 3H)
13 C NMR (75 MHz, CDCl 3 ) δ: 142.8, 135.8, 129.4, 126.9, 56.0, 55.3, 55.1, 47.5, 43.5, 43.0 , 21.2
HRMS (ESI + ): Calcd for [M + H] + , 369.2324, Found, 369.2298 (−2.6 mmu)
(b)上記工程(a)で得られた化合物(669.7mg,1.82mmol)を濃硫酸5mLに溶解し、アルゴン下において110℃で11時間攪拌した。水で希釈後、2N NaOH溶液で液性を塩基性にしてジクロロメタンで抽出し、脱水後、溶媒を除去して目的物(348.7mg,1.63mmol,y.89%)を得た。
H NMR(300MHz,CDCl)δ:2.80(t,4H,J=5.0Hz),2.61(t,4H,J=5.0Hz),2.45−2.48(m,8H),2.36(s,6H),2.20(s,3H)
13C NMR(75MHz,CDCl)δ:55.6,53.6,53.3,47.0,45.2,21.4
LRMS(ESI):[M+H],215
(B) The compound obtained in the above step (a) (669.7 mg, 1.82 mmol) was dissolved in 5 mL of concentrated sulfuric acid and stirred at 110 ° C. for 11 hours under argon. After dilution with water, the solution was made basic with 2N NaOH solution and extracted with dichloromethane. After dehydration, the solvent was removed to obtain the desired product (348.7 mg, 1.63 mmol, y.89%).
1 H NMR (300 MHz, CDCl 3 ) δ: 2.80 (t, 4H, J = 5.0 Hz), 2.61 (t, 4H, J = 5.0 Hz), 2.45-2.48 (m , 8H), 2.36 (s, 6H), 2.20 (s, 3H)
13 C NMR (75 MHz, CDCl 3 ) δ: 55.6, 53.6, 53.3, 47.0, 45.2, 21.4
LRMS (ESI + ): [M + H] + , 215
(c)TMCyclen−4−AF
 クロロアセチルアミド−4−アミノフルオレセイン(73.2mg,172.7μmol)を脱水ジメチルホルムアミド40mLに溶解し、工程(b)で得られた化合物(117.4mg,547.7μmol)とジイソプロピルエチルアミン(371mg,2.87mmol)を加え、アルゴン下で加熱還流下に1晩攪拌した。溶媒を除去後、HPLCで精製してTMCyclen−4−AF(TFA塩)(42.2mg,42.6μmol,y.25%)を得た。
H NMR(300MHz,DO)δ:8.41(d,1H,J=2.2Hz),7.85(dd,1H,J=8.8,2.2Hz),7.27(d,2H,J=8.4Hz),7.19(d,1H,J=8.8Hz),6.90(dd,2H,J=8.4,2.2Hz),6.85(d,2H,J=2.2Hz),3.75(s,2H),2.90(s,6H),2.62−3.67(m,16H),2.41(s,3H)
13C NMR(75MHz,DO)δ:171.8,167.4,166.4,156.4,137.6,131.4,130.7,129.4,128.6,124.1,120.6,117.1,116.8,114.1,112.9,101.0,55.6,52.3,52.0,49.0,48.2,40.5,40.4
HRMS(ESI):Calcd for[M+H],602.2979,Found,602.2939(−4.0mmu)
(C) TMCyclen-4-AF
Chloroacetylamide-4-aminofluorescein (73.2 mg, 172.7 μmol) was dissolved in 40 mL of dehydrated dimethylformamide, and the compound (117.4 mg, 547.7 μmol) obtained in step (b) and diisopropylethylamine (371 mg, 2.87 mmol) was added and stirred overnight under reflux with heating under argon. After removal of the solvent, purification by HPLC gave TMCyclen-4-AF (TFA salt) (42.2 mg, 42.6 μmol, y.25%).
1 H NMR (300 MHz, D 2 O) δ: 8.41 (d, 1H, J = 2.2 Hz), 7.85 (dd, 1H, J = 8.8, 2.2 Hz), 7.27 ( d, 2H, J = 8.4 Hz), 7.19 (d, 1H, J = 8.8 Hz), 6.90 (dd, 2H, J = 8.4, 2.2 Hz), 6.85 (d , 2H, J = 2.2 Hz), 3.75 (s, 2H), 2.90 (s, 6H), 2.62-3.67 (m, 16H), 2.41 (s, 3H)
13 C NMR (75 MHz, D 2 O) δ: 171.8, 167.4, 166.4, 156.4, 137.6, 131.4, 130.7, 129.4, 128.6, 124. 1, 120.6, 117.1, 116.8, 114.1, 112.9, 101.0, 55.6, 52.3, 52.0, 49.0, 48.2, 40.5, 40.4
HRMS (ESI + ): Calcd for [M + H] + , 602.2979, Found, 602.2939 (−4.0 mmu)
(d)TMCyclen−4−AF−Cu
 CuSO五水和物を30mM HEPES緩衝液(pH7.4)に溶解し、1M CuSO水溶液を調製した。TMCyclen−4−AF(12.1mg,12.2μmol)をCuSO水溶液(1220μL,1.22mmol)に溶解し、室温にて4時間攪拌し、HPLCにて精製してTMCyclen−4−AF−Cu(9.52mg,y.quant)を得た。
HRMS(ESI):Calcd for[M−H],663.2118,Found,663.2106(−1.2mmu)
(D) TMCyclen-4-AF-Cu
CuSO 4 pentahydrate was dissolved in 30 mM HEPES buffer (pH 7.4) to prepare a 1M CuSO 4 aqueous solution. TMCyclen-AF (12.1 mg, 12.2 μmol) was dissolved in an aqueous CuSO 4 solution (1220 μL, 1.22 mmol), stirred at room temperature for 4 hours, purified by HPLC, and purified by TMCyclen-4-AF-Cu. (9.52 mg, y.quant) was obtained.
