WO2012143644A1 - Composition a usage anti-moustique - Google Patents

Composition a usage anti-moustique Download PDF

Info

Publication number
WO2012143644A1
WO2012143644A1 PCT/FR2012/050752 FR2012050752W WO2012143644A1 WO 2012143644 A1 WO2012143644 A1 WO 2012143644A1 FR 2012050752 W FR2012050752 W FR 2012050752W WO 2012143644 A1 WO2012143644 A1 WO 2012143644A1
Authority
WO
WIPO (PCT)
Prior art keywords
mosquito
npk
larvicide
composition
composition according
Prior art date
Application number
PCT/FR2012/050752
Other languages
English (en)
Inventor
Frédéric DARRIET
Betty ZUMBO
Vincent Bernard Camille CORBEL
Fabrice Philippe Pierre CHANDRE
Original Assignee
Institut De Recherche Pour Le Developpement (I.R.D.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut De Recherche Pour Le Developpement (I.R.D.) filed Critical Institut De Recherche Pour Le Developpement (I.R.D.)
Priority to EP12718697.1A priority Critical patent/EP2693888A1/fr
Priority to CN201280024636.9A priority patent/CN103547159A/zh
Priority to AP2013007205A priority patent/AP3693A/xx
Publication of WO2012143644A1 publication Critical patent/WO2012143644A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/26Phosphorus; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/60Biocides or preservatives, e.g. disinfectants, pesticides or herbicides; Pest repellants or attractants

Definitions

  • the present invention relates to the use of a mixture comprising a fertilizer and a larvicide to fight against nuisance mosquitoes and vectors of diseases.
  • Fertilizers are substances, most often mixtures of mineral elements, intended to provide plants with nutritive supplements, so as to improve their growth, and to increase the yield and quality of crops. Fertilizers are part of the fertilizer products. Fertilization is practiced in agriculture and gardening activities. NPK fertilizers are used everywhere in agriculture, horticulture and private homes. They provide the three essential minerals for plant growth: nitrogen (N), phosphorus (P) and potassium (K).
  • Mosquitoes play an important role in human (or animal) health by concentrating the largest group of vectors of transmissible pathogens in humans.
  • Mosquitoes are responsible for the transmission of malaria, many virus diseases (arboviruses) such as dengue fever, yellow fever, Rift Valley fever, West Nile fever, chikungunya, various viral encephalitis as well as two types of filariasis.
  • virus diseases arboviruses
  • dengue fever yellow fever
  • Rift Valley fever West Nile fever
  • chikungunya various viral encephalitis as well as two types of filariasis.
  • 3200 mosquito species are described worldwide, divided into three subfamilies: Anophelinae and Culicinae and Toxorhynchitinae.
  • Gravid females lay eggs, depending on the species: on the surface of permanent or temporary water, stagnant or with weak currents, in natural or artificial receptacles or on floodplains (swamp, rice paddy ). Water is therefore absolutely necessary for the development of the mosquito.
  • saucers or other containers that are under the flowerpots are part of these deposits known to serve as spawning grounds for Aedes aegypti and Aedes albopictus, vectors of dengue and chikungunya.
  • These domestic containers contain densities of mosquito larvae that are often very high and therefore constitute a myriad of breeding sites that are difficult to spot and eliminate.
  • NPK-type fertilizers have an attractive effect against mosquito females in search of a nesting place (Darriet F and Corbel V. 2008a).
  • NPK type on oviposition & Aedes aegypti Parasite, 15: 89-92, Darriet F and Corbel V. 2008b Attractive properties and physicochemical modifications of bed waters colonized by larvae of Aedes aegypti (Diptera: Culicidae). from ⁇ Academy of Sciences-Biologies- 331: 617-622 and Darriet F, Zumbo B, Corbel V & Chandre F. 2010. Influence of plant matter and NPK fertilizers on the biology of Aedes aegypti (Diptera: Culicidae). 17: 149-154).
  • the inventors While continuing their work, the inventors have discovered that by combining an NPK fertilizer with a chemical or biological larvicide, the combination allows the fertilization of plant growth media while ensuring the destruction of the larvae that hatch in these deposits more attractive by the NPK fertilizer.
  • the object of the present invention is to provide a control method for automatically eliminating mosquito larvae present, including in the flower pots, each time the user distributes fertilizer to his plants.
  • an anti-mosquito composition comprising the combination of at least one NPK type fertilizer with at least one larvicidal anti-mosquito compound, wherein NPK fertilizer consists of 3 to 20% nitrogen (N) in its nitrate nitrogen (N (V) and ammonia nitrogen (NH 4 + ), 2 to 20%> phosphorus (P) forms in the form of phosphoric anhydride (P 2 O 5 ) and 5 to 20%> potassium (K) in the form of potassium oxide (K 2 0), provided that the larvicide is not dimethoate or imidacloprid .
  • NPK fertilizer consists of 3 to 20% nitrogen (N) in its nitrate nitrogen (N (V) and ammonia nitrogen (NH 4 + ), 2 to 20%> phosphorus (P) forms in the form of phosphoric anhydride (P 2 O 5 ) and 5 to 20%> potassium (K) in the form of potassium oxide (K 2 0), provided that the larvicide is not dimethoate or imidaclo
  • the most attractive concentrations in water on mosquitoes looking for a nesting place are between 8-12-8 mg / L and 33-47-33 mg / L, and preferably between 17-23-17 mg / L and 33-47-33 mg / L.
  • the most attractive concentration in water on Ae females. aegypti gravid equals 17-23-17 mg / L.
  • the larvicide is chosen from chemical larvicides and biological larvicides. All chemical and biological larvicides authorized for mosquito control in Europe (European Biocidal Guidelines 98/8) may be used, provided that the larvicide is not dimethoate or imidacloprid.
  • the larvicides used act specifically against mosquito larvae.
  • the larvicide is present in the laying medium at final concentrations of between 0.05 mg / L and 1.5 mg / L.
  • the levels of larvicide in the anti-mosquito fertilizer according to the invention are advantageously between 0.1 to 5% w / w or w / v, depending on the nature of the formulation.
  • composition prepared according to the invention is intended for domestic, agricultural or horticultural use.
  • the anti-mosquito composition may be in any form conventionally used for fertilizers, in liquid or solid form, especially in the form of solutions, suspensions, powders, granules or tablets, solid forms that can be controlled release.
  • the present invention also relates to a method for preventing mosquito outbreaks comprising contacting or treating the medium where live mosquito larvae or the medium where the females lay their eggs with an effective amount of a composition comprising the combination of at least one NPK-type fertilizer with at least one larvicidal anti-mosquito compound, in which the NPK fertilizer consists of 3 to 20% nitrogen (N) in its nitrate nitrogen (NO 3 ) forms and ammonia nitrogen (NH 4 + ), from 2 to 20% of phosphorus (P) in the form of phosphoric anhydride (P 2 O 5 ) and from 5 to 20%> of potassium (K) in the form of oxide of potassium (K 2 0), provided that the larvicide is not dimethoate or imidacloprid.
  • NPK fertilizer consists of 3 to 20% nitrogen (N) in its nitrate nitrogen (NO 3 ) forms and ammonia nitrogen (NH 4 + ), from 2 to 20% of phosphorus (P) in the form of phosphoric anhydride (
  • the liquid fertilizer (Algoflash®) used for our study contains 5% of total nitrogen (N) including 3% of nitric nitrogen (NO 3 ) and 2% of ammoniacal nitrogen (NH 4 + ), 7% of phosphorus (P) in the form of phosphorus pentoxide (P 2 O 5 ) and 5% of potassium (K) in the form of potassium oxide (K 2 0).
  • N total nitrogen
  • N nitric nitrogen
  • NH 4 + ammoniacal nitrogen
  • P phosphorus
  • K potassium
  • the concentration of NPK retained for our laboratory tests (17-23-17 mg / 1) was the most against the females of Ae. aegypti gravids (Darriet F & Corbel V., Influence of NPK fertilizers on the oviposition of Aedes aegypti Parasite, 2008, 15: 89-92).
  • the larvicides pyriproxyfen, spinosad, Bti and diflubenzuron as described in the present application were used at the maximum doses recommended by the WHO are:
  • the bioassays were conducted in experimental tunnels whose rectangular glass frame (tunnel) is 0.25 m x 0.25 m section and 0.75 m in length. At each end of the tunnel were placed two plastic cups whose inner wall is lined with a strip of white filter paper of 0.20 mx 0.05 m. The two control cups located at one end of the tunnel each received 50 ml of osmosis water. At the other end of the tunnel, the other two cups received the same amount of the different solutions tested. Female mosquitoes introduced into the middle of the tunnels remained in the presence of different substrates for 48 hours in a warm and humid environment (27 ⁇ 2 ° C - 80% relative humidity). For each of the conditions tested, six replicates of 10 females of Ae. aegypti have been realized.
  • hP probability - P> 0.05: non-significant difference between the two media tested, P ⁇ 0.05 significant difference between the two media tested
  • NPK + Larvicide anti-mosquito composition
  • LAV vector control

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)

Abstract

Composition à usage anti-moustique comprenant l'association d'au moins un engrais de type NPK avec au moins un composé anti-moustique larvicide.

Description

COMPOSITION A USAGE ANTI-MOUSTIQUE
La présente invention a pour objet l'utilisation d'un mélange comprenant un engrais et un larvicide pour lutter contre les moustiques nuisants et vecteurs de maladies.
Les engrais sont des substances, le plus souvent des mélanges d'éléments minéraux, destinées à apporter aux plantes des compléments nutritifs, de façon à améliorer leur croissance, et à augmenter le rendement et la qualité des cultures. Les engrais font partie des produits fertilisants. La fertilisation se pratique en agriculture et lors des activités de jardinage. Les engrais de types NPK sont utilisés partout en agriculture, en horticulture et chez les particuliers. Ils fournissent les trois éléments minéraux indispensables à la croissance des plantes : l'azote (N), le phosphore (P) et le potassium (K).
Les moustiques jouent un rôle important en santé humaine (ou animale) car ils concentrent le plus important groupe de vecteurs d'agents pathogènes transmissibles à l'être humain. Les moustiques sont responsables de la transmission du paludisme, de nombreuses maladies à virus (arboviroses) telles que la dengue, la fièvre jaune, la fièvre de la vallée du Rift, la fièvre du Nil occidental, le chikungunya, des encéphalites virales diverses ainsi que deux type de fïlarioses. À ce jour 3 200 espèces de moustiques sont décrites au niveau mondial, réparties en trois sous-familles : Anophelinae et Culicinae et Toxorhynchitinae. Les femelles gravides déposent leurs œufs, selon les espèces : à la surface des eaux permanentes ou temporaires, stagnantes ou à faibles courants, dans des réceptacles naturels ou artificiels ou sur des terres inondables (marécage, rizière...). L'eau est donc absolument nécessaire au développement du moustique.
Pour éviter la pullulation des moustiques dans les zones urbaines, le plus simple des moyens de lutte consiste à éliminer physiquement, un maximum des réservoirs susceptibles de contenir une eau stagnante, même de faible volume, où des moustiques pourraient venir y pondre et les larves s'y développer. Aussi les autorités sanitaires recommandent une surveillance de l'environnement proche des habitations et la suppression des récipients susceptibles de collecter de l'eau (soucoupes sous les pots de fleurs, vases, bouteilles, boîtes de conserve, bidons, bâches, gouttières, poubelles, brouettes...). Une technique plus élaborée consiste, après avoir supprimé toutes les petites collections d'eau, à créer des gîtes-pondoirs pièges (récipients d'eau de pluie stagnante) où la ponte des femelles pourrait être contrôlée. Avant que les larves de moustiques ne commencent à se nymphoser, l'eau est vidée sur la terre, en veillant à ce qu'elle soit complètement absorbée. Les larves, privées d'eau, meurent. Pour les récipients impossibles à vider (puisard, puits, latrine, fût, collecteur d'eau de pluie ouvert...), il importe qu'ils soient couverts hermétiquement avec de la toile moustiquaire ou, à défaut, de traiter leurs eaux avec un larvicide chimique ou biologique: les larves empoisonnées par le larvicide meurent rapidement.
Toutefois, que ce soit dans les zones urbaines, résidentielles ou rurales, les collections d'eaux pouvant contenir des engrais sont innombrables et souvent non décelées par les services de lutte anti vectorielle. Ainsi, les soucoupes ou autres récipients qui se trouvent sous les pots de fleurs font partie de ces gîtes connus pour servir de lieux de ponte pour Aedes aegypti et Aedes albopictus, vecteurs de la dengue et du chikungunya. Ces contenants domestiques abritent des densités en larves de moustiques souvent très élevées et constituent donc une myriade de gîtes larvaires difficiles à repérer et à éliminer.
Aussi existe-t-il un besoin de disposer d'une méthode permettant de diminuer fortement la prolifération des moustiques, notamment dans les réservoirs de faibles volumes comme les soucoupes situées sous les pots de fleur et les vases.
Or les inventeurs ont récemment démontré que, de manière surprenante, les engrais de type NPK génèrent un effet attractif à Γ encontre des femelles de moustiques à la recherche d'un lieu de ponte (Darriet F et Corbel V. 2008a. Influence des engrais de type NPK sur l'oviposition & Aedes aegypti. Parasite, 15 : 89-92 ; Darriet F et Corbel V. 2008b. Propriétés attractives et modifications physicochimiques des eaux de gîtes colonisées par les larves de Aedes aegypti (Diptera : Culicidae). Comptes rendus de Γ Académie des Sciences- Biologies- 331 : 617-622 ; et Darriet F, Zumbo B, Corbel V & Chandre F. 2010. Influence des matières végétales et des engrais NPK sur la biologie de Aedes aegypti (Diptera : Culicidae). Parasite, 17 : 149-154).
Tout en poursuivant leurs travaux, les inventeurs ont découvert qu'en associant un engrais de type NPK avec un larvicide chimique ou biologique, la combinaison permettait la fertilisation des milieux de croissance des plantes tout en assurant la destruction des larves qui éclosent dans ces gîtes rendus plus attractifs par l'engrais NPK.
Aussi le but de la présente invention est de fournir une méthode de lutte permettant d'éliminer automatiquement les larves de moustiques présentes, notamment dans les sous pots de fleurs, à chaque fois que l'utilisateur distribue de l'engrais à ses plantes.
Ce but est atteint par la présente invention qui a pour objet l'utilisation d'une composition à usage anti-moustique comprenant l'association d'au moins un engrais de type NPK avec au moins un composé anti-moustique larvicide, dans laquelle l'engrais NPK se compose de 3 à 20% d'azote (N) sous ses formes azote nitrique (N(V) et azote ammoniacal (NH4 +), de 2 à 20%> de phosphore (P) sous la forme d'anhydride phosphorique (P2O5) et de 5 à 20%> de potassium (K) sous la forme d'oxyde de potassium (K20), sous réserve que le larvicide ne soit pas le diméthoate, ni l'imidaclopride.
Avec un engrais NPK de composition 5-7-5, les concentrations les plus attractives dans l'eau sur les moustiques à la recherche d'un lieu de ponte sont comprises entre 8- 12-8 mg/L et 33-47-33 mg/L, et de préférence entre 17-23-17 mg/L et 33-47-33 mg/L. Selon le mode de réalisation préféré de l'invention, la concentration la plus attractive dans l'eau sur les femelles de Ae. aegypti gravides est égale à 17-23-17 mg/L.
Au sens de la présente invention, le larvicide est choisi parmi les larvicides chimiques et les larvicides biologiques. Tous les larvicides chimiques et biologiques autorisés dans la lutte contre les moustiques en Europe (directives Européennes biocides 98/8) peuvent être utilisés, sous réserve que le larvicide ne soit pas le diméthoate, ni l'imidaclopride.
A titre d'exemple on peut citer, comme larvicide chimique le pyriproxyfen, le méthoprène et le diflubenzuron et comme larvicide biologique le spinosad et le Bacillus thuringiensis var. israelensis (Bti).
Les larvicides utilisés agissent spécifiquement contre les larves de moustiques.
Leur utilisation consiste à empêcher le développement des larves de moustiques dans leurs gîtes potentiels, notamment ceux existant autour des habitations (eau stagnante dans les soucoupes de pots de fleurs, les vases, les seaux,...).
Les quantités de larvicide utilisées relèvent des connaissances de l'homme du métier qui pourra les adapter en fonction du milieu et du type de formulation utilisée.
Dans un mode de réalisation avantageux de l'invention, le larvicide est présent dans le milieu de pontes à des concentrations finales comprises entre 0,05 mg/L et l,5mg/L. Les teneurs en larvicide dans l'engrais anti-moustiques selon l'invention sont avantageusement comprises entre de 0,1 à 5% poids/poids ou poids/volume, selon la nature de la formulation.
La composition préparée selon l'invention est destinée à un usage domestique, agricole ou horticole.
Conformément à la présente invention, la composition à usage anti-moustique peut se présenter sous toute forme classiquement utilisée pour les engrais, sous forme liquide ou solide, notamment sous forme de solutions, de suspensions, de poudres, de granules ou de tablettes, les formes solides pouvant être à libération contrôlée.
La présente invention a également pour objet une méthode de prévention de la pullulation des moustiques comprenant la mise en contact ou le traitement du milieu où vivent des larves de moustiques ou du milieu où les femelles pondent leurs œufs avec une quantité efficace d'une composition comprenant l'association d'au moins un engrais de type NPK avec au moins un composé anti-moustique larvicide, dans laquelle l'engrais NPK se compose de 3 à 20% d'azote (N) sous ses formes azote nitrique (NO3 ) et azote ammoniacal (NH4 +), de 2 à 20% de phosphore (P) sous la forme d'anhydride phosphorique (P2O5) et de 5 à 20%> de potassium (K) sous la forme d'oxyde de potassium (K20), sous réserve que le larvicide ne soit pas le diméthoate, ni l'imidaclopride.
Exemple : Essais de laboratoire en tunnels expérimentaux sur des femelles gravides de Aedes aegypti
1. Protocole
Les tests ont été réalisés avec la souche Bora de Ae. aegypti originaire de Polynésie Française. Cette souche dépourvue de mécanisme de résistance aux insecticides est maintenue à l'insectarium du laboratoire de Lutte contre les Insectes Nuisible (LIN-IRD) de Montpellier, France.
L'engrais liquide (Algoflash®) utilisée pour notre étude contient 5% d'azote (N) total dont 3% d'azote nitrique (NO3 ) et 2% d'azote ammoniacal (NH4 +), 7% de phosphore (P) sous la forme d'anhydride phosphorique (P2O5) et 5% de potassium (K) sous la forme d'oxyde de potassium (K20). La concentration en NPK retenue pour nos essais de laboratoire (17-23-17 mg/1) est celle qui s'était montrée la plus attractive à l'encontre des femelles de Ae. aegypti gravides (Darriet F & Corbel V., Influence des engrais de type NPK sur l'oviposition d'Aedes aegypti. Parasite, 2008, 15 : 89-92).
Les larvicides pyriproxyfen, spinosad, Bti et diflubenzuron tels que décrits dans la présente demande ont été utilisés aux doses maximales recommandées par l'OMS soient :
- Pyriproxyfen : 0,05 mg/1,
- Spinosad : 0,5 mg/1,
- Bti : 5 mg/1,
- Diflubenzuron : 0,25 mg/1.
- Les mélanges larvicides + NPK ont cumulé les doses de larvicides et de NPK utilisés seuls.
Les femelles de Ae. aegypti âgées de 7 jours ont pris leur premier repas de sang sur lapin. Quarante-huit heures après le gorgement, les femelles gravides ont été utilisées pour évaluer l'attractivité des différentes solutions.
Les bioessais ont été menés dans des tunnels expérimentaux dont l'armature rectangulaire en verre (tunnel) est de 0,25 m x 0,25 m de section et de 0,75 m de longueur. A chaque extrémité du tunnel ont été placés deux gobelets en plastique dont la paroi intérieure est tapissée d'une bande de papier filtre blanc de 0,20 m x 0,05 m. Les deux gobelets témoin situés à une extrémité du tunnel ont reçu chacun, 50 ml d'eau osmosée. A l'autre extrémité du tunnel, les deux autres gobelets ont reçu la même quantité des différentes solutions testées. Les femelles de moustiques introduites au milieu des tunnels sont restées en présence des différents substrats durant 48 heures dans un environnement chaud et humide (27 ± 2°C - 80% d'humidité relative). Pour chacune des conditions testées, six répliques de 10 femelles de Ae. aegypti ont été réalisées.
A chaque réplique de 10 femelles, les œufs pondus sur les bandes de papier filtre ont été comptés. La moyenne des œufs pondus dans les différentes eaux a été comparée deux à deux par un test t de Student (Statistica 2001).
2. Résultats
2.1. Larvicides versus eau osmosée Tableau 1 : Attraction des femelles de Ae. Aegypti vis-à-vis des larvicides testés
Moyenne d'œufs
Milieux pondus
(IC 95%)a
519
eau osmosée
(471-567)
0,47
pyriproxyfen 574
(0,05 mg/1) (436-712)
397
eau osmosée
(249-545)
0,48
spinosad 474
0,5 mg/1) (333-615)
505
eau osmosée
(405-605)
0,28
Bîi 588
(5mg/l) (484-692)
545
eau osmosée
(373-717)
0,82
diflubenzuron 520
(0,25 mg/1) (418-622)
a intervalle de confiance à 95%
hP : probabilité - P >0,05 : différence non significative entre les deux milieux testés, P < 0,05 différence significative entre les deux milieux testés
Les tests en tunnels montrent que les l'ensemble des larvicides utilisés pour cette étude (pyriproxyfen, spinosad, Bti et diflubenzuron) n'a pas montré d'effet attractif ou excito -répulsif à l'encontre des femelles de Ae. aegypti ( >0,05).
Cette donnée atteste que les larvicides sélectionnés dans le cadre du brevet n'attirent ni n'éloignent les femelles de Ae. aegypti à la recherche d'un gîte en eau pour y déposer leurs œufs.
2.2. Engrais NPK versus eau osmosée
Tableau 2 : Attraction des femelles de Ae. Aegypti vis-à-vis de l'engrais NPK testé
Moyenne d'œufs
Milieux pondus
(IC 95%)a
366
eau osmosée
(249-482)
0,00060
726
NPK (17-23-17 mg/1)
(642-810)
intervalle de confiance à 95% P : probabilité - P >0,05 : différence non significative entre les deux milieux testés, P < 0,05 : différence significative entre les deux milieux testés
Conformément à l'étude de Darriet et Corbel (2008), la dose de NPK de 17-23-17 mg/1 exerce une forte attraction à la ponte sur le moustique Ae. aegypti ( <0,05). Cette donnée confirme l'attractivité des collections d'eaux qui sont souillées par des engrais NPK vis-à-vis des femelles de Ae. aegypti.
2.3. Mélange larvicide + engrais NPK versus eau osmosée
Tableau 3 : Attraction des femelles de Ae. Aegypti vis-à-vis de la composition comprenant un larvicide et un engrais NPK
Moyenne d'œufs
Milieux pondus
(IC 95%)a
231
eau osmosée
(140-322)
0,000038
825
NPK+pyriproxyfen
(685-965)
432
eau osmosée
(391-472)
0,000051
809
NPK+spinosad
(707-911)
240
eau osmosée
(180-301)
0,000003
768
(673-863)
375
eau osmosée
(341-409)
0,00073
716
NPK+diflubenzuron
(581-851)
a intervalle de confiance à 95%
hP : probabilité - P >0,05 : différence non significative entre les deux milieux testés, P < 0,05 : différence significative entre les deux milieux testés
Le fait de mélanger chacun des larvicides sélectionnés pour cette étude avec la dose de NPK la plus attractive rend le mélange larvicide + NPK plus attractif que l'eau osmosée seule ( <0,05). Le NPK attire le moustique à la recherche d'un lieu de ponte et le larvicide tue les larves de stade 1 dès leur éclosion des œufs. 3. Conclusion
Une telle association NPK+Larvicide (composition à usage anti-moustique) participerait sur le terrain à l'élimination automatique des larves de moustiques qui se développent dans les sous-pots de fleurs. Un nombre incalculable de ces petits gîtes attractifs et productifs en larves de moustiques seraient ainsi éliminés, de surcroît des gîtes domestiques que les services de la lutte antivectorielle (LAV) ne traitent jamais mais qui néanmoins restent prolifiques une bonne partie de l'année. Cette élimination d'un grand nombre de gîtes domestiques situés chez l'habitant permettrait de réduire le contact entre l'homme et le moustique et donc l'impact des maladies à transmission vectorielle.

Claims

REVENDICATIONS
1. Composition à usage anti-moustique domestique, agricole ou horticole comprenant l'association d'au moins un engrais de type NPK avec au moins un composé antimoustique larvicide, dans laquelle :
- l'engrais NPK se compose de 3 à 20% d'azote (N) sous ses formes azote nitrique (NO3 ) et azote ammoniacal (NH4 +), de 2 à 20% de phosphore (P) sous la forme d'anhydride phosphorique (P2O5) et de 5 à 20%> de potassium (K) sous la forme d'oxyde de potassium (K20)
- le larvicide est chimique et choisi parmi le pyriproxyfen, le méthoprène et le diflubenzuron ou est biologique et choisi parmi le spinosad et le Bacillus thuringiensis var.israelensis (Bti.).
2. Composition à usage anti-moustique, selon l'une des revendications précédentes caractérisée en ce que le larvicide est présent dans des quantités comprises entre 0,1 % et 5% du poids/poids ou poids/volume de la composition.
3. Composition à usage anti-moustique, selon la revendication 1, caractérisée en ce qu'elle se présente sous forme de tablettes à libération contrôlée ou sous la forme d'une formulation liquide.
4. Utilisation d'une composition selon l'une quelconque des revendications 1 à 3 pour un usage anti-moustique domestique, agricole ou horticole.
5. Méthode de lutte prévenant la pullulation des moustiques caractérisée en ce que ladite méthode comprend la mise en contact ou le traitement du milieu où vivent des larves de moustiques ou du milieu où les femelles pondent préférentiellement leurs œufs avec une quantité efficace d'une composition selon l'une quelconque des revendications précédentes.
PCT/FR2012/050752 2011-04-07 2012-04-05 Composition a usage anti-moustique WO2012143644A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12718697.1A EP2693888A1 (fr) 2011-04-07 2012-04-05 Composition a usage anti-moustique
CN201280024636.9A CN103547159A (zh) 2011-04-07 2012-04-05 具有抗蚊用途的组合物
AP2013007205A AP3693A (en) 2011-04-07 2012-04-05 Composition for anti-mosquito use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153024A FR2973646B1 (fr) 2011-04-07 2011-04-07 Composition a usage anti-moustique
FR1153024 2011-04-07

Publications (1)

Publication Number Publication Date
WO2012143644A1 true WO2012143644A1 (fr) 2012-10-26

Family

ID=46026843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050752 WO2012143644A1 (fr) 2011-04-07 2012-04-05 Composition a usage anti-moustique

Country Status (5)

Country Link
EP (1) EP2693888A1 (fr)
CN (1) CN103547159A (fr)
AP (1) AP3693A (fr)
FR (1) FR2973646B1 (fr)
WO (1) WO2012143644A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109090116A (zh) * 2018-09-12 2018-12-28 广东惠利民有害生物防制工程有限公司 一种无害化杀灭蚊虫幼虫的组合物及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2272051A1 (en) * 1974-05-21 1975-12-19 Aries Robert Fertiliser granules contg. (thiono)phosphate insecticides - with a halogenated phenyl or pyridyl gp.
FR2310985A1 (fr) * 1975-05-16 1976-12-10 Aries Robert Nouvel engrais granule a action insecticide
US4126438A (en) * 1976-09-15 1978-11-21 Pulli Michael A Novel golf tee
US5234892A (en) * 1990-10-23 1993-08-10 Dunaway Sr James K Method of treating lethal yellow in palm trees
DE4412833A1 (de) * 1994-04-14 1995-10-19 Bayer Ag Insektizide Düngemischungen
JP2005120109A (ja) * 2005-01-13 2005-05-12 Sumitomo Chemical Co Ltd 水田における半翅目害虫の防除方法
JP2007153911A (ja) * 2007-03-16 2007-06-21 Sumitomo Chemical Co Ltd 水田における半翅目害虫の防除方法
CN101973822A (zh) * 2010-11-08 2011-02-16 周艳玲 一种既能诱杀害虫、又能促植物生长的无公害药肥及其制备方法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
DARRIET ET AL: "[Aedes aegypti oviposition in response to NPK fertilizers].", PARASITE, vol. 15, no. 1, 1 March 2008 (2008-03-01), pages 89 - 92, XP055009594, ISSN: 1252-607X *
DARRIET F; CORBEL V.: "Influence des engrais de type NPK sur l'oviposition d'Aedes aegypti.", PARASITE, vol. 15, 2008, pages 89 - 92
DARRIET F; CORBEL V.: "Propriétés attractives et modifications physicochimiques des eaux de gîtes colonisées par les larves de Aedes aegypti (Diptera : Culicidae", COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES- BIOLOGIES, vol. 331, 2008, pages 617 - 622, XP022821439, DOI: doi:10.1016/j.crvi.2008.05.003
DARRIET F; ZUMBO B; CORBEL V; CHANDRE F.: "Influence des matières végétales et des engrais NPK sur la biologie de Aedes aegypti (Diptera : Culicidae", PARASITE, vol. 17, 2010, pages 149 - 154
DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1994, BARUAH I ET AL: "Laboratory and field evaluation of Bacillus thuringiensis and B. sphaericus against mosquito larvae", XP002661332, Database accession no. PREV199598319775 *
DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; December 2010 (2010-12-01), KAMAL HANY A ET AL: "THE BIOLOGICAL EFFECTS OF THE INSECT GROWTH REGULATORS; PYRIPROXYFEN AND DIFLUBENZURON ON THE MOSQUITO AEDES AEGYPTI", XP002661330, Database accession no. PREV201100166181 *
DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; June 2006 (2006-06-01), BUTLER MARI ET AL: "Efficacy of methoprene for mosquito control in storm water catch basins", XP002661331, Database accession no. PREV200600530103 *
DATABASE BIOSIS [online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; March 2010 (2010-03-01), HERTLEIN MARK B ET AL: "A REVIEW OF SPINOSAD AS A NATURAL PRODUCT FOR LARVAL MOSQUITO CONTROL", XP002661333, Database accession no. PREV201000246123 *
JOURNAL OF COMMUNICABLE DISEASES, vol. 26, no. 2, 1994, pages 82 - 87, ISSN: 0019-5138 *
JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION, vol. 22, no. 2, June 2006 (2006-06-01), pages 333 - 338, ISSN: 8756-971X *
JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION, vol. 26, no. 1, March 2010 (2010-03-01), pages 67 - 87, ISSN: 8756-971X *
JOURNAL OF THE EGYPTIAN SOCIETY OF PARASITOLOGY, vol. 40, no. 3, December 2010 (2010-12-01), pages 565 - 574, ISSN: 1110-0583 *

Also Published As

Publication number Publication date
FR2973646A1 (fr) 2012-10-12
EP2693888A1 (fr) 2014-02-12
CN103547159A (zh) 2014-01-29
AP2013007205A0 (en) 2013-10-31
AP3693A (en) 2016-04-30
FR2973646B1 (fr) 2014-03-21

Similar Documents

Publication Publication Date Title
Lokanadhan et al. Neem products and their agricultural applications
Gnanavel et al. Parthenium hysterophorus L.: a major threat to natural and agro eco-systems in India
US20080293571A1 (en) Insecticide organic fertilizer composition, process and method
US20010055628A1 (en) Natural oils having a synergistic effect as a pesticide
EP3664612A1 (fr) Composition a base de polyol(s) et de sterol(s) pour usage dans le domaine agricole
JP2008520562A (ja) 農業用または園芸用添加剤
EP3664613A1 (fr) Composition a base de polyol(s) et de sterol(s) pour usage dans le domaine agricole
JP3213112B2 (ja) 白紋羽病防除剤
Mao et al. Vetiver oil and nootkatone effects on the growth of pea and citrus
Wezel et al. Agroecological practices supporting the provision of goods and services in agriculture. Examples from France et Europe
WO2012143644A1 (fr) Composition a usage anti-moustique
Jensen Nematodes affecting Oregon agriculture
Sawsan et al. Efficiency of zinc sulfate and some volatile oils on some insect pests of the tomato crop
Mtenga Developing an eco-friendly and bio-managment stratergy against parthenium hysterophorus (l.) in Arusha, Tanzania
US20070190095A1 (en) Coffee and its derivatives as an animal repellent composition and its use in a molluscicide bait
Ghilarov Some practical problems of soil zoology
Zedan et al. ASSESSMENT OF MOLLUSCICIDAL ACTIVITY OF CERTAIN PESTICIDES AGAINST TWO LAND SNAILS UNDER LABORATORY AND FIELD CIRCUMSTANCES AT DAKAHLIA GOVERNORATE.
Mortada et al. MOLLUSCICIDAL ACTIVITY OF CERTAIN PESTICIDES AGAINST Monacha obstructa montago (FAM: HELICIDAE) LAND SNAILS UNDER LABORATORY AND FIELD CONDITIONS.
Paul Bean pest management in East Africa: A scientific evaluation of organic insect control practices used by Tanzanian farmers
WO1999012425A9 (fr) Composition attractive pour insectes du type coleopteres et son utilisation dans la lutte contre les insectes ravageurs des palmiers et des plantes associees
Huijser et al. The impacts of ditch cuttings on weed pressure and crop yield in maize
Ismail et al. Efficacy Appraisement of some Compounds against Monacha cartusiana Snail Using Various Application Techniques, under Laboratory and Field Conditions
Lee et al. HELPING OUT THE SAMURAI WASP
JPH04202103A (ja) 有用植生保護育成用組成物
OA20795A (fr) Produit phytosanitaire servant d&#39;insecticide et d&#39;engrais.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12718697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012718697

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE