WO2012142985A1 - Verfahren zum betreiben eines abstandssensors und vorrichtung zur durchführung des verfahrens - Google Patents

Verfahren zum betreiben eines abstandssensors und vorrichtung zur durchführung des verfahrens Download PDF

Info

Publication number
WO2012142985A1
WO2012142985A1 PCT/DE2011/000430 DE2011000430W WO2012142985A1 WO 2012142985 A1 WO2012142985 A1 WO 2012142985A1 DE 2011000430 W DE2011000430 W DE 2011000430W WO 2012142985 A1 WO2012142985 A1 WO 2012142985A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
radiation
reflection
crosstalk
Prior art date
Application number
PCT/DE2011/000430
Other languages
English (en)
French (fr)
Inventor
Sorin Fericean
Martin Osterfeld
Original Assignee
Balluff Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Balluff Gmbh filed Critical Balluff Gmbh
Priority to PCT/DE2011/000430 priority Critical patent/WO2012142985A1/de
Priority to US14/112,586 priority patent/US9494678B2/en
Priority to EP11727106.4A priority patent/EP2699938B1/de
Publication of WO2012142985A1 publication Critical patent/WO2012142985A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers

Definitions

  • the invention relates to a method for operating a distance sensor and a device for carrying out the method according to the preamble of the independent claims.
  • the optical radiation of the two radiation sources is modulated in each case in a rectangular shape, wherein the modulation takes place by 180 ° out of phase. This means that the two transmission LEDs are alternately switched on and off.
  • a demodulator connected as a synchronous rectifier detects the two signals received by the receiving photodiode and makes the difference between the two received signals available to a controller which determines a manipulated variable with which the transmitting power of the transmitting LED and / or the compensation LED is regulated in such a way. that the two received signals are the same size. In the adjusted state, the manipulated variable becomes zero.
  • the distance information is obtained by detecting and evaluating the transient control actions.
  • the arrangement is insensitive to a change in the sensitivity of the receiving photodiode, which may vary as a function of the irradiance, to a drift in the amplification factor of the amplifier and to a change in the efficiency of the transmission and compensation LED and overall thermal drift of the device.
  • microwave radar sensors which allow a distance or distance measurement by means of microwaves.
  • the microwaves reflected from an object are received and evaluated. Movements of the object are detected with a CW Doppler radar.
  • the distances can still be detected with a pulse radar or FMCW arrangement.
  • CW (Continuous Wave) arrangements employ FM (Frequency Modulation), whereby due to the propagation delay a frequency difference occurs between the radiated microwave signal and the received microwave signal, which is evaluated to determine the distance.
  • FM Frequency Modulation
  • the permissible bandwidth of the modulation signal has limitations, in particular in the case of the modulation frequency, which may amount to a maximum of 250 MHz given a transmission frequency of, for example, 24 GHz. This is the object separability, that is, the minimum detectable distance between two target objects (targets) at 60 cm.
  • the measuring range is also limited in terms of limiting the edge steepness down, because the received pulse may be received only when the transmission pulse is completed. Due to the bandwidth limitation, the pulse durations or the edge steepnesses can not be chosen sufficiently small for small distances below the meter range.
  • the invention has for its object to provide a method for operating a distance sensor and devices for performing the method, which are suitable with simple means for short distances below the meter range and allow high measurement accuracy regardless of the measuring range.
  • the inventive method for operating a distance sensor assumes that a transmission signal is emitted as transmission radiation, from an object whose distance is to be measured, reflected as reflection radiation and received as a reflection signal.
  • Reference signal occurring reference input are controlled to a predetermined ratio, the distance during the Ausregelvorgangs is determined.
  • the inventive method provides that are used as transmission radiation microwaves and that the crosstalk signal from Transmitting signal is evaluated directly to the receiver input at suppressed radiation of the transmission signal as a reference signal.
  • the distance sensor according to the invention is independent of a drift of the power of a microwave transmitter used in the distance sensor and of a drift of a required microwave receiver, since an optionally existing drift has the same effect on all signals.
  • the essential advantage remains in the fact that an evaluation of an absolute reception field strength or a received signal amplitude with the provided compensation method is eliminated.
  • Another advantage results from the fact that the temperature behavior of the distance sensor according to the invention can be impressed or at least influenced by a corresponding design of the attenuation of the crosstalk signal and therefore can be compensated.
  • a CW microwave transmitter (continuous wave) can be provided, so that a very small distance can be measured.
  • a modulation of the transmission signal regulations regarding signal bandwidths can be easily met.
  • the method according to the invention enables short measuring cycles while at the same time providing high dynamics. Due to the regulation to a certain ratio, which corresponds to a compensation method, possibly occurring signal influences in the transmitting branch and / or receiving branch, for example by the temperature, are compensated and do not affect the measurement result.
  • the inventive method is a purely energetic method that allows easy signal processing and signal evaluation. This eliminates the need for expensive hardware and software. Because of the simple
  • Realization can be achieved low energy consumption.
  • the method according to the invention can be implemented inexpensively, for example, in the context of a compact miniaturized design.
  • the devices according to the invention either provide at least one transmitting / receiving antenna or at least one transmitting antenna and at least one receiving antenna separate from the transmitting antenna.
  • the inventive devices for carrying out the method thus allow flexible adaptation to different geometries.
  • FIG. 1 shows a first embodiment of a distance sensor according to the invention with a transmitting / receiving antenna
  • Figure 2 shows a second embodiment of a distance sensor according to the invention with a transmitting antenna and a separate provided from the transmitting antenna receiving antenna and
  • Figures 3a to 3g show waveforms as a function of the time t, which occur in a distance sensor according to the invention.
  • FIG. 1 shows a distance sensor 10 in which the transmission signal S1 generated by a microwave oscillator 12 is emitted by a transmission / reception antenna 14 as transmission radiation S2, reflected at an object 16 whose distance D is to be measured by the distance sensor 10 and that from the object 16 reflected reflection radiation S3 from the transmitting / receiving antenna 14 Will be received.
  • the signal attenuations of the transmission radiation S2 and the reflection radiation S3 are evaluated on the path between the transmission / reception antenna 14 and the object 16 for the determination of the distance D or the path of the object 16.
  • the distance D can be measured according to FIG. 1, starting from the transmitting / receiving antenna 14.
  • the microwave oscillator 12 providing the transmission signal S1 is connected to a first connection 18 of a circulator 20 and the transmission / reception antenna 14 is connected via a first changeover switch 22 to a second connection 24 of the circulator 20.
  • the reflection signal S4 corresponding to the reflection radiation S3 passes via the transmitting / receiving antenna 14, the changeover switch 22 and via the second connection 24 of the circulator 20 to a third connection 26 of the circulator 20.
  • the circulator 20 is preferably realized as a passive circulator 20.
  • the circulator 20 separates signal directions. A signal which is fed in at one input is forwarded to the next connection. At an open connection, the signal is forwarded unchanged and at a shorted connection the sign of the
  • the transmission signal S1 present at the first connection 18 is conducted to the transmission / reception antenna 14 at the position of the first switch 22 shown and completely radiated as transmission radiation S2 provided that the transmission / reception antenna 14 is matched correctly.
  • the reflection radiation S3 reflected by the object 16 is transmitted by the transmitting / receiving antenna 14 as Reflection signal S4 forwarded via the first changeover switch 22 and via the second terminal 24 of the circulator 20 to the third terminal of the circulator 26.
  • the reflection signal S4 is applied to a receiver input 28 of the distance sensor 10, which is connected to the third terminal 26 of the circulator 20.
  • an ideal circulator would have an infinitely high crosstalk attenuation between the first terminal 18 and the third terminal 26 with exact adaptation to the characteristic impedance.
  • the real circulator 20 has a finite crosstalk attenuation that is known and is, for example, 20 dB. Due to the finite crosstalk attenuation from the first terminal 18 to the third terminal 26 occurs on a crosstalk signal S5, which is entered in dashed lines in Figure 1. The crosstalk signal S5 reaches without radiation directly to the receiver input 28th
  • crosstalk signal S5 is used by the transmission signal S1 directly to the receiver input 28 as a reference signal.
  • the first change-over switch 22 should be in the position shown in a first operating phase BP1 of the distance sensor 10, in which case the second connection 24 of the circulator 20 is connected to the transmitting / receiving antenna 14. In the first operating phase BP1 are therefore on
  • Crosstalk signal S5 wherein the amplitude of the reflection signal S4 is considerably higher than that of the crosstalk signal S5, so that the occurring in the first phase of operation BP1 superposition of the reflection signal S4 with the crosstalk signal S5 at the receiver input 28 is approximated by the crosstalk signal S5 is neglected.
  • the first change-over switch 22 is in the other position, in which the second connection 24 of the circulator 20 is connected to an impedance Z, which is referred to as ohmic resistance is realized whose value as closely as possible
  • Characteristic impedance of the arrangement corresponds and is for example 50 ohms.
  • the transmission signal S1 is absorbed in the impedance Z and not emitted via the transmission / reception antenna 14. Nevertheless, the attenuated transmission signal S1 is applied to the third terminal 26 of the circulator 20 due to the finite crosstalk attenuation as the crosstalk signal S5.
  • the crosstalk signal S5 is present, which according to the invention is rated as a reference signal.
  • the reflection signal S4 and the crosstalk signal S5 reach a receiver 30 which processes and demodulates the signals S4, S5.
  • a receiver output 32 occur in the first phase of operation BP1 a first DC voltage US4, which is a measure of the reflection signal S4 neglecting the crosstalk signal S5, and in the second phase of operation BP2 a second DC voltage US5, which is a measure of only the crosstalk signal S5 Reference signal is.
  • the receiver 30 contains for processing the input signals S4, S5, for example, a mixer for the implementation of microwaves, whose frequency is for example 24 GHz, in a lower, technically easier to handle frequency range.
  • This conversion into an intermediate frequency range is carried out in a known manner by mixing the microwaves with an oscillator frequency which deviates from the frequency of the transmitted signal S1 by the amount of the desired intermediate frequency.
  • the output 32 of the receiver 30 is in the first operating phase BP1 via a second switch 34 with a first sample and hold circuit 36 and in the second operating phase BP2 with a second sample and
  • the two DC voltages US4, US5 reach a differential amplifier 40, which provides the differential voltage dV as an output signal, which is compared in a downstream comparator 42 with a reference voltage Vref.
  • the differential voltage dV depends on the crosstalk attenuation as well as on the attenuation of the transmission radiation S2 or the reflection radiation S3, the relationship being contained in a logarithmic function.
  • the output signal of the comparator 42 may be referred to as a manipulated variable ST, with the aid of which the power of the transmission signal S1 is influenced, wherein the power can be increased or decreased.
  • the manipulated variable ST can intervene, for example, in the amplification factor of an output stage of the microwave transmitter 12 and / or in a variable signal attenuation at the output of the microwave transmitter 12. In the control intervention, it is possible to proceed in such a way that the power is intervened in the first operating phase BP1 and / or in the second operating phase BP2. In particular, during an intervention in the second operating phase BP2, the transmission power can be increased, so that in the receiver 30, a lower signal dynamics must be handled.
  • the aim of the intervention with the actuating signal ST is to regulate the ratio between the reflection signal S4 and the crosstalk signal S5 to a predetermined value.
  • the adjustment can be made with the reference signal Vref, which may for example also be zero, so that in the adjusted state the reflection signal S4 and the reference signal S5 become equal in magnitude.
  • Vref which may for example also be zero
  • the distance sensor 10 is independent of a drift in the power of the microwave transmitter 12 and a drift in the receiver 30, as an optional drift on both signals S4, S5 effects.
  • a significant advantage remains in the fact that an evaluation of an absolute reception field strength or a received signal amplitude with the provided compensation method is eliminated. This can be achieved overall high accuracy.
  • the microwave transmitter 12 is operated in CW mode at a constant frequency.
  • the achievable minimum measurable distance D is not limited by pulse transit times or limited Frequenzmodulationshübe and can at least theoretically down to zero distance.
  • the information about the distance D of the object 16 from the transmitting / receiving antenna 14 is in the differential voltage dV, which transiently occurs during the Ausregelvorgangs.
  • the differential voltage dV is made available to a distance determination 44 which determines the distance D from the transiently occurring differential voltage dV.
  • the maximum amplitude at the beginning of the Ausregelvorgangs and / or the reaction time or the signal edges, when the distance D of the object 16 changes when approaching or removing can be evaluated.
  • the relationship is preferably determined in a learning process and stored in a memory for the subsequent operation of the distance sensor 10.
  • the distance determination 44 provides the distance D at an output.
  • FIG. 2 shows an alternative possibility for realizing the distance sensor 10 according to the invention.
  • the parts shown in FIG. 2 which correspond to those shown in FIG. 1 are denoted by the same reference numerals.
  • the circulator 20 is dispensed with.
  • a transmitting antenna 50 and a transmitter antenna 50 separated from the transmitting antenna 50 are present.
  • Antenna 50 provided receiving antenna 52.
  • the radiated from the transmitting antenna 50 transmission radiation S2 applies to the object 16, the distance D is to be measured by the distance sensor 10.
  • the reflection radiation S3 reflected by the object 16 is received by the receiving antenna 52 and appears at the receiver input 28 as a reflection signal S4.
  • a crosstalk signal S6 occurs, which can be evaluated as a reference signal.
  • the crosstalk signal S6 occurs from the transmitting antenna 50 to the receiving antenna 52. In FIG. 2, this is
  • the signal processing does not differ from that of the exemplary embodiment shown in FIG. 1 with at least one transmitting / receiving antenna 14. While the crosstalk attenuation in a circulator 20 is, for example, 20 dB, in the exemplary embodiment according to FIG. 2 higher crosstalk attenuation in the range of for example, be calculated to 100 dB.
  • the crosstalk signal S6 between the transmitting antenna 50 and the receiving antenna 52 occurs at the receiver input 28 and is converted by the receiver 30 into a corresponding DC voltage US6, which in the second operating phase BP2 via the second switch 34 of the second sample and hold circuit 38 for storage available is provided.
  • FIGS. 3a to 3g show signal curves as a function of time t.
  • FIG. 3a shows the transmission level in dBm of the transmission signal S1 occurring in the first exemplary embodiment of the distance sensor 10 according to the invention during the two operating phases BP1, BP2.
  • 10 dBm is provided, which increases from a time T to 11 dBm.
  • time T an approach of the object 16 is assumed, so that after the time a smaller distance D is measured than before the time T.
  • FIG. 3b shows the signal attenuation D5 of the crosstalk signal S5 and the sum of the signal attenuations D2 + D3 to which the transmit radiation S2 and the reflection radiation S3 are subjected, the signal attenuation D5 of the crosstalk signal S5 - as already mentioned - being higher than the sum, for example 9 dB the signal attenuations D2 + D3 of the radiation signals S2, S3, which is initially assumed to be 4 dB and from time T to 3 dB.
  • FIG. 3c shows the reception level in dBm of the reception signal S4, which is 2 dBm, the reception level of 2 dBm resulting from the transmission level 6 dBm of the transmission signal S1 less the sum of the signal attenuations D2 + D3 of the radiation signals S2, S3 of 4 dB. From the time T increases due to the approach of the object 16, the signal level of
  • FIG. 3d shows the crosstalk level in dBm of the crosstalk signal S5 which is 1 dBm, the crosstalk level of 1 dBm resulting from the transmission level 10 dBm of the transmission signal S1 less the signal attenuation D5 of the crosstalk signal S5 of 9 dB. From time T, the crosstalk level of the crosstalk increases due to the increase of the transmission level by 1 dBm
  • FIG. 3e shows the DC voltage US4 corresponding to the reflection signal S4, which rises to a higher level at time T due to the approach of the object 16 and the consequent lower attenuation D2 + D3 of the radiation signals S2, S3.
  • FIG. 3f shows the DC voltage US5 corresponding to the crosstalk signal S5, which also increases after time T due to the regulation of the differential voltage dV.
  • Figure 3g shows the Ausregelvorgang the differential voltage dV, which begins with the time T and according to the embodiment should already be completed in the following second phase of operation BP2.
  • the maximum amplitude during the balancing process and / or the reaction time or the signal edges for determining the distance D of the object 16 can be evaluated.
  • the signal waveforms shown in FIGS. 3a to 3g as a function of the time t are based on the first exemplary embodiment of the distance sensor 10 according to the invention, which has a single antenna 14 which is operated as a transmitting / receiving antenna.
  • the signal attenuation D5 of the crosstalk signal S5 is comparatively smaller than the signal attenuation D6 not shown in FIGS. 3a to 3f, which occurs in the exemplary embodiment of the distance sensor 10 according to the invention, which has a transmit antenna 50 and a separate receive antenna 52.
  • the transmission level of the transmission signal S1 would have to be correspondingly higher during the second operating phase BP2.
  • by changing the reference voltage Vref to a higher differential voltage dV can be controlled.
  • the air damping DL of the transmission radiation S2 and the reflection radiation S3 on the way from the transmitting / receiving antenna 14 or the transmitting antenna 50 to the object 16 and from the object back to the transmitting / receiving antenna 14 or receiving antenna 52 can be described by:
  • the power Pref of the reference signal S5 is:
  • Receiver input 28 from 50 mV to 50 ohms.
  • the input power pin results to:
  • Pin 0.63 mW corresponding to an input voltage Uin at the receiver input 28 from 250 mV to 50 ohms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Es werden ein Verfahren zum Betreiben eines Abstandssensors (10), bei dem ein Sendesignal (S1) als Sendestrahlung (S2) abgestrahlt wird, von einem Objekt (16), dessen Abstand (D) gemessen werden soll, als Reflexionsstrahlung (S3) reflektiert und als Reflexionssignal (S4) empfangen wird, bei dem das an einem Empfängereingang (28) anliegende Reflexionssignal (S4) und ein ebenfalls am Empfängereingang (28) auftretendes Bezugssignal auf ein vorgegebenes Verhältnis geregelt werden, wobei der Abstand (D) während des Ausregelvorgangs ermittelt wird sowie Vorrichtungen zur Durchführung des Verfahrens vorgeschlagen. Das Verfahren zeichnet sich dadurch aus, dass als Sendestrahlung (S2) Mikrowellen eingesetzt werden und dass ein Übersprechsignal (S5, S6) vom Sendesignal (S1) direkt zum Empfängereingang (28) bei unterdrückter Abstrahlung des Sendesignals (S1 ) als Bezugssignal herangezogen wird.

Description

Beschreibung
Titel
Verfahren zum Betreiben eines Abstandssensors und Vorrichtung zur Durchführung des Verfahrens
Die Erfindung geht aus von einem Verfahren zum Betreiben eines Abstandssensors und von einer Vorrichtung zur Durchführung des Verfahrens nach der Gattung der unabhängigen Ansprüche.
Stand der Technik
In der Fachzeitschrift„Elektronik", Fachzeitschrift für industrielle Anwender und Entwickler, WEKA Fachmedien GmbH, Gruber Straße 46a, D-85586 Poing, Sonderdruck 22 vom 29. Oktober 2002 ist ein opto-elektronisches Ab- standssensorprinzip beschrieben. Die von einer Sende-LED abgestrahlte optische Messstrahlung trifft auf ein Objekt, dessen Abstand von dem Abstandssensor gemessen werden soll, wird vom Objekt reflektiert und als Reflexionsstrahlung von einer Empfangsfotodiode empfangen. Zusätzlich zum Messstrahlungspfad ist ein Kompensationsstrahlungspfad vorhanden, bei welchem eine von einer Kompensations-LED abgestrahlte optische Strahlung direkt auf die Empfangsfotodiode trifft.
BESTÄTIGUNGSKOPIE Die optische Strahlung der beiden Strahlungsquellen ist jeweils rechteck- förmig moduliert, wobei die Modulation um 180° gegenphasig verschoben erfolgt. Das bedeutet, dass die beiden Sende-LEDs abwechselnd getaktet ein- und ausgeschaltet werden. Ein als Synchrongleichrichter geschalteter Demodulator ermittelt die beiden von der Empfangsfotodiode empfangenen Signale und stellt die Differenz zwischen den beiden Empfangssignalen einem Regler zur Verfügung, der eine Stellgröße ermittelt, mit der die Sendeleistung der Sende-LED und/oder der Kompensations-LED derart geregelt wird, dass die beiden Empfangssignale gleich groß werden. Im eingeregelten Zustand wird die Stellgröße zu null. Die Abstandsinformation wird durch eine Erfassung und Bewertung der transienten Regelvorgänge erhalten.
Die Anordnung ist unempfindlich gegenüber einer Änderung der Empfindlichkeit der Empfangsfotodiode, die in Abhängigkeit von der Bestrahlungsstärke variieren kann, gegenüber einer Drift des Verstärkungsfaktors des Verstärkers und gegenüber einer Wirkungsgradänderung der Sende- und Kompensations-LED sowie insgesamt gegenüber einer thermischen Drift der Anordnung.
Bekannt sind weiterhin Mikrowellen-Radarsensoren, welche mittels Mikrowellen eine Abstands- beziehungsweise Wegmessung ermöglichen. Die von einem Objekt reflektierten Mikrowellen werden empfangen und bewertet. Bewegungen des Objekts werden mit einem CW-Dopplerradar erfasst. Die Abstände können weiterhin mit einem Pulsradar oder einer FMCW-Anordnung erfasst werden.
Um von Amplituden unabhängig zu sein, wird bei CW (Continuous-Wave)- Anordnungen eine FM (Frequenzmodulation) eingesetzt, wobei aufgrund der Laufzeit eine Frequenzdifferenz zwischen dem abgestrahlten Mikrowellensignal und dem empfangenen Mikrowellensignal auftritt, welche zum Ermitteln des Abstands bewertet wird. Aufgrund gesetzlicher Vorschriften für die Auswahl des Frequenzbereichs der Mikrowellen und insbesondere für die zu- lässige Bandbreite des Modulationssignals bestehen Einschränkungen insbesondere bei der Modulationsfrequenz, die bei einer Sendefrequenz von beispielsweise 24 GHz maximal 250 MHz betragen darf. Damit liegt die Objekttrennbarkeit, das heißt, der minimale detektierbare Abstand zwischen zwei Zielobjekten (Targets) bei 60 cm. Sofern ein Pulsradar eingesetzt wird, ist der Messbereich im Hinblick auf die Begrenzung der Flankensteilheit ebenfalls nach unten begrenzt, weil der Empfangsimpuls erst empfangen werden darf, wenn der Sendeimpuls beendet ist. Aufgrund der Bandbreitenbegrenzung können die Impulsdauern beziehungsweise die Flankensteilheiten für kleine Abstände unterhalb des Meterbereichs nicht ausreichend klein gewählt werden.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben eines Abstandssensors und Vorrichtungen zur Durchführung des Verfahrens anzugeben, die mit einfachen Mitteln für kurze Abstände auch unterhalb des Meterbereichs geeignet sind und unabhängig vom Messbereich eine hohe Messgenauigkeit ermöglichen.
Die Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Merkmale jeweils gelöst.
Offenbarung der Erfindung
Das erfindungsgemäße Verfahren zum Betreiben eines Abstandssensors geht davon aus, dass ein Sendesignal als Sendestrahlung abgestrahlt wird, von einem Objekt, dessen Abstand gemessen werden soll, als Reflexionsstrahlung reflektiert und als Reflexionssignal empfangen wird. Das an einem Empfängereingang anliegende Reflexionssignal und ein ebenfalls am
Empfängereingang auftretendes Bezugssignal werden auf ein vorgegebenes Verhältnis geregelt, wobei der Abstand während des Ausregelvorgangs ermittelt wird. Das erfindungsgemäße Verfahren sieht vor, dass als Sendestrahlung Mikrowellen eingesetzt werden und dass das Übersprechsignal vom Sendesignal direkt zum Empfängereingang bei unterdrückter Abstrahlung des Sendesignals als Bezugssignal gewertet wird.
Der erfindungsgemäße Abstandssensor ist unabhängig von einer Drift der Leistung eines im Abstandssensor eingesetzten Mikrowellensenders und von einer Drift eines erforderlichen Mikrowellenempfängers, da sich eine gegebenenfalls vorhandene Drift auf sämtliche Signale gleich auswirkt. Der wesentliche Vorteil liegt weiterhin darin, dass eine Bewertung einer absoluten Empfangsfeldstärke beziehungsweise einer Empfangssignalamplitude mit dem vorgesehenen Kompensationsverfahren entfällt.
Ein weiterer Vorteil ergibt sich dadurch, dass das Temperaturverhalten des erfindungsgemäßen Abstandssensors durch eine entsprechende Auslegung der Dämpfung des Übersprechsignals eingeprägt oder zumindest beeinflusst und daher kompensiert werden kann.
Mit dem erfindungsgemäßen Verfahren kann ein CW-Mikrowellensender (Continuous-Wave) vorgesehen werden, sodass ein sehr geringer Abstand gemessen werden kann. Durch Entfall einer Modulation des Sendesignals können Vorschriften betreffend Signalbandbreiten leicht eingehalten werden.
Das erfindungsgemäße Verfahren ermöglicht kurze Messzyklen bei gleichzeitig einer hohen Dynamik. Aufgrund der Regelung auf ein bestimmtes Verhältnis, die einem Kompensationsverfahren entspricht, werden gegebenenfalls auftretende Signalbeeinflussungen im Sendezweig und/oder Empfangszweig, beispielsweise durch die Temperatur, kompensiert und wirken sich nicht auf das Messergebnis aus.
Das erfindungsgemäße Verfahren ist ein rein energetisches Verfahren, das einfache Signalaufbereitung und Signalbewertung ermöglicht. Daher entfällt eine aufwendige Hardware und Software. Aufgrund der einfachen
Realisierung kann ein geringer Energieverbrauch erzielt werden. Weiterhin kann das erfindungsgemäße Verfahren kostengünstig beispielsweise im Rahmen einer kompakten miniaturisierten Ausführung realisiert werden.
Vorteilhafte Weiterbildungen und Ausgestaltungen des erfindungsgemäßen Verfahrens sind Gegenstände der abhängigen Verfahrensansprüche.
Die erfindungsgemäßen Vorrichtungen sehen entweder wenigstens eine Sende-/Empfangsantenne oder wenigstens eine Sendeantenne und wenigstens eine von der Sendeantenne getrennte Empfangsantenne vor. Die erfindungsgemäßen Vorrichtungen zur Durchführung des Verfahrens ermöglichen damit eine flexible Anpassung an unterschiedliche Geometrien.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Kurzbeschreibung der Figuren
Figur 1 zeigt ein erstes Ausführungsbeispiel eines erfindungsgemäßen Abstandssensors mit einer Sende-/Empfangsantenne,
Figur 2 zeigt ein zweites Ausführungsbeispiel eines erfindungsgemäßen Abstandssensors mit einer Sendeantenne und einer getrennt von der Sendeantenne vorgesehenen Empfangsantenne und
Figuren 3a bis 3g zeigen Signalverläufe in Abhängigkeit von der Zeit t, die in einem erfindungsgemäßen Abstandssensor auftreten.
Detaillierte Beschreibung der Ausführungsbeispiele
Figur 1 zeigt einen Abstandssensor 10, bei dem das von einem Mikrowellenoszillator 12 erzeugte Sendesignal S1 von einer Sende-/Empfangsantenne 14 als Sendestrahlung S2 abgestrahlt, an einem Objekt 16, dessen Abstand D vom Abstandssensor 10 gemessen werden soll, reflektiert und die vom Objekt 16 reflektierte Reflexionsstrahlung S3 von der Sende-/Empfangsantenne 14 empfangen wird.
Bei dem erfindungsgemäßen Abstandssensor 10 werden die Signaldämpfungen der Sendestrahlung S2 und der Reflexionsstrahlung S3 auf der Strecke zwischen der Sende-/Empfangsantenne 14 und dem Objekt 16 für die Bestimmung des Abstands D beziehungsweise des Wegs des Objekts 16 ausgewertet. Der Abstand D kann gemäß Figur 1 ausgehend von der Sende- /Empfangsantenne 14 gemessen werden.
Der das Sendesignal S1 bereitstellende Mikrowellenoszillator 12 ist an einem ersten Anschluss 18 eines Zirkulators 20 und die Sende-/Empfangsantenne 14 über einen ersten Umschalter 22 an einem zweiten Anschluss 24 des Zirkulators 20 angeschlossen. Das der Reflexionsstrahlung S3 entsprechende Reflexionssignal S4 gelangt über die Sende-/Empfangsantenne 14, den Umschalter 22 und über den zweiten Anschluss 24 des Zirkulators 20 an einen dritten Anschluss 26 des Zirkulators 20.
Der Zirkulator 20 ist vorzugsweise als ein passiver Zirkulator 20 realisiert. Der Zirkulator 20 trennt Signalrichtungen auf. Ein Signal, das an einem Eingang eingespeist wird, wird jeweils zum nächsten Anschluss weitergegeben. An einem offenen Anschluss wird das Signal unverändert weitergeleitet und an einem kurzgeschlossenen Anschluss wird das Vorzeichen der
Signalspannung umgekehrt. Wenn der Anschluss impedanzrichtig abgeschlossen ist, wird das Signal nicht an den nächsten Anschluss weitergeleitet. Die Signale werden gewissermaßen im Kreis weitergeleitet.
Beim gezeigten Ausführungsbeispiel wird das am ersten Anschluss 18 anliegende Sendesignal S1 bei der gezeigten Position des ersten Umschalters 22 an die Sende-/Empfangsantenne 14 geleitet und unter der Voraussetzung einer impedanzrichtigen Anpassung der Sende-/Empfangsantenne 14 vollständig als Sendestrahlung S2 abgestrahlt. Die vom Objekt 16 reflektierte Reflexionsstrahlung S3 wird von der Sende-/Empfangsantenne 14 als Reflexionssignal S4 über den ersten Umschalter 22 und über den zweiten Anschluss 24 des Zirkulators 20 an den dritten Anschluss des Zirkulators 26 weitergeleitet. Das Reflexionssignal S4 liegt an einem Empfängereingang 28 des Abstandssensors 10 an, der mit dem dritten Anschluss 26 des Zirkulators 20 verbunden ist.
Ein idealer Zirkulator würde bei exakter Anpassung an den Wellenwiderstand eine unendlich hohe Übersprechdämpfung zwischen dem ersten Anschluss 18 und dem dritten Anschluss 26 aufweisen. Der reale Zirkulator 20 weist jedoch eine endliche Übersprechdämpfung auf, die bekannt ist und beispielsweise 20 dB beträgt. Bedingt durch die endliche Übersprechdämpfung vom ersten Anschluss 18 zum dritten Anschluss 26 tritt ein Übersprechsignal S5 auf, das in Figur 1 strichliniert eingetragen ist. Das Übersprechsignal S5 gelangt ohne Abstrahlung direkt an den Empfängereingang 28.
Erfindungsgemäß wird das Übersprechsignal S5 vom Sendesignal S1 direkt zum Empfängereingang 28 als Bezugssignal herangezogen.
Gemäß Figur 1 soll der erste Umschalter 22 in einer ersten Betriebsphase BP1 des Abstandssensors 10 in der gezeigten Position stehen, bei welcher der zweite Anschluss 24 des Zirkulators 20 mit der Sende-/Empfangsantenne 14 verbunden ist. In der ersten Betriebsphase BP1 liegen daher am
Empfängereingang 28 gleichzeitig das Reflexionssignal S4 und das
Übersprechsignal S5 an, wobei die Amplitude des Reflexionssignals S4 erheblich höher als die des Übersprechsignals S5 ist, sodass die in der ersten Betriebsphase BP1 auftretende Überlagerung des Reflexionssignals S4 mit dem Übersprechsignal S5 am Empfängereingang 28 dadurch angenähert wird, dass das Übersprechsignal S5 vernachlässigt wird.
In einer zweiten Betriebsphase BP2 des Abstandssensors 10 befindet sich der erste Umschalter 22 in der anderen Position, bei welcher der zweite Anschluss 24 des Zirkulators 20 mit einer Impedanz Z verbunden ist, die als ohmscher Widerstand realisiert ist, dessen Wert möglichst genau dem
Wellenwiderstand der Anordnung entspricht und beispielsweise 50 Ohm beträgt.
In der zweiten Betriebsphase BP2 wird daher das Sendesignal S1 in der Impedanz Z absorbiert und nicht über die Sende/Empfangsantenne 14 abgestrahlt. Dennoch liegt das gedämpfte Sendesignal S1 am dritten Anschluss 26 des Zirkulators 20 aufgrund der endlichen Übersprechdämpfung als das Übersprechsignal S5 an. Am Empfängereingang 28 liegt in der zweiten Betriebsphase BP2 daher nur das Übersprechsignal S5 an, das erfindungsgemäß als Bezugssignal gewertet wird.
Das Reflexionssignal S4 und das Übersprechsignal S5 gelangen in einen Empfänger 30, der die Signale S4, S5 aufbereitet und demoduliert. Am Empfängerausgang 32 treten in der ersten Betriebsphase BP1 eine erste Gleichspannung US4, die unter Vernachlässigung des Übersprechsignals S5 ein Maß für das Reflexionssignal S4 ist, und in der zweiten Betriebsphase BP2 eine zweite Gleichspannung US5 auf, die ein Maß für nur das dem Übersprechsignal S5 entsprechenden Bezugssignal ist.
Der Empfänger 30 enthält zur Aufbereitung der Eingangssignale S4, S5 beispielsweise einen Mischer zur Umsetzung der Mikrowellen, deren Frequenz beispielsweise bei 24 GHz liegt, in einen niedrigeren, signaltechnisch leichter handhabbaren Frequenzbereich. Diese Umsetzung in einen Zwischenfrequenzbereich erfolgt in bekannter Weise durch eine Mischung der Mikrowellen mit einer Oszillatorfrequenz, die um den Betrag der gewünschten Zwischenfrequenz von der Frequenz des Sendesignals S1 abweicht.
Der Ausgang 32 des Empfängers 30 ist in der ersten Betriebsphase BP1 über einen zweiten Umschalter 34 mit einer ersten Sample- and Holdschaltung 36 und in der zweiten Betriebsphase BP2 mit einer zweiten Sample- and
Holdschaltung 38 verbunden. Dementsprechend speichert die erste Sample- and Holdschaltung 36 die erste dem Reflexionssignal S4 entsprechende Gleichspannung US4 und die zweite Sample- and Holdschaltung 38 die dem Übersprechsignal S5 beziehungsweise dem Bezugssignal entsprechende Gleichspannung US5.
Die beiden Gleichspannungen US4, US5 gelangen in einen Differenzverstärker 40, der als Ausgangssignal die Differenzspannung dV zur Verfügung stellt, die in einem nachgeschalteten Komparator 42 mit einer Referenzspannung Vref verglichen wird. Die Differenzspannung dV hängt von der Übersprechdämpfung sowie von der Dämpfung der Sendestrahlung S2 beziehungsweise der Reflexionsstrahlung S3 ab, wobei der Zusammenhang in einer Logarithmusfunktion enthalten ist.
Das Ausgangssignal des Komparators 42 kann als Stellgröße ST bezeichnet werden, mit deren Hilfe die Leistung des Sendesignals S1 beeinflusst wird, wobei die Leistung erhöht oder abgesenkt werden kann. Die Stellgröße ST kann beispielsweise in den Verstärkungsfaktor einer Endstufe des Mikrowellensenders 12 und/oder in eine variable Signaldämpfung am Ausgang des Mikrowellensenders 12 eingreifen. Bei dem Regeleingriff kann derart vorgegangen werden, dass in der ersten Betriebsphase BP1 und/oder in der zweiten Betriebsphase BP2 in die Leistung eingegriffen wird. Insbesondere bei einem Eingriff in der zweiten Betriebsphase BP2 kann die Sendeleistung erhöht werden, sodass im Empfänger 30 eine geringere Signaldynamik bewältigt werden muss.
Ziel des Eingriffs mit dem Stellsignal ST ist es, das Verhältnis zwischen dem Reflexionssignal S4 und dem Übersprechsignal S5 auf einen vorgegebenen Wert einzuregeln. Die Einstellung kann mit dem Referenzsignal Vref erfolgen, das beispielsweise auch null sein kann, sodass im eingeregelten Zustand das Reflexionssignal S4 und das Bezugssignal S5 betragsmäßig gleich groß werden. Damit wird der Abstandssensor 10 unabhängig von einer Drift der Leistung des Mikrowellensenders 12 und von einer Drift im Empfänger 30, da sich eine gegebenenfalls vorhandene Drift auf beide Signale S4, S5 auswirkt. Ein wesentlicher Vorteil liegt weiterhin darin, dass eine Bewertung einer absoluten Empfangsfeldstärke beziehungsweise einer Empfangssignalamplitude mit dem vorgesehenen Kompensationsverfahren entfällt. Damit kann insgesamt eine hohe Genauigkeit erreicht werden.
Der Mikrowellensender 12 wird im CW-Betrieb mit konstanter Frequenz betrieben. Der erzielbare minimal messbare Abstand D wird nicht durch Impulslaufzeiten oder begrenzte Frequenzmodulationshübe begrenzt und kann zumindest theoretisch bis zum Abstand null herabreichen.
Die Information über den Abstand D des Objekts 16 von der Sende- /Empfangsantenne 14 steckt in der Differenzspannung dV, die transient während des Ausregelvorgangs auftritt. Die Differenzspannung dV wird einer Abstandsermittlung 44 zur Verfügung gestellt, die aus der transient auftretende Differenzspannung dV den Abstand D ermittelt. Bewertet werden können die maximale Amplitude zu Beginn des Ausregelvorgangs und/oder die Reaktionszeit beziehungsweise die Signalflanken, wenn sich der Abstand D des Objekts 16 beim Annähern oder Entfernen ändert. Der Zusammenhang wird vorzugsweise in einem Lernverfahren ermittelt und in einem Speicher für den nachfolgenden Betrieb des Abstandssensors 10 gespeichert. Die Abstandsermittlung 44 stellt den Abstand D an einem Ausgang zur Verfügung.
Figur 2 zeigt eine alternative Realisierungsmöglichkeit des erfindungsgemäßen Abstandssensors 10. Diejenigen in Figur 2 gezeigten Teile, die mit den in Figur 1 gezeigten übereinstimmen, sind jeweils mit denselben Bezugszeichen bezeichnet.
Bei dem in Figur 2 gezeigten Ausführungsbeispiel entfällt der Zirkulator 20. Vorhanden ist eine Sendeantenne 50 und eine getrennt von der Sende- antenne 50 vorgesehene Empfangsantenne 52. Auch in diesem Ausführungsbeispiel trifft die von der Sendeantenne 50 abgestrahlte Sendestrahlung S2 auf das Objekt 16, dessen Abstand D vom Abstandssensor 10 gemessen werden soll. Die vom Objekt 16 reflektierte Reflexionsstrahlung S3 wird von der Empfangsantenne 52 empfangen und tritt am Empfängereingang 28 als Reflexionssignal S4 auf.
Auch bei diesem Ausführungsbeispiel tritt ein Übersprechsignal S6 auf, das als Bezugssignal gewertet werden kann. Das Übersprechsignal S6 tritt von der Sendeantenne 50 zur Empfangsantenne 52 auf. In Figur 2 ist das
Übersprechsignal S6 wieder strichliniert eintragen.
Die Signalverarbeitung unterscheidet sich nicht von derjenigen des in Figur 1 gezeigten Ausführungsbeispiels mit wenigstens einer Sende-/Empfangs- antenne 14. Während die Übersprechdämpfung bei einem Zirkulator 20 beispielsweise 20 dB beträgt, muss bei dem Ausführungsbeispiel gemäß Figur 2 mit einer höheren Übersprechdämpfung im Bereich von beispielsweise bis 100 dB gerechnet werden. Das Übersprechsignal S6 zwischen der Sendeantenne 50 und der Empfangsantenne 52 tritt am Empfängereingang 28 auf und wird vom Empfänger 30 in eine entsprechende Gleichspannung US6 umgesetzt, die in der zweiten Betriebsphase BP2 über den zweiten Umschalter 34 der zweiten Sample- and Holdschaltung 38 zur Speicherung zur Verfügung gestellt wird.
Die Figuren 3a bis 3g zeigen Signalverläufe in Abhängigkeit von der Zeit t. Figur 3a zeigt den im ersten Ausführungsbeispiel des erfindungsgemäßen Abstandssensors 10 auftretenden Sendepegel in dBm des Sendesignals S1 während der beiden Betriebsphasen BP1 , BP2. Im gezeigten Ausführungsbeispiel wird im Hinblick darauf, dass das Übersprechsignal S5 stärker gedämpft wird als das Reflexionssignal S4 davon ausgegangen, dass in der ersten Betriebsphase BP1 ein geringerer Sendepegel von beispielsweise 6 dBm und in der zweiten Betriebsphase BP2 ein höherer Sendepegel von bei- spielsweise 10 dBm bereitgestellt wird, der sich ab einem Zeitpunkt T auf 11 dBm erhöht. Zum Zeitpunkt T wird eine Annäherung des Objekts 16 angenommen, sodass nach dem Zeitpunkt ein geringerer Abstand D gemessen wird als vor dem Zeitpunkt T.
Figur 3b zeigt die Signaldämpfung D5 des Übersprechsignals S5 und die Summe der Signaldämpfungen D2+D3, denen die Sendestrahlung S2 und die Reflexionsstrahlung S3 unterworfen ist, wobei die Signaldämpfung D5 des Übersprechsignals S5 - wie bereits erwähnt - mit beispielsweise 9 dB höher liegen soll als Summe der Signaldämpfungen D2+D3 der Strahlungssignale S2, S3, die zunächst mit 4 dB und ab dem Zeitpunkt T mit 3 dB angenommen wird.
Figur 3c zeigt den Empfangspegel in dBm des Empfangssignals S4, der bei 2 dBm liegt, wobei sich der Empfangspegel von 2 dBm aus dem Sendepegel 6 dBm des Sendesignals S1 abzüglich der Summe der Signaldämpfungen D2+D3 der Strahlungssignale S2, S3 von 4 dB ergibt. Ab dem Zeitpunkt T steigt aufgrund der Annäherung des Objekts 16 der Signalpegel des
Empfangssignals S4 auf 3 dBm an.
Figur 3d zeigt den Übersprechpegel in dBm des Übersprechsignals S5, der bei 1 dBm liegt, wobei sich der Übersprechpegel von 1 dBm aus dem Sendepegel 10 dBm des Sendesignals S1 abzüglich der Signaldämpfung D5 des Übersprechsignals S5 von 9 dB ergibt. Ab dem Zeitpunkt T steigt aufgrund der Erhöhung des Sendepegels um 1 dBm der Übersprechpegel des
Übersprechsignals S5 entsprechend auf 2 dBm an.
Figur 3e zeigt die dem Reflexionssignal S4 entsprechende Gleichspannung US4, die zum Zeitpunkt T aufgrund der Annäherung des Objekts 16 und der dadurch bedingten geringeren Dämpfungen D2+D3 der Strahlungssignale S2, S3 auf einen höheren Pegel ansteigt. ln Figur 3f ist die dem Übersprechsignal S5 entsprechende Gleichspannung US5 dargestellt, die nach dem Zeitpunkt T aufgrund der Ausregelung der Differenzspannung dV ebenfalls ansteigt.
Figur 3g zeigt den Ausregelvorgang der Differenzspannung dV, die mit dem Zeitpunkt T beginnt und gemäß dem Ausführungsbeispiel bereits in der folgenden zweiten Betriebsphase BP2 abgeschlossen sein soll.
Wie bereits beschrieben, können die maximale Amplitude beim Ausregelvorgang und/oder die Reaktionszeit beziehungsweise die Signalflanken zur Ermittlung des Abstands D des Objekts 16 bewertet werden.
Bei den in den Figuren 3a bis 3g gezeigten Signalverläufen in Abhängigkeit von der Zeit t wurde vom ersten Ausführungsbeispiel des erfindungsgemäßen Abstandssensors 10 ausgegangen, der eine einzige Antenne 14 aufweist, die als Sende-/Empfangsantenne betrieben wird. Die Signaldämpfung D5 des Übersprechsignals S5 ist vergleichsweise geringer als die in den Figuren 3a bis 3f nicht gezeigte Signaldämpfung D6, die bei dem Ausführungsbeispiel des erfindungsgemäßen Abstandssensors 10 auftritt, der eine Sendeantenne 50 und eine separate Empfangsantenne 52 aufweist. In diesem Fall müsste der Sendepegel des Sendesignals S1 während der zweiten Betriebsphase BP2 entsprechend höher liegen. Zusätzlich oder alternativ kann durch eine Änderung der Referenzspannung Vref auf eine höhere Differenzspannung dV geregelt werden.
Im Folgenden ist ein numerisches Beispiel wiedergegeben, anhand dem die Zusammenhänge veranschaulicht werden.
Angenommen wird eine Sendeleistung Pout von 4 dBm. Damit ergibt sich eine Sendeleistung von 2,5 mW entsprechend 500 mV an 50 Ohm.
Die Luftdämpfung DL der Sendestrahlung S2 und der Reflexionsstrahlung S3 auf dem Weg von der Sende-/Empfangsantenne 14 beziehungsweise der Sendeantenne 50 zum Objekt 16 und vom Objekt zurück zur Sende- ZEmpfangsantenne 14 beziehungsweise Empfangsantenne 52 kann beschrieben werden durch:
DL = 10 log (Pout/Pin) = 10 log (1/ D3) wobei Pin die Eingangsleistung am Empfängereingang 28 ist. Bei einem Abstand D = 2 m beträgt die Luftdämpfung DL = - 6 dB.
Bei einer angenommenen Dämpfung DRK des Übersprechsignals S5 im Zirkulator 20 von - 20 dB beträgt die Leistung Pref des Bezugssignals S5:
Pref = Pout - DRK = 4 dBm - 20 dB = -16 dBm
Pref = 0,025 mW, entsprechend einer Eingangsspannung Uref am
Empfängereingang 28 von 50 mV an 50 Ohm.
Die Eingangsleistung Pin ergibt sich zu:
Pin = Pout - DL = 4 dBm - 6 dB = - 2 dBm
Pin = 0,63 mW entsprechend einer Eingangsspannung Uin am Empfängereingang 28 von 250 mV an 50 Ohm.
Bei einer Änderung des Abstands D des Objekts 16 tritt eine Differenzspannung dV auf: dV = Uin - Uref
dV= 10 SQRT (Pin) - 10 SQRT (Pref)
dV = 10 [SQRT (Pin) - SQRT (Pref)]
log dV = log 10 + log [SQRT (Pin/Pref)] log dV = log 10 + log [SQRT (10 exp {(Pin - Pref)/10})] log dV = log 10 + log [SQRT (10 exp {(Pout - DL - Pout + DRK)/10})] log dV = log 10 + log [SQRT (10 exp {(DRK - DL)/10})]
Das bedeutet, dass bei bekannter Dämpfung des Übersprechsignals S5 im Zirkulator 20 die Differenzspannung dV nur eine Funktion der Luftdämpfung DL und somit des Abstands D des Objekts 16 ist.

Claims

Ansprüche
1. Verfahren zum Betreiben eines Abstandssensors (10), bei dem ein
Sendesignal (S1) als Sendestrahlung (S2) abgestrahlt wird, von einem Objekt (16), dessen Abstand (D) gemessen werden soll, als Reflexionsstrahlung (S3) reflektiert und als Reflexionssignal (S4) empfangen wird, bei dem das an einem Empfängereingang (28) anliegende Reflexionssignal (S4) und ein ebenfalls am Empfängereingang (28) auftretendes Bezugssignal auf ein vorgegebenes Verhältnis geregelt werden, wobei der Abstand (D) während des Ausregelvorgangs ermittelt wird, dadurch gekennzeichnet, dass als Sendestrahlung (S2) Mikrowellen eingesetzt werden und dass das Übersprechsignal (S5, S6) vom Sendesignal (S1 ) direkt zum Empfängereingang (28) bei unterdrückter Abstrahlung des Sendesignals (S1) als Bezugssignal gewertet wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in einer ersten Betriebsphase (BP1) das Sendesignal (S1) als Sendestrahlung (S2) abgestrahlt sowie die am Objekt (16) reflektierte Reflexionsstrahlung (S3) als Reflexionssignal (S4) empfangen werden und dass in einer zweiten Betriebsphase (BP2) die Abstrahlung des Sendesignals (S1) unterdrückt sowie das Übersprechsignal (S5, S6) als Bezugssignal gewertet werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das in der ersten Betriebsphase (BP1 ) am Empfängereingang (28) auftretende Reflexionssignal (S4) und das in der zweiten Betriebsphase (BP2) anliegende Bezugssignal gespeichert und die gespeicherten Signale (US4, US5; US4, US6) in Bezug zueinander gesetzt werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Bezug dadurch hergestellt wird, dass die Signaldifferenz (dV) gebildet wird und dass zur Ausregelung die Signaldifferenz (dV) mit einem einstellbaren Referenzsignal (Vref) verglichen wird.
5. Verfahren nach Anspruch 4 dadurch gekennzeichnet, dass der Betrag des Referenzsignals (Vref) vorzugsweise auf null festgelegt wird.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Leistung des Sendesignals (S1) geregelt wird.
7. Verfahren nach Anspruch 2 und 6, dadurch gekennzeichnet, dass die Leistung des in der ersten Betriebsphase (BP1) oder in der zweiten Betriebsphase (BP2) bereitgestellten Sendesignals (S1) nachgeregelt wird.
8. Verfahren nach Anspruch 4 und 6, dadurch gekennzeichnet, dass aus der Signaldifferenz (dV) während der Ausregelung der Leistung des Sendesignals (S1 ) der Abstand (D) des Objekts ermittelt wird.
9. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Sendesignal (S1) ein CW-Mikrowellensignal verwendet wird.
10. Vorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine Sendeantenne (50) und wenigstens eine von der Sendeantenne (50) getrennte Empfangsantenne (52) vorgesehen sind, wobei das
Übersprechsignal (S6) zwischen der wenigstens einen Sendeantenne (50) und der wenigstens einen Empfangsantenne (52) auftritt.
11. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass wenigstens eine Sende- /Empfangsantenne (14) vorgesehen ist, die gleichzeitig als Sendeantenne und als Empfangsantenne eingesetzt ist, dass ein Zirkulator (20) vorgesehen ist, an welchem an einem ersten Anschluss (18) ein Mikrowellensender (12), an einem zweiten Anschluss (24) die wenigstens eine Sende/Empfangsantenne (14) und an einem dritten Anschluss (26) der Empfängereingang (28) eines Empfängers (30) angeschlossen ist, wobei das Übersprechsignal (S5) zwischen dem ersten und dem dritten Anschluss (18, 26) des Zirkulators (20) auftritt.
12. Vorrichtung nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass Sample- and Holdschaltungen (36, 38) zur Speicherung des empfangenen
Reflexionssignals (S4) und des als Bezugssignal gewerteten
Übersprechsignals (S5, S6) vorgesehen sind.
13. Vorrichtung nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass eine Impedanz (Z) mit dem Wellenwiderstand vorgesehen ist, mit dem der
Mikrowellensender (12) in der zweiten Betriebsphase (BP2) anstelle mit der wenigstens einen Sendeantenne (14) oder der wenigstens einen Sende/Empfangsantenne (50) zur Unterdrückung der Abstrahlung des Sendesignals (S1 ) verbunden ist.
PCT/DE2011/000430 2011-04-19 2011-04-19 Verfahren zum betreiben eines abstandssensors und vorrichtung zur durchführung des verfahrens WO2012142985A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/DE2011/000430 WO2012142985A1 (de) 2011-04-19 2011-04-19 Verfahren zum betreiben eines abstandssensors und vorrichtung zur durchführung des verfahrens
US14/112,586 US9494678B2 (en) 2011-04-19 2011-04-19 Method for operating a distance sensor and device for performing the method
EP11727106.4A EP2699938B1 (de) 2011-04-19 2011-04-19 Verfahren zum betreiben eines abstandssensors und vorrichtung zur durchführung des verfahrens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2011/000430 WO2012142985A1 (de) 2011-04-19 2011-04-19 Verfahren zum betreiben eines abstandssensors und vorrichtung zur durchführung des verfahrens

Publications (1)

Publication Number Publication Date
WO2012142985A1 true WO2012142985A1 (de) 2012-10-26

Family

ID=44627395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2011/000430 WO2012142985A1 (de) 2011-04-19 2011-04-19 Verfahren zum betreiben eines abstandssensors und vorrichtung zur durchführung des verfahrens

Country Status (3)

Country Link
US (1) US9494678B2 (de)
EP (1) EP2699938B1 (de)
WO (1) WO2012142985A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533132A (zh) * 2015-03-06 2018-01-02 巴鲁夫公司 用于测量距目标的距离的接近传感器和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245211A (en) * 1978-11-13 1981-01-13 Recognition Equipment Incorporated MICR Waveform analyzer
US5969667A (en) * 1997-10-16 1999-10-19 Automotive Systems Laboratory, Inc. Radar system
DE202010007111U1 (de) * 2010-05-21 2010-08-26 Robert Bosch Gmbh Handortungsgerätevorrichtung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088452B1 (de) * 2006-11-20 2017-02-15 Panasonic Intellectual Property Management Co., Ltd. Detektor für bewegliche objekte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245211A (en) * 1978-11-13 1981-01-13 Recognition Equipment Incorporated MICR Waveform analyzer
US5969667A (en) * 1997-10-16 1999-10-19 Automotive Systems Laboratory, Inc. Radar system
DE202010007111U1 (de) * 2010-05-21 2010-08-26 Robert Bosch Gmbh Handortungsgerätevorrichtung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Fachzeitschrift für industrielle Anwender und Entwickler", 29 October 2002, WEKA FACHMEDIEN GMBH, article "Elektronik"
ROTTMANN F ET AL: "ELEKTRONIKKONZEPT ERFUELLT OPTIKSENSORTRAEUME EIN- BIS DREIDIMENSIONALE OPTISCHE EINGABEEINHEITEN REALISIERBAR", ELEKTRONIK, IRL PRESS LIMITED, DE, vol. 51, no. 22, 29 October 2002 (2002-10-29), pages 64 - 69, XP001168347, ISSN: 0013-5658 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107533132A (zh) * 2015-03-06 2018-01-02 巴鲁夫公司 用于测量距目标的距离的接近传感器和方法
US10534077B2 (en) * 2015-03-06 2020-01-14 Balluff Gmbh Proximity sensor and method for measuring the distance from an object
CN107533132B (zh) * 2015-03-06 2020-12-01 巴鲁夫公司 用于测量距目标的距离的接近传感器和方法

Also Published As

Publication number Publication date
US9494678B2 (en) 2016-11-15
EP2699938B1 (de) 2016-11-02
US20150048969A1 (en) 2015-02-19
EP2699938A1 (de) 2014-02-26

Similar Documents

Publication Publication Date Title
EP1043601B1 (de) Radarverfahren zur Messung von Abständen und Relativgeschwindigkeiten zwischen einem Fahrzeug und einem oder mehreren Hindernissen
DE4244608C2 (de) Mittels eines Computers durchgeführtes Radarverfahren zur Messung von Abständen und Relativgeschwindigkeiten zwischen einem Fahrzeug und vor ihm befindlichen Hindernissen
DE69124375T2 (de) Monopulsverarbeitungssysteme
EP1797449B1 (de) Radarsensor für kraftfahrzeuge
EP1570291B1 (de) Verfahren und anordnung f r multistatische nachdistanzradarm essungen
WO2019219263A1 (de) Verfahren zur phasenkalibrierung von hochfreguenzbausteinen eines radarsensors
DE102011123008B3 (de) Radarvorrichtung
DE602004011514T2 (de) Verfahren und Vorrichtung zur Entfernungsmessung mit einem Pulsradar
DE102018132745A1 (de) Fmcw radar mit störsignalunterdrückung im zeitbereich
DE102020115709B3 (de) Automobilradaranordnung und verfahren zur objektdetektion durch ein fahrzeugradar
DE60304300T2 (de) Fahrzeugsensor zur Bestimmung von Abstand und Richtung eines Objektes
DE102007023698A1 (de) Sensor zur Abstandsmessung und Verfahren zur Abstandsmessung unter Verwendung des Sensors
WO2012116876A1 (de) Fahrerassistenzeinrichtung für ein fahrzeug und verfahren zum betreiben eines radargeräts
DE102019110525A1 (de) Kalibrierung von radarsystemen
DE102010012624A1 (de) Fahrerassistenzeinrichtung für ein Fahrzeug und Verfahren zum Betreiben eines Radargeräts
WO2016096199A1 (de) Verfahren zum kalibrieren eines radarsystems
DE102021132346A1 (de) System und mmic-architektur für kohärente mehrchip-phased-array-mimo-anwendungen
WO2020151869A1 (de) Messgerät zur bestimmung eines dielektrizitätswertes
DE102019102077A1 (de) Vorrichtung zum Verarbeiten eines Signals eines Ortungssystems sowie Verfahren zum Simulieren und zum Orten eines Objekts
DE102014209723A1 (de) Bestimmung eines Indikators für eine Erblindung eines Radarsensors
WO2012155870A1 (de) Verfahren zum betreiben eines abstandssensors und vorrichtung zur durch¬ führung des verfahrens
DE10360485A1 (de) Verfahren und Vorrichtung zur Temperaturüberwachung entlang einer Messleitung
EP2196823B1 (de) Verfahren zur Bestimmung der Entfernung zwischen zwei Objekten
DE102019131677B4 (de) Phasenmessung in einem radar-system
DE102019119974B4 (de) Phasen-kalibrierung eines radarsystems mit übersprech-unterdrückung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11727106

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011727106

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011727106

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1120111051670

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14112586

Country of ref document: US