WO2012140774A1 - Power converter-integrated motor for passenger conveyer - Google Patents

Power converter-integrated motor for passenger conveyer Download PDF

Info

Publication number
WO2012140774A1
WO2012140774A1 PCT/JP2011/059404 JP2011059404W WO2012140774A1 WO 2012140774 A1 WO2012140774 A1 WO 2012140774A1 JP 2011059404 W JP2011059404 W JP 2011059404W WO 2012140774 A1 WO2012140774 A1 WO 2012140774A1
Authority
WO
WIPO (PCT)
Prior art keywords
power converter
motor
unit
inverter unit
inverter
Prior art date
Application number
PCT/JP2011/059404
Other languages
French (fr)
Japanese (ja)
Inventor
良一 猪俣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/059404 priority Critical patent/WO2012140774A1/en
Publication of WO2012140774A1 publication Critical patent/WO2012140774A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B23/00Component parts of escalators or moving walkways
    • B66B23/02Driving gear

Definitions

  • the present invention relates to a power converter integrated motor for a passenger conveyor in which a motor and a power converter are integrally combined.
  • a conventional apparatus as shown in Patent Document 1 includes a motor that drives a plurality of steps with variable voltage and variable frequency, and a power converter (inverter unit) provided at a predetermined distance from the bottom surface side of the motor,
  • the heat pipe which fixed the power converter, and the base which is located in the bottom face of a heat pipe and is attached to the floor of the machine room of a passenger conveyor are provided.
  • the self-cooling fan of the motor can efficiently cool not only the motor but also the capacitor and the heat radiation means.
  • the configuration of the unit can be made relatively compact.
  • the wiring board is disposed between the motor and the heat radiating means and has a laminated structure as a whole, a unit of a power converter integrated motor (inverter integrated motor)
  • the power converter is separated from the whole, it is necessary to remove the motor body from the entire unit of the power converter integrated motor. For this reason, there has been a problem that it takes time and labor to inspect and replace the life-long parts inside the power converter.
  • the present invention has been made to solve the above-described problems.
  • the power converter can be easily separated from the entire unit, and the workability of maintenance and inspection and parts replacement can be improved. It is an object of the present invention to obtain a power converter integrated motor for a passenger conveyor that can shorten the length.
  • a power converter integrated motor for a passenger conveyor includes a pedestal provided in a machine room of a truss, a plurality of switching elements, and a plurality of diodes, and at least one of the plurality of switching elements and the plurality of diodes.
  • a power converter provided on the upper surface of the pedestal, and having a high voltage IC and an inverter driving unit for driving switching of the inverter unit incorporated in the inverter unit, and the power Front to be next to the transducer horizontally Provided on the upper surface of the pedestal, and a motor main body to provide a driving force to the step by receiving power from the inverter unit.
  • FIG. 1 It is a block diagram which shows a part of escalator by Embodiment 1 of this invention. It is a block diagram which shows the electric constitution of the escalator of FIG. It is a circuit diagram which shows the inverter part and inverter drive part of FIG. It is a perspective view which shows the power converter of FIG. It is a side view which shows the power converter of FIG. It is a perspective view which shows the power converter integrated motor of FIG. It is a perspective view which shows the power converter cover of FIG. It is a perspective view which shows the state which removed the power converter from the power converter integrated motor of FIG. It is a top view which expands and shows a part of wiring board of FIG.
  • FIG. 1 is a block diagram showing a part of an escalator (passenger conveyor) according to Embodiment 1 of the present invention.
  • a machine room 1 a is provided at the upper floor side end of the truss 1.
  • a control device 100 Inside the machine room 1a, a control device 100, a drive unit 2, a main shaft 3, a step drive sprocket 4, and an upper floor driven sprocket 5 are provided.
  • the control device 100 is fixed to the side surface of the machine room 1a.
  • the driving machine 2 is fixed to the floor of the machine room 1a.
  • the drive machine 2 includes a power converter integrated motor 6, a speed reducer 7, and a drive machine sprocket 8.
  • the power converter integrated motor 6 has a motor body 9 and a power converter (inverter device) 10.
  • the motor body 9 is driven by the power received from the power converter 10.
  • the motor body 9 has an output shaft (rotating shaft).
  • the output shaft of the motor body 9 is connected to the speed reducer 7.
  • the drive machine sprocket 8 is attached to the output shaft of the speed reducer 7.
  • the speed reducer 7 decelerates the rotation of the output shaft of the electric power converter integrated motor 6 and rotates the drive sprocket 8.
  • the main shaft 3 is arranged on the lower floor side in the machine room 1a with a space from the drive unit 2.
  • the step drive sprocket 4 is attached to the main shaft 3.
  • the step drive sprocket 4 is connected to a drive machine sprocket 8 via a drive chain 11.
  • the upper floor side driven sprocket 5 is also attached to the main shaft 3.
  • the upper floor driven sprocket 5 is rotated as the step drive sprocket 4 rotates.
  • an endless step drive chain 13 for connecting a plurality of steps 12 is wound around the upper floor side driven sprocket 5.
  • the step drive chain 13 is also wound around a lower floor driven sprocket (not shown) provided at the lower floor side end of the truss 1.
  • the rotation of the motor body 9 in the electric power converter integrated motor 6 is decelerated by the speed reducer 7, and the drive machine sprocket 8 is driven by the step drive sprocket 4 and the upper floor side driven via the drive chain 11. Power is transmitted to the sprocket 5.
  • the step drive chain 13 circulates and moves in a substantially elliptical shape within the truss 1, and a plurality of steps 12 travel.
  • FIG. 2 is a block diagram showing an electrical configuration of the escalator of FIG.
  • the power converter 10 includes an input terminal 14, a converter unit (rectifying means) 15, a capacitor 16, an inverter unit 17, an output terminal 18, an inverter driving unit 19, and a control terminal 20.
  • the input terminal 14 is electrically connected to a three-phase AC power source (commercial AC power source) 101.
  • the AC voltage of the three-phase AC power supply 101 is applied to the converter unit 15 via the input terminal 14.
  • the converter unit 15 converts the AC voltage into a DC voltage including a pulsation component.
  • the capacitor 16 smoothes the pulsation of the DC voltage.
  • the inverter unit 17 converts the DC voltage smoothed by the capacitor 16 into an AC voltage having a three-phase variable voltage and variable frequency. Further, the inverter unit 17 applies the converted AC voltage to the motor main body 9 via the output terminal 18.
  • the inverter drive unit 19 is incorporated in the inverter unit 17. In addition, a control command from the control device 100 is input to the inverter drive unit 19 via the control terminal 20. Furthermore, the inverter drive part 19 switches ON / OFF of MOSFET (switching element) of the inverter part 17 according to a control command.
  • FIG. 3 is a circuit diagram showing the inverter unit 17 and the inverter drive unit 19 of FIG.
  • the inverter unit 17 further includes SiC / MOSFETs T1 to T6, SiC / Schottky barrier diodes D1 to D6, and resistance elements 24 to 29.
  • the converter unit 15 also includes a plurality of SiC / MOSFETs and a plurality of SiC / Schottky barrier diodes (not shown).
  • Each of the SiC MOSFET T1, T3, and T5 is an upper arm switching element.
  • SiC MOSFET T2, T4 and T6 are lower arm switching elements, respectively.
  • the anodes of the SiC Schottky barrier diodes D1 to D6 are connected to the source terminals of the SiC MOSFETs T1 to T6, respectively.
  • the cathodes of the SiC Schottky barrier diodes D1 to D6 are connected to the drain terminals of the SiC MOSFETs T1 to T6, respectively. That is, the SiC Schottky barrier diodes D1 to D6 are connected in antiparallel to the SiC MOSFETs T1 to T6, respectively.
  • the resistance elements 24 to 29 are connected in series to the gate terminals G1 to G6 of the SiC / MOSFETs T1 to T6, respectively.
  • the inverter drive unit 19 includes a clamp diodes 21 to 23, a high voltage IC (HVIC) 30 for driving a switching element, a power source 31 serving as a voltage source of the high voltage IC, diodes 32 to 34, and a capacitor. 35 to 37 and a constant voltage diode 38.
  • HVIC high voltage IC
  • the high voltage IC 30 includes circuit configurations (functional blocks) of an input buffer b1, level shifts b2 to b4, upper arm side drive circuits b5 to b7, lower arm side drive circuits b8 to b10, an overcurrent detector b11, and an error signal generator b12. ) Is included.
  • the upper arm side drive circuits b5 to b7 drive SiC MOSFET T1, T3, T5, respectively.
  • Lower arm side drive circuits b8 to b10 drive SiCSiMOSFET T2, T4, T6, respectively.
  • the high voltage IC 30 includes UPi, UNi, VPi, VNi, WPi, WNi, UPo, VPo, WPo, UNo, VNo, WNo, VB1, VB2, VB3, VS1, VS2, VS3, VS0, OC, Fo, VCC and VSS are provided as a plurality of input / output terminals.
  • UPi, VPi, WPi and UNi, VNi, WNi are drive signal input terminals, respectively.
  • UPo, VPo, and WPo are upper arm switching element drive signal output terminals for outputting drive signals for SiC MOSFET T1, T3, and T5, respectively.
  • UNo, VNo, and WNo are lower arm switching element drive signal output terminals that output drive signals for SiC MOSFETs T2, T4, and T6, respectively.
  • VB1, VB2, and VB3 are floating power source positive side input terminals, respectively.
  • VS1, VS2, and VS3 are floating power source negative side input terminals and upper arm switching element drive signal reference output terminals, respectively.
  • VS0 is a lower arm switching element drive signal reference output terminal.
  • OC is a current detection terminal.
  • Fo is an error output terminal.
  • VCC and VSS are power terminals on the positive side and the negative side, respectively.
  • the clamp diode 21 is connected between the upper arm switching element drive signal reference output terminal VS1 of the inverter driver 19 and the lower arm switching element drive signal reference output terminal VS0 of the inverter driver 19.
  • the clamp diode 22 is connected between the upper arm switching element drive signal reference output terminal VS2 of the inverter driver 19 and the lower arm switching element drive signal reference output terminal VS0 of the inverter driver 19.
  • the clamp diode 23 is connected between the upper arm switching element drive signal reference output terminal VS3 and the lower arm switching element drive signal reference output terminal VS0 of the inverter drive unit 19.
  • the voltages V (VS1-VS0), V (VS2) between the upper arm switching element drive signal reference output terminals VS1, VS2, VS3 and the lower arm switching element drive signal reference output terminal VS0 When -VS0) and V (VS3-VS0) become negative voltages, the corresponding clamp diodes 21, 22, and 23 are turned on. As a result, the voltages V (VS1-VS0), V (VS2-VS0), and V (VS3-VS0) are kept at the ON voltages of the clamp diodes 21, 22, and 23, respectively.
  • S1, S2, and S3 are connection nodes on the source side of the SiC-MOSFETs T1, T3, and T5, respectively.
  • S0 is a common connection node on each source side of SiC MOSFET T2, T4, T6.
  • P is a power supply terminal for applying a positive power supply voltage to the inverter circuit.
  • N is a power supply terminal for applying a negative power supply voltage to the inverter circuit.
  • U, V, and W are output terminals of the inverter unit 17.
  • each withstand voltage of the upper arm switching element drive signal reference output terminals VS1, VS2, VS3 of the high withstand voltage IC 30 is [(potential of the lower arm switching element drive signal reference output terminal VS0) ⁇ 5]. ]
  • voltages V (VS1-VS0), V (VS2-VS0) between the upper arm switching element drive signal reference output terminals VS1, VS2, VS3 and the lower arm switching element drive signal reference output terminal VS0 The minimum rated breakdown voltage of V (VS3-VS0) is approximately ⁇ 5V, respectively.
  • the clamp diodes 21, 22, and 23 are not particularly limited, but it is preferable to use, for example, a general diode having an on-voltage of about 0.7V to 2V.
  • a general diode having an on-voltage of about 0.7V to 2V.
  • the clamp diodes 21, 22, and 23 are provided in the vicinity of the reference output terminals VS0 and VS1, VS2, and VS3 of the high voltage IC 30, and the clamp diodes 21, 22 are connected to the terminals VS0, VS1, VS2, and VS3 of the high voltage IC 30. , 23 is more preferably as short as possible.
  • the voltages V (VS1-VS0), V (VS2-VS0), and V (VS3-VS0) are about -0.7V to -2V, respectively.
  • the voltages V (VS1-VS0), V (VS2-VS0), and V (VS3-VS0) have the rated breakdown voltage minimum value -5V between the terminals VS1, VS2, VS3 and VS0 of the high breakdown voltage IC30, respectively. None fall below.
  • the inter-terminal voltage when a negative voltage is applied between the upper arm switching element drive signal reference output terminals VS1, VS2, VS3 and the lower arm switching element drive signal reference output terminal VS0 of the high voltage IC 30 are about ⁇ 0.7V to ⁇ 2V, respectively.
  • the inter-terminal voltages V (VS1-VS0), V (VS2-VS0), and V (VS3-VS0) are the minimum rated withstand voltage -5V between the terminals VS1, VS2, VS3 and VS0 of the high withstand voltage IC30. Therefore, the breakdown voltage of the high voltage IC 30 can be prevented.
  • FIG. 4 is a perspective view showing the power converter 10 of FIG.
  • FIG. 5 is a side view (viewed along arrow V in FIG. 4) showing power converter 10 in FIG. 4 and 5
  • a power converter 10 has a converter unit 15 and an inverter unit 17 mounted on one main surface (the lower surface in FIG. 4), and a capacitor 16 and an output on the other main surface (the upper surface in FIG. 4). It has a wiring board 40 on which the terminals 18 are mounted, and a radiating fin block 41 in which a plurality of blades are provided between a pair of aluminum plates opposed in the vertical direction.
  • the wiring board 40 is arranged on the heat radiation fin block 41 so that the components (switching elements and the like) of the converter unit 15 and the inverter unit 17 are in contact with the upper surface of the heat radiation fin block 41. That is, the component parts of the converter unit 15 and the inverter unit 17 are thermally connected to the radiating fin block 41.
  • the wiring board 40 and the heat radiating fin block 41 are fixed to a base 42 such as an aluminum plate, for example, by screws 43 passing through them.
  • the pedestal 42 is installed on the floor of the machine room 1a.
  • the wiring board 40 is electrically connected to the input terminal 14 attached to one end face in the longitudinal direction of the radiating fin block 41 via a conductor (bus bar) 44. Further, the wiring board 40 is electrically connected to the control terminal 20 attached to the other end surface in the longitudinal direction of the heat dissipating fin block 41 via the wiring member 45.
  • FIG. 6 is a perspective view showing the power converter integrated motor 6 of FIG.
  • the motor body 9 and the power converter 10 are disposed on the upper surface of the base 42 so as to be adjacent to each other in the horizontal direction.
  • the motor body 9 includes a motor cover 50, a rotor (not shown), a stator (not shown), an output shaft (rotating shaft) 51, and a self-cooling fan 52.
  • the power converter 10 is arranged at an interval in the axial direction of the output shaft 51 from the inner surface of the motor cover 50 of the motor body 9.
  • the rotor, stator and self-cooling fan 52 are accommodated in the motor cover 50.
  • One end of the output shaft 51 protrudes from the inside of the motor cover 50 to the outside and is connected to the speed reducer 7.
  • the other end of the output shaft 51 is disposed in the inner part of the motor cover 50.
  • a plurality of vent holes (long holes) 50a are formed at intervals in the vertical direction on one end surface (the right side surface in FIG. 6) of the output shaft 51 of the motor cover 50 in the axial direction.
  • a vent 50b is also formed in the other axial end surface (the left surface in FIG. 6) of the output shaft 51 of the motor cover 50.
  • the power converter 10 is arranged so as to intersect with the extension shaft of the output shaft 51 so as to hit the airflow generated by the rotation of the self-cooling fan 52 of the motor body 9. Further, the radiation fin block 41 is disposed so as to be orthogonal to the axial direction of the output shaft 51 of the motor body 9. Further, as shown in FIGS. 6 and 7, the power converter 10 is covered with a power converter cover 46 in which a plurality of vent holes (long holes) 46 a are provided on both side surfaces and the back surface.
  • the self-cooling fan 52 rotates, and air flows in the direction of arrow A in FIG. Therefore, an air flow path is formed between the air vent 46a of the power converter cover 46, the plurality of blades of the heat dissipation fin block 41, the air vent 50b of the motor cover 50, and the air vent 50a of the motor cover 50 in this order.
  • the heat of the power converter 10 and the motor body 9 is dissipated by the airflow in the air flow path.
  • the heat of the power converter 10 and the motor main body 9 is transmitted to the floor of the machine room 1a via the pedestal 42 and dissipated.
  • the power converter cover 46 can be removed by removing a screw for fixing the power converter cover 46.
  • the power converter 10 can be detached from the pedestal 42 by removing the screw 43 penetrating the wiring board 40 and the radiation fin block 41 and removing the wiring member 53 from the output terminal 18 of the inverter unit 17. .
  • the power converter 10 can be separated from the power converter integrated motor 6 independently of the motor body 9.
  • the wiring member 53 is connected to the output terminal 18 of the wiring board 40 as shown in FIG.
  • the converter unit 15 rectifies the AC voltage of the three-phase AC power supply 101 and converts it into a DC voltage.
  • the DC voltage from the converter unit 15 is applied to the inverter unit 17 via the capacitor 16.
  • the DC voltage is converted into an AC voltage having a variable voltage and a variable frequency by the inverter unit 17, and the AC voltage is applied to the motor body 9.
  • the motor main body 9 is driven.
  • the step 12 is moved up and down by the driving force of the motor body 9.
  • the self-cooling fan 52 rotates, and an air current as shown by an arrow A in FIG. 6 is generated.
  • the motor body 9 is cooled by this airflow.
  • the capacitor 16 and the radiating fin block 41 are cooled by the airflow entering the inside of the power converter cover 46 from the vent 46 a of the power converter cover 46. For this reason, the inverter part 17 and the converter part 15 which were thermally connected to the radiation fin block 41 are also cooled rapidly.
  • each of the converter unit 15 and the inverter unit 17 has a plurality of SiC-MOSFETs and a plurality of SiC-Schottky barrier diodes, and the inverter driving unit 19 has a high voltage IC 30.
  • MOSFETs (switching elements) and diodes formed of such wide band gap semiconductors such as SiC have high voltage resistance and high allowable current density. For this reason, it is possible to reduce the size of the MOSFET and the diode. Then, by using these miniaturized switching elements and diodes, the power converter 10 incorporating these elements can be miniaturized. Therefore, the converter unit 15, the inverter unit 17, and the inverter drive unit 19 can be reduced in size as compared with the conventional device as shown in Patent Document 1.
  • the power converter 10 having the downsized converter unit 15, the inverter unit 17, and the inverter driving unit 19 is provided on the upper surface of the base 42 so as to be adjacent to the motor body 9 in the horizontal direction.
  • the power converter 10 can be easily separated without removing the motor main body 9 from the entire unit of the power converter integrated motor 6, and the conventional apparatus adopting the laminated structure as shown in Patent Document 1 is used. Compared with this, it is possible to improve the workability of maintenance inspection and part replacement, and to shorten the work time.
  • the converter unit 15 and the inverter unit 17 are placed on the upper surface of the radiating fin block 41 and are thermally connected. Further, the lower surface of the radiating fin block 41 is thermally connected to the floor of the machine room 1a through the pedestal 42. Thereby, the heat generated from the converter unit 15 and the inverter unit 17 is radiated by the radiating fin block 41, and the heat is also radiated to the floor of the machine room 1 a through the pedestal 42. Therefore, the heat generated from the converter unit 15 and the inverter unit 17 can be efficiently dissipated.
  • the power converter 10 is arranged so as to intersect with the extension shaft of the output shaft 51 so as to hit the airflow generated by the rotation of the self-cooling fan 52 of the motor body 9.
  • both the motor main body 9 and the power converter 10 can be efficiently cooled by the airflow generated by the rotation of the self-cooling fan 52.
  • the airflow generated by the rotation of the self-cooling fan 52 is not only the motor main body 9, Since the capacitor
  • the wide band gap semiconductor has high heat resistance, it is possible to reduce the size of the radiating fin block 41 and the air cooling of the water cooling section, thereby further reducing the size of the power converter 10.
  • the heat pipe of the conventional apparatus as shown in Patent Document 1 can be omitted.
  • the efficiency of the switching element and the diode can be increased, and thus the efficiency of the power converter 10 can be increased.
  • the escalator power converter integrated motor has been described.
  • the present invention can also be applied to a power converter integrated motor for a moving sidewalk.
  • the switching element and the diode are formed of SiC (silicon carbide).
  • the material of the switching element and the diode is not limited to SiC.
  • a gallium nitride-based material or diamond is used in addition to SiC as long as it is a wide band gap semiconductor having a larger band gap than silicon. May be.
  • both the switching element and the diode are formed of a wide band gap semiconductor
  • either one of the switching element and the diode may be formed of a wide band gap semiconductor. Even in this case, the effects described in this embodiment can be obtained.

Abstract

A converter unit and an inverter unit respectively have a plurality of SiC MOSFETs and a plurality of SiC Schottky barrier diodes, and an inverter drive unit has a high withstand voltage IC. The configuration components of the converter unit and the inverter unit are thermally connected to a heat dissipating fin block. A wiring board and the heat dissipating fin block are fixed to a base, such as an aluminum board, by means of a screw that penetrates the wiring board and the heat dissipating fin block. The base is placed on the floor of a machine room. The motor main body and a power converter are disposed adjacent to each other in the horizontal direction on the upper surface of the base.

Description

乗客コンベア用の電力変換器一体型モータPower converter integrated motor for passenger conveyor
 この発明は、モータと電力変換器とが一体的に組み合わされた乗客コンベア用の電力変換器一体型モータに関する。 The present invention relates to a power converter integrated motor for a passenger conveyor in which a motor and a power converter are integrally combined.
 例えば特許文献1に示すような従来装置は、複数のステップを可変電圧可変周波数により駆動するモータと、そのモータの底面側から所定の距離を隔てて設けられた電力変換器(インバータ部)と、その電力変換器を固定したヒートパイプと、ヒートパイプの底面に位置し乗客コンベアの機械室の床に取り付けられる台座とを備えている。 For example, a conventional apparatus as shown in Patent Document 1 includes a motor that drives a plurality of steps with variable voltage and variable frequency, and a power converter (inverter unit) provided at a predetermined distance from the bottom surface side of the motor, The heat pipe which fixed the power converter, and the base which is located in the bottom face of a heat pipe and is attached to the floor of the machine room of a passenger conveyor are provided.
 このような従来装置では、モータの自冷ファンがモータのみならず、コンデンサや放熱手段を効率よく冷却できる。これに加えて、電力変換器、整流手段及びコンデンサを有する配線基板がモータと放熱手段との間に配置されているので、ユニットの構成を比較的コンパクトにすることができる。 In such a conventional apparatus, the self-cooling fan of the motor can efficiently cool not only the motor but also the capacitor and the heat radiation means. In addition to this, since the wiring board having the power converter, the rectifying means and the capacitor is disposed between the motor and the heat radiating means, the configuration of the unit can be made relatively compact.
特開2009-102082号公報JP 2009-102082 A
 しかしながら、上記のような従来装置では、配線基板がモータと放熱手段との間に配置されており、全体として積層構造をなしているため、電力変換器一体型モータ(インバータ一体型モータ)のユニット全体から電力変換器を分離する際に、電力変換器一体型モータのユニット全体からモータ本体も取り外す必要があった。このため、電力変換器の内部の有寿命部品の点検・交換の作業に手間と時間とがかかるという課題があった。 However, in the conventional apparatus as described above, since the wiring board is disposed between the motor and the heat radiating means and has a laminated structure as a whole, a unit of a power converter integrated motor (inverter integrated motor) When the power converter is separated from the whole, it is necessary to remove the motor body from the entire unit of the power converter integrated motor. For this reason, there has been a problem that it takes time and labor to inspect and replace the life-long parts inside the power converter.
 この発明は、上記のような課題を解決するためになされたものであり、ユニット全体から電力変換器を容易に分離させることができ、保守点検及び部品交換の作業性を向上させて、作業時間の短縮化を図ることができる乗客コンベア用の電力変換器一体型モータを得ることを目的とする。 The present invention has been made to solve the above-described problems. The power converter can be easily separated from the entire unit, and the workability of maintenance and inspection and parts replacement can be improved. It is an object of the present invention to obtain a power converter integrated motor for a passenger conveyor that can shorten the length.
 この発明による乗客コンベア用の電力変換器一体型モータは、トラスの機械室に設けられた台座と、複数のスイッチング素子及び複数のダイオードを持ち、前記複数のスイッチング素子及び複数のダイオードの少なくともいずれか一方がワイドバンドギャップ半導体によって形成されたコンバータ部と、複数のスイッチング素子及び複数のダイオードを持ち、前記複数のスイッチング素子及び複数のダイオードの少なくともいずれか一方がワイドバンドギャップ半導体によって形成されたインバータ部と、高耐圧ICを持ち、かつ前記インバータ部の内部に組み込まれ前記インバータ部のスイッチングを駆動するためのインバータ駆動部とを有し、前記台座の上面に設けられた電力変換器と、前記電力変換器と水平方向で隣り合うように前記台座の上面に設けられ、前記インバータ部から電力を受けてステップに駆動力を与えるモータ本体とを備える。 A power converter integrated motor for a passenger conveyor according to the present invention includes a pedestal provided in a machine room of a truss, a plurality of switching elements, and a plurality of diodes, and at least one of the plurality of switching elements and the plurality of diodes. A converter unit, one of which is formed of a wide band gap semiconductor, and an inverter unit having a plurality of switching elements and a plurality of diodes, and at least one of the plurality of switching elements and the plurality of diodes is formed of a wide band gap semiconductor. And a power converter provided on the upper surface of the pedestal, and having a high voltage IC and an inverter driving unit for driving switching of the inverter unit incorporated in the inverter unit, and the power Front to be next to the transducer horizontally Provided on the upper surface of the pedestal, and a motor main body to provide a driving force to the step by receiving power from the inverter unit.
この発明の実施の形態1によるエスカレータの一部を示す構成図である。It is a block diagram which shows a part of escalator by Embodiment 1 of this invention. 図1のエスカレータの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the escalator of FIG. 図2のインバータ部及びインバータ駆動部を示す回路図である。It is a circuit diagram which shows the inverter part and inverter drive part of FIG. 図2の電力変換器を示す斜視図である。It is a perspective view which shows the power converter of FIG. 図2の電力変換器を示す側面図である。It is a side view which shows the power converter of FIG. 図2の電力変換器一体型モータを示す斜視図である。It is a perspective view which shows the power converter integrated motor of FIG. 図6の電力変換器カバーを示す斜視図である。It is a perspective view which shows the power converter cover of FIG. 図6の電力変換器一体型モータから電力変換器を取り外した状態を示す斜視図である。It is a perspective view which shows the state which removed the power converter from the power converter integrated motor of FIG. 図6の配線基板の一部を拡大して示す平面図である。It is a top view which expands and shows a part of wiring board of FIG.
 以下、この発明を実施するための形態について図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1によるエスカレータ(乗客コンベア)の一部を示す構成図である。
 図1において、トラス1の上階側端部には、機械室1aが設けられている。機械室1aの内部には、制御装置100と、駆動機2と、主軸3と、ステップ駆動スプロケット4と、上階側従動スプロケット5とが設けられている。制御装置100は、機械室1aの側面に固定されている。駆動機2は、機械室1aの床に固定されている。駆動機2は、電力変換器一体型モータ6と、減速機7と、駆動機スプロケット8とを有している。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
1 is a block diagram showing a part of an escalator (passenger conveyor) according to Embodiment 1 of the present invention.
In FIG. 1, a machine room 1 a is provided at the upper floor side end of the truss 1. Inside the machine room 1a, a control device 100, a drive unit 2, a main shaft 3, a step drive sprocket 4, and an upper floor driven sprocket 5 are provided. The control device 100 is fixed to the side surface of the machine room 1a. The driving machine 2 is fixed to the floor of the machine room 1a. The drive machine 2 includes a power converter integrated motor 6, a speed reducer 7, and a drive machine sprocket 8.
 電力変換器一体型モータ6は、モータ本体9と、電力変換器(インバータ装置)10とを有している。モータ本体9は、電力変換器10から受けた電力により駆動する。また、モータ本体9は、出力軸(回転軸)を有している。モータ本体9の出力軸は、減速機7に接続されている。駆動機スプロケット8は、減速機7の出力軸に取り付けられている。減速機7は、電力変換器一体型モータ6の出力軸の回転を減速して、駆動機スプロケット8を回転させる。 The power converter integrated motor 6 has a motor body 9 and a power converter (inverter device) 10. The motor body 9 is driven by the power received from the power converter 10. The motor body 9 has an output shaft (rotating shaft). The output shaft of the motor body 9 is connected to the speed reducer 7. The drive machine sprocket 8 is attached to the output shaft of the speed reducer 7. The speed reducer 7 decelerates the rotation of the output shaft of the electric power converter integrated motor 6 and rotates the drive sprocket 8.
 主軸3は、機械室1aにおける下階側に、駆動機2から間隔をおいて配置されている。ステップ駆動スプロケット4は、主軸3に取り付けられている。また、ステップ駆動スプロケット4は、駆動チェーン11を介して駆動機スプロケット8に接続されている。上階側従動スプロケット5も、主軸3に取り付けられている。また、上階側従動スプロケット5は、ステップ駆動スプロケット4の回転に伴って回転される。 The main shaft 3 is arranged on the lower floor side in the machine room 1a with a space from the drive unit 2. The step drive sprocket 4 is attached to the main shaft 3. The step drive sprocket 4 is connected to a drive machine sprocket 8 via a drive chain 11. The upper floor side driven sprocket 5 is also attached to the main shaft 3. The upper floor driven sprocket 5 is rotated as the step drive sprocket 4 rotates.
 さらに、上階側従動スプロケット5には、複数のステップ12を連結する無端状のステップ駆動チェーン13が巻き掛けられている。ステップ駆動チェーン13は、トラス1の下階側端部に設けられた下階側従動スプロケット(図示せず)にも巻き掛けられている。 Furthermore, an endless step drive chain 13 for connecting a plurality of steps 12 is wound around the upper floor side driven sprocket 5. The step drive chain 13 is also wound around a lower floor driven sprocket (not shown) provided at the lower floor side end of the truss 1.
 従って、このようなエスカレータでは、電力変換器一体型モータ6におけるモータ本体9の回転が減速機7によって減速され、駆動機スプロケット8が駆動チェーン11を介して、ステップ駆動スプロケット4及び上階側従動スプロケット5に動力を伝達する。これにより、ステップ駆動チェーン13がトラス1内で略楕円状に循環移動し、複数のステップ12が走行する。 Therefore, in such an escalator, the rotation of the motor body 9 in the electric power converter integrated motor 6 is decelerated by the speed reducer 7, and the drive machine sprocket 8 is driven by the step drive sprocket 4 and the upper floor side driven via the drive chain 11. Power is transmitted to the sprocket 5. As a result, the step drive chain 13 circulates and moves in a substantially elliptical shape within the truss 1, and a plurality of steps 12 travel.
 次に、エスカレータの電気的構成について説明する。図2は、図1のエスカレータの電気的構成を示すブロック図である。図2において、電力変換器10は、入力端子14、コンバータ部(整流手段)15、コンデンサ16、インバータ部17、出力端子18、インバータ駆動部19及び制御端子20を有している。 Next, the electrical configuration of the escalator will be described. FIG. 2 is a block diagram showing an electrical configuration of the escalator of FIG. In FIG. 2, the power converter 10 includes an input terminal 14, a converter unit (rectifying means) 15, a capacitor 16, an inverter unit 17, an output terminal 18, an inverter driving unit 19, and a control terminal 20.
 入力端子14は、三相交流電源(商用交流電源)101に電気的に接続されている。コンバータ部15には、入力端子14を介して、三相交流電源101の交流電圧が加わる。コンバータ部15は、その交流電圧を、脈動分を含む直流電圧に変換する。コンデンサ16は、直流電圧の脈動分を平滑させる。 The input terminal 14 is electrically connected to a three-phase AC power source (commercial AC power source) 101. The AC voltage of the three-phase AC power supply 101 is applied to the converter unit 15 via the input terminal 14. The converter unit 15 converts the AC voltage into a DC voltage including a pulsation component. The capacitor 16 smoothes the pulsation of the DC voltage.
 インバータ部17は、コンデンサ16によって平滑された直流電圧を、三相の可変電圧可変周波数の交流電圧に変換する。また、インバータ部17は、変換後の交流電圧を、出力端子18を介して、モータ本体9に加える。インバータ駆動部19は、インバータ部17の内部に組み込まれている。また、インバータ駆動部19には、制御装置100からの制御指令が制御端子20を介して入力される。さらに、インバータ駆動部19は、制御指令に応じて、インバータ部17のMOSFET(スイッチング素子)のON・OFFを切り換える。 The inverter unit 17 converts the DC voltage smoothed by the capacitor 16 into an AC voltage having a three-phase variable voltage and variable frequency. Further, the inverter unit 17 applies the converted AC voltage to the motor main body 9 via the output terminal 18. The inverter drive unit 19 is incorporated in the inverter unit 17. In addition, a control command from the control device 100 is input to the inverter drive unit 19 via the control terminal 20. Furthermore, the inverter drive part 19 switches ON / OFF of MOSFET (switching element) of the inverter part 17 according to a control command.
 次に、図3は、図2のインバータ部17及びインバータ駆動部19を示す回路図である。図3において、インバータ部17は、SiC MOSFET T1~T6と、SiC ショットキーバリアダイオードD1~D6と、抵抗素子24~29とをさらに有している。なお、コンバータ部15も、インバータ部17と同様に、複数のSiC MOSFETと、複数のSiC ショットキーバリアダイオードを有している(図示せず)。SiC MOSFET T1,T3,T5は、それぞれ上アームスイッチング素子である。SiC MOSFET T2,T4,T6は、それぞれ下アームスイッチング素子である。 Next, FIG. 3 is a circuit diagram showing the inverter unit 17 and the inverter drive unit 19 of FIG. In FIG. 3, the inverter unit 17 further includes SiC / MOSFETs T1 to T6, SiC / Schottky barrier diodes D1 to D6, and resistance elements 24 to 29. Similarly to the inverter unit 17, the converter unit 15 also includes a plurality of SiC / MOSFETs and a plurality of SiC / Schottky barrier diodes (not shown). Each of the SiC MOSFET T1, T3, and T5 is an upper arm switching element. SiC MOSFET T2, T4 and T6 are lower arm switching elements, respectively.
 SiC ショットキーバリアダイオードD1~D6のアノードは、それぞれSiC MOSFET T1~T6のソース端子に接続されている。SiC ショットキーバリアダイオードD1~D6のカソードは、それぞれSiC MOSFET T1~T6のドレイン端子に接続されている。つまり、SiC ショットキーバリアダイオードD1~D6は、それぞれSiC MOSFET T1~T6に逆並列に接続されている。抵抗素子24~29は、それぞれSiC MOSFET T1~T6のゲート端子G1~G6に直列に接続されている。 The anodes of the SiC Schottky barrier diodes D1 to D6 are connected to the source terminals of the SiC MOSFETs T1 to T6, respectively. The cathodes of the SiC Schottky barrier diodes D1 to D6 are connected to the drain terminals of the SiC MOSFETs T1 to T6, respectively. That is, the SiC Schottky barrier diodes D1 to D6 are connected in antiparallel to the SiC MOSFETs T1 to T6, respectively. The resistance elements 24 to 29 are connected in series to the gate terminals G1 to G6 of the SiC / MOSFETs T1 to T6, respectively.
 インバータ駆動部19は、クランプダイオード21~23と、スイッチング素子駆動用の高耐圧IC(HVIC:High Voltage IC)30と、高耐圧ICの電圧源となる電源31と、ダイオード32~34と、コンデンサ35~37と、定電圧ダイオード38とを有している。 The inverter drive unit 19 includes a clamp diodes 21 to 23, a high voltage IC (HVIC) 30 for driving a switching element, a power source 31 serving as a voltage source of the high voltage IC, diodes 32 to 34, and a capacitor. 35 to 37 and a constant voltage diode 38.
 高耐圧IC30は、入力バッファb1、レベルシフトb2~b4、上アーム側ドライブ回路b5~b7、下アーム側ドライブ回路b8~b10、過電流検出器b11及びエラー信号発生器b12の回路構成(機能ブロック)を含んでいる。上アーム側ドライブ回路b5~b7は、それぞれSiC MOSFET T1,T3,T5を駆動する。下アーム側ドライブ回路b8~b10は、それぞれSiC MOSFET T2,T4,T6を駆動する。 The high voltage IC 30 includes circuit configurations (functional blocks) of an input buffer b1, level shifts b2 to b4, upper arm side drive circuits b5 to b7, lower arm side drive circuits b8 to b10, an overcurrent detector b11, and an error signal generator b12. ) Is included. The upper arm side drive circuits b5 to b7 drive SiC MOSFET T1, T3, T5, respectively. Lower arm side drive circuits b8 to b10 drive SiCSiMOSFET T2, T4, T6, respectively.
 ここで、高耐圧IC30は、UPi,UNi,VPi,VNi,WPi,WNi,UPo,VPo,WPo,UNo,VNo,WNo,VB1,VB2,VB3,VS1,VS2,VS3,VS0,OC,Fo,VCC,VSSを、複数の入出力端子として有している。UPi,VPi,WPi及びUNi,VNi,WNiは、それぞれ駆動信号入力端子である。UPo,VPo,WPoは、それぞれSiC MOSFET T1,T3,T5の駆動信号を出力する上アームスイッチング素子駆動信号出力端子である。 Here, the high voltage IC 30 includes UPi, UNi, VPi, VNi, WPi, WNi, UPo, VPo, WPo, UNo, VNo, WNo, VB1, VB2, VB3, VS1, VS2, VS3, VS0, OC, Fo, VCC and VSS are provided as a plurality of input / output terminals. UPi, VPi, WPi and UNi, VNi, WNi are drive signal input terminals, respectively. UPo, VPo, and WPo are upper arm switching element drive signal output terminals for outputting drive signals for SiC MOSFET T1, T3, and T5, respectively.
 UNo,VNo,WNoは、それぞれSiC MOSFET T2,T4,T6の駆動信号を出力する下アームスイッチング素子駆動信号出力端子である。VB1,VB2,VB3は、それぞれフローティング電源正側入力端子である。VS1,VS2,VS3は、それぞれフローティング電源負側入力端子であるとともに上アームスイッチング素子駆動信号基準出力端子である。VS0は、下アームスイッチング素子駆動信号基準出力端子である。OCは、電流検出端子である。Foは、エラー出力端子である。VCC及びVSSは、それぞれ正側及び負側の電源端子である。 UNo, VNo, and WNo are lower arm switching element drive signal output terminals that output drive signals for SiC MOSFETs T2, T4, and T6, respectively. VB1, VB2, and VB3 are floating power source positive side input terminals, respectively. VS1, VS2, and VS3 are floating power source negative side input terminals and upper arm switching element drive signal reference output terminals, respectively. VS0 is a lower arm switching element drive signal reference output terminal. OC is a current detection terminal. Fo is an error output terminal. VCC and VSS are power terminals on the positive side and the negative side, respectively.
 クランプダイオード21は、インバータ駆動部19の上アームスイッチング素子駆動信号基準出力端子VS1と、インバータ駆動部19の下アームスイッチング素子駆動信号基準出力端子VS0との間に接続されている。クランプダイオード22は、インバータ駆動部19の上アームスイッチング素子駆動信号基準出力端子VS2と、インバータ駆動部19の下アームスイッチング素子駆動信号基準出力端子VS0との間に接続されている。クランプダイオード23は、インバータ駆動部19の上アームスイッチング素子駆動信号基準出力端子VS3と下アームスイッチング素子駆動信号基準出力端子VS0との間に接続されている。 The clamp diode 21 is connected between the upper arm switching element drive signal reference output terminal VS1 of the inverter driver 19 and the lower arm switching element drive signal reference output terminal VS0 of the inverter driver 19. The clamp diode 22 is connected between the upper arm switching element drive signal reference output terminal VS2 of the inverter driver 19 and the lower arm switching element drive signal reference output terminal VS0 of the inverter driver 19. The clamp diode 23 is connected between the upper arm switching element drive signal reference output terminal VS3 and the lower arm switching element drive signal reference output terminal VS0 of the inverter drive unit 19.
 このような回路構成では、各上アームスイッチング素子駆動信号基準出力端子VS1,VS2,VS3と、下アームスイッチング素子駆動信号基準出力端子VS0との間の各電圧V(VS1-VS0),V(VS2-VS0),V(VS3-VS0)がそれぞれ負電圧になった際に、対応するクランプダイオード21,22,23がオンする。これにより、各電圧V(VS1-VS0),V(VS2-VS0),V(VS3-VS0)が、それぞれクランプダイオード21,22,23のオン電圧に保たれる。 In such a circuit configuration, the voltages V (VS1-VS0), V (VS2) between the upper arm switching element drive signal reference output terminals VS1, VS2, VS3 and the lower arm switching element drive signal reference output terminal VS0. When -VS0) and V (VS3-VS0) become negative voltages, the corresponding clamp diodes 21, 22, and 23 are turned on. As a result, the voltages V (VS1-VS0), V (VS2-VS0), and V (VS3-VS0) are kept at the ON voltages of the clamp diodes 21, 22, and 23, respectively.
 また、図3において、S1,S2,S3は、それぞれSiC MOSFET T1,T3,T5のソース側の接続ノードである。S0は、SiC MOSFET T2,T4,T6の各ソース側の共通の接続ノードである。Pは、インバータ回路に正の電源電圧を印加する電源端子である。Nは、インバータ回路に負の電源電圧を印加する電源端子である。U,V,Wは、インバータ部17の出力端子である。 In FIG. 3, S1, S2, and S3 are connection nodes on the source side of the SiC-MOSFETs T1, T3, and T5, respectively. S0 is a common connection node on each source side of SiC MOSFET T2, T4, T6. P is a power supply terminal for applying a positive power supply voltage to the inverter circuit. N is a power supply terminal for applying a negative power supply voltage to the inverter circuit. U, V, and W are output terminals of the inverter unit 17.
 ここで、一般的に高耐圧IC30の上アームスイッチング素子駆動信号基準出力端子VS1,VS2,VS3のそれぞれの耐圧の最小値は、[(下アームスイッチング素子駆動信号基準出力端子VS0の電位)-5]ボルト程度である。つまり、高耐圧IC30の上アームスイッチング素子駆動信号基準出力端子VS1,VS2,VS3と下アームスイッチング素子駆動信号基準出力端子VS0との間の電圧V(VS1-VS0),V(VS2-VS0),V(VS3-VS0)の定格耐圧最小値は、それぞれ略-5Vである。 Here, in general, the minimum value of each withstand voltage of the upper arm switching element drive signal reference output terminals VS1, VS2, VS3 of the high withstand voltage IC 30 is [(potential of the lower arm switching element drive signal reference output terminal VS0) −5]. ] About bolts. That is, voltages V (VS1-VS0), V (VS2-VS0) between the upper arm switching element drive signal reference output terminals VS1, VS2, VS3 and the lower arm switching element drive signal reference output terminal VS0, The minimum rated breakdown voltage of V (VS3-VS0) is approximately −5V, respectively.
 従って、クランプダイオード21,22,23として、特に限定しないが、例えばオン電圧が0.7V~2V程度の一般的なダイオードを用いることが好ましい。このようなダイオードを用いることにより、上アームスイッチング素子駆動信号基準出力端子VS1,VS2,VS3と下アームスイッチング素子駆動信号基準出力端子VS0との間に負電圧が加わった場合に、それらの間の電圧は、クランプダイオード21,22,23のオン電圧、即ち-0.7V~-2V程度にクランプされる。 Accordingly, the clamp diodes 21, 22, and 23 are not particularly limited, but it is preferable to use, for example, a general diode having an on-voltage of about 0.7V to 2V. By using such a diode, when a negative voltage is applied between the upper arm switching element drive signal reference output terminals VS1, VS2 and VS3 and the lower arm switching element drive signal reference output terminal VS0, the gap between them is increased. The voltage is clamped to the ON voltage of the clamp diodes 21, 22, 23, that is, about −0.7V to −2V.
 なお、各クランプダイオード21,22,23を高耐圧IC30の基準出力端子VS0及びVS1,VS2,VS3の近傍に設けて、高耐圧IC30の端子VS0及びVS1,VS2,VS3から各クランプダイオード21,22,23までの配線長をできるだけ短くすることがより好ましい。 The clamp diodes 21, 22, and 23 are provided in the vicinity of the reference output terminals VS0 and VS1, VS2, and VS3 of the high voltage IC 30, and the clamp diodes 21, 22 are connected to the terminals VS0, VS1, VS2, and VS3 of the high voltage IC 30. , 23 is more preferably as short as possible.
 次に、図3に示す回路構成のインバータ部17の動作について説明する。高耐圧IC30の上アームスイッチング素子駆動信号基準出力端子VS1,VS2,VS3と下アームスイッチング素子駆動信号基準出力端子VS0との間に、高耐圧IC30を破壊させる原因となり得る負電圧が印可されたときにのみ、クランプダイオード21,22,23がオンとなり、これらの端子VS1,VS2,VS3とVS0との間の電圧V(VS1-VS0),V(VS2-VS0),V(VS3-VS0)をそれぞれオン電圧(0.7V~2V程度)にクランプする。 Next, the operation of the inverter unit 17 having the circuit configuration shown in FIG. 3 will be described. When a negative voltage that may cause destruction of the high voltage IC 30 is applied between the upper arm switching element drive signal reference output terminals VS1, VS2, VS3 and the lower arm switching element drive signal reference output terminal VS0 of the high voltage IC 30 Only, the clamp diodes 21, 22, 23 are turned on, and the voltages V (VS1-VS0), V (VS2-VS0), and V (VS3-VS0) between these terminals VS1, VS2, VS3 and VS0 are set. Clamp each to ON voltage (0.7V ~ 2V).
 従って、電圧V(VS1-VS0),V(VS2-VS0),V(VS3-VS0)は、それぞれ-0.7V~-2V程度となる。この結果、電圧V(VS1-VS0),V(VS2-VS0),V(VS3-VS0)は、それぞれ高耐圧IC30の端子VS1,VS2,VS3とVS0との間の定格耐圧最小値-5Vを下回ることはない。 Therefore, the voltages V (VS1-VS0), V (VS2-VS0), and V (VS3-VS0) are about -0.7V to -2V, respectively. As a result, the voltages V (VS1-VS0), V (VS2-VS0), and V (VS3-VS0) have the rated breakdown voltage minimum value -5V between the terminals VS1, VS2, VS3 and VS0 of the high breakdown voltage IC30, respectively. Never fall below.
 以上説明したように、高耐圧IC30の上アームスイッチング素子駆動信号基準出力端子VS1,VS2,VS3と下アームスイッチング素子駆動信号基準出力端子VS0との間に負電圧が印加された際の端子間電圧V(VS1-VS0),V(VS2-VS0),V(VS3-VS0)は、それぞれ-0.7V~-2V程度となる。これにより、端子間電圧V(VS1-VS0),V(VS2-VS0),V(VS3-VS0)が、高耐圧IC30の端子VS1,VS2,VS3とVS0との間の定格耐圧最小値-5Vを下回るのを防止できるので、高耐圧IC30の耐圧破壊を防止することができる。 As described above, the inter-terminal voltage when a negative voltage is applied between the upper arm switching element drive signal reference output terminals VS1, VS2, VS3 and the lower arm switching element drive signal reference output terminal VS0 of the high voltage IC 30. V (VS1-VS0), V (VS2-VS0), and V (VS3-VS0) are about −0.7V to −2V, respectively. As a result, the inter-terminal voltages V (VS1-VS0), V (VS2-VS0), and V (VS3-VS0) are the minimum rated withstand voltage -5V between the terminals VS1, VS2, VS3 and VS0 of the high withstand voltage IC30. Therefore, the breakdown voltage of the high voltage IC 30 can be prevented.
 次に、電力変換器10の構造について説明する。図4は、図2の電力変換器10を示す斜視図である。図5は、図2の電力変換器10を示す側面図(図4の矢示Vに沿って視た図)である。図4,5において、電力変換器10は、一方の主面(図4の下面)にコンバータ部15及びインバータ部17が実装され、かつ他方の主面(図4の上面)にコンデンサ16及び出力端子18が実装された配線基板40と、上下方向に対向配置された一対のアルミ板の間に複数の羽根が設けられてなる放熱フィンブロック41とを有している。 Next, the structure of the power converter 10 will be described. FIG. 4 is a perspective view showing the power converter 10 of FIG. FIG. 5 is a side view (viewed along arrow V in FIG. 4) showing power converter 10 in FIG. 4 and 5, a power converter 10 has a converter unit 15 and an inverter unit 17 mounted on one main surface (the lower surface in FIG. 4), and a capacitor 16 and an output on the other main surface (the upper surface in FIG. 4). It has a wiring board 40 on which the terminals 18 are mounted, and a radiating fin block 41 in which a plurality of blades are provided between a pair of aluminum plates opposed in the vertical direction.
 配線基板40は、コンバータ部15及びインバータ部17の構成部品(スイッチング素子等)が放熱フィンブロック41の上面に接するように、放熱フィンブロック41に配置されている。即ち、コンバータ部15及びインバータ部17の構成部品は、放熱フィンブロック41に熱的に接続されている。配線基板40及び放熱フィンブロック41は、これらを貫通するねじ43によって、例えばアルミ板等の台座42に固定されている。この台座42は、機械室1aの床に設置されている。 The wiring board 40 is arranged on the heat radiation fin block 41 so that the components (switching elements and the like) of the converter unit 15 and the inverter unit 17 are in contact with the upper surface of the heat radiation fin block 41. That is, the component parts of the converter unit 15 and the inverter unit 17 are thermally connected to the radiating fin block 41. The wiring board 40 and the heat radiating fin block 41 are fixed to a base 42 such as an aluminum plate, for example, by screws 43 passing through them. The pedestal 42 is installed on the floor of the machine room 1a.
 また、配線基板40は、放熱フィンブロック41の長手方向の一端面に取り付けられた入力端子14に、導体(ブスバー)44を介して電気的に接続されている。さらに、配線基板40は、放熱フィンブロック41の長手方向の他端面に取り付けられた制御端子20に、配線部材45を介して電気的に接続されている。 Further, the wiring board 40 is electrically connected to the input terminal 14 attached to one end face in the longitudinal direction of the radiating fin block 41 via a conductor (bus bar) 44. Further, the wiring board 40 is electrically connected to the control terminal 20 attached to the other end surface in the longitudinal direction of the heat dissipating fin block 41 via the wiring member 45.
 次に、モータ本体9と電力変換器10との位置関係について説明する。図6は、図2の電力変換器一体型モータ6を示す斜視図である。モータ本体9及び電力変換器10は、台座42の上面に、水平方向で互いに隣り合って配置されている。ここで、モータ本体9は、モータカバー50と、回転子(図示せず)、固定子(図示せず)、出力軸(回転軸)51、及び自冷ファン52を有している。電力変換器10は、モータ本体9のモータカバー50の奥面から、出力軸51の軸方向に間隔を空けて配置されている。 Next, the positional relationship between the motor body 9 and the power converter 10 will be described. FIG. 6 is a perspective view showing the power converter integrated motor 6 of FIG. The motor body 9 and the power converter 10 are disposed on the upper surface of the base 42 so as to be adjacent to each other in the horizontal direction. Here, the motor body 9 includes a motor cover 50, a rotor (not shown), a stator (not shown), an output shaft (rotating shaft) 51, and a self-cooling fan 52. The power converter 10 is arranged at an interval in the axial direction of the output shaft 51 from the inner surface of the motor cover 50 of the motor body 9.
 回転子、固定子及び自冷ファン52は、モータカバー50の内部に収容されている。出力軸51の一端は、モータカバー50の内側から外側へ突出し、減速機7に接続されている。出力軸51の他端は、モータカバー50内の奥部に配置されている。また、モータカバー50における出力軸51の軸方向の一端面(図6の右側の面)には、複数の通気口(長孔)50aが上下方向に間隔をおいて形成されている。さらに、モータカバー50の出力軸51の軸方向の他端面(図6の左側の面)にも、通気口50bが形成されている。 The rotor, stator and self-cooling fan 52 are accommodated in the motor cover 50. One end of the output shaft 51 protrudes from the inside of the motor cover 50 to the outside and is connected to the speed reducer 7. The other end of the output shaft 51 is disposed in the inner part of the motor cover 50. In addition, a plurality of vent holes (long holes) 50a are formed at intervals in the vertical direction on one end surface (the right side surface in FIG. 6) of the output shaft 51 of the motor cover 50 in the axial direction. Furthermore, a vent 50b is also formed in the other axial end surface (the left surface in FIG. 6) of the output shaft 51 of the motor cover 50.
 つまり、電力変換器10は、図6に示すように、モータ本体9の自冷ファン52の回転によって生じる気流に当るよう、出力軸51の延長軸に交わるように配置されている。また、放熱フィンブロック41は、モータ本体9の出力軸51の軸方向に対して直交するように配置されている。さらに、電力変換器10は、図6,7に示すように、両側面及び背面に複数の通気口(長孔)46aが設けられた電力変換器カバー46によって覆われている。 That is, as shown in FIG. 6, the power converter 10 is arranged so as to intersect with the extension shaft of the output shaft 51 so as to hit the airflow generated by the rotation of the self-cooling fan 52 of the motor body 9. Further, the radiation fin block 41 is disposed so as to be orthogonal to the axial direction of the output shaft 51 of the motor body 9. Further, as shown in FIGS. 6 and 7, the power converter 10 is covered with a power converter cover 46 in which a plurality of vent holes (long holes) 46 a are provided on both side surfaces and the back surface.
 ここで、モータ本体9の出力軸51の回転に伴って、自冷ファン52が回転して、図6の矢示Aの向きへ空気が流動する。従って、電力変換器カバー46の通気口46a、放熱フィンブロック41の複数の羽根の間、モータカバー50の通気口50b、及びモータカバー50の通気口50aを順に通る空気流路が形成される。この空気流路での気流によって、電力変換器10及びモータ本体9の熱が放散される。また、電力変換器10及びモータ本体9の熱は、台座42を介して、機械室1aの床へ伝わって放散される。 Here, as the output shaft 51 of the motor body 9 rotates, the self-cooling fan 52 rotates, and air flows in the direction of arrow A in FIG. Therefore, an air flow path is formed between the air vent 46a of the power converter cover 46, the plurality of blades of the heat dissipation fin block 41, the air vent 50b of the motor cover 50, and the air vent 50a of the motor cover 50 in this order. The heat of the power converter 10 and the motor body 9 is dissipated by the airflow in the air flow path. Moreover, the heat of the power converter 10 and the motor main body 9 is transmitted to the floor of the machine room 1a via the pedestal 42 and dissipated.
 次に、電力変換器一体型モータ6からの電力変換器10の分離(取り外し)方法について説明する。まず、図6に示す状態において、電力変換器カバー46を固定するねじを外すことによって、電力変換器カバー46を取り外し可能となる。そして、この状態で、配線基板40及び放熱フィンブロック41を貫通するねじ43を外し、インバータ部17の出力端子18から配線部材53を外すことによって、電力変換器10が台座42から取り外し可能となる。 Next, a method for separating (removing) the power converter 10 from the power converter integrated motor 6 will be described. First, in the state shown in FIG. 6, the power converter cover 46 can be removed by removing a screw for fixing the power converter cover 46. In this state, the power converter 10 can be detached from the pedestal 42 by removing the screw 43 penetrating the wiring board 40 and the radiation fin block 41 and removing the wiring member 53 from the output terminal 18 of the inverter unit 17. .
 従って、図8に示すように、モータ本体9から独立して、電力変換器一体型モータ6から電力変換器10を分離することができる。なお、モータ本体9及び電力変換器10が一体化された状態では、配線部材53は、配線基板40の出力端子18に図9に示すように接続されている。 Therefore, as shown in FIG. 8, the power converter 10 can be separated from the power converter integrated motor 6 independently of the motor body 9. In the state where the motor body 9 and the power converter 10 are integrated, the wiring member 53 is connected to the output terminal 18 of the wiring board 40 as shown in FIG.
 次に、電力変換器一体型モータ6の動作について説明する。いま、制御装置100でエスカレータの起動指令が発生すると、コンバータ部15によって三相交流電源101の交流電圧が整流されて直流電圧に変換される。コンバータ部15からの直流電圧は、コンデンサ16を介して、インバータ部17に加えられる。そして、直流電圧がインバータ部17によって可変電圧可変周波数の交流電圧に変換され、その交流電圧がモータ本体9に加えられる。これにより、モータ本体9が駆動する。そして、モータ本体9の駆動力によって、ステップ12が昇降される。 Next, the operation of the power converter integrated motor 6 will be described. Now, when an escalator start command is generated by the control device 100, the converter unit 15 rectifies the AC voltage of the three-phase AC power supply 101 and converts it into a DC voltage. The DC voltage from the converter unit 15 is applied to the inverter unit 17 via the capacitor 16. The DC voltage is converted into an AC voltage having a variable voltage and a variable frequency by the inverter unit 17, and the AC voltage is applied to the motor body 9. Thereby, the motor main body 9 is driven. Then, the step 12 is moved up and down by the driving force of the motor body 9.
 また、モータ本体9の回転駆動に伴い、自冷ファン52が回転して、図6の矢示Aのような気流が生じる。この気流によって、モータ本体9が冷却される。これとともに、電力変換器カバー46の通気口46aから電力変換器カバー46の内部に入り込む気流によって、コンデンサ16及び放熱フィンブロック41が冷却される。このため、放熱フィンブロック41に熱的に接続されたインバータ部17及びコンバータ部15も速やかに冷却される。 Further, as the motor body 9 is driven to rotate, the self-cooling fan 52 rotates, and an air current as shown by an arrow A in FIG. 6 is generated. The motor body 9 is cooled by this airflow. At the same time, the capacitor 16 and the radiating fin block 41 are cooled by the airflow entering the inside of the power converter cover 46 from the vent 46 a of the power converter cover 46. For this reason, the inverter part 17 and the converter part 15 which were thermally connected to the radiation fin block 41 are also cooled rapidly.
 以上のように、実施の形態1によれば、コンバータ部15及びインバータ部17のそれぞれが、複数のSiC MOSFETと複数のSiC ショットキーバリアダイオードとを持ち、インバータ駆動部19が高耐圧IC30を持つ。このようなSiC等のワイドバンドギャップ半導体によって形成されたMOSFET(スイッチング素子)やダイオードは、耐電圧性が高く、許容電流密度も高い。このため、MOSFETやダイオードの小型化が可能である。そして、これらの小型化されたスイッチング素子やダイオードを用いることにより、これらの素子を組み込んだ電力変換器10の小型化が可能になる。従って、コンバータ部15、インバータ部17及びインバータ駆動部19を、特許文献1に示すような従来装置に比べて、小型化することができる。 As described above, according to the first embodiment, each of the converter unit 15 and the inverter unit 17 has a plurality of SiC-MOSFETs and a plurality of SiC-Schottky barrier diodes, and the inverter driving unit 19 has a high voltage IC 30. . MOSFETs (switching elements) and diodes formed of such wide band gap semiconductors such as SiC have high voltage resistance and high allowable current density. For this reason, it is possible to reduce the size of the MOSFET and the diode. Then, by using these miniaturized switching elements and diodes, the power converter 10 incorporating these elements can be miniaturized. Therefore, the converter unit 15, the inverter unit 17, and the inverter drive unit 19 can be reduced in size as compared with the conventional device as shown in Patent Document 1.
 また、この小型化されたコンバータ部15、インバータ部17及びインバータ駆動部19を有する電力変換器10が、モータ本体9に水平方向で隣り合うように台座42の上面に設けられている。この構成により、電力変換器一体型モータ6のユニット全体からモータ本体9を取り外すことなく電力変換器10を容易に分離させることができ、特許文献1に示すような積層構造を採用した従来装置に比べて、保守点検及び部品交換の作業性を向上させて、作業時間の短縮化を図ることができる。 Further, the power converter 10 having the downsized converter unit 15, the inverter unit 17, and the inverter driving unit 19 is provided on the upper surface of the base 42 so as to be adjacent to the motor body 9 in the horizontal direction. With this configuration, the power converter 10 can be easily separated without removing the motor main body 9 from the entire unit of the power converter integrated motor 6, and the conventional apparatus adopting the laminated structure as shown in Patent Document 1 is used. Compared with this, it is possible to improve the workability of maintenance inspection and part replacement, and to shorten the work time.
 さらに、コンバータ部15及びインバータ部17が放熱フィンブロック41の上面に載置されて、熱的に接続されている。また、放熱フィンブロック41の下面が台座42を介して機械室1aの床に熱的に接続されている。これにより、コンバータ部15及びインバータ部17から発生した熱が放熱フィンブロック41により放熱されるとともに、上記の熱が台座42を介して機械室1aの床にも放熱される。従って、コンバータ部15及びインバータ部17から発生した熱を効率よく放散することができる。 Furthermore, the converter unit 15 and the inverter unit 17 are placed on the upper surface of the radiating fin block 41 and are thermally connected. Further, the lower surface of the radiating fin block 41 is thermally connected to the floor of the machine room 1a through the pedestal 42. Thereby, the heat generated from the converter unit 15 and the inverter unit 17 is radiated by the radiating fin block 41, and the heat is also radiated to the floor of the machine room 1 a through the pedestal 42. Therefore, the heat generated from the converter unit 15 and the inverter unit 17 can be efficiently dissipated.
 また、電力変換器10は、モータ本体9の自冷ファン52の回転によって生じる気流に当るよう、出力軸51の延長軸と交わるように配置されている。この構成により、自冷ファン52の回転によって生じる気流で、モータ本体9及び電力変換器10の両方を効率的に冷却することができる。これに加えて、モータ本体9(モータカバー50の奥面)と電力変換器10との間に間隔が空けられているので、自冷ファン52の回転によって生じる気流がモータ本体9のみならず、コンデンサ16を冷却するので、より効率的に冷却することができる。 Further, the power converter 10 is arranged so as to intersect with the extension shaft of the output shaft 51 so as to hit the airflow generated by the rotation of the self-cooling fan 52 of the motor body 9. With this configuration, both the motor main body 9 and the power converter 10 can be efficiently cooled by the airflow generated by the rotation of the self-cooling fan 52. In addition to this, since an interval is provided between the motor main body 9 (the inner surface of the motor cover 50) and the power converter 10, the airflow generated by the rotation of the self-cooling fan 52 is not only the motor main body 9, Since the capacitor | condenser 16 is cooled, it can cool more efficiently.
 さらに、ワイドバンドギャップ半導体は、耐熱性も高いため、放熱フィンブロック41の小型化や、水冷部の空冷化が可能であるので、電力変換器10の一層の小型化が可能になる。これに加えて、特許文献1に示すような従来装置のヒートパイプを省略することができる。 Furthermore, since the wide band gap semiconductor has high heat resistance, it is possible to reduce the size of the radiating fin block 41 and the air cooling of the water cooling section, thereby further reducing the size of the power converter 10. In addition, the heat pipe of the conventional apparatus as shown in Patent Document 1 can be omitted.
 また、ワイドバンドギャップ半導体の電力損失が低いため、スイッチング素子やダイオードの高効率化が可能であり、延いては電力変換器10の高効率化が可能になる。 In addition, since the power loss of the wide band gap semiconductor is low, the efficiency of the switching element and the diode can be increased, and thus the efficiency of the power converter 10 can be increased.
 なお、上記の実施の形態では、エスカレータ用の電力変換器一体型モータについて説明した。しかしながら、この発明は、動く歩道用の電力変換器一体型モータにも適用できる。 In the above embodiment, the escalator power converter integrated motor has been described. However, the present invention can also be applied to a power converter integrated motor for a moving sidewalk.
 また、上記の実施の形態では、スイッチング素子及びダイオードがSiC(炭化珪素)によって形成されたものを示した。しかしながら、スイッチング素子及びダイオードの材料は、SiCに限定するものではなく、例えば、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体であれば、SiC以外に、例えば、窒化ガリウム系材料又はダイヤモンドを用いてもよい。 In the above embodiment, the switching element and the diode are formed of SiC (silicon carbide). However, the material of the switching element and the diode is not limited to SiC. For example, a gallium nitride-based material or diamond is used in addition to SiC as long as it is a wide band gap semiconductor having a larger band gap than silicon. May be.
 さらに、スイッチング素子及びダイオードの両方がワイドバンドギャップ半導体によって形成されていることが望ましいが、スイッチング素子及びダイオードのいずれか一方の素子がワイドバンドギャップ半導体によって形成されていてもよい。この場合でも、この実施の形態に記載の効果を得ることができる。 Furthermore, although it is desirable that both the switching element and the diode are formed of a wide band gap semiconductor, either one of the switching element and the diode may be formed of a wide band gap semiconductor. Even in this case, the effects described in this embodiment can be obtained.

Claims (5)

  1.  トラスの機械室に設けられた台座と、
     複数のスイッチング素子及び複数のダイオードを持ち、前記複数のスイッチング素子及び複数のダイオードの少なくともいずれか一方がワイドバンドギャップ半導体によって形成されたコンバータ部と、複数のスイッチング素子及び複数のダイオードを持ち、前記複数のスイッチング素子及び複数のダイオードの少なくともいずれか一方がワイドバンドギャップ半導体によって形成されたインバータ部と、高耐圧ICを持ち、かつ前記インバータ部の内部に組み込まれ前記インバータ部のスイッチングを駆動するためのインバータ駆動部とを有し、前記台座の上面に設けられた電力変換器と、
     前記電力変換器と水平方向で隣り合うように前記台座の上面に設けられ、前記インバータ部から電力を受けてステップに駆動力を与えるモータ本体と
     を備える乗客コンベア用の電力変換器一体型モータ。
    A pedestal provided in the machine room of the truss;
    Having a plurality of switching elements and a plurality of diodes, at least one of the plurality of switching elements and the plurality of diodes formed of a wide band gap semiconductor, and having a plurality of switching elements and a plurality of diodes, In order to drive the switching of the inverter unit having at least one of a plurality of switching elements and a plurality of diodes having an inverter unit formed of a wide bandgap semiconductor and a high breakdown voltage IC and being incorporated in the inverter unit A power converter provided on the upper surface of the pedestal,
    A power converter integrated motor for a passenger conveyor, comprising: a motor main body that is provided on an upper surface of the pedestal so as to be adjacent to the power converter in the horizontal direction, and that receives electric power from the inverter unit and applies driving force to the steps.
  2.  前記電力変換器は、下面が前記台座の上面に接するように前記台座に取り付けられ、上面に前記コンバータ部及び前記インバータ部が載置され、かつ前記コンバータ部及び前記インバータ部と熱的に接続された放熱フィンブロックをさらに有する
     請求項1記載の乗客コンベア用の電力変換器一体型モータ。
    The power converter is attached to the pedestal so that a lower surface thereof is in contact with an upper surface of the pedestal, the converter unit and the inverter unit are mounted on the upper surface, and is thermally connected to the converter unit and the inverter unit. The power converter integrated motor for passenger conveyor according to claim 1, further comprising a heat dissipation fin block.
  3.  前記モータ本体は、前記ステップに駆動力を与えるための回転軸と、前記回転軸の一端に設けられ前記回転軸の回転に伴って気流を生じさせる自冷ファンとを有し、
     前記電力変換器は、前記自冷ファンの回転によって生じる気流に当るよう、前記回転軸の延長軸に交わるように配置されている
     請求項1又は請求項2に記載の乗客コンベア用の電力変換器一体型モータ。
    The motor body has a rotating shaft for applying a driving force to the step, and a self-cooling fan that is provided at one end of the rotating shaft and generates an air flow along with the rotation of the rotating shaft,
    The power converter for a passenger conveyor according to claim 1 or 2, wherein the power converter is arranged so as to intersect with an extension shaft of the rotating shaft so as to hit an airflow generated by rotation of the self-cooling fan. Integrated motor.
  4.  前記モータ本体は、通気口が設けられたモータカバーによって覆われ、
     前記電力変換器は、通気口が設けられかつ前記モータカバーから独立して分離可能な電力変換器カバーによって覆われている
     請求項3記載の乗客コンベア用の電力変換器一体型モータ。
    The motor body is covered by a motor cover provided with a vent;
    The power converter integrated motor for passenger conveyor according to claim 3, wherein the power converter is covered with a power converter cover that is provided with a vent and is separable independently from the motor cover.
  5.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料又はダイヤモンドである
     請求項1から請求項4までのいずれか1項に記載の乗客コンベア用の電力変換器一体型モータ。
    The power converter integrated motor for passenger conveyors according to any one of claims 1 to 4, wherein the wide band gap semiconductor is silicon carbide, a gallium nitride-based material, or diamond.
PCT/JP2011/059404 2011-04-15 2011-04-15 Power converter-integrated motor for passenger conveyer WO2012140774A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059404 WO2012140774A1 (en) 2011-04-15 2011-04-15 Power converter-integrated motor for passenger conveyer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059404 WO2012140774A1 (en) 2011-04-15 2011-04-15 Power converter-integrated motor for passenger conveyer

Publications (1)

Publication Number Publication Date
WO2012140774A1 true WO2012140774A1 (en) 2012-10-18

Family

ID=47008976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059404 WO2012140774A1 (en) 2011-04-15 2011-04-15 Power converter-integrated motor for passenger conveyer

Country Status (1)

Country Link
WO (1) WO2012140774A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015639A1 (en) * 2013-08-02 2015-02-05 三菱電機株式会社 Control panel for passenger conveyor
US11001448B2 (en) 2018-12-14 2021-05-11 Walmart Apollo, Llc Conveyor liftgate systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125289A (en) * 1990-09-14 1992-04-24 Hitachi Ltd Passenger conveyer
JPH1127959A (en) * 1997-07-08 1999-01-29 Toshiba Fa Syst Eng Kk Inverter
JP2010088175A (en) * 2008-09-30 2010-04-15 Mitsubishi Electric Corp Inverter device
JP2010172183A (en) * 2008-12-26 2010-08-05 Daikin Ind Ltd Power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125289A (en) * 1990-09-14 1992-04-24 Hitachi Ltd Passenger conveyer
JPH1127959A (en) * 1997-07-08 1999-01-29 Toshiba Fa Syst Eng Kk Inverter
JP2010088175A (en) * 2008-09-30 2010-04-15 Mitsubishi Electric Corp Inverter device
JP2010172183A (en) * 2008-12-26 2010-08-05 Daikin Ind Ltd Power converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015639A1 (en) * 2013-08-02 2015-02-05 三菱電機株式会社 Control panel for passenger conveyor
CN105377739A (en) * 2013-08-02 2016-03-02 三菱电机株式会社 Control panel for passenger conveyor
JP6048994B2 (en) * 2013-08-02 2016-12-21 三菱電機株式会社 Passenger conveyor control panel
US11001448B2 (en) 2018-12-14 2021-05-11 Walmart Apollo, Llc Conveyor liftgate systems and methods

Similar Documents

Publication Publication Date Title
US8004836B2 (en) Arrangement for a motor controller
GB2541966B (en) Power converter and railway vehicle
US10438869B2 (en) Power semiconductor module for a motor vehicle and motor vehicle
CN109075733B (en) Motor drive device and air conditioner
US20130320896A1 (en) Modular inverter arrangement
US20180019695A1 (en) Semiconductor Module
JP2006197735A (en) Inverter
CN112821796A (en) Electronic module for an electric drive of a vehicle
WO2012140774A1 (en) Power converter-integrated motor for passenger conveyer
CN107710580B (en) Circuit arrangement for fast switching of a converter
JP2019033587A (en) Power conversion apparatus and vehicle equipped with power conversion apparatus
US11710685B2 (en) Semiconductor module and power conversion device
TWI590570B (en) Power conversion device and vehicle control device
CN112771775A (en) Power conversion device, motor drive device, and air conditioner
JP6457381B2 (en) Power converter and elevator
US10164530B2 (en) Boost chopper circuit including switching device circuit and backflow prevention diode circuit
US11128235B2 (en) Power conversion device
JP4296960B2 (en) Power converter
US11016045B2 (en) Inverter device and method for detecting heat dissipation characteristics of inverter device
CN105377739B (en) Control panel for passenger conveyor
CN112951813B (en) Device for electronic components
JP6368634B2 (en) Power converter and railway vehicle equipped with the same
JP2013118754A (en) Inverter device and air conditioner equipped with the same
US20200244158A1 (en) Snubber device and power conversion apparatus
JP7096231B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP