WO2012141118A1 - Semiconductor device provided with fuse element - Google Patents

Semiconductor device provided with fuse element Download PDF

Info

Publication number
WO2012141118A1
WO2012141118A1 PCT/JP2012/059635 JP2012059635W WO2012141118A1 WO 2012141118 A1 WO2012141118 A1 WO 2012141118A1 JP 2012059635 W JP2012059635 W JP 2012059635W WO 2012141118 A1 WO2012141118 A1 WO 2012141118A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
fuse element
transistor
data
current
Prior art date
Application number
PCT/JP2012/059635
Other languages
French (fr)
Japanese (ja)
Inventor
築出 正樹
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to JP2013509890A priority Critical patent/JP5559935B2/en
Publication of WO2012141118A1 publication Critical patent/WO2012141118A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/785Masking faults in memories by using spares or by reconfiguring using programmable devices with redundancy programming schemes
    • G11C29/789Masking faults in memories by using spares or by reconfiguring using programmable devices with redundancy programming schemes using non-volatile cells or latches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device that stores data irreversibly and in a nonvolatile manner, and more particularly, to a semiconductor device that includes a fuse element that stores data according to a conductive state of wiring.
  • Nonvolatile memory Semiconductor devices include a nonvolatile memory in which stored data is not lost even when power is not supplied.
  • Various types of nonvolatile memory such as EEPROM (Electrically Erasable Programmable Read Only Memory) have been developed.
  • EEPROM Electrical Erasable Programmable Read Only Memory
  • SoC System on Chip
  • an additional mask and an additional process are required because the structure for storing charges in the floating gate is mixedly mounted on the same semiconductor chip. It becomes necessary and the manufacturing cost becomes expensive.
  • non-volatile memory including a fuse element as a non-volatile memory that can be embedded on the same semiconductor chip without requiring an additional mask and an additional process.
  • the fuse element is an element capable of storing data depending on the conduction state of the wiring, and is a fuse element of a current blow type of a polysilicon wiring or a metal wiring.
  • a nonvolatile memory including a fuse element made of a polysilicon wiring whose surface is silicided is an irreversible memory in which written data cannot be erased because data is written by changing the conduction state of the wiring.
  • FIG. 13 is a schematic view showing a configuration of a nonvolatile memory including a conventional fuse element.
  • the nonvolatile memory 100 shown in FIG. 13 includes a fuse array 101 in which a plurality of memory cells 200 including fuse elements are arranged in a matrix, and a row decoder that supplies a selection signal to a word line WL (Word Line) of the fuse array 101.
  • RD Row Decoder
  • CD Column Decoder
  • control circuit 104 for controlling operations of row decoder 102 and column decoder 103, reference resistance and
  • a reference value generation circuit 105 that generates a reference word line voltage is provided.
  • a sense amplifier SA Sense Amplifier
  • I / O Input / Output
  • the input / output unit I / O inputs and outputs data in units of 16 bits.
  • FIG. 14 is a schematic diagram showing a configuration of a memory cell 200 of a nonvolatile memory 100 including a conventional fuse element.
  • a memory cell 200 illustrated in FIG. 14 includes a fuse element 201 that stores data according to a conductive state of a wiring, and a transistor 202 that connects a drain electrode to one end of the fuse element 201.
  • the fuse element 201 has the bit line BL connected to the other end, and the transistor 202 has the word line WL connected to the gate electrode.
  • FIG. 15 is a schematic diagram illustrating a configuration of a selection circuit 300 of a nonvolatile memory 100 including a conventional fuse element.
  • the selection circuit 300 shown in FIG. 15 amplifies the switching element 301 that connects the cutting power source EFV and the bit line BL, the level conversion circuit 302 that converts the signal level of the selection signal, and the voltage of the selection signal that has converted the signal level. And an amplifier 303 for generating a control signal for the switching element 301.
  • the selection circuit 300 is driven by a cutting power source EFV.
  • the nonvolatile memory 100 When writing data, the nonvolatile memory 100 inputs a selection signal to the level conversion circuit 302 of the column in which data is written, and amplifies the voltage of the selection signal converted from the signal level by the amplifier 303 to generate a control signal. .
  • the nonvolatile memory 100 controls the switching element 301 by the control signal generated by the amplifier 303 to connect the bit line BL and the high-voltage cutting power supply EFV.
  • the nonvolatile memory 100 controls the switching element 301 by a control signal to connect the bit line BL and the power supply EFV for cutting the core potential.
  • the nonvolatile memory 100 is connected to the fuse element 201 by the sense amplifier SA by the current flowing from the core potential cutting power source EFV to the fuse element 201.
  • the data is read by determining the disconnected / uncut state.
  • the nonvolatile memory 100 controls the connection between the bit line BL and the cutting power supply EFV by the selection circuit 300, the selection signal for selecting a column is unstable due to a malfunction of the selection circuit 300 when the power is turned on.
  • the bit line BL and the cutting power supply EFV set to a high voltage are inadvertently conducted, and the fuse element 201 may be erroneously cut.
  • the nonvolatile memory 100 when reading data, the nonvolatile memory 100 needs to lower the voltage applied to the fuse element 201 as compared with the time of writing so that the fuse element 201 is not accidentally disconnected.
  • the non-volatile memory 100 uses the cutting power supply EFV as the driving power supply for the selection circuit 300, and it is necessary to increase the resistance of the switching element 301 in order to reduce the voltage applied to the fuse element 201 so as not to malfunction. is there. Therefore, when the resistance of the switching element 301 becomes larger than the resistance of the fuse element 201 and the resistance of the fuse element is measured in units of arrays, the resistance of the switching element 301 is measured. The resistance cannot be measured accurately.
  • the nonvolatile memory 100 controls the connection between the bit line BL and the cutting power supply EFV by the selection circuit 300, the reliability cannot be evaluated with only the fuse element 201 and the transistor 202. It is necessary to evaluate the reliability including the selection circuit 300, which increases the development cost.
  • the nonvolatile memory 100 allows a current to flow through the fuse element 201 through the same path both when data is written and when data is read, the tendency of stress applied to the fuse element 201 when data is read, The tendency of stress applied to the fuse element 201 when writing is the same. Therefore, in the nonvolatile memory 100, as the number of times of reading data increases, the stress having the same tendency is accumulated in the fuse element 201, and the operation may become defective.
  • an object of the present invention is to provide a semiconductor device including a fuse element that stores data according to a conductive state of a wiring without requiring a selection circuit for controlling connection between a bit line and a power supply for cutting.
  • the present invention is a semiconductor device that stores data in an irreversible and non-volatile manner, and has one end connected to a power supply terminal capable of switching between a power supply voltage and a ground voltage, A fuse element that stores data according to a conductive state, one current electrode connected to the other end of the fuse element, a first transistor that controls a current flowing from the power supply terminal to the fuse element, and a first transistor in parallel, One current electrode is connected to the other end of the fuse element, a second transistor for controlling the current flowing from the fuse element to the power supply terminal, and a first logic circuit connected to the control electrode of the first transistor are provided.
  • the first logic circuit When writing data, the first logic circuit turns on the first transistor in accordance with the active state of the first word line and the first selection line connected to the first logic circuit, thereby supplying the power supply voltage. A current is passed from the terminal to the fuse element to cut the fuse element wiring.
  • the second transistor When reading data, the second transistor is turned on according to the active state of the second word line connected to the control electrode of the second transistor, and the current of the bit line connected to the other current electrode of the second transistor. From the fuse element to the power terminal of the ground voltage.
  • the first transistor is connected to the other end of the fuse element whose one end is connected to the power supply terminal, and is connected to the other end of the fuse element.
  • the second transistor for controlling the current flowing from the fuse element to the power supply terminal and the first logic circuit connected to the control electrode of the first transistor are provided, the power supply terminal that becomes the power supply voltage when the fuse is cut from the fuse element.
  • the semiconductor device according to the present invention does not need to include a selection circuit, the fuse element is not erroneously cut by malfunction of the selection circuit when the power is turned on.
  • the semiconductor device according to the present invention does not need to include a selection circuit that is driven by a power source that becomes a power supply voltage when the fuse element is cut, the selection circuit is configured to reduce the voltage applied to the fuse element when reading data. There is no need to increase the resistance of the switching element, and the resistance of the fuse element can be accurately measured in array units. Furthermore, since the semiconductor device according to the present invention does not need to include a selection circuit, accurate reliability can be evaluated using only the fuse element and the transistor, and the development cost can be reduced.
  • the semiconductor device according to the present invention uses a path through the first transistor when writing data and a path through the second transistor when reading data, so that data is read when data is written. Current can be passed through the fuse element through different paths. Therefore, the semiconductor device according to the present invention can operate stably without reducing the stress applied to the fuse element and increasing or limiting the number of times of reading data.
  • FIG. 1 is a schematic diagram showing a configuration of a memory cell according to a first embodiment of the present invention.
  • FIG. 6 is a schematic diagram for explaining an operation when data is written to a memory cell according to the first embodiment of the present invention.
  • 3 is a timing chart of signals when data is written to the memory cell according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram for explaining an operation when data is read from the memory cell according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a configuration of a determination circuit that determines read data when data is read from the memory cell according to the first embodiment of the present invention
  • 4 is a timing chart of signals when data is read from the memory cell according to the first embodiment of the present invention. It is the schematic which shows the structure of the non-volatile memory which concerns on Embodiment 2 of this invention. It is the schematic which shows the structure of the memory cell which concerns on Embodiment 2 of this invention. It is the schematic for demonstrating operation
  • FIG. 10 is a schematic diagram for explaining an operation when data is read from a memory cell according to a second embodiment of the present invention.
  • FIG. 6 is a timing chart of signals when data is read from a memory cell according to a second embodiment of the present invention. It is the schematic which shows the structure of the non-volatile memory provided with the conventional fuse element. It is the schematic which shows the structure of the memory cell of a non-volatile memory provided with the conventional fuse element. It is the schematic which shows the structure of the selection circuit of a non-volatile memory provided with the conventional fuse element.
  • FIG. 1 is a schematic diagram showing a configuration of a nonvolatile memory according to Embodiment 1 of the present invention.
  • a nonvolatile memory 10 shown in FIG. 1 is a semiconductor device that stores data in an irreversible and nonvolatile manner.
  • the nonvolatile memory 10 includes a fuse array 1 in which a plurality of memory cells 20 including fuse elements are arranged in a matrix, a row decoder (RD) 2 that supplies a selection signal to the word lines WL of the fuse array 1, A column decoder (CD) 3 that selects a bit line BL, a control circuit 4 that controls operations of the row decoder 2 and the column decoder 3, and a reference value generation circuit 5 that generates a reference resistor and a reference word line voltage are provided.
  • RD row decoder
  • CD column decoder
  • a reference value generation circuit 5 that generates a reference resistor and a reference word line voltage
  • the fuse array 1 has two word lines WL for one row of memory cells 20.
  • the two word lines WL are the first word line WL (prog) used when writing data to the memory cell 20 (when programming (prog)), and when reading data from the memory cell 20 (reading).
  • the fuse array 1 has one bit line BL and one select line CSL (Column Select Line) for one column of memory cells 20.
  • the row decoder 2 supplies a selection signal to the word line WL (prog) when writing data to the memory cell 20, and supplies a selection signal to the word line WL (Read) when reading data from the memory cell 20. .
  • the column decoder 3 supplies a selection signal to the selection line CSL when writing data to the memory cell 20, and reads data from the bit line BL when reading data from the memory cell 20.
  • a sense amplifier SA for amplifying the voltage of the bit line BL and an input / output unit I / O for inputting / outputting data are also provided.
  • the voltage of the bit line BL can be read as data by being amplified by the sense amplifier SA.
  • the input / output unit I / O inputs and outputs data in units of 16 bits. Further, the column decoder 3 decodes with a 32-bit address when writing data into the memory cell 20.
  • FIG. 2 is a schematic diagram showing the configuration of the memory cell 20 according to the first embodiment of the present invention.
  • the memory cell 20 shown in FIG. 2 has one end connected to the terminal of the power supply EFV for cutting and an N-channel MOS (with a drain electrode connected to the other end of the fuse element 21 for storing data depending on the conductive state of the wiring.
  • NMOS N-channel MOS
  • NMOS transistors 22 and 23 and an AND circuit 24 connected to the gate electrode of the NMOS transistor 22.
  • the fuse element 21 is a storage element that is configured by a polysilicon wiring or a metal wiring, stores data by changing a resistance value by passing a large current through the wiring and cutting it.
  • the fuse element 21 is not limited to the case where the wiring is physically cut, but changes the wiring structure such as the shape of the wiring or the material distribution to change the conductive state (for example, resistance value) of the wiring. It only has to be made.
  • the polysilicon wiring may be formed on the surface with a silicide layer reacted with a metal such as titanium (Ti), cobalt (Co), or nickel (Ni).
  • the NMOS transistor (first transistor) 22 controls the current that flows from the terminal of the cutting power supply EFV to the fuse element 21.
  • the NMOS transistor 22 has a larger transistor size than the NMOS transistor 23 because a large current needs to flow in order to cut the wiring of the fuse element 21. Since the transistor size of the NMOS transistor 23 is smaller than the transistor size of the NMOS transistor 22, compared to the case where the transistor size of the NMOS transistor 23 and the transistor size of the NMOS transistor 22 are the same size, The nonvolatile memory 10 can be reduced in size.
  • the NMOS transistor (second transistor) 23 is connected in parallel to the NMOS transistor 22 and controls the current flowing from the fuse element 21 to the terminal of the cutting power supply EFV.
  • the NMOS transistor 23 is turned on when a selection signal is supplied to the word line WL (Read), and the current is disconnected from the fuse element 21 to the ground voltage in order to detect the conduction state of the fuse element 21. Flow to the terminal of the power supply EFV.
  • the AND circuit (first logic circuit) 24 has a word line WL (prog) and a selection line CSL connected to the input side, and a gate electrode of the NMOS transistor 22 connected to the output side.
  • the AND circuit 24 when both the selection signals input to the word line WL (prog) and the selection line CSL are “1”, the signal output to the gate electrode of the NMOS transistor 22 is “1”.
  • the NMOS transistor 22 is turned on when a signal of “1” is supplied to the gate electrode, and in order to cut the wiring of the fuse element 21, a large current is fused from the terminal of the cutting power supply EFV set to the power supply voltage. Flow to element 21.
  • the operation of the nonvolatile memory 10 will be described.
  • the operation of the nonvolatile memory 10 will be described separately when data is written to the memory cell 20 and when data is read from the memory cell 20.
  • FIG. 3 is a schematic diagram for explaining an operation when data is written in the memory cell 20 according to the first embodiment of the present invention.
  • the data stored in the memory cell 20 has a value of “0” or “1”
  • the fuse element 21 uses “0” data when the wiring is not cut, and “1” when the wiring is cut. ”Is stored. Therefore, data of “1” can only be substantially written, and storing “0” data is equivalent to not writing data of “1”. Therefore, writing data into the memory cell 20 is also referred to as programming data into the nonvolatile memory 10.
  • the case where the wiring of the fuse element 21 is cut will be described as data writing and will be described below.
  • FIG. 4 is a timing chart of signals when data is written to memory cell 20 according to the first embodiment of the present invention.
  • the selection signal input to the selection line CSL is “1” (selection line CSL is active), and then the selection signal input to the word line WL (prog) is “1” (word line WL). (Prog) becomes active), the memory cell 20 turns on the NMOS transistor 22.
  • a power supply voltage having a voltage high enough to flow a large current for cutting the wiring of the fuse element 21 when data is written to the memory cell 20 can be supplied to the terminal of the cutting power supply EFV.
  • the terminal of the cutting power supply EFV includes a pad (not shown), and can be set to the power supply voltage or the ground voltage from the outside of the nonvolatile memory 10.
  • the memory cell 20 turns on the NMOS transistor 22 to cut the wiring of the fuse element 21 by causing a current to flow from the terminal of the cutting power supply EFV set to the power supply voltage to the fuse element 21 in the direction indicated by the arrow A. To do.
  • the memory cell 20 stores the data “1” in the fuse element 21 by cutting the wiring of the fuse element 21.
  • a portion not operating when data is written is indicated by a broken line.
  • FIG. 5 is a schematic diagram for explaining an operation when data is read from the memory cell 20 according to the first embodiment of the present invention.
  • the memory cell 20 shown in FIG. 5 turns on the NMOS transistor 23 in accordance with the active state of the word line WL (Read) connected to the gate electrode of the NMOS transistor 23. It is assumed that the terminal of cutting power supply EFV is set to be a ground voltage when data is read from memory cell 20.
  • the memory cell 20 turns on the NMOS transistor 23 so that the current of the bit line BL connected to the source electrode of the NMOS transistor 23 is transferred from the fuse element 21 to the terminal of the cutting power supply EFV set to the ground voltage. Flow in the direction indicated by B.
  • the nonvolatile memory 10 can read data from the memory cell 20 by determining the voltage of the bit line BL that changes depending on the conduction state of the wiring of the fuse element 21 by the determination circuit 30. In the memory cell 20 shown in FIG. 5, a portion not operating when data is read is indicated by a broken line.
  • FIG. 6 is a schematic diagram showing a configuration of a determination circuit 30 that performs determination of read data when data is read from the memory cell 20 according to the first embodiment of the present invention.
  • the determination circuit 30 shown in FIG. 6 includes a switching element 31 that connects a core power supply terminal and a bit line BL, and a sense amplifier SA that is connected to the bit line BL.
  • This sense amplifier SA is also shown in FIG.
  • the terminal of the core power supply is a power supply terminal for supplying a current to the bit line BL when data is read, unlike the terminal of the cutting power supply EFV. Note that when data is written, the power supply voltage applied to the terminal of cutting power supply EFV is higher than the power supply voltage applied to the core power supply terminal when data is read.
  • the switching element 31 controls whether or not to connect the core power supply terminal and the bit line BL in accordance with the input signal / RD_Enable. Specifically, the switching element 31 connects the core power supply terminal and the bit line BL when the input signal / RD_Enable is “0”, and connects the core power supply terminal and bit when the input signal / RD_Enable is “1”. Do not connect to line BL.
  • the core power supply terminal and the bit line BL are not connected.
  • the core power supply is a power supply for supplying a power supply voltage for supplying a current to the bit line BL when data is read from the memory cell 20, and this power supply voltage generally supplies the fuse element 21 with power. It is lower than the power supply voltage given by the cutting power supply EFV when cutting. Further, the core power supply is often used as the entire operation power supply in the nonvolatile memory 10 shown in FIG.
  • the sense amplifier SA amplifies the voltage of the bit line BL when the terminal of the core power supply and the bit line BL are connected by the switching element 31, and the determination result is based on whether the amplified voltage is equal to or higher than a predetermined level. Is read as data OUT.
  • FIG. 7 is a timing chart of signals when data is read from memory cell 20 according to the first embodiment of the present invention.
  • the input signal / RD_Enable of “0” is input and the switching element 31 is turned on for t time. Turn on. When the switching element 31 is turned on, a current flows through the bit line BL, and the voltage of the bit line BL changes from 0V to aV.
  • the NMOS transistor 23 is turned on, and the current of the bit line BL is changed to the fuse element 21.
  • the current of the bit line BL does not flow to the terminal of the cutting power supply EFV set to the ground voltage via the fuse element 21, so that the voltage of the bit line BL is aV Does not change.
  • the current of the bit line BL flows to the terminal of the cutting power supply EFV set to the ground voltage via the fuse element 21, so that the bit line BL The voltage changes from aV to 0V.
  • the sense amplifier SA amplifies the voltage of the bit line BL and determines whether the amplified voltage is equal to or higher than a predetermined level. To do. When the amplified voltage is equal to or higher than a predetermined level, the sense amplifier SA determines that the wiring of the fuse element 21 is disconnected and reads “1” data as data OUT. On the other hand, when the amplified voltage is lower than a predetermined level, the sense amplifier SA determines that the wiring of the fuse element 21 is not cut (not cut), and reads “0” data as data OUT.
  • the nonvolatile memory 10 according to Embodiment 1 of the present invention is connected to the other end of the fuse element 21 whose one end is connected to the terminal of the cutting power supply EFV, and from the terminal of the cutting power supply EFV to the fuse.
  • the non-volatile memory 10 includes a selection circuit that controls the connection between the bit line BL and the terminal of the cutting power supply EFV in order to supply a current from the cutting power supply EFV that becomes a power supply voltage at the time of fuse cutting to the fuse element 21. There is no need to prepare. Since the nonvolatile memory 10 does not need to include a selection circuit, the fuse element 21 is not erroneously disconnected due to a malfunction of the selection circuit when the power is turned on.
  • the terminal of the power supply EFV for cutting is set to the ground voltage except when the wiring of the fuse element 21 is cut. Therefore, the control signal becomes indefinite when the power is turned on, and the NMOS transistor 22 is turned on. In this case, since no potential difference is generated between the fuse elements 21, the fuse element 21 is not erroneously cut. Since nonvolatile memory 10 normally writes data only at the time of a shipping test, the terminal of cutting power supply EFV is set to the ground voltage even when used in the market.
  • the nonvolatile memory 10 does not need to include a selection circuit that is driven by the cutting power supply EFV, the resistance of the switching element of the selection circuit is reduced in order to reduce the voltage applied to the fuse element 21 when the fuse element 21 is evaluated. There is no need to increase the resistance, and the resistance of the fuse element 21 can be accurately measured in array units. Since the nonvolatile memory 10 can accurately measure the resistance of the fuse element 21 in units of arrays, the wiring of the fuse element 21 is disconnected in addition to determining whether the fuse element 21 is good or not at the time of a shipment test. It is also possible to test the margin when doing so, improving the test quality of the product.
  • the nonvolatile memory 10 does not need to include a selection circuit, accurate reliability can be evaluated only with the fuse element 21 and the NMOS transistors 22 and 23, and the development cost can be reduced.
  • the nonvolatile memory 10 Since the nonvolatile memory 10 uses a path through the NOMS transistor 22 when writing data and a path through the NOMS transistor 23 when reading data, the nonvolatile memory 10 writes data and reads data. Thus, current can be passed through the fuse element 21 through different paths. Therefore, the nonvolatile memory 10 can operate stably without reducing the stress applied to the fuse element 21 and without increasing or limiting the number of times of reading data.
  • the nonvolatile memory 10 includes the NOMS transistor 23 between the fuse element 21 and the bit line BL, the initial charge of the bit line BL is only applied to the memory cell 20 in which the word line WL (read) is active. And the initial charge of the bit line BL does not flow to the other memory cells 20.
  • FIG. 8 is a schematic diagram showing the configuration of the nonvolatile memory according to Embodiment 2 of the present invention.
  • a nonvolatile memory 11 shown in FIG. 8 is a semiconductor device that stores data irreversibly and in a nonvolatile manner.
  • the nonvolatile memory 11 includes a fuse array 7 in which a plurality of memory cells 40 including fuse elements are arranged in a matrix, a row decoder (RD) 2 that supplies a selection signal to the word lines WL of the fuse array 7, A column decoder (CD) 3 that selects a bit line BL, a control circuit 4 that controls operations of the row decoder 2 and the column decoder 3, and a reference value generation circuit 5 that generates a reference resistor and a reference word line voltage are provided.
  • RD row decoder
  • CD column decoder
  • CD control circuit 4 that controls operations of the row decoder 2 and the column decoder 3
  • a reference value generation circuit 5 that generates a reference resistor and a reference word line voltage are provided.
  • the fuse array 7 has one word line WL for one row of memory cells 40.
  • the word line WL is common to the word line WL when data is written to the memory cell 40 (program (prog)) and the word line WL when data is read from the memory cell 40 (read).
  • the word line WL is non-volatile as compared with the case where the word line WL is configured with two word lines WL used when data is written to the memory cell 40 and word line WL used when data is read from the memory cell 40.
  • the memory 11 can be reduced in size.
  • the word line WL is the first word line WL (prog) used when writing data to the memory cell 40 and the first word line used when reading data from the memory cell 40. You may comprise by the word line WL (Read) of 2 word lines.
  • the fuse array 7 has one bit line BL and two selection lines CSL for one row of memory cells 40.
  • the two selection lines CSL are a selection line CSL (prog) of the first selection line used when writing data into the memory cell 40 and a selection line of the second selection line used when reading data from the memory cell 40. It consists of CSL (Read).
  • FIG. 9 is a schematic diagram showing a configuration of the memory cell 40 according to the second embodiment of the present invention.
  • the memory cell 40 shown in FIG. 9 has one end connected to the terminal of the power supply EFV for cutting, a fuse element 21 for storing data according to the conductive state of the wiring, and an NMOS transistor 22 for connecting a drain electrode to the other end of the fuse element 21. 23, an AND circuit 24 connected to the gate electrode of the NMOS transistor 22, and an AND circuit 41 connected to the gate electrode of the NMOS transistor 23.
  • the AND circuit (first logic circuit) 24 has a word line WL and a select line CSL (prog) connected to the input side, and a gate electrode of the NMOS transistor 22 connected to the output side.
  • the AND circuit 24 when both the selection signals input to the word line WL and the selection line CSL (prog) are “1”, the signal output to the gate electrode of the NMOS transistor 22 is “1”.
  • the NMOS transistor 22 is turned on when a signal of “1” is supplied to the gate electrode, and in order to cut the wiring of the fuse element 21, a large current is fused from the terminal of the cutting power supply EFV set to the power supply voltage. Flow to element 21.
  • the AND circuit (second logic circuit) 41 has a word line WL and a select line CSL (Read) connected to the input side, and a gate electrode of the NMOS transistor 23 connected to the output side.
  • the AND circuit 41 when the selection signals input to the word line WL and the selection line CSL (Read) are both “1”, the signal output to the gate electrode of the NMOS transistor 23 is “1”.
  • the NMOS transistor 23 is turned on when a signal of “1” is supplied to the gate electrode, and in order to detect the conduction state of the wiring of the fuse element 21, the current is disconnected from the fuse element 21 to the ground voltage. Flow to the terminal of the power supply EFV.
  • FIG. 10 is a schematic diagram for explaining an operation when data is written in the memory cell 40 according to the second embodiment of the present invention.
  • the data stored in the memory cell 40 has a value of “0” or “1”
  • the fuse element 21 uses “0” data when the wiring is not cut, and “1” when the wiring is cut. ”Is stored. Therefore, data of “1” can only be substantially written, and storing “0” data is equivalent to not writing data of “1”. Therefore, writing data into the memory cell 20 is also referred to as programming data into the nonvolatile memory 10.
  • the case where the wiring of the fuse element 21 is cut will be described below by expressing that data is written.
  • the AND circuit 24 turns on the NMOS transistor 22 in accordance with the active state of the word line WL and select line CSL (prog) connected to the AND circuit 24.
  • the timing chart of the operation to turn on the NMOS transistor 22 is the same as the timing chart of the timing chart shown in FIG. 4 in which the selection line CSL is replaced with the selection line CSL (prog) and the word line WL (prog) is replaced with the word line WL. It is. Therefore, illustration of a timing chart of signals when data is written in the memory cell 40 according to the second embodiment of the present invention is omitted.
  • the selection signal input to the selection line CSL (prog) becomes “1” (the selection line CSL (prog) is active), and then the selection is input to the word line WL.
  • the signal becomes “1” (the word line WL is activated) the memory cell 40 turns on the NMOS transistor 22.
  • a power supply voltage having a voltage high enough to flow a large current for cutting the wiring of the fuse element 21 when data is written to the memory cell 40 can be supplied to the terminal of the cutting power supply EFV. Shall be set to
  • the memory cell 40 By turning on the NMOS transistor 22, the memory cell 40 cuts the wiring of the fuse element 21 by causing a current to flow from the terminal of the cutting power supply EFV set to the power supply voltage to the fuse element 21 in the direction indicated by the arrow A. To do.
  • the memory cell 40 stores “1” data in the fuse element 21 by cutting the wiring of the fuse element 21. In the memory cell 40 shown in FIG. 10, a portion not operating when data is written is indicated by a broken line.
  • FIG. 11 is a schematic diagram for explaining an operation when data is read from the memory cell 40 according to the second embodiment of the present invention.
  • the AND circuit 41 turns on the NMOS transistor 23 in accordance with the active state of the word line WL (Read) and the selection line CSL (Read) connected to the AND circuit 41. It is assumed that the terminal of cutting power supply EFV is set to be a ground voltage when data is read from memory cell 40.
  • the memory cell 40 By turning on the NMOS transistor 23, the memory cell 40 causes the current of the bit line BL connected to the source electrode of the NMOS transistor 23 to flow from the fuse element 21 to the terminal of the cutting power supply EFV set to the ground voltage. Flow in the direction indicated by B.
  • the nonvolatile memory 11 reads data from the memory cell 40 by determining the voltage of the bit line BL that changes depending on the conduction state of the wiring of the fuse element 21 by the determination circuit 30. In the memory cell 40 shown in FIG. 11, a portion not operating when data is read is indicated by a broken line.
  • the determination circuit 30 has the same configuration as the determination circuit 30 shown in FIG.
  • FIG. 12 is a timing chart of signals when data is read from memory cell 40 according to the second embodiment of the present invention.
  • the input signal / RD_Enable of “0” is input and the switching element 31 is turned on for t time. Turn on. When the switching element 31 is turned on, a current flows through the bit line BL, and the voltage of the bit line BL changes from 0V to aV.
  • the selection signal input to the selection line CSL (read) becomes “1” (the selection line CSL (read) is active), and the selection signal input to the word line WL is “1” (the word line WL is active).
  • the NMOS transistor 23 is turned on, and the current of the bit line BL flows from the fuse element 21 to the terminal of the cutting power supply EFV set to the ground voltage.
  • the current of the bit line BL does not flow to the terminal of the cutting power supply EFV set to the ground voltage via the fuse element 21, so that the voltage of the bit line BL is aV Does not change.
  • the current of the bit line BL flows to the terminal of the cutting power supply EFV set to the ground voltage via the fuse element 21, so that the bit line BL The voltage changes from aV to 0V.
  • the sense amplifier SA amplifies the voltage of the bit line BL and determines whether the amplified voltage is equal to or higher than a predetermined level. To do. When the amplified voltage is equal to or higher than a predetermined level, the sense amplifier SA determines that the wiring of the fuse element 21 is disconnected and reads “1” data as data OUT. On the other hand, when the amplified voltage is lower than a predetermined level, the sense amplifier SA determines that the wiring of the fuse element 21 is not cut (not cut), and reads “0” data as data OUT.
  • the nonvolatile memory 11 further includes the AND circuit 41 connected to the gate electrode of the NMOS transistor 23.
  • the AND circuit 41 is the AND circuit 41.
  • the nonvolatile memory 11 grounds the current of the bit line BL from the fuse element 21 only to the memory cell 40 in which the selection signals input to the word line WL and the selection line CSL (read) are both “1”.
  • the current can be supplied to the terminal of the cutting power supply EFV set to a voltage, and the current consumed by the entire nonvolatile memory 11 can be reduced.
  • the non-volatile memory 11 causes the current of the bit line BL to flow from the fuse element 21 to the terminal of the cutting power supply EFV set to the ground voltage for one memory cell 40 from which data is read to read the data. Since no unnecessary current of the bit line BL is supplied to other memory cells 40 that are not output, the current consumed by the entire nonvolatile memory 11 can be reduced.
  • the nonvolatile memory 11 is not limited to a single memory cell 40 as a unit in which both selection signals input to the word line WL and the selection line CSL (read) are “1”. It is good.

Landscapes

  • Read Only Memory (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

This semiconductor device is provided with a fuse element (21), an NMOS transistor (22), an NMOS transistor (23), and an AND circuit (24), and stores data irreversibly and in a non-volatile manner. The fuse element (21) has one end connected to a terminal of a fuse-blowing power supply (EFV) capable of switching between a power supply voltage and a ground voltage, and stores data according to the electrical connection state of the wiring. The NMOS transistor (22) has a drain electrode connected to the other end of the fuse element (21) and controls current which flows from the terminal of the fuse-blowing power supply (EFV) to the fuse element (21). The NMOS transistor (23) has a drain electrode connected to the other end of the fuse element (21) in a manner which is parallel with respect to the NMOS transistor (22) and controls current which flows from the fuse element (21) to the terminal of the fuse-blowing power supply (EFV). The AND circuit is connected to the gate electrode of the NMOS transistor (22).

Description

[規則37.2に基づきISAが決定した発明の名称] フューズ素子を備える半導体装置[Title of Invention Determined by ISA Based on Rule 37.2] Semiconductor Device with Fuse Element
 本発明は、データを不可逆かつ不揮発に記憶する半導体装置に関し、特に、配線の導通状態によりデータを記憶するフューズ素子を備える半導体装置に関する。 The present invention relates to a semiconductor device that stores data irreversibly and in a nonvolatile manner, and more particularly, to a semiconductor device that includes a fuse element that stores data according to a conductive state of wiring.
 半導体装置には、電源を供給しない状態であっても記憶したデータが消失することのない不揮発性メモリがある。当該不揮発性メモリには、EEPROM(Electrically Erasable Programmable Read Only Memory)などのさまざまな種類が開発されている。しかし、一つの半導体チップにシステムを集積したSoC(System on Chip)などに、EEPROMを利用する場合、フローティングゲートに電荷を蓄積する構成を同じ半導体チップ上に混載するため、追加マスクおよび追加プロセスが必要となり、製造コストが高価になる。 Semiconductor devices include a nonvolatile memory in which stored data is not lost even when power is not supplied. Various types of nonvolatile memory such as EEPROM (Electrically Erasable Programmable Read Only Memory) have been developed. However, when an EEPROM is used in a SoC (System on Chip) in which a system is integrated on one semiconductor chip, an additional mask and an additional process are required because the structure for storing charges in the floating gate is mixedly mounted on the same semiconductor chip. It becomes necessary and the manufacturing cost becomes expensive.
 そのため、追加マスクおよび追加プロセスを必要とせずに、同じ半導体チップ上に混載することが可能な不揮発性メモリとして、フューズ素子を備える不揮発性メモリがある。フューズ素子は、配線の導通状態によりデータを記憶することが可能な素子で、ポリシリコン配線あるいはメタル配線の電流溶断型のフューズ素子などである。 Therefore, there is a non-volatile memory including a fuse element as a non-volatile memory that can be embedded on the same semiconductor chip without requiring an additional mask and an additional process. The fuse element is an element capable of storing data depending on the conduction state of the wiring, and is a fuse element of a current blow type of a polysilicon wiring or a metal wiring.
 具体的に、特開2008-71819号公報(特許文献1)および特表2006-509311号公報(特許文献2)には、表面がシリサイド化されたポリシリコン配線からなるフューズ素子を備える不揮発性メモリが開示してある。なお、フューズ素子を備える不揮発性メモリは、配線の導通状態を変化させてデータを書込むため、書込んだデータを消去することができない不可逆なメモリである。 Specifically, in Japanese Patent Application Laid-Open No. 2008-71819 (Patent Document 1) and Japanese Translation of PCT International Publication No. 2006-509911 (Patent Document 2), a nonvolatile memory including a fuse element made of a polysilicon wiring whose surface is silicided. Is disclosed. Note that a nonvolatile memory including a fuse element is an irreversible memory in which written data cannot be erased because data is written by changing the conduction state of the wiring.
 また、図13は、従来のフューズ素子を備える不揮発性メモリの構成を示す概略図である。図13に示す不揮発性メモリ100は、フューズ素子を含むメモリセル200をマトリックス状に複数配置してあるフューズアレイ101、フューズアレイ101のワード線WL(Word Line)に選択信号を供給する行デコーダ(RD:Row Decoder)102、フューズアレイ101のビット線BL(Bit Line)を選択する列デコーダ(CD:Column Decoder)103、行デコーダ102および列デコーダ103の動作を制御する制御回路104、参照抵抗および参照ワード線電圧を生成する参照値生成回路105を備えている。 FIG. 13 is a schematic view showing a configuration of a nonvolatile memory including a conventional fuse element. The nonvolatile memory 100 shown in FIG. 13 includes a fuse array 101 in which a plurality of memory cells 200 including fuse elements are arranged in a matrix, and a row decoder that supplies a selection signal to a word line WL (Word Line) of the fuse array 101. RD (Row Decoder) 102, column decoder (CD: Column Decoder) 103 for selecting a bit line BL (Bit Line) of fuse array 101, control circuit 104 for controlling operations of row decoder 102 and column decoder 103, reference resistance and A reference value generation circuit 105 that generates a reference word line voltage is provided.
 列デコーダ103を設けた側には、ビット線BLの電圧を増幅するセンスアンプSA(Sense Amplifier)、およびデータの入出力を行なう入出力部I/O(Input/Output)も設けてある。なお、入出力部I/Oは、16ビット単位でデータを入出力する。 On the side where the column decoder 103 is provided, a sense amplifier SA (Sense Amplifier) for amplifying the voltage of the bit line BL and an input / output unit I / O (Input / Output) for inputting and outputting data are also provided. The input / output unit I / O inputs and outputs data in units of 16 bits.
 図14は、従来のフューズ素子を備える不揮発性メモリ100のメモリセル200の構成を示す概略図である。図14に示すメモリセル200は、配線の導通状態によりデータを記憶するフューズ素子201、フューズ素子201の一端にドレイン電極を接続するトランジスタ202を備えている。フューズ素子201は、ビット線BLを他端に接続し、トランジスタ202は、ワード線WLをゲート電極に接続してある。 FIG. 14 is a schematic diagram showing a configuration of a memory cell 200 of a nonvolatile memory 100 including a conventional fuse element. A memory cell 200 illustrated in FIG. 14 includes a fuse element 201 that stores data according to a conductive state of a wiring, and a transistor 202 that connects a drain electrode to one end of the fuse element 201. The fuse element 201 has the bit line BL connected to the other end, and the transistor 202 has the word line WL connected to the gate electrode.
 ビット線BLは、行デコーダ102の選択回路300を介して切断用電源EFVに接続してある。図15は、従来のフューズ素子を備える不揮発性メモリ100の選択回路300の構成を示す概略図である。図15に示す選択回路300は、切断用電源EFVとビット線BLとを接続するスイッチング素子301、選択信号の信号レベルを変換するレベル変換回路302、信号レベルを変換した選択信号の電圧を増幅してスイッチング素子301の制御信号を生成する増幅器303を備えている。なお、選択回路300は、切断用電源EFVで駆動している。 The bit line BL is connected to the cutting power supply EFV via the selection circuit 300 of the row decoder 102. FIG. 15 is a schematic diagram illustrating a configuration of a selection circuit 300 of a nonvolatile memory 100 including a conventional fuse element. The selection circuit 300 shown in FIG. 15 amplifies the switching element 301 that connects the cutting power source EFV and the bit line BL, the level conversion circuit 302 that converts the signal level of the selection signal, and the voltage of the selection signal that has converted the signal level. And an amplifier 303 for generating a control signal for the switching element 301. The selection circuit 300 is driven by a cutting power source EFV.
 不揮発性メモリ100は、データを書込むとき、データを書込む列のレベル変換回路302に選択信号を入力し、信号レベルを変換した選択信号の電圧を増幅器303で増幅して制御信号を生成する。不揮発性メモリ100は、増幅器303で生成した制御信号によりスイッチング素子301を制御して、ビット線BLと高電圧の切断用電源EFVとを接続する。不揮発性メモリ100は、ビット線BLと高電圧の切断用電源EFVとを接続した状態で、ワード線に選択信号を供給すると、図14に示すトランジスタ202がオン状態となり、ビット線BLを介して切断用電源EFVからフューズ素子201へ電流が流れ、フューズ素子201を切断して、データを書込む。 When writing data, the nonvolatile memory 100 inputs a selection signal to the level conversion circuit 302 of the column in which data is written, and amplifies the voltage of the selection signal converted from the signal level by the amplifier 303 to generate a control signal. . The nonvolatile memory 100 controls the switching element 301 by the control signal generated by the amplifier 303 to connect the bit line BL and the high-voltage cutting power supply EFV. In the nonvolatile memory 100, when a selection signal is supplied to the word line in a state where the bit line BL and the high-voltage cutting power supply EFV are connected, the transistor 202 shown in FIG. Current flows from cutting power supply EFV to fuse element 201, fuse element 201 is cut, and data is written.
 一方、不揮発性メモリ100は、データを読出すとき、制御信号によりスイッチング素子301を制御して、ビット線BLとコア電位の切断用電源EFVとを接続する。不揮発性メモリ100は、ビット線BLとコア電位の切断用電源EFVとを接続した状態で、コア電位の切断用電源EFVからフューズ素子201へ流れる電流により、センスアンプSAでフューズ素子201の配線の切断・未切断の状態を判定して、データを読出す。 On the other hand, when reading data, the nonvolatile memory 100 controls the switching element 301 by a control signal to connect the bit line BL and the power supply EFV for cutting the core potential. In the state where the bit line BL and the core potential cutting power source EFV are connected to each other, the nonvolatile memory 100 is connected to the fuse element 201 by the sense amplifier SA by the current flowing from the core potential cutting power source EFV to the fuse element 201. The data is read by determining the disconnected / uncut state.
特開2008-71819号公報JP 2008-71819 A 特表2006-509311号公報JP-T-2006-509111
 しかし、不揮発性メモリ100は、ビット線BLと切断用電源EFVとの接続を選択回路300で制御しているため、電源投入時、選択回路300の誤動作により、列を選択する選択信号が不安定となり、誤ってビット線BLと高電圧に設定された切断用電源EFVとが導通し、フューズ素子201を誤切断してしまうことがあった。 However, since the nonvolatile memory 100 controls the connection between the bit line BL and the cutting power supply EFV by the selection circuit 300, the selection signal for selecting a column is unstable due to a malfunction of the selection circuit 300 when the power is turned on. Thus, the bit line BL and the cutting power supply EFV set to a high voltage are inadvertently conducted, and the fuse element 201 may be erroneously cut.
 また、不揮発性メモリ100は、データを読出すとき、フューズ素子201を誤って切断しないようにフューズ素子201に印加する電圧を書込み時に比べ低くする必要がある。しかし、不揮発性メモリ100は、選択回路300の駆動電源に切断用電源EFVを用いており、フューズ素子201に印加する電圧を誤動作しないよう低くするためにはスイッチング素子301の抵抗を大きくする必要がある。そのため、スイッチング素子301の抵抗が、フューズ素子201の抵抗よりも大きくなり、アレイ単位でフューズ素子の抵抗を測定する場合、スイッチング素子301の抵抗を測定することになり、アレイ単位でフューズ素子21の抵抗を正確に測定することができない。 Further, when reading data, the nonvolatile memory 100 needs to lower the voltage applied to the fuse element 201 as compared with the time of writing so that the fuse element 201 is not accidentally disconnected. However, the non-volatile memory 100 uses the cutting power supply EFV as the driving power supply for the selection circuit 300, and it is necessary to increase the resistance of the switching element 301 in order to reduce the voltage applied to the fuse element 201 so as not to malfunction. is there. Therefore, when the resistance of the switching element 301 becomes larger than the resistance of the fuse element 201 and the resistance of the fuse element is measured in units of arrays, the resistance of the switching element 301 is measured. The resistance cannot be measured accurately.
 さらに、不揮発性メモリ100は、ビット線BLと切断用電源EFVとの接続を選択回路300で制御しているため、フューズ素子201およびトランジスタ202のみで正確な信頼性を評価することができず、選択回路300を含めた信頼性の評価を行なう必要があり、開発コストが高価になる。 Further, since the nonvolatile memory 100 controls the connection between the bit line BL and the cutting power supply EFV by the selection circuit 300, the reliability cannot be evaluated with only the fuse element 201 and the transistor 202. It is necessary to evaluate the reliability including the selection circuit 300, which increases the development cost.
 また、不揮発性メモリ100は、データを書込むときも、データを読出すときも同じ経路でフューズ素子201に電流を流すため、データを読出すときフューズ素子201に与えるストレスの傾向と、データを書込むときフューズ素子201に与えるストレスの傾向とが同じになる。そのため、不揮発性メモリ100は、データを読出す回数が増加するに従い、フューズ素子201に同じ傾向のストレスが蓄積され、動作が不良となることがあった。 In addition, since the nonvolatile memory 100 allows a current to flow through the fuse element 201 through the same path both when data is written and when data is read, the tendency of stress applied to the fuse element 201 when data is read, The tendency of stress applied to the fuse element 201 when writing is the same. Therefore, in the nonvolatile memory 100, as the number of times of reading data increases, the stress having the same tendency is accumulated in the fuse element 201, and the operation may become defective.
 そこで、本発明は、ビット線と切断用電源との接続を制御する選択回路を必要とせず、配線の導通状態によりデータを記憶するフューズ素子を備える半導体装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a semiconductor device including a fuse element that stores data according to a conductive state of a wiring without requiring a selection circuit for controlling connection between a bit line and a power supply for cutting.
 上記課題を解決するために、本発明は、データを不可逆かつ不揮発に記憶する半導体装置であって、電源電圧と接地電圧とを切替え設定することが可能な電源端子に一端を接続し、配線の導通状態によりデータを記憶するフューズ素子と、フューズ素子の他端に一方の電流電極を接続し、電源端子からフューズ素子へ流す電流を制御する第1トランジスタと、第1トランジスタに対して並列に、フューズ素子の他端に一方の電流電極を接続し、フューズ素子から電源端子へ流す電流を制御する第2トランジスタと、第1トランジスタの制御電極に接続する第1論理回路とを備えている。データを書込むとき、第1論理回路は、第1論理回路に接続する第1ワード線および第1選択線の活性状態に応じて、第1トランジスタをオン状態にすることで、電源電圧の電源端子からフューズ素子へ電流を流してフューズ素子の配線を切断する。データを読出すとき、第2トランジスタは、第2トランジスタの制御電極に接続する第2ワード線の活性状態に応じて、オン状態となり、第2トランジスタの他方の電流電極に接続するビット線の電流を、フューズ素子から接地電圧の電源端子へ流す。 In order to solve the above problems, the present invention is a semiconductor device that stores data in an irreversible and non-volatile manner, and has one end connected to a power supply terminal capable of switching between a power supply voltage and a ground voltage, A fuse element that stores data according to a conductive state, one current electrode connected to the other end of the fuse element, a first transistor that controls a current flowing from the power supply terminal to the fuse element, and a first transistor in parallel, One current electrode is connected to the other end of the fuse element, a second transistor for controlling the current flowing from the fuse element to the power supply terminal, and a first logic circuit connected to the control electrode of the first transistor are provided. When writing data, the first logic circuit turns on the first transistor in accordance with the active state of the first word line and the first selection line connected to the first logic circuit, thereby supplying the power supply voltage. A current is passed from the terminal to the fuse element to cut the fuse element wiring. When reading data, the second transistor is turned on according to the active state of the second word line connected to the control electrode of the second transistor, and the current of the bit line connected to the other current electrode of the second transistor. From the fuse element to the power terminal of the ground voltage.
 本発明に係る半導体装置によれば、電源端子に一端が接続されたフューズ素子の他端に接続し、電源端子からフューズ素子へ流す電流を制御する第1トランジスタと、フューズ素子の他端に接続し、フューズ素子から電源端子へ流す電流を制御する第2トランジスタと、第1トランジスタの制御電極に接続する第1論理回路とを備えることで、フューズ切断時に電源電圧となる電源端子からフューズ素子へ電流を供給するために、ビット線と電源端子との接続を制御する選択回路を備える必要がない。本発明に係る半導体装置は、選択回路を備える必要がないので、電源投入時、この選択回路の誤動作により、フューズ素子を誤切断することがない。また、本発明に係る半導体装置は、フューズ素子の切断時に電源電圧となる電源で駆動する選択回路を備える必要がないので、データの読出し時にフューズ素子に印加する電圧を低くするために選択回路のスイッチング素子の抵抗を大きくする必要がなく、アレイ単位でフューズ素子の抵抗を正確に測定することができる。さらに、本発明に係る半導体装置は、選択回路を備える必要がないので、フューズ素子およびトランジスタのみで正確な信頼性を評価することができ、開発コストを安価にすることができる。また、本発明に係る半導体装置は、データを書込むとき第1トランジスタを介する経路を、データを読出すとき第2トランジスタを介する経路をそれぞれ用いるので、データを書込むときと、データを読出すときとで異なる経路でフューズ素子に電流を流すことができる。そのため、本発明に係る半導体装置は、フューズ素子に与えるストレスを減らして、データの読出し回数をより多く、または制限することなく安定して動作することができる。 According to the semiconductor device of the present invention, the first transistor is connected to the other end of the fuse element whose one end is connected to the power supply terminal, and is connected to the other end of the fuse element. In addition, since the second transistor for controlling the current flowing from the fuse element to the power supply terminal and the first logic circuit connected to the control electrode of the first transistor are provided, the power supply terminal that becomes the power supply voltage when the fuse is cut from the fuse element. In order to supply the current, there is no need to provide a selection circuit for controlling the connection between the bit line and the power supply terminal. Since the semiconductor device according to the present invention does not need to include a selection circuit, the fuse element is not erroneously cut by malfunction of the selection circuit when the power is turned on. In addition, since the semiconductor device according to the present invention does not need to include a selection circuit that is driven by a power source that becomes a power supply voltage when the fuse element is cut, the selection circuit is configured to reduce the voltage applied to the fuse element when reading data. There is no need to increase the resistance of the switching element, and the resistance of the fuse element can be accurately measured in array units. Furthermore, since the semiconductor device according to the present invention does not need to include a selection circuit, accurate reliability can be evaluated using only the fuse element and the transistor, and the development cost can be reduced. The semiconductor device according to the present invention uses a path through the first transistor when writing data and a path through the second transistor when reading data, so that data is read when data is written. Current can be passed through the fuse element through different paths. Therefore, the semiconductor device according to the present invention can operate stably without reducing the stress applied to the fuse element and increasing or limiting the number of times of reading data.
本発明の実施の形態1に係る不揮発性メモリの構成を示す概略図である。It is the schematic which shows the structure of the non-volatile memory which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るメモリセルの構成を示す概略図である。1 is a schematic diagram showing a configuration of a memory cell according to a first embodiment of the present invention. 本発明の実施の形態1に係るメモリセルにデータを書込むときの動作を説明するための概略図である。FIG. 6 is a schematic diagram for explaining an operation when data is written to a memory cell according to the first embodiment of the present invention. 本発明の実施の形態1に係るメモリセルにデータを書込むときの信号のタイミングチャートである。3 is a timing chart of signals when data is written to the memory cell according to the first embodiment of the present invention. 本発明の実施の形態1に係るメモリセルからデータを読出すときの動作を説明するための概略図である。FIG. 7 is a schematic diagram for explaining an operation when data is read from the memory cell according to the first embodiment of the present invention. 本発明の実施の形態1に係るメモリセルからデータを読出す場合に、読出しデータの判定を行なう判定回路の構成を示す概略図である。FIG. 3 is a schematic diagram showing a configuration of a determination circuit that determines read data when data is read from the memory cell according to the first embodiment of the present invention; 本発明の実施の形態1に係るメモリセルからデータを読出すときの信号のタイミングチャートである。4 is a timing chart of signals when data is read from the memory cell according to the first embodiment of the present invention. 本発明の実施の形態2に係る不揮発性メモリの構成を示す概略図である。It is the schematic which shows the structure of the non-volatile memory which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るメモリセルの構成を示す概略図である。It is the schematic which shows the structure of the memory cell which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るメモリセルにデータを書込むときの動作を説明するための概略図である。It is the schematic for demonstrating operation | movement when writing data in the memory cell which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るメモリセルからデータを読出すときの動作を説明するための概略図である。FIG. 10 is a schematic diagram for explaining an operation when data is read from a memory cell according to a second embodiment of the present invention. 本発明の実施の形態2に係るメモリセルからデータを読出すときの信号のタイミングチャートである。6 is a timing chart of signals when data is read from a memory cell according to a second embodiment of the present invention. 従来のフューズ素子を備える不揮発性メモリの構成を示す概略図である。It is the schematic which shows the structure of the non-volatile memory provided with the conventional fuse element. 従来のフューズ素子を備える不揮発性メモリのメモリセルの構成を示す概略図である。It is the schematic which shows the structure of the memory cell of a non-volatile memory provided with the conventional fuse element. 従来のフューズ素子を備える不揮発性メモリの選択回路の構成を示す概略図である。It is the schematic which shows the structure of the selection circuit of a non-volatile memory provided with the conventional fuse element.
 以下、本発明に係る実施の形態について図面を参照して説明する。
  (実施の形態1)
 図1は、本発明の実施の形態1に係る不揮発性メモリの構成を示す概略図である。図1に示す不揮発性メモリ10は、データを不可逆かつ不揮発に記憶する半導体装置である。不揮発性メモリ10は、フューズ素子を含むメモリセル20をマトリックス状に複数配置してあるフューズアレイ1、フューズアレイ1のワード線WLに選択信号を供給する行デコーダ(RD)2、フューズアレイ1のビット線BLを選択する列デコーダ(CD)3、行デコーダ2および列デコーダ3の動作を制御する制御回路4、参照抵抗および参照ワード線電圧を生成する参照値生成回路5を備えている。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram showing a configuration of a nonvolatile memory according to Embodiment 1 of the present invention. A nonvolatile memory 10 shown in FIG. 1 is a semiconductor device that stores data in an irreversible and nonvolatile manner. The nonvolatile memory 10 includes a fuse array 1 in which a plurality of memory cells 20 including fuse elements are arranged in a matrix, a row decoder (RD) 2 that supplies a selection signal to the word lines WL of the fuse array 1, A column decoder (CD) 3 that selects a bit line BL, a control circuit 4 that controls operations of the row decoder 2 and the column decoder 3, and a reference value generation circuit 5 that generates a reference resistor and a reference word line voltage are provided.
 フューズアレイ1は、一行のメモリセル20に対して2本のワード線WLを有している。2本のワード線WLは、メモリセル20にデータを書込むとき(プログラム時(prog))に用いる第1ワード線のワード線WL(prog)と、メモリセル20からデータを読出すとき(リード時(Read))に用いる第2ワード線のワード線WL(Read)とで構成されている。また、フューズアレイ1は、一列のメモリセル20に対して1本のビット線BLと、1本の選択線CSL(Column Select Line)とを有している。 The fuse array 1 has two word lines WL for one row of memory cells 20. The two word lines WL are the first word line WL (prog) used when writing data to the memory cell 20 (when programming (prog)), and when reading data from the memory cell 20 (reading). And the word line WL (Read) of the second word line used at the time (Read). The fuse array 1 has one bit line BL and one select line CSL (Column Select Line) for one column of memory cells 20.
 行デコーダ2は、メモリセル20にデータを書込むとき、ワード線WL(prog)に選択信号を供給し、メモリセル20からデータを読出すとき、ワード線WL(Read)に選択信号を供給する。 The row decoder 2 supplies a selection signal to the word line WL (prog) when writing data to the memory cell 20, and supplies a selection signal to the word line WL (Read) when reading data from the memory cell 20. .
 列デコーダ3は、メモリセル20にデータを書込むとき、選択線CSLに選択信号を供給し、メモリセル20からデータを読出すとき、ビット線BLからデータを読出す。列デコーダ3を設けてある側には、ビット線BLの電圧を増幅するセンスアンプSA、およびデータの入出力を行なう入出力部I/Oも設けてある。ビット線BLの電圧は、センスアンプSAで増幅することで、データとして読み出すことができる。なお、入出力部I/Oは、16ビット単位でデータを入出力する。また、列デコーダ3は、メモリセル20にデータを書込むとき、32ビットのアドレスでデコードする。 The column decoder 3 supplies a selection signal to the selection line CSL when writing data to the memory cell 20, and reads data from the bit line BL when reading data from the memory cell 20. On the side where the column decoder 3 is provided, a sense amplifier SA for amplifying the voltage of the bit line BL and an input / output unit I / O for inputting / outputting data are also provided. The voltage of the bit line BL can be read as data by being amplified by the sense amplifier SA. The input / output unit I / O inputs and outputs data in units of 16 bits. Further, the column decoder 3 decodes with a 32-bit address when writing data into the memory cell 20.
 図2は、本発明の実施の形態1に係るメモリセル20の構成を示す概略図である。図2に示すメモリセル20は、切断用電源EFVの端子に一端を接続し、配線の導通状態によりデータを記憶するフューズ素子21、フューズ素子21の他端にドレイン電極を接続するNチャネルMOS(NMOS)トランジスタ22,23、NMOSトランジスタ22のゲート電極に接続するAND回路24を備えている。 FIG. 2 is a schematic diagram showing the configuration of the memory cell 20 according to the first embodiment of the present invention. The memory cell 20 shown in FIG. 2 has one end connected to the terminal of the power supply EFV for cutting and an N-channel MOS (with a drain electrode connected to the other end of the fuse element 21 for storing data depending on the conductive state of the wiring. NMOS) transistors 22 and 23, and an AND circuit 24 connected to the gate electrode of the NMOS transistor 22.
 フューズ素子21は、ポリシリコン配線、またはメタル配線で構成され、当該配線に大きな電流を流して切断することで抵抗値を変化させて、データを記憶する記憶素子である。なお、フューズ素子21は、配線を物理的に切断する場合に限定されるものではなく、配線の形状または材料の分布といった配線の構造を変化させて、配線の導通状態(たとえば抵抗値)を変化させることができればよい。また、ポリシリコン配線は、チタン(Ti)、コバルト(Co)、または、ニッケル(Ni)などの金属と反応させたシリサイド層を表面に形成してもよい。 The fuse element 21 is a storage element that is configured by a polysilicon wiring or a metal wiring, stores data by changing a resistance value by passing a large current through the wiring and cutting it. The fuse element 21 is not limited to the case where the wiring is physically cut, but changes the wiring structure such as the shape of the wiring or the material distribution to change the conductive state (for example, resistance value) of the wiring. It only has to be made. Further, the polysilicon wiring may be formed on the surface with a silicide layer reacted with a metal such as titanium (Ti), cobalt (Co), or nickel (Ni).
 NMOSトランジスタ(第1トランジスタ)22は、切断用電源EFVの端子からフューズ素子21へ流す電流を制御する。NMOSトランジスタ22は、フューズ素子21の配線を切断するために大きな電流を流す必要があるため、NMOSトランジスタ23に比べてトランジスタサイズを大きくしてある。なお、NMOSトランジスタ23のトランジスタサイズを、NMOSトランジスタ22のトランジスタサイズに比べて小さくしてあるので、NMOSトランジスタ23のトランジスタサイズと、NMOSトランジスタ22のトランジスタサイズとを同じサイズにした場合に比べて、不揮発性メモリ10を小型化することができる。 The NMOS transistor (first transistor) 22 controls the current that flows from the terminal of the cutting power supply EFV to the fuse element 21. The NMOS transistor 22 has a larger transistor size than the NMOS transistor 23 because a large current needs to flow in order to cut the wiring of the fuse element 21. Since the transistor size of the NMOS transistor 23 is smaller than the transistor size of the NMOS transistor 22, compared to the case where the transistor size of the NMOS transistor 23 and the transistor size of the NMOS transistor 22 are the same size, The nonvolatile memory 10 can be reduced in size.
 NMOSトランジスタ(第2トランジスタ)23は、NMOSトランジスタ22に対して並列に接続してあり、フューズ素子21から切断用電源EFVの端子へ流す電流を制御する。NMOSトランジスタ23は、ワード線WL(Read)に選択信号が供給されるとオン状態となり、フューズ素子21の配線の導通状態を検知するために、電流をフューズ素子21から接地電圧に設定された切断用電源EFVの端子へ流す。 The NMOS transistor (second transistor) 23 is connected in parallel to the NMOS transistor 22 and controls the current flowing from the fuse element 21 to the terminal of the cutting power supply EFV. The NMOS transistor 23 is turned on when a selection signal is supplied to the word line WL (Read), and the current is disconnected from the fuse element 21 to the ground voltage in order to detect the conduction state of the fuse element 21. Flow to the terminal of the power supply EFV.
 AND回路(第1論理回路)24は、入力側にワード線WL(prog)および選択線CSLを、出力側にNMOSトランジスタ22のゲート電極をそれぞれ接続してある。AND回路24は、ワード線WL(prog)および選択線CSLに入力する選択信号がともに“1”の場合、NMOSトランジスタ22のゲート電極に出力する信号が“1”となる。NMOSトランジスタ22は、ゲート電極に“1”の信号が供給されるとオン状態となり、フューズ素子21の配線を切断するために、大きな電流を電源電圧に設定された切断用電源EFVの端子からフューズ素子21へ流す。 The AND circuit (first logic circuit) 24 has a word line WL (prog) and a selection line CSL connected to the input side, and a gate electrode of the NMOS transistor 22 connected to the output side. In the AND circuit 24, when both the selection signals input to the word line WL (prog) and the selection line CSL are “1”, the signal output to the gate electrode of the NMOS transistor 22 is “1”. The NMOS transistor 22 is turned on when a signal of “1” is supplied to the gate electrode, and in order to cut the wiring of the fuse element 21, a large current is fused from the terminal of the cutting power supply EFV set to the power supply voltage. Flow to element 21.
 次に、不揮発性メモリ10の動作について説明する。不揮発性メモリ10の動作は、メモリセル20にデータを書込むときと、メモリセル20からデータを読出すときとに分けて説明する。 Next, the operation of the nonvolatile memory 10 will be described. The operation of the nonvolatile memory 10 will be described separately when data is written to the memory cell 20 and when data is read from the memory cell 20.
 まず、図3は、本発明の実施の形態1に係るメモリセル20にデータを書込むときの動作を説明するための概略図である。ここで、メモリセル20に記憶させるデータは、“0”または“1”の値を有するものとし、フューズ素子21は、配線を切断しない場合“0”のデータを、配線を切断する場合“1”のデータをそれぞれ記憶するものとする。故に、実質的に“1”のデータを書込むことしかできず、“0”データを記憶させることは、“1”のデータを書込まないことと等価である。そのため、メモリセル20にデータを書込むことを、データを不揮発性メモリ10にプログラムするともいう。本実施の形態1では、フューズ素子21の配線を切断する場合を、データを書込むと表現して以下説明する。 First, FIG. 3 is a schematic diagram for explaining an operation when data is written in the memory cell 20 according to the first embodiment of the present invention. Here, the data stored in the memory cell 20 has a value of “0” or “1”, and the fuse element 21 uses “0” data when the wiring is not cut, and “1” when the wiring is cut. ”Is stored. Therefore, data of “1” can only be substantially written, and storing “0” data is equivalent to not writing data of “1”. Therefore, writing data into the memory cell 20 is also referred to as programming data into the nonvolatile memory 10. In the first embodiment, the case where the wiring of the fuse element 21 is cut will be described as data writing and will be described below.
 図3に示すメモリセル20は、AND回路24が、AND回路24に接続するワード線WL(prog)および選択線CSLの活性状態に応じて、NMOSトランジスタ22をオン状態にする。NMOSトランジスタ22をオン状態にする動作を、タイミングチャートを用いて説明する。図4は、本発明の実施の形態1に係るメモリセル20にデータを書込むときの信号のタイミングチャートである。図4に示すタイミングチャートでは、選択線CSLに入力する選択信号が“1”(選択線CSLが活性)となり、その後、ワード線WL(prog)に入力する選択信号が“1”(ワード線WL(prog)が活性)となることで、メモリセル20は、NMOSトランジスタ22をオン状態にする。なお、切断用電源EFVの端子には、メモリセル20にデータを書込むとき、フューズ素子21の配線を切断するための大きな電流を流すことができる程度の高い電圧を有する電源電圧を供給できるように設定しておくものとする。具体的に、切断用電源EFVの端子は、図示していないパッドを含み、かつ不揮発性メモリ10の外部から電源電圧か接地電圧かに設定することが可能な構成にしてある。 In the memory cell 20 shown in FIG. 3, the AND circuit 24 turns on the NMOS transistor 22 in accordance with the active state of the word line WL (prog) connected to the AND circuit 24 and the selection line CSL. An operation for turning on the NMOS transistor 22 will be described with reference to a timing chart. FIG. 4 is a timing chart of signals when data is written to memory cell 20 according to the first embodiment of the present invention. In the timing chart shown in FIG. 4, the selection signal input to the selection line CSL is “1” (selection line CSL is active), and then the selection signal input to the word line WL (prog) is “1” (word line WL). (Prog) becomes active), the memory cell 20 turns on the NMOS transistor 22. Note that a power supply voltage having a voltage high enough to flow a large current for cutting the wiring of the fuse element 21 when data is written to the memory cell 20 can be supplied to the terminal of the cutting power supply EFV. Shall be set to Specifically, the terminal of the cutting power supply EFV includes a pad (not shown), and can be set to the power supply voltage or the ground voltage from the outside of the nonvolatile memory 10.
 メモリセル20は、NMOSトランジスタ22をオン状態にすることで、電源電圧に設定された切断用電源EFVの端子からフューズ素子21へ矢印Aで示す方向に電流を流してフューズ素子21の配線を切断する。メモリセル20は、フューズ素子21の配線を切断することで、“1”のデータをフューズ素子21に記憶する。なお、図3に示すメモリセル20では、データを書込むときに動作していない部分を破線で示してある。 The memory cell 20 turns on the NMOS transistor 22 to cut the wiring of the fuse element 21 by causing a current to flow from the terminal of the cutting power supply EFV set to the power supply voltage to the fuse element 21 in the direction indicated by the arrow A. To do. The memory cell 20 stores the data “1” in the fuse element 21 by cutting the wiring of the fuse element 21. In the memory cell 20 shown in FIG. 3, a portion not operating when data is written is indicated by a broken line.
 次に、図5は、本発明の実施の形態1に係るメモリセル20からデータを読出すときの動作を説明するための概略図である。図5に示すメモリセル20は、NMOSトランジスタ23のゲート電極に接続するワード線WL(Read)の活性状態に応じて、NMOSトランジスタ23をオン状態にする。なお、切断用電源EFVの端子には、メモリセル20からデータを読出すとき、接地電圧となるように設定しておくものとする。 Next, FIG. 5 is a schematic diagram for explaining an operation when data is read from the memory cell 20 according to the first embodiment of the present invention. The memory cell 20 shown in FIG. 5 turns on the NMOS transistor 23 in accordance with the active state of the word line WL (Read) connected to the gate electrode of the NMOS transistor 23. It is assumed that the terminal of cutting power supply EFV is set to be a ground voltage when data is read from memory cell 20.
 メモリセル20は、NMOSトランジスタ23をオン状態にすることで、NMOSトランジスタ23のソース電極に接続するビット線BLの電流を、フューズ素子21から接地電圧に設定された切断用電源EFVの端子へ矢印Bで示す方向に流す。不揮発性メモリ10は、フューズ素子21の配線の導通状態により変化するビット線BLの電圧を、判定回路30で判定することによりメモリセル20からデータを読出すことができる。なお、図5に示すメモリセル20では、データを読出すときに動作していない部分を破線で示してある。 The memory cell 20 turns on the NMOS transistor 23 so that the current of the bit line BL connected to the source electrode of the NMOS transistor 23 is transferred from the fuse element 21 to the terminal of the cutting power supply EFV set to the ground voltage. Flow in the direction indicated by B. The nonvolatile memory 10 can read data from the memory cell 20 by determining the voltage of the bit line BL that changes depending on the conduction state of the wiring of the fuse element 21 by the determination circuit 30. In the memory cell 20 shown in FIG. 5, a portion not operating when data is read is indicated by a broken line.
 図6は、本発明の実施の形態1に係るメモリセル20からデータを読出す場合に、読出しデータの判定を行なう判定回路30の構成を示す概略図である。図6に示す判定回路30は、コア電源の端子とビット線BLとを接続するスイッチング素子31、ビット線BLに接続してあるセンスアンプSAを備えている。このセンスアンプSAは、図1にも図示されている。コア電源の端子は、切断用電源EFVの端子と異なり、データを読出すときにビット線BLに電流を与える電源端子である。なお、データを書込むとき、切断用電源EFVの端子に与えられる電源電圧は、データを読出すとき、コア電源の端子に与えられる電源電圧より高い。 FIG. 6 is a schematic diagram showing a configuration of a determination circuit 30 that performs determination of read data when data is read from the memory cell 20 according to the first embodiment of the present invention. The determination circuit 30 shown in FIG. 6 includes a switching element 31 that connects a core power supply terminal and a bit line BL, and a sense amplifier SA that is connected to the bit line BL. This sense amplifier SA is also shown in FIG. The terminal of the core power supply is a power supply terminal for supplying a current to the bit line BL when data is read, unlike the terminal of the cutting power supply EFV. Note that when data is written, the power supply voltage applied to the terminal of cutting power supply EFV is higher than the power supply voltage applied to the core power supply terminal when data is read.
 スイッチング素子31は、入力信号/RD_Enableに応じて、コア電源の端子とビット線BLとを接続するか否かを制御している。具体的に、スイッチング素子31は、入力信号/RD_Enableが“0”の場合、コア電源の端子とビット線BLとを接続し、入力信号/RD_Enableが“1”の場合、コア電源の端子とビット線BLとを接続しない。コア電源の端子とビット線BLとを接続しない。ここで、コア電源は、メモリセル20からデータを読出すときに、ビット線BLに電流を供給するための電源電圧を与えるための電源であり、この電源電圧は、一般的にフューズ素子21を切断するときに切断用電源EFVにより与えられる電源電圧より低い。また、コア電源は、図1に示される不揮発性メモリ10に全体の動作電源として使用されることが多い。 The switching element 31 controls whether or not to connect the core power supply terminal and the bit line BL in accordance with the input signal / RD_Enable. Specifically, the switching element 31 connects the core power supply terminal and the bit line BL when the input signal / RD_Enable is “0”, and connects the core power supply terminal and bit when the input signal / RD_Enable is “1”. Do not connect to line BL. The core power supply terminal and the bit line BL are not connected. Here, the core power supply is a power supply for supplying a power supply voltage for supplying a current to the bit line BL when data is read from the memory cell 20, and this power supply voltage generally supplies the fuse element 21 with power. It is lower than the power supply voltage given by the cutting power supply EFV when cutting. Further, the core power supply is often used as the entire operation power supply in the nonvolatile memory 10 shown in FIG.
 センスアンプSAは、スイッチング素子31でコア電源の端子とビット線BLとを接続した場合に、ビット線BLの電圧を増幅し、増幅した電圧が所定のレベル以上か否かに応じて判定した結果を、データOUTとして読出す。 The sense amplifier SA amplifies the voltage of the bit line BL when the terminal of the core power supply and the bit line BL are connected by the switching element 31, and the determination result is based on whether the amplified voltage is equal to or higher than a predetermined level. Is read as data OUT.
 メモリセル20からデータを読出す動作を、タイミングチャートを用いて説明する。図7は、本発明の実施の形態1に係るメモリセル20からデータを読出すときの信号のタイミングチャートである。図7に示すタイミングチャートでは、コア電源の端子とビット線BLとを接続してビット線BLに電流を流すために、t時間、“0”の入力信号/RD_Enableを入力してスイッチング素子31をオン状態にする。スイッチング素子31をオン状態にすると、ビット線BLに電流が流れ、ビット線BLの電圧が0VからaVへ変化する。 The operation of reading data from the memory cell 20 will be described using a timing chart. FIG. 7 is a timing chart of signals when data is read from memory cell 20 according to the first embodiment of the present invention. In the timing chart shown in FIG. 7, in order to connect the core power supply terminal and the bit line BL and to cause a current to flow through the bit line BL, the input signal / RD_Enable of “0” is input and the switching element 31 is turned on for t time. Turn on. When the switching element 31 is turned on, a current flows through the bit line BL, and the voltage of the bit line BL changes from 0V to aV.
 その後、ワード線WL(read)に入力する選択信号が“1”(ワード線WL(read)が活性)となることで、NMOSトランジスタ23がオン状態となり、ビット線BLの電流を、フューズ素子21から接地電圧に設定された切断用電源EFVの端子へ流す。フューズ素子21の配線が切断されている場合、ビット線BLの電流はフューズ素子21を介して接地電圧に設定された切断用電源EFVの端子へ流れることはないので、ビット線BLの電圧はaVから変化しない。一方、フューズ素子21の配線が切断されていない(未切断)場合、ビット線BLの電流はフューズ素子21を介して接地電圧に設定された切断用電源EFVの端子へ流れるので、ビット線BLの電圧はaVから0Vへと変化する。 Thereafter, when the selection signal input to the word line WL (read) becomes “1” (the word line WL (read) is activated), the NMOS transistor 23 is turned on, and the current of the bit line BL is changed to the fuse element 21. To the terminal of the cutting power supply EFV set to the ground voltage. When the wiring of the fuse element 21 is cut, the current of the bit line BL does not flow to the terminal of the cutting power supply EFV set to the ground voltage via the fuse element 21, so that the voltage of the bit line BL is aV Does not change. On the other hand, when the wiring of the fuse element 21 is not cut (uncut), the current of the bit line BL flows to the terminal of the cutting power supply EFV set to the ground voltage via the fuse element 21, so that the bit line BL The voltage changes from aV to 0V.
 次に、センスアンプSAを駆動させる信号“1”がセンスアンプSAに入力されると、センスアンプSAは、ビット線BLの電圧を増幅し、増幅した電圧が所定のレベル以上か否かを判定する。センスアンプSAは、増幅した電圧が所定のレベル以上の場合、フューズ素子21の配線が切断されていると判定して、“1”のデータをデータOUTとして読出す。一方、センスアンプSAは、増幅した電圧が所定のレベル未満の場合、フューズ素子21の配線が切断されていない(未切断)と判定して、“0”のデータをデータOUTとして読出す。 Next, when a signal “1” for driving the sense amplifier SA is input to the sense amplifier SA, the sense amplifier SA amplifies the voltage of the bit line BL and determines whether the amplified voltage is equal to or higher than a predetermined level. To do. When the amplified voltage is equal to or higher than a predetermined level, the sense amplifier SA determines that the wiring of the fuse element 21 is disconnected and reads “1” data as data OUT. On the other hand, when the amplified voltage is lower than a predetermined level, the sense amplifier SA determines that the wiring of the fuse element 21 is not cut (not cut), and reads “0” data as data OUT.
 以上のように、本発明の実施の形態1に係る不揮発性メモリ10は、切断用電源EFVの端子に一端が接続されたフューズ素子21の他端に接続し、切断用電源EFVの端子からフューズ素子21へ流す電流を制御するNMOSトランジスタ22と、フューズ素子21の他端に接続し、フューズ素子21から切断用電源EFVの端子へ流す電流を制御するNMOSトランジスタ23と、NMOSトランジスタ22のゲート電極に接続するAND回路24とを備える。そのため、不揮発性メモリ10は、フューズ切断時に電源電圧となる切断用電源EFVからフューズ素子21へ電流を供給するために、ビット線BLと切断用電源EFVの端子との接続を制御する選択回路を備える必要がない。不揮発性メモリ10は、選択回路を備える必要がないので、電源投入時、この選択回路の誤動作により、フューズ素子21を誤切断することがない。 As described above, the nonvolatile memory 10 according to Embodiment 1 of the present invention is connected to the other end of the fuse element 21 whose one end is connected to the terminal of the cutting power supply EFV, and from the terminal of the cutting power supply EFV to the fuse. An NMOS transistor 22 that controls the current that flows to the element 21, an NMOS transistor 23 that is connected to the other end of the fuse element 21, controls the current that flows from the fuse element 21 to the terminal of the cutting power supply EFV, and the gate electrode of the NMOS transistor 22 AND circuit 24 connected to. Therefore, the non-volatile memory 10 includes a selection circuit that controls the connection between the bit line BL and the terminal of the cutting power supply EFV in order to supply a current from the cutting power supply EFV that becomes a power supply voltage at the time of fuse cutting to the fuse element 21. There is no need to prepare. Since the nonvolatile memory 10 does not need to include a selection circuit, the fuse element 21 is not erroneously disconnected due to a malfunction of the selection circuit when the power is turned on.
 不揮発性メモリ10は、フューズ素子21の配線を切断するとき以外、切断用電源EFVの端子を接地電圧に設定してあるので、制御信号が電源投入時に不定となって、NMOSトランジスタ22がオン状態になってもフューズ素子21間に電位差が生じないため、フューズ素子21を誤切断することがない。なお、不揮発性メモリ10は、データの書込みを、通常、出荷テスト時にのみ行なうので、市場で使用されるときも、切断用電源EFVの端子が接地電圧に設定される。 In the non-volatile memory 10, the terminal of the power supply EFV for cutting is set to the ground voltage except when the wiring of the fuse element 21 is cut. Therefore, the control signal becomes indefinite when the power is turned on, and the NMOS transistor 22 is turned on. In this case, since no potential difference is generated between the fuse elements 21, the fuse element 21 is not erroneously cut. Since nonvolatile memory 10 normally writes data only at the time of a shipping test, the terminal of cutting power supply EFV is set to the ground voltage even when used in the market.
 また、不揮発性メモリ10は、切断用電源EFVで駆動する選択回路を備える必要がないので、フューズ素子21の評価時にフューズ素子21に印加する電圧を低くするために選択回路のスイッチング素子の抵抗を大きくする必要がなく、アレイ単位でフューズ素子21の抵抗を正確に測定することができる。なお、不揮発性メモリ10は、アレイ単位でフューズ素子21の抵抗を正確に測定することができるので、出荷テスト時にフューズ素子21の良品・不用品の判定だけではなく、フューズ素子21の配線を切断するときのマージンもテストすることが可能となり、製品のテスト品質が向上する。 In addition, since the nonvolatile memory 10 does not need to include a selection circuit that is driven by the cutting power supply EFV, the resistance of the switching element of the selection circuit is reduced in order to reduce the voltage applied to the fuse element 21 when the fuse element 21 is evaluated. There is no need to increase the resistance, and the resistance of the fuse element 21 can be accurately measured in array units. Since the nonvolatile memory 10 can accurately measure the resistance of the fuse element 21 in units of arrays, the wiring of the fuse element 21 is disconnected in addition to determining whether the fuse element 21 is good or not at the time of a shipment test. It is also possible to test the margin when doing so, improving the test quality of the product.
 さらに、不揮発性メモリ10は、選択回路を備える必要がないので、フューズ素子21およびNMOSトランジスタ22,23のみで正確な信頼性を評価することができ、開発コストを安価にすることができる。 Furthermore, since the nonvolatile memory 10 does not need to include a selection circuit, accurate reliability can be evaluated only with the fuse element 21 and the NMOS transistors 22 and 23, and the development cost can be reduced.
 また、不揮発性メモリ10は、データを書込むときNOMSトランジスタ22を介する経路を、データを読出すときNOMSトランジスタ23を介する経路をそれぞれ用いるので、データを書込むときと、データを読出すときとで異なる経路でフューズ素子21に電流を流すことができる。そのため、不揮発性メモリ10は、フューズ素子21に与えるストレスを減らして、データの読出し回数をより多く、または制限することなく安定して動作することができる。 Since the nonvolatile memory 10 uses a path through the NOMS transistor 22 when writing data and a path through the NOMS transistor 23 when reading data, the nonvolatile memory 10 writes data and reads data. Thus, current can be passed through the fuse element 21 through different paths. Therefore, the nonvolatile memory 10 can operate stably without reducing the stress applied to the fuse element 21 and without increasing or limiting the number of times of reading data.
 さらに、不揮発性メモリ10は、フューズ素子21とビット線BLとの間にNOMSトランジスタ23を設けてあるので、ワード線WL(read)が活性しているメモリセル20のみにビット線BLの初期電荷が流れ、他のメモリセル20にビット線BLの初期電荷が流れることがない。 Further, since the nonvolatile memory 10 includes the NOMS transistor 23 between the fuse element 21 and the bit line BL, the initial charge of the bit line BL is only applied to the memory cell 20 in which the word line WL (read) is active. And the initial charge of the bit line BL does not flow to the other memory cells 20.
  (実施の形態2)
 図8は、本発明の実施の形態2に係る不揮発性メモリの構成を示す概略図である。図8に示す不揮発性メモリ11は、データを不可逆かつ不揮発に記憶する半導体装置である。不揮発性メモリ11は、フューズ素子を含むメモリセル40をマトリックス状に複数配置してあるフューズアレイ7、フューズアレイ7のワード線WLに選択信号を供給する行デコーダ(RD)2、フューズアレイ7のビット線BLを選択する列デコーダ(CD)3、行デコーダ2および列デコーダ3の動作を制御する制御回路4、参照抵抗および参照ワード線電圧を生成する参照値生成回路5を備えている。なお、不揮発性メモリ11は、図1に示す不揮発性メモリ10と同じ構成要素について、同じ符号を付して詳細な説明は省略する。
(Embodiment 2)
FIG. 8 is a schematic diagram showing the configuration of the nonvolatile memory according to Embodiment 2 of the present invention. A nonvolatile memory 11 shown in FIG. 8 is a semiconductor device that stores data irreversibly and in a nonvolatile manner. The nonvolatile memory 11 includes a fuse array 7 in which a plurality of memory cells 40 including fuse elements are arranged in a matrix, a row decoder (RD) 2 that supplies a selection signal to the word lines WL of the fuse array 7, A column decoder (CD) 3 that selects a bit line BL, a control circuit 4 that controls operations of the row decoder 2 and the column decoder 3, and a reference value generation circuit 5 that generates a reference resistor and a reference word line voltage are provided. In the nonvolatile memory 11, the same components as those in the nonvolatile memory 10 shown in FIG.
 フューズアレイ7は、一行のメモリセル40に対して1本のワード線WLを有している。ワード線WLは、メモリセル40にデータを書込むとき(プログラム時(prog))のワード線WLと、メモリセル40からデータを読出すとき(リード時(Read))のワード線WLとを共通のワード線WLで構成してある。そのため、ワード線WLを、メモリセル40にデータを書込むときに用いるワード線WLと、メモリセル40からデータを読出すときに用いるワード線WLとの2本で構成する場合に比べて、不揮発性メモリ11を小型化することができる。なお、ワード線WLは、実施の形態1と同様、メモリセル40にデータを書込むときに用いる第1ワード線のワード線WL(prog)と、メモリセル40からデータを読出すときに用いる第2ワード線のワード線WL(Read)とで構成してもよい。 The fuse array 7 has one word line WL for one row of memory cells 40. The word line WL is common to the word line WL when data is written to the memory cell 40 (program (prog)) and the word line WL when data is read from the memory cell 40 (read). Of word lines WL. Therefore, the word line WL is non-volatile as compared with the case where the word line WL is configured with two word lines WL used when data is written to the memory cell 40 and word line WL used when data is read from the memory cell 40. The memory 11 can be reduced in size. As in the first embodiment, the word line WL is the first word line WL (prog) used when writing data to the memory cell 40 and the first word line used when reading data from the memory cell 40. You may comprise by the word line WL (Read) of 2 word lines.
 また、フューズアレイ7は、一列のメモリセル40に対して1本のビット線BLと、2本の選択線CSLとを有している。2本の選択線CSLは、メモリセル40にデータを書込むときに用いる第1選択線の選択線CSL(prog)と、メモリセル40からデータを読出すときに用いる第2選択線の選択線CSL(Read)とで構成してある。 Also, the fuse array 7 has one bit line BL and two selection lines CSL for one row of memory cells 40. The two selection lines CSL are a selection line CSL (prog) of the first selection line used when writing data into the memory cell 40 and a selection line of the second selection line used when reading data from the memory cell 40. It consists of CSL (Read).
 図9は、本発明の実施の形態2に係るメモリセル40の構成を示す概略図である。図9に示すメモリセル40は、切断用電源EFVの端子に一端を接続し、配線の導通状態によりデータを記憶するフューズ素子21、フューズ素子21の他端にドレイン電極を接続するNMOSトランジスタ22,23、NMOSトランジスタ22のゲート電極に接続するAND回路24、NMOSトランジスタ23のゲート電極に接続するAND回路41を備えている。なお、メモリセル40は、図2に示すメモリセル20と同じ構成要素について、同じ符号を付して詳細な説明は省略する。 FIG. 9 is a schematic diagram showing a configuration of the memory cell 40 according to the second embodiment of the present invention. The memory cell 40 shown in FIG. 9 has one end connected to the terminal of the power supply EFV for cutting, a fuse element 21 for storing data according to the conductive state of the wiring, and an NMOS transistor 22 for connecting a drain electrode to the other end of the fuse element 21. 23, an AND circuit 24 connected to the gate electrode of the NMOS transistor 22, and an AND circuit 41 connected to the gate electrode of the NMOS transistor 23. In the memory cell 40, the same components as those of the memory cell 20 shown in FIG.
 AND回路(第1論理回路)24は、入力側にワード線WLおよび選択線CSL(prog)を、出力側にNMOSトランジスタ22のゲート電極をそれぞれ接続してある。AND回路24は、ワード線WLおよび選択線CSL(prog)に入力する選択信号がともに“1”の場合、NMOSトランジスタ22のゲート電極に出力する信号が“1”となる。NMOSトランジスタ22は、ゲート電極に“1”の信号が供給されるとオン状態となり、フューズ素子21の配線を切断するために、大きな電流を電源電圧に設定された切断用電源EFVの端子からフューズ素子21へ流す。 The AND circuit (first logic circuit) 24 has a word line WL and a select line CSL (prog) connected to the input side, and a gate electrode of the NMOS transistor 22 connected to the output side. In the AND circuit 24, when both the selection signals input to the word line WL and the selection line CSL (prog) are “1”, the signal output to the gate electrode of the NMOS transistor 22 is “1”. The NMOS transistor 22 is turned on when a signal of “1” is supplied to the gate electrode, and in order to cut the wiring of the fuse element 21, a large current is fused from the terminal of the cutting power supply EFV set to the power supply voltage. Flow to element 21.
 AND回路(第2論理回路)41は、入力側にワード線WLおよび選択線CSL(Read)を、出力側にNMOSトランジスタ23のゲート電極をそれぞれ接続してある。AND回路41は、ワード線WLおよび選択線CSL(Read)に入力する選択信号がともに“1”の場合、NMOSトランジスタ23のゲート電極に出力する信号が“1”となる。NMOSトランジスタ23は、ゲート電極に“1”の信号が供給されるとオン状態となり、フューズ素子21の配線の導通状態を検知するために、電流をフューズ素子21から接地電圧に設定された切断用電源EFVの端子へ流す。 The AND circuit (second logic circuit) 41 has a word line WL and a select line CSL (Read) connected to the input side, and a gate electrode of the NMOS transistor 23 connected to the output side. In the AND circuit 41, when the selection signals input to the word line WL and the selection line CSL (Read) are both “1”, the signal output to the gate electrode of the NMOS transistor 23 is “1”. The NMOS transistor 23 is turned on when a signal of “1” is supplied to the gate electrode, and in order to detect the conduction state of the wiring of the fuse element 21, the current is disconnected from the fuse element 21 to the ground voltage. Flow to the terminal of the power supply EFV.
 次に、不揮発性メモリ11の動作について説明する。不揮発性メモリ11の動作は、メモリセル40にデータを書込むときと、メモリセル40からデータを読出すときとに分けて説明する。 Next, the operation of the nonvolatile memory 11 will be described. The operation of the nonvolatile memory 11 will be described separately when data is written to the memory cell 40 and when data is read from the memory cell 40.
 まず、図10は、本発明の実施の形態2に係るメモリセル40にデータを書込むときの動作を説明するための概略図である。ここで、メモリセル40に記憶させるデータは、“0”または“1”の値を有するものとし、フューズ素子21は、配線を切断しない場合“0”のデータを、配線を切断する場合“1”のデータをそれぞれ記憶するものとする。故に、実質的に“1”のデータを書込むことしかできず、“0”データを記憶させることは、“1”のデータを書込まないことと等価である。そのため、メモリセル20にデータを書込むことを、データを不揮発性メモリ10にプログラムするともいう。本実施の形態2でも、フューズ素子21の配線を切断する場合を、データを書込むと表現して以下説明する。 First, FIG. 10 is a schematic diagram for explaining an operation when data is written in the memory cell 40 according to the second embodiment of the present invention. Here, it is assumed that the data stored in the memory cell 40 has a value of “0” or “1”, and the fuse element 21 uses “0” data when the wiring is not cut, and “1” when the wiring is cut. ”Is stored. Therefore, data of “1” can only be substantially written, and storing “0” data is equivalent to not writing data of “1”. Therefore, writing data into the memory cell 20 is also referred to as programming data into the nonvolatile memory 10. Also in the second embodiment, the case where the wiring of the fuse element 21 is cut will be described below by expressing that data is written.
 図10に示すメモリセル40は、AND回路24が、AND回路24に接続するワード線WLおよび選択線CSL(prog)の活性状態に応じて、NMOSトランジスタ22をオン状態にする。NMOSトランジスタ22をオン状態にする動作のタイミングチャートは、図4に示すタイミングチャートの選択線CSLを選択線CSL(prog)に、ワード線WL(prog)をワード線WLに読替えたタイミングチャートと同じである。そのため、本発明の実施の形態2に係るメモリセル40にデータを書込むときの信号のタイミングチャートの図示を省略する。NMOSトランジスタ22をオン状態にする動作のタイミングチャートは、選択線CSL(prog)に入力する選択信号が“1”(選択線CSL(prog)が活性)となり、その後、ワード線WLに入力する選択信号が“1”(ワード線WLが活性)となることで、メモリセル40は、NMOSトランジスタ22をオン状態にする。なお、切断用電源EFVの端子には、メモリセル40にデータを書込むとき、フューズ素子21の配線を切断するための大きな電流を流すことができる程度の高い電圧を有する電源電圧を供給できるように設定しておくものとする。 In the memory cell 40 shown in FIG. 10, the AND circuit 24 turns on the NMOS transistor 22 in accordance with the active state of the word line WL and select line CSL (prog) connected to the AND circuit 24. The timing chart of the operation to turn on the NMOS transistor 22 is the same as the timing chart of the timing chart shown in FIG. 4 in which the selection line CSL is replaced with the selection line CSL (prog) and the word line WL (prog) is replaced with the word line WL. It is. Therefore, illustration of a timing chart of signals when data is written in the memory cell 40 according to the second embodiment of the present invention is omitted. In the timing chart of the operation for turning on the NMOS transistor 22, the selection signal input to the selection line CSL (prog) becomes “1” (the selection line CSL (prog) is active), and then the selection is input to the word line WL. When the signal becomes “1” (the word line WL is activated), the memory cell 40 turns on the NMOS transistor 22. Note that a power supply voltage having a voltage high enough to flow a large current for cutting the wiring of the fuse element 21 when data is written to the memory cell 40 can be supplied to the terminal of the cutting power supply EFV. Shall be set to
 メモリセル40は、NMOSトランジスタ22をオン状態とすることで、電源電圧に設定された切断用電源EFVの端子からフューズ素子21へ矢印Aで示す方向に電流を流してフューズ素子21の配線を切断する。メモリセル40は、フューズ素子21の配線を切断することで、“1”のデータをフューズ素子21に記憶する。なお、図10に示すメモリセル40では、データを書込むときに動作していない部分を破線で示してある。 By turning on the NMOS transistor 22, the memory cell 40 cuts the wiring of the fuse element 21 by causing a current to flow from the terminal of the cutting power supply EFV set to the power supply voltage to the fuse element 21 in the direction indicated by the arrow A. To do. The memory cell 40 stores “1” data in the fuse element 21 by cutting the wiring of the fuse element 21. In the memory cell 40 shown in FIG. 10, a portion not operating when data is written is indicated by a broken line.
 次に、図11は、本発明の実施の形態2に係るメモリセル40からデータを読出すときの動作を説明するための概略図である。図11に示すメモリセル40は、AND回路41が、AND回路41に接続するワード線WL(Read)および選択線CSL(Read)の活性状態に応じて、NMOSトランジスタ23をオン状態にする。なお、切断用電源EFVの端子には、メモリセル40からデータを読出すとき、接地電圧となるように設定しておくものとする。 FIG. 11 is a schematic diagram for explaining an operation when data is read from the memory cell 40 according to the second embodiment of the present invention. In the memory cell 40 illustrated in FIG. 11, the AND circuit 41 turns on the NMOS transistor 23 in accordance with the active state of the word line WL (Read) and the selection line CSL (Read) connected to the AND circuit 41. It is assumed that the terminal of cutting power supply EFV is set to be a ground voltage when data is read from memory cell 40.
 メモリセル40は、NMOSトランジスタ23をオン状態にすることで、NMOSトランジスタ23のソース電極に接続するビット線BLの電流を、フューズ素子21から接地電圧に設定された切断用電源EFVの端子へ矢印Bで示す方向に流す。不揮発性メモリ11は、フューズ素子21の配線の導通状態により変化するビット線BLの電圧を、判定回路30で判定することでメモリセル40からデータを読出す。なお、図11に示すメモリセル40では、データを読出すときに動作していない部分を破線で示してある。また、判定回路30は、図6に示す判定回路30と同じ構成であるため、詳細な説明は省略する。 By turning on the NMOS transistor 23, the memory cell 40 causes the current of the bit line BL connected to the source electrode of the NMOS transistor 23 to flow from the fuse element 21 to the terminal of the cutting power supply EFV set to the ground voltage. Flow in the direction indicated by B. The nonvolatile memory 11 reads data from the memory cell 40 by determining the voltage of the bit line BL that changes depending on the conduction state of the wiring of the fuse element 21 by the determination circuit 30. In the memory cell 40 shown in FIG. 11, a portion not operating when data is read is indicated by a broken line. The determination circuit 30 has the same configuration as the determination circuit 30 shown in FIG.
 メモリセル40からデータを読出す動作を、タイミングチャートを用いて説明する。図12は、本発明の実施の形態2に係るメモリセル40からデータを読出すときの信号のタイミングチャートである。図12に示すタイミングチャートでは、コア電源の端子とビット線BLとを接続してビット線BLに電流を流すために、t時間、“0”の入力信号/RD_Enableを入力してスイッチング素子31をオン状態にする。スイッチング素子31をオン状態にすると、ビット線BLに電流が流れ、ビット線BLの電圧が0VからaVへ変化する。 The operation of reading data from the memory cell 40 will be described using a timing chart. FIG. 12 is a timing chart of signals when data is read from memory cell 40 according to the second embodiment of the present invention. In the timing chart shown in FIG. 12, in order to connect the terminal of the core power supply and the bit line BL and to allow a current to flow through the bit line BL, the input signal / RD_Enable of “0” is input and the switching element 31 is turned on for t time. Turn on. When the switching element 31 is turned on, a current flows through the bit line BL, and the voltage of the bit line BL changes from 0V to aV.
 その後、選択線CSL(read)に入力する選択信号が“1”(選択線CSL(read)が活性)となり、さらに、ワード線WLに入力する選択信号が“1”(ワード線WLが活性)となることで、NMOSトランジスタ23がオン状態となり、ビット線BLの電流を、フューズ素子21から接地電圧に設定された切断用電源EFVの端子へ流す。フューズ素子21の配線が切断されている場合、ビット線BLの電流はフューズ素子21を介して接地電圧に設定された切断用電源EFVの端子へ流れることはないので、ビット線BLの電圧はaVから変化しない。一方、フューズ素子21の配線が切断されていない(未切断)場合、ビット線BLの電流はフューズ素子21を介して接地電圧に設定された切断用電源EFVの端子へ流れるので、ビット線BLの電圧はaVから0Vへと変化する。 Thereafter, the selection signal input to the selection line CSL (read) becomes “1” (the selection line CSL (read) is active), and the selection signal input to the word line WL is “1” (the word line WL is active). As a result, the NMOS transistor 23 is turned on, and the current of the bit line BL flows from the fuse element 21 to the terminal of the cutting power supply EFV set to the ground voltage. When the wiring of the fuse element 21 is cut, the current of the bit line BL does not flow to the terminal of the cutting power supply EFV set to the ground voltage via the fuse element 21, so that the voltage of the bit line BL is aV Does not change. On the other hand, when the wiring of the fuse element 21 is not cut (uncut), the current of the bit line BL flows to the terminal of the cutting power supply EFV set to the ground voltage via the fuse element 21, so that the bit line BL The voltage changes from aV to 0V.
 次に、センスアンプSAを駆動させる信号“1”がセンスアンプSAに入力されると、センスアンプSAは、ビット線BLの電圧を増幅し、増幅した電圧が所定のレベル以上か否かを判定する。センスアンプSAは、増幅した電圧が所定のレベル以上の場合、フューズ素子21の配線が切断されていると判定して、“1”のデータをデータOUTとして読出す。一方、センスアンプSAは、増幅した電圧が所定のレベル未満の場合、フューズ素子21の配線が切断されていない(未切断)と判定して、“0”のデータをデータOUTとして読出す。 Next, when a signal “1” for driving the sense amplifier SA is input to the sense amplifier SA, the sense amplifier SA amplifies the voltage of the bit line BL and determines whether the amplified voltage is equal to or higher than a predetermined level. To do. When the amplified voltage is equal to or higher than a predetermined level, the sense amplifier SA determines that the wiring of the fuse element 21 is disconnected and reads “1” data as data OUT. On the other hand, when the amplified voltage is lower than a predetermined level, the sense amplifier SA determines that the wiring of the fuse element 21 is not cut (not cut), and reads “0” data as data OUT.
 以上のように、本発明の実施の形態2に係る不揮発性メモリ11は、NMOSトランジスタ23のゲート電極に接続するAND回路41をさらに備え、データを読出すとき、AND回路41は、AND回路41に接続するワード線WLおよび選択線CSL(read)の活性状態に応じて、NMOSトランジスタ23をオン状態にすることで、ビット線BLの電流を、フューズ素子21から接地電圧に設定された切断用電源EFVの端子へ流す。そのため、不揮発性メモリ11は、ワード線WLおよび選択線CSL(read)に入力する選択信号がともに“1”となるメモリセル40に対してのみ、ビット線BLの電流を、フューズ素子21から接地電圧に設定された切断用電源EFVの端子へ流すことができ、不揮発性メモリ11全体で消費する電流を削減することができる。 As described above, the nonvolatile memory 11 according to the second embodiment of the present invention further includes the AND circuit 41 connected to the gate electrode of the NMOS transistor 23. When reading data, the AND circuit 41 is the AND circuit 41. By turning on the NMOS transistor 23 in accordance with the active state of the word line WL connected to the selection line and the selection line CSL (read), the current of the bit line BL is disconnected from the fuse element 21 to the ground voltage. Flow to the terminal of the power supply EFV. Therefore, the nonvolatile memory 11 grounds the current of the bit line BL from the fuse element 21 only to the memory cell 40 in which the selection signals input to the word line WL and the selection line CSL (read) are both “1”. The current can be supplied to the terminal of the cutting power supply EFV set to a voltage, and the current consumed by the entire nonvolatile memory 11 can be reduced.
 つまり、不揮発性メモリ11は、データを読出す一つのメモリセル40に対して、ビット線BLの電流を、フューズ素子21から接地電圧に設定された切断用電源EFVの端子へ流し、データを読出さない他のメモリセル40に対して、無駄なビット線BLの電流を流さないので、不揮発性メモリ11全体で消費する電流を削減することができる。なお、不揮発性メモリ11は、ワード線WLおよび選択線CSL(read)に入力する選択信号がともに“1”となる単位を、一つのメモリセル40に限定するものではなく、複数のメモリセル40としてもよい。 In other words, the non-volatile memory 11 causes the current of the bit line BL to flow from the fuse element 21 to the terminal of the cutting power supply EFV set to the ground voltage for one memory cell 40 from which data is read to read the data. Since no unnecessary current of the bit line BL is supplied to other memory cells 40 that are not output, the current consumed by the entire nonvolatile memory 11 can be reduced. The nonvolatile memory 11 is not limited to a single memory cell 40 as a unit in which both selection signals input to the word line WL and the selection line CSL (read) are “1”. It is good.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,7,101 フューズアレイ、2,102 行デコーダ、3,103 列デコーダ、4,104 制御回路、5,105 参照値生成回路、10,11,100 不揮発性メモリ、20,40,200 メモリセル、21,201 フューズ素子、22,23 NMOSトランジスタ、24,41 AND回路、30 判定回路、31,301 スイッチング素子、202 トランジスタ、300 選択回路、302 レベル変換回路、303 増幅器。 1,7,101 fuse array, 2,102 row decoder, 3,103 column decoder, 4,104 control circuit, 5,105 reference value generation circuit, 10, 11, 100 non-volatile memory, 20, 40, 200 memory cells 21, 201 fuse element, 22, 23 NMOS transistor, 24, 41 AND circuit, 30 determination circuit, 31, 301 switching element, 202 transistor, 300 selection circuit, 302 level conversion circuit, 303 amplifier.

Claims (7)

  1.  データを不可逆かつ不揮発に記憶する半導体装置であって、
     電源電圧と接地電圧とを切替えることが可能な電源端子に一端を接続し、配線の導通状態によりデータを記憶するフューズ素子と、
     前記フューズ素子の他端に一方の電流電極を接続し、前記電源端子から前記フューズ素子へ流す電流を制御する第1トランジスタと、
     前記第1トランジスタに対して並列に、前記フューズ素子の他端に一方の電流電極を接続し、前記フューズ素子から前記電源端子へ流す電流を制御する第2トランジスタと、
     前記第1トランジスタの制御電極に接続する第1論理回路と
     を備え、
     データを書込むとき、前記第1論理回路は、前記第1論理回路に接続する第1ワード線および第1選択線の活性状態に応じて、前記第1トランジスタをオン状態にすることで、電源電圧の前記電源端子から前記フューズ素子へ電流を流して前記フューズ素子の配線を切断し、
     データを読出すとき、前記第2トランジスタは、前記第2トランジスタの制御電極に接続する第2ワード線の活性状態に応じて、オン状態となり、前記第2トランジスタの他方の電流電極に接続するビット線の電流を、前記フューズ素子から接地電圧の前記電源端子へ流す、半導体装置。
    A semiconductor device for storing data in an irreversible and nonvolatile manner,
    A fuse element that connects one end to a power supply terminal capable of switching between a power supply voltage and a ground voltage, and stores data according to a conductive state of the wiring;
    A first transistor for connecting one current electrode to the other end of the fuse element and controlling a current flowing from the power supply terminal to the fuse element;
    In parallel with the first transistor, one current electrode is connected to the other end of the fuse element, and a second transistor for controlling a current flowing from the fuse element to the power supply terminal;
    A first logic circuit connected to the control electrode of the first transistor;
    When writing data, the first logic circuit turns on the first transistor in accordance with the active state of the first word line and the first selection line connected to the first logic circuit, thereby supplying power. A current is passed from the power supply terminal of the voltage to the fuse element to cut the wiring of the fuse element;
    When reading data, the second transistor is turned on according to the active state of the second word line connected to the control electrode of the second transistor, and is connected to the other current electrode of the second transistor. A semiconductor device in which a current of a line is supplied from the fuse element to the power supply terminal of a ground voltage.
  2.  データを不可逆かつ不揮発に記憶するメモリセルをマトリックス状に複数配置してある半導体装置であって、
     前記メモリセルは、
     電源電圧と接地電圧とを切替えることが可能な電源端子に一端を接続し、配線の導通状態によりデータを記憶するフューズ素子と、
     前記フューズ素子の他端に一方の電流電極を接続し、前記電源端子から前記フューズ素子へ流す電流を制御する第1トランジスタと、
     前記第1トランジスタに対して並列に、前記フューズ素子の他端に一方の電流電極を接続し、前記フューズ素子から前記電源端子へ流す電流を制御する第2トランジスタと、
     前記第1トランジスタの制御電極に接続する第1論理回路と
     を備え、
     データを書込むとき、前記第1論理回路は、前記第1論理回路に接続する第1ワード線および第1選択線の活性状態に応じて、前記第1トランジスタをオン状態にすることで、電源電圧の前記電源端子から前記フューズ素子へ電流を流して前記フューズ素子の配線を切断し、
     データを読出すとき、前記第2トランジスタは、前記第2トランジスタの制御電極に接続する第2ワード線の活性状態に応じて、オン状態となり、前記第2トランジスタの他方の電流電極に接続するビット線の電流を、前記フューズ素子から接地電圧の前記電源端子へ流す、半導体装置。
    A semiconductor device in which a plurality of memory cells that store data in an irreversible and nonvolatile manner are arranged in a matrix,
    The memory cell is
    A fuse element that connects one end to a power supply terminal capable of switching between a power supply voltage and a ground voltage, and stores data according to a conductive state of the wiring;
    A first transistor for connecting one current electrode to the other end of the fuse element and controlling a current flowing from the power supply terminal to the fuse element;
    In parallel with the first transistor, one current electrode is connected to the other end of the fuse element, and a second transistor for controlling a current flowing from the fuse element to the power supply terminal;
    A first logic circuit connected to the control electrode of the first transistor;
    When writing data, the first logic circuit turns on the first transistor in accordance with the active state of the first word line and the first selection line connected to the first logic circuit, thereby supplying power. A current is passed from the power supply terminal of the voltage to the fuse element to cut the wiring of the fuse element;
    When reading data, the second transistor is turned on according to the active state of the second word line connected to the control electrode of the second transistor, and is connected to the other current electrode of the second transistor. A semiconductor device in which a current of a line is supplied from the fuse element to the power supply terminal of a ground voltage.
  3.  前記第1トランジスタは、前記第2トランジスタに比べ、トランジスタサイズが大きい請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the first transistor has a larger transistor size than the second transistor.
  4.  前記第2トランジスタの制御電極に接続する第2論理回路をさらに備え、
     データを読出すとき、前記第2論理回路は、前記第2論理回路に接続する前記第2ワード線および第2選択線の活性状態に応じて、前記第2トランジスタをオン状態にすることで、前記ビット線の電流を、前記フューズ素子から接地電圧の前記電源端子へ流す、請求項1または2に記載の半導体装置。
    A second logic circuit connected to the control electrode of the second transistor;
    When reading data, the second logic circuit turns on the second transistor in accordance with the active state of the second word line and the second selection line connected to the second logic circuit, The semiconductor device according to claim 1, wherein a current of the bit line is supplied from the fuse element to the power supply terminal of a ground voltage.
  5.  前記第1論理回路に接続する前記第1ワード線と、前記第2論理回路に接続する前記第2ワード線とは、共通のワード線で構成してある、請求項4に記載の半導体装置。 5. The semiconductor device according to claim 4, wherein the first word line connected to the first logic circuit and the second word line connected to the second logic circuit are configured by a common word line.
  6.  前記電源端子は、パッドを含み、かつ前記半導体装置の外部から電源電圧か接地電圧かに設定可能である、請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the power supply terminal includes a pad and can be set to a power supply voltage or a ground voltage from the outside of the semiconductor device.
  7.  前記電源端子と異なり、前記データを読出すときに前記ビット線に電流を与えるコア電源端子を備え、前記データを書込むときに前記電源端子に与えられる電源電圧は、前記データを読出すときに前記コア電源端子に与えられる電源電圧より高い、請求項6記載の半導体装置。 Unlike the power supply terminal, it includes a core power supply terminal that supplies a current to the bit line when reading the data, and the power supply voltage applied to the power supply terminal when writing the data is when reading the data The semiconductor device according to claim 6, wherein the semiconductor device is higher than a power supply voltage applied to the core power supply terminal.
PCT/JP2012/059635 2011-04-13 2012-04-09 Semiconductor device provided with fuse element WO2012141118A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013509890A JP5559935B2 (en) 2011-04-13 2012-04-09 Semiconductor device provided with fuse element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-088978 2011-04-13
JP2011088978 2011-04-13

Publications (1)

Publication Number Publication Date
WO2012141118A1 true WO2012141118A1 (en) 2012-10-18

Family

ID=47009291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059635 WO2012141118A1 (en) 2011-04-13 2012-04-09 Semiconductor device provided with fuse element

Country Status (2)

Country Link
JP (1) JP5559935B2 (en)
WO (1) WO2012141118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222474A (en) * 2012-04-13 2013-10-28 Lapis Semiconductor Co Ltd Nonvolatile memory circuit, semiconductor device, and read method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193660A (en) * 2008-02-13 2009-08-27 Magnachip Semiconductor Ltd Unit cell of nonvolatile memory device and nonvolatile memory device having the same
US20110080764A1 (en) * 2009-10-05 2011-04-07 Renesas Electronics Corporation One-time programable cell circuit, semiconductor integrated circuit including the same, and data judging method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793030B2 (en) * 1990-04-06 1995-10-09 株式会社東芝 Semiconductor memory device
DE102006053902A1 (en) * 2006-11-15 2008-05-21 Austriamicrosystems Ag Circuit arrangement comprising a memory cell array, and method for its operation
US7710813B1 (en) * 2008-03-05 2010-05-04 Xilinx, Inc. Electronic fuse array
JP5238458B2 (en) * 2008-11-04 2013-07-17 株式会社東芝 Nonvolatile semiconductor memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193660A (en) * 2008-02-13 2009-08-27 Magnachip Semiconductor Ltd Unit cell of nonvolatile memory device and nonvolatile memory device having the same
US20110080764A1 (en) * 2009-10-05 2011-04-07 Renesas Electronics Corporation One-time programable cell circuit, semiconductor integrated circuit including the same, and data judging method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222474A (en) * 2012-04-13 2013-10-28 Lapis Semiconductor Co Ltd Nonvolatile memory circuit, semiconductor device, and read method

Also Published As

Publication number Publication date
JP5559935B2 (en) 2014-07-23
JPWO2012141118A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
US8553486B2 (en) Semiconductor memory device correcting fuse data and method of operating the same
US8456884B2 (en) Semiconductor device
US9236123B2 (en) Semiconductor device and write method
JP2011053957A (en) Reference current generating circuit
US8154941B2 (en) Non-volatile semiconductor memory device and method of writing data therein
US9991003B2 (en) Methods for reading and operating memory device including efuse
KR100426909B1 (en) Semiconductor device
JP4988190B2 (en) Nonvolatile semiconductor memory
JP2010123753A (en) Semiconductor device, method of programming anti-fuse element for semiconductor device, and method of manufacturing semiconductor device
KR20060108230A (en) Non-volatile semiconductor memory device for storing multi-value data
JP4646608B2 (en) Semiconductor memory device
JP5368266B2 (en) Semiconductor nonvolatile memory circuit
US8369137B2 (en) Semiconductor memory device including a write driver to output a program signal
JP2007157206A (en) Semiconductor integrated circuit apparatus
US20020136070A1 (en) Semiconductor memory device adopting redundancy system
JP5559935B2 (en) Semiconductor device provided with fuse element
JP2010182365A (en) Anti-fuse circuit and semiconductor memory device
KR101619779B1 (en) One-time programmable memory apparatus
US8116163B2 (en) Semiconductor memory device
JP2009016568A (en) Semiconductor integrated circuit device
US9589603B2 (en) Semiconductor device and operating method thereof
JP2010262711A (en) Semiconductor device having electric fuse memory
KR101762920B1 (en) One-time programmable memory apparatus
KR101403499B1 (en) One-Time Programable Memory of Electrical Fuse Type With Its Sensing Voltage Increased
JP2012014828A (en) Reference current generating circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013509890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12770800

Country of ref document: EP

Kind code of ref document: A1