WO2012140743A1 - Vehicle sensing apparatus antifreeze method and device - Google Patents

Vehicle sensing apparatus antifreeze method and device Download PDF

Info

Publication number
WO2012140743A1
WO2012140743A1 PCT/JP2011/059116 JP2011059116W WO2012140743A1 WO 2012140743 A1 WO2012140743 A1 WO 2012140743A1 JP 2011059116 W JP2011059116 W JP 2011059116W WO 2012140743 A1 WO2012140743 A1 WO 2012140743A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
vehicle
infrared irradiation
vehicle detector
cylindrical body
Prior art date
Application number
PCT/JP2011/059116
Other languages
French (fr)
Japanese (ja)
Inventor
余根田義幸
遠藤雄二
森一生
Original Assignee
株式会社ユニ・ロット
西日本高速道路ファシリティーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニ・ロット, 西日本高速道路ファシリティーズ株式会社 filed Critical 株式会社ユニ・ロット
Priority to PCT/JP2011/059116 priority Critical patent/WO2012140743A1/en
Publication of WO2012140743A1 publication Critical patent/WO2012140743A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/048Detecting movement of traffic to be counted or controlled with provision for compensation of environmental or other condition, e.g. snow, vehicle stopped at detector
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • G07B15/06Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems

Definitions

  • the present invention relates to a method and an apparatus for preventing freezing of a vehicle detector installed at, for example, a toll road toll gate using infrared rays.
  • an automatic toll collection system is installed at toll gates on toll roads.
  • the automatic toll collection system employs a vehicle detector that detects entry of a vehicle into a traffic lane (Patent Document 1).
  • This vehicle detector has a long cylindrical body, a light emitting side detector in which a number of light emitting elements are arranged in the vertical direction, and a light receiving element in which a number of light receiving elements corresponding to the light emitting elements are arranged. It consists of a side detector.
  • the light emitting side detector and the light receiving side detector are arranged to face each other across the traffic lane, and one light shielding sensor is configured by a combination of a light emitting element and a light receiving element corresponding to each other.
  • the sensor light from the light emitting element is received by the light receiving element, while when the vehicle passes, the sensor light is shielded by the vehicle and is not received by the light receiving element. Whether or not the vehicle has passed can be detected based on whether or not the sensor light is received by the light receiving element.
  • the cylindrical body of the vehicle detector is provided with a light-transmitting surface on the light-emitting side detector and a light-receiving surface on the light-receiving side detector, and a transparent glass plate or resin plate is fitted on each surface.
  • a light window and a light receiving window are formed.
  • the outer surfaces of the light projecting window and the light receiving window may freeze.
  • the sensor light emitted from the light emitting element is diffusely reflected by the light projecting window or light receiving window, or absorbed to cause a decrease in the light quantity. May be erroneously detected.
  • the inside of the cylinder constituting the vehicle detector becomes below freezing point, and an icing layer is formed on the surface of the light emitting element, the light receiving element and the surface of the condensing lens installed therein, and the light from the light emitting element is irregularly reflected, etc.
  • an icing layer is formed on the surface of the light emitting element, the light receiving element and the surface of the condensing lens installed therein, and the light from the light emitting element is irregularly reflected, etc.
  • the vehicle is not irradiated in the predetermined direction and in the predetermined direction, and that the amount of light received by the light receiving element is low, so that the vehicle is erroneously detected even though there is no vehicle passing.
  • condensation occurs on the surface of the light emitting element, the light receiving element, the light projecting window, or the light receiving window, and the same erroneous detection as in the case of icing may occur due to rainwater.
  • Patent Document 2 describes a configuration in which a heater coil is arranged inside a light transmission lens that is a component of a light projecting unit in a case of a vehicle detection device. When the weather condition reaches the dew point and dew adheres to the light transmission lens and becomes cloudy, the heater coil is energized to warm the light transmission lens to prevent dew adhesion. In order to achieve the same object, a configuration is also described in which a heat transmitting element capable of transmitting light is provided on the back surface of the light transmitting lens.
  • Patent Document 3 describes a vehicle detection device in which a heat ray is disposed in the outer peripheral area of a lens window provided to face an image sensor. By energizing the heat ray and applying heat to the lens window or the like, clouds and frost adhering to the lens window are removed.
  • JP 2004-171140 A JP 2002-32891 A JP-A-8-293090
  • this type of vehicle detector has a light emitting element (light receiving element), a light projecting window (light receiving window), and a failure if necessary, as described in JP-A-2003-77089. Since it is necessary to arrange an optical system for detection, it is not always easy to run the heater wire around the surface wall of the housing. In addition, wiring the heater wire to the vehicle detector requires modification of the device and complicates the structure of the vehicle detector.
  • the configuration in which a heating element is disposed in the case or a heat ray is disposed in the lens window is a clouding of the lens by modifying a part of the structure.
  • the present invention has been made in view of the above, and it is a freezing capable of preventing a decrease in detection performance due to snow accumulation or freezing without any change to the structure of an existing vehicle detector.
  • a prevention method and an apparatus therefor are provided.
  • An anti-freezing device for a vehicle detector has a cylindrical body standing upright in a vehicle passage, and one of a light emitting section and a light receiving section directed to the front side in an inner space of the cylindrical body.
  • In the anti-freezing device for a vehicle detector that detects a passing vehicle through a light transmission window in front of the cylinder body, and in the vicinity of the standing position of the cylinder body and the cylinder body Infrared rays are irradiated toward a predetermined irradiation region including a predetermined range in front of a part of a lower end side of the cylindrical body and a lower end of the cylindrical body, supported by a support portion disposed in a direction substantially parallel to the vehicle passage.
  • An infrared irradiation unit having an infrared irradiation source to perform, a weather information acquisition unit that acquires at least weather information related to snowfall, and the infrared ray when it is determined that it is in a snowfall state based on the weather information acquired by the weather information acquisition unit
  • Control unit that supplies power to the irradiation unit
  • The is characterized in that it comprises.
  • the vehicle detector freezing prevention method includes a cylindrical body erected with the front facing the vehicle passage, and a light emitting section and a light receiving section directed to the front side in the inner space of the cylindrical body
  • the weather information acquisition unit acquires at least weather related to snowfall Based on the information, the presence or absence of a snowfall state is determined, and when it is determined that the snowfall state is present, the cylinder is disposed in the vicinity of the standing position of the cylinder and in a direction substantially parallel to the vehicle passage.
  • power is supplied to an infrared irradiation source that irradiates infrared rays toward a predetermined irradiation region including a part of the lower end side of the cylindrical body and a predetermined forward range of the lower end of the cylindrical body.
  • the weather information acquisition unit determines whether or not it is a snowfall state based on the weather information acquired by the weather information acquisition unit. And if it is judged that it is a snowfall state, electric power will be supplied to an infrared irradiation source, and infrared emission will be started. Infrared rays emitted from an infrared irradiation source are irradiated to a predetermined irradiation area including a part of a lower end side of a cylinder constituting the vehicle detector (outer frame structure thereof) and a predetermined range in front of the lower end of the cylinder. As a result, the lower end portion of the cylindrical body is heated.
  • the air inside the cylinder is warmed from below, and the inner space of the cylinder is warmed as a whole by convection.
  • the snow which accumulates in the predetermined range ahead of the lower end of a cylinder by the heating by an infrared irradiation source and the ice in freezing are melted. Therefore, even when the environmental temperature is below the freezing point and the transparent window is frozen, ice melting is performed. For this reason, the detection light is not blocked or irregularly reflected by snow or ice blocks, and erroneous detection can be prevented.
  • the melting of the snow remaining on the front surface is promoted by heating the air inside the cylinder, the problem of erroneous detection is solved over the entire detection range for vehicle detection.
  • the vehicle detector is heated remotely from the outside, there is no need to change the structure of the vehicle detector itself.
  • a method for determining the snowfall state in addition to a method for directly determining whether or not it is snowing, for example, one or more of temperature, humidity, ground temperature, etc. are combined to determine whether or not the snowfall environment exists.
  • An aspect of indirectly determining or an aspect of acquiring weather information of a corresponding area from another weather observation facility via a known communication means may be used.
  • the present invention is not limited to a mode in which power is supplied to the infrared irradiation source only when it is determined that it is snowing, and other weather elements are acquired and power is supplied to the infrared irradiation source based on separate weather conditions. You may add the aspect which melt
  • the present invention it is possible to prevent a decrease in detection performance due to snow accumulation or freezing without changing the structure of an existing vehicle detector.
  • FIG. 1 is an overall configuration diagram of a toll gate device of an automatic toll collection system that is an example to which an anti-freezing device for a vehicle detector according to the present invention is applied. It is a perspective view explaining the detailed structure of a vehicle detector. It is a perspective view explaining the standing structure of a vehicle detector. It is a schematic perspective view which shows arrangement
  • FIG. 7 It is a figure which shows arrangement
  • (a) is a left view
  • (b) is a front view
  • (c) is a right view.
  • (D) is a plan view. It is a schematic plan view explaining the structure of a fixture. It is a figure explaining the structure of a fixture, (a) is a disassembled perspective view, (b) is a partial cross section front view, (c) is a side view. It is a figure which shows other embodiment of a connection part, and is a front view corresponding to FIG.7 (b).
  • FIG. 1A and 1B are views showing an embodiment of a heater structure, in which FIG. 1A is an external perspective view, FIG. 1B is an exploded view, FIG. 3C is a perspective view of a mirror unit including a halogen lamp and its mounting portion, and FIG. It is a perspective view of a mirror unit in a state where a lamp is attached. It is a front view which shows the relationship of the attachment attitude
  • FIG. 14 It is a block diagram for controlling the drive of the heater of an antifreezing apparatus. It is a figure which shows other embodiment of the mirror unit of a heater, (a) is a figure which shows the irradiation range of a mirror unit and infrared rays, (b) is explanatory drawing which shows the shape of a mirror unit. It is a figure which shows other embodiment of the mirror unit of the heater shown in FIG. 14, and is a schematic perspective view corresponding to FIG.
  • a vehicle detector and a heater for detecting a vehicle of a high vehicle type (a) is the top of the cylinder of the vehicle detector that is lower than the normal size by a predetermined dimension
  • a normal size vehicle detector is crowned on the top of the dummy body adjacent to the normal size cylinder.
  • B) is the front view which has arrange
  • FIG. 1 is an overall configuration diagram of a toll gate device of an automatic toll collection system, which is an example to which the anti-freezing device 10 for a vehicle detector according to the present invention is applied.
  • the automatic toll collection system has a predetermined width and a predetermined bulk formed of concrete material or the like on both sides of a vehicle approach path (vehicle path 8) having a vehicle width through which a vehicle can pass (or to provide a vehicle path 8). And installed on roadbeds 81 and 82 having a predetermined length along the approach path.
  • the vehicle detector 2 On the roadbeds 81 and 82, the vehicle detector 2, the gantry 4 with the antenna 3 installed on the top, the start controller 5, the vehicle detector 6, and a display for displaying charges, etc. in order along the traveling direction.
  • a container 7 is arranged.
  • Vehicle detectors 2 and 6 have the same structure.
  • the vehicle detector 2 detects an approaching vehicle, and the vehicle detector 6 detects a passing vehicle.
  • the structure will be described on behalf of the vehicle detector 2.
  • FIG. 2 is a perspective view for explaining the internal structure of the vehicle detector 2.
  • the light emitting side portion 21 is disposed on the road base 81 and the light receiving side portion 22 is disposed on the road base 82 so as to face each other.
  • the light emitting side portion 21 has a long cylindrical body 211 having a predetermined cross-sectional shape, for example, a circular shape or a square shape (square shape) as in the present embodiment.
  • the cylinder 211 is made of a metal material such as steel and is erected on the roadbed 81.
  • the light receiving side portion 22 has a long cylindrical body 221 having a quadrangular cross section (rectangular shape).
  • the cylinders 211 and 221 have, for example, a longitudinal cross-sectional shape of 240 mm front side ⁇ 200 mm side surface, a thickness of about 3 mm, and a normal type (normal size) of 175 cm.
  • the cylinders 211 and 221 constitute an outer frame structure of the light emitting side portion 21 and the light receiving side portion 22 of the vehicle detector 2.
  • Infrared light emitting elements 212 are arranged on the inner wall of the rear surface of the cylinder 211 with a predetermined interval in the vertical direction. Each infrared light emitting element 212 emits beam-shaped infrared light toward the front wall. A long slit is formed in the vertical direction at a position on the front surface of the cylindrical body 211 where the infrared light emitted from each infrared light emitting element 212 hits, and a transparent glass plate or the like is fitted into the slit. Thus, a light projection window 213 is formed.
  • a lens system for condensing the emitted infrared light to obtain a parallel light beam may be provided inside the cylinder and on the optical axis of each infrared light emitting element 212.
  • an infrared light receiving unit for light emission inspection may be provided inside to monitor whether or not the infrared light emitting element 212 is normally emitting light.
  • the light receiving side portion 22 also has substantially the same structure as the light projecting side portion 21, and a long slit is formed in the vertical direction, and a light receiving window 223 is formed by fitting a transparent glass plate or the like into the slit. .
  • the difference is that infrared light receiving elements 222 are arranged on the inner wall of the rear surface. If necessary, an infrared light emitting unit for light reception inspection is provided corresponding to each infrared light receiving element 222, and whether each infrared light receiving element 222 normally performs a light receiving operation or not. You may make it monitor.
  • the control unit 100 emits pulsed infrared light from each infrared light emitting element 212 at a predetermined cycle, and the presence or absence of a light reception signal at each opposing infrared light receiving element 222. Is controlled to be detected. If the received light signals are detected by all the infrared light receiving elements 222, it is determined that there is no vehicle as an obstacle in the vehicle path 8, and the received light signals are detected by some of the lower infrared light receiving elements 222. Otherwise, it is determined that there is a passing vehicle. Specifically, it is determined that the vehicle has passed after the detection start and the detection end.
  • the vehicle detector 2 includes the light emitting side portion 21 and the light receiving side portion 22 with the vehicle passage 8 interposed therebetween, but the light emitting side portion 21 and the light receiving side portion 21 are provided on one side of the vehicle passage 8.
  • the light receiving side portion 22 is arranged correspondingly, and when entering the vehicle, the infrared light emitted from each infrared light emitting element of the light emitting side portion 21 is reflected by the vehicle body and each infrared light receiving of the light receiving side portion 22 is received.
  • each infrared light emitting element on the light emitting side portion 21 when there is no vehicle, the infrared light emitted from each infrared light emitting element on the light emitting side portion 21 does not come back, so that each infrared light receiving element on the light receiving side portion 22 is infrared. It is good also as an aspect which detects the presence or absence of a passing vehicle by not receiving light. Further, the arrangement pitch of the infrared light emitting element and the infrared light receiving element in the vertical direction does not need to be constant. For example, as shown in FIG. 5B, it is necessary to increase the detection accuracy on the lower side. Further, it is possible to adopt a mode of concentrating at the lower part.
  • the antenna 3 receives information from the onboard device of the approaching vehicle, and transmits toll equipment and the like at the exit of the toll road.
  • the start controller 5 usually has both bars (a pair) of bars 51 descending on the vehicle passage 8 side.
  • the vehicle detector 2 detects an approaching vehicle
  • the bars 51 on both sides are rotated upward after a predetermined time.
  • control is performed so that the bars 51 on both sides are lowered after a predetermined time.
  • FIG. 3 is a perspective view for explaining the standing structure of the vehicle detector 2.
  • the vehicle detector 2 is installed on the roadbed 81.
  • a base 811 having a required width and a required thickness is laid on the roadbed 81 and fixed by a fixing tool such as a screw.
  • a support plate 812 having a required width and a required thickness is laid on the upper surface of the base 811, and is similarly fixed to the base 811 with a fixture such as a screw.
  • One side of the vehicle detector 2, for example, the cylindrical body 211 of the light emitting side portion 21 has a bowl-shaped bent portion 211 a whose lower end is bent at right angles to the left and right sides.
  • the light emitting side portion 21 is fixedly supported on the support plate 812 by fixing the bent portion 211a to the side away from the vehicle passage 8 on the support plate 812 via a fixture such as a screw. Is done.
  • a fixture such as a screw.
  • a pair of standing standing pieces for fitting may be fixed on the support plate 812, and the lower end of the cylindrical body 211 may be press-fitted from above and fitted.
  • the other light receiving side portion 22 constituting the vehicle detector 2 is supported upright on the roadbed 82.
  • the vehicle detector 2 is disposed on the side away from the vehicle passage 8 on the road bed 81 (road bed 82) so as not to hinder the vehicle passing as much as possible.
  • the base 811 and the support plate 812 may be combined and handled as a support plate.
  • FIG. 4 and 5 are diagrams showing the arrangement of the light emitting side portion 21 (or the light receiving side portion 22) of the vehicle detector 2 and the heater portion 11 of the antifreezing device 10, and FIG. 4 is a schematic perspective view.
  • 5A is a left side view
  • FIG. 5B is a front view
  • FIG. 5C is a right side view
  • FIG. 5D is a plan view.
  • the antifreezing device 10 includes a pair of heater portions 11 on the left and right sides with the light emitting side portion 21 interposed therebetween.
  • Each heater unit 11 includes a heater 12, a support unit 13 that supports the heater 12, and a fixture 14 that attaches the heater 12 to the support unit 13.
  • Each support portion 13 is on the roadbed 81, spaced from the cylinder 211 by a predetermined distance in the left-right direction (vehicle traveling direction) of the roadbed 81 and at a position facing the support plate 812 (obliquely forward of the cylinder 211). It is erected.
  • Each support portion 13 includes a flat plate-like substrate portion 131 that is laid on the roadbed 81 and fixed by a fixing tool such as a screw, and a vertical portion 132 that is erected on the substrate portion 131 and has a predetermined length. Yes.
  • the upright portion 132 has a cylindrical or columnar shape as shown in FIG.
  • Each heater 12 has a substantially rectangular parallelepiped shape, and radiates infrared rays from the lower surface side toward a lower required range as shown by a broken line in FIG. As shown in FIGS. 5A to 5C, each heater 12 is supported at a predetermined height position of the upright portion 132 of the support portion 13 and does not protrude from the front wall of the roadbed 81 toward the vehicle passage 8 side. So that it does not become an obstacle to passing vehicles. Each heater 12 is inclined such that the end closer to the cylindrical body 211 is at a relatively higher position than the other end on the far side (see FIG. 5B). As shown in FIG.
  • each heater 12 is set so that infrared rays having a predetermined intensity can be emitted to the required irradiation ranges L1 and L2, and by further adjusting the mounting posture, the heaters 12 shown in FIG. 4 and FIG. As indicated by a broken line, a predetermined irradiation region including a high irradiation range L3 in which a part of each irradiation range L1, L2 overlaps is formed.
  • the irradiation ranges L1 and L2 include a part of the lower end of the cylindrical body 211, so that the lower part of the cylindrical body 211 is effectively heated to warm the in-cylinder air.
  • the heat generation region can be concentrated near the center of the upper surface of the support plate 812 serving as a vehicle detection infrared light passage. it can.
  • the irradiation range is to melt snow and freezing in the entire surface of the support plate 812 in FIG.
  • FIG. 6 and 7 are diagrams for explaining the structure of the fixture 14.
  • FIG. 6 is a schematic plan view
  • FIG. 7 (a) is an exploded perspective view
  • FIG. 7 (b) is a partially sectional front view
  • FIG. c) is a side view.
  • the fixture 14 includes an annular body 141 fitted to the upright portion 132 of the support portion 13, a connecting portion 143 attached to the upper surface of the heater 12, and a positioning member provided between the annular body 141 and the connecting portion 143. 142.
  • the annular body 141 has an inner diameter that is externally fitted to the upright portion 132 of the cylinder, and is slidable in the axial direction of the upright portion 132. At least one screw hole 1411 is threaded on the peripheral surface of the annular body 141 in the radial direction, and the screw 141a is screwed from the outside to fix the annular body 141 at a desired height position of the upright portion 132. It is possible. When the groove portion is formed in the longitudinal direction of the upright portion 132, the direction of the annular body 141 can be fixed with respect to the upright portion 132.
  • the height position of the annular body 141 with respect to the upright part 132 can be adjusted corresponding to a desired recessed part.
  • a support shaft 1412 and an angle adjustment shaft 1413 are provided upright on the side surface of the annular body 141 so as to extend by a predetermined length in the radial direction.
  • the distal end sides of the support shaft 1412 and the angle adjusting shaft 1413 are small diameter portions, and male screws into which nuts 1451 and 1452 are screwed are formed.
  • the positioning member 142 includes a predetermined shape portion on the upper side, here a semicircular portion 1420 having a semicircular shape, and a cylindrical portion 1423 on the lower side.
  • the semicircular portion 1420 has a support hole 1421 formed substantially at the center, and further, an arc hole 1422 having a predetermined radius with the support hole 1421 as the center.
  • the support hole 1421 is inserted through the support shaft 1412, and the arc hole 1422 is inserted through the angle adjustment shaft 1413.
  • the cylinder portion 1423 is configured integrally with the semicircular portion 1420 in this embodiment. More specifically, as shown in FIG. 7A, a pair of cylindrical portions 1423 are provided on both sides in the radial direction below the semicircular portion 1420. As shown in FIG. 7C, the cylindrical portion 1423 is partially cut out in the circumferential direction, preferably at a right angle.
  • the connecting portion 143 includes a mounting plate 1431 on the upper surface of the heater 12, a support shaft 1433 fitted into the cylindrical portion 1423, and a connecting portion 1432 that connects the mounting plate 1431 and the support shaft 1433.
  • the connecting portion 1432 is limited to a required thickness as shown in FIG. 7C so as not to interfere with the cylindrical portion 1423 when the supporting shaft 1433 is fitted into the cylindrical portion 1423. 1433 can be smoothly inserted into the cylindrical portion 1423.
  • female screws 1434 are threaded at both ends of the support shaft 1433 to a required depth position.
  • the annular body 141 and the heater 12 are connected by fastening the bolt 144 in a state where the support shaft 1433 is fitted in the cylindrical portion 1423.
  • FIG. 7C is a diagram of a state before the bolt 144 is fastened.
  • the screw 141a is inserted into the screw hole 1411 so that the annular body 141 is at a predetermined height position of the upright portion 132 of the support portion 13 and in a predetermined horizontal direction, for example, the heater 12 is in the direction of FIG. Screw to fix the position.
  • the nut 1452 is fastened at a predetermined angular position of the arc hole 1422, so that the heater 12 is inclined as shown in FIG.
  • FIG. 8 is a front view corresponding to FIG. 7B, showing another embodiment of the connecting portion. However, it is a figure of the state before inserting the cylinder part 1423 in support shaft 1433 '.
  • male screws 1434' are formed on both ends of the support shaft 1433 '. Then, in a state where the support shaft 1433 ′ is inserted through the cylindrical portion 1423, the nut 144 ′ is screwed to the male screw 1434 ′ so that the support shaft 1433 ′ is prevented from coming off.
  • FIG. 9 is a view showing another embodiment of the attachment structure of the connecting portion and the heater, and corresponds to FIG. 7 (a).
  • the connecting portion 143 ′′ is provided with a screw shaft 1436 standing below the connecting portion 1432 so that the connecting portion 143 ′′ can be inserted into a through hole 120 formed in the ceiling of the heater 12.
  • the screw shaft 146 is screwed with a nut 147 at a required position, for example, substantially in the center. Then, in a state where the screw shaft 146 is inserted through the through hole 120, the nut 148 is inserted from the screw tip and fastened to connect the connecting portion 143 "and the heater 12.
  • FIGS. 110C and 110D are diagrams showing an embodiment of the structure of the heater 12, where FIG. 10A is an external perspective view, FIG. 10B is an exploded view, and FIG. 10C is a perspective view of a mirror unit including a halogen lamp and its mounting portion. (D) is a perspective view of the mirror unit with a halogen lamp attached.
  • the front side of the sheet is the lower side of the mirror unit.
  • the heater 12 includes a substantially rectangular parallelepiped casing 121 for housing necessary members therein.
  • the casing 121 includes a terminal block box portion 122 on one end side in the longitudinal direction and a main body bracket 123 on the ceiling portion.
  • the terminal block box 122 is for relaying wiring for drawing in the lamp power supply and the like from the outside.
  • the main body bracket 123 is attached to the ceiling part of the heater 12 and is a part to which the connecting part 143 is attached.
  • the housing 121 has a space inside, and has an opening 1211 on the lower surface side that is open or preferably stretched with a protective net or the like.
  • a mirror unit 124 having a shape along the inner wall of the housing 121 is loaded in the housing 121.
  • the mirror unit 124 can be inserted into and pulled out of the housing 121 by sliding from one side surface of the housing 121.
  • FIG. 10B is a diagram illustrating a state where the mirror unit 124 is inserted into or pulled out from the housing 121 as indicated by an arrow.
  • the mirror unit 124 has a cross-sectional shape along a quadratic curve or a substantially parabola that extends downward, and the length dimension is set to be substantially the same as the length of the casing 121.
  • the halogen lamp 125 is a long tube (see FIG. 10C), and is stored in the focal position of the mirror unit 124 in the longitudinal direction (see FIG. 10D). Specifically, as shown in FIG. 10C, the mirror unit 124 has side portions 126 on both sides in the longitudinal direction, and the halogen lamp 125 is inserted in a position corresponding to the focal position of the side portions 126. A circular notch 1261 is formed. The halogen lamp 125 is fitted into the notches 1261 of the side surface portions 126 on both sides in the longitudinal direction, and the position is fixed between the appropriate position of the mirror unit 124 with the heater fixing bracket 127 or the like (see FIG. 10D). When the halogen lamp 125 is defective or defective, the mirror unit 124 can be slid out of the housing 121 and the heater fixing bracket 127 can be removed to replace the lamp.
  • the infrared rays radiated from the halogen lamp 125 are radiated downward from the opening 1211 after being adjusted to a substantially parallel light by the mirror unit 124 or a required directivity width.
  • the mirror unit 124 is set so that the emitted infrared rays are parallel or expanded to obtain irradiation areas L1, L2, and L3 as shown in FIG. It is preferable that at least the inner wall facing the mirror unit 126 is made of a material that reflects the infrared rays emitted from the halogen lamp heater 125 with high efficiency, or the inner wall surface is coated with a reflective material.
  • the halogen lamp 125 has a circular tube with a predetermined diameter, and a lamp with a predetermined wattage can be used.
  • a filament made of tungsten is disposed at a substantially central portion in a bulb made of quartz glass, and a halogen gas and an inert gas such as argon or nitrogen are sealed therein.
  • the halogen lamp 125 has a tube surface coated with an infrared radiation material such as black far infrared radiation ceramics.
  • the halogen lamp 125 is suitable for thawing ice, condensation, and drying raindrops in that it has the following characteristics.
  • the filament of the halogen lamp 125 has a small heat capacity, and can raise the temperature at a speed several times higher than other far infrared heaters such as ceramic heaters and infrared heaters equipped with nichrome wire coils. Further, the halogen lamp 125 can obtain a constant light output until it is disconnected, and the halogen wall does not blacken due to the halogen cycle, and the light output and the color temperature are less attenuated. Further, the halogen lamp 125 is a few tenths of a size and compact compared to a general white light bulb. In addition, the halogen lamp 125 uses quartz glass for the bulb, and thus is extremely resistant to thermal shock. Further, the halogen lamp 125 is highly energy efficient because 75 to 95% of the input power is converted into light and heat, of which 6 to 12% is visible light and the rest is infrared.
  • the infrared radiation ceramics coated on the halogen lamp 125 efficiently absorbs visible light and near infrared light (eg, 1.3 ⁇ m to 2 ⁇ m) emitted from the halogen lamp and generates heat, and has a wavelength of 2.5 ⁇ m to 15 ⁇ m. Infrared rays in the region, particularly infrared rays having a peak at 3 ⁇ m, are emitted (radiated). Moreover, since infrared radiation ceramics have a small heat capacity like a filament of a halogen lamp, the temperature can be increased in a short time.
  • Infrared radiation radiated from the halogen lamp 125 is adjusted to a predetermined directivity width by the mirror unit 124, and has an overlapping region L3 at the lower portion of the cylindrical body 211 and the irradiation regions L1 and L2 of the support plate 812, as will be described later. And irradiated.
  • FIG. 11 and FIG. 12 are front views showing the relationship between the mounting postures of the heater 12 and the support portion 13.
  • the height position of the heater 12 is 450 mm from the roadbed 81 and is directed to the center of the lower end of the cylindrical body 211.
  • the distance from the heater 12 to the lower end of the cylinder 211 is 500 mm, and the inclination angle of the heater 12 is 65 ° from the horizontal.
  • the height position of the heater 12 is 200 mm from the roadbed 81 and is directed to the center of the lower end of the cylindrical body 211.
  • the distance from the heater 12 to the lower end of the cylindrical body 211 is 250 mm (half the distance in FIG.
  • the inclination angle of the heater 12 is 45 ° from the horizontal.
  • Various members may be arranged in the vicinity of the vehicle detector 2, and there is no guarantee that a space for uniformly arranging the heater portions 11 in a certain form is secured. Therefore, as shown in FIGS. 11 and 12, that is, according to the arrangement space, the height and angle are adjusted as appropriate, and the lower side surface of the cylindrical body 211 and the front area of the lower end (in the embodiment, the support plate 812). It is possible to irradiate the upper surface) with a required amount of heat.
  • Infrared rays heat the lower side surface of the cylindrical body 211 to increase the temperature of the inner space of the cylindrical body 211, and the surface of the cylindrical body 211 and the inner space are conducted to warm the front surface of the cylindrical body 211.
  • the inner surface is heated and the light projection window 213 of the cylindrical body 211 is heated to 0 ° C. or higher, so that when the light projection window 213 is frozen, the ice melts (melts ice). Further, when condensation or raindrops are attached, moisture is evaporated by drying.
  • the number of the arrayed infrared light emitting elements 212 may be denser on the lower side than on the upper side (see FIG. 5B).
  • higher detection accuracy is required, it is easy to accumulate snow on the upper surface of the support plate 812, and it is difficult to melt as it is, and there is a high possibility of freezing.
  • the directivity range of the halogen lamp 125 includes the lower end portion of the cylindrical body 211 and the front area of the cylindrical body 211 so as to effectively irradiate both irradiation areas with infrared rays.
  • Table 1 shows the relationship between the front elevation temperature and the radiation intensity ( ⁇ W / cm 2 ) when 300 W of infrared rays is irradiated onto the side wall of the cylindrical body 211 for 30 minutes.
  • Table 1 shows the relationship between the front elevation temperature and the radiation intensity ( ⁇ W / cm 2 ) when 300 W of infrared rays is irradiated onto the side wall of the cylindrical body 211 for 30 minutes.
  • 700 ⁇ W / cm 2 in order to increase 3 ° C. are required 700 ⁇ W / cm 2
  • in order to raise 7 ° C. are required 1620 ⁇ W / cm 2
  • 2570 ⁇ W / cm 2 is necessary It is.
  • replacement of the infrared intensity to the distance in 700 ⁇ W / cm 2 180cm, 120cm in 1620 ⁇ W / cm 2, a 60cm in 2570 ⁇ W / cm 2.
  • the average temperature in the Kanto region south of Japan in January and February is -2 ° C
  • the average temperature in the Tohoku, Hokuriku, and southern Hokkaido regions in Japan in January and February is -6 ° C.
  • the average temperature in the Tohoku Mountains and Central Hokkaido is -10 ° C. Therefore, in Table 1, FIG. 11, and FIG. 12, the temperature can be increased by 3 ° C., 7 ° C., and 11 ° C. with 300 W infrared rays. As a result, even in cold regions of ⁇ 2 ° C. to ⁇ 10 ° C.
  • the front wall temperature of the cylinder 211 can be raised to 0 ° C. or higher, preferably 1 ° C. or higher.
  • FIG. 13 is a block diagram for controlling the driving of the heater 12 of the freeze prevention apparatus 10.
  • the heater 12 is controlled by the control unit 100.
  • the control unit 100 is composed of, for example, a micro computer, and includes a power control unit 1001, a storage unit 1002, and a timer 1003.
  • the power supply control unit 1001 generates a control signal in accordance with a control program for preventing freezing stored in the storage unit 1002, drives the power supply unit 101, and supplies and stops power to the halogen lamp 125.
  • the power supply unit 101 includes, for example, a switch circuit that switches power supply (on) and stop (off) to the halogen lamp 125 that is lit by a commercial power supply.
  • the power supply control unit 1001 may be configured to supply power continuously during the ON period of the power supply unit 101, but may be configured to include a switching drive unit and perform intermittent drive.
  • the heater 12 intermittently receives power from the power supply unit 101 to heat the lower wall of the cylindrical body 211 and the upper surface of the support plate 812 with the set average infrared radiation intensity.
  • the average infrared radiation intensity can be variably set by adjusting the intermittent period or the on / off duty.
  • the control unit 100 includes a weather information acquisition unit 102 and, if necessary, an operation unit 103.
  • the weather information acquisition unit 102 is typically a snowfall meter 1021, and may include a thermometer 1022 that measures the temperature as necessary.
  • the snowfall meter 1021 includes a light emitting unit that periodically emits predetermined measurement light such as infrared light, and a light receiving unit that receives return light.
  • the snowfall meter 1021 is disposed at a predetermined height position of the cylindrical body 211 or at an appropriate position of another member, periodically emits infrared light into the air, and whether or not there is return light from within a predetermined distance area. Detect the return level.
  • a predetermined detection area is secured by providing a gate within a predetermined time from the light emission point of the light emitting unit. More specifically, infrared light is emitted horizontally or obliquely upward, and the infrared light that is reflected and returned by snow or raindrops during or during snowfall is received to detect the presence or absence of snowfall or rain. To detect. The distinction between snow and rain is performed based on the reflection level or the state of the reflection signal.
  • the operation unit 103 is used for checking operations during maintenance, inspection, etc., and adjusting various contents manually.
  • the snowfall meter 1021 periodically emits infrared light to monitor the presence or absence of snowfall.
  • the monitoring operation may be performed on the condition that the thermometer 1022 detects a predetermined temperature or less, or may be performed by a monitoring operation instruction to the control unit 100.
  • the power supply control unit 1001 drives the power supply unit 101 and starts an operation of supplying predetermined power to the halogen lamp 125. Monitoring of snowfall will continue even after the start of power supply.
  • the timer 1003 starts a time measuring operation.
  • the timer 1003 When the timer 1003 counts a predetermined time, it outputs a stop signal to the power supply control unit 1001 to stop the operation of the power supply unit 101. As a result, the operation of the heater 12 is stopped after the snow has stopped and a predetermined time has elapsed.
  • the time lag may be a fixed value, but may be changed according to the temperature measured by the thermometer 1022 at that time, for example, a time lag value obtained by referring to a temperature-time lag table (memory) may be set in the timer 1003.
  • a time lag value may be set according to the amount of snowfall using a snowfall amount-time lag table (memory).
  • the amount of snowfall may be only the light reception level, but information on the integration of the light reception level and the detection time may be used.
  • the weather information acquisition unit 102 is not limited to the snowfall meter 1021 (or the thermometer 1022), but the toll road management station (management center), the weather information of the area from the weather observation base, and each place of the toll road (mainly In this case, information from a snowfall sensor provided in a region having a snowfall record) may be acquired sequentially or periodically via communication means such as wired means or wireless means.
  • the present invention can further employ the following embodiments.
  • FIG. 14 and FIG. 15 are diagrams showing another embodiment of the mirror unit of the heater, FIG. 14 (a) is a diagram showing the mirror unit and the infrared directivity range, and FIG. 14 (b) is the mirror unit.
  • FIG. 15 is a schematic perspective view corresponding to FIG.
  • the mirror unit 124a in the housing 121 is composed of a wide mirror part 1241 and a narrow mirror part 1242 as a directivity width setting part, which are divided into two in the longitudinal direction.
  • the wide mirror portion 1241 has a small curvature of a curved surface having a quadratic cross section or a parabolic cross section, and the narrow mirror portion 1242 has a large curvature of the curved surface.
  • infrared rays emitted from the halogen lamp 125 are narrowed to a predetermined angle after reflection (substantially parallel light in FIG. 14A), and narrow (condensed) together with direct light (not shown).
  • the infrared rays radiated from the halogen lamp 125 are narrowed to a large angle after reflection (intersect in FIG. 14A), and as a result, combined with direct light (not shown) as a result.
  • the size is different from that of the irradiation region L11, and is a wide irradiation range (wide irradiation region L12) here.
  • the heater 12 a is mounted so as to be inclined so that the wide mirror portion 1241 on the condensing side is higher than the narrow mirror portion 1242, and irradiates infrared rays having a predetermined intensity to the required irradiation ranges L11 and L12. is doing.
  • the support plate 812 can be overlapped inside the irradiation range L12.
  • a part of the irradiation range L12 includes a part on the lower end side of the cylindrical body 211, thereby effectively heating the lower part of the cylindrical body 211 to heat the in-cylinder air.
  • the narrow mirror part 1242 is adopted to increase the curvature of the reflecting surface.
  • the curvature of the reflecting surface is reduced, this is not necessary. This is because the size of the casing 121 itself is increased in the width direction. In FIG.
  • the heater 12 a is one of the left and right sides of the cylindrical body 211, but a pair of left and right is provided, and the irradiation ranges L ⁇ b> 11 and L ⁇ b> 12 from each heater are set so as to overlap each other.
  • the central area can be a concentrated irradiation area.
  • the directivity width setting portion is formed in the longitudinal direction of the mirror unit 124a.
  • a wide mirror portion 1241 is formed in the center portion of the mirror unit 124 in the longitudinal direction.
  • a spot-like narrow irradiation area L11 may be generated, and narrow mirror portions 1242 may be formed on both sides in the longitudinal direction of the mirror unit 124 to generate two wide-angle irradiation areas L12.
  • the two wide irradiation areas L12 may be overlapped, and the narrow irradiation area L11 may correspond to the overlapped area.
  • FIG. 16 is a front view showing each embodiment in the left-right arrangement of the heater
  • FIG. 16 (a) is a diagram in the case of being arranged obliquely in front of the vehicle detector
  • FIG. 16 (b) is a diagram of the vehicle detector. It is a figure at the time of arrange
  • FIG. 16A when the width W of the roadbed 81 is wide and the roadbed 81 is in front of the cylinder 211, it is necessary to irradiate the front side portion of the roadbed 81 with infrared rays in addition to the lower end of the cylinder 211. There is.
  • FIG. 16B for example, when the width W of the roadbed 81 is approximately the same as the width of the cylinder 211 (the width W is narrower than that of FIG. 16A), The support part 13 cannot be arranged. Therefore, the support portion 13 is arranged almost directly beside the cylindrical body 211, and the fastening angle of the annular body 141 shown in FIG. 7A is adjusted so that the heater 12 faces obliquely forward. By doing in this way, even when the width of the roadbed 81 is narrow, the irradiation areas L1 and L2 can be set as much as possible in the lower part of the cylindrical body 211 and the front part thereof.
  • FIG. 17 is a front view showing an embodiment provided with an elevating mechanism that allows the heater to elevate.
  • FIG. 17 is a diagram corresponding to FIG.
  • the heater 12 is the same as the heater shown in FIG. 5, and the irradiation range is also substantially the same.
  • the upright part 132a of the support part 13 has, for example, a rectangular cross section and a height corresponding to the cylindrical body 211.
  • the heater 12 is not supported by screwing the screw 141a into the screw hole 1411 of FIG. 7A, but has an annular body 141a fitted to the vertical portion 132a. It is configured to be slidable with respect to 132 and whose rotation is restricted.
  • adopting circular cross-section like the upright part 132 and the annular body 141 it can respond
  • the elevating mechanism includes a winch 133 that is rotated by an electric motor or the like at the proximal end of the upright portion 132a.
  • the winch 133 includes a rotating shaft 1331.
  • a pulley 134 is disposed at an appropriate position above the upright portion 132a, for example, at the upper end.
  • a wire 135 is wound from the rotating shaft 1331 of the winch 133 to the heater 12 via the pulley 134, and the tip of the wire 135 is fastened to the engaging tool 136 of the heater 12.
  • the operation control of the winch 133 may be performed by the control unit 100 shown in FIG.
  • the number of driving pulses from the lower reference position, the driving time, the rotation amount of the pulley 134, or the detection information of a sensor (photo sensor, microswitch, etc.) installed at a corresponding position of the upright portion 132a is used. That's fine.
  • the wire 135 may have a revolving structure that is stretched between the rotating shaft 1331 and the pulley 134, so that the lowering operation of the heater 12 can be performed with a driving force instead of the self-weight.
  • a rack and pinion type that converts rotational motion into linear motion, or a female screw portion engaged with the heater 12 is screwed into a stay formed with a male screw.
  • the heater 12 may be moved up and down by rotating the stay.
  • FIG. 18 is a diagram showing another embodiment of the arrangement of the heater 12.
  • FIG. 18 corresponds to FIG.
  • the roadbed 81 a is wider than in the case of FIG. 4, and the cylinder 211 and the antifreezing device 10 are away from the vehicle passage 8 side, that is, the rear side of the roadbed 81 a in relation to the passing vehicle. Is installed.
  • the roadbed 81a is wide, the snow is accumulated not only on the upper surface of the support plate 812 but also in the further front region of the support plate 812. Therefore, if the snow accumulated by irradiating the support plate 812 and the front area of the support plate 812 with infrared rays is not melted, erroneous vehicle detection will occur.
  • the heater 12 on one of the left and right sides, here the left side irradiates a part of the lower end of the cylindrical body 211 and the upper surface of the support plate 812 as an irradiation range L2 as in FIG.
  • a longer upright portion 132b is employed on the right side, and the heater 12b is mounted at a position higher than the left heater 12, for example, about twice as high, so that the entire width direction of the roadbed 81a is set as the irradiation range L4.
  • the posture is set to. By doing so, the lower end of the cylinder 211 and the area immediately before the lower end are irradiated with L1 + L4, and the front of the cylinder 211, that is, the entire width direction of the road bed 81a is irradiated with the irradiation range L4. Thus, it is possible to melt snow in the entire detection area of the vehicle detector 2.
  • the heater 12b only needs to have a larger wattage than the left heater 12 as the directivity range is expanded. For example, when the left heater 12 is 300 W, the heater 12b is 500 W or 1000 W. When the left heater 12 is 500 W, the heater 12 b may be 1000 W. Alternatively, the power may be adjusted by the control unit 100.
  • FIGS. 19 and 20 are diagrams showing another embodiment of the arrangement of the vehicle detector 2a for detecting a vehicle of a high vehicle height and a heater.
  • FIG. 19A is a mode in which the normal size vehicle detector 2 is connected in series to the top of the cylinder 211 ′ of the vehicle detector 2 which is a lower stage shorter than the normal size (long size 175 cm) by a predetermined size.
  • FIG. 20A shows the top of a dummy extension post 211 ′′ having the same dimensions as the cylinder 211 ′ (see FIG. 19A) corresponding to the lower stage adjacent to the normal-sized cylinder 211.
  • a normal-sized cylinder 211 is crowned. As shown in FIGS.
  • each of the cylinders 211, 211 ′ and the extension post 211 ′′ has a hook-shaped connecting portion 2111 at the contact portion, and is connected via bolts and nuts. By tightening, it is firmly integrated.
  • FIG. 19 (b) shows the arrangement of the heaters 12 corresponding to the configuration of FIG. 19 (a), two heaters are provided on the left and right, and two heaters are arranged in the vertical direction.
  • the total four heaters 12 may have the same wattage, or the upper stage may have a slightly smaller wattage.
  • Each heater 12 on the upper stage melts snow that accumulates on the cage of the connecting portion 2111 so that vehicle detection at the intermediate height position is reliably performed. Therefore, it is preferable that the heaters 12 on the upper side are set so that the directing direction is mainly directed to the front surface of the cylindrical body 211.
  • FIG. 20 (b) shows the arrangement of the heaters 12 corresponding to the configuration of FIG. 20 (a).
  • two heaters 12 are arranged in the vertical direction on the left side of the cylindrical body 211 in the lower stage. This is because the extension column 211 ′′ is installed on the right side of the cylinder 211, and the heater 12 cannot be disposed at this position.
  • a long upright part 132c is erected on the right side of the cylindrical body 211 crowned on the extension column 211 '' on the upper stage, and one heater 12 is attached at a position facing the connecting part 2111 above it. It has been.
  • the upright portion 132c cannot be installed at that position because the one-stage cylinder 211 is installed on the left side of the extension column 211 ''.
  • the heater 12 can be attached to an appropriate place without any trouble.
  • the halogen lamp 125 in which the surface of the tube is coated with an infrared radiation material is not limited thereto. Other lamps may be used.
  • the present invention can be applied to various uses, for example, a vehicle detector in an outdoor parking lot.
  • a vehicle detector in an outdoor parking lot.
  • the vehicle detector 2 has been described as an example disposed on the roadbed 81 formed along the traveling path.
  • the present invention is not such a roadbed 81 but has a predetermined volume.
  • the present invention is also applicable to a mode in which the vehicle detector 2 is installed on a pedestal or the like.
  • the present invention has a cylindrical body erected in front of a vehicle passage, and a plurality of light emitting units and light receiving units directed to the front side in the inner space of the cylindrical body are vertically arranged.
  • the anti-freezing device for a vehicle detector that is arranged and detects a passing vehicle through a transparent window in front of the cylinder, the vehicle is in the vicinity of the standing position of the cylinder and with respect to the cylinder
  • An infrared irradiation source that is supported by a support portion arranged in a direction substantially parallel to the passage and irradiates infrared rays toward a predetermined irradiation area including a part of a lower end side of the cylindrical body and a predetermined forward range of the lower end of the cylindrical body.
  • An infrared irradiation unit having, a weather information acquisition unit that acquires at least weather information relating to snowfall, and a power to the infrared irradiation unit when it is determined that it is in a snowfall state based on the weather information acquired by the weather information acquisition unit
  • a control unit for supplying It is an butterfly. According to this invention, when snowfall is detected, the air inside the cylinder is heated from below, and the internal space of the cylinder is warmed as a whole by convection. Moreover, the snow which accumulates in the predetermined range ahead of the lower end of a cylinder by the heating by an infrared irradiation source and the ice in freezing are melted.
  • the infrared irradiation unit includes first and second infrared irradiation sources, and the predetermined irradiation area is at least one of the first and second irradiation areas irradiated by the first and second infrared irradiation sources. It is preferable that a part overlaps. According to this configuration, the first and second infrared irradiation sources irradiate the first and second irradiation areas with infrared rays, and at least partially overlap the first and second irradiation areas. More effective snow melting treatment.
  • the phrase “at least a part of the first and second irradiation areas overlap” may literally include an aspect in which one of the other irradiation areas includes the other in addition to the aspect in which a part of each irradiation area overlaps. .
  • the support portion includes first and second support portions that support the first and second infrared irradiation sources, and the first and second infrared irradiation sources sandwich the cylinder. It is preferable to be arranged on both the left and right sides substantially parallel to the vehicle passage. According to this configuration, when there are no obstacles on both the left and right sides of the cylindrical body, the first and second infrared irradiation sources are provided at the left and right positions, and infrared irradiation is performed from both the left and right sides. An effective snow melting process can be achieved by overlapping at least a part of the two irradiation areas.
  • the first and second infrared irradiation sources are supported by the support portion erected at one of the left and right positions substantially parallel to the vehicle passage with the cylinder interposed therebetween. . According to this configuration, even when an obstacle is provided on one side of the cylindrical body, the first and second infrared irradiation sources are provided on the other side, thereby providing the left and right sides. It is possible to irradiate infrared rays having the same amount of heat as the case.
  • the first infrared irradiation source is supported at a higher position than the second infrared irradiation source, and the irradiation capability of the first infrared irradiation source is higher than the irradiation capability of the second infrared irradiation source.
  • At least one of the first and second infrared irradiation sources includes a plurality of infrared irradiation sources in the vertical direction, the lower infrared irradiation source irradiates the predetermined irradiation area with infrared rays, and the upper infrared irradiation source.
  • at least one of the upper infrared irradiation sources irradiates infrared rays to the side surface at a substantially intermediate position in the height direction of the cylindrical body.
  • control unit sets the power supplied to the lower infrared irradiation source to be larger than the power supplied to the upper infrared irradiation source. According to this configuration, power sufficient for melting snow only at the connecting portion is sufficient, which is efficient.
  • the infrared irradiation unit includes an attachment unit that attaches the infrared irradiation source to the support unit in a predetermined posture
  • the attachment unit includes a height adjustment unit that adjusts a height of the infrared irradiation source, and the infrared ray
  • an orientation adjustment unit that adjusts the orientation of the irradiation source. According to this configuration, the height or direction of the infrared irradiation source can be appropriately adjusted according to the situation around the cylinder. In addition, since the height can be adjusted in consideration of the weather conditions (mainly snowfall) of the area, the versatility is high.
  • the infrared irradiation source includes a directivity width setting unit that forms two infrared irradiation areas of different sizes. According to this configuration, regions with different amounts of heat can be formed in the region irradiated from one infrared irradiation source, and heat amount irradiation according to the snow cover condition is possible.
  • the weather information acquisition unit is preferably a snowfall detector that detects the presence or absence of snowfall. According to this configuration, since the snowfall situation at the site is directly reflected in the snow melting process, the responsiveness is good and effective.
  • control unit terminates power supply to the infrared irradiation unit after a predetermined time has elapsed since the meteorological information acquisition unit detected the end of the snowfall state.
  • the control unit terminates power supply to the infrared irradiation unit after a predetermined time has elapsed since the meteorological information acquisition unit detected the end of the snowfall state.
  • the infrared irradiation unit is erected on a roadbed having a predetermined width and a predetermined bulk for forming the vehicle passage where the cylinder of the vehicle detector is erected. According to this configuration, snow melting can be performed also on the roadbed surface in front of the cylinder body.
  • the infrared radiation source is a tubular halogen lamp whose surface is coated with an infrared radiation material. According to this configuration, snow melting and ice melting are effectively performed by infrared rays.
  • Freezing prevention device 11 Heater part (infrared irradiation part) 12 Heater 124, 124a Mirror unit 1241 Wide mirror part (Direction width setting part) 1242 Narrow mirror part (Direction width setting part) 125 Halogen lamp (infrared radiation source, first and second infrared radiation sources) 13 Supporting parts 132, 132a, 132b, 132c Upright part 133 winch (height adjustment part) 134 pulley (height adjustment part) 135 wire (height adjustment part) 14 Mounting tool (Mounting part) 141 Ring body (height adjustment part, orientation adjustment part) 142 Positioning member 1422 Arc hole (direction adjustment part) 143, 143 ', 143'connection part 2 vehicle detector 21 light-receiving side part (vehicle detector) 211 cylinder 211 'dummy body 81 roadbed 812 support plate 100 control unit 101 power supply control unit 103 timer 1021 snowfall meter (weather information acquisition unit)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An antifreeze device (10) comprises: a heater unit (11), further comprising halogen lamps (125) which are supported by support units (13) which are positioned near installation sites of cylindrical bodies (211) of a vehicle sensing apparatus (2) and in an approximately parallel direction to a vehicle path with respect to the cylindrical bodies (211), and which illuminate prescribed illumination regions (L1, L2) including lower end portions of the cylindrical bodies (211) and lower end forward prescribed ranges of the cylindrical bodies (211) with infrared light; a snowfall gauge (1022) which senses snowfall; and a control unit (100) which carries out a power supply to the heater units (11) when it is determined that a snowfall state is in effect. Decline in sensing performance arising from snow accumulation or freezing is prevented without adding a change to the structure of an already installed vehicle sensing apparatus (2).

Description

車両検知器の凍結防止方法及びその装置Method and apparatus for preventing freezing of vehicle detector
 本発明は、赤外線を利用して、例えば有料道路料金所に設置された車両検知器の凍結等を防止する方法及びその装置に関する。 The present invention relates to a method and an apparatus for preventing freezing of a vehicle detector installed at, for example, a toll road toll gate using infrared rays.
 従来、有料道路の料金所に自動料金徴収システムが設置されていることが知られている。自動料金徴収システムには、通行車線への車両の進入を検知する車両検知器が採用されている(特許文献1)。この車両検知器は、長尺の筒体を有し、その内部に多数の発光素子が上下方向に配列された発光側検知器と、前記発光素子と対応する個数の受光素子が配列された受光側検知器とで構成されている。これら発光側検知器と受光側検知器とが通行車線を挟んで対向配置され、互いに対応する発光素子と受光素子との組み合わせにより一つの遮光センサを構成している。すなわち、車両が存在しない状態では、発光素子からのセンサ光は受光素子で受光される一方、車両が通過する時にはセンサ光は車両によって遮蔽されて受光素子で受光されない。かかる受光素子でのセンサ光の受光の有無で車両の通過の有無が検知可能となる。 Conventionally, it is known that an automatic toll collection system is installed at toll gates on toll roads. The automatic toll collection system employs a vehicle detector that detects entry of a vehicle into a traffic lane (Patent Document 1). This vehicle detector has a long cylindrical body, a light emitting side detector in which a number of light emitting elements are arranged in the vertical direction, and a light receiving element in which a number of light receiving elements corresponding to the light emitting elements are arranged. It consists of a side detector. The light emitting side detector and the light receiving side detector are arranged to face each other across the traffic lane, and one light shielding sensor is configured by a combination of a light emitting element and a light receiving element corresponding to each other. That is, in the state where the vehicle is not present, the sensor light from the light emitting element is received by the light receiving element, while when the vehicle passes, the sensor light is shielded by the vehicle and is not received by the light receiving element. Whether or not the vehicle has passed can be detected based on whether or not the sensor light is received by the light receiving element.
 ところで、車両検知器の筒体には、発光側検知器には透光面が、受光側検知器には受光面が設けられ、各面には透明なガラス板乃至樹脂板が嵌められた投光用窓、受光用窓(透光窓)が形成されている。寒冷地の有料道路の場合、外気が氷点下になると、投光用窓、受光用窓の外表面が凍結する可能性がある。凍結が生じると、発光素子から射出されたセンサ光は投光用窓や受光用窓で乱反射したり、吸収されて光量低下を引き起こしたりして、車両の通過がないにも関わらず、車両有りと誤検知される虞がある。同様に、車両検知器を構成する筒体内部が氷点下になって、内部に設置された発光素子、受光素子の表面や集光レンズの表面に氷結層が生じ、発光素子からの光が乱反射等により所定光量、所定方向に照射されず、また、受光素子で受光光量が低くなって、車両の通過がないにも関わらず車両有りと誤検知する虞がある。さらに、発光、受光素子の表面や投光用窓、受光用窓に結露が生じても、また雨水の付着によっても氷結の場合と同様な誤検知は生じうる。 By the way, the cylindrical body of the vehicle detector is provided with a light-transmitting surface on the light-emitting side detector and a light-receiving surface on the light-receiving side detector, and a transparent glass plate or resin plate is fitted on each surface. A light window and a light receiving window (translucent window) are formed. In the case of a toll road in a cold region, if the outside air falls below freezing, the outer surfaces of the light projecting window and the light receiving window may freeze. When freezing occurs, the sensor light emitted from the light emitting element is diffusely reflected by the light projecting window or light receiving window, or absorbed to cause a decrease in the light quantity. May be erroneously detected. Similarly, the inside of the cylinder constituting the vehicle detector becomes below freezing point, and an icing layer is formed on the surface of the light emitting element, the light receiving element and the surface of the condensing lens installed therein, and the light from the light emitting element is irregularly reflected, etc. Thus, there is a possibility that the vehicle is not irradiated in the predetermined direction and in the predetermined direction, and that the amount of light received by the light receiving element is low, so that the vehicle is erroneously detected even though there is no vehicle passing. Further, even if condensation occurs on the surface of the light emitting element, the light receiving element, the light projecting window, or the light receiving window, and the same erroneous detection as in the case of icing may occur due to rainwater.
 かかる不具合を加熱処理で解消しようとするものが知られている。特許文献2には、車両検知装置のケース内の投光部の一部品である光透過レンズの内側にヒーターコイルを配置した構成が記載されている。気象条件が露点に達して光透過レンズに露が付着して曇るような場合、ヒーターコイルに通電して光透過レンズを暖めることによって露の付着を防止するようにしている。同様の目的を達成するため、光透過可能な発熱体を光透過レンズの裏面に設置した構成も記載されている。 It is known to try to solve this problem by heat treatment. Patent Document 2 describes a configuration in which a heater coil is arranged inside a light transmission lens that is a component of a light projecting unit in a case of a vehicle detection device. When the weather condition reaches the dew point and dew adheres to the light transmission lens and becomes cloudy, the heater coil is energized to warm the light transmission lens to prevent dew adhesion. In order to achieve the same object, a configuration is also described in which a heat transmitting element capable of transmitting light is provided on the back surface of the light transmitting lens.
 また、特許文献3には、イメージセンサに対向して設けられているレンズ窓の外周域に熱線が配設された車両検知装置が記載されている。この熱線に通電してレンズ窓等に熱を加えることによって、レンズ窓に付着する雲や霜を除去するようにしている。 Further, Patent Document 3 describes a vehicle detection device in which a heat ray is disposed in the outer peripheral area of a lens window provided to face an image sensor. By energizing the heat ray and applying heat to the lens window or the like, clouds and frost adhering to the lens window are removed.
特開2004-171140号公報JP 2004-171140 A 特開2002-32891号公報JP 2002-32891 A 特開平8-293090号公報JP-A-8-293090
 しかしながら、この種の車両検知器は、特開2003-77089号公報に記載されているように、内部に発光素子(受光素子)、投光用窓(受光用窓)、また必要に応じて故障検知用の光学系を配置する必要があることから、ヒータ線を筐体の表面壁に這い回すことは必ずしも容易ではない。また、車両検知器にヒータ線を配線するには、機器の改造を要し、かつ車両検知器の構造を複雑にすることになる。 However, this type of vehicle detector has a light emitting element (light receiving element), a light projecting window (light receiving window), and a failure if necessary, as described in JP-A-2003-77089. Since it is necessary to arrange an optical system for detection, it is not always easy to run the heater wire around the surface wall of the housing. In addition, wiring the heater wire to the vehicle detector requires modification of the device and complicates the structure of the vehicle detector.
 さらに、特許文献2,3に記載されたように、ケース内に発熱体を配設したり、レンズ窓に熱線を配設したりする構成は、構造の一部を改造することでレンズの曇り止めが可能となる等の一定の効果は得られるものの、車両検知器の光学系に関する対応策に過ぎず、降雪(積雪)乃至凍結に対応したものではない。 Furthermore, as described in Patent Documents 2 and 3, the configuration in which a heating element is disposed in the case or a heat ray is disposed in the lens window is a clouding of the lens by modifying a part of the structure. Although certain effects such as being able to stop can be obtained, this is only a countermeasure for the optical system of the vehicle detector, and does not correspond to snowfall (snow accumulation) or freezing.
 本発明は上記に鑑みてなされたもので、既設の車両検知器に対しても、その構造に何等変更を加えることなく、積雪や凍結に起因する検知性能の低下を阻止することが可能な凍結防止方法及びその装置を提供するものである。 The present invention has been made in view of the above, and it is a freezing capable of preventing a decrease in detection performance due to snow accumulation or freezing without any change to the structure of an existing vehicle detector. A prevention method and an apparatus therefor are provided.
 本発明に係る車両検知器の凍結防止装置は、車両通路に正面を向けて立設された筒体を有し、前記筒体の内空間に正面側に向けられた発光部及び受光部の一方が上下方向に複数配列されると共に前記筒体の正面の透光窓を介して通行車両を検知する車両検知器の凍結防止装置において、前記筒体の立設位置の近傍で、かつ前記筒体に対して前記車両通路と略平行な方向に配置された支持部に支持され、前記筒体の下端側一部及び前記筒体の下端の前方所定範囲を含む所定照射域に向けて赤外線を照射する赤外線照射源を有する赤外線照射部と、少なくとも降雪に関する気象情報を取得する気象情報取得部と、前記気象情報取得部で取得された気象情報に基づいて降雪状態であると判断した場合、前記赤外線照射部への電力供給を行う制御部とを備えたことを特徴とするものである。 An anti-freezing device for a vehicle detector according to the present invention has a cylindrical body standing upright in a vehicle passage, and one of a light emitting section and a light receiving section directed to the front side in an inner space of the cylindrical body. In the anti-freezing device for a vehicle detector that detects a passing vehicle through a light transmission window in front of the cylinder body, and in the vicinity of the standing position of the cylinder body and the cylinder body Infrared rays are irradiated toward a predetermined irradiation region including a predetermined range in front of a part of a lower end side of the cylindrical body and a lower end of the cylindrical body, supported by a support portion disposed in a direction substantially parallel to the vehicle passage. An infrared irradiation unit having an infrared irradiation source to perform, a weather information acquisition unit that acquires at least weather information related to snowfall, and the infrared ray when it is determined that it is in a snowfall state based on the weather information acquired by the weather information acquisition unit Control unit that supplies power to the irradiation unit The is characterized in that it comprises.
 また、本発明に係る車両検知器の凍結防止方法は、車両通路に正面を向けて立設された筒体を有し、前記筒体の内空間に正面側に向けられた発光部及び受光部の一方が上下方向に複数配列されると共に前記筒体の正面の透光窓を介して通行車両を検知する車両検知器の凍結防止方法において、気象情報取得部で取得される、少なくとも降雪に関する気象情報に基づいて降雪状態の有無を判断し、降雪状態であると判断した場合、前記筒体の立設位置の近傍で、かつ前記筒体に対して前記車両通路と略平行な方向に配置され、前記筒体の下端側一部及び前記筒体の下端の前方所定範囲を含む所定照射域に向けて赤外線を照射する赤外線照射源への電力供給を行うことを特徴とするものである。 In addition, the vehicle detector freezing prevention method according to the present invention includes a cylindrical body erected with the front facing the vehicle passage, and a light emitting section and a light receiving section directed to the front side in the inner space of the cylindrical body In the method for preventing freezing of a vehicle detector that detects a passing vehicle through a transparent window in front of the cylindrical body and a plurality of one of the two is arranged in the vertical direction, the weather information acquisition unit acquires at least weather related to snowfall Based on the information, the presence or absence of a snowfall state is determined, and when it is determined that the snowfall state is present, the cylinder is disposed in the vicinity of the standing position of the cylinder and in a direction substantially parallel to the vehicle passage. In addition, power is supplied to an infrared irradiation source that irradiates infrared rays toward a predetermined irradiation region including a part of the lower end side of the cylindrical body and a predetermined forward range of the lower end of the cylindrical body.
 かかる発明によれば、降雪状態であるか否かが、気象情報取得部で取得される気象情報に基づいて判断される。そして、降雪状態であると判断されると、赤外線照射源に電力が供給されて赤外線の射出が開始される。赤外線照射源から射出された赤外線は、車両検知器(の外枠構造)を構成する筒体の下端側一部及び前記筒体の下端の前方所定範囲を含む所定照射域に照射され、この照射によって筒体の下端部位が加熱される。この加熱によって、筒体の内部の空気が下部から暖められ、対流により筒体の内空間が全体的に暖められることになる。また、赤外線照射源による加熱によって筒体の下端の前方所定範囲に積もる雪や、氷結中の氷が融解される。従って、環境温度が氷点下などで、透光窓が氷結していた場合でも氷解が行われる。このため検知光が積雪や氷塊によって遮光、乱反射されることがなくなり、誤検知が防止できる。また、筒体の内部の空気が加熱されることによって正面に残留付着している雪の融解が促進されるため、車両検知のための検知範囲全体に亘って誤検知の問題が解消される。さらに、外部から遠隔的に車両検知器を加熱する方式としたので、車両検知器自身の構造に変更を加える必要がない。また、上記において、降雪状態の判断手法としては、降雪中か否かを直接判断する方法の他、例えば気温や湿度、地温等の1つあるいは複数を組み合わし、降雪環境にあるか否かを間接的に判断する態様や、該当地域の気象情報を他の気象観測施設から、公知の通信手段を介して取得する態様であってもよい。 According to this invention, whether or not it is a snowfall state is determined based on the weather information acquired by the weather information acquisition unit. And if it is judged that it is a snowfall state, electric power will be supplied to an infrared irradiation source, and infrared emission will be started. Infrared rays emitted from an infrared irradiation source are irradiated to a predetermined irradiation area including a part of a lower end side of a cylinder constituting the vehicle detector (outer frame structure thereof) and a predetermined range in front of the lower end of the cylinder. As a result, the lower end portion of the cylindrical body is heated. By this heating, the air inside the cylinder is warmed from below, and the inner space of the cylinder is warmed as a whole by convection. Moreover, the snow which accumulates in the predetermined range ahead of the lower end of a cylinder by the heating by an infrared irradiation source and the ice in freezing are melted. Therefore, even when the environmental temperature is below the freezing point and the transparent window is frozen, ice melting is performed. For this reason, the detection light is not blocked or irregularly reflected by snow or ice blocks, and erroneous detection can be prevented. Moreover, since the melting of the snow remaining on the front surface is promoted by heating the air inside the cylinder, the problem of erroneous detection is solved over the entire detection range for vehicle detection. Furthermore, since the vehicle detector is heated remotely from the outside, there is no need to change the structure of the vehicle detector itself. Further, in the above, as a method for determining the snowfall state, in addition to a method for directly determining whether or not it is snowing, for example, one or more of temperature, humidity, ground temperature, etc. are combined to determine whether or not the snowfall environment exists. An aspect of indirectly determining or an aspect of acquiring weather information of a corresponding area from another weather observation facility via a known communication means may be used.
 なお、本発明は、降雪状態と判断された場合にのみ赤外線照射源に電力を供給する態様に限定されず、他の気象要素を取得して、別途の気象条件に基づいて赤外線照射源に電力供給を行って、氷結乃至結露を融解する態様を付加してもよい。 Note that the present invention is not limited to a mode in which power is supplied to the infrared irradiation source only when it is determined that it is snowing, and other weather elements are acquired and power is supplied to the infrared irradiation source based on separate weather conditions. You may add the aspect which melt | dissolves freezing thru | or dew condensation by supplying.
 本発明によれば、既設の車両検知器の構造に変更を加えることなく、積雪や凍結に起因する検知性能の低下を阻止することが可能となる。 According to the present invention, it is possible to prevent a decrease in detection performance due to snow accumulation or freezing without changing the structure of an existing vehicle detector.
本発明に係る車両検知器の凍結防止装置が適用される一例である自動料金徴収システムの料金所機器の全体構成図である。1 is an overall configuration diagram of a toll gate device of an automatic toll collection system that is an example to which an anti-freezing device for a vehicle detector according to the present invention is applied. 車両検知器の詳細構造を説明する斜視図である。It is a perspective view explaining the detailed structure of a vehicle detector. 車両検知器の立設構造を説明する斜視図である。It is a perspective view explaining the standing structure of a vehicle detector. 車両検知器の発光側部(又は受光側部)と凍結防止装置のヒータ部との配置を示す概略斜視図である。It is a schematic perspective view which shows arrangement | positioning with the light emission side part (or light-receiving side part) of a vehicle detector, and the heater part of a freezing prevention apparatus. 車両検知器の発光側部(又は受光側部)と凍結防止装置のヒータ部との配置を示す図で、(a)は左側面図、(b)は正面図、(c)は右側面図、(d)は平面図である。It is a figure which shows arrangement | positioning with the light emission side part (or light-receiving side part) of a vehicle detector, and the heater part of a freezing prevention apparatus, (a) is a left view, (b) is a front view, (c) is a right view. , (D) is a plan view. 取付具の構造を説明する概略平面図である。It is a schematic plan view explaining the structure of a fixture. 取付具の構造を説明する図で、(a)は分解斜視図、(b)は一部断面正面図、(c)は側面図である。It is a figure explaining the structure of a fixture, (a) is a disassembled perspective view, (b) is a partial cross section front view, (c) is a side view. 連結部の他の実施形態を示す図で、図7(b)に対応する正面図ある。It is a figure which shows other embodiment of a connection part, and is a front view corresponding to FIG.7 (b). 連結部とヒータとの取付構造の他の実施形態を示す図で、図7(a)に対応する図である。It is a figure which shows other embodiment of the attachment structure of a connection part and a heater, and is a figure corresponding to Fig.7 (a). ヒータの構造の一実施形態を示す図で、(a)は外観斜視図、(b)は分解図、(c)はハロゲンランプ及びその取付部を備えるミラーユニットの斜視図、(d)はハロゲンランプを取り付けた状態のミラーユニットの斜視図である。1A and 1B are views showing an embodiment of a heater structure, in which FIG. 1A is an external perspective view, FIG. 1B is an exploded view, FIG. 3C is a perspective view of a mirror unit including a halogen lamp and its mounting portion, and FIG. It is a perspective view of a mirror unit in a state where a lamp is attached. ヒータと支持部との取付姿勢の関係を示す正面図である。It is a front view which shows the relationship of the attachment attitude | position of a heater and a support part. ヒータと支持部との他の取付姿勢の関係を示す正面図である。It is a front view which shows the relationship of the other attachment attitude | position of a heater and a support part. 凍結防止装置のヒータの駆動を制御するためのブロック図である。It is a block diagram for controlling the drive of the heater of an antifreezing apparatus. ヒータのミラーユニットの他の実施形態を示す図で、(a)はミラーユニットと赤外線の照射範囲を示す図、(b)はミラーユニットの形状を示す説明図である。It is a figure which shows other embodiment of the mirror unit of a heater, (a) is a figure which shows the irradiation range of a mirror unit and infrared rays, (b) is explanatory drawing which shows the shape of a mirror unit. 図14に示すヒータのミラーユニットの他の実施形態を示す図で、図4に対応する概略斜視図である。It is a figure which shows other embodiment of the mirror unit of the heater shown in FIG. 14, and is a schematic perspective view corresponding to FIG. ヒータの左右配置における各実施形態を示す正面図で、(a)は車両検知器の斜め前方に配置した場合の図、(b)は車両検知器のほぼ真横となる位置に配置した場合の図である。It is a front view which shows each embodiment in the right-and-left arrangement | positioning of a heater, (a) is a figure at the time of arrange | positioning diagonally ahead of a vehicle detector, (b) is a figure at the time of arrange | positioning in the position which is substantially right next to a vehicle detector. It is. ヒータを昇降可能にする昇降機構を備えた実施形態を示す正面図である。It is a front view which shows embodiment provided with the raising / lowering mechanism which enables raising / lowering of a heater. ヒータの配置の他の実施形態を示す図である。It is a figure which shows other embodiment of arrangement | positioning of a heater. 車高の高い種類の車両の検知を行う車両検知器及びヒータの配置を示す他の実施形態で、(a)は、通常サイズより所定寸法だけ短い下側となる車両検知器の筒体の頂部に直列に通常サイズの車両検知器2を連結した斜視図、(b)はヒータを配置した正面図である。In another embodiment showing the arrangement of a vehicle detector and a heater for detecting a vehicle of a high vehicle type, (a) is the top of the cylinder of the vehicle detector that is lower than the normal size by a predetermined dimension The perspective view which connected the normal size vehicle detector 2 in series, (b) is the front view which has arrange | positioned the heater. 車高の高い種類の車両の検知を行う車両検知器及びヒータの配置を示す他の実施形態で、通常サイズの筒体に隣接して、ダミー体の頂部に通常サイズの車両検知器を冠設した斜視図、(b)はヒータを配置した正面図である。In another embodiment showing the arrangement of a vehicle detector and a heater for detecting a vehicle of a high vehicle type, a normal size vehicle detector is crowned on the top of the dummy body adjacent to the normal size cylinder. (B) is the front view which has arrange | positioned the heater.
 図1は、本発明に係る車両検知器の凍結防止装置10が適用される一例である自動料金徴収システムの料金所機器の全体構成図である。自動料金徴収システムは、車両が通行可能な車幅を有する車両進入路(車両通路8)を挟んで(乃至車両通路8を設けるべく)両側にコンクリート材等で形成された所定幅、所定嵩高さ及び進入路に沿って所定長を有する路盤81,82に設置されている。 FIG. 1 is an overall configuration diagram of a toll gate device of an automatic toll collection system, which is an example to which the anti-freezing device 10 for a vehicle detector according to the present invention is applied. The automatic toll collection system has a predetermined width and a predetermined bulk formed of concrete material or the like on both sides of a vehicle approach path (vehicle path 8) having a vehicle width through which a vehicle can pass (or to provide a vehicle path 8). And installed on roadbeds 81 and 82 having a predetermined length along the approach path.
 路盤81,82には、進行方向に沿って順に、車両検知器2と、アンテナ3が上部に設置されたガントリー4と、発進制御器5と、車両検知器6と、料金等を表示する表示器7とが配置されている。 On the roadbeds 81 and 82, the vehicle detector 2, the gantry 4 with the antenna 3 installed on the top, the start controller 5, the vehicle detector 6, and a display for displaying charges, etc. in order along the traveling direction. A container 7 is arranged.
 車両検知器2,6は同一構造を有するものである。車両検知器2は、進入車両を検知するものであり、車両検知器6は、通過車両を検知するものである。以下、車両検知器2を代表して、構造を説明する。 Vehicle detectors 2 and 6 have the same structure. The vehicle detector 2 detects an approaching vehicle, and the vehicle detector 6 detects a passing vehicle. Hereinafter, the structure will be described on behalf of the vehicle detector 2.
 図2は、車両検知器2の内部構造を説明する斜視図である。車両検知器2は、路盤81に発光側部21が、路盤82に受光側部22が互いに対向して配設されている。発光側部21は、断面所定形状、例えば円形あるいは本実施形態のような四角形(角形)をした長尺の筒体211を有する。筒体211は、鉄鋼等の金属材で構成され、路盤81に立設されている。受光側部22は、本実施形態では断面四角形(角形)をした長尺の筒体221を有する。筒体211,221は、例えば、縦断面形状が正面240mm×側面200mm、厚さは約3mmで、高さは、通常型(通常サイズ)で175cmである。筒体211,221は、車両検知器2の発光側部21、受光側部22の外枠構造を構成している。 FIG. 2 is a perspective view for explaining the internal structure of the vehicle detector 2. In the vehicle detector 2, the light emitting side portion 21 is disposed on the road base 81 and the light receiving side portion 22 is disposed on the road base 82 so as to face each other. The light emitting side portion 21 has a long cylindrical body 211 having a predetermined cross-sectional shape, for example, a circular shape or a square shape (square shape) as in the present embodiment. The cylinder 211 is made of a metal material such as steel and is erected on the roadbed 81. In this embodiment, the light receiving side portion 22 has a long cylindrical body 221 having a quadrangular cross section (rectangular shape). The cylinders 211 and 221 have, for example, a longitudinal cross-sectional shape of 240 mm front side × 200 mm side surface, a thickness of about 3 mm, and a normal type (normal size) of 175 cm. The cylinders 211 and 221 constitute an outer frame structure of the light emitting side portion 21 and the light receiving side portion 22 of the vehicle detector 2.
 筒体211の後面内壁には上下方向に所定間隔を有して赤外光発光素子212(発光部)が配列されている。各赤外光発光素子212は、正面壁に向けてビーム状の赤外光を射出するものである。筒体211の正面であって、各赤外光発光素子212から射出された赤外光が当たる位置には、上下方向に長尺のスリットが形成され、このスリットに透明なガラス板等が嵌め込まれて投光用窓213が形成されている。なお、筒体内部であって各赤外光発光素子212の光軸上には、射出された赤外光を集光して平行光線を得るためのレンズ系が介設されていてもよい。また、内部には必要に応じて、発光検査用の赤外光受光部が設けられ、赤外光発光素子212が正常に発光動作を行っているか否かを監視するようにしてもよい。 Infrared light emitting elements 212 (light emitting portions) are arranged on the inner wall of the rear surface of the cylinder 211 with a predetermined interval in the vertical direction. Each infrared light emitting element 212 emits beam-shaped infrared light toward the front wall. A long slit is formed in the vertical direction at a position on the front surface of the cylindrical body 211 where the infrared light emitted from each infrared light emitting element 212 hits, and a transparent glass plate or the like is fitted into the slit. Thus, a light projection window 213 is formed. In addition, a lens system for condensing the emitted infrared light to obtain a parallel light beam may be provided inside the cylinder and on the optical axis of each infrared light emitting element 212. Further, if necessary, an infrared light receiving unit for light emission inspection may be provided inside to monitor whether or not the infrared light emitting element 212 is normally emitting light.
 受光側部22も投光側部21と略同一構造を有し、上下方向に長尺のスリットが形成され、このスリットに透明なガラス板等が嵌め込まれて受光用窓223が形成されている。異なる点は、後面内壁に赤外光受光素子222が配列されている点である。なお、必要に応じて受光検査用の赤外光発光部が、各赤外光受光素子222に対応して配設されており、各赤外光受光素子222が正常に受光動作を行うか否かを監視するようにしてもよい。 The light receiving side portion 22 also has substantially the same structure as the light projecting side portion 21, and a long slit is formed in the vertical direction, and a light receiving window 223 is formed by fitting a transparent glass plate or the like into the slit. . The difference is that infrared light receiving elements 222 are arranged on the inner wall of the rear surface. If necessary, an infrared light emitting unit for light reception inspection is provided corresponding to each infrared light receiving element 222, and whether each infrared light receiving element 222 normally performs a light receiving operation or not. You may make it monitor.
 この車両検知器2によれば、制御部100によって、所定周期で各赤外光発光素子212からパルス状の赤外光が射出され、対向側の各赤外光受光素子222で受光信号の有無が検出されるように制御される。全ての赤外光受光素子222で受光信号が検出されれば、車両通路8に障害物となる車両がないと判断され、下部側のいくつかの赤外光受光素子222で受光信号が検出されなければ、通過車両が存在すると判断される。具体的には、検出開始から検出終了を経て、車両の通過があったと判断する。 According to the vehicle detector 2, the control unit 100 emits pulsed infrared light from each infrared light emitting element 212 at a predetermined cycle, and the presence or absence of a light reception signal at each opposing infrared light receiving element 222. Is controlled to be detected. If the received light signals are detected by all the infrared light receiving elements 222, it is determined that there is no vehicle as an obstacle in the vehicle path 8, and the received light signals are detected by some of the lower infrared light receiving elements 222. Otherwise, it is determined that there is a passing vehicle. Specifically, it is determined that the vehicle has passed after the detection start and the detection end.
 なお、本実施形態では、車両検知器2は、車両通路8を挟んで、発光側部21と受光側部22とを備えた構成としたが、車両通路8の一方側に発光側部21と受光側部22とを対応して配置し、車両進入時には、発光側部21の各赤外光発光素子から射出された赤外光が車体で反射して受光側部22の各赤外光受光素子で受光され、一方、車両無しの時は、発光側部21の各赤外光発光素子から射出された赤外光が帰来しない結果、受光側部22の各赤外光受光素子が赤外光を受光しないことで通過車両の有無を検知する態様としてもよい。また、赤外光発光素子、赤外光受光素子の上下方向における配列ピッチは一定である必要はなく、例えば図5(b)に示すように、下部側では検知精度を上げる必要があることから、下部において集中する態様としでもよい。 In the present embodiment, the vehicle detector 2 includes the light emitting side portion 21 and the light receiving side portion 22 with the vehicle passage 8 interposed therebetween, but the light emitting side portion 21 and the light receiving side portion 21 are provided on one side of the vehicle passage 8. The light receiving side portion 22 is arranged correspondingly, and when entering the vehicle, the infrared light emitted from each infrared light emitting element of the light emitting side portion 21 is reflected by the vehicle body and each infrared light receiving of the light receiving side portion 22 is received. On the other hand, when there is no vehicle, the infrared light emitted from each infrared light emitting element on the light emitting side portion 21 does not come back, so that each infrared light receiving element on the light receiving side portion 22 is infrared. It is good also as an aspect which detects the presence or absence of a passing vehicle by not receiving light. Further, the arrangement pitch of the infrared light emitting element and the infrared light receiving element in the vertical direction does not need to be constant. For example, as shown in FIG. 5B, it is necessary to increase the detection accuracy on the lower side. Further, it is possible to adopt a mode of concentrating at the lower part.
 図1に戻り、アンテナ3は、進入車両の車載器から情報を受信すると共に、有料道路の出口では車載器に料金情報等を送信するものである。発進制御器5は、通常、車両通路8側に両側(一対の)のバー51が降りており、車両検知器2が進入車両を検出すると、所定時間後に両側のバー51を上方に回動して車両通路8を開放し、車両検知器6が通過車両を検知すると、所定時間後に両側のバー51を降ろすように制御するものである。 Referring back to FIG. 1, the antenna 3 receives information from the onboard device of the approaching vehicle, and transmits toll equipment and the like at the exit of the toll road. The start controller 5 usually has both bars (a pair) of bars 51 descending on the vehicle passage 8 side. When the vehicle detector 2 detects an approaching vehicle, the bars 51 on both sides are rotated upward after a predetermined time. When the vehicle passage 8 is opened and the vehicle detector 6 detects a passing vehicle, control is performed so that the bars 51 on both sides are lowered after a predetermined time.
 図3は、車両検知器2の立設構造を説明する斜視図である。本実施形態では、車両検知器2は路盤81に設置される。路盤81上には所要幅及び所要厚を有する基盤811が敷設され、ネジ等の固定具で固設されている。基盤811の上面には、所要幅及び所要厚を有する支持板812が敷設され、同じくネジ等の固定具で基盤811に固設されている。車両検知器2の一方側、例えば発光側部21の筒体211は、下端が左右側に直角に屈曲した鍔状の屈曲部211aを有する。そして、発光側部21は、屈曲部211aが支持板812上の車両通路8から離れる側に対して、ネジ等の固定具を介して固設されることで、支持板812上に立設支持される。なお、屈曲部211aに代えて、支持板812上に嵌合用の一対の立設片を固設し、これに筒体211の下端を上方から圧入して嵌合する態様であってもよい。車両検知器2を構成する他方の受光側部22も同様にして路盤82に立設支持される。車両検知器2を路盤81(路盤82)上の車両通路8から離れる側に配置して、可及的に通行する車両の支障にならないようにしている。また、基盤811及び支持板812を合わせて支持板として扱ってもよい。 FIG. 3 is a perspective view for explaining the standing structure of the vehicle detector 2. In the present embodiment, the vehicle detector 2 is installed on the roadbed 81. A base 811 having a required width and a required thickness is laid on the roadbed 81 and fixed by a fixing tool such as a screw. A support plate 812 having a required width and a required thickness is laid on the upper surface of the base 811, and is similarly fixed to the base 811 with a fixture such as a screw. One side of the vehicle detector 2, for example, the cylindrical body 211 of the light emitting side portion 21 has a bowl-shaped bent portion 211 a whose lower end is bent at right angles to the left and right sides. The light emitting side portion 21 is fixedly supported on the support plate 812 by fixing the bent portion 211a to the side away from the vehicle passage 8 on the support plate 812 via a fixture such as a screw. Is done. Instead of the bent portion 211a, a pair of standing standing pieces for fitting may be fixed on the support plate 812, and the lower end of the cylindrical body 211 may be press-fitted from above and fitted. Similarly, the other light receiving side portion 22 constituting the vehicle detector 2 is supported upright on the roadbed 82. The vehicle detector 2 is disposed on the side away from the vehicle passage 8 on the road bed 81 (road bed 82) so as not to hinder the vehicle passing as much as possible. Further, the base 811 and the support plate 812 may be combined and handled as a support plate.
 図4、図5は、車両検知器2の発光側部21(又は受光側部22)と凍結防止装置10のヒータ部11との配置を示す図で、図4は概略斜視図、図5(a)は左側面図、図5(b)は正面図、図5(c)は右側面図、図5(d)は平面図である。 4 and 5 are diagrams showing the arrangement of the light emitting side portion 21 (or the light receiving side portion 22) of the vehicle detector 2 and the heater portion 11 of the antifreezing device 10, and FIG. 4 is a schematic perspective view. 5A is a left side view, FIG. 5B is a front view, FIG. 5C is a right side view, and FIG. 5D is a plan view.
 凍結防止装置10は、本実施形態では発光側部21を挟んで左右側に一対のヒータ部11を備えている。各ヒータ部11は、ヒータ12、ヒータ12を支持する支持部13及びヒータ12を支持部13に取り付ける取付具14を備えている。各支持部13は、路盤81上であって、筒体211から路盤81の左右方向(車両走行方向)に所定距離だけ離間し、かつ支持板812に臨む位置(筒体211の斜め前方)に立設されている。各支持部13は、路盤81に敷設され、ネジなどの固定具で固設される、平板状の基板部131と、基板部131に立設される所定長を有する立直部132とを備えている。立直部132は、本実施形態では、図4に示すように円筒乃至は円柱形状を有している。 In this embodiment, the antifreezing device 10 includes a pair of heater portions 11 on the left and right sides with the light emitting side portion 21 interposed therebetween. Each heater unit 11 includes a heater 12, a support unit 13 that supports the heater 12, and a fixture 14 that attaches the heater 12 to the support unit 13. Each support portion 13 is on the roadbed 81, spaced from the cylinder 211 by a predetermined distance in the left-right direction (vehicle traveling direction) of the roadbed 81 and at a position facing the support plate 812 (obliquely forward of the cylinder 211). It is erected. Each support portion 13 includes a flat plate-like substrate portion 131 that is laid on the roadbed 81 and fixed by a fixing tool such as a screw, and a vertical portion 132 that is erected on the substrate portion 131 and has a predetermined length. Yes. In the present embodiment, the upright portion 132 has a cylindrical or columnar shape as shown in FIG.
 各ヒータ12は、略直方体形状を有し、図4に破線で示すように、下面側から下方の所要範囲に向けて赤外線を放射するようになっている。各ヒータ12は、図5(a)~(c)に示すように、支持部13の立直部132の所定高さ位置に支持され、かつ路盤81の正面壁より車両通路8側に突出しない位置に設置され、これにより通行車両の障害とならないようにされている。また、各ヒータ12は、筒体211側に近い方の端部が遠い方の他端側より相対的に高い位置となるように傾斜した姿勢とされている(図5(b)参照)。各ヒータ12は、図4に示すように所定強度の赤外線が所要の照射範囲L1,L2に照射し得るように設定され、さらに取付姿勢を調整することで、図4及び図5(d)に破線で示すように、各照射範囲L1,L2の一部が重なる高照射範囲L3を含む所定照射域が形成されている。また、照射範囲L1,L2には、筒体211の下端一部も含まれており、これによって筒体211の下部を効果的に加熱して筒内空気を暖めるようにしている。ヒータ12を筒体211の左右に一対設け、赤外線の放射域の一部を重複させることで、車両検知用赤外光の通路となる支持板812の上面中央付近に発熱域を集中させることができる。照射範囲は、図5の支持板812の全面、すなわち発光部側21の車両検知域の積雪及び氷結を融解するものである。 Each heater 12 has a substantially rectangular parallelepiped shape, and radiates infrared rays from the lower surface side toward a lower required range as shown by a broken line in FIG. As shown in FIGS. 5A to 5C, each heater 12 is supported at a predetermined height position of the upright portion 132 of the support portion 13 and does not protrude from the front wall of the roadbed 81 toward the vehicle passage 8 side. So that it does not become an obstacle to passing vehicles. Each heater 12 is inclined such that the end closer to the cylindrical body 211 is at a relatively higher position than the other end on the far side (see FIG. 5B). As shown in FIG. 4, each heater 12 is set so that infrared rays having a predetermined intensity can be emitted to the required irradiation ranges L1 and L2, and by further adjusting the mounting posture, the heaters 12 shown in FIG. 4 and FIG. As indicated by a broken line, a predetermined irradiation region including a high irradiation range L3 in which a part of each irradiation range L1, L2 overlaps is formed. In addition, the irradiation ranges L1 and L2 include a part of the lower end of the cylindrical body 211, so that the lower part of the cylindrical body 211 is effectively heated to warm the in-cylinder air. By providing a pair of heaters 12 on the left and right sides of the cylindrical body 211 and overlapping a part of the infrared radiation region, the heat generation region can be concentrated near the center of the upper surface of the support plate 812 serving as a vehicle detection infrared light passage. it can. The irradiation range is to melt snow and freezing in the entire surface of the support plate 812 in FIG.
 図6、図7は、取付具14の構造を説明する図で、図6は概略平面図、図7(a)は分解斜視図、図7(b)は一部断面正面図、図7(c)は側面図である。取付具14は、支持部13の立直部132に嵌合される環状体141と、ヒータ12の上面に取り付けられた連結部143と、環状体141と連結部143との間に設けられる位置決め部材142とから構成される。 6 and 7 are diagrams for explaining the structure of the fixture 14. FIG. 6 is a schematic plan view, FIG. 7 (a) is an exploded perspective view, FIG. 7 (b) is a partially sectional front view, and FIG. c) is a side view. The fixture 14 includes an annular body 141 fitted to the upright portion 132 of the support portion 13, a connecting portion 143 attached to the upper surface of the heater 12, and a positioning member provided between the annular body 141 and the connecting portion 143. 142.
 環状体141は、円筒の立直部132に外嵌する内径を有し、立直部132の軸方向に摺動可能にされている。環状体141の周面には、少なくとも1個のネジ孔1411が径方向に螺刻され、外方からネジ141aを螺設することで、環状体141を立直部132の所望高さ位置に固定可能にしている。なお、立直部132の長手方向に溝部を穿設する態様とした場合、立直部132に対して環状体141の向きを固定することができる。また、立直部132の長手方向に所定間隔で複数の凹部を形成する態様とした場合、立直部132に対する環状体141の高さ位置を所望の凹部に対応して調整することができる。環状体141の側面には、径方向に所定長だけ延びる支持軸1412と角度調整軸1413とが立設されている。支持軸1412及び角度調整軸1413の各先端側は小径部とされ、かつ、ナット1451,1452が螺設される雄ネジが形成されている。 The annular body 141 has an inner diameter that is externally fitted to the upright portion 132 of the cylinder, and is slidable in the axial direction of the upright portion 132. At least one screw hole 1411 is threaded on the peripheral surface of the annular body 141 in the radial direction, and the screw 141a is screwed from the outside to fix the annular body 141 at a desired height position of the upright portion 132. It is possible. When the groove portion is formed in the longitudinal direction of the upright portion 132, the direction of the annular body 141 can be fixed with respect to the upright portion 132. Moreover, when it is set as the aspect which forms a several recessed part in the longitudinal direction of the upright part 132 at predetermined intervals, the height position of the annular body 141 with respect to the upright part 132 can be adjusted corresponding to a desired recessed part. A support shaft 1412 and an angle adjustment shaft 1413 are provided upright on the side surface of the annular body 141 so as to extend by a predetermined length in the radial direction. The distal end sides of the support shaft 1412 and the angle adjusting shaft 1413 are small diameter portions, and male screws into which nuts 1451 and 1452 are screwed are formed.
 位置決め部材142は、上部側の所定形状部分、ここでは半円状をした半円部1420と、下部側の筒部1423とを備えている。半円部1420は、ほぼ中心に支持孔1421が形成され、さらに、支持孔1421を中心として所定半径を有する円弧孔1422が形成されている。支持孔1421は支持軸1412に挿通され、円弧孔1422は角度調整軸1413に挿通される。 The positioning member 142 includes a predetermined shape portion on the upper side, here a semicircular portion 1420 having a semicircular shape, and a cylindrical portion 1423 on the lower side. The semicircular portion 1420 has a support hole 1421 formed substantially at the center, and further, an arc hole 1422 having a predetermined radius with the support hole 1421 as the center. The support hole 1421 is inserted through the support shaft 1412, and the arc hole 1422 is inserted through the angle adjustment shaft 1413.
 筒部1423は、本実施形態では半円部1420と一体で構成されている。より詳細には、筒部1423は、図7(a)に示すように半円部1420の下部で半径方向の両側に一対設けられている。筒部1423は、図7(c)に示すように周方向の一部が、好ましくは直角程度で軸方向に亘って切り欠かれている。 The cylinder portion 1423 is configured integrally with the semicircular portion 1420 in this embodiment. More specifically, as shown in FIG. 7A, a pair of cylindrical portions 1423 are provided on both sides in the radial direction below the semicircular portion 1420. As shown in FIG. 7C, the cylindrical portion 1423 is partially cut out in the circumferential direction, preferably at a right angle.
 連結部143は、ヒータ12の上面の取付板1431と、筒部1423に内嵌される支持軸1433と、取付板1431と支持軸1433とを連結する繋ぎ部1432とを備えている。繋ぎ部1432は、支持軸1433が筒部1423に内嵌される際に、筒部1423と干渉することのないように、図7(c)に示すように所要の厚みに制限され、支持軸1433が筒部1423にスムーズに挿通し得るようにしている。図7(b)に示すように、支持軸1433の両端には所要の深さ位置まで雌ねじ1434が螺刻されている。支持軸1433が筒部1423に内嵌された状態で、ボルト144が締結されることで環状体141とヒータ12とが連結される。なお、図7(c)は、ボルト144の締結前の状態の図である。 The connecting portion 143 includes a mounting plate 1431 on the upper surface of the heater 12, a support shaft 1433 fitted into the cylindrical portion 1423, and a connecting portion 1432 that connects the mounting plate 1431 and the support shaft 1433. The connecting portion 1432 is limited to a required thickness as shown in FIG. 7C so as not to interfere with the cylindrical portion 1423 when the supporting shaft 1433 is fitted into the cylindrical portion 1423. 1433 can be smoothly inserted into the cylindrical portion 1423. As shown in FIG. 7B, female screws 1434 are threaded at both ends of the support shaft 1433 to a required depth position. The annular body 141 and the heater 12 are connected by fastening the bolt 144 in a state where the support shaft 1433 is fitted in the cylindrical portion 1423. FIG. 7C is a diagram of a state before the bolt 144 is fastened.
 環状体141を支持部13の立直部132の所定高さ位置であって、水平方向の所定の向き、例えばヒータ12が、図5(d)の向きになるようにネジ孔1411にネジ141aを螺設して位置固定する。次いで、円弧孔1422の所定角度位置でナット1452を締結することで、図5(b)に示すようにヒータ12が傾斜姿勢とされる。 The screw 141a is inserted into the screw hole 1411 so that the annular body 141 is at a predetermined height position of the upright portion 132 of the support portion 13 and in a predetermined horizontal direction, for example, the heater 12 is in the direction of FIG. Screw to fix the position. Next, the nut 1452 is fastened at a predetermined angular position of the arc hole 1422, so that the heater 12 is inclined as shown in FIG.
 図8は、連結部の他の実施形態を示す図で、図7(b)に対応する正面図である。但し、筒部1423を支持軸1433’に挿通する前の状態の図である。図8に示す連結部143’は支持軸1433’の両端側に雄ねじ1434’が形成されている。そして、支持軸1433’が筒部1423に挿通された状態で、雄ねじ1434’にナット144’を螺設することで支持軸1433’の抜けが防止されるようにしている。 FIG. 8 is a front view corresponding to FIG. 7B, showing another embodiment of the connecting portion. However, it is a figure of the state before inserting the cylinder part 1423 in support shaft 1433 '. In the connecting portion 143 'shown in FIG. 8, male screws 1434' are formed on both ends of the support shaft 1433 '. Then, in a state where the support shaft 1433 ′ is inserted through the cylindrical portion 1423, the nut 144 ′ is screwed to the male screw 1434 ′ so that the support shaft 1433 ′ is prevented from coming off.
 図9は、連結部とヒータとの取付構造の他の実施形態を示す図で、図7(a)に対応する図である。図9において、連結部143’’は、繋ぎ部1432の下部にネジ軸1436が立設され、ヒータ12の天井に穿設された貫通孔120に挿通可能にされている。ネジ軸146には、所要位置、例えば略中央にナット147が螺設されている。そして、ネジ軸146が貫通孔120に挿通された状態で、ネジ先端からナット148を差し込んで締結することで、連結部143’’とヒータ12とが連結される。 FIG. 9 is a view showing another embodiment of the attachment structure of the connecting portion and the heater, and corresponds to FIG. 7 (a). In FIG. 9, the connecting portion 143 ″ is provided with a screw shaft 1436 standing below the connecting portion 1432 so that the connecting portion 143 ″ can be inserted into a through hole 120 formed in the ceiling of the heater 12. The screw shaft 146 is screwed with a nut 147 at a required position, for example, substantially in the center. Then, in a state where the screw shaft 146 is inserted through the through hole 120, the nut 148 is inserted from the screw tip and fastened to connect the connecting portion 143 "and the heater 12.
 図10は、ヒータ12の構造の一実施形態を示す図で、(a)は外観斜視図、(b)は分解図、(c)はハロゲンランプ及びその取付部を備えるミラーユニットの斜視図、(d)はハロゲンランプを取り付けた状態のミラーユニットの斜視図である。なお、図110(c)(d)においては、紙面の手前側がミラーユニットの下方側である。ヒータ12は、内部に必要な部材を収納するための略直方体の筐体121を備えている。筐体121は、その長手方向一端側に端子台ボックス部122を、天井部に本体ブラケット123を備えている。端子台ボックス部122はランプ電源等を外部から引き込むための配線の中継を行うためのものである。本体ブラケット123は、ヒータ12の天井部に取り付けられており、連結部143が取り付けられる部位である。 10A and 10B are diagrams showing an embodiment of the structure of the heater 12, where FIG. 10A is an external perspective view, FIG. 10B is an exploded view, and FIG. 10C is a perspective view of a mirror unit including a halogen lamp and its mounting portion. (D) is a perspective view of the mirror unit with a halogen lamp attached. In FIGS. 110C and 110D, the front side of the sheet is the lower side of the mirror unit. The heater 12 includes a substantially rectangular parallelepiped casing 121 for housing necessary members therein. The casing 121 includes a terminal block box portion 122 on one end side in the longitudinal direction and a main body bracket 123 on the ceiling portion. The terminal block box 122 is for relaying wiring for drawing in the lamp power supply and the like from the outside. The main body bracket 123 is attached to the ceiling part of the heater 12 and is a part to which the connecting part 143 is attached.
 筐体121は、内部に空間を有し、下面側に、開放されたあるいは好ましくは防護用の網体等が張られた開口1211を有する。筐体121の内部には、筐体121の内壁に沿った形状を有するミラーユニット124が装填されている。ミラーユニット124は、筐体121の一方の側面側からスライドによって筐体121内に挿入及び引き出し可能にされている。図10(b)は、矢印で示すように、筐体121に対してミラーユニット124の挿入、あるいは引き出しを行っている状態を示す図である。ミラーユニット124は、図10(c)に示すように、下方に広がる2次曲線乃至は略放物線に沿った断面形状を有し、長さ寸法は筐体121の長さと略同一に設定されている。ハロゲンランプ125は、長尺の管(図10(c)参照)であり、ミラーユニット124の焦点位置に長手方向に向けて収納されている(図10(d)参照)。詳細には、図10(c)に示すように、ミラーユニット124は長手方向両側に側面部126を有し、この側面部126の前記焦点位置に対応する位置に、ハロゲンランプ125を挿通するほぼ円形状の切欠1261が形成されている。ハロゲンランプ125は、長手方向両側の側面部126の切欠1261に嵌合され、ヒータ固定金具127等(図10(d)参照)でミラーユニット124の適所との間で位置固定される。ハロゲンランプ125の不良乃至故障時には、筐体121からミラーユニット124をスライドして引き出し、ヒータ固定金具127を外すことでランプ交換等が可能となる。 The housing 121 has a space inside, and has an opening 1211 on the lower surface side that is open or preferably stretched with a protective net or the like. A mirror unit 124 having a shape along the inner wall of the housing 121 is loaded in the housing 121. The mirror unit 124 can be inserted into and pulled out of the housing 121 by sliding from one side surface of the housing 121. FIG. 10B is a diagram illustrating a state where the mirror unit 124 is inserted into or pulled out from the housing 121 as indicated by an arrow. As shown in FIG. 10C, the mirror unit 124 has a cross-sectional shape along a quadratic curve or a substantially parabola that extends downward, and the length dimension is set to be substantially the same as the length of the casing 121. Yes. The halogen lamp 125 is a long tube (see FIG. 10C), and is stored in the focal position of the mirror unit 124 in the longitudinal direction (see FIG. 10D). Specifically, as shown in FIG. 10C, the mirror unit 124 has side portions 126 on both sides in the longitudinal direction, and the halogen lamp 125 is inserted in a position corresponding to the focal position of the side portions 126. A circular notch 1261 is formed. The halogen lamp 125 is fitted into the notches 1261 of the side surface portions 126 on both sides in the longitudinal direction, and the position is fixed between the appropriate position of the mirror unit 124 with the heater fixing bracket 127 or the like (see FIG. 10D). When the halogen lamp 125 is defective or defective, the mirror unit 124 can be slid out of the housing 121 and the heater fixing bracket 127 can be removed to replace the lamp.
 これにより、ハロゲンランプ125から放射された赤外線は、ミラーユニット124で略平行な光に、乃至は所要の指向幅に調整されて開口1211から下方に放射される。 Thereby, the infrared rays radiated from the halogen lamp 125 are radiated downward from the opening 1211 after being adjusted to a substantially parallel light by the mirror unit 124 or a required directivity width.
 ミラーユニット124は、出射された赤外線が、図5(d)に示すような照射域L1,L2,L3を得るべく平行乃至は拡張するように設定されている。ミラーユニット126の少なくとも対面する内壁は、ハロゲンランプヒータ125から放射された赤外線を高効率で反射する材料で作成され、あるいは内壁面が反射材料で表面コーティングされていることが好ましい。 The mirror unit 124 is set so that the emitted infrared rays are parallel or expanded to obtain irradiation areas L1, L2, and L3 as shown in FIG. It is preferable that at least the inner wall facing the mirror unit 126 is made of a material that reflects the infrared rays emitted from the halogen lamp heater 125 with high efficiency, or the inner wall surface is coated with a reflective material.
 ハロゲンランプ125は、所定径の円管体を有し、所定のワット数のものが採用可能であり、ここでは300Wのものが採用されている。ハロゲンランプ125は、石英ガラスで作られたバルブ内のほぼ中央部にタングステンを材料とするフィラメントが配置され、ハロゲンガスと、アルゴンや窒素などの不活性ガスとが封入されているものである。また、ハロゲンランプ125は、管の表面に、赤外線放射材料、例えば、黒色の遠赤外線放射セラミックスがコーティングされている。かかるハロゲンランプ125は、以下のような特徴を有する点で、氷解、結露、雨滴の乾燥に適している。 The halogen lamp 125 has a circular tube with a predetermined diameter, and a lamp with a predetermined wattage can be used. In the halogen lamp 125, a filament made of tungsten is disposed at a substantially central portion in a bulb made of quartz glass, and a halogen gas and an inert gas such as argon or nitrogen are sealed therein. The halogen lamp 125 has a tube surface coated with an infrared radiation material such as black far infrared radiation ceramics. The halogen lamp 125 is suitable for thawing ice, condensation, and drying raindrops in that it has the following characteristics.
 すなわち、ハロゲンランプ125のフィラメントは、熱容量が小さく、セラミックスヒータやニクロム線コイルを備えた赤外線ヒータなど他の遠赤外線ヒータと比べて、数倍以上のスピードで昇温を行うことができる。また、ハロゲンランプ125は、断線するまで一定した光出力が得られ、ハロゲンサイクルによってバルブ壁に黒化が生じず、光出力や色温度の減衰が少ない。また、ハロゲンランプ125は、一般的な白線電球に比べて、数十分の一の大きさでコンパクトである。また、ハロゲンランプ125は、バルブに石英ガラスを使用しているため、熱衝撃に極めて強い。さらに、ハロゲンランプ125は、投入電力の75~95%が光と熱に変換され、そのうち6~12%が可視光で残りが赤外線であり、エネルギー効率が高い。 That is, the filament of the halogen lamp 125 has a small heat capacity, and can raise the temperature at a speed several times higher than other far infrared heaters such as ceramic heaters and infrared heaters equipped with nichrome wire coils. Further, the halogen lamp 125 can obtain a constant light output until it is disconnected, and the halogen wall does not blacken due to the halogen cycle, and the light output and the color temperature are less attenuated. Further, the halogen lamp 125 is a few tenths of a size and compact compared to a general white light bulb. In addition, the halogen lamp 125 uses quartz glass for the bulb, and thus is extremely resistant to thermal shock. Further, the halogen lamp 125 is highly energy efficient because 75 to 95% of the input power is converted into light and heat, of which 6 to 12% is visible light and the rest is infrared.
 また、ハロゲンランプ125にコーティングされている赤外線放射セラミックスは、ハロゲンランプから放射された可視光や近赤外線(例えば1.3μmから2μm)を効率よく吸収して発熱し、2.5μmから15μmの波長領域の赤外線、特に3μmをピークとする赤外線を放射(輻射)する。また、赤外放射セラミックスは、ハロゲンランプのフィラメントと同様に熱容量が小さいので、短時間で昇温を行うことができる。ハロゲンランプ125から放射された赤外線は、ミラーユニット124で所定の指向幅に調整されて、後述するように、筒体211の下部及び支持板812の照射域L1,L2に、重複域L3を有して照射される。 Further, the infrared radiation ceramics coated on the halogen lamp 125 efficiently absorbs visible light and near infrared light (eg, 1.3 μm to 2 μm) emitted from the halogen lamp and generates heat, and has a wavelength of 2.5 μm to 15 μm. Infrared rays in the region, particularly infrared rays having a peak at 3 μm, are emitted (radiated). Moreover, since infrared radiation ceramics have a small heat capacity like a filament of a halogen lamp, the temperature can be increased in a short time. Infrared radiation radiated from the halogen lamp 125 is adjusted to a predetermined directivity width by the mirror unit 124, and has an overlapping region L3 at the lower portion of the cylindrical body 211 and the irradiation regions L1 and L2 of the support plate 812, as will be described later. And irradiated.
 図11、図12は、ヒータ12と支持部13との取付姿勢の関係を示す正面図である。図11において、ヒータ12の高さ位置は、路盤81から450mmであり、筒体211の下端中央に向けられている。ヒータ12から筒体211の下端までは500mmで、ヒータ12の傾斜角度は水平から65°である。一方、図12において、ヒータ12の高さ位置は、路盤81から200mmで、筒体211の下端中央に向けられている。ヒータ12から筒体211の下端までは250mmで(図11の半分の距離で)、ヒータ12の傾斜角度は水平から45°である。車両検知器2の近傍には、種々の部材が配置されている可能性があり、ヒータ部11を一定の形態で一律に配置できるスペースが確保されている保証はない。そこで、図11、図12に示すように、すなわち配置スペースに合わせるようにして、高さや角度を適宜調整して、筒体211の下部側面、及び下端の前方域(実施例では、支持板812の上面)に所要の熱量を照射することが可能となる。 FIG. 11 and FIG. 12 are front views showing the relationship between the mounting postures of the heater 12 and the support portion 13. In FIG. 11, the height position of the heater 12 is 450 mm from the roadbed 81 and is directed to the center of the lower end of the cylindrical body 211. The distance from the heater 12 to the lower end of the cylinder 211 is 500 mm, and the inclination angle of the heater 12 is 65 ° from the horizontal. On the other hand, in FIG. 12, the height position of the heater 12 is 200 mm from the roadbed 81 and is directed to the center of the lower end of the cylindrical body 211. The distance from the heater 12 to the lower end of the cylindrical body 211 is 250 mm (half the distance in FIG. 11), and the inclination angle of the heater 12 is 45 ° from the horizontal. Various members may be arranged in the vicinity of the vehicle detector 2, and there is no guarantee that a space for uniformly arranging the heater portions 11 in a certain form is secured. Therefore, as shown in FIGS. 11 and 12, that is, according to the arrangement space, the height and angle are adjusted as appropriate, and the lower side surface of the cylindrical body 211 and the front area of the lower end (in the embodiment, the support plate 812). It is possible to irradiate the upper surface) with a required amount of heat.
 なお、図11、図12中に、破線で示す複数の線は、指向性と赤外線の放射強度を示し、300Wのハロゲンランプ125の場合、内側の線から、2330μW/cm、1480μW/cm、1060μW/cm、630μW/cmを示している。赤外線は筒体211の下部側面を加熱することで、筒体211の内空間の温度を上昇させ、筒体211表面及び内空間を伝導して筒体211の正面が暖められていく。内面が加熱され、筒体211の投光用窓213が0℃以上に温められることで、投光用窓213が氷結している場合に、氷解(融氷)する。また、結露したり、雨滴が付着したりしている場合に、乾燥によって水分を蒸発させる。 Incidentally, FIG. 11, in FIG. 12, a plurality of lines indicated by the broken lines, shows the radiant intensity of a directional infrared, if the halogen lamp 125 of 300 W, from the inside of the line, 2330μW / cm 2, 1480μW / cm 2 1060 μW / cm 2 and 630 μW / cm 2 are shown. Infrared rays heat the lower side surface of the cylindrical body 211 to increase the temperature of the inner space of the cylindrical body 211, and the surface of the cylindrical body 211 and the inner space are conducted to warm the front surface of the cylindrical body 211. The inner surface is heated and the light projection window 213 of the cylindrical body 211 is heated to 0 ° C. or higher, so that when the light projection window 213 is frozen, the ice melts (melts ice). Further, when condensation or raindrops are attached, moisture is evaporated by drying.
 さらに、図5(d)に示すように、支持板812の前面に対しても効果的に照射を行うことで、この支持板812上に積もりかけた雪乃至氷結途中の氷を効果的に融解乃至氷解する。自動料金徴収システムに適用される車両検知器2では、赤外光発光素子212の配列個数が下部側では、上部側に比して密になっていることもあり(図5(b)参照)、より高い検出精度が求められている一方、支持板812の上面には雪が積もりやすく、かつそのままでは溶けにくく、氷結する可能性が高い。そうすると、下部側の赤外光発光素子212から射出された光は、この積雪が障害となったり、氷結分の存在によって直進せず、乱反射等して、誤検知を誘発する。そこで、ハロゲンランプ125の指向範囲を筒体211の下端部と筒体211の前方域とが含まれるようにして効果的に赤外線を両方の照射域に照射するようにしている。 Further, as shown in FIG. 5 (d), by effectively irradiating the front surface of the support plate 812, the snow piled on the support plate 812 or the ice during freezing is effectively melted. Thaw. In the vehicle detector 2 applied to the automatic fare collection system, the number of the arrayed infrared light emitting elements 212 may be denser on the lower side than on the upper side (see FIG. 5B). On the other hand, while higher detection accuracy is required, it is easy to accumulate snow on the upper surface of the support plate 812, and it is difficult to melt as it is, and there is a high possibility of freezing. Then, the light emitted from the infrared light emitting element 212 on the lower side does not go straight due to this snow accumulation, or does not go straight due to the presence of icing, but causes irregular reflection and induces false detection. Thus, the directivity range of the halogen lamp 125 includes the lower end portion of the cylindrical body 211 and the front area of the cylindrical body 211 so as to effectively irradiate both irradiation areas with infrared rays.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、300Wの赤外線を筒体211の側面壁に30分間照射した場合における正面の上昇温度と放射強度(μW/cm)との関係を示す。例えば、3℃上昇させるためには、700μW/cmが必要であり、7℃上昇させるためには、1620μW/cmが必要であり、11℃上昇させるためには、2570μW/cmが必要である。また、この赤外線強度を距離に置換すると、700μW/cmでは180cm、1620μW/cmでは120cm、2570μW/cmでは60cmとなる。 Table 1 shows the relationship between the front elevation temperature and the radiation intensity (μW / cm 2 ) when 300 W of infrared rays is irradiated onto the side wall of the cylindrical body 211 for 30 minutes. For example, in order to increase 3 ° C. are required 700μW / cm 2, in order to raise 7 ° C. are required 1620μW / cm 2, in order to increase 11 ° C. is, 2570μW / cm 2 is necessary It is. Also, replacement of the infrared intensity to the distance, in 700μW / cm 2 180cm, 120cm in 1620μW / cm 2, a 60cm in 2570μW / cm 2.
 これらの値は、1,2月の日本の関東以南地方の平均温度が-2℃であり、1,2月の日本における東北、北陸、北海道南部地方の平均温度が-6℃であり、1,2月の東北山間部、北海道中部地方の平均温度が-10℃である。従って、表1及び図11、図12において、300Wの赤外線によって3℃、7℃、11℃だけ温度を上昇させることができ、その結果、-2℃~-10℃の寒冷地であっても、筒体211の正面壁温度を0℃以上、好ましくは1℃以上に昇温し得る。 In these values, the average temperature in the Kanto region south of Japan in January and February is -2 ° C, and the average temperature in the Tohoku, Hokuriku, and southern Hokkaido regions in Japan in January and February is -6 ° C. In January and February, the average temperature in the Tohoku Mountains and Central Hokkaido is -10 ° C. Therefore, in Table 1, FIG. 11, and FIG. 12, the temperature can be increased by 3 ° C., 7 ° C., and 11 ° C. with 300 W infrared rays. As a result, even in cold regions of −2 ° C. to −10 ° C. The front wall temperature of the cylinder 211 can be raised to 0 ° C. or higher, preferably 1 ° C. or higher.
 図13は、凍結防止装置10のヒータ12の駆動を制御するためのブロック図である。ヒータ12は制御部100によって制御される。制御部100は、例えばマイクロコンピュタ等で構成され、電源制御部1001、記憶部1002及びタイマ1003を備えている。電源制御部1001は、記憶部1002に記憶されて凍結防止のための制御プログラムに従って制御信号を生成し、電源部101を駆動して、ハロゲンランプ125への電力供給及び停止を行う。電源部101は、例えば商用電源で点灯するハロゲンランプ125に電力の供給(オン)と停止(オフ)とを切り替えるスイッチ回路を含む。電源制御部1001は、電源部101をオン期間中は連続的に電力供給を行う態様でもよいが、スイッチング駆動部を備えて間欠駆動する態様としてもよい。間欠駆動の場合、ヒータ12は、電源部101から間欠的に電力供給を受けることで、設定された平均赤外線放射強度で筒体211の下部壁及び支持板812上面を加熱する。間欠周期乃至はオンオフデューティーを調整することで、平均赤外線放射強度が可変設定できる。 FIG. 13 is a block diagram for controlling the driving of the heater 12 of the freeze prevention apparatus 10. The heater 12 is controlled by the control unit 100. The control unit 100 is composed of, for example, a micro computer, and includes a power control unit 1001, a storage unit 1002, and a timer 1003. The power supply control unit 1001 generates a control signal in accordance with a control program for preventing freezing stored in the storage unit 1002, drives the power supply unit 101, and supplies and stops power to the halogen lamp 125. The power supply unit 101 includes, for example, a switch circuit that switches power supply (on) and stop (off) to the halogen lamp 125 that is lit by a commercial power supply. The power supply control unit 1001 may be configured to supply power continuously during the ON period of the power supply unit 101, but may be configured to include a switching drive unit and perform intermittent drive. In the case of intermittent driving, the heater 12 intermittently receives power from the power supply unit 101 to heat the lower wall of the cylindrical body 211 and the upper surface of the support plate 812 with the set average infrared radiation intensity. The average infrared radiation intensity can be variably set by adjusting the intermittent period or the on / off duty.
 制御部100には、気象情報取得部102を備え、また必要に応じて操作部103を備えている。気象情報取得部102は、代表的には降雪計1021であり、必要に応じて気温を計測する温度計1022を備えてもよい。降雪計1021は、例えば赤外光等の所定の計測用光を周期的に射出する発光部と、帰来光を受光する受光部とを備えている。降雪計1021は、筒体211の所定高さ位置に、あるいは他の部材の適所に配設され、赤外光を周期的に空気中に射出し、所定距離エリア内からの帰来光の有無乃至帰来レベルを検出する。所定距離エリアは発光部の発光時点から所定時間内のゲートを設けることで所定の検知エリアを確保している。より詳細には、赤外光を水平方向あるいは斜め上方に向けて射出し、降雪中や降雨中の雪や雨滴で反射して帰来する赤外光を受光することで、降雪や降雨の有無を検出する。雪と雨との識別は、反射レベルとか反射信号の状態に基づいて行われる。操作部103は、保守、点検等での動作のチェックや、マニュアルでの各種内容の調整のために用いられる。 The control unit 100 includes a weather information acquisition unit 102 and, if necessary, an operation unit 103. The weather information acquisition unit 102 is typically a snowfall meter 1021, and may include a thermometer 1022 that measures the temperature as necessary. The snowfall meter 1021 includes a light emitting unit that periodically emits predetermined measurement light such as infrared light, and a light receiving unit that receives return light. The snowfall meter 1021 is disposed at a predetermined height position of the cylindrical body 211 or at an appropriate position of another member, periodically emits infrared light into the air, and whether or not there is return light from within a predetermined distance area. Detect the return level. In the predetermined distance area, a predetermined detection area is secured by providing a gate within a predetermined time from the light emission point of the light emitting unit. More specifically, infrared light is emitted horizontally or obliquely upward, and the infrared light that is reflected and returned by snow or raindrops during or during snowfall is received to detect the presence or absence of snowfall or rain. To detect. The distinction between snow and rain is performed based on the reflection level or the state of the reflection signal. The operation unit 103 is used for checking operations during maintenance, inspection, etc., and adjusting various contents manually.
 ここで、ヒータ12の制御手順について説明する。降雪計1021は、周期的に赤外光を射出して降雪の有無を監視する。監視動作は、温度計1022が所定温度以下を検出していることを条件に行う態様としてもよいし、制御部100への監視動作指示で行う態様としてもよい。降雪が検出されると、電源制御部1001は電源部101を駆動させ、所定の電力をハロゲンランプ125に供給する動作を開始する。電力供給の開始後も、降雪の監視は継続される。降雪計1021によって雪が止んだことが検出されると、タイマ1003が計時動作を開始する。タイマ1003は所定時間を計時すると、停止信号を電源制御部1001に出力し、電源部101の動作を停止する。この結果、雪が止んで所定時間経過後にヒータ12の動作が停止される。このタイムラグは、固定値でもよいが、その時の温度計1022の計測温度によって変更、例えば温度-タイムラグテーブル(メモリ)を参照して得られたタイムラグ値がタイマ1003に設定される態様としてもよい。 Here, the control procedure of the heater 12 will be described. The snowfall meter 1021 periodically emits infrared light to monitor the presence or absence of snowfall. The monitoring operation may be performed on the condition that the thermometer 1022 detects a predetermined temperature or less, or may be performed by a monitoring operation instruction to the control unit 100. When snowfall is detected, the power supply control unit 1001 drives the power supply unit 101 and starts an operation of supplying predetermined power to the halogen lamp 125. Monitoring of snowfall will continue even after the start of power supply. When it is detected by the snowfall meter 1021 that the snow has stopped, the timer 1003 starts a time measuring operation. When the timer 1003 counts a predetermined time, it outputs a stop signal to the power supply control unit 1001 to stop the operation of the power supply unit 101. As a result, the operation of the heater 12 is stopped after the snow has stopped and a predetermined time has elapsed. The time lag may be a fixed value, but may be changed according to the temperature measured by the thermometer 1022 at that time, for example, a time lag value obtained by referring to a temperature-time lag table (memory) may be set in the timer 1003.
 なお、降雪計1002が受光レベルから降雪量を検知可能な場合、降雪量-タイムラグテーブル(メモリ)を利用して降雪量に応じてタイムラグ値が設定される態様としてもよい。この場合、降雪量は受光レベルのみでもよいが、受光レベルと検知時間の積算の情報を利用してもよい。また、気象情報取得部102は、降雪計1021(また温度計1022)に限定されず、有料道路の管理局(管理センタ)、気象観察基地からの当該地の気象情報や有料道路の各所(主には降雪実績のある地域)に設けられる降雪センサからの情報を有線手段や無線手段等の通信手段を介して逐次乃至周期的に取得する態様でもよい。 Note that when the snowfall meter 1002 can detect the amount of snowfall from the light reception level, a time lag value may be set according to the amount of snowfall using a snowfall amount-time lag table (memory). In this case, the amount of snowfall may be only the light reception level, but information on the integration of the light reception level and the detection time may be used. In addition, the weather information acquisition unit 102 is not limited to the snowfall meter 1021 (or the thermometer 1022), but the toll road management station (management center), the weather information of the area from the weather observation base, and each place of the toll road (mainly In this case, information from a snowfall sensor provided in a region having a snowfall record) may be acquired sequentially or periodically via communication means such as wired means or wireless means.
 なお、本発明は、さらに以下の実施態様を採用することができる。 The present invention can further employ the following embodiments.
(1)図14、図15は、ヒータのミラーユニットの他の実施形態を示す図で、図14(a)はミラーユニットと赤外線の指向範囲を示す図、図14(b)はミラーユニットの形状を示す説明図、図15は、図4に対応する概略斜視図である。筐体121内のミラーユニット124aは長手方向に2分割された、指向幅設定部としての広幅ミラー部1241と狭幅ミラー部1242とから構成されている。広幅ミラー部1241は断面二次曲線あるいは断面放物線を有する曲面の曲率が小さく、狭幅ミラー部1242は曲面の曲率が大きく設定されている。従って、広幅ミラー部1241では、ハロゲンランプ125から放射された赤外線は反射後に所定の角度に絞られ(図14(a)では略平行光)、図略の直接光と合わせて狭い(集光された)照射範囲(狭い照射域L11)とされている。また、狭幅ミラー部1242では、ハロゲンランプ125から放射された赤外線は反射後に大きな角度に絞られて(図14(a)では交差している)、図略の直接光と合わせて結果的に、照射域L11に比して異なるサイズで、ここでは広い照射範囲(広い照射域L12)とされている。 (1) FIG. 14 and FIG. 15 are diagrams showing another embodiment of the mirror unit of the heater, FIG. 14 (a) is a diagram showing the mirror unit and the infrared directivity range, and FIG. 14 (b) is the mirror unit. FIG. 15 is a schematic perspective view corresponding to FIG. The mirror unit 124a in the housing 121 is composed of a wide mirror part 1241 and a narrow mirror part 1242 as a directivity width setting part, which are divided into two in the longitudinal direction. The wide mirror portion 1241 has a small curvature of a curved surface having a quadratic cross section or a parabolic cross section, and the narrow mirror portion 1242 has a large curvature of the curved surface. Therefore, in the wide mirror portion 1241, infrared rays emitted from the halogen lamp 125 are narrowed to a predetermined angle after reflection (substantially parallel light in FIG. 14A), and narrow (condensed) together with direct light (not shown). A) Irradiation range (narrow irradiation region L11). Further, in the narrow mirror part 1242, the infrared rays radiated from the halogen lamp 125 are narrowed to a large angle after reflection (intersect in FIG. 14A), and as a result, combined with direct light (not shown) as a result. The size is different from that of the irradiation region L11, and is a wide irradiation range (wide irradiation region L12) here.
 図15において、ヒータ12aは、集光側の広幅ミラー部1241が狭幅ミラー部1242よりも高い位置となるように傾斜されて取り付けられ、所要の照射範囲L11,L12に所定強度の赤外線を照射している。これにより、高い位置から集光された、いわば照射範囲L11のようにスポット的な照射を行うことで熱量を効果的に支持板812に照射することが可能となる。さらに照射範囲L12の内側に照射範囲L11を重ねることもできる。また、照射範囲L12の一部は、筒体211の下端側一部も含み、これによって筒体211の下部を効果的に加温して筒内空気を加熱するようにしている。なお、この実施形態では、照射範囲L12を形成する方法として、狭幅ミラー部1242を採用して、反射面の曲率を大きくしたが、これは反射面の曲率を小さくする場合には、反射面を広げる必要があり、その結果、筐体121自体の幅方向の大型化を招来するからである。また、図15では、ヒータ12aは筒体211の左右一方であるが、左右一対設け、各ヒータからの照射範囲L11,L12が互いに重複するように設定することで、主に支持板812の上面中央付近を集中的な照射域とすることができる。 In FIG. 15, the heater 12 a is mounted so as to be inclined so that the wide mirror portion 1241 on the condensing side is higher than the narrow mirror portion 1242, and irradiates infrared rays having a predetermined intensity to the required irradiation ranges L11 and L12. is doing. Thereby, it is possible to effectively irradiate the support plate 812 with the amount of heat by performing spot-like irradiation focused from a high position, as in the irradiation range L11. Furthermore, the irradiation range L11 can be overlapped inside the irradiation range L12. Further, a part of the irradiation range L12 includes a part on the lower end side of the cylindrical body 211, thereby effectively heating the lower part of the cylindrical body 211 to heat the in-cylinder air. In this embodiment, as a method of forming the irradiation range L12, the narrow mirror part 1242 is adopted to increase the curvature of the reflecting surface. However, when the curvature of the reflecting surface is reduced, this is not necessary. This is because the size of the casing 121 itself is increased in the width direction. In FIG. 15, the heater 12 a is one of the left and right sides of the cylindrical body 211, but a pair of left and right is provided, and the irradiation ranges L <b> 11 and L <b> 12 from each heater are set so as to overlap each other. The central area can be a concentrated irradiation area.
 なお、図14、図15の実施形態では、指向幅設定部をミラーユニット124aの長手方向に形成したが、これに代えて、ミラーユニット124の長手方向の中央部に広幅ミラー部1241を形成してスポット的な狭い照射域L11を生成し、ミラーユニット124の長手方向の両側に狭幅ミラー部1242を形成して広角の照射域L12を2個生成摺るようにしてもよい。この場合、2個の広い照射域L12を重なるようにし、かつこの重なった領域に狭い照射域L11が対応するようにしてもよい。 14 and 15, the directivity width setting portion is formed in the longitudinal direction of the mirror unit 124a. Instead, a wide mirror portion 1241 is formed in the center portion of the mirror unit 124 in the longitudinal direction. Alternatively, a spot-like narrow irradiation area L11 may be generated, and narrow mirror portions 1242 may be formed on both sides in the longitudinal direction of the mirror unit 124 to generate two wide-angle irradiation areas L12. In this case, the two wide irradiation areas L12 may be overlapped, and the narrow irradiation area L11 may correspond to the overlapped area.
(2)図16は、ヒータの左右配置における各実施形態を示す正面図で、図16(a)は車両検知器の斜め前方に配置した場合の図、図16(b)は車両検知器のほぼ真横となる位置に配置した場合の図である。図16(a)では、路盤81の幅Wが広く、筒体211の前方に路盤81がある場合には、筒体211の下端部の他、路盤81の前側部分にも赤外線を照射する必要がある。そこで、支持部13を車両検知器2の左右の斜め前方に設置することで、ヒータ12からの赤外線を筒体211の前方部分にほぼ真横から照射(照射域L1,L2)することで効率的な照射を実現している。 (2) FIG. 16 is a front view showing each embodiment in the left-right arrangement of the heater, FIG. 16 (a) is a diagram in the case of being arranged obliquely in front of the vehicle detector, and FIG. 16 (b) is a diagram of the vehicle detector. It is a figure at the time of arrange | positioning in the position which becomes substantially right side. In FIG. 16A, when the width W of the roadbed 81 is wide and the roadbed 81 is in front of the cylinder 211, it is necessary to irradiate the front side portion of the roadbed 81 with infrared rays in addition to the lower end of the cylinder 211. There is. Therefore, by installing the support portion 13 diagonally forward on the left and right of the vehicle detector 2, it is efficient by irradiating the infrared rays from the heater 12 to the front portion of the cylindrical body 211 from substantially right side (irradiation areas L1, L2). Has achieved a good irradiation.
 一方、図16(b)では、例えば路盤81の幅Wが筒体211の幅とほぼ同じ程度の(図16(a)に比して幅Wが狭い)場合、筒体211の斜め前方に支持部13を配置することができない。そこで、支持部13を筒体211のほぼ真横に配置すると共に、ヒータ12が斜め前方に向くように、図7(a)に示す環状体141の締結角度を調整する。このようにすることで、路盤81の幅が狭い場合でも、照射域L1,L2を可及的に筒体211の下部及びその前方部分に設定することができる。 On the other hand, in FIG. 16B, for example, when the width W of the roadbed 81 is approximately the same as the width of the cylinder 211 (the width W is narrower than that of FIG. 16A), The support part 13 cannot be arranged. Therefore, the support portion 13 is arranged almost directly beside the cylindrical body 211, and the fastening angle of the annular body 141 shown in FIG. 7A is adjusted so that the heater 12 faces obliquely forward. By doing in this way, even when the width of the roadbed 81 is narrow, the irradiation areas L1 and L2 can be set as much as possible in the lower part of the cylindrical body 211 and the front part thereof.
(3)図17は、ヒータを昇降可能にする昇降機構を備えた実施形態を示す正面図である。図17は、図5(b)に対応する図である。ヒータ12は、図5に示されるヒータと同一で、照射範囲も略同一であるとする。この実施形態では、支持部13の立直部132aは、例えば断面四角形で、筒体211に対応する高さを有している。この実施形態では、ヒータ12は、図7(a)のネジ孔1411にネジ141aを螺設することで支持されるものではなく、立直部132aに嵌合する環状体141aを有し、立直部132に対して摺動自在、かつ回動が規制されて構成されている。なお、立直部132及び環状体141のような断面円形を採用する場合には、回動を規制する規制部材を別途採用することで対応可能である。 (3) FIG. 17 is a front view showing an embodiment provided with an elevating mechanism that allows the heater to elevate. FIG. 17 is a diagram corresponding to FIG. The heater 12 is the same as the heater shown in FIG. 5, and the irradiation range is also substantially the same. In this embodiment, the upright part 132a of the support part 13 has, for example, a rectangular cross section and a height corresponding to the cylindrical body 211. In this embodiment, the heater 12 is not supported by screwing the screw 141a into the screw hole 1411 of FIG. 7A, but has an annular body 141a fitted to the vertical portion 132a. It is configured to be slidable with respect to 132 and whose rotation is restricted. In addition, when employ | adopting circular cross-section like the upright part 132 and the annular body 141, it can respond | correspond by employ | adopting separately the control member which controls rotation.
 昇降機構は、立直部132aの基端に電動モータ等で回動するウインチ133を備えている。ウインチ133は回転軸1331を備えている。立直部132aの上方適所、例えば上端には滑車134が配置されている。そして、ウインチ133の回転軸1331から滑車134を経由してヒータ12までワイヤ135が這わされ、ワイヤ135の先端はヒータ12の係合具136に締結されている。この構造において、今、ヒータ12が基準位置、すなわち図5に示す支持板812上を照射する位置(図17では下側のヒータ12位置)にあるとして、ウインチ133を駆動すると、ワイヤ135によってヒータ12は引き上げられる。例えば中間高さ位置である繋ぎ目の位置を臨む位置で停止する。筒体211の繋ぎ目には鍔状の連結部2111があり、この連結部2111に積雪する可能性があるため、積雪すれば中間高さ位置で車両誤検知を生じる可能性がある。そこで、ウインチ133によってヒータ12を連結部2111に赤外線を照射し得る位置に移動させる動作を周期的に行うことで、1台で複数箇所に対して赤外線を照射可能にしている。さらに、筒体211の頂部に臨む位置で停止させ、この位置で赤外線を照射することで、筒体211の頂部に積雪し、正面下方に垂れる雪や氷によって生じる虞のある、高い位置での車両誤検知も防止することができる。 The elevating mechanism includes a winch 133 that is rotated by an electric motor or the like at the proximal end of the upright portion 132a. The winch 133 includes a rotating shaft 1331. A pulley 134 is disposed at an appropriate position above the upright portion 132a, for example, at the upper end. A wire 135 is wound from the rotating shaft 1331 of the winch 133 to the heater 12 via the pulley 134, and the tip of the wire 135 is fastened to the engaging tool 136 of the heater 12. In this structure, when the winch 133 is driven assuming that the heater 12 is at the reference position, that is, the position where the heater 12 is irradiated on the support plate 812 shown in FIG. 12 is raised. For example, it stops at the position facing the position of the joint that is the intermediate height position. Since there is a hook-shaped connecting portion 2111 at the joint of the cylindrical body 211 and there is a possibility of snow accumulation on this connecting portion 2111, there is a possibility that erroneous vehicle detection will occur at an intermediate height position if snowing. Therefore, by periodically performing an operation of moving the heater 12 to a position where the connecting portion 2111 can irradiate infrared rays by the winch 133, one unit can irradiate infrared rays to a plurality of locations. Furthermore, by stopping at the position facing the top of the cylinder 211 and irradiating infrared rays at this position, snow is accumulated on the top of the cylinder 211, and there is a risk that it may be caused by snow or ice dripping down the front. Vehicle false detection can also be prevented.
 ウインチ133の動作制御は、図13に示す制御部100で行えばよい。例えば、下方の基準位置からの駆動パルス数や駆動時間、滑車134の回転量の検出、あるいは立直部132aの対応する箇所に設置されたセンサ(フォトセンサやマイクロスイッチ等)の検出情報を使用すればよい。なお、ワイヤ135は回転軸1331と滑車134との間に掛け渡された周回構造とすることで、ヒータ12の下降動作を自重で行う場合に代えて駆動力で行うようにすることもできる。なお、昇降機構としては、図17のウインチ式に代えて、回転運動を直線運動に変換するラックピニオン式とか、雄ねじが形成されたステーに、ヒータ12が係合された雌ねじ部を螺合させ、ステーを回動することでヒータ12を昇降させるタイプでもよい。 The operation control of the winch 133 may be performed by the control unit 100 shown in FIG. For example, the number of driving pulses from the lower reference position, the driving time, the rotation amount of the pulley 134, or the detection information of a sensor (photo sensor, microswitch, etc.) installed at a corresponding position of the upright portion 132a is used. That's fine. Note that the wire 135 may have a revolving structure that is stretched between the rotating shaft 1331 and the pulley 134, so that the lowering operation of the heater 12 can be performed with a driving force instead of the self-weight. As the lifting mechanism, instead of the winch type shown in FIG. 17, a rack and pinion type that converts rotational motion into linear motion, or a female screw portion engaged with the heater 12 is screwed into a stay formed with a male screw. The heater 12 may be moved up and down by rotating the stay.
(4)図18は、ヒータ12の配置の他の実施形態を示す図である。図18は、図4に対応する図である。図18では、路盤81aが図4の場合に比して幅広であり、通行車両との関係で、筒体211及び凍結防止装置10は車両通路8側から離れた側、すなわち路盤81aの後方側に設置されている。路盤81aが幅広の場合、積雪は、支持板812の上面のみならず、支持板812のさらに前方領域にも積もることになる。従って、支持板812及び支持板812のさらに前方領域に赤外線を照射して積もった雪を融雪しないと、車両誤検知を生じることとなる。そこで、図18の実施形態では、左右の一方、ここでは左側のヒータ12は、図4と同様、筒体211の下端一部及び支持板812上面を照射範囲L2として照射する。 (4) FIG. 18 is a diagram showing another embodiment of the arrangement of the heater 12. FIG. 18 corresponds to FIG. In FIG. 18, the roadbed 81 a is wider than in the case of FIG. 4, and the cylinder 211 and the antifreezing device 10 are away from the vehicle passage 8 side, that is, the rear side of the roadbed 81 a in relation to the passing vehicle. Is installed. When the roadbed 81a is wide, the snow is accumulated not only on the upper surface of the support plate 812 but also in the further front region of the support plate 812. Therefore, if the snow accumulated by irradiating the support plate 812 and the front area of the support plate 812 with infrared rays is not melted, erroneous vehicle detection will occur. Therefore, in the embodiment of FIG. 18, the heater 12 on one of the left and right sides, here the left side, irradiates a part of the lower end of the cylindrical body 211 and the upper surface of the support plate 812 as an irradiation range L2 as in FIG.
 また、右側にはより長尺の立直部132bを採用し、ヒータ12bは左側のヒータ12より高い位置、例えば2倍程度高い位置に取り付けられ、路盤81aの幅方向全体を照射範囲L4とするように姿勢が設定されている。このようにすることで、筒体211の下端部及び下端の直前領域をL1+L4で、筒体211の正面前方、すなわち路盤81aの幅方向全体を照射範囲L4で照射することで、路盤上であって車両検知器2の検知域全体の積雪を融雪できる。なお、ヒータ12bは指向範囲を広げる分、左側のヒータ12よりワット数が大きければよく、例えば左側のヒータ12が300Wの場合、ヒータ12bは500Wあるいは1000Wである。また、左側のヒータ12が500Wとした場合、ヒータ12bは1000Wであってもよい。あるいは制御部100によって電力調整する態様でもよい。 Further, a longer upright portion 132b is employed on the right side, and the heater 12b is mounted at a position higher than the left heater 12, for example, about twice as high, so that the entire width direction of the roadbed 81a is set as the irradiation range L4. The posture is set to. By doing so, the lower end of the cylinder 211 and the area immediately before the lower end are irradiated with L1 + L4, and the front of the cylinder 211, that is, the entire width direction of the road bed 81a is irradiated with the irradiation range L4. Thus, it is possible to melt snow in the entire detection area of the vehicle detector 2. Note that the heater 12b only needs to have a larger wattage than the left heater 12 as the directivity range is expanded. For example, when the left heater 12 is 300 W, the heater 12b is 500 W or 1000 W. When the left heater 12 is 500 W, the heater 12 b may be 1000 W. Alternatively, the power may be adjusted by the control unit 100.
(5)図19、図20は、車高の高い種類の車両の検知を行う車両検知器2a及びヒータの配置の他の実施形態を示す図である。図19(a)は、通常サイズ(長尺寸法175cm)より所定寸法だけ短い下段となる車両検知器2の筒体211’の頂部に直列に通常サイズの車両検知器2を連結した態様であり、図20(a)は、通常サイズの筒体211に隣接して、下段に該当する筒体211’(図19(a)参照)の寸法と同寸法のダミーの延長支柱211’’の頂部に通常サイズの筒体211を冠設した態様である。図19(a)、図20(a)に示すように筒体211、211’、延長支柱211’’のいずれも、当接部に鍔状の連結部2111を有し、ボルト、ナットを介して締め付けることで強固に一体化される。 (5) FIGS. 19 and 20 are diagrams showing another embodiment of the arrangement of the vehicle detector 2a for detecting a vehicle of a high vehicle height and a heater. FIG. 19A is a mode in which the normal size vehicle detector 2 is connected in series to the top of the cylinder 211 ′ of the vehicle detector 2 which is a lower stage shorter than the normal size (long size 175 cm) by a predetermined size. FIG. 20A shows the top of a dummy extension post 211 ″ having the same dimensions as the cylinder 211 ′ (see FIG. 19A) corresponding to the lower stage adjacent to the normal-sized cylinder 211. In this embodiment, a normal-sized cylinder 211 is crowned. As shown in FIGS. 19 (a) and 20 (a), each of the cylinders 211, 211 ′ and the extension post 211 ″ has a hook-shaped connecting portion 2111 at the contact portion, and is connected via bolts and nuts. By tightening, it is firmly integrated.
 図19(b)は、図19(a)の構成に対応したヒータ12の配置を示し、左右に設けられ、かつ上下方向に2個配設されている。合計4個のヒータ12のワット数は同一でもよく、あるいは上段側は多少小さいワット数でもよい。上段側の各ヒータ12は、連結部2111の鍔に積雪する雪を融雪して、中間高さ位置での車両検知を確実に行わせるようにしている。従って、上段側の各ヒータ12は指向方向が筒体211の正面を主体として照射する向きに設定することが好ましい。 FIG. 19 (b) shows the arrangement of the heaters 12 corresponding to the configuration of FIG. 19 (a), two heaters are provided on the left and right, and two heaters are arranged in the vertical direction. The total four heaters 12 may have the same wattage, or the upper stage may have a slightly smaller wattage. Each heater 12 on the upper stage melts snow that accumulates on the cage of the connecting portion 2111 so that vehicle detection at the intermediate height position is reliably performed. Therefore, it is preferable that the heaters 12 on the upper side are set so that the directing direction is mainly directed to the front surface of the cylindrical body 211.
 図20(b)は、図20(a)の構成に対応したヒータ12の配置を示している。この態様では、下段には筒体211の左側に2個のヒータ12が上下方向に配置されている。これは、筒体211の右側は延長支柱211’’が設置されていることから、この位置にヒータ12が配置できないためである。一方、上段には延長支柱211’’に冠設された筒体211の右側に長尺の立直部132cが立設され、その上方である連結部2111に臨む位置に1個のヒータ12が取り付けられている。これは、延長支柱211’’の左側には1段の筒体211が設置されていることから、その位置に立直部132cが設置できないためである。このように立直部132,132cを空いたスペースに振り分けて配置することで、支障なくヒータ12を適宜の箇所に取り付けることが可能となる。 FIG. 20 (b) shows the arrangement of the heaters 12 corresponding to the configuration of FIG. 20 (a). In this embodiment, two heaters 12 are arranged in the vertical direction on the left side of the cylindrical body 211 in the lower stage. This is because the extension column 211 ″ is installed on the right side of the cylinder 211, and the heater 12 cannot be disposed at this position. On the other hand, a long upright part 132c is erected on the right side of the cylindrical body 211 crowned on the extension column 211 '' on the upper stage, and one heater 12 is attached at a position facing the connecting part 2111 above it. It has been. This is because the upright portion 132c cannot be installed at that position because the one-stage cylinder 211 is installed on the left side of the extension column 211 ''. As described above, by arranging the upright portions 132 and 132c in the vacant space, the heater 12 can be attached to an appropriate place without any trouble.
(6)本実施形態では、管の表面に、赤外線放射材料、例えば黒色の遠赤外線放射セラミックスがコーティングされたハロゲンランプ125を採用したが、これに限定されず、赤外線を放射するものであれば、他のランプでもよい。また、有料道路の自動料金徴収システムの他、種々の用途、例えば屋外の駐車場における車両検知器にも適用可能である。さらに、氷解が可能な態様では、当然に結露、雨滴の水分乾燥が可能である。また、複数の車両検知器に対応して凍結防止装置を配設する態様では、各凍結防止装置のヒータ間を電源供給線によって並列接続し、間欠動作をずらしながら順次切り替えるようにすることで、全体として節電を図ることが可能となる。 (6) In the present embodiment, the halogen lamp 125 in which the surface of the tube is coated with an infrared radiation material, for example, a black far infrared radiation ceramic, is not limited thereto. Other lamps may be used. In addition to an automatic toll collection system for toll roads, the present invention can be applied to various uses, for example, a vehicle detector in an outdoor parking lot. Furthermore, in the mode in which ice melting is possible, it is naturally possible to condense and dry moisture of raindrops. Moreover, in the aspect which arrange | positions an antifreeze apparatus corresponding to a several vehicle detector, by connecting in parallel between the heaters of each antifreeze apparatus by a power supply line, and switching sequentially while shifting intermittent operation, As a whole, it is possible to save power.
(7)本実施形態では、車両検知器2は走行通路に沿って形成された路盤81上に配置された例で説明したが、本発明は、このような路盤81ではなく、所定嵩を有する台座などの上に車両検知器2が設置される態様に対しても適用可能である。 (7) In the present embodiment, the vehicle detector 2 has been described as an example disposed on the roadbed 81 formed along the traveling path. However, the present invention is not such a roadbed 81 but has a predetermined volume. The present invention is also applicable to a mode in which the vehicle detector 2 is installed on a pedestal or the like.
 以上のとおり、本発明は、車両通路に正面を向けて立設された筒体を有し、前記筒体の内空間に正面側に向けられた発光部及び受光部の一方が上下方向に複数配列されると共に前記筒体の正面の透光窓を介して通行車両を検知する車両検知器の凍結防止装置において、前記筒体の立設位置の近傍で、かつ前記筒体に対して前記車両通路と略平行な方向に配置された支持部に支持され、前記筒体の下端側一部及び前記筒体の下端の前方所定範囲を含む所定照射域に向けて赤外線を照射する赤外線照射源を有する赤外線照射部と、少なくとも降雪に関する気象情報を取得する気象情報取得部と、前記気象情報取得部で取得された気象情報に基づいて降雪状態であると判断した場合、前記赤外線照射部への電力供給を行う制御部とを備えたことを特徴とするものである。この発明によれば、降雪が検知されると、筒体の内部の空気が下部から加温され、対流により筒体の内空間が全体的に暖められることになる。また、赤外線照射源による加熱によって筒体の下端の前方所定範囲に積もる雪や、氷結中の氷が融解される。従って、環境温度が氷点下などで、透光窓が氷結していた場合でも氷解が行われる。このため検知光が積雪や氷塊によって遮光、乱反射されることがなくなり、誤検知が防止できる。また、筒体の内部の空気が加熱されることによって正面に残留付着している雪の融解が促進されるため、車両検知のための検知範囲全体に亘って誤検知の問題が解消される。さらに、外部から遠隔的に車両検知器を加熱する方式としたので、車両検知器自身の構造に変更を加える必要がない。 As described above, the present invention has a cylindrical body erected in front of a vehicle passage, and a plurality of light emitting units and light receiving units directed to the front side in the inner space of the cylindrical body are vertically arranged. In the anti-freezing device for a vehicle detector that is arranged and detects a passing vehicle through a transparent window in front of the cylinder, the vehicle is in the vicinity of the standing position of the cylinder and with respect to the cylinder An infrared irradiation source that is supported by a support portion arranged in a direction substantially parallel to the passage and irradiates infrared rays toward a predetermined irradiation area including a part of a lower end side of the cylindrical body and a predetermined forward range of the lower end of the cylindrical body. An infrared irradiation unit having, a weather information acquisition unit that acquires at least weather information relating to snowfall, and a power to the infrared irradiation unit when it is determined that it is in a snowfall state based on the weather information acquired by the weather information acquisition unit A control unit for supplying It is an butterfly. According to this invention, when snowfall is detected, the air inside the cylinder is heated from below, and the internal space of the cylinder is warmed as a whole by convection. Moreover, the snow which accumulates in the predetermined range ahead of the lower end of a cylinder by the heating by an infrared irradiation source and the ice in freezing are melted. Therefore, even when the environmental temperature is below the freezing point and the transparent window is frozen, ice melting is performed. For this reason, the detection light is not blocked or irregularly reflected by snow or ice blocks, and erroneous detection can be prevented. Moreover, since the melting of the snow remaining on the front surface is promoted by heating the air inside the cylinder, the problem of erroneous detection is solved over the entire detection range for vehicle detection. Furthermore, since the vehicle detector is heated remotely from the outside, there is no need to change the structure of the vehicle detector itself.
 また、前記赤外線照射部は、第1、第2の赤外線照射源を備え、前記所定照射域は、前記第1、第2の赤外線照射源によって照射される第1、第2の照射域の少なくとも一部が重なっていることが好ましい。この構成によれば、第1、第2の赤外線照射源によって第1、第2の照射域に赤外線が照射されると共に、第1、第2の照射域の少なくとも一部の重なった部分に対してより効果的な融雪処理を施すことができる。なお、第1、第2の照射域の少なくとも一部が重なるとは、文字通り、互いの照射域の一部同士が重なる態様の他、一方が他方を包含する態様を含む態様であってもよい。 The infrared irradiation unit includes first and second infrared irradiation sources, and the predetermined irradiation area is at least one of the first and second irradiation areas irradiated by the first and second infrared irradiation sources. It is preferable that a part overlaps. According to this configuration, the first and second infrared irradiation sources irradiate the first and second irradiation areas with infrared rays, and at least partially overlap the first and second irradiation areas. More effective snow melting treatment. It should be noted that the phrase “at least a part of the first and second irradiation areas overlap” may literally include an aspect in which one of the other irradiation areas includes the other in addition to the aspect in which a part of each irradiation area overlaps. .
 また、前記支持部は、前記第1、第2の赤外線照射源を支持する第1、第2の支持部を備え、前記第1、第2の赤外線照射源は、前記筒体を挟んで前記車両通路と略平行な左右両側に配置されることが好ましい。この構成によれば、筒体の左右両側に障害物がない場合などは、左右位置に第1、第2の赤外線照射源を設けて、左右両方から赤外線の照射を行い、かつ第1、第2の照射域の少なくとも一部を重ならせることで、効果的な融雪処理が図れる。 The support portion includes first and second support portions that support the first and second infrared irradiation sources, and the first and second infrared irradiation sources sandwich the cylinder. It is preferable to be arranged on both the left and right sides substantially parallel to the vehicle passage. According to this configuration, when there are no obstacles on both the left and right sides of the cylindrical body, the first and second infrared irradiation sources are provided at the left and right positions, and infrared irradiation is performed from both the left and right sides. An effective snow melting process can be achieved by overlapping at least a part of the two irradiation areas.
 また、前記第1、第2の赤外線照射源は、前記筒体を挟んで前記車両通路と略平行な左右両側となる位置の一方に立設された前記支持部に支持されていることが好ましい。この構成によれば、筒体の一方側に障害物が設けられている場合であっても、他方側に第1、第2の赤外線照射源を配設することで、左右両側に配設した場合と同等な熱量の赤外線を照射することが可能となる。 Moreover, it is preferable that the first and second infrared irradiation sources are supported by the support portion erected at one of the left and right positions substantially parallel to the vehicle passage with the cylinder interposed therebetween. . According to this configuration, even when an obstacle is provided on one side of the cylindrical body, the first and second infrared irradiation sources are provided on the other side, thereby providing the left and right sides. It is possible to irradiate infrared rays having the same amount of heat as the case.
 また、前記第1の赤外線照射源は第2の赤外線照射源より高い位置に支持され、かつ、前記第1の赤外線照射源の照射能力は前記第2の赤外線照射源の照射能力より高いものであることが好ましい。この構成によれば、一方側、ここでは第1の赤外線照射源を高い位置に配置してより高い照射能力で赤外線を照射する構成とすることで、左右側に種々の障害物を設ける必要がある場合にも対応することが可能となる。 The first infrared irradiation source is supported at a higher position than the second infrared irradiation source, and the irradiation capability of the first infrared irradiation source is higher than the irradiation capability of the second infrared irradiation source. Preferably there is. According to this configuration, it is necessary to provide various obstacles on the left and right sides by arranging the first infrared irradiation source at a high position and irradiating infrared rays with higher irradiation capability. It is possible to cope with some cases.
 また、前記第1、第2の赤外線照射源の少なくとも一方は、上下方向に複数の赤外線照射源を備え、下側の赤外線照射源が前記所定照射域に赤外線を照射し、上側の赤外線照射源が前記筒体の高さ方向の略中間位置の側面に赤外線を照射するものであることが好ましい。この構成によれば、少なくとも一方は、上側の赤外線照射源が前記筒体の高さ方向の略中間位置の側面に赤外線を照射するので、車高の高い種類の車両検知のために筒体を2本上下方向に連結した場合に、連結部に積雪に対する融雪が可能となり、これにより中間高さ位置での車両誤検知が防止できる。 In addition, at least one of the first and second infrared irradiation sources includes a plurality of infrared irradiation sources in the vertical direction, the lower infrared irradiation source irradiates the predetermined irradiation area with infrared rays, and the upper infrared irradiation source. However, it is preferable to irradiate infrared rays on the side surface at a substantially intermediate position in the height direction of the cylindrical body. According to this configuration, at least one of the upper infrared irradiation sources irradiates infrared rays to the side surface at a substantially intermediate position in the height direction of the cylindrical body. When two are connected in the vertical direction, it becomes possible to melt snow against snow at the connecting portion, thereby preventing erroneous vehicle detection at an intermediate height position.
 また、前記制御部は、前記下側の赤外線照射源に供給する電力を、前記上側の赤外線照射源に供給する電力に比して大きく設定することが好ましい。この構成によれば、連結部のみの融雪に足りる電力で済むので効率的となる。 Further, it is preferable that the control unit sets the power supplied to the lower infrared irradiation source to be larger than the power supplied to the upper infrared irradiation source. According to this configuration, power sufficient for melting snow only at the connecting portion is sufficient, which is efficient.
 また、前記赤外線照射部は、前記赤外線照射源を所定の姿勢で前記支持部に取り付ける取付部を備え、前記取付部は、前記赤外線照射源の高さを調整する高さ調整部と、前記赤外線照射源の向きを調整する向き調整部とを備えていることが好ましい。この構成によれば、筒体の周囲の状況に応じて赤外線照射源の高さ乃至向きを適宜調整できる。また、当該地の気象条件(主に降雪量)等を考慮して高さ調整が可能となるので、汎用性が高い。 In addition, the infrared irradiation unit includes an attachment unit that attaches the infrared irradiation source to the support unit in a predetermined posture, and the attachment unit includes a height adjustment unit that adjusts a height of the infrared irradiation source, and the infrared ray It is preferable to include an orientation adjustment unit that adjusts the orientation of the irradiation source. According to this configuration, the height or direction of the infrared irradiation source can be appropriately adjusted according to the situation around the cylinder. In addition, since the height can be adjusted in consideration of the weather conditions (mainly snowfall) of the area, the versatility is high.
 また、前記赤外線照射源は、異なるサイズの2つの赤外線照射域を形成する指向幅設定部を備えていることが好ましい。この構成によれば、1つの赤外線照射源からの照射域内に、熱量が大小異なる領域を形成することができ、積雪状況に応じての熱量照射が可能となる。 Moreover, it is preferable that the infrared irradiation source includes a directivity width setting unit that forms two infrared irradiation areas of different sizes. According to this configuration, regions with different amounts of heat can be formed in the region irradiated from one infrared irradiation source, and heat amount irradiation according to the snow cover condition is possible.
 また、前記気象情報取得部は、降雪の有無を検出する降雪検出器であることが好ましい。この構成によれば、現場の降雪状況が直に融雪処理に反映されるので、応答性が良くかつ効果的である。 The weather information acquisition unit is preferably a snowfall detector that detects the presence or absence of snowfall. According to this configuration, since the snowfall situation at the site is directly reflected in the snow melting process, the responsiveness is good and effective.
 また、前記制御部は、前記気象情報取得部が降雪状態の終了を検出した時点から所定時間経過後に前記赤外線照射部への電源供給を終了することが好ましい。この構成によれば、降雪量によっては雪が止んでも多少積雪している場合もあることから、かかる残った雪を融雪する時間を確保することで、積雪分に対する確実な融雪が可能となる。この場合、さらに降雪検出器で検知された積雪量に応じて所定時間を可変することが好ましい。 Further, it is preferable that the control unit terminates power supply to the infrared irradiation unit after a predetermined time has elapsed since the meteorological information acquisition unit detected the end of the snowfall state. According to this configuration, depending on the amount of snowfall, even if the snow stops, there is a case where the snow has accumulated to some extent. Therefore, it is possible to surely melt the snow by ensuring the time for melting the remaining snow. In this case, it is preferable to change the predetermined time according to the amount of snow detected by the snowfall detector.
 また、前記赤外線照射部は、前記車両検知器の前記筒体が立設された、前記車両通路を形成するための所定幅及び所定嵩高の路盤に立設されるものであることが好ましい。この構成によれば、筒体の正面前方の路盤面に対しても融雪を行うことができる。 In addition, it is preferable that the infrared irradiation unit is erected on a roadbed having a predetermined width and a predetermined bulk for forming the vehicle passage where the cylinder of the vehicle detector is erected. According to this configuration, snow melting can be performed also on the roadbed surface in front of the cylinder body.
 また、前記赤外線照射源は、管状のハロゲンランプの表面に赤外線放射材料がコーティングされたものであることが好ましい。この構成によれば、赤外線によって融雪、氷解が効果的に行われる。 Further, it is preferable that the infrared radiation source is a tubular halogen lamp whose surface is coated with an infrared radiation material. According to this configuration, snow melting and ice melting are effectively performed by infrared rays.
10 凍結防止装置
11 ヒータ部(赤外線照射部)
12 ヒータ
124,124a ミラーユニット
1241 広幅ミラー部(指向幅設定部)
1242 狭幅ミラー部(指向幅設定部)
125 ハロゲンランプ(赤外線照射源、第1、第2の赤外線照射源)
13 支持部
132,132a、132b、132c 立直部
133 ウインチ(高さ調整部)
134 滑車(高さ調整部)
135 ワイヤ(高さ調整部)
14 取付具(取付部)
141 環状体(高さ調整部、向き調整部)
142 位置決め部材
1422 円弧孔(向き調整部)
143,143’、143’’ 連結部
2 車両検知器
21 受光側部(車両検知器)
211 筒体
211’ ダミー体
81 路盤
812 支持板
100 制御部
101 電源制御部
103 タイマ
1021 降雪計(気象情報取得部)
10 Freezing prevention device 11 Heater part (infrared irradiation part)
12 Heater 124, 124a Mirror unit 1241 Wide mirror part (Direction width setting part)
1242 Narrow mirror part (Direction width setting part)
125 Halogen lamp (infrared radiation source, first and second infrared radiation sources)
13 Supporting parts 132, 132a, 132b, 132c Upright part 133 winch (height adjustment part)
134 pulley (height adjustment part)
135 wire (height adjustment part)
14 Mounting tool (Mounting part)
141 Ring body (height adjustment part, orientation adjustment part)
142 Positioning member 1422 Arc hole (direction adjustment part)
143, 143 ', 143''connection part 2 vehicle detector 21 light-receiving side part (vehicle detector)
211 cylinder 211 'dummy body 81 roadbed 812 support plate 100 control unit 101 power supply control unit 103 timer 1021 snowfall meter (weather information acquisition unit)

Claims (14)

  1. 車両通路に正面を向けて立設された筒体を有し、前記筒体の内空間に正面側に向けられた発光部及び受光部の一方が上下方向に複数配列されると共に前記筒体の正面の透光窓を介して通行車両を検知する車両検知器の凍結防止装置において、
     前記筒体の立設位置の近傍で、かつ前記筒体に対して前記車両通路と略平行な方向に配置された支持部に支持され、前記筒体の下端側一部及び前記筒体の下端の前方所定範囲を含む所定照射域に向けて赤外線を照射する赤外線照射源を有する赤外線照射部と、
     少なくとも降雪に関する気象情報を取得する気象情報取得部と、
     前記気象情報取得部で取得された気象情報に基づいて降雪状態であると判断した場合、前記赤外線照射部への電力供給を行う制御部とを備えたことを特徴とする車両検知器の凍結防止装置。
    A cylindrical body standing upright in front of the vehicle passage, and a plurality of light emitting sections and light receiving sections directed to the front side in the inner space of the cylindrical body are arranged in the vertical direction and the cylindrical body In the anti-freezing device for a vehicle detector that detects a passing vehicle through a front transparent window,
    Supported by a support portion disposed in the vicinity of the standing position of the cylindrical body and in a direction substantially parallel to the vehicle path with respect to the cylindrical body, and a lower end side portion of the cylindrical body and a lower end of the cylindrical body An infrared irradiation unit having an infrared irradiation source for irradiating infrared rays toward a predetermined irradiation area including a predetermined range in front of
    A weather information acquisition unit that acquires at least weather information related to snowfall;
    A vehicle detector freezing prevention comprising: a control unit that supplies power to the infrared irradiation unit when it is determined that it is snowing based on the weather information acquired by the weather information acquisition unit apparatus.
  2. 前記赤外線照射部は、第1、第2の赤外線照射源を備え、前記所定照射域は、前記第1、第2の赤外線照射源によって照射される第1、第2の照射域の少なくとも一部が重なっていることを特徴とする請求項1に記載の車両検知器の凍結防止装置。 The infrared irradiation unit includes first and second infrared irradiation sources, and the predetermined irradiation area is at least a part of the first and second irradiation areas irradiated by the first and second infrared irradiation sources. The anti-freezing device for a vehicle detector according to claim 1, wherein
  3. 前記支持部は、前記第1、第2の赤外線照射源を支持する第1、第2の支持部を備え、前記第1、第2の赤外線照射源は、前記筒体を挟んで前記車両通路と略平行な左右両側に配置されてなることを特徴とする請求項2に記載の車両検知器の凍結防止装置。 The support portion includes first and second support portions that support the first and second infrared irradiation sources, and the first and second infrared irradiation sources are disposed in the vehicle path with the cylindrical body interposed therebetween. The anti-freezing device for a vehicle detector according to claim 2, wherein the anti-freezing device is disposed on both the left and right sides substantially parallel to the vehicle.
  4. 前記第1、第2の赤外線照射源は、前記筒体を挟んで前記車両通路と略平行な左右両側となる位置の一方に立設された前記支持部に支持されてなることを特徴とする請求項2に記載の車両検知器の凍結防止装置。 The first and second infrared radiation sources are supported by the support portion provided upright at one of the left and right sides substantially parallel to the vehicle passage with the cylinder interposed therebetween. The anti-freezing device for a vehicle detector according to claim 2.
  5. 前記第1の赤外線照射源は第2の赤外線照射源より高い位置に支持され、かつ、前記第1の赤外線照射源の照射能力は前記第2の赤外線照射源の照射能力より高いものであることを特徴とする請求項2~4のいずれかに記載の車両検知器の凍結防止装置。 The first infrared irradiation source is supported at a higher position than the second infrared irradiation source, and the irradiation capability of the first infrared irradiation source is higher than the irradiation capability of the second infrared irradiation source. The vehicle detector anti-freezing device according to any one of claims 2 to 4, wherein:
  6. 前記第1、第2の赤外線照射源の少なくとも一方は、上下方向に複数の赤外線照射源を備え、下側の赤外線照射源が前記所定照射域に赤外線を照射し、上側の赤外線照射源が前記筒体の高さ方向の略中間位置の側面に赤外線を照射するものであることを特徴とする請求項2に記載の車両検知器の凍結防止装置。 At least one of the first and second infrared irradiation sources includes a plurality of infrared irradiation sources in the vertical direction, the lower infrared irradiation source irradiates infrared rays to the predetermined irradiation area, and the upper infrared irradiation source The anti-freezing device for a vehicle detector according to claim 2, wherein infrared rays are irradiated to a side surface at a substantially intermediate position in the height direction of the cylindrical body.
  7. 前記制御部は、前記下側の赤外線照射源に供給する電力を、前記上側の赤外線照射源に供給する電力に比して大きく設定することを特徴とする請求項6に記載の車両検知器の凍結防止装置。 7. The vehicle detector according to claim 6, wherein the control unit sets a power supplied to the lower infrared irradiation source to be larger than a power supplied to the upper infrared irradiation source. 8. Freezing prevention device.
  8. 前記赤外線照射部は、前記赤外線照射源を所定の姿勢で前記支持部に取り付ける取付部を備え、前記取付部は、前記赤外線照射源の高さを調整する高さ調整部と、前記赤外線照射源の向きを調整する向き調整部とを備えていることを特徴とする請求項1~7のいずれかに記載の車両検知器の凍結防止装置。 The infrared irradiation unit includes an attachment unit that attaches the infrared irradiation source to the support unit in a predetermined posture, and the attachment unit includes a height adjustment unit that adjusts the height of the infrared irradiation source, and the infrared irradiation source. The vehicle detector anti-freezing device according to any one of claims 1 to 7, further comprising a direction adjusting unit that adjusts the direction of the vehicle detector.
  9. 前記赤外線照射源は、異なるサイズの2つの赤外光照射域を形成する指向幅設定部を備えていることを特徴とする請求項1~8のいずれかに記載の車両検知器の凍結防止装置。 9. The vehicle detector anti-freezing device according to claim 1, wherein the infrared irradiation source includes a directivity width setting unit that forms two infrared light irradiation areas of different sizes. .
  10. 前記気象情報取得部は、降雪の有無を検出する降雪検出器であることを特徴とする請求項1~9のいずれかに記載の車両検知器の凍結防止装置。 The anti-freezing device for a vehicle detector according to any one of claims 1 to 9, wherein the weather information acquisition unit is a snowfall detector that detects the presence or absence of snowfall.
  11. 前記制御部は、前記気象情報取得部が降雪状態の終了を検出した時点から所定時間経過後に前記赤外線照射部への電源供給を終了することを特徴とする請求項10に記載の車両検知器の凍結防止装置。 11. The vehicle detector according to claim 10, wherein the control unit ends power supply to the infrared irradiation unit after a predetermined time has elapsed since the meteorological information acquisition unit detected the end of a snowfall state. Freezing prevention device.
  12. 前記赤外線照射部は、前記車両検知器の前記筒体が立設された、前記車両通路を形成するための所定幅及び所定嵩高の路盤に立設されるものであることを特徴とする請求項1~11のいずれかに記載の車両検知器の凍結防止装置。 The infrared irradiation unit is erected on a roadbed having a predetermined width and a predetermined bulk for forming the vehicle passage, on which the cylindrical body of the vehicle detector is erected. The anti-freezing device for a vehicle detector according to any one of 1 to 11.
  13. 前記赤外線照射源は、管状のハロゲンランプの表面に赤外放射材料がコーティングされたものであることを特徴とする請求項1~12のいずれかに記載の車両検知器の凍結防止装置。 The anti-freezing device for a vehicle detector according to any one of claims 1 to 12, wherein the infrared radiation source is a tubular halogen lamp having a surface coated with an infrared radiation material.
  14. 車両通路に正面を向けて立設された筒体を有し、前記筒体の内空間に正面側に向けられた発光部及び受光部の一方が上下方向に複数配列されると共に前記筒体の正面の透光窓を介して通行車両を検知する車両検知器の凍結防止方法において、
     気象情報取得部で取得される、少なくとも降雪に関する気象情報に基づいて降雪状態の有無を判断し、降雪状態であると判断した場合、前記筒体の立設位置の近傍で、かつ前記筒体に対して前記車両通路と略平行な方向に配置され、前記筒体の下端側一部及び前記筒体の下端の前方所定範囲を含む所定照射域に向けて赤外線を照射する赤外線照射源への電力供給を行うことを特徴とする車両検知器の凍結防止方法。
    A cylindrical body standing upright in front of the vehicle passage, and a plurality of light emitting sections and light receiving sections directed to the front side in the inner space of the cylindrical body are arranged in the vertical direction and the cylindrical body In a vehicle detector freezing prevention method for detecting a passing vehicle through a front transparent window,
    The presence or absence of a snowfall state is determined based on at least weather information related to snowfall acquired by the weather information acquisition unit, and when it is determined that it is a snowfall state, in the vicinity of the standing position of the cylinder and on the cylinder On the other hand, the power to the infrared irradiation source is arranged in a direction substantially parallel to the vehicle passage and irradiates infrared rays toward a predetermined irradiation area including a part of the lower end side of the cylinder and a predetermined range in front of the lower end of the cylinder. A method for preventing freezing of a vehicle detector, characterized in that supply is performed.
PCT/JP2011/059116 2011-04-12 2011-04-12 Vehicle sensing apparatus antifreeze method and device WO2012140743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059116 WO2012140743A1 (en) 2011-04-12 2011-04-12 Vehicle sensing apparatus antifreeze method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059116 WO2012140743A1 (en) 2011-04-12 2011-04-12 Vehicle sensing apparatus antifreeze method and device

Publications (1)

Publication Number Publication Date
WO2012140743A1 true WO2012140743A1 (en) 2012-10-18

Family

ID=47008950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059116 WO2012140743A1 (en) 2011-04-12 2011-04-12 Vehicle sensing apparatus antifreeze method and device

Country Status (1)

Country Link
WO (1) WO2012140743A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105488856A (en) * 2015-12-29 2016-04-13 武汉光电工业技术研究院有限公司 No-parking electronic charging system based on light signal
CN105654564A (en) * 2015-12-29 2016-06-08 武汉光电工业技术研究院有限公司 No-parking electronic toll collection method based on optical signal
CN109059778A (en) * 2018-08-29 2018-12-21 北京新能源汽车股份有限公司 Measuring device
JP2018205964A (en) * 2017-06-01 2018-12-27 富士電機株式会社 Vehicle detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074421A (en) * 2000-08-31 2002-03-15 Mitsubishi Heavy Ind Ltd Detecting method for moving object, and vehicle detector
JP2004172103A (en) * 2002-10-28 2004-06-17 Yuni Rotto:Kk Ice melting device and cold storage warehouse
JP2011085998A (en) * 2009-10-13 2011-04-28 Yuni Rotto:Kk Method and device for preventing freezing of vehicle detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074421A (en) * 2000-08-31 2002-03-15 Mitsubishi Heavy Ind Ltd Detecting method for moving object, and vehicle detector
JP2004172103A (en) * 2002-10-28 2004-06-17 Yuni Rotto:Kk Ice melting device and cold storage warehouse
JP2011085998A (en) * 2009-10-13 2011-04-28 Yuni Rotto:Kk Method and device for preventing freezing of vehicle detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105488856A (en) * 2015-12-29 2016-04-13 武汉光电工业技术研究院有限公司 No-parking electronic charging system based on light signal
CN105654564A (en) * 2015-12-29 2016-06-08 武汉光电工业技术研究院有限公司 No-parking electronic toll collection method based on optical signal
JP2018205964A (en) * 2017-06-01 2018-12-27 富士電機株式会社 Vehicle detection device
CN109059778A (en) * 2018-08-29 2018-12-21 北京新能源汽车股份有限公司 Measuring device

Similar Documents

Publication Publication Date Title
WO2012140743A1 (en) Vehicle sensing apparatus antifreeze method and device
ES2220054T5 (en) Optical sensor
KR100682523B1 (en) Vehicle equipment control with semiconductor light sensors
JP5507196B2 (en) Freezing prevention device for vehicle detector
EP3850916B1 (en) Luminaire system for determining weather related information
KR101593453B1 (en) Street light system
KR101784730B1 (en) Streetlight unit
US9803835B2 (en) System and method of snow and ice removal
KR102393439B1 (en) Lidar apparatus for vehicle
JP5652874B2 (en) Infrared light irradiation device
JP2009218019A (en) Light-emitting diode lighting device
KR20150131717A (en) Apparatus f0r eliminating dew condensation and freezing of roadway reflecting mirror
KR100537047B1 (en) Self-pro·pelled motorcar for investigate closely
JP5900881B2 (en) Snow melting equipment
KR20190080225A (en) Identification Marking Device Including Snow Removing Function Standing Upright Around A Crosswalk
KR102105800B1 (en) Control system for speed camera of radar type
KR101911908B1 (en) Lighting device with adjustable light-distribution angle for street light
KR101056738B1 (en) Road boundary line guide light device
JP2018025031A (en) Infrared snow melting device
JP3664095B2 (en) Self-luminous gaze guidance device
KR101047031B1 (en) Driving Method of 3D Reflective Mirror
JP7492706B2 (en) Snow melting equipment
KR20000028346A (en) Automatic thermostat for traffic signal lamp
KR102300206B1 (en) Illumination system rotating structure of with Stephen&#39;s stork&#39;s bill
KR102456167B1 (en) Construction method of underpass using natural lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP