WO2012144403A1 - Amorphous film crystallization apparatus and method - Google Patents

Amorphous film crystallization apparatus and method Download PDF

Info

Publication number
WO2012144403A1
WO2012144403A1 PCT/JP2012/059978 JP2012059978W WO2012144403A1 WO 2012144403 A1 WO2012144403 A1 WO 2012144403A1 JP 2012059978 W JP2012059978 W JP 2012059978W WO 2012144403 A1 WO2012144403 A1 WO 2012144403A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
laser beam
amorphous film
region
objective lens
Prior art date
Application number
PCT/JP2012/059978
Other languages
French (fr)
Japanese (ja)
Inventor
石煥 鄭
純一 次田
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Publication of WO2012144403A1 publication Critical patent/WO2012144403A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams

Definitions

  • the present invention relates to an amorphous film crystallization apparatus for sequentially performing side surface crystallization by irradiating a laser beam to an amorphous film, and a method therefor.
  • Patent Document 1 propose SLS (sequential ⁇ ⁇ lateral solidification) technology for producing huge single crystal silicon by inducing lateral growth of silicon crystal using an energy source as a laser. ing.
  • the SLS technology is based on the phenomenon that silicon grains grow in a direction perpendicular to the boundary surface between liquid silicon and solid phase silicon.
  • the silicon grain is laterally grown to a predetermined length to crystallize the amorphous silicon thin film.
  • Patent Document 3 it is proposed in Patent Document 3 to provide a method with improved production efficiency when sequentially using a lateral crystallization (SLS) method to crystallize silicon.
  • the optical member used in the conventional apparatus is composed of the laser light transmission region and the laser light shielding region.
  • the laser light shielding region completely shields the laser beam, so that the pattern of the laser light transmission region can be accurately projected as an image on the amorphous film as the irradiation object.
  • the laser light shielding region is composed of a metal such as Cr or CrO film attached to quartz glass, etc., and absorbs the incident laser light and converts the light into heat to shield the laser light. Therefore, there is a problem that high-temperature heat is generated and the Cr film or the CrO film is damaged. Further, when heat is generated in the optical member, air convection is generated, which causes distortion of the pattern image by the optical member.
  • a method of cooling the optical member is also conceivable in order to prevent the above-described adverse effects caused by the generation of heat. For example, it is conceivable to cool the optical member by blowing air, but turbulence may occur in the air that has cooled the optical member, which may cause distortion of the pattern image. Although a method using a coolant such as water is conceivable, there is a problem that it is difficult to control the flow rate of the coolant or to control the vapor by evaporation of the coolant.
  • the present invention has been made to solve the above-described problems of the prior art, and reduces the generation of heat in the optical member during laser light irradiation without taking a cooling means, thereby preventing adverse effects due to temperature rise.
  • An object is to provide an amorphous film crystallization apparatus and a crystallization method that can be eliminated.
  • the first present invention is A laser light source that outputs laser light to irradiate the amorphous film;
  • a laser light transmission region that is disposed on the laser beam path of the optical system on the front side of the objective lens and transmits a part of the laser beam, and a laser beam shielding area that blocks a part of the laser beam
  • an optical member that forms an image pattern by the laser light transmitting region and the laser light shielding region,
  • the optical member is smaller than a value (R / M) obtained by a product of a resolution (R) of the objective lens and a reciprocal of a magnification (M) of the objective lens in the laser light shielding region, and the laser light.
  • the laser beam transmission part for temperature rise suppression which has the control dimension larger than the wavelength of the above, and enables transmission of the laser beam is provided.
  • the magnification (M) of the objective lens is the ratio (b / a) between the distance (b) between the amorphous film and the objective lens and the distance (a) between the optical member and the objective lens, or on the amorphous film. It is determined by the ratio (d / D) of the pattern image size (d) and the pattern image size (D) of the optical member.
  • the amorphous film crystallization apparatus is the amorphous film crystallization apparatus according to the first aspect, wherein the laser beam transmission part for suppressing temperature rise has a narrow width on the laser beam irradiation surface. It has a shape.
  • the temperature rise suppression laser light transmitting portion is a circle having a diameter of the restriction dimension on the laser light irradiation surface. It has a shape.
  • the amorphous film crystallization apparatus according to any one of the first to third aspects of the present invention, wherein the laser beam transmitting part for suppressing temperature rise has a through-site or a relative transmittance of the laser beam. It is characterized by comprising a high part.
  • the optical member in any one of the first to fourth aspects of the present invention, has an unirradiated region where the laser beam is not irradiated.
  • An amorphous film crystallization apparatus is characterized in that, in any of the first to fifth aspects of the present invention, the amorphous film is sequentially subjected to side surface crystallization by irradiation with the laser beam. To do.
  • a laser beam is irradiated through an optical member having a laser beam transmission region and a laser beam shielding region, and the optical is controlled according to the laser beam transmission region and the laser beam shielding region.
  • a crystallization method of condensing a laser beam of a pattern transmitted through a member with an objective lens and irradiating the amorphous film, and sequentially crystallizing the amorphous film by side crystallization A part of the laser light irradiated to the laser light shielding area is made smaller than the product of the resolution of the objective lens and the reciprocal of the magnification in the laser light shielding area to pass through the optical member, and at least A part of the irradiation is performed to the irradiation region where the amorphous film is irradiated with the laser beam transmitted through the laser beam transmission region.
  • the laser light applied to the laser beam transmission part for suppressing temperature increase in the laser beam shielding area is transmitted through the region of the laser beam transmission part for suppressing temperature increase in the laser beam shielding area.
  • it does not irradiate with sufficient energy on the amorphous film by passing through a region having a regulation dimension smaller than the product of the resolution of the objective lens and the reciprocal of the magnification.
  • the resolution of the objective lens is the minimum dimension that allows the pattern of the optical member to be patterned on the amorphous film by laser light irradiation.
  • magnification (M) of the objective lens can be determined as follows.
  • the distance between the objective lens and the optical member is the distance between the optical center of the objective lens on the optical axis and the surface of the optical member.
  • the distance between the objective lens and the amorphous film is the optical center of the objective lens on the optical axis and the surface of the amorphous film. It can be shown by the distance.
  • the region of the laser beam transmitting portion for suppressing temperature increase does not have a size smaller than the product of the resolution of the objective lens and the reciprocal of the magnification, the laser beam transmitted through the region has sufficient energy. In this state, the amorphous film is irradiated to impair the function as a laser light shielding region.
  • the temperature rise suppression laser beam transmitting portion has a regulation size smaller than the product in any direction (in the plane direction) at any position of the temperature increase suppression laser beam transmission portion in the plane direction. It has a dimension smaller than the product.
  • the regulation dimension of the laser beam transmitting part for suppressing temperature rise does not have a dimension larger than the wavelength of the laser beam, diffraction is conspicuous when the laser beam is transmitted through the laser beam transmitting part for temperature increase suppression. And is scattered outside the irradiated surface of the amorphous film. For this reason, it is necessary for the laser beam transmission part for temperature rise suppression to have a regulation dimension larger than the wavelength of the laser beam.
  • the fact that the laser beam transmitting part for suppressing temperature increase has a regulation dimension larger than the wavelength of the laser beam indicates that the regulation dimension satisfies this condition.
  • the regulation size required for the laser beam transmission part for suppressing the temperature increase is not limited to a specific numerical value.
  • the required regulation dimension is exemplified by a dimension of 0.5 to 1.0 ⁇ m on the amorphous film.
  • the optical member in the present invention is not limited to a specific material, and any optical member can be used as long as a laser light irradiation region and a laser light shielding region can be obtained. It can also be formed by film formation or the like.
  • the laser beam transmitting region may be any region that can impart energy to the amorphous film to such an extent that the laser beam is transmitted and the side surface crystallization is sequentially performed by irradiating the amorphous film with the laser beam.
  • the laser light transmission region may be formed by a penetrating portion, or may be configured by a portion having a relatively high transmittance.
  • the laser light shielding region may be a region where the laser light is transmitted with relatively lower energy than the laser light transmitting region, in addition to the region where the laser light is not transmitted. In other words, it is only necessary that the energy of the laser light that passes through the laser light shielding region is distinguished from the energy of the laser light that passes through the laser light transmitting region, and the side crystallization is performed sequentially.
  • the laser beam transmission part for temperature rise suppression allows the laser beam to be partially transmitted in the laser beam shielding region when the laser beam is not transmitted in the laser beam shielding region.
  • the transmission of the laser light only gives small energy to the amorphous film as compared with the laser light transmission region.
  • the laser light transmitting portion for temperature rise suppression transmits the laser light with a higher transmittance than the laser light shielding region.
  • the amount of energy given to the amorphous film of the transmitted laser beam in the laser beam transmitting portion for suppressing temperature rise is much smaller than that of the laser beam transmitted through the laser beam transmitting region, so that the side crystallization is not hindered sequentially.
  • the shape of the laser beam transmission part for temperature rise suppression is not particularly limited as long as it satisfies the above-mentioned regulation dimension.
  • a strip shape having the prescribed regulation dimension in the short width direction can be used.
  • the laser beam transmitting portion for suppressing temperature increase is formed of a penetrating portion, it can be said to be a slit shape.
  • a plurality of the strips can be arranged in parallel at a predetermined interval, or arranged vertically and horizontally, and the temperature rise of the optical member can be effectively suppressed.
  • the shape of the laser beam transmitting portion for suppressing temperature increase can be a circular shape having the above-mentioned regulated size as a diameter.
  • the laser beam transmitting portion for suppressing the temperature increase is constituted by a penetrating portion, it can be said to be a hole shape. By increasing the number of the circular shapes, the temperature of the optical member can be effectively suppressed.
  • the laser beam transmitting portion for suppressing the temperature increase may be provided on the optical member with a different shape.
  • the present invention can be suitably used as an SLS crystallization method and apparatus for manufacturing a polycrystalline or single crystal semiconductor film of a thin film transistor used in a pixel switch or a drive circuit of a liquid crystal display or an organic EL display.
  • the laser beam is transmitted through the laser beam transmitting portion for suppressing temperature increase provided in the laser beam shielding region of the optical member so that there is no hindrance to crystallization. Suppresses the generation of heat, effectively prevents damage due to temperature rise, and improves durability. Moreover, generation
  • FIG. 1 is a schematic view showing a laser annealing apparatus 1 corresponding to the amorphous film crystallization apparatus of the present invention.
  • the laser annealing apparatus 1 has a stage 3 on which a substrate 2 on which an amorphous silicon film is formed is placed. Further, an X movement motor 4a that moves the stage 3 in the X axis direction and a Y movement motor 4b that can move in the Y axis direction are provided.
  • An X movement driver 5a and a Y movement driver 5b are electrically connected to each motor. It is connected to the.
  • Each driver is connected to a system controller 6 constituted by a computer, and can control each moving motor.
  • the laser annealing apparatus 1 includes a laser light source 10 that outputs a laser beam 10a having a predetermined wavelength.
  • the silicon film is in an amorphous state before processing.
  • a laser light source 10 for example, a laser oscillator LS2000 (1) or LSX315 (wavelength 308 nm, repetition frequency 300 Hz) manufactured by Coherent Co., Ltd. can be used.
  • the laser light source 10 is not limited to a specific one in the present invention.
  • An attenuator 11 is disposed in the irradiation direction of the laser light 10 a oscillated by the laser light source 10, and an optical system 15 including a mirror 12, a beam shaper 13, an objective lens 14 and the like is disposed in the emission direction of the attenuator 11.
  • Laser light 10 a is guided through the optical system 15 and is irradiated onto the silicon film of the substrate 2.
  • the attenuator 11 attenuates the laser beam 10a and adjusts it to a predetermined energy.
  • a variable attenuator capable of adjusting the attenuation rate can be used.
  • the attenuator 11 adjusts the attenuation factor of the laser beam 10a so as for example of about 600 mJ / cm 2 energy density of -1000mJ / cm 2 on the silicon film.
  • the mirror 12 deflects the irradiation direction of the laser light 10a output from the laser light source 10.
  • the laser light 10a output in the horizontal direction from the laser light source 10 is applied to the substrate 2 on which the silicon film is formed. Therefore, the direction is changed vertically.
  • the beam shaper 13 shapes the laser beam 10a into a beam cross-sectional shape such as a rectangular shape or a circular shape.
  • the objective lens 14 condenses the laser beam 10a and irradiates the vicinity of the silicon film surface on the substrate 2.
  • the distance between the optical center of the objective lens 14 and the silicon film surface on the optical axis is b in the figure. It is shown.
  • the silicon film is an object of processing.
  • the present invention processes an amorphous film into a crystal film or a crystal film, and the material is limited to silicon. It is not something.
  • the optical member 20 has a rectangular shape, and in the surface direction, the strip-shaped laser light transmission region 20a is arranged in parallel so that the long sides are adjacent to each other.
  • the adjacent laser light transmission regions 20a are provided at a small interval.
  • the optical member 20 is a laser light shielding region 20b in the plane direction except for the laser light transmitting region 20a.
  • the manufacturing method of the optical member 20 having the laser light transmission region 20a and the laser light shielding region 20b is not particularly limited as the present invention.
  • an optical member is composed of a material that transmits laser light, and a metal thin film is coated by vapor deposition or the like on a region other than the laser light transmitting region 20a using a shadow mask that covers a portion of the laser light transmitting region 20a.
  • the light shielding region 20b can be formed.
  • the optical member 20 may be obtained by removing the metal thin film by etching or the like in a region corresponding to the laser light transmitting region 20a with respect to the metal thin film coated on the surface of the optical member.
  • the optical member 20 body is made of a material that transmits laser light, and a metal film made of Cr or CrO is formed on the laser light shielding region 20b excluding the laser light transmitting region 20a.
  • a narrow laser beam transmitting part 21 for suppressing temperature rise is arranged at intervals along the edge of the laser beam transmitting region 20a. Are in parallel.
  • the width of the laser beam transmitting portion 21 for suppressing temperature increase and the interval width between the laser beam transmitting portions 21 for suppressing temperature increase are substantially the same width. Accordingly, in the laser light shielding region 20b, the total area of the laser beam transmitting portion 21 for suppressing the temperature increase and the other total area are about 1 ⁇ 2 each.
  • the width of the laser beam transmitting portion 21 for suppressing the temperature increase is smaller than the product (R / M) of the resolution (R) of the objective lens and the inverse of the magnification (M) of the objective lens described below. Furthermore, the width of the laser beam transmitting portion 21 for suppressing temperature increase is larger than the wavelength of the laser beam 10a. In this embodiment, the width exceeds, for example, 308 nm, which is the wavelength of the laser beam 10a. As shown in FIG. 4, the magnification of the objective lens is the ratio (b / a) between the distance (b) between the amorphous film on the substrate 2 and the objective lens 14 and the distance (a) between the optical member 20 and the objective lens 14.
  • Laser light 10a is output from the laser light source 10.
  • excimer laser light having a wavelength of 308 nm is output.
  • the laser light 10 a is adjusted to energy suitable for silicon crystallization by the attenuator 11, deflected by the mirror 12, and enters the beam shaper 13.
  • the beam shaper 13 forms the desired beam cross-sectional shape. For example, it is shaped into a beam cross-sectional shape having a major axis of 125 mm and a minor axis of 6 mm.
  • the laser beam 10 a that has passed through the beam shaper 13 reaches the optical member 20, is patterned by a pattern according to the shape and arrangement of the laser beam transmission region 20 a, and reaches the objective lens 14.
  • the laser beam 10a is condensed when passing through the objective lens 14, and is irradiated on the silicon film on the substrate 2 in a predetermined pattern image.
  • Side crystallization can be performed sequentially by changing the position of the optical member 20 and irradiating the silicon film on the substrate 2 with a laser beam 10a in a predetermined pattern image. Further, the relative position between the laser beam 10a and the silicon film can be changed by moving the stage 2 while feeding the pitch by the X moving motor 4a and the Y moving motor 4b.
  • the shutter is for blocking the laser beam at the end surface of the substrate not coated with a silicon (amorphous silicon) film.
  • the reason why the shutter is arranged after the objective lens 14 is as follows. Depending on whether or not the laser beam 10a passes through the objective lens 14, a temperature change occurs and is affected by a focus shift of the objective lens 14 and the like. Even when the shutter is closed, the influence can be reduced by passing the laser beam 10a through the objective lens 14.
  • the shutter is provided with a mirror tilted at 45 °, so that the energy of the laser beam 10a can be consumed toward a beam dump (not shown) without being reflected by the optical system.
  • FIG. 2B is a view showing the periphery of the laser light transmission region 20a irradiated with the laser light 10a, and shows a part of the optical member 20.
  • the laser beam 10a cannot enter the optical member 20 with a size suitable for the laser beam transmission region 20a due to the vibration of the apparatus and the fluctuation of the position of the laser beam 10a. Therefore, the laser beam 10a is shaped to be larger than the pattern size and is incident on the optical member 20, so that the laser beam 10a is not only irradiated to the laser beam shielding region 20b between the laser beam transmitting regions 20a but also the laser beam transmitting region. Laser light 10a is also irradiated around 20a, and high temperature is generated.
  • the region that is not irradiated with laser light is also a non-irradiated region.
  • a part of the laser light shielding region 20b around the laser light transmitting region 20a becomes particularly high temperature, and damage is likely to occur over time. Further, even before the damage occurs, air convection occurs, and the pattern image by the optical member 20 is damaged.
  • the optical member 20 of this embodiment half the area of the original laser light shielding region 20b is the laser light transmitting portion 21 for suppressing the temperature rise, and this portion is irradiated with the laser light 10a. Heating during heating is suppressed. Thereby, the temperature rise of the whole optical member 20 becomes small.
  • the generation of heat can be suppressed by minimizing the metal portion of the laser light shielding region 20b of the optical member 20, damage to the optical member 20 is reduced. can do. Furthermore, the pattern of the optical member 20 can be accurately projected onto the amorphous silicon film.
  • FIG. 5 shows an optical member 30 of another form, and the optical member 30 has a laser light transmission region 30a and a laser light shielding region 30b as in the above embodiment.
  • the optical member 30 instead of the laser beam transmission part 21 for suppressing temperature increase, circular laser beam transmission parts 31 for suppressing temperature increase are scattered in the laser beam shielding region 30b.
  • the diameter of the transmission part 31 is smaller than the resolution of the objective lens 14 and larger than the wavelength of the laser beam 10a.
  • the total area of the remaining portions of the laser beam transmitting portion 30a for suppressing temperature increase and the laser beam shielding region 30b is substantially the same. Also in this embodiment, when the laser beam 10a is irradiated, the generation of heat in the laser beam shielding region 30b is suppressed, and the occurrence of damage or distortion of the pattern image due to the temperature rise of the optical member 30 is prevented.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

[Problem] To suppress heating and temperature increase of an optical member for providing laser light with a pattern image when performing sequential lateral solidification. [Solution] The present invention is provided with: a laser light source (10) that outputs laser light (10a) with which an amorphous film is irradiated; an optical system (15) that guides the laser light to the amorphous film; an objective lens (14) constituting a part of the optical system (15) and collecting the laser light with which the amorphous film is irradiated; and an optical member (20) disposed in an earlier stage than the objective lens (14) in a laser light optical path of the optical system (15) and including a laser light transmitting region and a laser light blocking region. The optical member (20) includes, in the laser light blocking region, a temperature-increase-preventing laser light transmitting portion with a regulating size smaller than the value of the product of the resolution and the inverse of the magnification of the objective lens (14) and larger than the wavelength of the laser light (10a) such that transmission of the laser light (10) is enabled.[Solution] A laser light source (10) outputs laser light (10a) with which an amorphous film is irradiated. An optical system (15) guides the laser light to the amorphous film. An objective lens (14) constituting a part of the optical system (15) collects the laser light with which the amorphous film is irradiated. An optical member (20) is disposed in an earlier stage than the objective lens (14) in a laser light optical path of the optical system (15) and includes a laser light transmitting region and a laser light blocking region. The optical member (20) includes, in the laser light blocking region, a temperature-increase-preventing laser light transmitting portion enabling the transmission of the laser light (10) by having a regulating size smaller than the value of the product of the resolution and the inverse of the magnification of the objective lens (14) and larger than the wavelength of the laser light (10a).

Description

アモルファス膜結晶化装置およびその方法Amorphous film crystallization apparatus and method
 この発明は、アモルファス膜にレーザ光を照射して順次側面結晶化を行うアモルファス膜結晶化装置およびその方法に関するものである。 The present invention relates to an amorphous film crystallization apparatus for sequentially performing side surface crystallization by irradiating a laser beam to an amorphous film, and a method therefor.
 フラットパネルディスプレイの基板などに用いられる半導体薄膜では、アモルファス膜を用いるものの他、結晶薄膜を用いるものが知られている。この結晶薄膜に関し、アモルファス膜をアニールして結晶化させることにより製造する方法が提案されている。この他に、エネルギー源をレーザにしてシリコン結晶の側面成長を誘導して巨大な単結晶シリコンを製造するSLS(sequential lateral solidification:順次側面結晶化)技術が特許文献1や特許文献2で提案されている。 As a semiconductor thin film used for a flat panel display substrate or the like, a semiconductor thin film using an amorphous film or a crystalline thin film is known. With respect to this crystalline thin film, a method of manufacturing an amorphous film by annealing and crystallizing has been proposed. In addition, Patent Document 1 and Patent Document 2 propose SLS (sequential す る lateral solidification) technology for producing huge single crystal silicon by inducing lateral growth of silicon crystal using an energy source as a laser. ing.
 SLS技術は、シリコングレインが液状シリコンと固相シリコンの境界面でその境界面に対して垂直方向で成長するという現象に基づいている。レーザエネルギーの強さとレーザビームの走査範囲の移動を適切に調節して、シリコングレインを所定の長さに側面成長させることで非晶質シリコン薄膜を結晶化させることである。
 さらに、従来の装置では、シリコンを結晶化するために順次側面結晶化(SLS)方法を利用する時の生産効率の改善した手法を提供することが特許文献3で提案されている。
The SLS technology is based on the phenomenon that silicon grains grow in a direction perpendicular to the boundary surface between liquid silicon and solid phase silicon. By appropriately adjusting the intensity of the laser energy and the movement of the scanning range of the laser beam, the silicon grain is laterally grown to a predetermined length to crystallize the amorphous silicon thin film.
Furthermore, in the conventional apparatus, it is proposed in Patent Document 3 to provide a method with improved production efficiency when sequentially using a lateral crystallization (SLS) method to crystallize silicon.
 特許文献3に示される装置では、上記工程を効率化するために、図6に示すように、光学部材に透過領域40a、41aと遮断領域40b、41bを有する2つのブロック40、41を横に並べて設け、さらに、これらブロックに並べて小さい四角形のスリット42aが多数形成された活性化領域42が設けられている。
 上記光学部材では、透過領域をレーザビームが透過し、遮蔽領域はレーザビームが透過できず光を吸収して熱に変化させることで、パターン化されたレーザビームが得られる。
In the apparatus shown in Patent Document 3, in order to improve the efficiency of the above process, as shown in FIG. 6, two blocks 40 and 41 having transmission regions 40a and 41a and blocking regions 40b and 41b on the optical member are placed sideways as shown in FIG. In addition, an activation region 42 in which a large number of small rectangular slits 42a are formed in the blocks is provided.
In the optical member, the laser beam is transmitted through the transmission region, and the laser beam is not transmitted through the shielding region, and the laser beam is absorbed and changed into heat, whereby a patterned laser beam is obtained.
国際公開第97/45827パンフレットInternational Publication No. 97/45827 Pamphlet 韓国特許出願公開第2001-004129号明細書Korean Patent Application Publication No. 2001-004129 特開2005-5722号公報JP 2005-5722 A
 従来の装置で使用している光学部材は、上記のようにレーザ光透過領域とレーザ光遮蔽領域で構成されている。レーザ光遮蔽領域はレーザビームを完全に遮蔽することで、レーザ光透過領域のパターンを正確に被照射物であるアモルファス膜にイメージとして投影できるようにする。
 レーザ光遮蔽領域は金属であるCrやCrO膜を石英ガラスに付けたものなどで構成され、入射されたレーザ光を吸収し、光を熱に変えることで、レーザ光を遮蔽している。そのために、高温の熱が発生し、Cr膜やCrO膜がダメージを受けるという問題がある。また、光学部材で熱が発生すると空気の対流が発生し、光学部材によるパターンイメージを歪める原因になる。
 上記した熱の発生による弊害を防止するために光学部材を冷却する方法も考えられる。例えば、光学部材にエアーを吹き付けるなどして冷却することが考えられるが、光学部材を冷却した空気に乱流が発生し、パターンイメージの歪みを発生させるおそれがある。また、水などの冷却剤を用いる方法が考えられるが、冷却剤の流量制御や冷却剤の蒸発による蒸気の制御が難しいという問題がある。
As described above, the optical member used in the conventional apparatus is composed of the laser light transmission region and the laser light shielding region. The laser light shielding region completely shields the laser beam, so that the pattern of the laser light transmission region can be accurately projected as an image on the amorphous film as the irradiation object.
The laser light shielding region is composed of a metal such as Cr or CrO film attached to quartz glass, etc., and absorbs the incident laser light and converts the light into heat to shield the laser light. Therefore, there is a problem that high-temperature heat is generated and the Cr film or the CrO film is damaged. Further, when heat is generated in the optical member, air convection is generated, which causes distortion of the pattern image by the optical member.
A method of cooling the optical member is also conceivable in order to prevent the above-described adverse effects caused by the generation of heat. For example, it is conceivable to cool the optical member by blowing air, but turbulence may occur in the air that has cooled the optical member, which may cause distortion of the pattern image. Although a method using a coolant such as water is conceivable, there is a problem that it is difficult to control the flow rate of the coolant or to control the vapor by evaporation of the coolant.
 この発明は、上記のような従来のものの課題を解決するためになされたものであり、冷却手段を講じることなくレーザ光照射時の前記光学部材における熱の発生を少なくして昇温による弊害を排除できるすることができるアモルファス膜結晶化装置および結晶化方法を提供することを目的とする。 The present invention has been made to solve the above-described problems of the prior art, and reduces the generation of heat in the optical member during laser light irradiation without taking a cooling means, thereby preventing adverse effects due to temperature rise. An object is to provide an amorphous film crystallization apparatus and a crystallization method that can be eliminated.
 すなわち、本発明のアモルファス膜結晶化装置のうち、第1の本発明は、
 アモルファス膜に照射するレーザ光を出力するレーザ光源と、
 前記レーザ光を前記アモルファス膜に誘導する光学系と、
 前記光学系の一部を構成し、前記アモルファス膜に照射するレーザ光を集光する対物レンズと、
 前記光学系のレーザ光光路上で前記対物レンズよりも前段側に位置して配置され、前記レーザ光の一部を透過させるレーザ光透過領域および前記レーザ光の一部を遮蔽するレーザ光遮蔽領域を有し、前記レーザ光透過領域とレーザ光遮蔽領域とによってイメージパターンを形成する光学部材と、を備え、
 前記光学部材は、前記レーザ光遮蔽領域に、前記対物レンズの解像度(R)と対物レンズの倍率(M)の逆数との積で求められる値(R/M)よりも小さく、かつ前記レーザ光の波長よりも大きい規制寸法を有して前記レーザ光の透過を可能にする昇温抑制用レーザ光透過部が設けられていることを特徴とする。
 ただし、対物レンズの倍率(M)は、アモルファス膜と対物レンズとの距離(b)と前記光学部材と対物レンズとの距離(a)との比(b/a)、又は、アモルファス膜上のパターンイメージサイズ(d)と前記光学部材のパターンイメージサイズ(D)の比(d/D)により決定される。
That is, among the amorphous film crystallization apparatuses of the present invention, the first present invention is
A laser light source that outputs laser light to irradiate the amorphous film;
An optical system for guiding the laser light to the amorphous film;
An objective lens that constitutes a part of the optical system and condenses the laser light applied to the amorphous film;
A laser light transmission region that is disposed on the laser beam path of the optical system on the front side of the objective lens and transmits a part of the laser beam, and a laser beam shielding area that blocks a part of the laser beam And an optical member that forms an image pattern by the laser light transmitting region and the laser light shielding region,
The optical member is smaller than a value (R / M) obtained by a product of a resolution (R) of the objective lens and a reciprocal of a magnification (M) of the objective lens in the laser light shielding region, and the laser light. The laser beam transmission part for temperature rise suppression which has the control dimension larger than the wavelength of the above, and enables transmission of the laser beam is provided.
However, the magnification (M) of the objective lens is the ratio (b / a) between the distance (b) between the amorphous film and the objective lens and the distance (a) between the optical member and the objective lens, or on the amorphous film. It is determined by the ratio (d / D) of the pattern image size (d) and the pattern image size (D) of the optical member.
 第2の本発明のアモルファス膜結晶化装置は、前記第1の本発明において、前記昇温抑制用レーザ光透過部は、前記レーザ光の照射面において前記規制寸法を短幅側に有する細片形状を有することを特徴とする。
 第3の本発明のアモルファス膜結晶化装置は、前記第1または第2の本発明において、前記昇温抑制用レーザ光透過部は、前記レーザ光の照射面において前記規制寸法を径とする円形状を有することを特徴とする。
 第4の本発明のアモルファス膜結晶化装置は、前記第1~第3の本発明のいずれかにおいて、前記昇温抑制用レーザ光透過部は、貫通部位または前記レーザ光の透過率が相対的に高い部位で構成されていることを特徴とする。
 第5の本発明のアモルファス膜結晶化装置は、前記第1~第4の本発明のいずれかにおいて、前記光学部材は、前記レーザ光が照射されない未照射領域を有することを特徴とする。
 第6の本発明のアモルファス膜結晶化装置は、前記第1~第5の本発明のいずれかにおいて、前記レーザ光の照射によって前記アモルファス膜の順次側面結晶化を行うものであることを特徴とする。
The amorphous film crystallization apparatus according to a second aspect of the present invention is the amorphous film crystallization apparatus according to the first aspect, wherein the laser beam transmission part for suppressing temperature rise has a narrow width on the laser beam irradiation surface. It has a shape.
According to a third aspect of the present invention, there is provided the amorphous film crystallization apparatus according to the first or second aspect of the present invention, wherein the temperature rise suppression laser light transmitting portion is a circle having a diameter of the restriction dimension on the laser light irradiation surface. It has a shape.
According to a fourth aspect of the present invention, there is provided the amorphous film crystallization apparatus according to any one of the first to third aspects of the present invention, wherein the laser beam transmitting part for suppressing temperature rise has a through-site or a relative transmittance of the laser beam. It is characterized by comprising a high part.
In an amorphous film crystallization apparatus according to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the optical member has an unirradiated region where the laser beam is not irradiated.
An amorphous film crystallization apparatus according to a sixth aspect of the present invention is characterized in that, in any of the first to fifth aspects of the present invention, the amorphous film is sequentially subjected to side surface crystallization by irradiation with the laser beam. To do.
 第7の本発明のアモルファス膜結晶化方法は、レーザ光透過領域とレーザ光遮蔽領域とを有する光学部材を通してレーザ光を照射し、前記レーザ光透過領域と前記レーザ光遮蔽領域に応じて前記光学部材を透過したパターンのレーザ光を対物レンズで集光してアモルファス膜に照射し、順次側面結晶化によって前記アモルファス膜を結晶化させる結晶化方法であって、
 前記レーザ光遮蔽領域に照射される前記レーザ光の一部を、前記レーザ光遮蔽領域内で前記対物レンズの解像度と倍率の逆数との積よりも小さく絞って前記光学部材を透過させて、少なくともその一部を前記レーザ光透過領域を透過した前記レーザ光が前記アモルファス膜に照射される照射領域に照射することを特徴とする。
In the amorphous film crystallization method of the seventh aspect of the present invention, a laser beam is irradiated through an optical member having a laser beam transmission region and a laser beam shielding region, and the optical is controlled according to the laser beam transmission region and the laser beam shielding region. A crystallization method of condensing a laser beam of a pattern transmitted through a member with an objective lens and irradiating the amorphous film, and sequentially crystallizing the amorphous film by side crystallization,
A part of the laser light irradiated to the laser light shielding area is made smaller than the product of the resolution of the objective lens and the reciprocal of the magnification in the laser light shielding area to pass through the optical member, and at least A part of the irradiation is performed to the irradiation region where the amorphous film is irradiated with the laser beam transmitted through the laser beam transmission region.
 本発明によれば、レーザ光遮蔽領域にある昇温抑制用レーザ光透過部に照射されたレーザ光は、レーザ光遮蔽領域のうち昇温抑制用レーザ光透過部の領域においてレーザ光が透過するものの、対物レンズの解像度と倍率の逆数との積よりも小さい規制寸法を有する領域を透過することでアモルファス膜上で十分なエネルギーを有して照射されることがない。
 対物レンズの解像度は、レーザ光照射によって光学部材のパターンがアモルファス膜上でパターン化できる最小の寸法である。すなわち、SLS方法のプロセスに用いる条件(結晶化に用いるエネルギー密度および対物レンスの焦点位置)でアモルファス膜が結晶化されない最小の寸法(アモルファス膜表面換算)である。
 また、対物レンズの倍率(M)は以下により決定することができる。
 すなわち、対物レンズの倍率(M)=(アモルファス膜と対物レンズとの距離(b))/(前記光学部材と対物レンズとの距離(a))、又は、
 対物レンズの倍率(M)=(アモルファス膜上のパターンイメージサイズ(d))/(光学部材のパターンイメージサイズ(D))
 したがって、対物レンズの倍率は、光学部材と対物レンズとアモルファス膜との位置関係によって異なってくる。また、対物レンズと光学部材との距離は、光軸における対物レンズの光心と光学部材表面との距離、対物レンズとアモルファス膜との距離は、光軸における対物レンズの光心とアモルファス膜表面との距離で示すことができる。
According to the present invention, the laser light applied to the laser beam transmission part for suppressing temperature increase in the laser beam shielding area is transmitted through the region of the laser beam transmission part for suppressing temperature increase in the laser beam shielding area. However, it does not irradiate with sufficient energy on the amorphous film by passing through a region having a regulation dimension smaller than the product of the resolution of the objective lens and the reciprocal of the magnification.
The resolution of the objective lens is the minimum dimension that allows the pattern of the optical member to be patterned on the amorphous film by laser light irradiation. That is, it is the minimum dimension (in terms of the amorphous film surface) at which the amorphous film is not crystallized under the conditions used for the SLS process (energy density used for crystallization and the focal position of the objective lens).
The magnification (M) of the objective lens can be determined as follows.
That is, the magnification (M) of the objective lens = (distance (b) between the amorphous film and the objective lens) / (distance (a) between the optical member and the objective lens), or
Magnification of objective lens (M) = (pattern image size on amorphous film (d)) / (pattern image size of optical member (D))
Therefore, the magnification of the objective lens varies depending on the positional relationship among the optical member, the objective lens, and the amorphous film. The distance between the objective lens and the optical member is the distance between the optical center of the objective lens on the optical axis and the surface of the optical member. The distance between the objective lens and the amorphous film is the optical center of the objective lens on the optical axis and the surface of the amorphous film. It can be shown by the distance.
 なお、昇温抑制用レーザ光透過部の領域が、上記対物レンズの解像度と倍率の逆数との積よりも小さい寸法を有していない場合、該領域が透過したレーザ光が十分なエネルギーを有する状態でアモルファス膜に照射され、レーザ光遮蔽領域としての機能を損なう。なお、昇温抑制用レーザ光透過部が前記積より小さい規制寸法を有するとは、面方向における昇温抑制用レーザ光透過部のいずれの位置においても、いずれかの方向(面方向における)で前記積よりも小さい寸法を有していることを示している。 In addition, when the region of the laser beam transmitting portion for suppressing temperature increase does not have a size smaller than the product of the resolution of the objective lens and the reciprocal of the magnification, the laser beam transmitted through the region has sufficient energy. In this state, the amorphous film is irradiated to impair the function as a laser light shielding region. Note that the temperature rise suppression laser beam transmitting portion has a regulation size smaller than the product in any direction (in the plane direction) at any position of the temperature increase suppression laser beam transmission portion in the plane direction. It has a dimension smaller than the product.
 また、昇温抑制用レーザ光透過部の規制寸法が前記レーザ光の波長よりも大きい寸法を有していないと、昇温抑制用レーザ光透過部をレーザ光が透過する際に、回折が顕著に生じ、アモルファス膜の照射面以外に散乱する。このため、昇温抑制用レーザ光透過部は前記レーザ光の波長よりも大きい規制寸法を有していることが必要である。
 なお、昇温抑制用レーザ光透過部が前記レーザ光の波長よりも大きい規制寸法を有していることについては、上記規制寸法がこの条件を満たすことを示している。
 なお、上記対物レンズの解像度、レーザ光の波長は一律ではないので、昇温抑制用レーザ光透過部に要求される規制寸法も特定の数値に限定されるものではない。通常は、要求される規制寸法としてはアモルファス膜上において0.5~1.0μmとなる寸法が例示される。
In addition, if the regulation dimension of the laser beam transmitting part for suppressing temperature rise does not have a dimension larger than the wavelength of the laser beam, diffraction is conspicuous when the laser beam is transmitted through the laser beam transmitting part for temperature increase suppression. And is scattered outside the irradiated surface of the amorphous film. For this reason, it is necessary for the laser beam transmission part for temperature rise suppression to have a regulation dimension larger than the wavelength of the laser beam.
Incidentally, the fact that the laser beam transmitting part for suppressing temperature increase has a regulation dimension larger than the wavelength of the laser beam indicates that the regulation dimension satisfies this condition.
In addition, since the resolution of the objective lens and the wavelength of the laser beam are not uniform, the regulation size required for the laser beam transmission part for suppressing the temperature increase is not limited to a specific numerical value. Usually, the required regulation dimension is exemplified by a dimension of 0.5 to 1.0 μm on the amorphous film.
 なお、本発明における光学部材としては、特定の材料に限定されるものではなく、レーザ光照射領域とレーザ光遮蔽領域とが得られるものであればよく、レーザ光遮蔽領域を光学部材表面への膜形成などによって形成することも可能である。
 レーザ光透過領域は、レーザ光が透過してアモルファス膜へのレーザ光照射によって順次側面結晶化がなされる程度にアモルファス膜にエネルギーを付与できるものであればよい。レーザ光透過領域は、貫通部位で形成されていてもよく、また、透過率の相対的に高い部位で構成されているものであってもよい。
 一方、レーザ光遮蔽領域は、レーザ光が透過しない領域の他、前記レーザ光透過領域に比べて相対的に低いエネルギーでレーザ光が透過するものであってもよい。すなわち、レーザ光遮蔽領域を透過するレーザ光のエネルギーがレーザ光透過領域を透過するレーザ光のエネルギーと区別されて順次側面結晶化が良好になされるものであればよい。
The optical member in the present invention is not limited to a specific material, and any optical member can be used as long as a laser light irradiation region and a laser light shielding region can be obtained. It can also be formed by film formation or the like.
The laser beam transmitting region may be any region that can impart energy to the amorphous film to such an extent that the laser beam is transmitted and the side surface crystallization is sequentially performed by irradiating the amorphous film with the laser beam. The laser light transmission region may be formed by a penetrating portion, or may be configured by a portion having a relatively high transmittance.
On the other hand, the laser light shielding region may be a region where the laser light is transmitted with relatively lower energy than the laser light transmitting region, in addition to the region where the laser light is not transmitted. In other words, it is only necessary that the energy of the laser light that passes through the laser light shielding region is distinguished from the energy of the laser light that passes through the laser light transmitting region, and the side crystallization is performed sequentially.
 本発明の昇温抑制用レーザ光透過部は、レーザ光遮蔽領域でレーザ光の透過がなされない場合、該レーザ光遮蔽領域内で部分的にレーザ光の透過を許容するものである。該レーザ光の透過は、レーザ光透過領域に比べてアモルファス膜に小さなエネルギーを与えるに過ぎない。また、レーザ光遮蔽領域で、制限されつつレーザ光の透過がなされる場合、昇温抑制用レーザ光透過部は、このレーザ光遮蔽領域よりも高い透過率でレーザ光が透過する。ただし、昇温抑制用レーザ光透過部における透過レーザ光は、レーザ光透過領域を透過するレーザ光よりもアモルファス膜に与えるエネルギー量は格段に小さくなっており、順次側面結晶化の支障とならない。 The laser beam transmission part for temperature rise suppression according to the present invention allows the laser beam to be partially transmitted in the laser beam shielding region when the laser beam is not transmitted in the laser beam shielding region. The transmission of the laser light only gives small energy to the amorphous film as compared with the laser light transmission region. Further, when laser light is transmitted while being limited in the laser light shielding region, the laser light transmitting portion for temperature rise suppression transmits the laser light with a higher transmittance than the laser light shielding region. However, the amount of energy given to the amorphous film of the transmitted laser beam in the laser beam transmitting portion for suppressing temperature rise is much smaller than that of the laser beam transmitted through the laser beam transmitting region, so that the side crystallization is not hindered sequentially.
 なお、昇温抑制用レーザ光透過部の形状は、上記規制寸法を満たすものであれば特に限定されるものではない。例えば、上記規定の規制寸法を短幅方向に有する細片形状とすることができる。昇温抑制用レーザ光透過部を貫通部位で構成する場合は、スリット形状と言うこともできる。該細片は、複数を所定の間隔で並列させたり、縦横に並べて配置することができ、光学部材の昇温を効果的に抑制することができる。
 また、昇温抑制用レーザ光透過部の形状として、上記規定の規制寸法を径とする円形状にすることもできる。昇温抑制用レーザ光透過部を貫通部位で構成する場合は、孔形状と言うこともできる。該円形状は、複数を点在させることで、光学部材の昇温を効果的に抑制することができる。昇温抑制用レーザ光透過部は、形状の異なるものを光学部材に設けるようにしてもよい。
In addition, the shape of the laser beam transmission part for temperature rise suppression is not particularly limited as long as it satisfies the above-mentioned regulation dimension. For example, a strip shape having the prescribed regulation dimension in the short width direction can be used. In the case where the laser beam transmitting portion for suppressing temperature increase is formed of a penetrating portion, it can be said to be a slit shape. A plurality of the strips can be arranged in parallel at a predetermined interval, or arranged vertically and horizontally, and the temperature rise of the optical member can be effectively suppressed.
Further, the shape of the laser beam transmitting portion for suppressing temperature increase can be a circular shape having the above-mentioned regulated size as a diameter. In the case where the laser beam transmitting portion for suppressing the temperature increase is constituted by a penetrating portion, it can be said to be a hole shape. By increasing the number of the circular shapes, the temperature of the optical member can be effectively suppressed. The laser beam transmitting portion for suppressing the temperature increase may be provided on the optical member with a different shape.
 本発明は、液晶ディスプレイや有機ELディスプレイの画素スイッチや駆動回路に用いられる薄膜トランジスタの多結晶あるいは単結晶半導体膜を製造するSLS結晶化方法およびその装置として好適に用いることができる。 The present invention can be suitably used as an SLS crystallization method and apparatus for manufacturing a polycrystalline or single crystal semiconductor film of a thin film transistor used in a pixel switch or a drive circuit of a liquid crystal display or an organic EL display.
 以上説明したように本発明によれば、光学部材のレーザ光遮蔽領域内に設けた昇温抑制用レーザ光透過部を通して、レーザ光が結晶化に支障がないように透過し、光学部材での熱の発生を抑えて昇温による損傷を効果的に防止し、耐久性を向上させる。また光学部材での熱の発生を抑えることにより、パターンイメージの歪発生を防止することができる。 As described above, according to the present invention, the laser beam is transmitted through the laser beam transmitting portion for suppressing temperature increase provided in the laser beam shielding region of the optical member so that there is no hindrance to crystallization. Suppresses the generation of heat, effectively prevents damage due to temperature rise, and improves durability. Moreover, generation | occurrence | production of the distortion of a pattern image can be prevented by suppressing generation | occurrence | production of the heat | fever in an optical member.
本発明の一実施形態のアモルファス膜結晶化装置を示す概略図である。It is the schematic which shows the amorphous film crystallization apparatus of one Embodiment of this invention. 同じく、光学部材を示す平面図である。Similarly, it is a top view which shows an optical member. 同じく、光学部材を示す拡大した平面図である。Similarly, it is the enlarged top view which shows an optical member. 同じく、光学部材と対物レンズとアモルファス膜との位置関係を示す図である。Similarly, it is a figure which shows the positional relationship of an optical member, an objective lens, and an amorphous film. 同じく、光学部材の変更例を示す拡大した平面図である。Similarly, it is the enlarged top view which shows the example of a change of an optical member. 従来の光学部材を示す平面図である。It is a top view which shows the conventional optical member. 従来の光学部材におけるレーザ光照射によるダメージ状態を説明する図である。It is a figure explaining the damage state by the laser beam irradiation in the conventional optical member.
 以下に、本発明の一実施形態を添付図面に基づいて説明する。
 図1は、本発明のアモルファス膜結晶化装置に相当するレーザアニール装置1を示す概略図である。
 レーザアニール装置1は、アモルファスシリコン膜が形成された基板2を載置するステージ3を有している。さらに、該ステージ3をX軸方向に移動するX移動モータ4a、Y軸方向に移動可能とするY移動モータ4bを有し、各モータには、X移動ドライバ5a、Y移動ドライバ5bが電気的に接続されている。各ドライバは、コンピュータで構成されるシステムコントローラ6に接続されて、各移動モータの制御が可能になっている。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic view showing a laser annealing apparatus 1 corresponding to the amorphous film crystallization apparatus of the present invention.
The laser annealing apparatus 1 has a stage 3 on which a substrate 2 on which an amorphous silicon film is formed is placed. Further, an X movement motor 4a that moves the stage 3 in the X axis direction and a Y movement motor 4b that can move in the Y axis direction are provided. An X movement driver 5a and a Y movement driver 5b are electrically connected to each motor. It is connected to the. Each driver is connected to a system controller 6 constituted by a computer, and can control each moving motor.
 さらにレーザアニール装置1では、所定波長のレーザ光10aを出力するレーザ光源10を備えている。上記シリコン膜は、処理前においてアモルファスの状態にある。レーザ光源10としては、例えばコヒレント社のレーザ発振器LS2000(1)もしくはLSX315(波長308nm、繰り返し発振数300Hz)を用いることができる。但し、本発明としてはレーザ光源10が特定のものに限定されるものではない。 Further, the laser annealing apparatus 1 includes a laser light source 10 that outputs a laser beam 10a having a predetermined wavelength. The silicon film is in an amorphous state before processing. As the laser light source 10, for example, a laser oscillator LS2000 (1) or LSX315 (wavelength 308 nm, repetition frequency 300 Hz) manufactured by Coherent Co., Ltd. can be used. However, the laser light source 10 is not limited to a specific one in the present invention.
 レーザ光源10で発振されたレーザ光10aの照射方向には、アッテネータ11が配置され、アッテネータ11の出射方向に、ミラー12、ビーム整形器13、対物レンズ14などにより構成される光学系15が設置されている。この光学系15を通してレーザ光10aが誘導され、基板2のシリコン膜に照射される。
 アッテネータ11は、レーザ光10aを減衰して所定のエネルギーに調節する。アッテネータ11には、減衰率の調整が可能な可変アッテネータを用いることも可能である。アッテネータ11では、例えばシリコン膜上で約600mJ/cm-1000mJ/cmのエネルギ密度となるようにレーザ光10aの減衰率を調整する。
An attenuator 11 is disposed in the irradiation direction of the laser light 10 a oscillated by the laser light source 10, and an optical system 15 including a mirror 12, a beam shaper 13, an objective lens 14 and the like is disposed in the emission direction of the attenuator 11. Has been. Laser light 10 a is guided through the optical system 15 and is irradiated onto the silicon film of the substrate 2.
The attenuator 11 attenuates the laser beam 10a and adjusts it to a predetermined energy. As the attenuator 11, a variable attenuator capable of adjusting the attenuation rate can be used. In the attenuator 11 adjusts the attenuation factor of the laser beam 10a so as for example of about 600 mJ / cm 2 energy density of -1000mJ / cm 2 on the silicon film.
 ミラー12は、レーザ光源10から出力されたレーザ光10aの照射方向を偏向するものであり、例えばレーザ光源10から水平方向に出力されたレーザ光10aをシリコン膜が形成された基板2に照射させるために垂直に向きを変えるものである。
 ビーム整形器13は、レーザ光10aを矩形状、円形状などのビーム断面形状に整形するものである。
 対物レンズ14は、レーザ光10aを集光して基板2上のシリコン膜表面付近に照射するものであり、光軸における対物レンズ14の光心とシリコン膜表面との距離は、図中bで示されている。
The mirror 12 deflects the irradiation direction of the laser light 10a output from the laser light source 10. For example, the laser light 10a output in the horizontal direction from the laser light source 10 is applied to the substrate 2 on which the silicon film is formed. Therefore, the direction is changed vertically.
The beam shaper 13 shapes the laser beam 10a into a beam cross-sectional shape such as a rectangular shape or a circular shape.
The objective lens 14 condenses the laser beam 10a and irradiates the vicinity of the silicon film surface on the substrate 2. The distance between the optical center of the objective lens 14 and the silicon film surface on the optical axis is b in the figure. It is shown.
 また、レーザ光10aの光路上には、対物レンズ14の入射側において、レーザ光遮蔽領域20aとレーザ光透過領域20bとを有し、これらのレーザ光透過領域20aとレーザ光遮蔽領域20bとによってパターンを形成する光学部材20が配置されている。光軸における光学部材20と対物レンズ14の距離は図中aで示される。
 なお、この形態では、シリコン膜を処理の対象としているが、本発明は、アモルファス膜を結晶膜に処理したり、結晶膜を改質処理したりするものであり、その材料がシリコンに限定されるものではない。
Further, on the light path of the laser beam 10a, there is a laser beam shielding region 20a and a laser beam transmission region 20b on the incident side of the objective lens 14, and the laser beam transmission region 20a and the laser beam shielding region 20b An optical member 20 for forming a pattern is disposed. The distance between the optical member 20 and the objective lens 14 on the optical axis is indicated by a in the figure.
In this embodiment, the silicon film is an object of processing. However, the present invention processes an amorphous film into a crystal film or a crystal film, and the material is limited to silicon. It is not something.
 光学部材20は、図2(a)に示すように、矩形の形状を有し、その内側に面方向において、短冊状のレーザ光透過領域20aが長尺辺を隣接するようにして並列して設けられており、隣接するレーザ光透過領域20a間は小間隔になっている。光学部材20は、面方向において、レーザ光透過領域20a以外はレーザ光遮蔽領域20bになっている。 As shown in FIG. 2A, the optical member 20 has a rectangular shape, and in the surface direction, the strip-shaped laser light transmission region 20a is arranged in parallel so that the long sides are adjacent to each other. The adjacent laser light transmission regions 20a are provided at a small interval. The optical member 20 is a laser light shielding region 20b in the plane direction except for the laser light transmitting region 20a.
 上記レーザ光透過領域20aとレーザ光遮蔽領域20bとを有する光学部材20の製造方法は本発明としては特に限定されるものではない。例えば、レーザ光を透過する材料で光学部材を構成し、レーザ光透過領域20aの部分を覆うシャドウマスクなどを用いてレーザ光透過領域20a以外の領域に金属薄膜を蒸着などによって被覆することでレーザ光遮蔽領域20bを形成することができる。また、光学部材表面に被覆された金属薄膜に対し、レーザ光透過領域20aに相当する領域でエッチングなどによって金属薄膜を除去することによって光学部材20を得るようにしてもよい。
 この実施形態では、光学部材20本体をレーザ光が透過する材料で構成し、レーザ光透過領域20aを除いたレーザ光遮蔽領域20bにCrまたはCrOからなる金属膜が成膜されている。
The manufacturing method of the optical member 20 having the laser light transmission region 20a and the laser light shielding region 20b is not particularly limited as the present invention. For example, an optical member is composed of a material that transmits laser light, and a metal thin film is coated by vapor deposition or the like on a region other than the laser light transmitting region 20a using a shadow mask that covers a portion of the laser light transmitting region 20a. The light shielding region 20b can be formed. Further, the optical member 20 may be obtained by removing the metal thin film by etching or the like in a region corresponding to the laser light transmitting region 20a with respect to the metal thin film coated on the surface of the optical member.
In this embodiment, the optical member 20 body is made of a material that transmits laser light, and a metal film made of Cr or CrO is formed on the laser light shielding region 20b excluding the laser light transmitting region 20a.
 さらに、光学部材20のレーザ光遮蔽領域20bには、図3に示すようにレーザ光透過領域20aの端縁に沿うように細幅の昇温抑制用レーザ光透過部21が間隔を置いて縦横に並列されている。この形態では、昇温抑制用レーザ光透過部21の幅と昇温抑制用レーザ光透過部21間の間隔幅とは略同幅になっている。したがって、レーザ光遮蔽領域20bにおいて、昇温抑制用レーザ光透過部21の総面積とそれ以外の総面積は、約1/2ずつになっている。
 昇温抑制用レーザ光透過部21の幅は、対物レンズの解像度(R)と以下で説明する対物レンズの倍率(M)の逆数との積(R/M)よりも小さくなっている。さらに、昇温抑制用レーザ光透過部21の幅は、レーザ光10aの波長よりも大きくなっている。この形態では、その幅は、例えばレーザ光10aの波長である308nmを超えている。
 対物レンズの倍率は、図4に示すように、基板2上のアモルファス膜と対物レンズ14との距離(b)と光学部材20と対物レンズ14との距離(a)との比(b/a)、又は、基板2上のアモルファス膜上のパターンイメージサイズ(d)と光学部材20のパターンイメージサイズ(D)の比(d/D)により決定される。各距離は光軸上で評価でき、対物レンズ14における距離の基点は、光心とする。
Further, in the laser light shielding region 20b of the optical member 20, as shown in FIG. 3, a narrow laser beam transmitting part 21 for suppressing temperature rise is arranged at intervals along the edge of the laser beam transmitting region 20a. Are in parallel. In this embodiment, the width of the laser beam transmitting portion 21 for suppressing temperature increase and the interval width between the laser beam transmitting portions 21 for suppressing temperature increase are substantially the same width. Accordingly, in the laser light shielding region 20b, the total area of the laser beam transmitting portion 21 for suppressing the temperature increase and the other total area are about ½ each.
The width of the laser beam transmitting portion 21 for suppressing the temperature increase is smaller than the product (R / M) of the resolution (R) of the objective lens and the inverse of the magnification (M) of the objective lens described below. Furthermore, the width of the laser beam transmitting portion 21 for suppressing temperature increase is larger than the wavelength of the laser beam 10a. In this embodiment, the width exceeds, for example, 308 nm, which is the wavelength of the laser beam 10a.
As shown in FIG. 4, the magnification of the objective lens is the ratio (b / a) between the distance (b) between the amorphous film on the substrate 2 and the objective lens 14 and the distance (a) between the optical member 20 and the objective lens 14. ) Or the ratio (d / D) of the pattern image size (d) on the amorphous film on the substrate 2 and the pattern image size (D) of the optical member 20. Each distance can be evaluated on the optical axis, and the base point of the distance in the objective lens 14 is the optical center.
 次に、レーザアニール装置1の動作について説明する。
 レーザ光源10からはレーザ光10aが出力される。この実施形態では、308nmの波長を持つエキシマレーザ光が出力される。レーザ光10aは、アッテネータ11で、シリコンの結晶化に適したエネルギーに調節され、ミラー12で偏向されてビーム整形器13に入射される。ビーム整形器13では、所望のビーム断面形状に成形される。例えば、長軸125mm、短軸6mmのビーム断面形状に整形する。
Next, the operation of the laser annealing apparatus 1 will be described.
Laser light 10a is output from the laser light source 10. In this embodiment, excimer laser light having a wavelength of 308 nm is output. The laser light 10 a is adjusted to energy suitable for silicon crystallization by the attenuator 11, deflected by the mirror 12, and enters the beam shaper 13. The beam shaper 13 forms the desired beam cross-sectional shape. For example, it is shaped into a beam cross-sectional shape having a major axis of 125 mm and a minor axis of 6 mm.
 ビーム整形器13を経たレーザ光10aは、光学部材20に至り、レーザ光透過領域20aの形状、配置にしたがったパターンによってパターン化され、対物レンズ14に至る。レーザ光10aは、対物レンズ14を透過する際に集光されて基板2上のシリコン膜に所定のパターンイメージで照射される。光学部材20の位置を変えてレーザ光10aを基板2上のシリコン膜に所定のパターンイメージで照射することで順次側面結晶化を行うことができる。また、前記X移動モータ4a、Y移動モータ4bによってステージ2をピッチ送りしながら移動させることで、レーザ光10aとシリコン膜との相対的な位置を変更することができる。 The laser beam 10 a that has passed through the beam shaper 13 reaches the optical member 20, is patterned by a pattern according to the shape and arrangement of the laser beam transmission region 20 a, and reaches the objective lens 14. The laser beam 10a is condensed when passing through the objective lens 14, and is irradiated on the silicon film on the substrate 2 in a predetermined pattern image. Side crystallization can be performed sequentially by changing the position of the optical member 20 and irradiating the silicon film on the substrate 2 with a laser beam 10a in a predetermined pattern image. Further, the relative position between the laser beam 10a and the silicon film can be changed by moving the stage 2 while feeding the pitch by the X moving motor 4a and the Y moving motor 4b.
 なお、対物レンズ14と基板2との間に図示しないシャッタがあるが、シリコン(アモルファスシリコン)膜が塗布されていない基板の端面で、レーザ光を遮断させるためのものである。対物レンズ14の後にシャッタを配置する理由は以下の通りである。
 対物レンズ14をレーザ光10aが通過するか否かにより、温度変化が生じて、対物レンズ14のフォーカスシフト等の影響を受ける。シャッタを閉じた状態でも、レーザ光10aを対物レンズ14に通過させることにより、その影響を緩和させることができる。シャッタには、45°傾けられたミラーが付いており、光学系に反射させることなく、図示しないビームダンプに向けてレーザ光10aのエネルギーを消費させることができる。
Although there is a shutter (not shown) between the objective lens 14 and the substrate 2, it is for blocking the laser beam at the end surface of the substrate not coated with a silicon (amorphous silicon) film. The reason why the shutter is arranged after the objective lens 14 is as follows.
Depending on whether or not the laser beam 10a passes through the objective lens 14, a temperature change occurs and is affected by a focus shift of the objective lens 14 and the like. Even when the shutter is closed, the influence can be reduced by passing the laser beam 10a through the objective lens 14. The shutter is provided with a mirror tilted at 45 °, so that the energy of the laser beam 10a can be consumed toward a beam dump (not shown) without being reflected by the optical system.
 図2(b)は、レーザ光10aが照射されているレーザ光透過領域20aの周辺を示す図であり、光学部材20の一部を図示している。
 なお、装置の振動やレーザ光10aの位置の揺らぎのため、レーザ光透過領域20aに合ったサイズでレーザ光10a光学部材20に入射することはできない。そこで、パターンサイズよりレーザ光10aを大きく整形し、光学部材20に入射するため、レーザ光10aは、レーザ光透過領域20a間のレーザ光遮蔽領域20bに照射されるだけでなく、レーザ光透過領域20aの周囲にもレーザ光10aが照射され高温が発生する。また、レーザ光遮蔽領域20bで、レーザ光が照射されない領域は、非照射領域でもある。
 従来の光学部材では、図7に示すように、特にレーザ光透過領域20aの周囲にあるレーザ光遮蔽領域20bの一部が特に高温になり、経時的に損傷が生じやすくなる。また、損傷が生じる前においても、空気の対流が生じ、光学部材20によるパターンイメージが損なわれる。
FIG. 2B is a view showing the periphery of the laser light transmission region 20a irradiated with the laser light 10a, and shows a part of the optical member 20. FIG.
Note that the laser beam 10a cannot enter the optical member 20 with a size suitable for the laser beam transmission region 20a due to the vibration of the apparatus and the fluctuation of the position of the laser beam 10a. Therefore, the laser beam 10a is shaped to be larger than the pattern size and is incident on the optical member 20, so that the laser beam 10a is not only irradiated to the laser beam shielding region 20b between the laser beam transmitting regions 20a but also the laser beam transmitting region. Laser light 10a is also irradiated around 20a, and high temperature is generated. In the laser light shielding region 20b, the region that is not irradiated with laser light is also a non-irradiated region.
In the conventional optical member, as shown in FIG. 7, a part of the laser light shielding region 20b around the laser light transmitting region 20a becomes particularly high temperature, and damage is likely to occur over time. Further, even before the damage occurs, air convection occurs, and the pattern image by the optical member 20 is damaged.
 一方、この実施形態の光学部材20では、本来のレーザ光遮蔽領域20bのうち、1/2の面積は昇温抑制用レーザ光透過部21になっており、この部分ではレーザ光10aが照射された際の加熱が抑えられる。これにより光学部材20全体の昇温が小さくなる。
 以上のように、この実施形態によれば、光学部材20のレーザ光遮蔽領域20bの金属部分を最小限にすることで、熱の発生を抑えることができるために、光学部材20のダメージを低減することができる。さらに、光学部材20のパターンをアモルファスシリコン膜に正確に投影することができる。
On the other hand, in the optical member 20 of this embodiment, half the area of the original laser light shielding region 20b is the laser light transmitting portion 21 for suppressing the temperature rise, and this portion is irradiated with the laser light 10a. Heating during heating is suppressed. Thereby, the temperature rise of the whole optical member 20 becomes small.
As described above, according to this embodiment, since the generation of heat can be suppressed by minimizing the metal portion of the laser light shielding region 20b of the optical member 20, damage to the optical member 20 is reduced. can do. Furthermore, the pattern of the optical member 20 can be accurately projected onto the amorphous silicon film.
 なお、光学部材のレーザ光遮蔽領域に設ける昇温抑制用レーザ光透過部としては、上記細幅形状のものに限定されるものではなく、本発明の規制寸法の規定を満たせばその形状は特定のものに限定されるものではない。
 図5は、他の形態の光学部材30を示すものであり、該光学部材30は、前記実施形態と同様にレーザ光透過領域30a、レーザ光遮蔽領域30bを有している。光学部材30では、昇温抑制用レーザ光透過部21に代えて、円形の昇温抑制用レーザ光透過部31をレーザ光遮蔽領域30bに点在させたものであり、昇温抑制用レーザ光透過部31の径は、対物レンズ14の解像度よりも小さく、レーザ光10aの波長よりも大きくなっている。昇温抑制用レーザ光透過部30aとレーザ光遮蔽領域30bの残部の合計面積は略同じになっている。
 この実施形態においても、レーザ光10aを照射した際に、レーザ光遮蔽領域30bでの熱の発生が抑えられ、光学部材30の昇温によるダメージの発生やパターンイメージの歪み発生が防止される。
Note that the laser beam transmitting portion for suppressing the temperature increase provided in the laser beam shielding region of the optical member is not limited to the narrow shape described above, and the shape is specified as long as the regulation dimensions of the present invention are satisfied. It is not limited to those.
FIG. 5 shows an optical member 30 of another form, and the optical member 30 has a laser light transmission region 30a and a laser light shielding region 30b as in the above embodiment. In the optical member 30, instead of the laser beam transmission part 21 for suppressing temperature increase, circular laser beam transmission parts 31 for suppressing temperature increase are scattered in the laser beam shielding region 30b. The diameter of the transmission part 31 is smaller than the resolution of the objective lens 14 and larger than the wavelength of the laser beam 10a. The total area of the remaining portions of the laser beam transmitting portion 30a for suppressing temperature increase and the laser beam shielding region 30b is substantially the same.
Also in this embodiment, when the laser beam 10a is irradiated, the generation of heat in the laser beam shielding region 30b is suppressed, and the occurrence of damage or distortion of the pattern image due to the temperature rise of the optical member 30 is prevented.
 1  レーザアニール装置
 2  基板
 3  ステージ
 4a X移動モータ
 4b Y移動モータ
10  レーザ光源
10a レーザ光
11  アッテネータ
12  ミラー
13  ビーム整形器
14  対物レンズ
20  光学部材
20a レーザ光透過領域
20b レーザ光遮蔽領域
21  昇温抑制用レーザ光透過部
30  光学部材
30a レーザ光透過領域
30b レーザ光遮蔽領域
31  昇温抑制用レーザ光透過部
DESCRIPTION OF SYMBOLS 1 Laser annealing apparatus 2 Substrate 3 Stage 4a X movement motor 4b Y movement motor 10 Laser light source 10a Laser light 11 Attenuator 12 Mirror 13 Beam shaper 14 Objective lens 20 Optical member 20a Laser light transmission area 20b Laser light shielding area 21 Temperature rise suppression Laser light transmission part 30 Optical member 30a Laser light transmission area 30b Laser light shielding area 31 Laser light transmission part for temperature rise suppression

Claims (7)

  1.  アモルファス膜に照射するレーザ光を出力するレーザ光源と、
     前記レーザ光を前記アモルファス膜に誘導する光学系と、
     前記光学系の一部を構成し、前記アモルファス膜に照射するレーザ光を集光する対物レンズと、
     前記光学系のレーザ光光路上で前記対物レンズよりも前段側に位置して配置され、前記レーザ光の一部を透過させるレーザ光透過領域および前記レーザ光の一部を遮蔽するレーザ光遮蔽領域を有し、前記レーザ光透過領域とレーザ光遮蔽領域とによってイメージパターンを形成する光学部材と、を備え、
     前記光学部材は、前記レーザ光遮蔽領域に、前記対物レンズの解像度(R)と対物レンズの倍率(M)の逆数との積で求められる値(R/M)よりも小さく、かつ前記レーザ光の波長よりも大きい規制寸法を有して前記レーザ光の透過を可能にする昇温抑制用レーザ光透過部が設けられていることを特徴とするアモルファス膜結晶化装置
     ただし、対物レンズの倍率(M)は、アモルファス膜と対物レンズとの距離(b)と前記光学部材と対物レンズとの距離(a)との比(b/a)、又は、アモルファス膜上のパターンイメージサイズ(d)と前記光学部材のパターンイメージサイズ(D)の比(d/D)により決定される。
    A laser light source that outputs laser light to irradiate the amorphous film;
    An optical system for guiding the laser light to the amorphous film;
    An objective lens that constitutes a part of the optical system and condenses the laser light applied to the amorphous film;
    A laser light transmission region that is disposed on the laser beam path of the optical system on the front side of the objective lens and transmits a part of the laser beam, and a laser beam shielding area that blocks a part of the laser beam And an optical member that forms an image pattern by the laser light transmitting region and the laser light shielding region,
    The optical member is smaller than a value (R / M) obtained by a product of a resolution (R) of the objective lens and a reciprocal of a magnification (M) of the objective lens in the laser light shielding region, and the laser light. An amorphous film crystallization apparatus, characterized in that a temperature rise suppression laser beam transmitting portion that has a regulation dimension larger than the wavelength of the laser beam and allows the laser beam to pass therethrough is provided. M) is the ratio (b / a) of the distance (b) between the amorphous film and the objective lens and the distance (a) between the optical member and the objective lens, or the pattern image size (d) on the amorphous film. It is determined by the ratio (d / D) of the pattern image size (D) of the optical member.
  2.  前記昇温抑制用レーザ光透過部は、前記レーザ光の照射面において前記規制寸法を短幅側に有する細片形状を有することを特徴とする請求項1記載のアモルファス膜結晶化装置。 2. The amorphous film crystallization apparatus according to claim 1, wherein the laser beam transmitting portion for suppressing temperature rise has a strip shape having the restriction dimension on the short side on the laser light irradiation surface.
  3.  前記昇温抑制用レーザ光透過部は、前記レーザ光の照射面において前記規制寸法を径とする円形状を有することを特徴とする請求項1または2に記載のアモルファス膜結晶化装置。 3. The amorphous film crystallization apparatus according to claim 1, wherein the temperature rise suppression laser beam transmitting portion has a circular shape having a diameter of the restriction dimension on an irradiation surface of the laser beam.
  4.  前記昇温抑制用レーザ光透過部は、貫通部位または前記レーザ光の透過率が相対的に高い部位で構成されていることを特徴とする請求項1~3のいずれかに記載のアモルファス膜結晶化装置。 The amorphous film crystal according to any one of claims 1 to 3, wherein the laser beam transmitting portion for suppressing temperature increase is configured by a penetrating region or a region having a relatively high transmittance of the laser beam. Device.
  5.  前記光学部材は、前記レーザ光が照射されない未照射領域を有することを特徴とする請求項1~4のいずれかに記載のアモルファス膜結晶化装置。 The amorphous film crystallization apparatus according to any one of claims 1 to 4, wherein the optical member has an unirradiated region where the laser beam is not irradiated.
  6.  前記レーザ光の照射によって前記アモルファス膜の順次側面結晶化を行うものであることを特徴とする請求項1~5のいずれかに記載のアモルファス膜結晶化装置。 The amorphous film crystallization apparatus according to any one of claims 1 to 5, wherein the amorphous film is sequentially subjected to side surface crystallization by irradiation with the laser beam.
  7.  レーザ光透過領域とレーザ光遮蔽領域とを有する光学部材を通してレーザ光を照射し、前記レーザ光透過領域と前記レーザ光遮蔽領域に応じて前記光学部材を透過したパターンのレーザ光を対物レンズで集光してアモルファス膜に照射し、順次側面結晶化によって前記アモルファス膜を結晶化させる結晶化方法であって、
     前記レーザ光遮蔽領域に照射される前記レーザ光の一部を、前記レーザ光遮蔽領域内で前記対物レンズの解像度と倍率の逆数との積よりも小さく絞って前記光学部材を透過させて、少なくともその一部を前記レーザ光透過領域を透過した前記レーザ光が前記アモルファス膜に照射される照射領域に照射することを特徴とするアモルファス膜結晶化方法。
    Laser light is irradiated through an optical member having a laser light transmission region and a laser light shielding region, and laser light having a pattern transmitted through the optical member in accordance with the laser light transmission region and the laser light shielding region is collected by an objective lens. A crystallization method of irradiating an amorphous film with light and sequentially crystallizing the amorphous film by side crystallization,
    A part of the laser light irradiated to the laser light shielding area is made smaller than the product of the resolution of the objective lens and the reciprocal of the magnification in the laser light shielding area to pass through the optical member, and at least A method for crystallizing an amorphous film, characterized in that a part of the laser beam that has passed through the laser beam transmitting region is irradiated to an irradiation region in which the amorphous film is irradiated.
PCT/JP2012/059978 2011-04-20 2012-04-12 Amorphous film crystallization apparatus and method WO2012144403A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-093994 2011-04-20
JP2011093994A JP5435590B2 (en) 2011-04-20 2011-04-20 Amorphous film crystallization apparatus and method

Publications (1)

Publication Number Publication Date
WO2012144403A1 true WO2012144403A1 (en) 2012-10-26

Family

ID=47041513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059978 WO2012144403A1 (en) 2011-04-20 2012-04-12 Amorphous film crystallization apparatus and method

Country Status (3)

Country Link
JP (1) JP5435590B2 (en)
TW (1) TW201248699A (en)
WO (1) WO2012144403A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137302A (en) * 2017-02-21 2018-08-30 株式会社ブイ・テクノロジー Laser irradiation device, method for manufacturing thin-film transistor and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019129231A (en) * 2018-01-24 2019-08-01 株式会社ブイ・テクノロジー Laser emission device, projection mask, and method for emitting laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349269A (en) * 2003-01-15 2004-12-09 Sharp Corp Method and device for manufacturing thin crystallized semiconductor film
JP2005347380A (en) * 2004-06-01 2005-12-15 Sharp Corp Method and device for manufacturing semiconductor thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349269A (en) * 2003-01-15 2004-12-09 Sharp Corp Method and device for manufacturing thin crystallized semiconductor film
JP2005347380A (en) * 2004-06-01 2005-12-15 Sharp Corp Method and device for manufacturing semiconductor thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137302A (en) * 2017-02-21 2018-08-30 株式会社ブイ・テクノロジー Laser irradiation device, method for manufacturing thin-film transistor and program
WO2018155455A1 (en) * 2017-02-21 2018-08-30 株式会社ブイ・テクノロジー Laser irradiation device, thin-film transistor manufacturing method, program, and projection mask

Also Published As

Publication number Publication date
TW201248699A (en) 2012-12-01
JP5435590B2 (en) 2014-03-05
JP2012227372A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
KR101325520B1 (en) Laser annealing method and laser annealing apparatus
KR100894512B1 (en) Crystallization apparatus and crystallization method
JP2006512749A (en) Single-shot semiconductor processing system and method having various irradiation patterns
JP2009505432A (en) High-throughput crystallization of thin films
JP2004311906A (en) Laser processing device and laser processing method
KR100913618B1 (en) Crystallization apparatus and crystallization method
KR100943361B1 (en) Crystallization Apparatus and Method, Manufacturing Method of Electronic Device, Electronic Device, and Optical Modulation Element
JP2001053021A (en) Semiconductor thin film manufacturing equipment
JP5435590B2 (en) Amorphous film crystallization apparatus and method
JP5725518B2 (en) Laser light shielding member, laser processing apparatus, and laser light irradiation method
KR20050057166A (en) Method of laser beam machining and laser beam machining apparatus
JP5366023B2 (en) Laser annealing method and apparatus
JP2006196539A (en) Method and device for manufacturing polycrystalline semiconductor thin film
JP5999694B2 (en) Laser annealing method and apparatus
JP2007273833A (en) Crystallization device and crystallization method of semiconductor film
JP5907530B2 (en) Laser annealing method and laser annealing apparatus
JP2006013050A (en) Laser beam projection mask, laser processing method using the same and laser processing system
JP5030524B2 (en) Laser annealing method and laser annealing apparatus
JP2007043127A (en) Mask for sequential lateral solidification and its manufacturing method
JP5030130B2 (en) Thin film material crystallization equipment
JP2007221062A (en) Method and apparatus for manufacturing semiconductor device
JP2007281465A (en) Method of forming polycrystalline film
KR100619197B1 (en) Crystal growth apparatus and crystal growth method for semiconductor thin film
KR101301282B1 (en) Laser projection device for crystallizing the amorphous silicon
JP2005235811A (en) Semiconductor thin film deposition apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774639

Country of ref document: EP

Kind code of ref document: A1