WO2012144417A1 - Coating film - Google Patents

Coating film Download PDF

Info

Publication number
WO2012144417A1
WO2012144417A1 PCT/JP2012/060031 JP2012060031W WO2012144417A1 WO 2012144417 A1 WO2012144417 A1 WO 2012144417A1 JP 2012060031 W JP2012060031 W JP 2012060031W WO 2012144417 A1 WO2012144417 A1 WO 2012144417A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating
coating layer
group
oxazoline
Prior art date
Application number
PCT/JP2012/060031
Other languages
French (fr)
Japanese (ja)
Inventor
神田俊宏
藤田真人
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to KR1020137015704A priority Critical patent/KR101768461B1/en
Publication of WO2012144417A1 publication Critical patent/WO2012144417A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • C08J2433/26Homopolymers or copolymers of acrylamide or methacrylamide

Definitions

  • the present invention relates to a coating film having excellent antistatic properties and excellent adhesion to various topcoats.
  • Biaxially stretched polyester film is excellent in transparency, dimensional stability, mechanical properties, heat resistance, electrical properties, etc., and is used in various fields.
  • optical members such as polarizing plates, retardation plates and laminates conforming thereto, and substrates for optical films such as lens sheets used for liquid crystal displays such as computers and televisions. Is increasing.
  • polyester films are characterized by the fact that they are easily charged due to static electricity as a common problem with plastic films. For this reason, problems such as poor running performance of processed films or processed products, attracting ambient dust, etc., and when optical films are used, multiple films stick to each other due to static electricity, causing the films to bend and causing unevenness in image quality. Problems arise.
  • Patent Documents 1 and 2 There is also a method of providing a coating layer having antistatic performance on the film for suppressing the charging of the polyester film.
  • the present invention has been made in view of the above-mentioned problems, and the problem to be solved is to provide a coating film which has been considered to be incompatible with the past, and which has both adhesiveness and antistatic performance at a high level. It is in.
  • the gist of the present invention is a coating film having a coating layer having a thickness of 0.01 to 0.07 ⁇ m on at least one surface of a polyester film, wherein the coating layer has a hydrophilic group derived from a reactive emulsifier as a molecule. It exists in the coating film characterized by being a coating layer formed from the coating agent containing the acrylic resin (A) which has in it, the compound (B) which has a quaternary ammonium group, and an oxazoline type crosslinking agent (C). .
  • the present invention it is possible to provide a coating film that has been considered to be incompatible with each other at a high level of adhesion and antistatic performance, and the industrial value of the present invention is high.
  • the base film of the coated film of the present invention is made of polyester.
  • polyesters include dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, 4,4′-diphenyldicarboxylic acid, 1,4-cyclohexyldicarboxylic acid or esters thereof.
  • It is a polyester produced by melt polycondensation with glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, and 1,4-cyclohexanedimethanol. Polyesters composed of these acid components and glycol components can be produced by arbitrarily using a commonly used method.
  • a transesterification reaction between a lower alkyl ester of an aromatic dicarboxylic acid and a glycol, or a direct esterification of an aromatic dicarboxylic acid and a glycol, to form a substantially bisglycol of an aromatic dicarboxylic acid A method is employed in which an ester or a low polymer thereof is formed and then polycondensed by heating under reduced pressure.
  • an aliphatic dicarboxylic acid may be copolymerized.
  • polyester of the present invention examples include polyethylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, and the like. It may be a polymerized polyester and may contain other components and additives as necessary.
  • particles can be contained for the purpose of ensuring the running property of the film and preventing scratches.
  • examples of such particles include inorganic particles such as silica, calcium carbonate, magnesium carbonate, calcium phosphate, kaolin, talc, aluminum oxide, titanium oxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, and molybdenum sulfide.
  • organic particles such as crosslinked polymer particles and calcium oxalate, and precipitated particles during the polyester production process can be used.
  • the particle size and content of the particles used are selected according to the use and purpose of the film, but the average particle size (d50) is usually 0.01 to 3 ⁇ m, preferably 0.02 to 2.5 ⁇ m, more preferably Is in the range of 0.03 to 2 ⁇ m. If the average particle size exceeds 3.0 ⁇ m, the surface roughness of the film may become too rough, or the particles may easily fall off from the film surface. When the average particle size is less than 0.01 ⁇ m, the surface roughness is too small and sufficient slipperiness may not be obtained.
  • the particle content is usually in the range of 0.0003 to 1.0% by weight, preferably 0.0005 to 0.5% by weight, based on the polyester.
  • the particle content is less than 0.0003% by weight, the slipperiness of the film may be insufficient.
  • the content exceeds 1.0% by weight, the transparency of the film is poor. It may be enough.
  • it can also be configured so as not to substantially contain particles.
  • various stabilizers, lubricants, antistatic agents and the like can be appropriately added to the film.
  • the haze of the coating film of this invention is 10% or less. More preferably, it is 5% or less, More preferably, it is 3% or less. If it is larger than this range, it may be difficult to use in optical film applications.
  • a film forming method of the film of the present invention a generally known film forming method can be adopted, and there is no particular limitation.
  • a sheet obtained by melt extrusion is first stretched 2 to 6 times at 70 to 145 ° C. by a roll stretching method to obtain a uniaxially stretched polyester film, and then perpendicular to the previous stretching direction in a tenter.
  • a film can be obtained by stretching 2 to 6 times in the direction at 80 to 160 ° C. and further performing heat treatment at 150 to 250 ° C. for 1 to 600 seconds. Further, at this time, a method of relaxing 0.1 to 20% in the longitudinal direction and / or the transverse direction in the heat treatment zone and / or the cooling zone at the heat treatment outlet is preferable.
  • the polyester film in the present invention has a single layer or a multilayer structure.
  • the surface layer and the inner layer, or both the surface layer and each layer can be made of different polyesters depending on the purpose.
  • the coating layer of the present invention can be provided by either a so-called off-line coating in which a coating layer is provided later on a formed film or a so-called in-line coating in which a coating layer is provided during film formation.
  • it is preferably provided by in-line coating, particularly a coating stretching method in which stretching is performed after coating.
  • In-line coating is a method of coating within the process of manufacturing a polyester film. Specifically, it is a method of coating at any stage from melt extrusion of polyester to biaxial stretching and then heat setting and winding. is there. Normally, it is coated on either a substantially amorphous unstretched sheet obtained by melting and quenching, then a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction), or a biaxially stretched film before heat setting. To do.
  • a coating stretching method a method of stretching in the transverse direction after coating on a uniaxially stretched film is excellent. According to such a method, film formation and coating layer coating can be performed at the same time, so there is an advantage in manufacturing cost. Stabilize.
  • the polyester film before being biaxially stretched is first coated with the resin layer constituting the coating layer, and then the base film and the coating layer are firmly adhered by stretching the film and the coating layer simultaneously. become.
  • the biaxial stretching of the polyester film is achieved by stretching the film in the lateral direction while holding the film end with a tenter clip, so that the film is constrained in the longitudinal / lateral direction, and no wrinkles or the like are formed in the heat setting. High temperature can be applied while maintaining the nature. Therefore, since the heat treatment performed after coating can be performed at a high temperature that cannot be achieved by other methods, the film forming property of the coating layer is improved, and the coating layer and the polyester film are firmly adhered.
  • the uniformity of the coating layer, the improvement of the film forming property, and the adhesion between the coating layer and the film often produce preferable characteristics.
  • heat resistance is required for the resin used as the coating layer, it is necessary to sufficiently study the selection of the resin to be used.
  • the coating solution to be used is preferably an aqueous solution or an aqueous dispersion for safety reasons in terms of handling, working environment, but water is the main medium and does not exceed the gist of the present invention. If so, an organic solvent may be contained.
  • the coating layer of the present invention comprises a coating solution containing an acrylic resin (A) having a hydrophilic group derived from a reactive emulsifier in its molecule (A), a compound (B) having a quaternary ammonium group, and an oxazoline crosslinking agent (C). It can be obtained by coating, drying and curing on a film.
  • the coating solution may contain other components.
  • the resulting coating layer contains both unreacted products and reaction products of each component, and the ratio of the reaction product and unreacted product depends on the curing conditions. It can be changed as appropriate.
  • the layer When the layer is thinned, the total amount of antistatic components is reduced, and the antistatic performance is lowered.
  • the ratio of the antistatic component to the effective component of the entire coating layer is increased instead of increasing the thickness of the coating layer, if these components have poor adhesion, the resulting coating layer also has high adhesion. I wouldn't.
  • the acrylic resin (A) is a polymer composed of a polymerizable monomer having a carbon-carbon double bond, as typified by an acrylic or methacrylic monomer.
  • Examples of the polymerizable monomer having a carbon-carbon double bond include various carboxyl group-containing monomers such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, citraconic acid, and the like.
  • hydroxyl group-containing monomers such as salts, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, monobutylhydroxy fumarate, monobutylhydroxy itaconate ,
  • Various (meth) acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, (meth) acrylimide, di Acetone acrylic
  • nitrogen-containing vinyl monomers such as N-methylolacrylamide or (meth) acrylonitrile, various styrene derivatives such as styrene, ⁇ -methylstyrene, divinylbenzene, vinyltoluene, vinyl acetate, vinyl propionate, etc.
  • an acrylic resin by polymerizing such monomers in the present invention, it is preferably obtained in the form of an aqueous dispersion using an emulsion polymerization method in which monomers are dispersed and polymerized in water.
  • An emulsifier is used to disperse the monomer in water.
  • the reactive emulsifier here refers to an emulsifier having a radical polymerizable double bond in the molecule and copolymerizing in the resin during the polymerization of the acrylic resin. It is particularly preferable that it is nonionic, and in that case, a hydrophilic group using an alkylene oxide is preferable. In the case of an anionic property, a sulfate group is preferable as the hydrophilic group.
  • the average dispersion particle size of the obtained acrylic resin aqueous dispersion is usually 0.01 to 0.2 ⁇ m, preferably 0.02 to 0.09 ⁇ m.
  • the average dispersed particle size is larger than the above range, the appearance and adhesion of the resulting coating layer tend to be inferior. If it is smaller than the above range, the adhesiveness tends to be inferior.
  • the compound (B) having a quaternary ammonium group refers to a compound having a quaternized ammonium group in the molecule, and is particularly preferably a polymer compound. Moreover, it is preferable that it is a water-soluble compound.
  • a polymer containing a monomer having a quaternary ammonium group and an unsaturated double bond as components can be used.
  • Such a polymer include a polymer having a constituent represented by the following formula 1 or 2 as a repeating unit. These homopolymers and copolymers, and other plural components may be copolymerized.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 2 is —O— or —NH—
  • R 3 is —R 7 — or —R 7 —AR 8.
  • R 7 and R 8 are an optionally substituted alkylene group having 1-6 carbon atoms
  • A represents -O-, -NH- or -N (CH 3 ) 2 + -)
  • R 4 , R 5 and R 6 are each a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • X ⁇ is a monovalent anion.
  • R 1 and R 2 are each a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and X ⁇ is a monovalent anion.
  • the polymer having the constituent represented by the above formula 1 is preferable because of the excellent transparency of the resulting coating layer.
  • the coating stretching method may be inferior in heat resistance, and when used in the coating stretching method, X ⁇ is preferably not a halogen.
  • the component represented by the above formula (2) and other compounds in which the quaternary ammonium base is in the polymer skeleton are excellent in heat resistance, and it is easy to obtain antistatic properties even in a coating stretching method.
  • the oxazoline-based crosslinking agent (C) refers to a compound having an oxazoline group in the molecule.
  • the compound having an oxazoline group can be synthesized using a monomer having an oxazoline group as at least one of raw material monomers.
  • Examples of such monomers include 2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazoline, and 4,4-dimethyl-2- Vinyl-5,6-dihydro-4H-1-oxazine, 4,4,6-trimethyl-2-vinyl-5,6-dihydro-4H-1,3-oxazine, 2-isopropenyl-2-oxazoline, 4, 4-dimethyl-2-isopropenyl-2-oxazoline, 4-acryloyl-oxymethyl-2,4-dimethyl-2-oxazoline, 4-methacryloyl-oxymethyl-2,4-dimethyl-2-oxazoline, 4-methacryloyl -Oshimethyl-2-phenyl-4-methyl-2-oxazoline, 2- (4-vinylphenyl) -4,4-dimethyl-2-oxy Gelsolin, 4-ethyl-4-hydroxymethyl-2-isoprop
  • the other component is not particularly limited as long as it is a monomer that can be copolymerized with an oxazoline group-containing monomer.
  • a resin copolymerized with a vinyl oxazoline monomer using a monomer containing a vinyl group such as (meth) acrylic acid esters, (meth) acrylamides, and styrene monomers, has high reactivity and is industrially obtained. Cheap.
  • components other than those described above can be included as necessary.
  • surfactants other binders and antistatic agents, lubricants, particles, antifoaming agents, coatability improving agents, thickeners, antioxidants, ultraviolet absorbers, foaming agents, dyes, pigments and the like.
  • additives may be used alone or in combination of two or more as necessary.
  • the ratio of the acrylic resin (A) having a hydrophilic group derived from the reactive emulsifier in the molecule is usually 5 to 70% by weight, preferably 15 to 50% by weight, quaternary
  • the proportion of the compound (B) having an ammonium group is usually 10 to 80% by weight, preferably 20 to 70% by weight, and the proportion of the oxazoline-based crosslinking agent (C) is usually 5 to 60% by weight, preferably 10 to 40%. % By weight.
  • the coating layer eventually becomes a mixture of these components and their reactive organisms.
  • the thickness of the coating layer is 0.01 to 0.07 ⁇ m, preferably 0.02 to 0.05 ⁇ m, as the film thickness on the finally obtained film.
  • composition of the coating layer is limited as described above and the thickness of the coating layer is within the above range, the adhesiveness and the antistatic performance are compatible at a high level.
  • the antistatic property of the coating layer is measured by the surface specific resistance of the coating layer. It can be said that the lower the surface resistivity, the better the antistatic property. If the surface resistivity is 1 ⁇ 10 13 ⁇ or less, it can be said that there is no problem with antistatic properties, and if it is 1 ⁇ 10 12 ⁇ or less, it can be said that the antistatic properties are extremely good.
  • a coating technique as shown in “Coating system” published by Yuji Harasaki, Tsuji Shoten, published in 1979 can be used. Specifically, air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roll coater, transfer roll coater, gravure coater, kiss roll coater, cast coater, spray coater, curtain coater, calendar coater And a technique such as an extrusion coater.
  • the film may be subjected to chemical treatment, corona discharge treatment, plasma treatment, etc. before coating.
  • Average particle diameter (d50) of particles added to the polyester film The particle size was measured by a sedimentation method based on Stokes' resistance law using a Shimadzu centrifugal sedimentation type particle size distribution analyzer SA-CP3.
  • Average particle size of the coating composition The aqueous dispersion of the coating composition was diluted to an appropriate concentration, and the 50% average diameter of the number average was measured with Nikkiso Microtrac UPA.
  • Coating layer thickness The film was fixed with an embedding resin, the cross section was cut with a microtome, and the sample was prepared by staining with 2% osmic acid at 60 ° C. for 2 hours. The obtained sample was observed with a transmission electron microscope (JEM2010 manufactured by JEOL Ltd.), and the thickness of the coating layer was measured. A total of 15 points on the film are measured, and the average of 9 points excluding 3 points from the larger value and 3 points from the smaller value is defined as the coating layer thickness.
  • Adhesiveness On the coating layer of the sample, the active energy ray-curable resin composition as shown below was applied so that the thickness after curing was 7 ⁇ m, and dried in a hot air drying oven set at 80 ° C. for 1 minute. It was. Next, using a high-pressure mercury lamp with an energy of 120 W / cm, curing was performed by irradiation for about 7 seconds at an irradiation distance of 100 mm to obtain a laminated film in which an active energy ray-curable resin layer was provided on the film.
  • the integrated light amount of the active energy ray at this time was measured using an ultraviolet integrated light meter UIT-250 and a light receiver UVD-C365 (manufactured by USHIO INC.), And was about 110 mJ / cm 2 .
  • the active energy ray-cured resin layer of the obtained laminated film is cross-cut so that there are 100 grids per inch, and 18 mm wide tape (Nichiban cello tape (registered trademark) CT-18) was attached, and a rapid peel test was conducted.
  • the adhesiveness was evaluated by the peeled area. The evaluation of adhesiveness was performed in five stages A to E shown below. A indicates the highest class and E indicates the lowest class. .
  • A: Number of cross-cuts peeled 0 B: 1 ⁇ Number of cross-cuts ⁇ 10 C: 11 ⁇ number of cross cuts ⁇ 20 D: 21 ⁇ Number of cross cuts E: Full peel
  • Cured resin composition Nippon Kayaku “KAYARAD DPHA” 80 parts by weight, Nippon Kayaku “KAYARAD R-128H” 20 parts by weight, Ciba Specialty Chemicals “IRGACURE 651” 5 parts by weight diluted with toluene And a concentration of 30% by weight.
  • polyester raw materials used in Examples and Comparative Examples are as follows.
  • Polyyester 2 containing 0.3% by weight of amorphous silica having an average particle diameter (d50) of 1.6 ⁇ m, Polyethylene terephthalate with intrinsic viscosity of 0.65
  • (E1) a polymer compound having a number average molecular weight of 20000, obtained by copolymerizing a structural unit of the following formula 1-1 and a structural unit of the following formula 1-2 at a weight ratio of 95/5
  • (E3) a polymer compound having a structure in which a structural unit of the following formula 3-1 and an acrylate ester are copolymerized
  • Comparative Example 1 A blend of polyester 1 and polyester 2 at a weight ratio of 92/8 was used as the raw material for layer A, and polyester 1 alone was used as the raw material for layer B.
  • Example 1 A coating solution as shown in Table 1 below was applied to one side of a uniaxially oriented film obtained in the same process as Comparative Example 1. Next, the film was guided to a tenter stretching machine, and the coating composition was dried using the heat, and on the biaxially oriented polyethylene terephthalate film having a film thickness of 100 ⁇ m by the same process as in Comparative Example 1, A laminated polyester film provided with a coating layer having a thickness shown in Table 1 was obtained. The properties of this film are shown in Table 2.
  • Examples 2 to 5 and Comparative Examples 2 to 6 In the same process as Example 1, the coating solution was changed as shown in Table 1 to obtain a laminated polyester film in which a coating layer having a thickness shown in Table 1 was provided on a base film having a film thickness of 100 ⁇ m. . The properties of this film are shown in Table 2.
  • coated film of the present invention can be suitably used as a biaxially stretched polyester film in applications that require excellent antistatic properties and adhesion to various topcoats.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a laminated polyester film which has a high standard of both adhesiveness and anti-static properties, which have conventionally been thought of as not being possible to achieve simultaneously. A coating film comprising a 0.01-0.07μm thick coating layer on at least one surface of a polyester film, said coating layer being formed from a coating agent containing: an acrylic resin (A) having a hydrophilic group, originating from a reactive emulsifier, in the molecule; a compound (B) having a quaternary ammonium group; and an oxazoline cross-linking agent (C).

Description

塗布フィルムCoating film
 本発明は、優れた帯電防止性を有し、また各種の上塗り剤に対する接着性の優れた塗布フィルムに関するものである。 The present invention relates to a coating film having excellent antistatic properties and excellent adhesion to various topcoats.
 二軸延伸ポリエステルフィルムは、透明性、寸法安定性、機械的特性、耐熱性、電気的特性などに優れ、さまざまな分野で使用されている。 Biaxially stretched polyester film is excellent in transparency, dimensional stability, mechanical properties, heat resistance, electrical properties, etc., and is used in various fields.
 特に近年、偏光板や位相差板やそれに準じた積層体等の光学部材の表面保護フィルムや、コンピュータやテレビなどの液晶ディスプレイ等に用いられるレンズシート等の光学フィルムの基材などに用いられることが増えている。 In particular, in recent years, it is used as a surface protective film for optical members such as polarizing plates, retardation plates and laminates conforming thereto, and substrates for optical films such as lens sheets used for liquid crystal displays such as computers and televisions. Is increasing.
 かかる用途では、ポリエステルフィルム上に塗料、インキ、粘着剤、接着剤等の各種上塗り剤の加工が行われる。しかし、二軸延伸ポリエステルフィルムは、表面が高度に結晶配向されているため、これら各種上塗り剤との接着性に劣るという欠点を有している。 In such applications, various topcoats such as paints, inks, pressure-sensitive adhesives and adhesives are processed on polyester films. However, since the biaxially stretched polyester film has a highly crystallized surface, the biaxially stretched polyester film has a defect that it is inferior in adhesiveness to these various topcoats.
 このような接着性に関する問題点を解決する方法の一つとして、ポリエステルフィルムの表面に種々の樹脂を塗布し、易接着性能を持つ塗布層を設ける方法がある。 As one of the methods for solving such problems related to adhesiveness, there is a method in which various resins are applied to the surface of a polyester film and an application layer having easy adhesion performance is provided.
 また一方で、ポリエステルフィルムは、プラスチックフィルム共通の問題として、静電気が発生して帯電しやすいと言う特徴がある。そのためフィルム加工時あるいは加工製品の走行性不良や、周囲の埃等を引きつけるという問題や、光学フィルムとした際に、静電気により複数のフィルム同士が張り付き、フィルムがたわむことで画質にムラを起こすといった問題が生じる。ポリエステルフィルムの帯電の抑制についても、フィルム上に帯電防止性能を有する塗布層を設ける方法がある(特許文献1及び2)。 On the other hand, polyester films are characterized by the fact that they are easily charged due to static electricity as a common problem with plastic films. For this reason, problems such as poor running performance of processed films or processed products, attracting ambient dust, etc., and when optical films are used, multiple films stick to each other due to static electricity, causing the films to bend and causing unevenness in image quality. Problems arise. There is also a method of providing a coating layer having antistatic performance on the film for suppressing the charging of the polyester film (Patent Documents 1 and 2).
 しかし、従来の帯電防止性の塗布層は接着性に劣り、接着性と帯電防止性を十分な水準で両立したものはなかった。 However, conventional antistatic coating layers are inferior in adhesiveness, and none of them have both adhesiveness and antistatic properties at a sufficient level.
特開平5-1164号公報JP-A-5-1164 特開平8-143691号公報Japanese Patent Laid-Open No. 8-143691
 本発明は、上記問題に鑑みなされたものであり、その解決課題は、従来両立し得ないと考えられてきた、接着性と帯電防止性能とを高度な水準で両立した塗布フィルムを提供することにある。 The present invention has been made in view of the above-mentioned problems, and the problem to be solved is to provide a coating film which has been considered to be incompatible with the past, and which has both adhesiveness and antistatic performance at a high level. It is in.
 本発明者らは、上記の課題に関して鋭意検討を重ねた結果、特定の構成を採用することによれば、上記課題が容易に解決されることを見いだし、本発明を完成するに至った。 As a result of intensive studies on the above problems, the present inventors have found that the above problems can be easily solved by adopting a specific configuration, and the present invention has been completed.
 すなわち、本発明の要旨は、ポリエステルフィルムの少なくとも片面に厚さ0.01~0.07μmの塗布層を有する塗布フィルムであって、上記の塗布層が、反応性乳化剤に由来する親水基を分子中に有するアクリル系樹脂(A)、4級アンモニウム基を有する化合物(B)、オキサゾリン系架橋剤(C)を含有する塗布剤から形成された塗布層であることを特徴とする塗布フィルムに存する。 That is, the gist of the present invention is a coating film having a coating layer having a thickness of 0.01 to 0.07 μm on at least one surface of a polyester film, wherein the coating layer has a hydrophilic group derived from a reactive emulsifier as a molecule. It exists in the coating film characterized by being a coating layer formed from the coating agent containing the acrylic resin (A) which has in it, the compound (B) which has a quaternary ammonium group, and an oxazoline type crosslinking agent (C). .
 本発明よれば、従来両立し得ないと考えられてきた、接着性と帯電防止性能とを高度な水準で両立した塗布フィルムを提供することができ、本発明の工業的価値は高い。 According to the present invention, it is possible to provide a coating film that has been considered to be incompatible with each other at a high level of adhesion and antistatic performance, and the industrial value of the present invention is high.
 本発明の塗布フィルムの基材フィルムはポリエステルからなるものである。かかるポリエステルとは、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸、4,4’-ジフェニルジカルボン酸、1,4-シクロヘキシルジカルボン酸のようなジカルボン酸またはそのエステルとエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールのようなグリコールとを溶融重縮合させて製造されるポリエステルである。これらの酸成分とグリコール成分とからなるポリエステルは、通常行われている方法を任意に使用して製造することができる。 The base film of the coated film of the present invention is made of polyester. Such polyesters include dicarboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, 4,4′-diphenyldicarboxylic acid, 1,4-cyclohexyldicarboxylic acid or esters thereof. It is a polyester produced by melt polycondensation with glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, and 1,4-cyclohexanedimethanol. Polyesters composed of these acid components and glycol components can be produced by arbitrarily using a commonly used method.
 例えば、芳香族ジカルボン酸の低級アルキルエステルとグリコールとの間でエステル交換反応をさせるか、あるいは芳香族ジカルボン酸とグリコールとを直接エステル化させるかして、実質的に芳香族ジカルボン酸のビスグリコールエステル、またはその低重合体を形成させ、次いでこれを減圧下、加熱して重縮合させる方法が採用される。その目的に応じ、脂肪族ジカルボン酸を共重合しても構わない。 For example, a transesterification reaction between a lower alkyl ester of an aromatic dicarboxylic acid and a glycol, or a direct esterification of an aromatic dicarboxylic acid and a glycol, to form a substantially bisglycol of an aromatic dicarboxylic acid A method is employed in which an ester or a low polymer thereof is formed and then polycondensed by heating under reduced pressure. Depending on the purpose, an aliphatic dicarboxylic acid may be copolymerized.
 本発明のポリエステルとしては、代表的には、ポリエチレンテレフタレートやポリエチレン-2,6-ナフタレート、ポリ-1,4-シクロヘキサンジメチレンテレフタレート等が挙げられるが、その他に上記の酸成分やグリコール成分を共重合したポリエステルであってもよく、必要に応じて他の成分や添加剤を含有していてもよい。 Typical examples of the polyester of the present invention include polyethylene terephthalate, polyethylene-2,6-naphthalate, poly-1,4-cyclohexanedimethylene terephthalate, and the like. It may be a polymerized polyester and may contain other components and additives as necessary.
 本発明におけるポリエステルフィルムには、フィルムの走行性を確保したり、キズが入ることを防いだりする等の目的で粒子を含有させることができる。このような粒子としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、カオリン、タルク、酸化アルミニウム、酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン等の無機粒子、架橋高分子粒子、シュウ酸カルシウム等の有機粒子、さらに、ポリエステル製造工程時の析出粒子等を用いることができる。 In the polyester film of the present invention, particles can be contained for the purpose of ensuring the running property of the film and preventing scratches. Examples of such particles include inorganic particles such as silica, calcium carbonate, magnesium carbonate, calcium phosphate, kaolin, talc, aluminum oxide, titanium oxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, and molybdenum sulfide. Further, organic particles such as crosslinked polymer particles and calcium oxalate, and precipitated particles during the polyester production process can be used.
 用いる粒子の粒径や含有量はフィルムの用途や目的に応じて選択されるが、平均粒径(d50)に関しては、通常0.01~3μm、好ましくは0.02~2.5μm、さらに好ましくは0.03~2μmの範囲である。平均粒径が3.0μmを超えるとフィルムの表面粗度が粗くなりすぎたり、粒子がフィルム表面から脱落しやすくなったりすることがある。平均粒径が0.01μm未満では、表面粗度が小さすぎて、十分な易滑性が得られない場合がある。 The particle size and content of the particles used are selected according to the use and purpose of the film, but the average particle size (d50) is usually 0.01 to 3 μm, preferably 0.02 to 2.5 μm, more preferably Is in the range of 0.03 to 2 μm. If the average particle size exceeds 3.0 μm, the surface roughness of the film may become too rough, or the particles may easily fall off from the film surface. When the average particle size is less than 0.01 μm, the surface roughness is too small and sufficient slipperiness may not be obtained.
 粒子含有量については、ポリエステルに対し、通常0.0003~1.0重量%、好ましくは0.0005~0.5重量%の範囲である。粒子含有量が0.0003重量%未満の場合には、フィルムの易滑性が不十分な場合があり、一方、1.0重量%を超えて添加する場合には、フィルムの透明性が不十分な場合がある。なおフィルムの透明性、平滑性などを特に確保したい場合には、実質的に粒子を含有しない構成とすることもできる。また、適宜、各種安定剤、潤滑剤、帯電防止剤等をフィルム中に加えることもできる。 The particle content is usually in the range of 0.0003 to 1.0% by weight, preferably 0.0005 to 0.5% by weight, based on the polyester. When the particle content is less than 0.0003% by weight, the slipperiness of the film may be insufficient. On the other hand, when the content exceeds 1.0% by weight, the transparency of the film is poor. It may be enough. In addition, when it is particularly desired to ensure transparency, smoothness, etc. of the film, it can also be configured so as not to substantially contain particles. In addition, various stabilizers, lubricants, antistatic agents and the like can be appropriately added to the film.
 なお、本発明の塗布フィルムのヘーズは10%以下であることが好ましい。より好ましくは5%以下、さらに好ましくは3%以下である。この範囲より大きいと、光学フィルム用途においては、外観上使用しがたくなる場合がある。 In addition, it is preferable that the haze of the coating film of this invention is 10% or less. More preferably, it is 5% or less, More preferably, it is 3% or less. If it is larger than this range, it may be difficult to use in optical film applications.
 本発明のフィルムの製膜方法としては、通常知られている製膜法を採用でき、特に制限はない。例えば、まず溶融押出によって得られたシートを、ロール延伸法により、70~145℃で2~6倍に延伸して、一軸延伸ポリエステルフィルムを得、次いで、テンター内で先の延伸方向とは直角方向に80~160℃で2~6倍に延伸し、さらに、150~250℃で1~600秒間熱処理を行うことでフィルムが得られる。さらにこの際、熱処理のゾーンおよび/または熱処理出口のクーリングゾーンにおいて、縦方向および/または横方向に0.1~20%弛緩する方法が好ましい。 As a film forming method of the film of the present invention, a generally known film forming method can be adopted, and there is no particular limitation. For example, a sheet obtained by melt extrusion is first stretched 2 to 6 times at 70 to 145 ° C. by a roll stretching method to obtain a uniaxially stretched polyester film, and then perpendicular to the previous stretching direction in a tenter. A film can be obtained by stretching 2 to 6 times in the direction at 80 to 160 ° C. and further performing heat treatment at 150 to 250 ° C. for 1 to 600 seconds. Further, at this time, a method of relaxing 0.1 to 20% in the longitudinal direction and / or the transverse direction in the heat treatment zone and / or the cooling zone at the heat treatment outlet is preferable.
 本発明におけるポリエステルフィルムは、単層または多層構造である。多層構造の場合は、表層と内層、あるいは両表層や各層を目的に応じ異なるポリエステルとすることができる。 The polyester film in the present invention has a single layer or a multilayer structure. In the case of a multilayer structure, the surface layer and the inner layer, or both the surface layer and each layer can be made of different polyesters depending on the purpose.
 本発明の塗布層は、製膜したフィルムに後から塗布層を設ける、いわゆるオフラインコーティングと、フィルムの製膜中に塗布層を設ける、いわゆるインラインコーティングのいずれでも設けることができる。ただしインラインコーティング、特に塗布後に延伸を行う塗布延伸法により設けられることが好ましい。 The coating layer of the present invention can be provided by either a so-called off-line coating in which a coating layer is provided later on a formed film or a so-called in-line coating in which a coating layer is provided during film formation. However, it is preferably provided by in-line coating, particularly a coating stretching method in which stretching is performed after coating.
 インラインコーティングは、ポリエステルフィルム製造の工程内でコーティングを行う方法であり、具体的には、ポリエステルを溶融押出ししてから二軸延伸後熱固定して巻き上げるまでの任意の段階でコーティングを行う方法である。通常は、溶融・急冷して得られる実質的に非晶状態の未延伸シート、その後に長手方向(縦方向)に延伸された一軸延伸フィルム、熱固定前の二軸延伸フィルムの何れかにコーティングする。特に塗布延伸法としては、一軸延伸フィルムにコーティングした後に横方向に延伸する方法が優れている。かかる方法によれば、製膜と塗布層塗設を同時に行うことができるため製造コスト上のメリットがあり、コーティング後に延伸を行うために、薄膜で均一なコーティングとなるために塗布層の特性が安定する。また、二軸延伸される前のポリエステルフィルム上を、まず塗布層を構成する樹脂層で被覆し、その後フィルムと塗布層を同時に延伸することで、基材フィルムと塗布層が強固に密着することになる。また、ポリエステルフィルムの二軸延伸は、テンタークリップによりフィルム端部を把持しつつ横方向に延伸することで、フィルムが長手/横手方向に拘束されており、熱固定において、しわ等が入らず平面性を維持したまま高温をかける事ができる。それゆえ、コーティング後に施される熱処理が他の方法では達成されない高温とすることができるために、塗布層の造膜性が向上し、また塗布層とポリエステルフィルムが強固に密着する。塗布層を設けたポリエステルフィルムとして、塗布層の均一性、造膜性の向上および塗布層とフィルムの密着は好ましい特性を生む場合が多い。ただし、塗布層として用いられる樹脂に耐熱性が必要となるため、使用する樹脂の選定には十分な検討が必要である。 In-line coating is a method of coating within the process of manufacturing a polyester film. Specifically, it is a method of coating at any stage from melt extrusion of polyester to biaxial stretching and then heat setting and winding. is there. Normally, it is coated on either a substantially amorphous unstretched sheet obtained by melting and quenching, then a uniaxially stretched film stretched in the longitudinal direction (longitudinal direction), or a biaxially stretched film before heat setting. To do. In particular, as a coating stretching method, a method of stretching in the transverse direction after coating on a uniaxially stretched film is excellent. According to such a method, film formation and coating layer coating can be performed at the same time, so there is an advantage in manufacturing cost. Stabilize. In addition, the polyester film before being biaxially stretched is first coated with the resin layer constituting the coating layer, and then the base film and the coating layer are firmly adhered by stretching the film and the coating layer simultaneously. become. In addition, the biaxial stretching of the polyester film is achieved by stretching the film in the lateral direction while holding the film end with a tenter clip, so that the film is constrained in the longitudinal / lateral direction, and no wrinkles or the like are formed in the heat setting. High temperature can be applied while maintaining the nature. Therefore, since the heat treatment performed after coating can be performed at a high temperature that cannot be achieved by other methods, the film forming property of the coating layer is improved, and the coating layer and the polyester film are firmly adhered. As the polyester film provided with the coating layer, the uniformity of the coating layer, the improvement of the film forming property, and the adhesion between the coating layer and the film often produce preferable characteristics. However, since heat resistance is required for the resin used as the coating layer, it is necessary to sufficiently study the selection of the resin to be used.
 塗布延伸法の場合、用いる塗布液は、取扱い上、作業環境上、安全上の理由から水溶液または水分散液であることが望ましいが、水を主たる媒体としており、本発明の要旨を越えない範囲であれば、有機溶剤を含有していてもよい。 In the case of the coating stretching method, the coating solution to be used is preferably an aqueous solution or an aqueous dispersion for safety reasons in terms of handling, working environment, but water is the main medium and does not exceed the gist of the present invention. If so, an organic solvent may be contained.
 本発明の塗布層は、反応性乳化剤に由来する親水基を分子中に有するアクリル系樹脂(A)、4級アンモニウム基を有する化合物(B)、オキサゾリン架橋剤(C)を含有する塗布液を、フィルム上に塗布・乾燥・硬化することで得ることができる。なお塗布液中には、その他の成分を含有していても構わない。 The coating layer of the present invention comprises a coating solution containing an acrylic resin (A) having a hydrophilic group derived from a reactive emulsifier in its molecule (A), a compound (B) having a quaternary ammonium group, and an oxazoline crosslinking agent (C). It can be obtained by coating, drying and curing on a film. The coating solution may contain other components.
 得られる塗布層は、各成分が完全に反応していない場合は、各成分の未反応物と反応生成物との双方が含まれることとなり、反応生成物と未反応物の割合は、硬化条件等により適宜変更されうる。 When each component is not completely reacted, the resulting coating layer contains both unreacted products and reaction products of each component, and the ratio of the reaction product and unreacted product depends on the curing conditions. It can be changed as appropriate.
 前述したように、従来の技術では、接着性と帯電防止性能とが十分な水準で両立しなかった。この原因は必ずしも明確ではないが、次のような理由があるものと考えている。 As described above, in the conventional technology, adhesiveness and antistatic performance are not compatible at a sufficient level. The reason for this is not always clear, but we believe that there are the following reasons.
 すなわち、塗布によって十分な帯電防止性能を得ようとすると、必要な帯電防止成分の量を得るために、塗布層を厚くする必要があるが、このような厚い塗布層は、接着性の試験方法として一般的に行われる、上塗り剤を加工した後に強制剥離試験を行った際、塗布層と上塗り層との界面での剥離以外に、塗布層自体の凝集破壊が起こりやすくなる。そのために十分な接着性を確保することができなかった。この凝集破壊を防ぐために、たとえば架橋剤の使用によって塗布層自体の凝集力を高めると、塗布層中における帯電防止成分のネットワークを阻害し、帯電防止性能が低下する、あるいは凝集破壊を防ぐために塗布層を薄くすると、帯電防止成分の総量も減り、やはり帯電防止性能が低下するという堂々巡りに陥る。また、塗布層を厚くする代わりに、帯電防止成分が塗布層全体の有効成分に占める比率を高くした場合も、これらの成分が接着性に乏しい場合、やはり得られる塗布層が高い接着性を有することはできなかった。 That is, to obtain sufficient antistatic performance by coating, it is necessary to thicken the coating layer in order to obtain the necessary amount of antistatic component, but such a thick coating layer is a test method for adhesion. When the forced peeling test is performed after the top coat is processed, the coating layer itself tends to cohesive failure in addition to peeling at the interface between the coating layer and the top coat layer. Therefore, sufficient adhesiveness could not be ensured. In order to prevent this cohesive failure, for example, if the cohesive strength of the coating layer itself is increased by using a cross-linking agent, the antistatic component network in the coating layer is inhibited, and the antistatic performance is reduced, or coating is applied to prevent cohesive failure. When the layer is thinned, the total amount of antistatic components is reduced, and the antistatic performance is lowered. In addition, when the ratio of the antistatic component to the effective component of the entire coating layer is increased instead of increasing the thickness of the coating layer, if these components have poor adhesion, the resulting coating layer also has high adhesion. I couldn't.
 つまり、帯電防止性能と接着性を両立するためには、用いる材料の選定および塗布層の構成に、新たな組み合わせを見出す必要があったのである。 In other words, in order to achieve both antistatic performance and adhesiveness, it was necessary to find a new combination in the selection of materials to be used and the configuration of the coating layer.
 アクリル系樹脂(A)とは、アクリル系、メタアクリル系のモノマーに代表されるような、炭素-炭素二重結合を持つ重合性モノマーからなる重合体である。 The acrylic resin (A) is a polymer composed of a polymerizable monomer having a carbon-carbon double bond, as typified by an acrylic or methacrylic monomer.
 かかる炭素-炭素二重結合を持つ重合性モノマーとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸のような各種カルボキシル基含有モノマー類、およびそれらの塩、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネートのような各種の水酸基含有モノマー類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレートのような各種の(メタ)アクリル酸エステル類、(メタ)アクリルミド、ジアセトンアクリルアミド、N-メチロールアクリルアミドまたは(メタ)アクリロニトリル等のような種々の窒素含有ビニル系モノマー類、スチレン、α-メチルスチレン、ジビニルベンゼン、ビニルトルエンのような各種スチレン誘導体、酢酸ビニル、プロピオン酸ビニルのような各種のビニルエステル類などが挙げられるが、特に本発明では、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステルのうちの一種以上を含有する共重合体であることが好ましい。 Examples of the polymerizable monomer having a carbon-carbon double bond include various carboxyl group-containing monomers such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, citraconic acid, and the like. Various hydroxyl group-containing monomers such as salts, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, monobutylhydroxy fumarate, monobutylhydroxy itaconate , Various (meth) acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, (meth) acrylimide, di Acetone acrylic Various nitrogen-containing vinyl monomers such as N-methylolacrylamide or (meth) acrylonitrile, various styrene derivatives such as styrene, α-methylstyrene, divinylbenzene, vinyltoluene, vinyl acetate, vinyl propionate, etc. In particular, in the present invention, a copolymer containing one or more of acrylic acid, methacrylic acid, acrylic acid ester, and methacrylic acid ester is preferable.
 またかかるモノマー類を重合してアクリル系樹脂を得るにあたり、本発明では、水中にモノマー類を分散し重合する乳化重合法を用いた、水分散体の形態で得ることが好ましい。モノマーを水分散するには乳化剤を用いるが、本発明においては、特に、ノニオン性またはアニオン性の反応性乳化剤を用いるのが好ましい。その他の乳化剤を用いて得られたアクリル樹脂では、得られる塗布層が十分な接着性を示さないことがある。ここで言う反応性乳化剤とは、分子中にラジカル重合性の二重結合を持ち、アクリル系樹脂の重合の際に、樹脂中に共重合するような乳化剤を指す。ノニオン性であることが特に好ましく、その場合、親水基としてはアルキレンオキサイドを用いたものが好ましい。アニオン性の場合、親水基としては硫酸エステル塩が好ましい。 Further, in obtaining an acrylic resin by polymerizing such monomers, in the present invention, it is preferably obtained in the form of an aqueous dispersion using an emulsion polymerization method in which monomers are dispersed and polymerized in water. An emulsifier is used to disperse the monomer in water. In the present invention, it is particularly preferable to use a nonionic or anionic reactive emulsifier. For acrylic resins obtained using other emulsifiers, the resulting coating layer may not exhibit sufficient adhesion. The reactive emulsifier here refers to an emulsifier having a radical polymerizable double bond in the molecule and copolymerizing in the resin during the polymerization of the acrylic resin. It is particularly preferable that it is nonionic, and in that case, a hydrophilic group using an alkylene oxide is preferable. In the case of an anionic property, a sulfate group is preferable as the hydrophilic group.
 得られたアクリル系樹脂水分散の平均分散粒径は、通常0.01~0.2μm、好ましくは0.02~0.09μmである。平均分散粒径が上記範囲より大きいと、得られる塗布層の外観や接着性に劣る傾向がある。また上記範囲より小さいと、やはり接着性に劣る傾向がある。 The average dispersion particle size of the obtained acrylic resin aqueous dispersion is usually 0.01 to 0.2 μm, preferably 0.02 to 0.09 μm. When the average dispersed particle size is larger than the above range, the appearance and adhesion of the resulting coating layer tend to be inferior. If it is smaller than the above range, the adhesiveness tends to be inferior.
 4級アンモニウム基を有する化合物(B)は、分子内に4級化されたアンモニウム基を有する化合物を指し、特に高分子化合物であることが好ましい。また水溶性化合物であることが好ましい。 The compound (B) having a quaternary ammonium group refers to a compound having a quaternized ammonium group in the molecule, and is particularly preferably a polymer compound. Moreover, it is preferable that it is a water-soluble compound.
 本発明では例えば、4級アンモニウム基と不飽和性二重結合を有する単量体を成分として含む重合体を用いることができる。 In the present invention, for example, a polymer containing a monomer having a quaternary ammonium group and an unsaturated double bond as components can be used.
 かかる重合体の具体的な例としては、例えば下記式1または下記式2で示される構成要素を繰返し単位として有する重合体が挙げられる。これらの単独重合体や共重合体、さらに、その他の複数の成分を共重合していても構わない。 Specific examples of such a polymer include a polymer having a constituent represented by the following formula 1 or 2 as a repeating unit. These homopolymers and copolymers, and other plural components may be copolymerized.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(1)中、Rは水素原子または炭素数が1~3のアルキル基、Rは-O-または-NH-、Rは-R-又は-R-A-R-(但し、RおよびRは置換されていてもよい炭素数が1-6のアルキレン基、Aは、-O-、-NH-または-N(CH -を表す)、R4、R5、R6はそれぞれが、水素原子または炭素数が1-3のアルキル基、Xは1価の陰イオンである。 In the above formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 2 is —O— or —NH—, and R 3 is —R 7 — or —R 7 —AR 8. -(Wherein R 7 and R 8 are an optionally substituted alkylene group having 1-6 carbon atoms, A represents -O-, -NH- or -N (CH 3 ) 2 + -), R 4 , R 5 and R 6 are each a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and X is a monovalent anion.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(2)中、RおよびRはそれぞれ、水素原子または炭素数が1-3のアルキル基、Xは1価の陰イオンである。 In the above formula (2), R 1 and R 2 are each a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and X is a monovalent anion.
 上記式1で示される構成要素を持つ重合体は、得られる塗布層の透明性に優れ好ましい。ただし塗布延伸法においては、耐熱性に劣る場合があり、塗布延伸法に用いる場合、Xはハロゲンではないことが好ましい。 The polymer having the constituent represented by the above formula 1 is preferable because of the excellent transparency of the resulting coating layer. However, the coating stretching method may be inferior in heat resistance, and when used in the coating stretching method, X is preferably not a halogen.
 上記式(2)で示される構成要素や、その他の4級アンモニウム塩基が高分子骨格内にある化合物は、耐熱性に優れており、塗布延伸法においても帯電防止性が得られやすい。 The component represented by the above formula (2) and other compounds in which the quaternary ammonium base is in the polymer skeleton are excellent in heat resistance, and it is easy to obtain antistatic properties even in a coating stretching method.
 オキサゾリン系架橋剤(C)とは、分子内にオキサゾリン基を有する化合物を指す。オキサゾリン基を有する化合物は、原料モノマーの少なくとも一つとしてオキサゾリン基を含むモノマーを使用して合成することができる。かかるモノマー類としては、例えば、2-ビニル-2-オキサゾリン、5-メチル-2-ビニル-2-オキサゾリン、4,4-ジメチル-2-ビニル-2-オキサゾリン、4,4-ジメチル-2-ビニル-5,6-ジヒドロ-4H-1-オキサジン、4,4,6ートリメチル-2-ビニル-5,6-ジヒドロ-4H-1,3-オキサジン、2-イソプロペニル-2-オキサゾリン、4,4-ジメチル-2-イソプロペニル-2-オキサゾリン、4-アクリロイル-オキシメチル-2,4-ジメチル-2-オキサゾリン、4-メタクリロイル-オキシメチル-2,4-ジメチル-2-オキサゾリン、4-メタクリロイル-オシメチル-2-フェニル-4-メチル-2-オキサゾリン、2-(4-ビニルフェニル)-4,4-ジメチル-2-オキサゾリン、4-エチル-4-ヒドロキシメチル-2-イソプロペニル-2-オキサゾリン、4-エチル-4-カルボエトキシメチル-2-イソプロペニル-2-オキサゾリン等を例示することができる。これらあるいはその他のオキサゾリン基含有モノマーの1種以上を使用することができる。 The oxazoline-based crosslinking agent (C) refers to a compound having an oxazoline group in the molecule. The compound having an oxazoline group can be synthesized using a monomer having an oxazoline group as at least one of raw material monomers. Examples of such monomers include 2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazoline, and 4,4-dimethyl-2- Vinyl-5,6-dihydro-4H-1-oxazine, 4,4,6-trimethyl-2-vinyl-5,6-dihydro-4H-1,3-oxazine, 2-isopropenyl-2-oxazoline, 4, 4-dimethyl-2-isopropenyl-2-oxazoline, 4-acryloyl-oxymethyl-2,4-dimethyl-2-oxazoline, 4-methacryloyl-oxymethyl-2,4-dimethyl-2-oxazoline, 4-methacryloyl -Oshimethyl-2-phenyl-4-methyl-2-oxazoline, 2- (4-vinylphenyl) -4,4-dimethyl-2-oxy Gelsolin, 4-ethyl-4-hydroxymethyl-2-isopropenyl-2-oxazoline can be exemplified 4-ethyl-4-ethoxymethyl-2-isopropenyl-2-oxazoline and the like. One or more of these or other oxazoline group-containing monomers can be used.
 また、本発明においては、オキサゾリン基を含有しない、その他の成分を共重合していることが好ましい。ここで、その他の成分とは、オキサゾリン基含有モノマーと共重合し得るモノマーであれば特に限定されない。例えば、(メタ)アクリル酸エステル類、(メタ)アクリルアミド類、スチレン系モノマー等の、ビニル基を含有するモノマーを用い、ビニルオキサゾリンモノマーと共重合した樹脂は、反応性も高く、工業的に得やすい。 In the present invention, it is preferable that other components not containing an oxazoline group are copolymerized. Here, the other component is not particularly limited as long as it is a monomer that can be copolymerized with an oxazoline group-containing monomer. For example, a resin copolymerized with a vinyl oxazoline monomer using a monomer containing a vinyl group, such as (meth) acrylic acid esters, (meth) acrylamides, and styrene monomers, has high reactivity and is industrially obtained. Cheap.
 塗布層を設けるための塗布液中には、必要に応じて上記述べた成分以外を含むことができる。例えば、界面活性剤、その他のバインダーや帯電防止剤、滑材、粒子、消泡剤、塗布性改良剤、増粘剤、酸化防止剤、紫外線吸収剤、発泡剤、染料、顔料等である。これらの添加剤は単独で用いてもよいが、必要に応じて二種以上を併用してもよい。 In the coating solution for providing the coating layer, components other than those described above can be included as necessary. For example, surfactants, other binders and antistatic agents, lubricants, particles, antifoaming agents, coatability improving agents, thickeners, antioxidants, ultraviolet absorbers, foaming agents, dyes, pigments and the like. These additives may be used alone or in combination of two or more as necessary.
 塗布液の不揮発成分中の割合として、反応性乳化剤に由来する親水基を分子中に有するアクリル系樹脂(A)の割合は、通常5~70重量%、好ましくは15~50重量%、4級アンモニウム基を有する化合物(B)の割合は、通常10~80重量%、好ましくは20~70重量%、オキサゾリン系架橋剤(C)の割合は、通常5~60重量%、好ましくは10~40重量%である。塗布層は最終的には、これらの成分の混合物およびその反応性生物の混合となる。 As a ratio in the non-volatile component of the coating liquid, the ratio of the acrylic resin (A) having a hydrophilic group derived from the reactive emulsifier in the molecule is usually 5 to 70% by weight, preferably 15 to 50% by weight, quaternary The proportion of the compound (B) having an ammonium group is usually 10 to 80% by weight, preferably 20 to 70% by weight, and the proportion of the oxazoline-based crosslinking agent (C) is usually 5 to 60% by weight, preferably 10 to 40%. % By weight. The coating layer eventually becomes a mixture of these components and their reactive organisms.
 塗布層の厚さは、最終的に得られるフィルム上の皮膜厚さとして、0.01~0.07μmであり、好ましくは0.02~0.05μmである。 The thickness of the coating layer is 0.01 to 0.07 μm, preferably 0.02 to 0.05 μm, as the film thickness on the finally obtained film.
 塗布層の組成を前述のように限定した上で、塗布層の厚さを上記の範囲とした場合に、接着性と帯電防止性能が高い水準で両立される。 When the composition of the coating layer is limited as described above and the thickness of the coating layer is within the above range, the adhesiveness and the antistatic performance are compatible at a high level.
 塗布層の帯電防止性は、塗布層の表面固有抵抗により測られる。表面固有抵抗が低いほど、帯電防止性が良好であるといえる。表面固有抵抗が1×1013Ω以下であれば帯電防止性としては問題のないレベルと言え、1×1012Ω以下であれば、極めて良好な帯電防止性であると言える。 The antistatic property of the coating layer is measured by the surface specific resistance of the coating layer. It can be said that the lower the surface resistivity, the better the antistatic property. If the surface resistivity is 1 × 10 13 Ω or less, it can be said that there is no problem with antistatic properties, and if it is 1 × 10 12 Ω or less, it can be said that the antistatic properties are extremely good.
 ポリエステルフィルムに塗布液を塗布する方法としては、例えば、原崎勇次著、槙書店、1979年発行、「コーティング方式」に示されるような塗布技術を用いることができる。具体的には、エアドクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、含浸コーター、リバースロールコーター、トランスファロールコーター、グラビアコーター、キスロールコーター、キャストコーター、スプレイコーター、カーテンコーター、カレンダコーター、押出コーター等のような技術が挙げられる。 As a method of applying the coating solution to the polyester film, for example, a coating technique as shown in “Coating system” published by Yuji Harasaki, Tsuji Shoten, published in 1979 can be used. Specifically, air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, reverse roll coater, transfer roll coater, gravure coater, kiss roll coater, cast coater, spray coater, curtain coater, calendar coater And a technique such as an extrusion coater.
 なお、塗布剤のフィルムへの塗布性、接着性を改良するため、塗布前にフィルムに化学処理やコロナ放電処理、プラズマ処理等を施してもよい。 In addition, in order to improve the applicability and adhesion of the coating agent to the film, the film may be subjected to chemical treatment, corona discharge treatment, plasma treatment, etc. before coating.
 以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。なお、実施例および比較例における評価方法は下記のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In addition, the evaluation method in an Example and a comparative example is as follows.
(1)ポリエステルの極限粘度の測定:
 ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Measurement of intrinsic viscosity of polyester:
1 g of polyester from which other polymer components and pigments incompatible with polyester were removed was precisely weighed, 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) was added and dissolved, and measurement was performed at 30 ° C.
(2)ポリエステルフィルム中に添加する粒子の平均粒径(d50):
 島津製作所製遠心沈降式粒度分布測定装置SA-CP3型を用いてストークスの抵抗則にもとづく沈降法によって粒子の大きさを測定した。
(2) Average particle diameter (d50) of particles added to the polyester film:
The particle size was measured by a sedimentation method based on Stokes' resistance law using a Shimadzu centrifugal sedimentation type particle size distribution analyzer SA-CP3.
(3)塗布組成物の平均粒径:
 塗布組成物の水分散体を適当な濃度に希釈し、日機装製マイクロトラックUPAにて、個数平均の50%平均径を測定した。
(3) Average particle size of the coating composition:
The aqueous dispersion of the coating composition was diluted to an appropriate concentration, and the 50% average diameter of the number average was measured with Nikkiso Microtrac UPA.
(4)塗布層厚み:
 包埋樹脂でフィルムを固定し断面をミクロトームで切断し、2%オスミウム酸で60℃、2時間染色して試料を調整した。得られた試料を、透過型電子顕微鏡(日本電子製JEM2010)で観察し、塗布層の厚みを測定した。フィルムの計15箇所を測定し、数値の大きい方から3点と、小さい方から3点を除いた9点の平均を塗布層厚みとする。
(4) Coating layer thickness:
The film was fixed with an embedding resin, the cross section was cut with a microtome, and the sample was prepared by staining with 2% osmic acid at 60 ° C. for 2 hours. The obtained sample was observed with a transmission electron microscope (JEM2010 manufactured by JEOL Ltd.), and the thickness of the coating layer was measured. A total of 15 points on the film are measured, and the average of 9 points excluding 3 points from the larger value and 3 points from the smaller value is defined as the coating layer thickness.
(5)帯電防止性:
 日本ヒューレット・パッカード製高抵抗測定器:HP4339Bおよび測定電極:HP16008Bを使用し、23℃,50%RHの測定雰囲気でサンプルを30分間調湿後、表面固有抵抗値を測定した。
(5) Antistatic property:
Using a high resistance measuring instrument made by Hewlett-Packard Japan: HP4339B and a measuring electrode: HP16008B, the sample was conditioned for 30 minutes in a measurement atmosphere at 23 ° C. and 50% RH, and then the surface resistivity was measured.
(6)接着性:
 サンプルの塗布層上に、下記に示すとおりの活性エネルギー線硬化樹脂組成物を、硬化後の厚さが7μmになるように塗布し、80℃に設定した熱風乾燥式オーブンにて1分間乾燥させた。次いで、120W/cmのエネルギーの高圧水銀灯を使用し、照射距離100mmにて約7秒間照射し硬化を行って、フィルム上に活性エネルギー線硬化樹脂層を設けた積層フィルムを得た。この時の活性エネルギー線の積算光量を、紫外線積算光量計UIT-250および受光器UVD-C365(ウシオ電機製)を用いて測定したところ、約110mJ/cmであった。得られた積層フィルムの活性エネルギー線硬化樹脂層に、1インチ幅に碁盤目が100個になるようクロスカットを入れ、その上に18mm幅のテープ(ニチバン製セロテープ(登録商標)CT-18)を貼り付け、急速剥離テストを実施し、剥離面積によりその接着性を評価した。接着性の評価は以下に示すA~Eの5段階で行った。Aは最高クラス、Eは最低クラスを示す。。
(6) Adhesiveness:
On the coating layer of the sample, the active energy ray-curable resin composition as shown below was applied so that the thickness after curing was 7 μm, and dried in a hot air drying oven set at 80 ° C. for 1 minute. It was. Next, using a high-pressure mercury lamp with an energy of 120 W / cm, curing was performed by irradiation for about 7 seconds at an irradiation distance of 100 mm to obtain a laminated film in which an active energy ray-curable resin layer was provided on the film. The integrated light amount of the active energy ray at this time was measured using an ultraviolet integrated light meter UIT-250 and a light receiver UVD-C365 (manufactured by USHIO INC.), And was about 110 mJ / cm 2 . The active energy ray-cured resin layer of the obtained laminated film is cross-cut so that there are 100 grids per inch, and 18 mm wide tape (Nichiban cello tape (registered trademark) CT-18) Was attached, and a rapid peel test was conducted. The adhesiveness was evaluated by the peeled area. The evaluation of adhesiveness was performed in five stages A to E shown below. A indicates the highest class and E indicates the lowest class. .
 A:碁盤目剥離個数=0
 B:1≦碁盤目剥離個数≦10
 C:11≦碁盤目剥離個数≦20
 D:21<碁盤目剥離個数
 E:全面が剥離
A: Number of cross-cuts peeled = 0
B: 1 ≦ Number of cross-cuts ≦ 10
C: 11 ≦ number of cross cuts ≦ 20
D: 21 <Number of cross cuts E: Full peel
 硬化樹脂組成物:日本化薬製「KAYARAD DPHA」を80重量部、日本化薬製「KAYARAD R-128H」を20重量部、チバスペシャルティケミカル製「IRGACURE651」を5重量部の混合物をトルエンで希釈し、濃度30重量%とした組成物。 Cured resin composition: Nippon Kayaku “KAYARAD DPHA” 80 parts by weight, Nippon Kayaku “KAYARAD R-128H” 20 parts by weight, Ciba Specialty Chemicals “IRGACURE 651” 5 parts by weight diluted with toluene And a concentration of 30% by weight.
(7)透明性:
 JIS K 7136(ISO14782)にしたがって、濁度計「NDH2000」(日本電色工業製)を用いてフィルムのヘーズを測定した。ヘーズが低いほど、透明性に優れているといえる。
(7) Transparency:
According to JIS K 7136 (ISO14782), haze of the film was measured using a turbidimeter “NDH2000” (manufactured by Nippon Denshoku Industries Co., Ltd.). It can be said that the lower the haze, the better the transparency.
 実施例、比較例中で使用したポリエステル原料は次のとおりである。
(ポリエステル1):実質的に粒子を含有しない、極限粘度0.66のポリエチレンテレフタレート
(ポリエステル2):平均粒径(d50)が1.6μmの非晶質シリカを0.3重量%含有する、極限粘度0.65のポリエチレンテレフタレート
The polyester raw materials used in Examples and Comparative Examples are as follows.
(Polyester 1): Polyethylene terephthalate having an intrinsic viscosity of 0.66 that does not substantially contain particles (Polyester 2): containing 0.3% by weight of amorphous silica having an average particle diameter (d50) of 1.6 μm, Polyethylene terephthalate with intrinsic viscosity of 0.65
 また、塗布組成物としては以下を用いた。
(E1):下記式1-1の構成単位と、下記式1-2の構成単位とを重量比率で95/5の重量比率で共重合した、数平均分子量20000の高分子化合物
Moreover, the following was used as a coating composition.
(E1): a polymer compound having a number average molecular weight of 20000, obtained by copolymerizing a structural unit of the following formula 1-1 and a structural unit of the following formula 1-2 at a weight ratio of 95/5
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(E2):下記式2-1の構成単位からなる高分子化合物 (E2): a polymer compound composed of a structural unit of the following formula 2-1
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(E3):下記式3-1の構成単位とアクリル酸エステルが共重合された構造を有する高分子化合物 (E3): a polymer compound having a structure in which a structural unit of the following formula 3-1 and an acrylate ester are copolymerized
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(A):反応性乳化剤としてアルコキシポリエチレングリコールメタクリレートを存在下に、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、メタクリル酸、N-メチロールアクリルアミドを主成分として共重合した、ガラス転移点が50℃、酸価が14mgKOH、平均粒径が0.05μmであるアクリル樹脂
(C1):オキサゾリン基がアクリル系樹脂にブランチされたポリマー型架橋剤である「エポクロス WS-500」日本触媒製)
(C2):メトキシメチロールメラミンであるベッカミン「J-101」(日本資材製)
(C3):ポリグリセロールポリグリシジルエーテルである「デナコールEX-521」(ナガセケムテックス製)
(F):平均粒径0.07μmのシリカゾル水分散体
(S):界面活性剤「サーフィノール465」(エアープロダクツ製)
(A): Copolymerized mainly with alkyl acrylate ester, alkyl methacrylate ester, methacrylic acid, N-methylol acrylamide in the presence of alkoxy polyethylene glycol methacrylate as reactive emulsifier, glass transition point of 50 ° C., acid Acrylic resin (C1) having a valence of 14 mgKOH and an average particle size of 0.05 μm: “Epocross WS-500” (manufactured by Nippon Shokubai Co., Ltd.), a polymer-type cross-linking agent in which an oxazoline group is branched to an acrylic resin
(C2): Becamine “J-101” (made by Nippon Materials), which is methoxymethylol melamine
(C3): “Denacol EX-521” (manufactured by Nagase ChemteX), which is a polyglycerol polyglycidyl ether
(F): Silica sol aqueous dispersion having an average particle size of 0.07 μm (S): Surfactant “Surfinol 465” (manufactured by Air Products)
 比較例1:
 ポリエステル1とポリエステル2とを重量比で92/8でブレンドしたものをA層、ポリエステル1のみのものをB層の原料として、二台のベント式二軸押出機にそれぞれを供給し、285℃に加熱溶融し、A層を二分配して再外層(表層)、B層を中間層とする二種三層(A/B/A)の層構成で共押出し、静電密着法を用いて表面温度40-50℃の鏡面冷却ドラムに密着させながら冷却固化させて、厚み構成比がA/B/A=3/94/3となる未延伸ポリエチレンテレフタレートフィルムを作成した。このフィルムを85℃の加熱ロール群を通過させながら長手方向に3.7倍延伸し、一軸配向フィルムとした。次いでこのフィルムをテンター延伸機に導き、100℃で幅方向に4.0倍延伸し、さらに230℃で熱処理を施した後、幅方向に2%の弛緩処理を行い、フィルム厚みが100μmの二軸配向ポリエチレンテレフタレートフィルムを得た。このフィルムの特性を、下記表2に示す。
Comparative Example 1:
A blend of polyester 1 and polyester 2 at a weight ratio of 92/8 was used as the raw material for layer A, and polyester 1 alone was used as the raw material for layer B. To the outer layer (surface layer) and the B layer as an intermediate layer, and coextruded in a layer configuration of two types and three layers (A / B / A) using an electrostatic adhesion method. The film was cooled and solidified while being in close contact with a mirror surface cooling drum having a surface temperature of 40 to 50 ° C. to prepare an unstretched polyethylene terephthalate film having a thickness composition ratio of A / B / A = 3/94/3. This film was stretched 3.7 times in the longitudinal direction while passing through a heating roll group at 85 ° C. to obtain a uniaxially oriented film. Next, this film was guided to a tenter stretching machine, stretched 4.0 times in the width direction at 100 ° C., further heat treated at 230 ° C., and then subjected to a relaxation treatment of 2% in the width direction. An axially oriented polyethylene terephthalate film was obtained. The properties of this film are shown in Table 2 below.
 実施例1:
 比較例1と同様の工程において得られた一軸配向フィルムの片面に、下記表1に示すとおりの塗布液を塗布した。次いでこのフィルムをテンター延伸機に導き、その熱を利用して塗布組成物の乾燥を行いつつ、比較例1と同様の工程によって、フィルム厚みが100μmの二軸配向ポリエチレンテレフタレートフィルムの上に、下記表1に示す厚さの塗布層を設けた積層ポリエステルフィルムを得た。このフィルムの特性を表2に示す。
Example 1:
A coating solution as shown in Table 1 below was applied to one side of a uniaxially oriented film obtained in the same process as Comparative Example 1. Next, the film was guided to a tenter stretching machine, and the coating composition was dried using the heat, and on the biaxially oriented polyethylene terephthalate film having a film thickness of 100 μm by the same process as in Comparative Example 1, A laminated polyester film provided with a coating layer having a thickness shown in Table 1 was obtained. The properties of this film are shown in Table 2.
 実施例2~5及び比較例2~6:
 実施例1と同様の工程において、塗布液を表1に示すように変更し、フィルム厚みが100μmの基材フィルムの上に表1に示す厚さの塗布層を設けた積層ポリエステルフィルムを得た。このフィルムの特性を表2に示す。
Examples 2 to 5 and Comparative Examples 2 to 6:
In the same process as Example 1, the coating solution was changed as shown in Table 1 to obtain a laminated polyester film in which a coating layer having a thickness shown in Table 1 was provided on a base film having a film thickness of 100 μm. . The properties of this film are shown in Table 2.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本発明の塗布フィルムは、優れた帯電防止性および各種の上塗り剤に対する接着性を必要とする用途における二軸延伸ポリエステルフィルムとして、好適に利用することができる。 The coated film of the present invention can be suitably used as a biaxially stretched polyester film in applications that require excellent antistatic properties and adhesion to various topcoats.

Claims (5)

  1.  ポリエステルフィルムの少なくとも片面に厚さ0.01~0.07μmの塗布層を有する塗布フィルムであって、上記の塗布層が、反応性乳化剤に由来する親水基を分子中に有するアクリル系樹脂(A)、4級アンモニウム基を有する化合物(B)、オキサゾリン系架橋剤(C)を含有する塗布剤から形成された塗布層であることを特徴とする塗布フィルム。 A coating film having a coating layer having a thickness of 0.01 to 0.07 μm on at least one surface of a polyester film, wherein the coating layer has an acrylic resin (A ) A coating film, which is a coating layer formed from a coating agent containing a compound (B) having a quaternary ammonium group and an oxazoline-based crosslinking agent (C).
  2.  4級アンモニウム基を有する化合物が下記式1または下記式2で示される構成要素を繰返し単位として有する重合体である請求項1に記載の塗布フィルム。
    Figure JPOXMLDOC01-appb-C000001
     上記式(1)中、Rは水素原子または炭素数が1~3のアルキル基、Rは-O-または-NH-、Rは-R-又は-R-A-R-(但し、RおよびRは置換されていてもよい炭素数が1~6のアルキレン基、Aは、-O-、-NH-または-N(CH -を表す)、R4、R5、R6はそれぞれが、水素原子または炭素数が1~3のアルキル基、Xは1価の陰イオンである。
    Figure JPOXMLDOC01-appb-C000002
     上記式(2)中、RおよびRはそれぞれ、水素原子または炭素数が1~3のアルキル基、Xは1価の陰イオンである。
    The coated film according to claim 1, wherein the compound having a quaternary ammonium group is a polymer having a constituent represented by the following formula 1 or 2 as a repeating unit.
    Figure JPOXMLDOC01-appb-C000001
    In the above formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 2 is —O— or —NH—, and R 3 is —R 7 — or —R 7 —AR 8. -(Wherein R 7 and R 8 are an optionally substituted alkylene group having 1 to 6 carbon atoms, A represents -O-, -NH- or -N (CH 3 ) 2 + -), R 4 , R 5 and R 6 are each a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and X is a monovalent anion.
    Figure JPOXMLDOC01-appb-C000002
    In the above formula (2), R 1 and R 2 are each a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and X is a monovalent anion.
  3.  塗布液の不揮発成分中の割合として、反応性乳化剤に由来する親水基を分子中に有するアクリル系樹脂(A)の割合が5~70重量%、4級アンモニウム基を有する化合物(B)の割合が10~80重量%、オキサゾリン系架橋剤(C)の割合が5~60重量%である請求項1又は2に記載の塗布フィルム。 The proportion of the acrylic resin (A) having a hydrophilic group derived from the reactive emulsifier in the molecule is 5 to 70% by weight and the proportion of the compound (B) having a quaternary ammonium group as a proportion in the nonvolatile component of the coating liquid. The coated film according to claim 1 or 2, wherein 10 to 80% by weight of oxazoline-based crosslinking agent (C) is 5 to 60% by weight.
  4.  塗布層の表面固有抵抗Pが1×1013Ω以下である請求項1~3の何れかに記載の塗布フィルム。 4. The coated film according to claim 1, wherein the coating layer has a surface resistivity P of 1 × 10 13 Ω or less.
  5.  フィルムヘーズが10%以下である請求項1~4の何れかに記載の塗布フィルム。 The coated film according to any one of claims 1 to 4, wherein the film haze is 10% or less.
PCT/JP2012/060031 2011-04-18 2012-04-12 Coating film WO2012144417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137015704A KR101768461B1 (en) 2011-04-18 2012-04-12 Coating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-091745 2011-04-18
JP2011091745 2011-04-18

Publications (1)

Publication Number Publication Date
WO2012144417A1 true WO2012144417A1 (en) 2012-10-26

Family

ID=47041526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060031 WO2012144417A1 (en) 2011-04-18 2012-04-12 Coating film

Country Status (3)

Country Link
JP (1) JP5562372B2 (en)
KR (1) KR101768461B1 (en)
WO (1) WO2012144417A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5714035B2 (en) * 2012-12-10 2015-05-07 三菱樹脂株式会社 Laminated polyester film
JP5714034B2 (en) * 2012-12-10 2015-05-07 三菱樹脂株式会社 Laminated polyester film
JP6854086B2 (en) * 2016-03-31 2021-04-07 日本カーバイド工業株式会社 Water-dispersible resin composition and resin film
KR102320811B1 (en) * 2017-11-22 2021-11-02 코오롱인더스트리 주식회사 Polyester film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169096A (en) * 1994-12-20 1996-07-02 Diafoil Co Ltd Antistatic polyester film
JPH11286092A (en) * 1998-04-02 1999-10-19 Toray Ind Inc Laminated polyester film and manufacture thereof
JP2003080639A (en) * 2001-09-11 2003-03-19 Mitsubishi Polyester Film Copp Film
JP2008083191A (en) * 2006-09-26 2008-04-10 Mitsubishi Polyester Film Copp Roll of polyester film for optical filter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082979B2 (en) * 1988-08-26 1996-01-17 株式会社日本触媒 Polyester film and method for producing the same
JP4422239B2 (en) * 1999-07-28 2010-02-24 中央理化工業株式会社 Acrylic emulsion type pressure sensitive adhesive and pressure sensitive adhesive product using the same
JP2010248481A (en) 2009-03-25 2010-11-04 Toray Ind Inc Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP5557463B2 (en) * 2009-04-20 2014-07-23 三菱樹脂株式会社 Method for producing laminated polyester film
JP5518370B2 (en) * 2009-05-20 2014-06-11 日東電工株式会社 Method for producing water-dispersible acrylic pressure-sensitive adhesive composition for re-peeling, water-dispersed acrylic pressure-sensitive adhesive composition for re-peeling, pressure-sensitive adhesive layer and pressure-sensitive adhesive sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169096A (en) * 1994-12-20 1996-07-02 Diafoil Co Ltd Antistatic polyester film
JPH11286092A (en) * 1998-04-02 1999-10-19 Toray Ind Inc Laminated polyester film and manufacture thereof
JP2003080639A (en) * 2001-09-11 2003-03-19 Mitsubishi Polyester Film Copp Film
JP2008083191A (en) * 2006-09-26 2008-04-10 Mitsubishi Polyester Film Copp Roll of polyester film for optical filter

Also Published As

Publication number Publication date
KR20140018194A (en) 2014-02-12
JP2012232580A (en) 2012-11-29
KR101768461B1 (en) 2017-08-16
JP5562372B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5349172B2 (en) Laminated polyester film
JP5536378B2 (en) Laminated polyester film
WO2010143551A1 (en) Laminated polyester film
JP5520138B2 (en) Laminated polyester film
JP2011230437A (en) Laminated polyester film
JP5424987B2 (en) Laminated polyester film
WO2011001971A1 (en) Laminated polyester film
JP5536379B2 (en) Laminated polyester film
JP6500821B2 (en) Laminated film
JP5562372B2 (en) Laminated polyester film
JP6428679B2 (en) Laminated film
JP5562373B2 (en) Laminated polyester film
JP5489971B2 (en) Laminated polyester film
JP2011183644A (en) Hard coat film
JP5734405B2 (en) Laminated polyester film
JP5916462B2 (en) Laminated polyester film
JP5748833B2 (en) Laminated polyester film
JP2015016677A (en) Release polyester film
JP5489972B2 (en) Laminated polyester film
JP5916461B2 (en) Polyester film for surface protective film and surface protective film
JP2002155156A (en) Easily bondable laminated film for optical use
JP2014145000A (en) Laminated polyester film
JP2015040267A (en) Laminated polyester film
JP2012223928A (en) Laminated polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137015704

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773731

Country of ref document: EP

Kind code of ref document: A1