HRMS (ESI + ): Calcd for [M−H] + , 663.2118, Found, 663.2106 (−1.2 mmu)
例5
 Cyclne−4−AF−Cuの吸光及び蛍光スペクトルを測定した。吸収及び蛍光スペクトルは30mM HEPES緩衝液(pH7.4)中で測定した。蛍光スペクトルの測定ではCyclen−4−AF−Cuを491nmで励起した。蛍光量子収率測定では0.1N NaOH溶液中でフルオレセイン(Φfl=0.85)を蛍光標準として用いた。結果を図1(左側)及び表1に示す。Cyclen−4−AF−Cuの蛍光量子収率は低下していることが示された。同様にしてCyclen−4−AF(図1、右側)、TACN−4−AF(図2左側)、Cyclam−4−AF(図2、右側)、TMCyclen−4−AF(図3、左側)、及びTMCyclen−4−AF−Cu(図3、右側)の吸光及び蛍光スペクトルを測定した。
Example 5
The absorption and fluorescence spectra of Cyclne-4-AF-Cu were measured. Absorption and fluorescence spectra were measured in 30 mM HEPES buffer (pH 7.4). In the measurement of the fluorescence spectrum, Cyclen-4-AF-Cu was excited at 491 nm. In the fluorescence quantum yield measurement, fluorescein (Φ fl = 0.85) was used as a fluorescence standard in a 0.1N NaOH solution. The results are shown in FIG. 1 (left side) and Table 1. It was shown that the fluorescence quantum yield of Cyclen-4-AF-Cu was lowered. Similarly, Cyclen-4-AF (FIG. 1, right side), TACN-4-AF (left side of FIG. 2), Cyclam-4-AF (FIG. 2, right side), TMCyclen-4-AF (FIG. 3, left side), And the absorption and fluorescence spectrum of TMCyclen-4-AF-Cu (FIG. 3, right side) were measured.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
例6
 Cyclen−4−AF−Cuの反応性の評価を行った。1μM Cyclen−4−AF−Cuに、300秒後に10μM NaS(赤),10μM NaSと10mM GSH(緑),10mM GSH(黄)を添加し、また、無添加の実験をネガティブコントロール(青)として反応性を調べた。30mM HEPES緩衝液(pH7.4)中において491nmで励起し、516nmの蛍光強度を測定した。結果を図4に示す。Cyclen−4−AF−CuはNaSと反応後に蛍光上昇を示し、GSHと比較して選択性を有することが示された。また、Cyclen−4−AF−Cuは10mM GSH共存下中においても10μM NaS添加によって蛍光強度が上昇することが明らかとなった。
Example 6
The reactivity of Cyclen-4-AF-Cu was evaluated. 10 μM Na 2 S (red), 10 μM Na 2 S, 10 mM GSH (green), and 10 mM GSH (yellow) were added to 1 μM Cyclen-4-AF-Cu 300 seconds later, and the experiment without addition was negative control The reactivity was investigated as (blue). Excitation was performed at 491 nm in 30 mM HEPES buffer (pH 7.4), and the fluorescence intensity at 516 nm was measured. The results are shown in FIG. Cyclen-4-AF-Cu showed an increase in fluorescence after reaction with Na 2 S, indicating that it has selectivity compared to GSH. Cyclen-4-AF-Cu was also found to increase in fluorescence intensity when 10 μM Na 2 S was added even in the presence of 10 mM GSH.
例7
 Cyclen−4−AF−Cuを用いて生体内の硫化水素の測定が可能であるか否かを評価した。HeLa細胞を37℃、5% CO混合空気中にてダルペッコ改変イーグル培地(DMEM)に10% ウシ胎児血清(FBS)、1% ペニシリン、及び1% ストレプトマイシンを添加した培地中で培養した。ハンクス平衡塩溶液(HBSS)にて2回洗浄した。HBSS中のHeLa細胞に対して100μM Cyclen−4−AF−Cuを含むHBSS(0.1% DMSO)をマイクロインジェクション(領域1−4)した。蛍光顕微鏡にて470−490nmで励起し、515−550nmの蛍光強度を測定した。測定開始5分後に細胞外液に10mM NaSを添加した。この結果、マイクロインジェクションしたHeLa細胞内の領域1−4で蛍光強度の増大が観察された。図5の上段はNaS添加前(0sec)、中段はNaS添加後(360sec)、及び下段は蛍光強度の経時変化を示し、領域5及び6はマイクロインジェクションをしていない領域を示す。
Example 7
It was evaluated whether or not hydrogen sulfide in vivo can be measured using Cyclen-4-AF-Cu. HeLa cells were cultured in a medium supplemented with 10% fetal bovine serum (FBS), 1% penicillin, and 1% streptomycin in Dulbecco's modified Eagle medium (DMEM) at 37 ° C. in 5% CO 2 mixed air. Washed twice with Hanks balanced salt solution (HBSS). HBSS (0.1% DMSO) containing 100 μM Cyclen-4-AF-Cu was microinjected (region 1-4) into HeLa cells in HBSS. Excitation was performed at 470-490 nm with a fluorescence microscope, and the fluorescence intensity at 515-550 nm was measured. 5 minutes after the start of measurement, 10 mM Na 2 S was added to the extracellular fluid. As a result, an increase in fluorescence intensity was observed in the region 1-4 in the microinjected HeLa cells. The upper part of FIG. 5 is before Na 2 S addition (0 sec), the middle part is after addition of Na 2 S (360 sec), and the lower part is a change in fluorescence intensity with time, and regions 5 and 6 are regions that are not microinjected. .
 同様に、Cyclen−4−AF−Cu diacetateを用いてHeLa細胞への取り込みによる硫化水素の測定を行った結果を図6に示す。上記と同様にして培養したHela細胞を100μM Cyclen−4−AF−Cu diacetateを含むHBSSで37℃、2時間インキュベーションした。蛍光顕微鏡にて470−490nmで励起し、515−550nmの蛍光強度を測定した。測定開始210秒後に細胞外液に10mM NaSを添加した。HeLa細胞内外で蛍光強度の増大が観察された。図6の上段はNaS添加前(0sec)、中段はNaS添加後(240sec)、及び下段は蛍光強度の経時変化を示す。 Similarly, FIG. 6 shows the results of measurement of hydrogen sulfide by incorporation into HeLa cells using Cyclen-4-AF-Cu diacetate. Hela cells cultured as described above were incubated at 37 ° C. for 2 hours in HBSS containing 100 μM Cyclen-4-AF-Cu diacetate. Excitation was performed at 470-490 nm with a fluorescence microscope, and the fluorescence intensity at 515-550 nm was measured. 210 mM after the start of measurement, 10 mM Na 2 S was added to the extracellular fluid. Increased fluorescence intensity was observed inside and outside HeLa cells. The upper part of FIG. 6 shows before Na 2 S addition (0 sec), the middle part after Na 2 S addition (240 sec), and the lower part shows the change in fluorescence intensity with time.
例8
 TACN−4−AF単独、及び2当量のCu2+を加えたTACN−4−AFの吸収スペクトルと蛍光スペクトルを測定した。測定は30mM HEPESバッファー(pH7.4)中で行い、蛍光スペクトルの測定では491nmで励起した。Cu2+の添加により蛍光強度は著しく減少した(図7、上段左側:吸収スペクトル、上段右側:蛍光スペクトル)。また、1μM TACN−4−AFに2μM CuSOを加え、300秒後に100μM NaS(赤)、10μM NaS(緑)、又は10mM GSH(黄)を添加し、無添加の実験をネガティブコントロール(青)として反応性を調べた。30mM HEPES緩衝液(pH7.4)中において491nmで励起し、516nmの蛍光強度を測定した。この結果、TACN−4−AF+Cu2+はNaSと反応後、大きな蛍光上昇を示し、GSHと比較して硫化水素に対して高い選択性を有することが示された(図7、下段)。
Example 8
The absorption spectrum and fluorescence spectrum of TACN-4-AF alone and TACN-4-AF added with 2 equivalents of Cu 2+ were measured. The measurement was performed in 30 mM HEPES buffer (pH 7.4), and excitation was performed at 491 nm in the measurement of the fluorescence spectrum. Addition of Cu 2+ significantly reduced the fluorescence intensity (FIG. 7, upper left: absorption spectrum, upper right: fluorescence spectrum). Also, 2 μM CuSO 4 was added to 1 μM TACN-4-AF, and after 300 seconds, 100 μM Na 2 S (red), 10 μM Na 2 S (green), or 10 mM GSH (yellow) was added, and the experiment without addition was negative The reactivity was examined as a control (blue). Excitation was performed at 491 nm in 30 mM HEPES buffer (pH 7.4), and the fluorescence intensity at 516 nm was measured. As a result, TACN-4-AF + Cu 2+ showed a large increase in fluorescence after reaction with Na 2 S, indicating that it has a higher selectivity for hydrogen sulfide than GSH (FIG. 7, lower panel).
例9
 Cyclam−4−AF単独、及び2当量のCu2+を加えたCyclam−4−AFの吸収スペクトルと蛍光スペクトルを測定した。測定は30mM HEPESバッファー(pH7.4)中で行い、蛍光スペクトルの測定では491nmで励起した。Cu2+の添加により蛍光強度は著しく減少した(図8)。
Example 9
The absorption spectrum and fluorescence spectrum of Cyclam-4-AF alone and Cyclam-4-AF added with 2 equivalents of Cu 2+ were measured. The measurement was performed in 30 mM HEPES buffer (pH 7.4), and excitation was performed at 491 nm in the measurement of the fluorescence spectrum. Addition of Cu 2+ significantly decreased the fluorescence intensity (FIG. 8).
例10
 1μM Cyclam−4−AFに2μM CuSOを加え、300秒後に100μM NaS(赤)、10μM NaS(緑)、又は10mM GSH(黄)を添加し、無添加の実験をネガティブコントロール(青)として反応性を調べた。30mM HEPES緩衝液(pH7.4)中において491nmで励起し、516nmの蛍光強度を測定した。この結果、Cyclam−4−AF+Cu2+はNaSと反応後、蛍光上昇を示し、GSHと比較して選択性を有することが示された(図9上段)。同様にして、1μM TMCyclen−4−AF−Cuに対して、300秒後に100μM NaS(赤)、10μM NaS(緑)、又は10mM GSH(黄)を添加し、無添加の実験をネガティブコントロール(青)として反応性を調べたところ、TMCyclen−4−AF−CuもNaSと反応後に蛍光上昇を示し、GSHと比較して選択性を有することが示された(図9下段)。
Example 10
2 μM CuSO 4 was added to 1 μM Cyclam-4-AF, and after 300 seconds, 100 μM Na 2 S (red), 10 μM Na 2 S (green), or 10 mM GSH (yellow) was added. The reactivity was investigated as blue). Excitation was performed at 491 nm in 30 mM HEPES buffer (pH 7.4), and the fluorescence intensity at 516 nm was measured. As a result, Cyclam-4-AF + Cu 2+ after the reaction with Na 2 S, shows the fluorescence increase was shown to have a selectivity compared with GSH (Fig. 9 top). Similarly, 100 μM Na 2 S (red), 10 μM Na 2 S (green), or 10 mM GSH (yellow) was added to 1 μM TMCyclen-4-AF-Cu after 300 seconds. When the reactivity was examined as a negative control (blue), TMCyclen-4-AF-Cu also showed an increase in fluorescence after reaction with Na 2 S, indicating that it has selectivity compared to GSH (lower part of FIG. 9). ).
例11:3MST発現細胞のセルライセートを用いた硫化水素の検出
 3−メルカプトピルビン酸(3MP)を基質としてHSを産生する酵素である、3−メルカプトピルビン酸サルファートランスフェラーゼ(3MST)を発現するプラスミドをHEK293細胞に文献記載の方法により導入した(Antioxid.Redox Signal,11,703,2009)。そして100μM ジチオトレイトール、1% プロテアーゼ阻害剤カクテル(Sigma)を含んだ30mM HEPES緩衝液(pH7.4)に細胞を懸濁させ、超音波破砕機を用いてライセートにし、実験に用いた。同様にプラスミドを導入しないHEK293細胞もライセートにして実験に用いた。その後、1μM Cyclen−4−AF−Cuを加え、180秒後に100μM 3MPを添加し応答性を評価した。491nmで励起し、516nmの蛍光強度を測定した結果、3MSTを含むライセートに3MPを添加した場合において、顕著に蛍光強度が上昇することが示された(図10左図)。また、3−メルカプトピルビン酸の存在下10分後において、3MSTの有無によって有意な差(p<0.05)をもって、蛍光強度に差異が認められた(図10右図)。
Example 11: Detection of hydrogen sulfide using cell lysate of 3MST-expressing cells Express 3-mercaptopyruvate sulfate transferase (3MST), an enzyme that produces H 2 S using 3-mercaptopyruvate (3MP) as a substrate The plasmid was introduced into HEK293 cells by a method described in the literature (Antioxid. Redox Signal, 11, 703, 2009). The cells were suspended in 30 mM HEPES buffer (pH 7.4) containing 100 μM dithiothreitol and 1% protease inhibitor cocktail (Sigma), lysed using an ultrasonic crusher, and used for experiments. Similarly, HEK293 cells into which no plasmid was introduced were also lysed and used for the experiment. Then, 1 μM Cycle-4-AF-Cu was added, and 100 μM 3MP was added after 180 seconds to evaluate the responsiveness. As a result of excitation at 491 nm and measurement of fluorescence intensity at 516 nm, it was shown that when 3MP was added to a lysate containing 3MST, the fluorescence intensity significantly increased (left figure in FIG. 10). Further, after 10 minutes in the presence of 3-mercaptopyruvic acid, a difference was observed in fluorescence intensity with a significant difference (p <0.05) depending on the presence or absence of 3MST (the right diagram in FIG. 10).
例12:精製3MSTを用いた硫化水素の検出
 グルタチオン−S−トランスフェラーゼ(GST)タグ融合3−メルカプトピルビン酸スルファトランスフェラーゼ(3MST)精製タンパク質を用いて、3−メルカプトピルビン酸(3MP)を基質として産生されるHSがCyclen−4−AF−Cuによって検出可能かを評価した。1μM Cyclen−4−AF−Cuを加え、60秒後にGSTタグ融合3MST(赤、緑)、またはGSTタグ(黄、青)を添加した。さらに、120秒後に100μM 3MPまたは同量のHEPES緩衝液(pH7.4)を添加し、491nmで励起し、516nmの蛍光強度を測定した。その結果、Cyclen−4−AF−Cuは精製タンパク質であるGSTタグ融合3MSTと3MPの添加によって産生されたHSに応答して、顕著な蛍光強度上昇を示した(図11左図)。また、ハイスループットスクリーニングを目指して96ウェルプレートにおいても酵素反応によって産生されるHSを検出可能かを評価した。そして3MPまたは同量のHEPES緩衝液(pH7.4)を添加し37℃で60分間インキュベーションし、蛍光を測定した。その結果、キュベット中と同様の結果を示し、Cyclen−4−AF−Cuを用いることで、96ウェルプレートにおいてもHS産生を検出可能であることが示された(図11右図)。
Example 12: Detection of hydrogen sulfide using purified 3MST Glutathione-S-transferase (GST) -tagged 3-mercaptopyruvate sulfatransferase (3MST) purified protein and 3-mercaptopyruvate (3MP) as substrate It was evaluated whether the produced H 2 S was detectable by Cyclen-4-AF-Cu. 1 μM Cyclen-4-AF-Cu was added, and GST tag fusion 3MST (red, green) or GST tag (yellow, blue) was added 60 seconds later. Further, after 120 seconds, 100 μM 3MP or the same amount of HEPES buffer (pH 7.4) was added, and excitation was performed at 491 nm, and fluorescence intensity at 516 nm was measured. As a result, Cyclen-4-AF-Cu showed a significant increase in fluorescence intensity in response to H 2 S produced by the addition of GST-tag-fused 3MST and 3MP, which are purified proteins (left panel in FIG. 11). In addition, with the aim of high-throughput screening, it was evaluated whether H 2 S produced by an enzyme reaction could be detected in a 96-well plate. Then, 3MP or the same amount of HEPES buffer (pH 7.4) was added and incubated at 37 ° C. for 60 minutes, and fluorescence was measured. As a result, the same result as in the cuvette was shown, and it was shown that H 2 S production can be detected even in a 96-well plate by using Cyclen-4-AF-Cu (the right diagram in FIG. 11).
 本発明の化合物は、生体内に大量に存在する還元型グルタチオンの影響を受けることなく高感度かつ特異的に硫化水素を測定することができる蛍光プローブとして利用することができる。 The compound of the present invention can be used as a fluorescent probe capable of measuring hydrogen sulfide with high sensitivity and specificity without being affected by reduced glutathione present in large quantities in the living body.

Claims (10)

  1. 下記の一般式(IA)又は(IB):
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Rは下記式(A):
    Figure JPOXMLDOC01-appb-C000002
    (式中、p、q、r、及びsはそれぞれ独立に2又は3の整数を示し、tは0又は1を示し、R11、R12、及びR13はそれぞれ独立に水素原子又は炭素原子数1~6のアルキル基を示す)で表される基を示し;Rは水素原子又はベンゼン環上に置換する1個ないし3個の一価の置換基を示し;R及びRはそれぞれ独立に水素原子又はハロゲン原子を示し;R及びRはそれぞれ独立に水素原子、アルキルカルボニル基、又はアルキルカルボニルオキシアルキル基を示し;Rは水素原子、アルキル基、又はアルコキシアルキル基を示し;R及びRはそれぞれ独立に水素原子、ハロゲン原子、又は−(CH−N(R14)(R15)(式中、xは1ないし4の整数を示し、R14及びR15はそれぞれ独立に−(CH−COOR16(式中、yは1ないし4の整数を示し、R16は水素原子、アルキルカルボニル基、又はアルキルカルボニルオキシアルキル基を示す)で表される基を示す)で表される基を示す〕で表される化合物又はその塩。
    The following general formula (IA) or (IB):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 represents the following formula (A):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, p, q, r, and s each independently represent an integer of 2 or 3, t represents 0 or 1, and R 11 , R 12 , and R 13 each independently represent a hydrogen atom or a carbon atom. R 2 represents a hydrogen atom or 1 to 3 monovalent substituents substituted on a benzene ring; R 3 and R 4 represent Each independently represents a hydrogen atom or a halogen atom; R 5 and R 6 each independently represent a hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxyalkyl group; and R 7 represents a hydrogen atom, an alkyl group, or an alkoxyalkyl group. R 8 and R 9 are each independently a hydrogen atom, a halogen atom, or — (CH 2 ) x —N (R 14 ) (R 15 ) (wherein x represents an integer of 1 to 4; R 14 and R 15 are each The standing - (CH 2) y -COOR 16 ( wherein, y represents an integer of 1 4, R 16 is a hydrogen atom, an alkylcarbonyl group, or an alkyl carbonyl an oxy alkyl group) a group represented by Or a salt thereof.
  2. ベンゼン環上に存在するRがキサンテン環の結合部位に対してパラ位に結合しており、p、q、r、及びsが2であり、tが1であり、R11、R12、及びR13が水素原子であり、かつRが水素原子である請求項1に記載の一般式(IA)又は(IB)で表される化合物又はその塩。 R 1 present on the benzene ring is bonded to the bonding position of the xanthene ring at the para position, p, q, r, and s are 2, t is 1, and R 11 , R 12 , And R 13 is a hydrogen atom, and R 2 is a hydrogen atom, The compound represented by the general formula (IA) or (IB) or a salt thereof according to claim 1.
  3. 及びRが水素原子であり、R及びRがそれぞれ独立に水素原子、アセチル基、又はアセチルオキシメチル基であり、Rが水素原子、アルキル基、又はメトキシメチル基であり、R及びRがともに水素原子である請求項1又は2に記載の一般式(IA)又は(IB)で表される化合物又はその塩。 R 3 and R 4 are a hydrogen atom, R 5 and R 6 are each independently a hydrogen atom, an acetyl group, or an acetyloxymethyl group, R 7 is a hydrogen atom, an alkyl group, or a methoxymethyl group, The compound represented by general formula (IA) or (IB) or a salt thereof according to claim 1 or 2, wherein R 8 and R 9 are both hydrogen atoms.
  4. 下記の一般式(IIA)又は(IIB):
    Figure JPOXMLDOC01-appb-C000003
    〔式中、R21は下記式(B):
    Figure JPOXMLDOC01-appb-C000004
    (式中、d、e、f、及びgはそれぞれ独立に2又は3の整数を示し、hは0又は1を示し、R31、R32、及びR33はそれぞれ独立に水素原子又は炭素原子数1~6のアルキル基を示す)で表される基を示し;R22は水素原子又はベンゼン環上に置換する1個ないし3個の一価の置換基を示し;R23及びR24はそれぞれ独立に水素原子又はハロゲン原子を示し;R25及びR26はそれぞれ独立に水素原子、アルキルカルボニル基、又はアルキルカルボニルオキシアルキル基を示し;R27は水素原子、アルキル基、又はアルコキシアルキル基を示し;R28及びR29はそれぞれ独立に水素原子、ハロゲン原子、又は−(CH−N(R34)(R35)(式中、mは1ないし4の整数を示し、R34及びR35はそれぞれ独立に−(CH−COOR36(式中、nは1ないし4の整数を示し、R36は水素原子、アルキルカルボニル基、又はアルキルカルボニルオキシアルキル基を示す)で表される基を示す)で表される基を示す〕で表される化合物又はその塩。
    The following general formula (IIA) or (IIB):
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R 21 represents the following formula (B):
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, d, e, f, and g each independently represent an integer of 2 or 3, h represents 0 or 1, and R 31 , R 32 , and R 33 each independently represent a hydrogen atom or a carbon atom. R 22 represents a hydrogen atom or 1 to 3 monovalent substituents substituted on a benzene ring; R 23 and R 24 represent Each independently represents a hydrogen atom or a halogen atom; R 25 and R 26 each independently represent a hydrogen atom, an alkylcarbonyl group, or an alkylcarbonyloxyalkyl group; R 27 represents a hydrogen atom, an alkyl group, or an alkoxyalkyl group; R 28 and R 29 are each independently a hydrogen atom, a halogen atom, or — (CH 2 ) m —N (R 34 ) (R 35 ) (wherein m represents an integer of 1 to 4; R 34 as well as 35 are each independently - (CH 2) n -COOR 36 ( wherein, n represents an integer of 1 to 4, R 36 is a hydrogen atom, an alkyl group, or an alkylcarbonyloxy group) is represented by Or a salt thereof.
  5. ベンゼン環上に存在するR21がキサンテン環の結合部位に対してパラ位に結合しており、d、e、f、及びgが2であり、hが1であり、R31、R32、及びR33が水素原子であり、かつR22が水素原子である請求項4に記載の一般式(IIA)又は(IIB)で表される化合物又はその塩。 R 21 present on the benzene ring is bonded to the bonding position of the xanthene ring in the para position, d, e, f, and g are 2, h is 1, R 31 , R 32 , And R 33 is a hydrogen atom, and R 22 is a hydrogen atom, The compound represented by formula (IIA) or (IIB) or a salt thereof according to claim 4.
  6. 23及びR24が水素原子であり、R25及びR26がそれぞれ独立に水素原子、アセチル基、又はアセチルオキシメチル基であり、R27が水素原子、アルキル基、又はメトキシメチル基であり、R28及びR29がともに水素原子である請求項4又は5に記載の一般式(IIA)又は(IIB)で表される化合物又はその塩。 R 23 and R 24 are a hydrogen atom, R 25 and R 26 are each independently a hydrogen atom, an acetyl group, or an acetyloxymethyl group, R 27 is a hydrogen atom, an alkyl group, or a methoxymethyl group, The compound represented by the general formula (IIA) or (IIB) or a salt thereof according to claim 4 or 5, wherein R 28 and R 29 are both hydrogen atoms.
  7. 請求項1ないし3のいずれか1項に記載の一般式(IA)又は(IB)で表される化合物又はその塩を含む硫化水素測定用蛍光プローブ。 A fluorescent probe for measuring hydrogen sulfide comprising the compound represented by the general formula (IA) or (IB) according to any one of claims 1 to 3 or a salt thereof.
  8. 請求項4ないし6のいずれか1項に記載の一般式(IIA)又は(IIB)で表される化合物又はその塩を含む硫化水素測定用蛍光プローブ。 A fluorescent probe for measuring hydrogen sulfide comprising the compound represented by the general formula (IIA) or (IIB) according to any one of claims 4 to 6 or a salt thereof.
  9. 硫化水素の測定方法であって、下記の工程:
    (a)請求項1ないし3のいずれか1項に記載の一般式(IA)又は(IB)で表される化合物又はその塩を硫化水素と接触させる工程;及び
    (b)上記工程(a)で生成した上記一般式(IIA)又は(IIB)で表される化合物又はその塩の蛍光を測定する工程
    を含む方法。
    A method for measuring hydrogen sulfide, comprising the following steps:
    (A) a step of bringing the compound represented by the general formula (IA) or (IB) or a salt thereof according to any one of claims 1 to 3 into contact with hydrogen sulfide; and (b) the step (a). A method comprising a step of measuring the fluorescence of the compound represented by the above general formula (IIA) or (IIB) or a salt thereof generated in (1).
  10. 硫化水素の測定方法であって、下記の工程:
    (a)請求項4ないし6のいずれか1項に記載の一般式(IIA)又は(IIB)で表される化合物又はその塩と二価銅イオンとを反応させて上記一般式(IA)又は(IB)で表される化合物又はその塩を生成させる工程;
    (b)上記工程(a)で生成した上記一般式(IA)又は(IB)で表される化合物又はその塩と硫化水素とを接触させる工程;及び
    (c)上記工程(b)で生成した上記一般式(IIA)又は(IIB)で表される化合物又はその塩の蛍光を測定する工程
    を含む方法。
    A method for measuring hydrogen sulfide, comprising the following steps:
    (A) A compound represented by the general formula (IIA) or (IIB) according to any one of claims 4 to 6 or a salt thereof and a divalent copper ion are reacted to form the above general formula (IA) or A step of producing a compound represented by (IB) or a salt thereof;
    (B) a step of bringing the compound represented by the general formula (IA) or (IB) or a salt thereof generated in the step (a) into contact with hydrogen sulfide; and (c) the step (b). The method including the process of measuring the fluorescence of the compound or its salt represented by the said general formula (IIA) or (IIB).
PCT/JP2012/061300 2011-04-22 2012-04-20 Fluorescent probe for measuring hydrogen sulfide WO2012144654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-095598 2011-04-22
JP2011095598A JP2014133704A (en) 2011-04-22 2011-04-22 Fluorescent probe for measuring hydrogen sulfide

Publications (1)

Publication Number Publication Date
WO2012144654A1 true WO2012144654A1 (en) 2012-10-26

Family

ID=47041744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061300 WO2012144654A1 (en) 2011-04-22 2012-04-20 Fluorescent probe for measuring hydrogen sulfide

Country Status (2)

Country Link
JP (1) JP2014133704A (en)
WO (1) WO2012144654A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131205A (en) * 2013-02-04 2013-06-05 大连理工大学 Rhodamine fluorochrome and preparation method and application of rhodamine fluorochrome
WO2014136781A1 (en) * 2013-03-04 2014-09-12 国立大学法人 東京大学 Fluorescent probe
WO2014153624A1 (en) * 2013-03-28 2014-10-02 The University Of Sydney Antibacterial compounds
CN104419401A (en) * 2013-08-28 2015-03-18 苏州罗兰生物科技有限公司 Fluorescent probe for detecting hydrogen sulfide by virtue of fluorescence enhancement as well as synthetic method and application of fluorescent probe
CN105038763A (en) * 2015-06-04 2015-11-11 济南大学 Fluorescent probe for identifying hydrogen sulfide in lysosome and application thereof
KR20170138158A (en) 2016-06-07 2017-12-15 경북대학교 산학협력단 Composition for detecting hydrogen sulfide and method for detecting hydrogen sulfide using the same
CN107686479A (en) * 2017-09-30 2018-02-13 湖南师范大学 A kind of near infrared fluorescent probe compound and its preparation method and application
CN109265440A (en) * 2018-12-13 2019-01-25 中国科学院合肥物质科学研究院 The preparation method of nitrogen heterocycles fluorescence probe and the application in sulfurated hydrogen detection
CN114539280A (en) * 2020-11-26 2022-05-27 佳能株式会社 Novel compound and structure for detecting hydrogen sulfide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102280948B1 (en) * 2019-11-28 2021-07-23 한국과학기술연구원 Fluorescent probe for protein-acetylaton detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238650A (en) * 2006-03-03 2007-09-20 Kyoto Univ Rare earth metal complex and fluorescent material using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238650A (en) * 2006-03-03 2007-09-20 Kyoto Univ Rare earth metal complex and fluorescent material using the same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AITA KAZUKI ET AL.: "Development of a novel neodymium compound for in vivo fluorescence imaging", LUMINESCENCE, vol. 22, no. 5, 2007, pages 455 - 461, XP009147455, DOI: doi:10.1002/bio.984 *
ALEXANDER R. LIPPERT ET AL.: "Reaction-Based Fluorescent Probes for Selective Imaging of Hydrogen Sulfide in Living Cells", J. AM. CHEM. SOC., vol. 113, 15 June 2011 (2011-06-15), pages 10078 - 10080 *
DIEGO JIMENEZ ET AL.: "A New Chromo- chemodosimeter Selective for Sulfide Anion", J. AM. CHEM. SOC., 2003, pages 9000 - 9001 *
KIYOSHI SASAKURA ET AL.: "Development of a Highly Selective Fluorescence Probe for Hydrogen Sulfide", J. AM. CHEM. SOC., vol. 133, 14 October 2011 (2011-10-14), pages 18003 - 18005 *
MYUNG GIL CHOI ET AL.: "Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein", CHEM. COMMUN., 2009, pages 7390 - 7392 *
SHIN MIZUKAMI ET AL.: "A Fluorescent Anion Sensor That Works in Neutral Aqueous Solution for Bioanalytical Application", J. AM. CHEM. SOC., vol. 124, 2002, pages 3920 - 3925 *
TOHRU KOIKE ET AL.: "A Novel Biomimetic Zinc(II) -Fluorophore, Dansylamidoethyl-Pendant Macrocyclic Tetraamine 1,4,7,10- Tetraazacyclododecane (Cyclen)", J. AM. CHEM. SOC., vol. 118, 1996, pages 12696 - 12703, XP001042265, DOI: doi:10.1021/ja962527a *
XIAO-FENG YANG ET AL.: "A fluorescein-based fluorogenic and chromogenic chemodosimeter for the sensitive detection of sulfide anion in aqueous solution", ANALYTICA CHIMICA ACTA, vol. 631, 2009, pages 91 - 95, XP025713794, DOI: doi:10.1016/j.aca.2008.10.037 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131205A (en) * 2013-02-04 2013-06-05 大连理工大学 Rhodamine fluorochrome and preparation method and application of rhodamine fluorochrome
WO2014136781A1 (en) * 2013-03-04 2014-09-12 国立大学法人 東京大学 Fluorescent probe
WO2014153624A1 (en) * 2013-03-28 2014-10-02 The University Of Sydney Antibacterial compounds
CN104419401A (en) * 2013-08-28 2015-03-18 苏州罗兰生物科技有限公司 Fluorescent probe for detecting hydrogen sulfide by virtue of fluorescence enhancement as well as synthetic method and application of fluorescent probe
CN105038763A (en) * 2015-06-04 2015-11-11 济南大学 Fluorescent probe for identifying hydrogen sulfide in lysosome and application thereof
KR20170138158A (en) 2016-06-07 2017-12-15 경북대학교 산학협력단 Composition for detecting hydrogen sulfide and method for detecting hydrogen sulfide using the same
CN107686479A (en) * 2017-09-30 2018-02-13 湖南师范大学 A kind of near infrared fluorescent probe compound and its preparation method and application
CN109265440A (en) * 2018-12-13 2019-01-25 中国科学院合肥物质科学研究院 The preparation method of nitrogen heterocycles fluorescence probe and the application in sulfurated hydrogen detection
CN109265440B (en) * 2018-12-13 2020-04-07 中国科学院合肥物质科学研究院 Preparation method of azacyclo fluorescent probe and application of azacyclo fluorescent probe in hydrogen sulfide detection
CN114539280A (en) * 2020-11-26 2022-05-27 佳能株式会社 Novel compound and structure for detecting hydrogen sulfide

Also Published As

Publication number Publication date
JP2014133704A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
WO2012144654A1 (en) Fluorescent probe for measuring hydrogen sulfide
Zeng et al. A distinctive mitochondrion-targeting, in situ-activatable near-infrared fluorescent probe for visualizing sulfur dioxide derivatives and their fluctuations in vivo
JP5228190B2 (en) Peroxynitrite fluorescent probe
EP3096143B1 (en) Iron(ii) ion detection agent and detection method using same
Goswami et al. CHEF induced highly selective and sensitive turn-on fluorogenic and colorimetric sensor for Fe 3+
Liu et al. Synthesis, crystal structure and living cell imaging of a Cu 2+-specific molecular probe
WO2012111818A1 (en) Fluorescent probe
WO2014106957A1 (en) ASYMMETRICAL Si RHODAMINE AND RHODOL SYNTHESIS
Huang et al. A novel near-infrared fluorescent hydrogen sulfide probe for live cell and tissue imaging
CN103436253B (en) Rhodamine fluorescent probe for detecting ferrous ion, and preparation method thereof
WO2010126077A1 (en) Near-infrared fluorescent compound
Ismail et al. A julolidine-fused coumarin-NBD dyad for highly selective and sensitive detection of H2S in biological samples
Liu et al. A long wavelength emission two-photon fluorescent probe for highly selective detection of cysteine in living cells and an inflamed mouse model
Liu et al. A squaraine-based red emission off–on chemosensor for biothiols and its application in living cells imaging
More et al. Molecular design of fluorescent pH sensors based on reduced rhodol by structure-pKa relationship for imaging of lysosome
Liu et al. A novel 3-hydroxychromone fluorescent probe for hydrogen sulfide based on an excited-state intramolecular proton transfer mechanism
Liu et al. A new coumarin-based fluorescent probe for selective recognition of Cu2+ and S2− in aqueous solution and living cells
WO2017078623A1 (en) Background-free fluorescent probes for live cell imaging
Shao et al. Identification of fatty liver disease at diverse stages using two-photon absorption of triphenylamine-based BODIPY analogues
CN114539183B (en) Lipid-droplet targeting and biological thiol-sensitive fluorescent probe for cancer cell tissue diagnosis and preparation and application thereof
Guo et al. Novel dual-site fluorescent probe for monitoring cysteine and sulfite in living cells
CN102093270A (en) Stilbene two-photon fluorescence probe for detecting intracellular silver ions
US7696245B2 (en) Fluorescent probe for zinc
Wu et al. A novel near-infrared xanthene-based fluorescent probe for detection of thiophenol in vitro and in vivo
JPWO2018174253A1 (en) Nitrobenzene derivatives or their salts and their uses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP