WO2012140926A1 - Optical coherence tomography apparatus and optical coherence tomography method - Google Patents

Optical coherence tomography apparatus and optical coherence tomography method Download PDF

Info

Publication number
WO2012140926A1
WO2012140926A1 PCT/JP2012/050834 JP2012050834W WO2012140926A1 WO 2012140926 A1 WO2012140926 A1 WO 2012140926A1 JP 2012050834 W JP2012050834 W JP 2012050834W WO 2012140926 A1 WO2012140926 A1 WO 2012140926A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
subject
tomographic image
lens
Prior art date
Application number
PCT/JP2012/050834
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 鹿熊
Original Assignee
株式会社吉田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社吉田製作所 filed Critical 株式会社吉田製作所
Publication of WO2012140926A1 publication Critical patent/WO2012140926A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea

Definitions

  • the present invention relates to an optical coherent tomographic image generation apparatus and an optical coherent tomographic image generation method for capturing a tomographic image inside an object using coherent light, and more particularly to an optical coherent tomographic image using high coherent light.
  • the present invention relates to an image generation apparatus and an optical coherence tomographic image generation method.
  • an optical coherence tomographic image generation apparatus (Optical Coherence Tomography: hereinafter referred to as an OCT apparatus) is applied in ophthalmic medicine such as tomographic measurement of an eyeball cornea or a retina in the field of living bodies.
  • OCT methods are broadly divided into TD (Time Domain) -OCT and FD (Frequency Domain) -OCT.
  • FD-OCT is classified into SD (Spectrum Domain) -OCT and SS (Swept Source) -OCT. It is known to be classified.
  • SS-OCT is a method in which a laser light source capable of continuously sweeping wavelengths (wave numbers) is used, spectral information acquired by a detector is processed by FFT (Fast Fourier Transform), and an optical path length is specified.
  • FFT Fast Fourier Transform
  • SS-OCT has features such as higher resolution and real-time measurement than X-ray imaging devices and CT (Computed Tomography) devices.
  • CT Computer Planarcomputed Tomography
  • TD-OCT has been tried for dental use, but since SS-OCT can acquire data with higher sensitivity and higher speed than TD-OCT, motion artifact (ghost due to body movement) It is characterized by being strong.
  • a handpiece (probe) for a dental photodiagnostic device is provided with OCT means, and means for positioning a photodiagnostic portion of a tooth part is an imaging method using a camera, and for acquiring a surface image inside.
  • the probe of Patent Document 1 includes a collimating lens installed at the tip of an optical fiber for signal light transmission of low-coherent light generated outside, two reflecting mirrors for reflecting signal light from the collimating lens, and a reflection thereof.
  • An oblique mirror that reflects light reflected from the mirror in a right angle direction, a condenser lens that collects the signal light from the oblique mirror, an irradiation window that irradiates the signal light toward the subject, and an oblique mirror (from the irradiation window)
  • the motor for rotating the signal light) is installed in an elongated cylindrical handpiece. And the reflected light from the predetermined area
  • Patent Document 1 since the probe of Patent Document 1 employs low-coherent light and has a short coherent distance (coherent length), it can only generate a light coherence tomographic image in a narrow range with respect to the laser irradiation direction on the subject. There was a problem.
  • Patent Document 1 has a problem that it is difficult to find the target affected area because it cannot search the affected area in a wide range while viewing the subject as a whole.
  • the present invention has been invented to solve such a problem, and an optical coherence tomographic image generation apparatus and an optical coherence tomography capable of generating an optical coherence tomographic image over a wide range in a subject to be photographed. It is an object to provide an image generation method.
  • an optical coherence tomographic image generation apparatus includes a light source that periodically irradiates a laser beam having a high-band wavelength, a measurement light that irradiates the subject with the laser beam, and a reference mirror.
  • An optical splitter that distributes the reference light to be irradiated, a probe that irradiates the subject with the measurement light and receives scattered light that is scattered and returned inside the subject, and the reference light is reflected from the reference mirror
  • an optical multiplexer that generates interference light by combining the reflected light that has returned and the scattered light, and generates an optical coherence tomographic image by analyzing the interference light and generating an optical coherence tomographic image
  • the apparatus is an apparatus, wherein the laser beam is highly coherent light having a coherence distance of 10 mm or more, and the probe is a condensing lens that condenses the measurement light on the subject, and the condensing lens and the subject Adjust the distance to Characterized by comprising a converging point adjusting mechanism for adjusting the point, the.
  • an optical coherence tomographic image (hereinafter simply referred to as “tomographic image”) over a wide range in the depth direction with respect to the laser irradiation direction on the subject. )can be generated.
  • the optical coherence tomographic image generation apparatus can adjust the condensing point of the laser beam with respect to the depth direction with respect to the laser irradiation direction in the subject by providing the condensing point adjusting mechanism. Therefore, a sharper tomographic image at the depth of the target portion can be generated by aligning the focal point with a desired position in the depth direction.
  • the optical coherence tomographic image generation apparatus can search the affected area over a wide range while looking at the subject as a whole, and thus can quickly and surely find the affected area. Then, the focused point adjusting mechanism can generate a clear tomographic image of the target region by matching the focused point of the laser beam to the depth of the affected part that has been found.
  • the coherent distance corresponds to a distance when the attenuation of the power spectrum is 6 dB.
  • the condensing point adjustment mechanism moves the condensing lens in the optical axis direction of the measurement light to determine the distance between the condensing lens and the subject. It is preferable to provide a condenser lens moving mechanism for adjustment.
  • the optical path length from the subject to the optical multiplexer is changed by providing the condenser lens moving mechanism that adjusts the distance between the condenser lens and the subject by moving the condenser lens in the optical axis direction. It is possible to adjust the condensing point without doing so. For this reason, since the scattered light and the reflected light can be combined under the same conditions, the analysis of the interference light can be easily performed.
  • the probe has a nozzle that is attached to the tip of the probe and makes contact with the subject, and the focusing point adjustment mechanism advances or retracts the nozzle, or It is preferable to provide a nozzle expansion / contraction mechanism that adjusts the distance between the condenser lens and the subject by changing the nozzle length.
  • the probe can suppress the tomographic image from shaking by photographing the subject with the tip of the nozzle in contact with the subject.
  • the condensing point adjusting mechanism is provided with a nozzle expansion / contraction mechanism so that the distance between the condensing lens and the subject can be adjusted by moving the nozzle back and forth or by changing the nozzle length, thereby focusing the laser beam. By adjusting this, it is possible to generate a clearer tomographic image at a position in the predetermined depth direction of the subject.
  • a collimator for converging the reference light divided by the optical splitter into parallel light, and the parallel light converged by the collimator A reference light condensing lens that condenses the reference mirror, and an optical path length changing unit that changes the optical path length from the optical splitter to the reference mirror by moving the collimator in the optical axis direction. It is preferable.
  • the optical coherence tomographic image generation apparatus includes the optical path length changing unit that changes the optical path length from the optical splitter to the reference mirror, so that the optical path from the subject to the optical multiplexer by the nozzle expansion / contraction mechanism. Even when the length is changed, the optical path lengths of the scattered light and the reflected light can be matched, so that the analysis of the interference light can be easily performed.
  • the coherent distance of the highly coherent light is less than 48 mm.
  • an OCT apparatus equipped with a light source having a coherent distance of 48 mm or more as a coherent distance (coherent length) of highly coherent light is theoretically possible, but this light source has a stepped wave number (wavelength). Since the SS-OCT method is used to sweep the light, it is difficult to manufacture the light source itself when the overall performance including the sweep speed and resolution is required for this light source. Is.
  • the optical coherence tomographic image generation method distributes the laser light emitted from the light source to the measurement light that irradiates the subject and the reference light that irradiates the reference mirror, and the scattered light reflected from the subject.
  • the optical coherence tomographic image generation method uses highly coherent light whose coherence distance of laser light is less than 48 mm, a wider range in the depth direction with respect to the laser irradiation direction on the subject than before. A tomographic image can be generated over a wide range. Further, according to this optical coherence tomographic image generation method, the distance between the condensing lens and the subject is adjusted, and the focal point is adjusted within the coherent range with respect to the coherent distance. It is possible to generate a clearer tomographic image at the position at.
  • the optical coherence tomographic image generation apparatus and optical coherence tomographic image generation method according to the present invention can generate an optical coherence tomographic image over a wide range of a subject to be photographed.
  • a clear optical coherence tomographic image at a desired position with respect to the depth direction of the subject can be generated.
  • the optical coherence tomographic image generation apparatus according to the present invention can search the affected area over a wide range while looking at the subject as a whole, and thus can quickly and surely find the affected area.
  • a clear tomographic image of the target region can be generated by matching the focal point of the laser beam to the depth of the affected part.
  • FIG. 1A and 1B are external views of an optical coherence tomographic image generation apparatus according to an embodiment of the present invention, in which FIG. 1A shows a single joint arm type and FIG. It is a block diagram which shows typically the unit structure of the optical coherence tomographic image generation apparatus which concerns on embodiment of this invention. It is a principal part perspective view which shows the structure around the reference mirror of the optical coherence tomographic image generation device which concerns on embodiment of this invention. It is a perspective view of the diagnostic probe part of the optical coherence tomographic image generation device concerning the embodiment of the present invention. It is a central part longitudinal cross-sectional view of the diagnostic probe part of the optical coherence tomographic image generation device concerning the embodiment of the present invention.
  • OCT apparatus 1 that is an optical coherence tomographic image generation apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings.
  • the OCT apparatus 1 mainly includes an optical unit unit 10 (optical unit), a diagnostic probe unit 30 (probe), and a control unit unit 50 (control unit).
  • the OCT apparatus 1 distributes the laser light emitted from the light source 11 to the measurement light that irradiates the sample S (subject) and the reference light that irradiates the reference mirror 21 by the coupler 12 (light splitter), and the diagnostic probe unit. 30.
  • An optical coherence tomographic image generation apparatus that analyzes light and generates an optical coherent tomographic image.
  • the optical unit (optical unit) 10 includes a light source, an optical system, and a detection unit to which each method of general optical coherence tomography can be applied.
  • the optical unit 10 includes a light source 11 that continuously (periodically) irradiates a sample (subject) S with laser light having a high band wavelength, and measurement light that irradiates the sample S with laser light.
  • a coupler 12 (light splitter) that distributes the reference light to be irradiated to the reference mirror 21 and a diagnostic probe unit that irradiates the sample S with the measurement light and scatters the sample S and returns the scattered light.
  • Detector 23 for detecting the internal information of the optical fiber 19d, optical fiber 19d (60) provided in the optical path between the light source 11 and the detector 23, and other optical components.
  • the measurement light enters the diagnostic probe unit 30 from the circulator 14 of the sample arm 13.
  • This measurement light is condensed on the sample S by the condenser lens 34 via the light receiving lens 32 (collimator lens) and the scanning means 33 (galvano mirror) when the shutter 312 of the shutter mechanism 31 of the diagnostic probe unit 30 is open.
  • the condenser lens 34 via the light receiving lens 32 (collimator lens) and the scanning means 33 (galvano mirror) when the shutter 312 of the shutter mechanism 31 of the diagnostic probe unit 30 is open.
  • the polarization component of the returned measurement light is returned to a state with less polarization by the polarization controller 15 and input to the detector 23 via the coupler 16 as an optical multiplexer.
  • the reference light separated by the coupler 12 for the light splitter is collected on the reference mirror 21 (reference mirror) by the reference light condensing lens 20 from the circulator 18 of the reference arm 17 through the collimator lens 19 and the optical path length changing means 24. After being reflected and reflected there, the light returns to the circulator 18 through the reference light condensing lens 20 and the collimator lens 19 again.
  • the polarization component of the returned reference light is returned to a state with less polarization by the polarization controller 22 and input to the detector 23 via the coupler 16 for the optical multiplexer.
  • the detector 23 detects the light (interference light) interfered by the multiplexing. It can be detected as internal information of the sample S.
  • the light source 11 for example, a laser light source for SS-OCT method can be used.
  • the light source 11 has a performance with a center wavelength of 1310 nm, a sweep wavelength width of 100 nm, a sweep speed of 50 kHz, and a coherence distance (coherent length) of 14 mm.
  • the coherent distance corresponds to a distance when the attenuation of the power spectrum is 6 dB.
  • the coherence distance of a laser beam is 10 mm or more and highly coherent light of less than 48 mm is preferable, it is not limited to this.
  • the reference light collimator lens 19 (see FIG. 2) is a lens that converges the reference light divided by the coupler 12 (light splitter) into parallel light.
  • the collimator lens 19 ′ includes a collimator lens 19 ′.
  • 19d is accommodated in a substantially cylindrical lens holder 19a.
  • the collimator lens unit 19 ′ supports a collimator 19d, a collimator holder 19e that holds the collimator 19d, a block 19f that supports the collimator holder 19e, and a block 19f that can be finely adjusted in a direction perpendicular to the optical axis.
  • the support frame member 194 is mainly provided.
  • the collimator 19d includes the collimator lens 19, a substantially cylindrical lens holder 19a in which the collimator lens 19 is fitted, a connector 19c attached to the lens holder 19a, one end connected to the connector 19c, and the other end to the lens holder. 19a and an optical fiber 19b connected to the circulator 18 (see FIG. 2).
  • an optical fiber 19b is attached to one end on the optical axis and the connector 19c is fixed, and an opening is formed on the other end toward the reference mirror 21 and through which reference light and reflected light enter and exit.
  • the collimator holder 19e is fixed on the block 19f by screwing the lens holder 19a forward and backward in the optical axis direction so as to be finely adjustable.
  • the block 19f is supported so as to be finely adjustable in a direction perpendicular to the optical axis via a compression coil spring SP in a substantially U-shaped bracket 19h when viewed from the front.
  • the bracket 19h is fixed to and integrated with the support base 191.
  • the support table 191 is a member that mounts a collimator lens unit 19 ′ fixed to the support table 191 and supports the collimator lens unit 19 ′ so that the position of the collimator lens unit 19 ′ can be adjusted with respect to the support frame member 194 in the optical axis direction.
  • the support base 191 is a substantially U-shaped thick plate member that is slidably engaged with the support frame member 194 in the optical axis direction, and is continuously provided so as to straddle the support frame member 194. .
  • the support base 191 is provided with a sliding surface 191a disposed in a state in which the bracket 19h is in contact with the support frame member 194 from both ends of a flat plate-like portion where the sliding surface 191a is formed.
  • a pair of left and right engaging projections 191b and a convex portion 191c formed between the left and right engaging projections 191b and abutting against the rail-shaped portion of the support frame member 194 are formed.
  • the fixing tool 193 includes a fastening member for fixing the backlash preventing member 192 engaged with one engaging protrusion 191b of the support base 191 to the engaging protrusion 191b, and is fixed to a predetermined position of the support frame member 194. Is for.
  • the collimator 19d can be disposed at a position on the optical axis set in advance so that the optical path length on the sample S (subject) light side is equal to the optical path length on the reference light side.
  • the reference light condensing lens 20 is a lens that condenses the parallel light converged by the collimator lens 19 on the reference mirror 21.
  • the reference light condensing lens 20 is preset between the collimator lens 19 on the support frame member 194 and the reference mirror 21. Is arranged at a position on the optical axis.
  • the reference light condensing lens 20 is supported by the support base 20a so that the inclination of the reference light condensing lens 20 can be adjusted, and the support base 20a is fastened to the support frame member 194 so as to be movable and fixed in the optical axis direction.
  • the fixing tool 20b is fixed to a predetermined position of the support frame member 194.
  • the support frame member 194 is a plate-like member extending in the optical axis direction.
  • the collimator lens unit 19 ′, the reference light condensing lens 20, and the like are disposed at predetermined intervals on the support frame member 194 at appropriate intervals.
  • the reference mirror 21 is mounted.
  • a reference mirror 21 is fixed to one end of the support frame member 194, and a reference light condensing lens 20 and a collimator 19d are sequentially arranged from the reference mirror 21 through an appropriate distance to move the collimator 19d. By doing so, the optical path length can be changed.
  • the optical path length changing unit 24 for the reference light moves the collimator 19d in the optical axis direction to change the optical path length from the coupler 12 (light splitter) to the reference mirror 21 or to perform initial setting. It is a device used when doing.
  • the optical path length changing means 24 of the reference light includes, for example, a collimator lens unit 19 ′ that holds the collimator 19d and is arranged so as to be able to advance or retract manually or electrically along the optical axis together with the collimator 19d.
  • the optical lens 20, the reference mirror 21, a collimator lens unit 19 ′, a reference light collecting lens 20, and a support frame member 194 that supports the reference mirror 21 are configured.
  • the diagnostic probe unit 30 includes scanning means 33 (galvanometer mirror) for two-dimensionally scanning laser light, guides the laser light from the optical unit unit 10 to the sample S, and samples S The scattered light reflected and scattered inside is received and guided to the optical unit 10.
  • the diagnostic probe unit 30 includes a cable 60, a housing 3, a frame body 300, a shutter mechanism 31, a light receiving lens 32, a scanning unit (galvano mirror), a condensing lens 34, and a condensing point, which will be described later.
  • An adjustment mechanism 35 and a nozzle 37 are provided.
  • the cable 60 (see FIG. 1) is for optically and electrically connecting the diagnostic probe unit 30, the optical unit unit 10, and the control unit unit 50.
  • the cable 60 includes an optical fiber connected to the optical unit unit 10 and a communication line connected to the control unit unit 50.
  • the housing 3 of the diagnostic probe section 30 is, as shown in FIG. 1A, a single joint arm 70 extending in the horizontal direction from the lower side of the display device 54 arranged on the upper portion of the OCT apparatus 1. It is held by the holder 71 at the tip of the head. As a result, even when the cable 60 is stored, the cable 60 can be stored without being twisted, and the storage space can be reduced.
  • the user removes and grasps the diagnostic probe unit 30 from the holder 71 of the single joint arm 70 and brings the diagnostic probe unit 30 into contact with the patient's teeth (sample S) to prevent camera shake. .
  • the foot controller 80 (FIG. 1) connected to the control unit 50 so as to be communicable by wire or wirelessly. Reference) can also be used.
  • the diagnostic probe unit 30 includes an articulated arm 70A that extends horizontally from the upper side of the display device 54 disposed on the OCT apparatus 1A.
  • the OCT apparatus 1 is the same as the OCT apparatus 1 shown in FIG. 1A except that it can be held by the holder 71 at the tip.
  • the articulated arm 70A has a longer length from the proximal end to the distal end holder 71 than the single-joint arm 70, and is disposed at a higher position from the floor. Therefore, the drooping of the cable 60 can be reduced. Thereby, operability can be improved and it can prevent having stepped on the cable 60 which hung down accidentally.
  • the housing 3 is a case body that covers or supports the components of the frame body 300 and the diagnostic probe unit 30, and has a substantially cross shape (substantially pistol shape) when viewed from the side. Is formed. For this reason, it is easy to hold, has good operability, and has a shape that can be easily attached to the holder 71.
  • the housing 3 is formed with a scanning means storage portion 3a, a grip portion 3b, a condenser lens storage portion 3c, an X-direction galvanometer mirror storage portion 3d, and a Y-direction galvanometer mirror storage portion 3e, which will be described later. Yes.
  • the housing 3 a frame main body 300, a light receiving lens 32, a scanning unit 33, a condenser lens 34, and a shutter mechanism 31 are mainly provided.
  • the housing 3 is formed by, for example, matching two case bodies that are divided into right and left by longitudinally sectioning the central portion.
  • the scanning means storage portion 3 a is a portion for storing the scanning means 33 disposed at a substantially central portion of the substantially cross-shaped housing 3.
  • the grip portion 3b is a portion that is gripped when the user holds the diagnostic probe portion 30 by hand and is a portion that is held by the holder 71 (see FIG. 2).
  • the grip portion 3b extends downward (in the direction of arrow B) from the position where the scanning means storage portion 3a is disposed, and is formed in a substantially cylindrical shape.
  • the grip portion 3b is arranged such that the operation button SW is disposed on the outer peripheral surface on the nozzle 37 side, the light receiving lens 32 and the like are accommodated therein, and the cable 60 is drawn out on the lower surface.
  • the condensing lens storage unit 3 c is a part that stores the condensing lens 34 and the condensing point adjustment mechanism 35 and supports the nozzle 37 and the operation knob 351.
  • the condensing lens storage portion 3c is formed so as to extend in a direction orthogonal to the grip portion 3b, and is formed in a substantially cylindrical shape from the scanning means storage portion 3a toward the front (arrow A direction).
  • the X-direction galvanometer mirror storage portion 3d is a portion in which the drive motor, the connector portion, and the like of the X-direction galvanometer mirror 33X are stored, and protrudes in a state in which the X-direction galvano mirror storage portion bulges backward from the arrangement position of the scanning means storage portion 3a. .
  • the Y-direction galvanometer mirror housing portion 3e is a portion in which the drive motor, connector portion, and the like of the Y-direction galvanometer mirror 33Y are housed, and protrudes in a state in which the Y-direction galvanometer mirror housing portion 3e bulges upward from the arrangement position of the scanning means housing portion 3a.
  • the frame main body 300 is a thick plate-like member that holds the shutter mechanism 31, the optical axis adjustment mechanism 321, the scanning means 33, and the condensing point adjustment mechanism 35, and is screwed into the housing 3. ing.
  • the frame main body 300 is formed in a substantially cross shape (substantially pistol shape) in a side view according to the shape of the housing 3.
  • the frame body 300 is formed with an L-shaped portion 300a in which the scanning means 33 is fixed at the central portion, and a vertical portion that is formed to extend downward from the central portion and to which the shutter mechanism 31 and the optical axis adjusting mechanism 321 are fixed.
  • the position adjustment hole 301 is a long hole formed in the vertical portion 300b so as to extend in the optical axis direction of the measurement light, and supports the light receiving lens bracket 324 so as to be movable and tiltable in the optical axis direction.
  • a bracket fastener 327 for fastening 324 in a predetermined direction and position is inserted so as to be movable up and down.
  • the position adjusting hole 302 is a long hole for movably installing a condensing point adjusting mechanism 35 that advances and retracts the condensing lens 34 along the optical axis, and an adjustment screw 353 is movably inserted therein.
  • the shutter mechanism 31 As shown in FIG. 6, in the shutter mechanism 31, the measurement light sent from the circulator 14 (see FIG. 2) and the scattered light reflected by the measurement light hitting the sample S pass through the diagnostic probe unit 30. For example, it is interposed between the light receiving lens 32 in the grip portion 3b and the scanning means 33 in the scanning means storage portion 3a.
  • the shutter mechanism 31 includes, for example, a shutter base 311, a shutter 312, shutter driving means 313, and a shutter base fastener 314.
  • the shutter mechanism 31 is for performing zero point correction by blocking the reflected light from the sample S by the shutter 312 and removing noise (image) appearing on the display screen in a software manner.
  • the shutter base 311 is a member to which the shutter 312 and the shutter driving unit 313 are attached, and is fixed to the frame main body 300 so as to be vertically movable by the shutter base fastener 314.
  • a through hole 311a through which measurement light and scattered light pass is formed on the optical axis in the vertical direction.
  • the shutter base 311 can be rotated around the shutter base fastener 314 by loosening the fastening of the shutter base fastener 314.
  • the shutter 312 is a member that blocks measurement light and scattered light that pass through the through-hole 311a, and is arranged so as to open and close the through-hole 311a by rotating around a drive shaft (not shown) of the shutter drive unit 313. It consists of the plate member made.
  • the shutter driving unit 313 is an actuator that opens and closes the through hole 311a by moving the shutter 312 on the optical axis or retracting the shutter 312 from the optical axis.
  • the shutter driving unit 313 includes, for example, a motor that rotates the shutter 312 to open and close the through hole 311a, or a solenoid that opens and closes the shutter 312 to open and close the through hole 311a.
  • the shutter base fastener 314 is a screw member for fixing the shutter base 311 to the frame body 300 so as to be movable in the vertical direction.
  • the shutter base fastener 314 is inserted into the position adjustment hole 301 of the frame main body 300 and screwed to the shutter base 311.
  • the shutter mechanism 31 may be a mechanism that manually moves the shutter 312.
  • the light receiving lens 32 is a lens that receives measurement light sent from the coupler 12 (see FIG. 2) via the circulator 14 and adjusts the laser diameter. It consists of a collimator lens that converges to.
  • the light receiving lens 32 is installed in a substantially cylindrical light receiving lens unit 322 and is rotatably attached to the lower portion of the frame body 300 with a light receiving lens holder 323 and a light receiving lens bracket 324 interposed therebetween.
  • the optical axis adjustment mechanism 321 is a device that adjusts the direction and position of the light receiving lens 32 by tilting or moving the light receiving lens unit 322 provided with the light receiving lens 32 relative to the optical axis. is there.
  • the optical axis adjusting mechanism 321 includes a light receiving lens unit 322, a light receiving lens holder 323, a light receiving lens bracket 324, a unit fastener 325, a holder fastener 326, and a bracket fastener 327, which will be described later. Has been.
  • the light receiving lens unit 322 is a substantially cylindrical member in which the light receiving lens 32 is provided, and is disposed in the vertical direction along the optical axis.
  • the light-receiving lens holder 323 is a member that holds the light-receiving lens unit 322 so as to be rotatable about the optical axis.
  • the light-receiving lens unit 322 has a through-hole 323a into which the light-receiving lens unit 322 is inserted, and a notch 323b that is notched in the through-hole 323a. And a screw hole (not shown) into which the unit fastener 325 and the holder fastener 326 are screwed together.
  • the light receiving lens bracket 324 holds the light receiving lens holder 323 so as to be rotatable about a holder fastener 326 disposed in one horizontal direction (direction A in FIG. 6, a direction perpendicular to the optical axis). .
  • the light-receiving lens bracket 324 is rotatably held around a holder fastener 326 disposed in another horizontal direction (direction B in FIG. 6, a direction orthogonal to one direction orthogonal to the optical axis). It is fixed to the frame body 300.
  • the light receiving lens bracket 324 is a member that is attached to the frame body 300 in the housing 3 so that the position of the light receiving lens bracket 324 can be adjusted in the direction B in FIG.
  • the light receiving lens bracket 324 is formed with a hole (not shown) into which the holder fastener 326 is inserted and a screw hole (not shown) into which the bracket fastener 327 is screwed.
  • the unit fastener 325 is a fastening for loosening the light receiving lens unit 322 inserted into the light receiving lens holder 323 so that the light receiving lens unit 322 can be rotated, or fixing the light receiving lens unit 322 to the light receiving lens holder 323 by tightening. It is a tool.
  • the unit fastener 325 is screwed into a screw hole (not shown) formed so as to be orthogonal to the notch 32b of the light receiving lens holder 323.
  • the holder fastener 326 is a fastening for loosening the light receiving lens holder 323 fitted in the light receiving lens bracket 324 so that the light receiving lens holder 323 can be rotated, or for fastening the light receiving lens 32 to fix the tilt in the front-rear direction. It is a tool.
  • the holder fastener 326 is screwed into the light receiving lens holder 323 through the light receiving lens bracket 324 at the tip.
  • the bracket fastener 327 is a fastener for attaching the light-receiving lens bracket 324 to the position adjustment hole 301 so as to be movable up and down and rotatable, and is a screw hole (through the position adjustment hole 301 formed in the light-receiving lens bracket 324 ( (Not shown).
  • the bracket fastener 327 can be rotated by loosening the tightening of the light receiving lens bracket 324, and the inclination of the optical axes of the light receiving lens bracket 324 and the light receiving lens 32 can be adjusted.
  • the scanning unit 33 is a mirror for changing the irradiation direction of the laser light that has passed through the light receiving lens 32, and converts the optical axis of the measurement light that has passed through the light receiving lens 32 by 90 degrees.
  • X-direction galvanometer mirror 33X first galvanometer mirror
  • Y-direction galvanometer mirror 33Y second galvanometer mirror
  • the laser light emitted from the light source 11 is applied to the sample S (see FIG. 2) via the X-direction galvanometer mirror 33X and the Y-direction galvanometer mirror 33Y, and the nozzle S of the diagnostic probe unit 30 is directly opposed to the sample S.
  • the detector 23 acquires the internal information in the depth direction (A direction) going from the surface to the inside. As will be described later, data in the A direction consisting of 1152 points (hereinafter referred to as A line data) is acquired in one scan, and image processing for subsequent frequency analysis is acquired.
  • the X direction and the Y direction correspond to the horizontal direction and the vertical direction (Y-axis direction) on the surface of the sample S facing the nozzle tip of the diagnostic probe unit 30.
  • the X direction galvanometer mirror 33X is provided on the light receiving lens 32 side.
  • the X-direction galvanometer mirror 33X rotates a mirror surface (AV plane) by motor drive with the A direction as an axis.
  • the direction of the acquired data is data in the horizontal direction (X-axis direction) on the surface of the sample S, and is data in the B direction. If the operation rotation angle of the galvano mirror is, for example, -3 ° to + 3 ° and 128-point B-direction data is required, 128-point B-direction data (hereinafter referred to as B-line data) is acquired as described later. .
  • the Y-direction galvanometer mirror 33Y is provided on the condensing lens 34 side, and rotates the mirror surface (BV plane) by motor driving around the B direction.
  • the direction of the acquired data is data in the vertical direction (Y-axis direction) on the surface of the sample S, and is data in the V direction (hereinafter referred to as V line data).
  • the condensing lens 34 is a lens that condenses the scanning light from the scanning unit 33 and condenses the measurement light on the sample S and irradiates it. It is installed inside.
  • the lens storage cylinder 352 is disposed in the condensing lens storage portion 3 c of the housing 3 so as to freely advance and retract along the position adjustment hole 302.
  • a ring-shaped operation knob 351 on which a user's finger is loosely fitted is integrally formed on the lower surface portion of the lens housing cylinder 352.
  • the condensing point adjustment mechanism 35 is a device that adjusts the condensing point by adjusting the distance between the condensing lens 34 and the sample S (subject) in contact with the nozzle 37.
  • the operating knob 351 is exposed in the condensing lens storage portion 3c of the housing 3 in an exposed state.
  • the condensing point adjusting mechanism 35 includes a position adjusting hole 302 extending in the horizontal direction in the horizontal portion 300c of the frame main body 300, and the lens accommodating cylinder 352 inserted along the optical axis by being inserted into the position adjusting hole 302.
  • An adjustment screw 353 that fixes the position adjustment hole 302 formed at an appropriate position and a lens housing cylinder 352 integrally formed to move the condenser lens 34 to an appropriate position of the position adjustment hole 302.
  • the operation knob 351 and a connecting cylinder 354 for fixing the front tooth nozzle 37 ⁇ / b> A (nozzle 37) to the frame main body 300 through the nozzle support 36 are provided.
  • the condensing point adjusting mechanism 35 is configured to adjust the condensing point by operating and moving the operation knob 351 so that the condensing lens 34 moves forward and backward in the optical axis direction together with the operation knob 351.
  • the nozzle 37 (front tooth nozzle 37 ⁇ / b> A) is a cylindrical member that is disposed in front of the condenser lens 34 and has an opening 37 ⁇ / b> Ae that irradiates the sample S with measurement light and collects scattered light. is there.
  • the front tooth nozzle 37 ⁇ / b> A is detachable (replaceable) through the condensing lens housing 3 c at the tip of the housing 3 through the connecting cylinder 354, the nozzle support 36, the spring SP, the spherical body SB, and the outer ring member 38. ) And is rotatably mounted.
  • the front tooth nozzle 37A abuts the opening 37Ae of the cylindrical front tooth nozzle 37A on the sample S and sets the interval therebetween. This is a member for collecting the reflected scattered light by irradiating the sample S with measurement light while being held.
  • the front tooth nozzle 37 ⁇ / b> A has an engagement tube portion 37 ⁇ / b> Aa for fitting the front tooth nozzle 37 ⁇ / b> A to the nozzle support 36 on the base end side, and the engagement tube portion.
  • An annular groove 37Ab that is formed on the outer spherical surface of 37Aa and engages with the sphere SB, a flange portion 37Ac that is locked to the distal end of the engaging cylinder portion 37Aa, and a cylindrical portion 37Ad that extends from the flange portion 37Ac to the distal end side. And are integrally formed.
  • the nozzle support 36 is a substantially cylindrical member that is interposed between the connecting cylinder 354 and the front tooth nozzle 37 ⁇ / b> A and is fitted into the outer ring member 38.
  • the nozzle support 36 has an engagement portion 36a fitted in the connecting cylinder 354 on the proximal end side, and an outer ring member 38, and a proximal end side of the spring SP made of a cylindrical coil spring.
  • a spring receiving portion 36b to be supported, a spring exterior portion 36c into which the spring SP is fitted, and a sphere insertion hole 36d into which the sphere SB is movably fitted are formed.
  • the outer ring member 38 is a substantially cylindrical member that is disposed outside the nozzle support 36 and the spring SP so as to cover the nozzle support 36 and the spring SP, and a spring receiver that supports the tip of the compressed spring SP on the inner surface thereof.
  • a convex portion 38a is formed.
  • control unit 50 includes an AD conversion circuit 51, a DA conversion circuit 52, a galvano mirror control circuit 53, a display device 54, and an OCT control device 100.
  • the AD conversion circuit 51 converts the analog output signal of the detector 23 (detector) into a digital signal.
  • the AD conversion circuit 51 starts acquisition of a signal in synchronization with a trigger output from the laser output device that is the light source 11, and the timing of the clock signal ck that is also output from the laser output device.
  • the analog output signal of the detector (detector) 23 is acquired and converted into a digital signal. This digital signal is input to the OCT controller 100.
  • the DA conversion circuit 52 converts the digital output signal of the OCT control device 100 into an analog signal.
  • the DA conversion circuit 52 converts the digital signal of the OCT control device 100 into an analog signal in synchronization with a trigger output from the laser output device that is the light source 11. This analog signal is input to the galvanometer mirror control circuit 53.
  • the galvanometer mirror control circuit 53 is a driver that controls the scanning means 33 of the diagnostic probe unit 30.
  • the galvano mirror control circuit 53 drives the motor of the X direction galvano mirror 33X or the Y direction galvano mirror 33Y in synchronization with the output period of the laser emitted from the light source 11 based on the analog output signal of the OCT control device 100. Alternatively, a motor drive signal to be stopped is output (see FIGS. 5 and 6).
  • the galvano mirror control circuit 53 performs processing for changing the angle of the mirror surface by rotating the axis of the X direction galvano mirror 33X, and processing for changing the angle of the mirror surface by rotating the axis of the Y direction galvano mirror 33Y. It is performed at different timing (see FIGS. 5 and 6). These processes of the galvanometer mirror control circuit 53 are simply referred to as galvanometer mirror X and Y axis changes. An example of timing for changing the galvanometer mirror X and Y axes will be described later.
  • the display device 54 displays an optical coherence tomographic image (hereinafter referred to as an OCT image) generated by the OCT control device 100.
  • the display device 54 includes, for example, a liquid crystal display (LCD: Liquid Crystal Display), EL (Electronic Luminescence), CRT (Cathode Ray Tube), PDP (Plasma Display Panel), and the like.
  • the OCT control apparatus 100 is a control apparatus for the OCT apparatus 1 and performs imaging by controlling the scanning unit 33 in synchronization with the laser beam, and also generates an OCT image of the sample S from the data obtained by converting the detection signal of the detector 23.
  • generates is performed.
  • the OCT control apparatus 100 includes a computer including input / output means (not shown), storage means, and arithmetic means, and a program installed in the computer.
  • the diagnostic probe unit 30 includes a condensing point adjustment mechanism 35 that adjusts the condensing point by adjusting the distance between the condensing lens 34 and the sample S that is in contact with the tip of the nozzle 37 when photographing.
  • a condensing point adjustment mechanism 35 that adjusts the condensing point by adjusting the distance between the condensing lens 34 and the sample S that is in contact with the tip of the nozzle 37 when photographing.
  • the OCT apparatus 1 includes an optical path length changing unit 24 that changes the optical path length from the coupler 12 (optical divider) to the reference mirror 21 by moving the collimator 19d in the optical axis direction.
  • a condensing point adjusting mechanism 35 that adjusts the condensing point by adjusting the distance between the condensing lens 34 and the sample S, and by operating both to make the optical path lengths coincide with each other. A clear tomographic image within a coherent distance can be obtained.
  • the conventionally used OCT apparatus 1 shown in Table 1 has a coherence distance of 6 mm.
  • the coherence distance was 6 mm, the imageable range was shallow, and data could not be taken over a wide range in the depth direction.
  • the coherence distance is better when the data in the depth direction in the optical axis direction is deeper in order to photograph a tooth-specific thing (such as caries).
  • the coherence distance is 48 mm or more, the wavelength of light emitted from the light source is raised on the stairs, and the power supply becomes complicated. In addition, the light source becomes large and it is difficult to downsize. Furthermore, the shooting speed is slow and camera shake is likely to occur. Therefore, in the present invention, although the resolution is inferior to that of the coherence distance of 6 mm, more data in the depth direction can be acquired, the photographing speed is fast, and the effect of using the coherence distance of 14 mm is actually used. confirmed.
  • the OCT apparatus 1 can theoretically be equipped with a light source having a coherence distance of 48 mm or more for highly coherent light, but this light source sweeps the wave number (wavelength) stepwise. Since the OCT method is used, if the overall performance including the sweep speed and resolution is obtained from this light source, it becomes difficult to manufacture the light source itself, so the coherence distance is set to less than 48 mm. For this reason, the coherent distance is suitably 10 mm or more and less than 48 mm.
  • FIG. 9 is a diagram showing a first modified example of the optical coherence tomographic image generation device according to the embodiment of the present invention, and is an exploded perspective view of a main part of a diagnostic probe unit.
  • the condensing point adjusting mechanism 35 for manually moving the operation knob 351 in the optical axis direction has been described (see FIG. 6), but the present invention is not limited to this.
  • the condensing point adjustment mechanism 35A moves the condensing lens 34A in the direction of the optical axis of the measurement light by the electric motor 35Ab, like the diagnostic probe unit 30A shown in FIG. It may be an electric condensing lens moving mechanism 35Aa that adjusts the distance.
  • the condensing lens moving mechanism 35Aa of the condensing point adjusting mechanism 35A includes a lens case 35Ac that houses the condensing lens 34A so as to be movable in the optical axis direction, and an ultrasonic linear actuator that advances and retracts the lens case 35Ac in the axial direction. And a guide member 35Ad for guiding the movement of the electric motor 35Ab that moves integrally with the lens case 35Ac.
  • the condensing lens moving mechanism 35Aa moves the condensing lens 34A to change the focal position, thereby enabling focusing on a position deeper than the tip of the diagnostic probe unit 30A.
  • the lens case 35Ac is made of, for example, a substantially cylindrical member that houses the condenser lens 34A, and is arranged with the center line aligned with the optical axis.
  • the lens case 35Ac is screwed to the electric motor 35Ab.
  • the lens case 35Ac may be moved in the optical axis direction with respect to the frame main body 300 by the electric motor 35Ab, and is not limited to the one that moves the electric motor 35Ab integrally.
  • the electric motor 35Ab is driven by operating the operation button SW (see FIG. 4), and is guided by the rail portion 35Ae of the guide member 35Ad so as to advance and retreat in the optical axis direction.
  • the electric motor 35Ab is not limited to the ultrasonic linear actuator, and may move the lens case 35Ac via a gear reduction mechanism or the like.
  • the guide member 35Ad includes, for example, a pair of rail portions 35Ae that guide the movement of the electric motor 35Ab, and a holder base 34Af that holds the rail portions 35Ae and is fixed to the frame body 300.
  • FIG. 10 is a diagram showing a second modification of the optical coherence tomographic image generation apparatus according to the embodiment of the present invention, and is a perspective view of a diagnostic probe unit.
  • FIG. 11 is a diagram showing a second modification of the optical coherence tomographic image generation apparatus according to the embodiment of the present invention, and is an exploded perspective view of a main part of a diagnostic probe unit.
  • FIG. 12 is a diagram showing a second modification of the optical coherence tomographic image generation apparatus according to the embodiment of the present invention, and is a middle longitudinal sectional view of the diagnostic probe section.
  • FIG. 13 is a view showing a second modification of the optical coherence tomographic image generation apparatus according to the embodiment of the present invention, and is an enlarged vertical cross-sectional view of a main part showing a nozzle installation state.
  • the front teeth are the sample S
  • the diagnostic probe unit 30 including the straight type front tooth nozzle 37A illustrated in FIGS. 4 and 5 is described as an example.
  • the present invention is not limited to this.
  • the diagnostic probe unit 30B may be used by replacing the sample S with an angle-type molar nozzle 37B with the molar as a molar.
  • the molar nozzle 37 ⁇ / b> B has an oblique mirror 37 ⁇ / b> Ba for converting the optical axis of the condenser lens 34 in a direction orthogonal to the distal end inner wall 37 ⁇ / b> Bc of the cylindrical portion 37 ⁇ / b> Bb and orthogonal to the optical axis of the condenser lens 34.
  • An opening 37Bd is formed in the direction in which the light is scattered, and the sample S in a direction orthogonal to the longitudinal direction of the molar nozzle 37B is irradiated to collect scattered light.
  • the molar nozzle 37B is detachably (replaceable) and rotatably mounted on the housing 3 in the same manner as the front tooth nozzle 37A.
  • the molar nozzle 37B irradiates the sample S with measurement light while maintaining the interval by bringing the opening 37Bd of the molar nozzle 37B into contact with the sample S (molar) when imaging the molar with the diagnostic probe unit 30B. Then, the reflected scattered light is collected.
  • the molar nozzle 37 ⁇ / b> B includes a hollow engaging cylinder portion 37 ⁇ / b> Be for fitting the molar nozzle 37 ⁇ / b> B into the nozzle support 36 on the proximal end side, and the engaging cylinder portion.
  • the portion 37Bb, the tip end inner wall 37Bc where the oblique mirror 37Ba is disposed obliquely, and the opening 37Bd opened below the tip end inner wall 37Bc are integrally formed.
  • the molar nozzle 37B includes the oblique portion 37Ba for converting the optical axis by 90 degrees and the opening portion 37Bd opened in the direction orthogonal to the distal end of the tubular portion 37Bb by the tubular portion 37Bb. Is rotated, the direction of the opening 37Bd (the direction in which the image is taken) can be freely changed, so that the molars in the back of the oral cavity can be easily imaged.
  • FIG. 14 is a diagram showing a third modification of the optical coherence tomographic image generation device according to the embodiment of the present invention, and is an exploded perspective view of a main part of a diagnostic probe unit provided with a nozzle expansion / contraction mechanism.
  • FIG. 15 is a diagram showing a third modification of the optical coherence tomographic image generation device according to the embodiment of the present invention, and is an enlarged vertical sectional view of a main part of a diagnostic probe unit provided with a nozzle expansion / contraction mechanism.
  • FIG. 16 is a diagram showing a third modification of the optical coherence tomographic image generation device according to the embodiment of the present invention, and is a perspective view of the main part of the optical path length changing means.
  • a third modified example of the optical coherence tomographic image generation device according to the embodiment of the present invention as shown in FIGS. 14 and 15, instead of the above-described focusing point adjustment mechanism 35 (see FIGS. 5 and 6), The nozzle 37C is advanced or retreated, or the nozzle length L1 is changed to adjust the distance between the condenser lens 34 and the sample S, and the optical path length of the reference light shown in FIG. And optical path length changing means for changing.
  • the nozzle expansion / contraction mechanism 39 forms a condensing point adjustment mechanism that adjusts the distance between the condensing lens 34 and the sample S by moving the nozzle 37 ⁇ / b> C forward and backward with respect to the housing 3.
  • the nozzle 37C of the diagnostic probe section 30C includes a nozzle base 37C1 that is detachably fitted to the tip of the nozzle support 36, and a nozzle expansion / contraction that is attached to the nozzle base 37C1 in a stretched state. And a body 37C2.
  • the nozzle base 37C1 has a female thread portion 37Ca formed in the opening at the tip.
  • the nozzle expandable body 37C2 has a male screw portion 37Cb that is screwed into the female screw portion 37Ca on the outer peripheral surface on the base end side, and the nozzle length L1 is set to a desired length by rotating and reversing the nozzle expandable body 37C2. The distance between the condenser lens 34 and the sample S can also be adjusted.
  • the optical path length changing means 24 arranges a collimator lens unit 19 ′ (see FIG. 3) movably in the optical axis direction with respect to the support base 191, and moves the collimator lens unit 19 ′.
  • the optical path length changing means 24 includes a bracket 19h on which a collimator holder 19e that holds the collimator 19d is mounted, and a lens moving device 195 that moves the bracket 19h in the optical axis direction.
  • the lens moving device 195 mainly includes an actuator 196, an actuator support 198 fixed to the support base 191, and a rail member 197 that guides when the actuator 196 moves.
  • the actuator 196 is composed of, for example, an electric device such as an ultrasonic linear actuator, and moves in the optical axis direction relative to the slidably supported actuator support 198 by operating a control switch (not shown).
  • the actuator support 198 is a guide member that guides and supports the movement of the lens moving device 195, and places the bracket 19h slidably in the optical axis direction.
  • the optical coherence tomographic image generation device includes the optical path length changing unit that changes the optical path length from the optical splitter to the reference mirror, so that the subject can be controlled by the nozzle expansion / contraction mechanism. Even when the optical path length from the optical multiplexer to the optical multiplexer is changed, the optical path lengths of the scattered light and the reflected light can be matched, so that the analysis of the interference light can be easily performed.
  • the tomographic image photographed by the diagnostic probe unit 30C shown in FIGS. 14 and 15 is inverted when the nozzle 37C is expanded and contracted, the target point of the image to be photographed is moved and passed through the focal position.
  • the reversal of the tomographic image can be avoided by moving the reference light side collimator 19d shown in FIG.
  • the tomographic image appears so that a part of the tomographic image is folded by changing the focal position.
  • the collimator 19d on the reference light side is moved.
  • the same thing as the collimator 19d on the reference light side also occurs in the diagnostic probe unit 30C. However, since the space inside the probe is limited, it is desirable that the probe be performed on the reference light side.
  • OCT device optical coherence tomographic image generator
  • Light source 12 Coupler (light splitter)
  • coupler optical multiplexer
  • Collimator lens 19d Collimator
  • Reference light condensing lens 21 Reference mirror 24
  • Optical path length change means 30, 30A, 30B, 30C Diagnostic probe part (probe)
  • Shutter mechanism 32
  • Scanning means 34
  • Condensing lens 35, 35A Condensing point adjustment mechanism 35Aa Condensing lens moving mechanism
  • Nozzle 39 Nozzle expansion / contraction mechanism

Abstract

The optical coherence tomography apparatus (1) comprises: a light source (11) that irradiates laser light; an optical splitter (12) that divides the laser light into measuring light that is irradiated on a subject (S) and reference light that is irradiated on a reference mirror (21); a probe (30) that receives scattered light returning after being scattered inside the subject (S); and an optical multiplexer (16) that combines reflected light returning after being reflected by the reference mirror (21) with the scattered light to generate interference light. The apparatus analyzes the interference light and generates an optical coherence tomographic image. The laser light is highly coherent light with a coherence length of 10 mm or more. The probe (30) is equipped with a focus lens (34) that focuses the measuring light on the subject (S), and a focal point adjustment mechanism (35) for adjusting the focal point by adjusting the distance between the focus lens (34) and the subject (S).

Description

光干渉断層画像生成装置及び光干渉断層画像生成方法Optical coherence tomographic image generating apparatus and optical coherent tomographic image generating method
 本発明は、光のコヒーレント(干渉性)を利用して物体内部の断層像を撮像する光干渉断層画像生成装置及び光干渉断層画像生成方法に係り、特に、高コヒーレント光を利用した光干渉断層画像生成装置及び光干渉断層画像生成方法に関する。 The present invention relates to an optical coherent tomographic image generation apparatus and an optical coherent tomographic image generation method for capturing a tomographic image inside an object using coherent light, and more particularly to an optical coherent tomographic image using high coherent light. The present invention relates to an image generation apparatus and an optical coherence tomographic image generation method.
 従来、光干渉断層画像生成装置(Optical Coherence Tomography:以下、OCT装置と称する)は、生体の分野では、眼球の角膜や網膜の断層計測等の眼科医療で応用されている。OCTの方式は、TD(Time Domain)-OCT、FD(Frequency Domain)-OCTに大別され、後者のFD-OCTは、SD(Spectrum Domain)-OCTと、SS(Swept Source)-OCTとに分類されることが知られている。 Conventionally, an optical coherence tomographic image generation apparatus (Optical Coherence Tomography: hereinafter referred to as an OCT apparatus) is applied in ophthalmic medicine such as tomographic measurement of an eyeball cornea or a retina in the field of living bodies. OCT methods are broadly divided into TD (Time Domain) -OCT and FD (Frequency Domain) -OCT. The latter FD-OCT is classified into SD (Spectrum Domain) -OCT and SS (Swept Source) -OCT. It is known to be classified.
 例えば、SS-OCTは、波長(波数)を連続的に掃引できるレーザ光源を使用し、検出器により取得したスペクトル情報をFFT(Fast Fourier Transform)処理し、光路長を特定する方式である。SS-OCTは、X線撮影装置やCT(Computed Tomography)装置等に比べ、解像度が高く、リアルタイムに計測が行える等の特徴がある。
 また、歯科用のために、前記したTD-OCTが試されていたが、SS-OCTはTD-OCTに比べて、高感度かつ高速にデータを取得できることから、モーションアーチファクト(体動によるゴースト)に強いという特徴がある。
For example, SS-OCT is a method in which a laser light source capable of continuously sweeping wavelengths (wave numbers) is used, spectral information acquired by a detector is processed by FFT (Fast Fourier Transform), and an optical path length is specified. SS-OCT has features such as higher resolution and real-time measurement than X-ray imaging devices and CT (Computed Tomography) devices.
In addition, TD-OCT has been tried for dental use, but since SS-OCT can acquire data with higher sensitivity and higher speed than TD-OCT, motion artifact (ghost due to body movement) It is characterized by being strong.
 歯科の分野のOCT装置では、歯科光診断装置用ハンドピース(プローブ)において、OCT手段を備え、歯部の光診断箇所を位置決めする手段が、カメラによる撮像方式で、内部に、表面画像取得用の撮像カメラを備えている(特許文献1参照)。 In an OCT apparatus in the field of dentistry, a handpiece (probe) for a dental photodiagnostic device is provided with OCT means, and means for positioning a photodiagnostic portion of a tooth part is an imaging method using a camera, and for acquiring a surface image inside. (Refer to Patent Document 1).
 前記特許文献1のプローブは、外部で生成された低コヒーレント光の信号光伝送用光ファイバの先端に設置されたコリメートレンズと、コリメートレンズからの信号光を反射させる2つの反射鏡と、その反射鏡からの反射光を直角方向に反射させる斜鏡と、この斜鏡からの信号光を集光する集光レンズと、信号光を被写体に向いて照射する照射窓と、斜鏡(照射窓から信号光)を回転させるモータと、を細長い円筒状のハンドピース内に設置して構成されている。そして、歯部の所定領域からの反射光は、前記した伝送経路を逆にたどって伝送されるようになっている。 The probe of Patent Document 1 includes a collimating lens installed at the tip of an optical fiber for signal light transmission of low-coherent light generated outside, two reflecting mirrors for reflecting signal light from the collimating lens, and a reflection thereof. An oblique mirror that reflects light reflected from the mirror in a right angle direction, a condenser lens that collects the signal light from the oblique mirror, an irradiation window that irradiates the signal light toward the subject, and an oblique mirror (from the irradiation window) The motor for rotating the signal light) is installed in an elongated cylindrical handpiece. And the reflected light from the predetermined area | region of a tooth | gear part is transmitted along the above-mentioned transmission path reversely.
実用新案登録第3118718号公報(請求項2、図2)Utility Model Registration No. 3118718 (Claim 2, FIG. 2)
 しかしながら、特許文献1のプローブは、低コヒーレント光を採用しているため可干渉距離(コヒーレント長)が短いので、被写体におけるレーザの照射方向に対する狭い範囲の光干渉断層画像しか生成することができないという問題があった。 However, since the probe of Patent Document 1 employs low-coherent light and has a short coherent distance (coherent length), it can only generate a light coherence tomographic image in a narrow range with respect to the laser irradiation direction on the subject. There was a problem.
 このため、特許文献1のプローブでは、被写体を全体的に見ながら患部を広範囲に探索することができないので、対象となる患部を発見し難いという問題があった。 For this reason, the probe of Patent Document 1 has a problem that it is difficult to find the target affected area because it cannot search the affected area in a wide range while viewing the subject as a whole.
 そこで、本発明は、そのような問題を解消すべく発明されたものであって、撮影する被写体における広範囲に亘って光干渉断層画像を生成することができる光干渉断層画像生成装置及び光干渉断層画像生成方法を提供することを課題とする。 Therefore, the present invention has been invented to solve such a problem, and an optical coherence tomographic image generation apparatus and an optical coherence tomography capable of generating an optical coherence tomographic image over a wide range in a subject to be photographed. It is an object to provide an image generation method.
 前記課題を解決するために、本発明に係る光干渉断層画像生成装置は、高帯域な波長のレーザ光を周期的に照射する光源と、前記レーザ光を被写体に照射する計測光と参照ミラーに照射する参照光に分配する光分割器と、前記計測光を前記被写体に照射し当該被写体の内部で散乱して戻って来た散乱光を受光するプローブと、前記参照光が前記参照ミラーから反射して戻って来た反射光と前記散乱光とを合成させて干渉光を生成する光合波器と、を有し、前記干渉光を解析して光干渉断層画像を生成する光干渉断層画像生成装置であって、前記レーザ光は、可干渉距離が10mm以上である高コヒーレント光であり、前記プローブは、前記計測光を前記被写体に集光させる集光レンズと、この集光レンズと前記被写体との距離を調整して集光点を調整する集光点調整機構と、を備えたことを特徴とする。 In order to solve the above problems, an optical coherence tomographic image generation apparatus according to the present invention includes a light source that periodically irradiates a laser beam having a high-band wavelength, a measurement light that irradiates the subject with the laser beam, and a reference mirror. An optical splitter that distributes the reference light to be irradiated, a probe that irradiates the subject with the measurement light and receives scattered light that is scattered and returned inside the subject, and the reference light is reflected from the reference mirror And an optical multiplexer that generates interference light by combining the reflected light that has returned and the scattered light, and generates an optical coherence tomographic image by analyzing the interference light and generating an optical coherence tomographic image The apparatus is an apparatus, wherein the laser beam is highly coherent light having a coherence distance of 10 mm or more, and the probe is a condensing lens that condenses the measurement light on the subject, and the condensing lens and the subject Adjust the distance to Characterized by comprising a converging point adjusting mechanism for adjusting the point, the.
 かかる構成によれば、光源となるレーザ光は、高コヒーレント光であるため、被写体におけるレーザの照射方向に対する深さ方向の広い範囲に亘って光干渉断層画像(以下、単に「断層画像」という。)を生成することができる。
 また、本発明に係る光干渉断層画像生成装置は、集光点調整機構を備えたことによって、被写体におけるレーザの照射方向に対する深さ方向に対してレーザ光の集光点を調整することができるため、深さ方向における所望位置に集光点を合わせることで、対象となる部位の深さにおけるより鮮明な断層画像生成することができる。
 このため、本発明に係る光干渉断層画像生成装置は、被写体を全体的に見ながら患部を広範囲に探索することができるため、対象となる患部を迅速かつ確実に発見することができる。そして、集光点調整機構により、発見した患部の深さにレーザ光の集光点を合わせることで対象となる部位の鮮明な断層画像を生成することができる。
 ここで、可干渉距離(コヒーレント長)とは、パワースペクトルの減衰が6dBとなるときの距離に相当する。
According to such a configuration, since the laser light serving as the light source is highly coherent light, an optical coherence tomographic image (hereinafter simply referred to as “tomographic image”) over a wide range in the depth direction with respect to the laser irradiation direction on the subject. ) Can be generated.
In addition, the optical coherence tomographic image generation apparatus according to the present invention can adjust the condensing point of the laser beam with respect to the depth direction with respect to the laser irradiation direction in the subject by providing the condensing point adjusting mechanism. Therefore, a sharper tomographic image at the depth of the target portion can be generated by aligning the focal point with a desired position in the depth direction.
For this reason, the optical coherence tomographic image generation apparatus according to the present invention can search the affected area over a wide range while looking at the subject as a whole, and thus can quickly and surely find the affected area. Then, the focused point adjusting mechanism can generate a clear tomographic image of the target region by matching the focused point of the laser beam to the depth of the affected part that has been found.
Here, the coherent distance (coherent length) corresponds to a distance when the attenuation of the power spectrum is 6 dB.
 また、本発明に係る光干渉断層画像生成装置において、前記集光点調整機構は、前記集光レンズを前記計測光の光軸方向に移動して、当該集光レンズと前記被写体との距離を調整する集光レンズ移動機構を備えたことが好ましい。 Further, in the optical coherence tomographic image generation device according to the present invention, the condensing point adjustment mechanism moves the condensing lens in the optical axis direction of the measurement light to determine the distance between the condensing lens and the subject. It is preferable to provide a condenser lens moving mechanism for adjustment.
 かかる構成によれば、集光レンズを光軸方向に移動して集光レンズと被写体との距離を調整する集光レンズ移動機構を備えたことによって、被写体から光合波器までの光路長を変更することなく集光点を調整することが可能となる。このため、前記散乱光と前記反射光とを同じ条件で合波させることができるため、前記干渉光の解析を容易に実行することができる。 According to this configuration, the optical path length from the subject to the optical multiplexer is changed by providing the condenser lens moving mechanism that adjusts the distance between the condenser lens and the subject by moving the condenser lens in the optical axis direction. It is possible to adjust the condensing point without doing so. For this reason, since the scattered light and the reflected light can be combined under the same conditions, the analysis of the interference light can be easily performed.
 また、本発明に係る光干渉断層画像生成装置において、前記プローブは、その先端部に装着され前記被写体に当接させるノズルを有し、前記集光点調整機構は、前記ノズルを進退、または、ノズル長を可変して、前記集光レンズと前記被写体との距離を調整するノズル伸縮機構を備えたことが好ましい。 Further, in the optical coherence tomographic image generation device according to the present invention, the probe has a nozzle that is attached to the tip of the probe and makes contact with the subject, and the focusing point adjustment mechanism advances or retracts the nozzle, or It is preferable to provide a nozzle expansion / contraction mechanism that adjusts the distance between the condenser lens and the subject by changing the nozzle length.
 かかる構成によれば、プローブは、被写体を撮影する際に、ノズルの先端を被写体に当接させて撮影することによって、断層画像が振れるのを抑制することができる。さらに、集光点調整機構は、ノズル伸縮機構を備えたことによって、ノズルを進退、または、ノズル長を可変させることにより、集光レンズと被写体との間の距離を調整してレーザ光の焦点を調整することで、被写体の所定の深さ方向における位置でより鮮明な断層画像を生成することが可能である。 According to such a configuration, the probe can suppress the tomographic image from shaking by photographing the subject with the tip of the nozzle in contact with the subject. Furthermore, the condensing point adjusting mechanism is provided with a nozzle expansion / contraction mechanism so that the distance between the condensing lens and the subject can be adjusted by moving the nozzle back and forth or by changing the nozzle length, thereby focusing the laser beam. By adjusting this, it is possible to generate a clearer tomographic image at a position in the predetermined depth direction of the subject.
 また、本発明に係る前記ノズル伸縮機構を備えた光干渉断層画像生成装置において、前記光分割器で分割された前記参照光を平行光に収束させるコリメータと、このコリメータにより収束された前記平行光を前記参照ミラーに集光させる参照光集光レンズと、前記コリメータを光軸方向に移動させて、前記光分割器から前記参照ミラーまでの光路長を変更する光路長変更手段と、を備えたことが好ましい。 In the optical coherence tomographic image generation apparatus provided with the nozzle expansion / contraction mechanism according to the present invention, a collimator for converging the reference light divided by the optical splitter into parallel light, and the parallel light converged by the collimator A reference light condensing lens that condenses the reference mirror, and an optical path length changing unit that changes the optical path length from the optical splitter to the reference mirror by moving the collimator in the optical axis direction. It is preferable.
 かかる構成によれば、光干渉断層画像生成装置は、光分割器から参照ミラーまでの光路長を変更する光路長変更手段を備えたことによって、前記ノズル伸縮機構により被写体から光合波器までの光路長を変更した場合においても、散乱光と反射光の光路長を一致させることができるため、前記干渉光の解析を容易に実行することができる。 According to such a configuration, the optical coherence tomographic image generation apparatus includes the optical path length changing unit that changes the optical path length from the optical splitter to the reference mirror, so that the optical path from the subject to the optical multiplexer by the nozzle expansion / contraction mechanism. Even when the length is changed, the optical path lengths of the scattered light and the reflected light can be matched, so that the analysis of the interference light can be easily performed.
 また、本発明に係る光干渉断層画像生成装置において、前記高コヒーレント光の可干渉距離は、48mm未満であることがより好ましい。 In the optical coherent tomographic image generation device according to the present invention, it is more preferable that the coherent distance of the highly coherent light is less than 48 mm.
 かかる構成によれば、高コヒーレント光の可干渉距離(コヒーレント長)が48mm以上の可干渉距離を有する光源を搭載するOCT装置は理論上可能であるが、この光源が波数(波長)を階段状に掃引するというSS-OCT方式であるため、掃引速度や分解能などを含めた総合的性能をこの光源に求めると、光源自体の製作が困難になるので可干渉距離を48mm未満とするのが現実的である。 According to such a configuration, an OCT apparatus equipped with a light source having a coherent distance of 48 mm or more as a coherent distance (coherent length) of highly coherent light is theoretically possible, but this light source has a stepped wave number (wavelength). Since the SS-OCT method is used to sweep the light, it is difficult to manufacture the light source itself when the overall performance including the sweep speed and resolution is required for this light source. Is.
 また、本発明に係る光干渉断層画像生成方法は、光源から照射されたレーザ光を被写体に照射する計測光と参照ミラーとに照射する参照光とに分配し、前記被写体から反射した散乱光と前記参照ミラーから反射光とを合成させた干渉光を解析して診断する光干渉断層画像生成方法であって、前記レーザ光は、可干渉距離が48mm未満である高コヒーレント光を使用し、前記計測光を前記被写体に集光させる集光レンズと前記被写体との距離を調整して集光点を前記可干渉距離に対する可干渉範囲内で調整して光干渉断層画像を取得することを特徴とする。 Further, the optical coherence tomographic image generation method according to the present invention distributes the laser light emitted from the light source to the measurement light that irradiates the subject and the reference light that irradiates the reference mirror, and the scattered light reflected from the subject. An optical coherence tomographic image generation method for analyzing and diagnosing interference light obtained by combining reflected light from the reference mirror, wherein the laser light uses highly coherent light having a coherence distance of less than 48 mm, Adjusting a distance between a condensing lens for condensing measurement light on the subject and the subject, and adjusting a condensing point within a coherent range with respect to the coherent distance to obtain an optical coherence tomographic image. To do.
 かかる構成によれば、光干渉断層画像生成方法は、レーザ光の可干渉距離が48mm未満である高コヒーレント光を使用するので、従来よりも、被写体におけるレーザの照射方向に対する深さ方向の広い範囲に亘って断層画像を生成することができる。また、この光干渉断層画像生成方法によれば、集光レンズと被写体との距離を調整して集光点を可干渉距離に対する可干渉範囲内で調整することで、被写体の所定の深さ方向における位置でより鮮明な断層画像を生成することが可能である。 According to such a configuration, since the optical coherence tomographic image generation method uses highly coherent light whose coherence distance of laser light is less than 48 mm, a wider range in the depth direction with respect to the laser irradiation direction on the subject than before. A tomographic image can be generated over a wide range. Further, according to this optical coherence tomographic image generation method, the distance between the condensing lens and the subject is adjusted, and the focal point is adjusted within the coherent range with respect to the coherent distance. It is possible to generate a clearer tomographic image at the position at.
 本発明に係る光干渉断層画像生成装置及び光干渉断層画像生成方法は、撮影する被写体における広い範囲に亘って光干渉断層画像を生成することができる。また、被写体の深さ方向に対する所望位置における鮮明な光干渉断層画像を生成することができる。
 このため、本発明に係る光干渉断層画像生成装置は、被写体を全体的に見ながら患部を広範囲に探索することができるため、対象となる患部を迅速かつ確実に発見することができる。また、発見した患部の深さにレーザ光の集光点を合わせることで対象となる部位の鮮明な断層画像を生成することができる。
The optical coherence tomographic image generation apparatus and optical coherence tomographic image generation method according to the present invention can generate an optical coherence tomographic image over a wide range of a subject to be photographed. In addition, a clear optical coherence tomographic image at a desired position with respect to the depth direction of the subject can be generated.
For this reason, the optical coherence tomographic image generation apparatus according to the present invention can search the affected area over a wide range while looking at the subject as a whole, and thus can quickly and surely find the affected area. In addition, a clear tomographic image of the target region can be generated by matching the focal point of the laser beam to the depth of the affected part.
本発明の実施形態に係る光干渉断層画像生成装置の外観図であって、(a)は単関節アーム型、(b)は多関節アーム型をそれぞれ示している。1A and 1B are external views of an optical coherence tomographic image generation apparatus according to an embodiment of the present invention, in which FIG. 1A shows a single joint arm type and FIG. 本発明の実施形態に係る光干渉断層画像生成装置のユニット構成を模式的に示す構成図である。It is a block diagram which shows typically the unit structure of the optical coherence tomographic image generation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る光干渉断層画像生成装置の参照ミラー周りの構成を示す要部斜視図である。It is a principal part perspective view which shows the structure around the reference mirror of the optical coherence tomographic image generation device which concerns on embodiment of this invention. 本発明の実施形態に係る光干渉断層画像生成装置の診断プローブ部の斜視図である。It is a perspective view of the diagnostic probe part of the optical coherence tomographic image generation device concerning the embodiment of the present invention. 本発明の実施形態に係る光干渉断層画像生成装置の診断プローブ部の中央部縦断面図である。It is a central part longitudinal cross-sectional view of the diagnostic probe part of the optical coherence tomographic image generation device concerning the embodiment of the present invention. 本発明の実施形態に係る光干渉断層画像生成装置の診断プローブ部の要部分解斜視図である。It is a principal part disassembled perspective view of the diagnostic probe part of the optical coherence tomographic image generation device concerning the embodiment of the present invention. 本発明の実施形態に係る光干渉断層画像生成装置のノズルの着脱状態を示す要部分解斜視図である。It is a principal part disassembled perspective view which shows the attachment or detachment state of the nozzle of the optical coherence tomographic image generation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る光干渉断層画像生成装置のノズルの設置状態を示す要部拡大縦断面図である。It is a principal part expanded vertical sectional view which shows the installation state of the nozzle of the optical coherence tomographic image generation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る光干渉断層画像生成装置の第1変形例を示す図であり、診断プローブ部の要部分解斜視図である。It is a figure which shows the 1st modification of the optical coherence tomographic image generation apparatus which concerns on embodiment of this invention, and is a principal part disassembled perspective view of a diagnostic probe part. 本発明の実施形態に係る光干渉断層画像生成装置の第2変形例を示す図であり、診断プローブ部の斜視図である。It is a figure which shows the 2nd modification of the optical coherence tomographic image generation apparatus which concerns on embodiment of this invention, and is a perspective view of a diagnostic probe part. 本発明の実施形態に係る光干渉断層画像生成装置の第2変形例を示す図であり、診断プローブ部の要部分解斜視図である。It is a figure which shows the 2nd modification of the optical coherence tomographic image generation apparatus which concerns on embodiment of this invention, and is a principal part disassembled perspective view of a diagnostic probe part. 本発明の実施形態に係る光干渉断層画像生成装置の第2変形例を示す図であり、診断プローブ部の中央部縦断面図である。It is a figure which shows the 2nd modification of the optical coherence tomographic image generating apparatus which concerns on embodiment of this invention, and is a center part longitudinal cross-sectional view of a diagnostic probe part. 本発明の実施形態に係る光干渉断層画像生成装置の第2変形例を示す図であり、ノズルの設置状態を示す要部拡大縦断面図である。It is a figure which shows the 2nd modification of the optical coherence tomographic image generation apparatus which concerns on embodiment of this invention, and is a principal part expanded vertical sectional view which shows the installation state of a nozzle. 本発明の実施形態に係る光干渉断層画像生成装置の第3変形例を示す図であり、ノズル伸縮機構を備えた診断プローブ部の要部分解斜視図である。It is a figure which shows the 3rd modification of the optical coherence tomographic image generation apparatus which concerns on embodiment of this invention, and is a principal part disassembled perspective view of the diagnostic probe part provided with the nozzle expansion-contraction mechanism. 本発明の実施形態に係る光干渉断層画像生成装置の第3変形例を示す図であり、ノズル伸縮機構を備えた診断プローブ部の要部拡大縦断面図である。It is a figure which shows the 3rd modification of the optical coherence tomographic image production | generation apparatus which concerns on embodiment of this invention, and is a principal part expanded longitudinal cross-sectional view of the diagnostic probe part provided with the nozzle expansion-contraction mechanism. 本発明の実施形態に係る光干渉断層画像生成装置の第3変形例を示す図であり、光路長変更手段の要部斜視図である。It is a figure which shows the 3rd modification of the optical coherence tomographic image generation apparatus which concerns on embodiment of this invention, and is a principal part perspective view of an optical path length change means.
 以下、図面を参照して本発明の実施形態に係る光干渉断層画像生成装置であるOCT装置1について詳細に説明する。 Hereinafter, an OCT apparatus 1 that is an optical coherence tomographic image generation apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings.
[OCT装置の構成の概要]
 OCT装置1の構成の概要について、OCT装置1によって撮影する被写体(サンプルS)を、歯科の患者の診断対象の歯牙(前歯)である場合を例に挙げて説明する。図1及び図2に示すように、OCT装置1は、光学ユニット部10(光学ユニット)と、診断プローブ部30(プローブ)と、制御ユニット部50(制御ユニット)と、を主に備える。
 OCT装置1は、光源11から照射されたレーザ光をサンプルS(被写体)に照射する計測光と、参照ミラー21とに照射する参照光にカップラ12(光分割器)で分配し、診断プローブ部30で、前記計測光をサンプルSに照射しサンプルSの内部から散乱して戻って来た散乱光と、参照ミラー21からの反射光と、をカップラ16(光合波器)で合成させた干渉光を解析して、光干渉断層画像を生成する光干渉断層画像生成装置である。
[Overview of OCT system configuration]
An outline of the configuration of the OCT apparatus 1 will be described by taking as an example a case where the subject (sample S) to be imaged by the OCT apparatus 1 is a tooth (anterior tooth) to be diagnosed by a dental patient. As shown in FIGS. 1 and 2, the OCT apparatus 1 mainly includes an optical unit unit 10 (optical unit), a diagnostic probe unit 30 (probe), and a control unit unit 50 (control unit).
The OCT apparatus 1 distributes the laser light emitted from the light source 11 to the measurement light that irradiates the sample S (subject) and the reference light that irradiates the reference mirror 21 by the coupler 12 (light splitter), and the diagnostic probe unit. 30. Interference obtained by combining the reflected light from the reference mirror 21 with the reflected light from the reference mirror 21 and the scattered light that is returned from the sample S after being irradiated with the measurement light on the sample S by the coupler 16 An optical coherence tomographic image generation apparatus that analyzes light and generates an optical coherent tomographic image.
≪光学ユニット部≫
 光学ユニット部(光学ユニット)10は、一般的な光コヒーレンストモグラフィの各方式が適用可能な光源、光学系、検出部を備えている。図2に示すように、光学ユニット部10は、サンプル(被写体)Sに高帯域な波長のレーザ光を続けて(周期的に)照射する光源11と、レーザ光をサンプルSに照射する計測光と参照ミラー21に照射する参照光に分配するカップラ12(光分割器)と、計測光をサンプルSに照射しこのサンプルSの内部で散乱して戻って来た散乱光を受光する診断プローブ部30(プローブ)と、参照光が参照ミラー21から反射して戻って来た反射光と散乱光とを合成させて干渉光を生成するカップラ16(光合波器)と、その干渉光からサンプルSの内部情報を検出するディテクタ(検出器)23と、光源11とディテクタ23との間の光路中に設けられた光ファイバ19d,(60)やその他光学部品等を備えている。
≪Optical unit part≫
The optical unit (optical unit) 10 includes a light source, an optical system, and a detection unit to which each method of general optical coherence tomography can be applied. As shown in FIG. 2, the optical unit 10 includes a light source 11 that continuously (periodically) irradiates a sample (subject) S with laser light having a high band wavelength, and measurement light that irradiates the sample S with laser light. And a coupler 12 (light splitter) that distributes the reference light to be irradiated to the reference mirror 21 and a diagnostic probe unit that irradiates the sample S with the measurement light and scatters the sample S and returns the scattered light. 30 (probe), a coupler 16 (optical combiner) that generates interference light by synthesizing the reflected light and the reflected light that are reflected from the reference mirror 21 and returned from the reference mirror 21, and a sample S from the interference light. Detector 23 for detecting the internal information of the optical fiber 19d, optical fiber 19d (60) provided in the optical path between the light source 11 and the detector 23, and other optical components.
 ここで、光学ユニット部10の概略を説明する。
 光源11から射出された光は、光分割器であるカップラ12により、計測光と参照光とに分けられる。計測光は、サンプルアーム13のサーキュレータ14から診断プローブ部30に入射する。この計測光は、診断プローブ部30のシャッタ機構31のシャッタ312が開状態において、受光レンズ32(コリメータレンズ)、走査手段33(ガルバノミラー)を経て集光レンズ34によってサンプルSに集光され、そこで反射して散乱した後に再び集光レンズ34、走査手段33、受光レンズ32を経てサンプルアーム13のサーキュレータ14に戻る。戻ってきた計測光の偏光成分は、偏光コントローラ15によってより偏光の少ない状態に戻され、光合波器としてのカップラ16を介してディテクタ23に入力される。
Here, an outline of the optical unit unit 10 will be described.
Light emitted from the light source 11 is divided into measurement light and reference light by a coupler 12 which is a light splitter. The measurement light enters the diagnostic probe unit 30 from the circulator 14 of the sample arm 13. This measurement light is condensed on the sample S by the condenser lens 34 via the light receiving lens 32 (collimator lens) and the scanning means 33 (galvano mirror) when the shutter 312 of the shutter mechanism 31 of the diagnostic probe unit 30 is open. Then, after being reflected and scattered, it returns to the circulator 14 of the sample arm 13 through the condenser lens 34, the scanning means 33, and the light receiving lens 32 again. The polarization component of the returned measurement light is returned to a state with less polarization by the polarization controller 15 and input to the detector 23 via the coupler 16 as an optical multiplexer.
 一方、光分割器用のカップラ12により分離された参照光は、レファレンスアーム17のサーキュレータ18からコリメータレンズ19、光路長変更手段24を経て参照光集光レンズ20によって参照ミラー21(レファレンスミラー)に集光され、そこで反射した後に再び参照光集光レンズ20、コリメータレンズ19を経てサーキュレータ18に戻る。戻ってきた参照光の偏光成分は、偏光コントローラ22によってより偏光の少ない状態に戻され、光合波器用のカップラ16を介してディテクタ23に入力される。つまり、カップラ16が、サンプルSで散乱、反射して戻ってきた計測光と、参照ミラー21で反射した反射光とを合波するので、合波により干渉した光(干渉光)をディテクタ23がサンプルSの内部情報として検出することができる。 On the other hand, the reference light separated by the coupler 12 for the light splitter is collected on the reference mirror 21 (reference mirror) by the reference light condensing lens 20 from the circulator 18 of the reference arm 17 through the collimator lens 19 and the optical path length changing means 24. After being reflected and reflected there, the light returns to the circulator 18 through the reference light condensing lens 20 and the collimator lens 19 again. The polarization component of the returned reference light is returned to a state with less polarization by the polarization controller 22 and input to the detector 23 via the coupler 16 for the optical multiplexer. That is, since the coupler 16 combines the measurement light scattered and reflected by the sample S and the reflected light reflected by the reference mirror 21, the detector 23 detects the light (interference light) interfered by the multiplexing. It can be detected as internal information of the sample S.
<光源>
 光源11としては、例えばSS-OCT方式用のレーザ光源を用いることができる。
 この場合、光源11は、例えば、中心波長1310nm、掃引波長幅100nm、掃引速度50kHz、可干渉距離(コヒーレント長)が14mmの性能のものが好ましい。
 ここで、可干渉距離とは、パワースペクトルの減衰が6dBとなるときの距離に相当する。なお、レーザ光の可干渉距離は10mm以上で、48mm未満の高コヒーレント光が好ましいが、これに限定されるものではない。
<Light source>
As the light source 11, for example, a laser light source for SS-OCT method can be used.
In this case, it is preferable that the light source 11 has a performance with a center wavelength of 1310 nm, a sweep wavelength width of 100 nm, a sweep speed of 50 kHz, and a coherence distance (coherent length) of 14 mm.
Here, the coherent distance corresponds to a distance when the attenuation of the power spectrum is 6 dB. In addition, although the coherence distance of a laser beam is 10 mm or more and highly coherent light of less than 48 mm is preferable, it is not limited to this.
<参照光のコリメータレンズ>
 参照光のコリメータレンズ19(図2参照)は、カップラ12(光分割器)で分割された参照光を平行光に収束させるレンズであり、図3に示すように、コリメータレンズユニット19’のコリメータ19dの略円筒状のレンズホルダ19a内に収容されている。
 コリメータレンズユニット19’は、コリメータ19dと、コリメータ19dを抱持するコリメータ保持体19eと、コリメータ保持体19eを支持するブロック19fと、ブロック19fを光軸に直交する方向に微調整可能に支持するブラケット19hと、ブラケット19hを保持する支持台191と、支持台191を支持フレーム部材194に係合させるためのガタ防止部材192と、支持台191を支持フレーム部材194に固定するための固定具193と、前記支持フレーム部材194と、を主に備えている。
<Reference collimator lens>
The reference light collimator lens 19 (see FIG. 2) is a lens that converges the reference light divided by the coupler 12 (light splitter) into parallel light. As shown in FIG. 3, the collimator lens 19 ′ includes a collimator lens 19 ′. 19d is accommodated in a substantially cylindrical lens holder 19a.
The collimator lens unit 19 ′ supports a collimator 19d, a collimator holder 19e that holds the collimator 19d, a block 19f that supports the collimator holder 19e, and a block 19f that can be finely adjusted in a direction perpendicular to the optical axis. A bracket 19h, a support base 191 for holding the bracket 19h, a backlash preventing member 192 for engaging the support base 191 with the support frame member 194, and a fixture 193 for fixing the support base 191 to the support frame member 194 The support frame member 194 is mainly provided.
 コリメータ19dは、前記コリメータレンズ19と、コリメータレンズ19を内嵌した略円筒状のレンズホルダ19aと、レンズホルダ19aに取り付けられたコネクタ19cと、一端がコネクタ19cに接続され、他端がレンズホルダ19aとサーキュレータ18(図2参照)とに接続された光ファイバ19bと、を備えている。 The collimator 19d includes the collimator lens 19, a substantially cylindrical lens holder 19a in which the collimator lens 19 is fitted, a connector 19c attached to the lens holder 19a, one end connected to the connector 19c, and the other end to the lens holder. 19a and an optical fiber 19b connected to the circulator 18 (see FIG. 2).
 レンズホルダ19aは、光軸上の一端側に光ファイバ19bが取り付けられコネクタ19cを固定し、他端側に参照ミラー21に向けて開口され参照光、反射光が出入りする開口部が形成されている。
 コリメータ保持体19eは、レンズホルダ19aを光軸方向へ進退させて微調整可能にねじ止めし、ブロック19f上に固定されている。
 ブロック19fは、正面視して略コ字状のブラケット19h内に圧縮コイルばねSPを介在して光軸に直交する方向に微調整可能に支持されている。
 ブラケット19hは、支持台191に固定されて一体化されている。
In the lens holder 19a, an optical fiber 19b is attached to one end on the optical axis and the connector 19c is fixed, and an opening is formed on the other end toward the reference mirror 21 and through which reference light and reflected light enter and exit. Yes.
The collimator holder 19e is fixed on the block 19f by screwing the lens holder 19a forward and backward in the optical axis direction so as to be finely adjustable.
The block 19f is supported so as to be finely adjustable in a direction perpendicular to the optical axis via a compression coil spring SP in a substantially U-shaped bracket 19h when viewed from the front.
The bracket 19h is fixed to and integrated with the support base 191.
 支持台191は、この支持台191に固定したコリメータレンズユニット19’を載設して、コリメータレンズユニット19’を支持フレーム部材194に対して光軸方向に位置調整可能に支持する部材である。支持台191は、支持フレーム部材194上に光軸方向に摺動自在に係合された略コ字状の厚板部材であり、支持フレーム部材194の上方を跨ぐようにして連設されている。この支持台191には、ブラケット19hが当接された状態で配置される摺動面191aと、摺動面191aが形成される平板形状部位の両端部から支持フレーム部材194側に突設された左右一対の係合突起191bと、この左右の係合突起191b間に形成されて支持フレーム部材194のレール状部位に当接する凸部191cと、が形成されている。 The support table 191 is a member that mounts a collimator lens unit 19 ′ fixed to the support table 191 and supports the collimator lens unit 19 ′ so that the position of the collimator lens unit 19 ′ can be adjusted with respect to the support frame member 194 in the optical axis direction. The support base 191 is a substantially U-shaped thick plate member that is slidably engaged with the support frame member 194 in the optical axis direction, and is continuously provided so as to straddle the support frame member 194. . The support base 191 is provided with a sliding surface 191a disposed in a state in which the bracket 19h is in contact with the support frame member 194 from both ends of a flat plate-like portion where the sliding surface 191a is formed. A pair of left and right engaging projections 191b and a convex portion 191c formed between the left and right engaging projections 191b and abutting against the rail-shaped portion of the support frame member 194 are formed.
 固定具193は、支持台191の一方の係合突起191bに係合されたガタ防止部材192をその係合突起191bに固定するための締結部材からなり、支持フレーム部材194の所定位置に固定するためのものである。
 かかる構成により、前記コリメータ19dは、サンプルS(被写体)光側の光路長と参照光側の光路長が等しくなるように予め設定された光軸上の位置に配置することができる。
The fixing tool 193 includes a fastening member for fixing the backlash preventing member 192 engaged with one engaging protrusion 191b of the support base 191 to the engaging protrusion 191b, and is fixed to a predetermined position of the support frame member 194. Is for.
With this configuration, the collimator 19d can be disposed at a position on the optical axis set in advance so that the optical path length on the sample S (subject) light side is equal to the optical path length on the reference light side.
 参照光集光レンズ20は、コリメータレンズ19により収束された平行光を参照ミラー21に集光させるレンズであり、例えば、支持フレーム部材194上のコリメータレンズ19と参照ミラー21との間の予め設定された光軸上の位置に配置されている。参照光集光レンズ20は、この参照光集光レンズ20の傾きを調整可能に支持台20aに支持されると共に、その支持台20aが支持フレーム部材194に光軸方向へ移動及び固定可能に締結される固定具20bで支持フレーム部材194の所定位置に固定される。 The reference light condensing lens 20 is a lens that condenses the parallel light converged by the collimator lens 19 on the reference mirror 21. For example, the reference light condensing lens 20 is preset between the collimator lens 19 on the support frame member 194 and the reference mirror 21. Is arranged at a position on the optical axis. The reference light condensing lens 20 is supported by the support base 20a so that the inclination of the reference light condensing lens 20 can be adjusted, and the support base 20a is fastened to the support frame member 194 so as to be movable and fixed in the optical axis direction. The fixing tool 20b is fixed to a predetermined position of the support frame member 194.
 支持フレーム部材194は、光軸方向に延設された板状の部材であり、この支持フレーム部材194上のそれぞれの所定位置に適宜な間隔でコリメータレンズユニット19’、参照光集光レンズ20、及び参照ミラー21が載設されている。支持フレーム部材194には、例えば、一端部に参照ミラー21が固定され、この参照ミラー21から適宜な間隔を介して参照光集光レンズ20とコリメータ19dとが順に配置されて、コリメータ19dを移動することによって光路長が変更できるように設けられている。 The support frame member 194 is a plate-like member extending in the optical axis direction. The collimator lens unit 19 ′, the reference light condensing lens 20, and the like are disposed at predetermined intervals on the support frame member 194 at appropriate intervals. And the reference mirror 21 is mounted. For example, a reference mirror 21 is fixed to one end of the support frame member 194, and a reference light condensing lens 20 and a collimator 19d are sequentially arranged from the reference mirror 21 through an appropriate distance to move the collimator 19d. By doing so, the optical path length can be changed.
<参照光の光路長変更手段>
 図2に示すように、参照光の光路長変更手段24は、コリメータ19dを光軸方向に移動させて、カップラ12(光分割器)から参照ミラー21までの光路長を変更したり、初期設定する際に使用する装置である。参照光の光路長変更手段24は、例えば、コリメータ19dを保持してそのコリメータ19dと共に光軸に沿って手動式または電動式に進退可能に配置されたコリメータレンズユニット19’と、前記参照光集光レンズ20と、前記参照ミラー21と、コリメータレンズユニット19’、参照光集光レンズ20及び参照ミラー21を支持する支持フレーム部材194と、を備えて構成されている。
<Optical path length changing means for reference light>
As shown in FIG. 2, the optical path length changing unit 24 for the reference light moves the collimator 19d in the optical axis direction to change the optical path length from the coupler 12 (light splitter) to the reference mirror 21 or to perform initial setting. It is a device used when doing. The optical path length changing means 24 of the reference light includes, for example, a collimator lens unit 19 ′ that holds the collimator 19d and is arranged so as to be able to advance or retract manually or electrically along the optical axis together with the collimator 19d. The optical lens 20, the reference mirror 21, a collimator lens unit 19 ′, a reference light collecting lens 20, and a support frame member 194 that supports the reference mirror 21 are configured.
≪診断プローブ部≫
 図2に示すように、診断プローブ部30(プローブ)は、レーザ光を2次元走査する走査手段33(ガルバノミラー)を含み、光学ユニット部10からのレーザ光をサンプルSに導くと共に、サンプルS内で反射して散乱した散乱光を受光して光学ユニット部10に導くものである。この診断プローブ部30は、それぞれ後記するケーブル60と、ハウジング3と、フレーム本体300と、シャッタ機構31と、受光レンズ32と、走査手段(ガルバノミラー)と、集光レンズ34と、集光点調整機構35と、ノズル37と、を備えている。
≪Diagnostic probe part≫
As shown in FIG. 2, the diagnostic probe unit 30 (probe) includes scanning means 33 (galvanometer mirror) for two-dimensionally scanning laser light, guides the laser light from the optical unit unit 10 to the sample S, and samples S The scattered light reflected and scattered inside is received and guided to the optical unit 10. The diagnostic probe unit 30 includes a cable 60, a housing 3, a frame body 300, a shutter mechanism 31, a light receiving lens 32, a scanning unit (galvano mirror), a condensing lens 34, and a condensing point, which will be described later. An adjustment mechanism 35 and a nozzle 37 are provided.
<ケーブル>
 ケーブル60(図1参照)は、診断プローブ部30と、光学ユニット部10及び制御ユニット部50とを光学的及び電気的に接続するためのものである。ケーブル60は、光学ユニット部10に接続された光ファイバと、制御ユニット部50に接続された通信線とを内蔵している。
<Cable>
The cable 60 (see FIG. 1) is for optically and electrically connecting the diagnostic probe unit 30, the optical unit unit 10, and the control unit unit 50. The cable 60 includes an optical fiber connected to the optical unit unit 10 and a communication line connected to the control unit unit 50.
 撮影中以外のときには、診断プローブ部30のハウジング3を、図1(a)に示すように、OCT装置1の上部に配置された表示装置54の下部側から水平方向に延伸した単関節アーム70の先端のホルダ71に保持させておく。これにより、収納時には、長いケーブル60であってもケーブル60を捻じったりすることなく収納し、収納スペースを低減することができる。 When the imaging is not in progress, the housing 3 of the diagnostic probe section 30 is, as shown in FIG. 1A, a single joint arm 70 extending in the horizontal direction from the lower side of the display device 54 arranged on the upper portion of the OCT apparatus 1. It is held by the holder 71 at the tip of the head. As a result, even when the cable 60 is stored, the cable 60 can be stored without being twisted, and the storage space can be reduced.
 一方、撮影時には、利用者は、診断プローブ部30を単関節アーム70のホルダ71から外して把持し、手振れ防止等のため診断プローブ部30を患者の歯(サンプルS)に対して当接させる。このとき利用者の両手が塞がっていたとしても撮影開始の操作ボタンSW(図4参照)を操作するために、制御ユニット部50に有線または無線で通信可能に接続されたフットコントローラ80(図1参照)を用いることもできる。 On the other hand, at the time of imaging, the user removes and grasps the diagnostic probe unit 30 from the holder 71 of the single joint arm 70 and brings the diagnostic probe unit 30 into contact with the patient's teeth (sample S) to prevent camera shake. . At this time, even if both hands of the user are blocked, in order to operate the operation button SW (see FIG. 4) for starting photographing, the foot controller 80 (FIG. 1) connected to the control unit 50 so as to be communicable by wire or wirelessly. Reference) can also be used.
 図1(b)に示すOCT装置1Aは、撮影中以外のときには、診断プローブ部30を、OCT装置1Aの上部に配置された表示装置54の上部側から水平方向に延伸した多関節アーム70Aの先端のホルダ71に保持させておくことができるようにした点以外は、図1(a)に示すOCT装置1と同様なものである。多関節アーム70Aは、単関節アーム70に比べて、基端から先端のホルダ71までの長さが長く、床からより高い位置に配置されている。そのため、ケーブル60の垂れ下がりが低減できる。これにより、操作性を向上させ、垂れ下がったケーブル60を誤って踏んだりすることを防止できる。 When the OCT apparatus 1A shown in FIG. 1B is not in the middle of imaging, the diagnostic probe unit 30 includes an articulated arm 70A that extends horizontally from the upper side of the display device 54 disposed on the OCT apparatus 1A. The OCT apparatus 1 is the same as the OCT apparatus 1 shown in FIG. 1A except that it can be held by the holder 71 at the tip. The articulated arm 70A has a longer length from the proximal end to the distal end holder 71 than the single-joint arm 70, and is disposed at a higher position from the floor. Therefore, the drooping of the cable 60 can be reduced. Thereby, operability can be improved and it can prevent having stepped on the cable 60 which hung down accidentally.
<ハウジング>
 図4及び図5に示すように、ハウジング3は、フレーム本体300や診断プローブ部30の構成部品を覆ったり、支持したりするケース体であり、側面視して略十字形状(略ピストル形状)に形成されている。このため、持ち易くて操作性がよく、前記ホルダ71にも容易に取り付けることもできる形状をしている。ハウジング3には、それぞれ後記する走査手段収納部3aと、グリップ部3bと、集光レンズ収納部3cと、X方向ガルバノミラー収納部3dと、Y方向ガルバノミラー収納部3eと、が形成されている。このハウジング3内には、フレーム本体300、受光レンズ32、走査手段33、集光レンズ34、シャッタ機構31、が主に設けられている。ハウジング3は、例えば、中央部を縦断面して左右に二分した2つのケース体を合致させてなる。
<Housing>
As shown in FIGS. 4 and 5, the housing 3 is a case body that covers or supports the components of the frame body 300 and the diagnostic probe unit 30, and has a substantially cross shape (substantially pistol shape) when viewed from the side. Is formed. For this reason, it is easy to hold, has good operability, and has a shape that can be easily attached to the holder 71. The housing 3 is formed with a scanning means storage portion 3a, a grip portion 3b, a condenser lens storage portion 3c, an X-direction galvanometer mirror storage portion 3d, and a Y-direction galvanometer mirror storage portion 3e, which will be described later. Yes. In the housing 3, a frame main body 300, a light receiving lens 32, a scanning unit 33, a condenser lens 34, and a shutter mechanism 31 are mainly provided. The housing 3 is formed by, for example, matching two case bodies that are divided into right and left by longitudinally sectioning the central portion.
 走査手段収納部3aは、略十字形状のハウジング3の略中央部に配置された走査手段33を収納する部位である。
 グリップ部3bは、利用者が手で診断プローブ部30を持つ際に握る部位であると共に、ホルダ71(図2参照)で抱持される部位である。グリップ部3bは、走査手段収納部3aの配置位置から下方(矢印B方向)に延びて、略円筒状に形成されている。グリップ部3bは、ノズル37側の外周面に操作ボタンSWが配置されて、その内部に受光レンズ32等が収納され、下面にケーブル60が引き出された状態に配線されている。
The scanning means storage portion 3 a is a portion for storing the scanning means 33 disposed at a substantially central portion of the substantially cross-shaped housing 3.
The grip portion 3b is a portion that is gripped when the user holds the diagnostic probe portion 30 by hand and is a portion that is held by the holder 71 (see FIG. 2). The grip portion 3b extends downward (in the direction of arrow B) from the position where the scanning means storage portion 3a is disposed, and is formed in a substantially cylindrical shape. The grip portion 3b is arranged such that the operation button SW is disposed on the outer peripheral surface on the nozzle 37 side, the light receiving lens 32 and the like are accommodated therein, and the cable 60 is drawn out on the lower surface.
 集光レンズ収納部3cは、集光レンズ34及び集光点調整機構35を収納すると共に、ノズル37及び操作ノブ351を支持する部位である。集光レンズ収納部3cは、グリップ部3bに対して直交する方向に延びて形成されると共に、走査手段収納部3aから前方向(矢印A方向)に向けて略円筒状に形成されている。
 X方向ガルバノミラー収納部3dは、X方向ガルバノミラー33Xの駆動モータやコネクタ部等が収納される部位であり、走査手段収納部3aの配置位置から後方向に膨らんだ状態に突設されている。
 Y方向ガルバノミラー収納部3eは、Y方向ガルバノミラー33Yの駆動モータやコネクタ部等が収納される部位であり、走査手段収納部3aの配置位置から上方に膨らんだ状態に突設されている。
The condensing lens storage unit 3 c is a part that stores the condensing lens 34 and the condensing point adjustment mechanism 35 and supports the nozzle 37 and the operation knob 351. The condensing lens storage portion 3c is formed so as to extend in a direction orthogonal to the grip portion 3b, and is formed in a substantially cylindrical shape from the scanning means storage portion 3a toward the front (arrow A direction).
The X-direction galvanometer mirror storage portion 3d is a portion in which the drive motor, the connector portion, and the like of the X-direction galvanometer mirror 33X are stored, and protrudes in a state in which the X-direction galvano mirror storage portion bulges backward from the arrangement position of the scanning means storage portion 3a. .
The Y-direction galvanometer mirror housing portion 3e is a portion in which the drive motor, connector portion, and the like of the Y-direction galvanometer mirror 33Y are housed, and protrudes in a state in which the Y-direction galvanometer mirror housing portion 3e bulges upward from the arrangement position of the scanning means housing portion 3a.
<フレーム本体>
 図6に示すように、フレーム本体300は、シャッタ機構31、光軸調整機構321、走査手段33及び集光点調整機構35を保持する厚板状の部材であり、ハウジング3内にねじ止めされている。フレーム本体300は、ハウジング3の形状に合わせて、側面視して略十字形状(略ピストル形状)に形成されている。このフレーム本体300には、中央部に走査手段33が固定されるL字型部300aと、中央部から下側に延びて形成され、シャッタ機構31及び光軸調整機構321が固定される垂直部300bと、中央のL字型部300aから前側に延びて形成されて、集光点調整機構35が固定されている水平部300cと、垂直部300bに上下方向に延設された位置調整孔301と、水平部300cに水平方向に延設された位置調整孔302と、が形成されている。
<Frame body>
As shown in FIG. 6, the frame main body 300 is a thick plate-like member that holds the shutter mechanism 31, the optical axis adjustment mechanism 321, the scanning means 33, and the condensing point adjustment mechanism 35, and is screwed into the housing 3. ing. The frame main body 300 is formed in a substantially cross shape (substantially pistol shape) in a side view according to the shape of the housing 3. The frame body 300 is formed with an L-shaped portion 300a in which the scanning means 33 is fixed at the central portion, and a vertical portion that is formed to extend downward from the central portion and to which the shutter mechanism 31 and the optical axis adjusting mechanism 321 are fixed. 300b, a horizontal portion 300c formed to extend from the central L-shaped portion 300a to the front side, to which the condensing point adjusting mechanism 35 is fixed, and a position adjusting hole 301 extending vertically in the vertical portion 300b. And the position adjustment hole 302 extended in the horizontal direction in the horizontal part 300c is formed.
 位置調整孔301は、垂直部300bに計測光の光軸方向に延びて形成された長孔であり、受光レンズブラケット324を光軸方向に移動可能及び傾動可能に支持すると共に、その受光レンズブラケット324を所定の向き及び位置に締結するブラケット締結具327が上下動可能に挿入される。
 位置調整孔302は、集光レンズ34を光軸に沿って進退させる集光点調整機構35を移動自在の設置するための長孔であり、調整ねじ353が移動自在に挿入されている。
The position adjustment hole 301 is a long hole formed in the vertical portion 300b so as to extend in the optical axis direction of the measurement light, and supports the light receiving lens bracket 324 so as to be movable and tiltable in the optical axis direction. A bracket fastener 327 for fastening 324 in a predetermined direction and position is inserted so as to be movable up and down.
The position adjusting hole 302 is a long hole for movably installing a condensing point adjusting mechanism 35 that advances and retracts the condensing lens 34 along the optical axis, and an adjustment screw 353 is movably inserted therein.
<シャッタ機構>
 図6に示すように、シャッタ機構31は、サーキュレータ14(図2参照)から送られて来た計測光と、サンプルSに計測光が当たって反射した散乱光とが診断プローブ部30を通過するのを遮断する装置であり、例えば、グリップ部3b内の受光レンズ32と走査手段収納部3a内の走査手段33との間に介在されている。このシャッタ機構31は、例えば、シャッタ基体311と、シャッタ312と、シャッタ駆動手段313と、シャッタ基体締結具314と、を備えている。シャッタ機構31は、シャッタ312によってサンプルSからの反射光を遮断して、表示画面上に写るノイズ(像)をソフト的に除去するゼロ点補正を行うためのものである。
<Shutter mechanism>
As shown in FIG. 6, in the shutter mechanism 31, the measurement light sent from the circulator 14 (see FIG. 2) and the scattered light reflected by the measurement light hitting the sample S pass through the diagnostic probe unit 30. For example, it is interposed between the light receiving lens 32 in the grip portion 3b and the scanning means 33 in the scanning means storage portion 3a. The shutter mechanism 31 includes, for example, a shutter base 311, a shutter 312, shutter driving means 313, and a shutter base fastener 314. The shutter mechanism 31 is for performing zero point correction by blocking the reflected light from the sample S by the shutter 312 and removing noise (image) appearing on the display screen in a software manner.
 シャッタ基体311は、シャッタ312及びシャッタ駆動手段313が取り付けられる部材であり、シャッタ基体締結具314によってフレーム本体300に上下動可能な状態に固定されている。シャッタ基体311には、計測光及び散乱光が通過する透孔311aが上下方向に向けて光軸上に形成されている。シャッタ基体311は、シャッタ基体締結具314の締結を緩めることによって、シャッタ基体締結具314を中心として回動可能となっている。
 シャッタ312は、透孔311aを通過する計測光及び散乱光を遮断する部材であり、シャッタ駆動手段313の駆動軸(図示省略)を中心に回動して、透孔311aを開閉するように配置された板部材からなる。
The shutter base 311 is a member to which the shutter 312 and the shutter driving unit 313 are attached, and is fixed to the frame main body 300 so as to be vertically movable by the shutter base fastener 314. In the shutter base 311, a through hole 311a through which measurement light and scattered light pass is formed on the optical axis in the vertical direction. The shutter base 311 can be rotated around the shutter base fastener 314 by loosening the fastening of the shutter base fastener 314.
The shutter 312 is a member that blocks measurement light and scattered light that pass through the through-hole 311a, and is arranged so as to open and close the through-hole 311a by rotating around a drive shaft (not shown) of the shutter drive unit 313. It consists of the plate member made.
 シャッタ駆動手段313は、シャッタ312を光軸上に移動させたり、光軸上から退避させたりして開閉駆動させて、透孔311aを開閉させるアクチュエータである。シャッタ駆動手段313は、例えば、シャッタ312を回動させて透孔311aを開閉させるモータ、または、シャッタ312を進退移動させて透孔311aを開閉させるソレノイド等からなる。
 シャッタ基体締結具314は、シャッタ基体311をフレーム本体300に上下方向に移動可能に固定するためのねじ部材である。このシャッタ基体締結具314は、フレーム本体300の位置調整孔301に挿入してシャッタ基体311に螺着される。
 なお、シャッタ機構31は、手動でシャッタ312が動かすものであっても構わない。
The shutter driving unit 313 is an actuator that opens and closes the through hole 311a by moving the shutter 312 on the optical axis or retracting the shutter 312 from the optical axis. The shutter driving unit 313 includes, for example, a motor that rotates the shutter 312 to open and close the through hole 311a, or a solenoid that opens and closes the shutter 312 to open and close the through hole 311a.
The shutter base fastener 314 is a screw member for fixing the shutter base 311 to the frame body 300 so as to be movable in the vertical direction. The shutter base fastener 314 is inserted into the position adjustment hole 301 of the frame main body 300 and screwed to the shutter base 311.
The shutter mechanism 31 may be a mechanism that manually moves the shutter 312.
<受光レンズ>
 図5及び図6に示すように、受光レンズ32は、カップラ12(図2参照)からサーキュレータ14を介して送られた計測光を受光してレーザ径を調整するレンズであり、例えば、平行光に収束させるコリメータレンズからなる。受光レンズ32は、略円筒状の受光レンズユニット322に内設されて、受光レンズホルダ323及び受光レンズブラケット324を介在してフレーム本体300の下部に回動可能に取り付けられている。
<Light receiving lens>
As shown in FIGS. 5 and 6, the light receiving lens 32 is a lens that receives measurement light sent from the coupler 12 (see FIG. 2) via the circulator 14 and adjusts the laser diameter. It consists of a collimator lens that converges to. The light receiving lens 32 is installed in a substantially cylindrical light receiving lens unit 322 and is rotatably attached to the lower portion of the frame body 300 with a light receiving lens holder 323 and a light receiving lens bracket 324 interposed therebetween.
<光軸調整機構>
 図6に示すように、光軸調整機構321は、受光レンズ32を内設した受光レンズユニット322を光軸に対して傾けたり、進退して受光レンズ32の向きと位置とを調整する装置である。光軸調整機構321は、それぞれ後記する受光レンズユニット322と、受光レンズホルダ323と、受光レンズブラケット324と、ユニット締結具325と、ホルダ締結具326と、ブラケット締結具327と、を備えて構成されている。
<Optical axis adjustment mechanism>
As shown in FIG. 6, the optical axis adjustment mechanism 321 is a device that adjusts the direction and position of the light receiving lens 32 by tilting or moving the light receiving lens unit 322 provided with the light receiving lens 32 relative to the optical axis. is there. The optical axis adjusting mechanism 321 includes a light receiving lens unit 322, a light receiving lens holder 323, a light receiving lens bracket 324, a unit fastener 325, a holder fastener 326, and a bracket fastener 327, which will be described later. Has been.
 受光レンズユニット322は、受光レンズ32を内設した略筒状の部材あり、光軸に沿って上下方向に向けて配置されている。
 受光レンズホルダ323は、受光レンズユニット322を光軸を中心として回動自在に保持する部材であり、受光レンズユニット322が挿入される貫通孔323aと、貫通孔323aに切欠成形された切欠部323bと、ユニット締結具325及びホルダ締結具326が螺合されるねじ穴(図示省略)と、を有している。
The light receiving lens unit 322 is a substantially cylindrical member in which the light receiving lens 32 is provided, and is disposed in the vertical direction along the optical axis.
The light-receiving lens holder 323 is a member that holds the light-receiving lens unit 322 so as to be rotatable about the optical axis. The light-receiving lens unit 322 has a through-hole 323a into which the light-receiving lens unit 322 is inserted, and a notch 323b that is notched in the through-hole 323a. And a screw hole (not shown) into which the unit fastener 325 and the holder fastener 326 are screwed together.
 受光レンズブラケット324は、受光レンズホルダ323を水平方向の一方向(図6のA方向、光軸に直交する方向)に配設されたホルダ締結具326を中心として回動自在に保持している。そして、受光レンズブラケット324は、水平方向の他方向(図6のB方向、光軸に直交する一方向に直交する方向)に配設されたホルダ締結具326を中心として回動自在に保持するフレーム本体300に固定されている。
 また、受光レンズブラケット324は、ハウジング3内のフレーム本体300に対して図6のB方向に位置調整可能に取り付けられる部材であり、平面視して略L字状の厚板材からなる。受光レンズブラケット324には、ホルダ締結具326が挿入される孔(図示省略)と、ブラケット締結具327が螺合されるねじ穴(図示省略)と、が形成されている。
 ユニット締結具325は、受光レンズホルダ323に回動自在に挿入された受光レンズユニット322を緩めて回動可能にしたり、締め付けて受光レンズユニット322を受光レンズホルダ323に固定したりするための締結具である。ユニット締結具325は、受光レンズホルダ323の切欠部32bに直交するように形成されたねじ穴(図示省略)に螺入される。
The light receiving lens bracket 324 holds the light receiving lens holder 323 so as to be rotatable about a holder fastener 326 disposed in one horizontal direction (direction A in FIG. 6, a direction perpendicular to the optical axis). . The light-receiving lens bracket 324 is rotatably held around a holder fastener 326 disposed in another horizontal direction (direction B in FIG. 6, a direction orthogonal to one direction orthogonal to the optical axis). It is fixed to the frame body 300.
The light receiving lens bracket 324 is a member that is attached to the frame body 300 in the housing 3 so that the position of the light receiving lens bracket 324 can be adjusted in the direction B in FIG. 6, and is made of a thick plate material that is substantially L-shaped in plan view. The light receiving lens bracket 324 is formed with a hole (not shown) into which the holder fastener 326 is inserted and a screw hole (not shown) into which the bracket fastener 327 is screwed.
The unit fastener 325 is a fastening for loosening the light receiving lens unit 322 inserted into the light receiving lens holder 323 so that the light receiving lens unit 322 can be rotated, or fixing the light receiving lens unit 322 to the light receiving lens holder 323 by tightening. It is a tool. The unit fastener 325 is screwed into a screw hole (not shown) formed so as to be orthogonal to the notch 32b of the light receiving lens holder 323.
 ホルダ締結具326は、受光レンズブラケット324に回動自在に内嵌された受光レンズホルダ323を緩めて回動可能にしたり、締め付けて受光レンズ32の前後方向の傾きを固定したりするための締結具である。ホルダ締結具326は、先端部が受光レンズブラケット324を挿通して受光レンズホルダ323に螺着される。
 ブラケット締結具327は、受光レンズブラケット324を上下動及び回動自在に位置調整孔301に取り付けるための締結具であり、位置調整孔301を挿通して受光レンズブラケット324に形成されたねじ穴(図示省略)に螺合される。このブラケット締結具327は、受光レンズブラケット324の締め付けを緩めることにより回動可能にして、受光レンズブラケット324及び受光レンズ32の光軸の傾きを調整することができる。
The holder fastener 326 is a fastening for loosening the light receiving lens holder 323 fitted in the light receiving lens bracket 324 so that the light receiving lens holder 323 can be rotated, or for fastening the light receiving lens 32 to fix the tilt in the front-rear direction. It is a tool. The holder fastener 326 is screwed into the light receiving lens holder 323 through the light receiving lens bracket 324 at the tip.
The bracket fastener 327 is a fastener for attaching the light-receiving lens bracket 324 to the position adjustment hole 301 so as to be movable up and down and rotatable, and is a screw hole (through the position adjustment hole 301 formed in the light-receiving lens bracket 324 ( (Not shown). The bracket fastener 327 can be rotated by loosening the tightening of the light receiving lens bracket 324, and the inclination of the optical axes of the light receiving lens bracket 324 and the light receiving lens 32 can be adjusted.
<走査手段>
 図5及び図6に示すように、走査手段33は、受光レンズ32を通過したレーザ光の照射方向を変化させるためのミラーであり、受光レンズ32を透過した計測光の光軸を90度変換するX方向ガルバノミラー33X(第1ガルバノミラー)と、X方向ガルバノミラー33Xで変換する光軸の向きに対して90度相違する向きに光軸を変換するY方向ガルバノミラー33Y(第2ガルバノミラー)と、を備えて構成されている。
<Scanning means>
As shown in FIGS. 5 and 6, the scanning unit 33 is a mirror for changing the irradiation direction of the laser light that has passed through the light receiving lens 32, and converts the optical axis of the measurement light that has passed through the light receiving lens 32 by 90 degrees. X-direction galvanometer mirror 33X (first galvanometer mirror) and Y-direction galvanometer mirror 33Y (second galvanometer mirror) that converts the optical axis in a direction that is 90 degrees different from the direction of the optical axis converted by the X-direction galvanometer mirror 33X ).
 光源11から照射されたレーザ光は、X方向ガルバノミラー33Xと、Y方向ガルバノミラー33Yとを介してサンプルS(図2参照)に照射され、診断プローブ部30のノズル先端が正対するサンプルSの表面から内部に進む深さ方向(A方向)の内部情報をディテクタ23が取得する。後記するように1回のスキャンで1152ポイントからなるA方向のデータ(以下、Aラインデータという)を取得し、その後の周波数解析の画像処理を取得する。 The laser light emitted from the light source 11 is applied to the sample S (see FIG. 2) via the X-direction galvanometer mirror 33X and the Y-direction galvanometer mirror 33Y, and the nozzle S of the diagnostic probe unit 30 is directly opposed to the sample S. The detector 23 acquires the internal information in the depth direction (A direction) going from the surface to the inside. As will be described later, data in the A direction consisting of 1152 points (hereinafter referred to as A line data) is acquired in one scan, and image processing for subsequent frequency analysis is acquired.
 ここで、X方向及びY方向とは、診断プローブ部30のノズル先端が正対するサンプルSの表面において横方向及び縦方向(Y軸方向)に対応する。 Here, the X direction and the Y direction correspond to the horizontal direction and the vertical direction (Y-axis direction) on the surface of the sample S facing the nozzle tip of the diagnostic probe unit 30.
 X方向ガルバノミラー33Xは、受光レンズ32側に設けられている。X方向ガルバノミラー33Xは、ミラー面(A-V平面)を、A方向を軸としてモータ駆動により回転するものである。このとき、取得されるデータの方向は、サンプルSの表面において横方向(X軸方向)のデータであり、B方向のデータとなる。仮にガルバノミラーの動作回転角が例えば-3°~+3°で128ポイントのB方向のデータが必要な場合、後記するように128ポイントのB方向のデータ(以下、Bラインデータという)を取得する。 The X direction galvanometer mirror 33X is provided on the light receiving lens 32 side. The X-direction galvanometer mirror 33X rotates a mirror surface (AV plane) by motor drive with the A direction as an axis. At this time, the direction of the acquired data is data in the horizontal direction (X-axis direction) on the surface of the sample S, and is data in the B direction. If the operation rotation angle of the galvano mirror is, for example, -3 ° to + 3 ° and 128-point B-direction data is required, 128-point B-direction data (hereinafter referred to as B-line data) is acquired as described later. .
 Y方向ガルバノミラー33Yは、集光レンズ34側に設けられ、ミラー面(B-V平面)を、B方向を軸としてモータ駆動により回転するものである。このとき、取得されるデータの方向は、サンプルSの表面において縦方向(Y軸方向)のデータであり、V方向のデータ(以下、Vラインデータという)となる。 The Y-direction galvanometer mirror 33Y is provided on the condensing lens 34 side, and rotates the mirror surface (BV plane) by motor driving around the B direction. At this time, the direction of the acquired data is data in the vertical direction (Y-axis direction) on the surface of the sample S, and is data in the V direction (hereinafter referred to as V line data).
<集光レンズ>
 図5及び図6に示すように、集光レンズ34は、走査手段33による走査光を集光すると共に、計測光をサンプルSに集光させて照射するレンズであり、レンズ収納筒体352に内設されている。レンズ収納筒体352は、ハウジング3の集光レンズ収納部3c内に位置調整孔302に沿って進退自在に配置されている。このレンズ収納筒体352の下面部には、利用者の指が遊嵌するリング状の操作ノブ351が一体形成されている。
<Condensing lens>
As shown in FIGS. 5 and 6, the condensing lens 34 is a lens that condenses the scanning light from the scanning unit 33 and condenses the measurement light on the sample S and irradiates it. It is installed inside. The lens storage cylinder 352 is disposed in the condensing lens storage portion 3 c of the housing 3 so as to freely advance and retract along the position adjustment hole 302. A ring-shaped operation knob 351 on which a user's finger is loosely fitted is integrally formed on the lower surface portion of the lens housing cylinder 352.
<集光点調整機構>
 図6に示すように、集光点調整機構35は、集光レンズ34とノズル37に当接されたサンプルS(被写体)との間の距離を調整して集光点を調整する装置であり、ハウジング3の集光レンズ収納部3cに操作ノブ351を露出した状態で内設されている。集光点調整機構35は、フレーム本体300の水平部300cに水平方向に向けて延設された位置調整孔302と、この位置調整孔302に挿入されてレンズ収納筒体352を光軸に沿って形成された位置調整孔302の適宜な位置に固定する調整ねじ353と、レンズ収納筒体352に一体に形成されて集光レンズ34を位置調整孔302の適宜な位置に移動操作するための前記操作ノブ351と、ノズル支持体36を介在して前歯用ノズル37A(ノズル37)をフレーム本体300に固定するための連結用筒体354と、を備えて構成されている。
 集光点調整機構35は、操作ノブ351を操作して移動させることによって、操作ノブ351と共に集光レンズ34が光軸方向に進退して、集光点を調整できるようになっている。
<Condensing point adjustment mechanism>
As shown in FIG. 6, the condensing point adjustment mechanism 35 is a device that adjusts the condensing point by adjusting the distance between the condensing lens 34 and the sample S (subject) in contact with the nozzle 37. The operating knob 351 is exposed in the condensing lens storage portion 3c of the housing 3 in an exposed state. The condensing point adjusting mechanism 35 includes a position adjusting hole 302 extending in the horizontal direction in the horizontal portion 300c of the frame main body 300, and the lens accommodating cylinder 352 inserted along the optical axis by being inserted into the position adjusting hole 302. An adjustment screw 353 that fixes the position adjustment hole 302 formed at an appropriate position and a lens housing cylinder 352 integrally formed to move the condenser lens 34 to an appropriate position of the position adjustment hole 302. The operation knob 351 and a connecting cylinder 354 for fixing the front tooth nozzle 37 </ b> A (nozzle 37) to the frame main body 300 through the nozzle support 36 are provided.
The condensing point adjusting mechanism 35 is configured to adjust the condensing point by operating and moving the operation knob 351 so that the condensing lens 34 moves forward and backward in the optical axis direction together with the operation knob 351.
<ノズル>
 図8に示すように、ノズル37(前歯用ノズル37A)は、集光レンズ34の前方に配置され計測光をサンプルSに照射して散乱光を回収する開口部37Aeを有する筒状の部材である。前歯用ノズル37Aは、ハウジング3の先端部の集光レンズ収納部3cに、連結用筒体354、ノズル支持体36、スプリングSP、球体SB及び外環部材38を介在して着脱自在(交換可能)、かつ、回動自在に装着されている。
 前歯用ノズル37Aは、診断プローブ部30で前歯(サンプルS)を撮影する際に(図5参照)、円筒状の前歯用ノズル37Aの開口部37AeをサンプルSに当接させて、その間隔を保持しながら計測光をサンプルSに照射して、反射された散乱光を回収するための部材である。
<Nozzle>
As shown in FIG. 8, the nozzle 37 (front tooth nozzle 37 </ b> A) is a cylindrical member that is disposed in front of the condenser lens 34 and has an opening 37 </ b> Ae that irradiates the sample S with measurement light and collects scattered light. is there. The front tooth nozzle 37 </ b> A is detachable (replaceable) through the condensing lens housing 3 c at the tip of the housing 3 through the connecting cylinder 354, the nozzle support 36, the spring SP, the spherical body SB, and the outer ring member 38. ) And is rotatably mounted.
When imaging the front teeth (sample S) with the diagnostic probe unit 30 (see FIG. 5), the front tooth nozzle 37A abuts the opening 37Ae of the cylindrical front tooth nozzle 37A on the sample S and sets the interval therebetween. This is a member for collecting the reflected scattered light by irradiating the sample S with measurement light while being held.
 図7及び図8に示すように、前歯用ノズル37Aには、基端部側に当該前歯用ノズル37Aをノズル支持体36に内嵌させるための係合筒部37Aaと、この係合筒部37Aaの外球面に形成され球体SBが係合する環状溝37Abと、係合筒部37Aaの先端に係止されたフランジ部37Acと、このフランジ部37Acから先端側に延設された円筒部37Adと、が一体形成されている。 As shown in FIGS. 7 and 8, the front tooth nozzle 37 </ b> A has an engagement tube portion 37 </ b> Aa for fitting the front tooth nozzle 37 </ b> A to the nozzle support 36 on the base end side, and the engagement tube portion. An annular groove 37Ab that is formed on the outer spherical surface of 37Aa and engages with the sphere SB, a flange portion 37Ac that is locked to the distal end of the engaging cylinder portion 37Aa, and a cylindrical portion 37Ad that extends from the flange portion 37Ac to the distal end side. And are integrally formed.
 図8に示すように、ノズル支持体36は、連結用筒体354と前歯用ノズル37Aとの間に介在されて外環部材38に内嵌される略円筒状の部材である。ノズル支持体36は、基端部側に連結用筒体354に内嵌される係合部36aと、外環部材38に内嵌されると共に、円筒コイルばねからなるスプリングSPの基端側を支持するばね受け部36bと、そのスプリングSPが外嵌されるスプリング外装部36cと、球体SBが移動自在に内嵌される球体挿入孔36dと、が形成されている。 As shown in FIG. 8, the nozzle support 36 is a substantially cylindrical member that is interposed between the connecting cylinder 354 and the front tooth nozzle 37 </ b> A and is fitted into the outer ring member 38. The nozzle support 36 has an engagement portion 36a fitted in the connecting cylinder 354 on the proximal end side, and an outer ring member 38, and a proximal end side of the spring SP made of a cylindrical coil spring. A spring receiving portion 36b to be supported, a spring exterior portion 36c into which the spring SP is fitted, and a sphere insertion hole 36d into which the sphere SB is movably fitted are formed.
 外環部材38は、ノズル支持体36及びスプリングSPを覆うようにその外側に配置される略筒状の部材であり、その内面に、圧縮された状態のスプリングSPの先端部を支持するばね受け凸部38aが形成されている。 The outer ring member 38 is a substantially cylindrical member that is disposed outside the nozzle support 36 and the spring SP so as to cover the nozzle support 36 and the spring SP, and a spring receiver that supports the tip of the compressed spring SP on the inner surface thereof. A convex portion 38a is formed.
≪制御ユニット部≫
 制御ユニット部50(制御ユニット)は、図2に示すように、AD変換回路51と、DA変換回路52と、ガルバノミラー制御回路53と、表示装置54と、OCT制御装置100とを備える。
≪Control unit section≫
As shown in FIG. 2, the control unit 50 (control unit) includes an AD conversion circuit 51, a DA conversion circuit 52, a galvano mirror control circuit 53, a display device 54, and an OCT control device 100.
 AD変換回路51は、ディテクタ23(検出器)のアナログ出力信号をデジタル信号に変換するものである。本実施形態では、AD変換回路51は、光源11であるレーザ出力装置から出力されるトリガ(trigger)に同期して信号の収得を開始し、同じくレーザ出力装置から出力されるクロック信号ckのタイミングに合わせて、ディテクタ(検出器)23のアナログ出力信号を収得し、デジタル信号に変換する。このデジタル信号は、OCT制御装置100に入力する。 The AD conversion circuit 51 converts the analog output signal of the detector 23 (detector) into a digital signal. In the present embodiment, the AD conversion circuit 51 starts acquisition of a signal in synchronization with a trigger output from the laser output device that is the light source 11, and the timing of the clock signal ck that is also output from the laser output device. At the same time, the analog output signal of the detector (detector) 23 is acquired and converted into a digital signal. This digital signal is input to the OCT controller 100.
 DA変換回路52は、OCT制御装置100のデジタル出力信号をアナログ信号に変換するものである。本実施形態では、DA変換回路52は、光源11であるレーザ出力装置から出力されるトリガ(trigger)に同期して、OCT制御装置100のデジタル信号をアナログ信号に変換する。このアナログ信号は、ガルバノミラー制御回路53に入力する。 The DA conversion circuit 52 converts the digital output signal of the OCT control device 100 into an analog signal. In the present embodiment, the DA conversion circuit 52 converts the digital signal of the OCT control device 100 into an analog signal in synchronization with a trigger output from the laser output device that is the light source 11. This analog signal is input to the galvanometer mirror control circuit 53.
 ガルバノミラー制御回路53は、診断プローブ部30の走査手段33を制御するドライバである。ガルバノミラー制御回路53は、OCT制御装置100のアナログ出力信号に基づいて、光源11から出照されるレーザの出力周期に同期して、X方向ガルバノミラー33XまたはY方向ガルバノミラー33Yのモータを駆動または停止させるモータ駆動信号を出力する(図5及び図6参照)。 The galvanometer mirror control circuit 53 is a driver that controls the scanning means 33 of the diagnostic probe unit 30. The galvano mirror control circuit 53 drives the motor of the X direction galvano mirror 33X or the Y direction galvano mirror 33Y in synchronization with the output period of the laser emitted from the light source 11 based on the analog output signal of the OCT control device 100. Alternatively, a motor drive signal to be stopped is output (see FIGS. 5 and 6).
 ガルバノミラー制御回路53は、X方向ガルバノミラー33Xの軸を回転させてミラー面の角度を変更する処理と、Y方向ガルバノミラー33Yの軸を回転させてミラー面の角度を変更する処理と、を異なるタイミングで行う(図5及び図6参照)。ガルバノミラー制御回路53のこれらの処理を、単に、ガルバノミラーX,Y軸変更と呼ぶ。ガルバノミラーX,Y軸変更を行うタイミングの例については後記する。 The galvano mirror control circuit 53 performs processing for changing the angle of the mirror surface by rotating the axis of the X direction galvano mirror 33X, and processing for changing the angle of the mirror surface by rotating the axis of the Y direction galvano mirror 33Y. It is performed at different timing (see FIGS. 5 and 6). These processes of the galvanometer mirror control circuit 53 are simply referred to as galvanometer mirror X and Y axis changes. An example of timing for changing the galvanometer mirror X and Y axes will be described later.
 表示装置54は、OCT制御装置100によって生成される光干渉断層画像(以下、OCT画像という)を表示するものである。表示装置54は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)、EL(Electronic Luminescence)、CRT(Cathode Ray Tube)、PDP(Plasma Display Panel)等から構成される。 The display device 54 displays an optical coherence tomographic image (hereinafter referred to as an OCT image) generated by the OCT control device 100. The display device 54 includes, for example, a liquid crystal display (LCD: Liquid Crystal Display), EL (Electronic Luminescence), CRT (Cathode Ray Tube), PDP (Plasma Display Panel), and the like.
 OCT制御装置100は、OCT装置1の制御装置であって、レーザ光に同期して走査手段33を制御することで撮影を行うと共に、ディテクタ23の検出信号を変換したデータからサンプルSのOCT画像を生成する制御を行うものである。OCT制御装置100は、不図示の入出力手段と、記憶手段と、演算手段と、を備えたコンピュータと、このコンピュータにインストールされたプログラムとから構成される。 The OCT control apparatus 100 is a control apparatus for the OCT apparatus 1 and performs imaging by controlling the scanning unit 33 in synchronization with the laser beam, and also generates an OCT image of the sample S from the data obtained by converting the detection signal of the detector 23. The control which produces | generates is performed. The OCT control apparatus 100 includes a computer including input / output means (not shown), storage means, and arithmetic means, and a program installed in the computer.
[作用]
 次に、OCT装置1(光干渉断層画像生成装置)を使用してサンプルS(前歯)を撮影する場合を説明する。
 不図示の電源スイッチをONした後、操作ボタンSW(図4参照)を操作して、図6に示すシャッタ機構31のシャッタ駆動手段313を駆動させてシャッタ312を開放状態にする。
 また、光軸が傾いている場合には、図6に示すホルダ締結具326を緩めて、V方向の傾きを調整すると共に、ブラケット締結具327を緩めてA方向の傾きを調整する。
[Action]
Next, the case where the sample S (front tooth) is imaged using the OCT apparatus 1 (optical coherence tomographic image generation apparatus) will be described.
After the power switch (not shown) is turned on, the operation button SW (see FIG. 4) is operated to drive the shutter driving means 313 of the shutter mechanism 31 shown in FIG. 6 to open the shutter 312.
When the optical axis is inclined, the holder fastener 326 shown in FIG. 6 is loosened to adjust the inclination in the V direction, and the bracket fastener 327 is loosened to adjust the inclination in the A direction.
 診断プローブ部30は、撮影する際に、集光レンズ34と、ノズル37の先端に当接させたサンプルSとの間の距離を調整して集光点を調整する集光点調整機構35を備えていることによって、撮影する断層画像をサンプルSの基準面から深さ方向に位置調整して、深さ方向に広い範囲に亘って断層画像を得ることができる。 The diagnostic probe unit 30 includes a condensing point adjustment mechanism 35 that adjusts the condensing point by adjusting the distance between the condensing lens 34 and the sample S that is in contact with the tip of the nozzle 37 when photographing. By providing the tomographic image, the position of the tomographic image to be photographed can be adjusted in the depth direction from the reference plane of the sample S, and a tomographic image can be obtained over a wide range in the depth direction.
 また、図2に示すように、OCT装置1は、コリメータ19dを光軸方向に移動させて、カップラ12(光分割器)から参照ミラー21までの光路長を変更する光路長変更手段24と、前記集光レンズ34とサンプルSとの距離を調整して集光点を調整する集光点調整機構35と、を有し、両者を作動させて互いの光路長を一致させることによって、所望の可干渉距離内の鮮明な断層画像を得ることができる。 As shown in FIG. 2, the OCT apparatus 1 includes an optical path length changing unit 24 that changes the optical path length from the coupler 12 (optical divider) to the reference mirror 21 by moving the collimator 19d in the optical axis direction. A condensing point adjusting mechanism 35 that adjusts the condensing point by adjusting the distance between the condensing lens 34 and the sample S, and by operating both to make the optical path lengths coincide with each other. A clear tomographic image within a coherent distance can be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、高コヒーレント光の可干渉距離について説明する。
 表1に示す従来使用されているOCT装置1では、可干渉距離が6mmある。可干渉距離が6mmの場合、撮影可能な範囲が浅く、深さ方向に広範囲にデータをとることができなかった。可干渉距離は、歯牙特有のもの(う蝕等)を撮影するためには光軸方向における深さ方向のデータが深い方がよい。
 また、可干渉距離が48mm以上の場合は、光源から照射される波長を階段上に上げて行くため電源が複雑になる。また、光源が大きくなり小型化が難しい。さらに撮影スピードが遅く手ぶれが起き易くなる。
 そこで、本発明では、解像度が可干渉距離6mmのものより劣るが、深さ方向のデータをより多く取得でき、撮影スピードが速く、可干渉距離が14mmのものを実際に使用してその効果を確認した。
Next, the coherence distance of highly coherent light will be described.
The conventionally used OCT apparatus 1 shown in Table 1 has a coherence distance of 6 mm. When the coherence distance was 6 mm, the imageable range was shallow, and data could not be taken over a wide range in the depth direction. The coherence distance is better when the data in the depth direction in the optical axis direction is deeper in order to photograph a tooth-specific thing (such as caries).
When the coherence distance is 48 mm or more, the wavelength of light emitted from the light source is raised on the stairs, and the power supply becomes complicated. In addition, the light source becomes large and it is difficult to downsize. Furthermore, the shooting speed is slow and camera shake is likely to occur.
Therefore, in the present invention, although the resolution is inferior to that of the coherence distance of 6 mm, more data in the depth direction can be acquired, the photographing speed is fast, and the effect of using the coherence distance of 14 mm is actually used. confirmed.
 なお、OCT装置1は、高コヒーレント光の可干渉距離が48mm以上の可干渉距離を有する光源を搭載する理論上可能であるが、この光源が波数(波長)を階段状に掃引するというSS-OCT方式であるため、掃引速度や分解能などを含めた総合的性能をこの光源に求めると、光源自体の製作が困難になるので、可干渉距離を48mm未満とする。
 このため、可干渉距離は、10mm以上48mm未満が適切である。
The OCT apparatus 1 can theoretically be equipped with a light source having a coherence distance of 48 mm or more for highly coherent light, but this light source sweeps the wave number (wavelength) stepwise. Since the OCT method is used, if the overall performance including the sweep speed and resolution is obtained from this light source, it becomes difficult to manufacture the light source itself, so the coherence distance is set to less than 48 mm.
For this reason, the coherent distance is suitably 10 mm or more and less than 48 mm.
≪第1変形例≫
 なお、本発明は、前記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の改造及び変更が可能であり、本発明はこれら改造及び変更された発明にも及ぶことは勿論である。なお、既に説明した構成は同じ符号を付してその説明を省略する。
 図9は、本発明の実施形態に係る光干渉断層画像生成装置の第1変形例を示す図であり、診断プローブ部の要部分解斜視図である。
≪First modification≫
The present invention is not limited to the above-described embodiment, and various modifications and changes can be made within the scope of the technical idea. The present invention extends to these modifications and changes. Of course. In addition, the already demonstrated structure attaches | subjects the same code | symbol and abbreviate | omits the description.
FIG. 9 is a diagram showing a first modified example of the optical coherence tomographic image generation device according to the embodiment of the present invention, and is an exploded perspective view of a main part of a diagnostic probe unit.
 前記実施形態では、集光レンズ34の位置を操作ノブ351を手動で光軸方向に移動させる集光点調整機構35を説明したが(図6参照)、これに限定されるものではない。集光点調整機構35Aは、図9に示す診断プローブ部30Aのように、集光レンズ34Aを電動モータ35Abで計測光の光軸方向に移動して、集光レンズ34AとサンプルSとの間の距離を調整する電動式の集光レンズ移動機構35Aaであっても構わない。 In the above embodiment, the condensing point adjusting mechanism 35 for manually moving the operation knob 351 in the optical axis direction has been described (see FIG. 6), but the present invention is not limited to this. The condensing point adjustment mechanism 35A moves the condensing lens 34A in the direction of the optical axis of the measurement light by the electric motor 35Ab, like the diagnostic probe unit 30A shown in FIG. It may be an electric condensing lens moving mechanism 35Aa that adjusts the distance.
 この場合、集光点調整機構35Aの集光レンズ移動機構35Aaは、集光レンズ34Aを光軸方向に移動自在に収納したレンズケース35Acと、レンズケース35Acを軸方向に進退させる超音波リニアアクチュエータ等からなる電動モータ35Abと、レンズケース35Acと一体に移動する電動モータ35Abの移動を案内するガイド部材35Adと、を備えている。集光レンズ移動機構35Aaは、集光レンズ34Aの移動を移動させて焦点位置を変えることによって、診断プローブ部30Aの先端よりさらに深い位置に焦点を合わすことを可能にする。 In this case, the condensing lens moving mechanism 35Aa of the condensing point adjusting mechanism 35A includes a lens case 35Ac that houses the condensing lens 34A so as to be movable in the optical axis direction, and an ultrasonic linear actuator that advances and retracts the lens case 35Ac in the axial direction. And a guide member 35Ad for guiding the movement of the electric motor 35Ab that moves integrally with the lens case 35Ac. The condensing lens moving mechanism 35Aa moves the condensing lens 34A to change the focal position, thereby enabling focusing on a position deeper than the tip of the diagnostic probe unit 30A.
 レンズケース35Acは、例えば、集光レンズ34Aを収納した略円筒状の部材からなり、中心線を光軸に合わせて配置される。このレンズケース35Acは、電動モータ35Abにねじ止めされている。なお、レンズケース35Acは、電動モータ35Abによってフレーム本体300に対して光軸方向へ移動すればよく、電動モータ35Abを一体に移動するものに限定されるものではない。 The lens case 35Ac is made of, for example, a substantially cylindrical member that houses the condenser lens 34A, and is arranged with the center line aligned with the optical axis. The lens case 35Ac is screwed to the electric motor 35Ab. The lens case 35Ac may be moved in the optical axis direction with respect to the frame main body 300 by the electric motor 35Ab, and is not limited to the one that moves the electric motor 35Ab integrally.
 電動モータ35Abは、操作ボタンSW(図4参照)を操作することで駆動し、ガイド部材35Adのレール部35Aeにガイドされて光軸方向に進退するようになっている。電動モータ35Abは、超音波リニアアクチュエータに限定されるものではなく、歯車減速機構等を介在してレンズケース35Acを移動させるものであっても構わない。
 ガイド部材35Adは、例えば、電動モータ35Abの移動をガイドする一対のレール部35Aeと、このレール部35Aeを保持してフレーム本体300に固定されるホルダ基台34Afと、からなる。
The electric motor 35Ab is driven by operating the operation button SW (see FIG. 4), and is guided by the rail portion 35Ae of the guide member 35Ad so as to advance and retreat in the optical axis direction. The electric motor 35Ab is not limited to the ultrasonic linear actuator, and may move the lens case 35Ac via a gear reduction mechanism or the like.
The guide member 35Ad includes, for example, a pair of rail portions 35Ae that guide the movement of the electric motor 35Ab, and a holder base 34Af that holds the rail portions 35Ae and is fixed to the frame body 300.
≪第2変形例≫
 図10は、本発明の実施形態に係る光干渉断層画像生成装置の第2変形例を示す図であり、診断プローブ部の斜視図である。図11は、本発明の実施形態に係る光干渉断層画像生成装置の第2変形例を示す図であり、診断プローブ部の要部分解斜視図である。図12は、本発明の実施形態に係る光干渉断層画像生成装置の第2変形例を示す図であり、診断プローブ部の中部縦断面図である。図13は、本発明の実施形態に係る光干渉断層画像生成装置の第2変形例を示す図であり、ノズルの設置状態を示す要部拡大縦断面図である。
≪Second modification≫
FIG. 10 is a diagram showing a second modification of the optical coherence tomographic image generation apparatus according to the embodiment of the present invention, and is a perspective view of a diagnostic probe unit. FIG. 11 is a diagram showing a second modification of the optical coherence tomographic image generation apparatus according to the embodiment of the present invention, and is an exploded perspective view of a main part of a diagnostic probe unit. FIG. 12 is a diagram showing a second modification of the optical coherence tomographic image generation apparatus according to the embodiment of the present invention, and is a middle longitudinal sectional view of the diagnostic probe section. FIG. 13 is a view showing a second modification of the optical coherence tomographic image generation apparatus according to the embodiment of the present invention, and is an enlarged vertical cross-sectional view of a main part showing a nozzle installation state.
 前記実施形態では、OCT装置1の一例として、前歯(切歯)をサンプルSとし、図4及び図5に示すストレートタイプの前歯用ノズル37Aを備えた診断プローブ部30を例に挙げて説明したが、これに限定されるものではない。
 図10~図13に示すように、診断プローブ部30Bは、サンプルSを臼歯としてアングルタイプの臼歯用ノズル37Bに交換して使用しても構わない。
In the above-described embodiment, as an example of the OCT apparatus 1, the front teeth (incisors) are the sample S, and the diagnostic probe unit 30 including the straight type front tooth nozzle 37A illustrated in FIGS. 4 and 5 is described as an example. However, the present invention is not limited to this.
As shown in FIGS. 10 to 13, the diagnostic probe unit 30B may be used by replacing the sample S with an angle-type molar nozzle 37B with the molar as a molar.
 この場合、臼歯用ノズル37Bは、集光レンズ34の光軸を直交する方向に変換する斜鏡37Baを筒部37Bbの先端部内壁37Bcに有すると共に、集光レンズ34の光軸に対して直交する方向に開口部37Bdが形成されて、臼歯用ノズル37Bの長手方向に対して直交する方向にあるサンプルSに照射して散乱光を回収するようになっている。臼歯用ノズル37Bは、前歯用ノズル37Aと同様にハウジング3に対して着脱自在(交換可能)、かつ、回動自在に装着されている。 In this case, the molar nozzle 37 </ b> B has an oblique mirror 37 </ b> Ba for converting the optical axis of the condenser lens 34 in a direction orthogonal to the distal end inner wall 37 </ b> Bc of the cylindrical portion 37 </ b> Bb and orthogonal to the optical axis of the condenser lens 34. An opening 37Bd is formed in the direction in which the light is scattered, and the sample S in a direction orthogonal to the longitudinal direction of the molar nozzle 37B is irradiated to collect scattered light. The molar nozzle 37B is detachably (replaceable) and rotatably mounted on the housing 3 in the same manner as the front tooth nozzle 37A.
 臼歯用ノズル37Bは、診断プローブ部30Bで臼歯を撮影する際に、臼歯用ノズル37Bの開口部37BdをサンプルS(臼歯)に当接させてその間隔を保持しながら計測光をサンプルSに照射して、反射された散乱光を回収する。
 図13に示すように、臼歯用ノズル37Bには、基端部側に当該臼歯用ノズル37Bをノズル支持体36に内嵌させるための中空状の係合筒部37Beと、この係合筒部37Beの外側表面に形成され球体SBが係合する環状溝37Bfと、係合筒部37Beの先端側に形成されたフランジ部37Bgと、このフランジ部37Bgから先端側に向けて延設された筒部37Bbと、斜鏡37Baが斜めに配置される先端部内壁37Bcと、先端部内壁37Bcの下側に開口された開口部37Bdと、が一体形成されている。
The molar nozzle 37B irradiates the sample S with measurement light while maintaining the interval by bringing the opening 37Bd of the molar nozzle 37B into contact with the sample S (molar) when imaging the molar with the diagnostic probe unit 30B. Then, the reflected scattered light is collected.
As shown in FIG. 13, the molar nozzle 37 </ b> B includes a hollow engaging cylinder portion 37 </ b> Be for fitting the molar nozzle 37 </ b> B into the nozzle support 36 on the proximal end side, and the engaging cylinder portion. An annular groove 37Bf that is formed on the outer surface of 37Be and engages with the sphere SB, a flange portion 37Bg formed on the distal end side of the engagement tubular portion 37Be, and a cylinder that extends from the flange portion 37Bg toward the distal end side The portion 37Bb, the tip end inner wall 37Bc where the oblique mirror 37Ba is disposed obliquely, and the opening 37Bd opened below the tip end inner wall 37Bc are integrally formed.
 このように、臼歯用ノズル37Bは、光軸を90度変換する斜鏡37Baと、筒部37Bbの先端の90度直交する方向に開口された開口部37Bdと、を有して、筒部37Bbを回動させれば、開口部37Bdの向き(撮影する方向)を自由に変えられるため、口腔内の奥にある臼歯を容易に撮影することができる。 Thus, the molar nozzle 37B includes the oblique portion 37Ba for converting the optical axis by 90 degrees and the opening portion 37Bd opened in the direction orthogonal to the distal end of the tubular portion 37Bb by the tubular portion 37Bb. Is rotated, the direction of the opening 37Bd (the direction in which the image is taken) can be freely changed, so that the molars in the back of the oral cavity can be easily imaged.
≪第3変形例≫
 図14は、本発明の実施形態に係る光干渉断層画像生成装置の第3変形例を示す図であり、ノズル伸縮機構を備えた診断プローブ部の要部分解斜視図である。図15は、本発明の実施形態に係る光干渉断層画像生成装置の第3変形例を示す図であり、ノズル伸縮機構を備えた診断プローブ部の要部拡大縦断面図である。図16は、本発明の実施形態に係る光干渉断層画像生成装置の第3変形例を示す図であり、光路長変更手段の要部斜視図である。
<< Third Modification >>
FIG. 14 is a diagram showing a third modification of the optical coherence tomographic image generation device according to the embodiment of the present invention, and is an exploded perspective view of a main part of a diagnostic probe unit provided with a nozzle expansion / contraction mechanism. FIG. 15 is a diagram showing a third modification of the optical coherence tomographic image generation device according to the embodiment of the present invention, and is an enlarged vertical sectional view of a main part of a diagnostic probe unit provided with a nozzle expansion / contraction mechanism. FIG. 16 is a diagram showing a third modification of the optical coherence tomographic image generation device according to the embodiment of the present invention, and is a perspective view of the main part of the optical path length changing means.
 本発明の実施形態に係る光干渉断層画像生成装置の第3変形例は、前記した集光点調整機構35(図5及び図6参照)に代えて、図14及び図15に示すように、ノズル37Cを進退、または、ノズル長L1を可変して、集光レンズ34とサンプルSとの距離を調整するノズル伸縮機構39と、図16に示す参照光の光路長をノズル37Cの伸縮に合わせて変更する光路長変更手段と、を備えたものである。 A third modified example of the optical coherence tomographic image generation device according to the embodiment of the present invention, as shown in FIGS. 14 and 15, instead of the above-described focusing point adjustment mechanism 35 (see FIGS. 5 and 6), The nozzle 37C is advanced or retreated, or the nozzle length L1 is changed to adjust the distance between the condenser lens 34 and the sample S, and the optical path length of the reference light shown in FIG. And optical path length changing means for changing.
<ノズル伸縮機構>
 ノズル伸縮機構39は、ノズル37Cをハウジング3に対して進退させて、集光レンズ34とサンプルSとの距離を調整する集光点調整機構を形成する。
<Nozzle extension mechanism>
The nozzle expansion / contraction mechanism 39 forms a condensing point adjustment mechanism that adjusts the distance between the condensing lens 34 and the sample S by moving the nozzle 37 </ b> C forward and backward with respect to the housing 3.
 この場合、診断プローブ部30C(プローブ)のノズル37Cは、ノズル支持体36の先端部に着脱自在に内嵌されるノズル基体37C1と、このノズル基体37C1に対して伸縮した状態に取り付けられるノズル伸縮体37C2と、を備えて構成されている。
 ノズル基体37C1は、先端部の開口部内に雌ねじ部37Caが形成されている。
 ノズル伸縮体37C2は、基端側の外周面に、雌ねじ部37Caに螺合する雄ねじ部37Cbが形成され、このノズル伸縮体37C2を正転・反転させることによって、ノズル長L1を所望の長さに調整して、集光レンズ34とサンプルSとの距離も調整できるようになっている。
In this case, the nozzle 37C of the diagnostic probe section 30C (probe) includes a nozzle base 37C1 that is detachably fitted to the tip of the nozzle support 36, and a nozzle expansion / contraction that is attached to the nozzle base 37C1 in a stretched state. And a body 37C2.
The nozzle base 37C1 has a female thread portion 37Ca formed in the opening at the tip.
The nozzle expandable body 37C2 has a male screw portion 37Cb that is screwed into the female screw portion 37Ca on the outer peripheral surface on the base end side, and the nozzle length L1 is set to a desired length by rotating and reversing the nozzle expandable body 37C2. The distance between the condenser lens 34 and the sample S can also be adjusted.
<光路長変更手段>
 図16に示すように、光路長変更手段24は、支持台191に対してコリメータレンズユニット19’(図3参照)を光軸方向に移動自在に配設し、コリメータレンズユニット19’を移動させることにより、カップラ12(光分割器)から参照ミラー21までの光路長を変更する装置である。このため、図3におけるコリメータレンズユニット19’と対比させながら相違点を主として説明する。
 光路長変更手段24は、コリメータ19dを保持するコリメータ保持体19eを搭載するブラケット19hと、ブラケット19hを光軸方向に移動させるレンズ移動装置195と、を備えている。
<Optical path length changing means>
As shown in FIG. 16, the optical path length changing means 24 arranges a collimator lens unit 19 ′ (see FIG. 3) movably in the optical axis direction with respect to the support base 191, and moves the collimator lens unit 19 ′. Thus, the optical path length from the coupler 12 (light splitter) to the reference mirror 21 is changed. Therefore, the difference will be mainly described while comparing with the collimator lens unit 19 ′ in FIG.
The optical path length changing means 24 includes a bracket 19h on which a collimator holder 19e that holds the collimator 19d is mounted, and a lens moving device 195 that moves the bracket 19h in the optical axis direction.
 レンズ移動装置195は、アクチュエータ196と、支持台191に固定されたアクチュエータ支持体198と、アクチュエータ196が動く際のガイドをするレール部材197と、から主に構成されている。
 アクチュエータ196は、例えば、超音波リニアアクチュエータ等の電動装置からなり、不図示のコントロールスイッチを操作することによって、摺動自在に支持されたアクチュエータ支持体198に対し光軸方向に移動するようになっている。
 アクチュエータ支持体198は、レンズ移動装置195の移動をガイドして支持するガイド部材であり、ブラケット19hを光軸方向に摺動自在に載置している。
The lens moving device 195 mainly includes an actuator 196, an actuator support 198 fixed to the support base 191, and a rail member 197 that guides when the actuator 196 moves.
The actuator 196 is composed of, for example, an electric device such as an ultrasonic linear actuator, and moves in the optical axis direction relative to the slidably supported actuator support 198 by operating a control switch (not shown). ing.
The actuator support 198 is a guide member that guides and supports the movement of the lens moving device 195, and places the bracket 19h slidably in the optical axis direction.
 かかる構成により、本発明の第3変形例に係る光干渉断層画像生成装置は、光分割器から参照ミラーまでの光路長を変更する光路長変更手段を備えたことによって、前記ノズル伸縮機構により被写体から光合波器までの光路長を変更した場合においても、散乱光と反射光の光路長を一致させることができるため、前記干渉光の解析を容易に実行することができる。 With such a configuration, the optical coherence tomographic image generation device according to the third modification of the present invention includes the optical path length changing unit that changes the optical path length from the optical splitter to the reference mirror, so that the subject can be controlled by the nozzle expansion / contraction mechanism. Even when the optical path length from the optical multiplexer to the optical multiplexer is changed, the optical path lengths of the scattered light and the reflected light can be matched, so that the analysis of the interference light can be easily performed.
 図14及び図15に示す診断プローブ部30Cで撮影する断層画像は、ノズル37Cを伸縮させて、撮影する画像の対象点を移動させて焦点位置を通過すると、断層画像の反転が起きるため、図16に示す参照光側のコリメータ19dを移動させることで断層画像の反転を回避することができる。断層画像は、焦点位置を変えることによって断層画像の一部分が折り返すように写る。これを防ぐために、参照光側のコリメータ19dを動かす。参照光側のコリメータ19dと同じことが診断プローブ部30C内でも起きる。しかし、プローブ内は、スペースが限られているので参照光側で行うことが望ましい。 The tomographic image photographed by the diagnostic probe unit 30C shown in FIGS. 14 and 15 is inverted when the nozzle 37C is expanded and contracted, the target point of the image to be photographed is moved and passed through the focal position. The reversal of the tomographic image can be avoided by moving the reference light side collimator 19d shown in FIG. The tomographic image appears so that a part of the tomographic image is folded by changing the focal position. In order to prevent this, the collimator 19d on the reference light side is moved. The same thing as the collimator 19d on the reference light side also occurs in the diagnostic probe unit 30C. However, since the space inside the probe is limited, it is desirable that the probe be performed on the reference light side.
 1   OCT装置(光干渉断層画像生成装置)
 11  光源
 12  カップラ(光分割器)
 16  カップラ(光合波器)
 19  コリメータレンズ
 19d コリメータ
 20  参照光集光レンズ
 21  参照ミラー
 24  光路長変更手段
 30,30A,30B,30C 診断プローブ部(プローブ)
 31  シャッタ機構
 32  受光レンズ
 33  走査手段
 34  集光レンズ
 35,35A 集光点調整機構
 35Aa 集光レンズ移動機構
 37  ノズル
 39  ノズル伸縮機構
 L1  ノズル長
 S   サンプル(被写体)
1 OCT device (optical coherence tomographic image generator)
11 Light source 12 Coupler (light splitter)
16 coupler (optical multiplexer)
DESCRIPTION OF SYMBOLS 19 Collimator lens 19d Collimator 20 Reference light condensing lens 21 Reference mirror 24 Optical path length change means 30, 30A, 30B, 30C Diagnostic probe part (probe)
31 Shutter mechanism 32 Light receiving lens 33 Scanning means 34 Condensing lens 35, 35A Condensing point adjustment mechanism 35Aa Condensing lens moving mechanism 37 Nozzle 39 Nozzle expansion / contraction mechanism L1 Nozzle length S Sample (subject)

Claims (6)

  1.  高帯域な波長のレーザ光を周期的に照射する光源と、
     前記レーザ光を被写体に照射する計測光と参照ミラーに照射する参照光とに分配する光分割器と、
     前記計測光を前記被写体に照射し当該被写体の内部で散乱して戻って来た散乱光を受光するプローブと、
     前記参照光が前記参照ミラーから反射して戻って来た反射光と前記散乱光とを合成させて干渉光を生成する光合波器と、を有し、前記干渉光を解析して光干渉断層画像を生成する光干渉断層画像生成装置であって、
     前記レーザ光は、可干渉距離が10mm以上である高コヒーレント光であり、
     前記プローブは、前記計測光を前記被写体に集光させる集光レンズと、
     この集光レンズと前記被写体との距離を調整して集光点を調整する集光点調整機構と、
    を備えたことを特徴とする光干渉断層画像生成装置。
    A light source that periodically irradiates laser light of a high-band wavelength;
    An optical splitter for distributing the measurement light for irradiating the subject with the laser light and the reference light for irradiating the reference mirror;
    A probe that irradiates the subject with the measurement light and receives scattered light that is scattered and returned inside the subject;
    An optical multiplexer that generates interference light by combining the reflected light that is reflected from the reference mirror and returned from the reference mirror, and that generates interference light. An optical coherence tomographic image generation device for generating an image,
    The laser light is highly coherent light having a coherence distance of 10 mm or more,
    The probe includes a condensing lens that condenses the measurement light on the subject;
    A condensing point adjusting mechanism for adjusting a condensing point by adjusting a distance between the condensing lens and the subject;
    An optical coherence tomographic image generation apparatus comprising:
  2.  前記集光点調整機構は、前記集光レンズを前記計測光の光軸方向に移動して、当該集光レンズと前記被写体との距離を調整する集光レンズ移動機構を備えたことを特徴とする請求項1に記載の光干渉断層画像生成装置。 The condensing point adjusting mechanism includes a condensing lens moving mechanism that adjusts a distance between the condensing lens and the subject by moving the condensing lens in an optical axis direction of the measurement light. The optical coherence tomographic image generation apparatus according to claim 1.
  3.  前記プローブは、その先端部に装着され前記被写体に当接させるノズルを有し、
     前記集光点調整機構は、前記ノズルを進退、または、ノズル長を可変して、前記集光レンズと前記被写体との距離を調整するノズル伸縮機構を備えたことを特徴とする請求項1または請求項2に記載の光干渉断層画像生成装置。
    The probe has a nozzle that is attached to the tip of the probe and makes contact with the subject,
    2. The condensing point adjusting mechanism includes a nozzle expansion / contraction mechanism that adjusts a distance between the condensing lens and the subject by moving the nozzle back and forth or changing a nozzle length. The optical coherence tomographic image generation apparatus according to claim 2.
  4.  前記光分割器で分割された前記参照光を平行光に収束させるコリメータと、
     このコリメータにより収束された前記平行光を前記参照ミラーに集光させる参照光集光レンズと、
     前記コリメータを光軸方向に移動させて、前記光分割器から前記参照ミラーまでの光路長を変更する光路長変更手段と、
     を備えたことを特徴とする請求項3に記載の光干渉断層画像生成装置。
    A collimator that converges the reference light split by the light splitter into parallel light;
    A reference light condensing lens that condenses the parallel light converged by the collimator on the reference mirror;
    An optical path length changing means for changing the optical path length from the optical splitter to the reference mirror by moving the collimator in the optical axis direction;
    The optical coherence tomographic image generation apparatus according to claim 3, further comprising:
  5.  前記高コヒーレント光の可干渉距離は、48mm未満であることを特徴とする請求項1または請求項2に記載の光干渉断層画像生成装置。 3. The optical coherent tomographic image generation apparatus according to claim 1, wherein a coherent distance of the highly coherent light is less than 48 mm.
  6.  光源から照射されたレーザ光を被写体に照射する計測光と参照ミラーとに照射する参照光とに分配し、前記被写体から反射した散乱光と前記参照ミラーから反射光とを合成させた干渉光を解析して診断する光干渉断層画像生成方法であって、
     前記レーザ光は、可干渉距離が10mm以上48mm未満である高コヒーレント光を使用し、
     前記計測光を前記被写体に集光させる集光レンズと前記被写体との距離を調整して集光点を前記可干渉距離に対する可干渉範囲内で調整して光干渉断層画像を取得することを特徴とする光干渉断層画像生成方法。
    Laser light emitted from a light source is distributed to measurement light that irradiates a subject and reference light that is emitted to a reference mirror, and interference light obtained by combining scattered light reflected from the subject and reflected light from the reference mirror An optical coherence tomographic image generation method for analyzing and diagnosing,
    The laser light uses a highly coherent light whose coherence distance is 10 mm or more and less than 48 mm,
    Adjusting a distance between a condensing lens for condensing the measurement light on the subject and the subject and adjusting a condensing point within a coherent range with respect to the coherent distance to obtain an optical coherence tomographic image; An optical coherence tomographic image generation method.
PCT/JP2012/050834 2011-04-13 2012-01-17 Optical coherence tomography apparatus and optical coherence tomography method WO2012140926A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011089036A JP5930262B2 (en) 2011-04-13 2011-04-13 Optical coherence tomographic image generation apparatus and focusing point adjustment method for optical coherence tomographic image generation apparatus
JP2011-089036 2011-04-13

Publications (1)

Publication Number Publication Date
WO2012140926A1 true WO2012140926A1 (en) 2012-10-18

Family

ID=47009112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050834 WO2012140926A1 (en) 2011-04-13 2012-01-17 Optical coherence tomography apparatus and optical coherence tomography method

Country Status (2)

Country Link
JP (1) JP5930262B2 (en)
WO (1) WO2012140926A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027287A (en) * 2014-07-17 2017-08-08 株式会社吉田制作所 Probe, optical coherence tomography video generation device and zero point modification method
JP2017164404A (en) * 2016-03-18 2017-09-21 株式会社吉田製作所 Optical coherence tomography image generation apparatus and use method thereof
CN112986184A (en) * 2019-12-17 2021-06-18 株式会社湖碧驰 Tomography apparatus for examining large samples

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383193B2 (en) * 2014-06-30 2018-08-29 株式会社吉田製作所 Optical coherence tomographic image generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258822A (en) * 2000-03-14 2001-09-25 Olympus Optical Co Ltd Endoscope
JP2007101250A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Optical tomographic imaging method
JP2011030887A (en) * 2009-08-04 2011-02-17 Canon Inc Imaging apparatus using optical coherence tomography and control method therefor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624736B2 (en) * 2004-07-30 2011-02-02 オリンパス株式会社 Endoscope device
JP4838029B2 (en) * 2006-03-30 2011-12-14 テルモ株式会社 Diagnostic imaging apparatus and processing method thereof
JP4795830B2 (en) * 2006-03-30 2011-10-19 テルモ株式会社 Diagnostic imaging apparatus and processing method thereof
JP2008017938A (en) * 2006-07-11 2008-01-31 Olympus Medical Systems Corp Endoscope, distal attachment member and endoscope apparatus equipped with them
JP2008122295A (en) * 2006-11-14 2008-05-29 Kitasato Gakuen Optical coherence tomography system
JP5154868B2 (en) * 2007-09-10 2013-02-27 テルモ株式会社 Diagnostic imaging apparatus and operating method thereof
JP5002429B2 (en) * 2007-11-20 2012-08-15 テルモ株式会社 Optical coherence tomography diagnostic equipment
JP2010014667A (en) * 2008-07-07 2010-01-21 Fujifilm Corp Optical probe and irradiation light adjusting method of optical probe
JP4803405B2 (en) * 2008-08-11 2011-10-26 株式会社モリタ東京製作所 Dental optical diagnostic probe
JP2010088546A (en) * 2008-10-06 2010-04-22 Hoya Corp Zoom type electronic endoscope apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258822A (en) * 2000-03-14 2001-09-25 Olympus Optical Co Ltd Endoscope
JP2007101250A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Optical tomographic imaging method
JP2011030887A (en) * 2009-08-04 2011-02-17 Canon Inc Imaging apparatus using optical coherence tomography and control method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ATSUSHI MOROSAWA ET AL.: "OCT-yo Ko Coherence Kosoku Hacho Soin Kogen -Jisedai OCT to shite Chumoku sareru SS-OCT ni Yokyu sareru Ko Coherence Kogen", OPTICAL ALLIANCE, vol. 20, no. 8, 1 August 2009 (2009-08-01), pages 25 - 29 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027287A (en) * 2014-07-17 2017-08-08 株式会社吉田制作所 Probe, optical coherence tomography video generation device and zero point modification method
JP2017164404A (en) * 2016-03-18 2017-09-21 株式会社吉田製作所 Optical coherence tomography image generation apparatus and use method thereof
WO2017159513A1 (en) * 2016-03-18 2017-09-21 株式会社吉田製作所 Optical interference tomographic image generating apparatus and method for using same
US10799099B2 (en) 2016-03-18 2020-10-13 The Yoshida Dental Mfg. Co., Ltd. Optical interference tomographic image generating apparatus and method for using same
CN112986184A (en) * 2019-12-17 2021-06-18 株式会社湖碧驰 Tomography apparatus for examining large samples

Also Published As

Publication number Publication date
JP5930262B2 (en) 2016-06-08
JP2012217752A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5827024B2 (en) Control device, control method, and control program for optical coherence tomographic image generation apparatus
JP6063187B2 (en) probe
JP2009160190A (en) Ophthalmic imaging apparatus
JP5787063B2 (en) Ophthalmic imaging equipment
JP5771052B2 (en) probe
JP5930262B2 (en) Optical coherence tomographic image generation apparatus and focusing point adjustment method for optical coherence tomographic image generation apparatus
JP5639521B2 (en) Control device, control method, and control program for dental optical coherence tomographic image generation apparatus
JP2019524327A (en) Automatic intraoral 3D scanner with low coherence range
WO2016021388A1 (en) Optical coherence tomography device and optical coherence tomography method
JP4206821B2 (en) Probe for dental optical diagnostic equipment
JP5704993B2 (en) Control device, control method, and control program for optical coherence tomographic image generation apparatus
JP5688185B2 (en) probe
JP2004344262A (en) Probe for dental optical diagnostic equipment
JP5839894B2 (en) probe
WO2017159513A1 (en) Optical interference tomographic image generating apparatus and method for using same
JP2007083009A (en) Hand piece for dental optical diagnostic apparatus
JP6543160B2 (en) probe
JP5814743B2 (en) probe
JP5991415B2 (en) Ophthalmic imaging equipment
JP4803402B2 (en) Probe for dental optical diagnostic equipment
JP5888343B2 (en) Ophthalmic imaging equipment
JP5936893B2 (en) Optical image measuring device and polarization controller
CN216495247U (en) Optical coherence tomography apparatus having adjustment mechanism
JP3116830U (en) Handpiece for dental optical diagnostic equipment
JP6412349B2 (en) probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771378

Country of ref document: EP

Kind code of ref document: A1