WO2012140281A1 - Sistema de captación de energía termosolar de geometría variable - Google Patents

Sistema de captación de energía termosolar de geometría variable Download PDF

Info

Publication number
WO2012140281A1
WO2012140281A1 PCT/ES2011/070252 ES2011070252W WO2012140281A1 WO 2012140281 A1 WO2012140281 A1 WO 2012140281A1 ES 2011070252 W ES2011070252 W ES 2011070252W WO 2012140281 A1 WO2012140281 A1 WO 2012140281A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
rotating
segment
receiver
heliostat
Prior art date
Application number
PCT/ES2011/070252
Other languages
English (en)
French (fr)
Inventor
Valeriano RUÍZ HERNÁNDEZ
Isidoro Lillo Bravo
Manuel Antonio SILVA PÉREZ
Gonzalo LOBO MÁRQUEZ
Francisco DÍAZ ANDRADES
Enrique Del Pozo Polidoro
Original Assignee
Centro Tecnológico Avanzado De Energías Renovables De Andalucía (Ctaer)
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro Tecnológico Avanzado De Energías Renovables De Andalucía (Ctaer), Universidad De Sevilla filed Critical Centro Tecnológico Avanzado De Energías Renovables De Andalucía (Ctaer)
Priority to MX2013011946A priority Critical patent/MX2013011946A/es
Priority to MA36337A priority patent/MA35046B1/fr
Priority to EP11863493.0A priority patent/EP2698536A4/en
Priority to US14/110,696 priority patent/US20140116419A1/en
Priority to PCT/ES2011/070252 priority patent/WO2012140281A1/es
Publication of WO2012140281A1 publication Critical patent/WO2012140281A1/es
Priority to ZA2013/07587A priority patent/ZA201307587B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/063Tower concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • F24S2020/23Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants movable or adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a tower-type solar thermal energy collection system, where a set of individual concentrators or heliostats direct solar radiation towards the receiver.
  • a system for collecting solar thermal energy is known in the state of the art, namely, a central tower system comprising a plurality of heliostats, a reflector device provided with two degrees of freedom that makes possible its orientation in any direction of space, which conveniently directed individually by a pointing system based on light sensors or solar equations, allow to concentrate on a receiver, usually located at a certain height on a tower on purpose, the radiation received from the sun for all the heliostats, thus achieving a high density of energy in said receiver that makes it possible to use it for electricity generation, by means of a classic steam cycle, or for the development of strongly endothermic reactions.
  • a fixed receiver located in a tower receives the radiation flow from a plurality of also fixed heliostats, although endowed with two rotating degrees of freedom, generally arranged in azimuthal mounting, although theoretically also equatorial assemblies are possible
  • the Sun travels an apparent path, due in fact to the rotational movement of which the Earth is animated, which begins approximately in the East and ends approximately in the West, finding its highest point when crossing the meridian of the place, the location coordinates of the Sun being variable depending on the latitude of the place, the hour or hour angle and the station or declination angle, it turns out that the drive path of each Heliostat must travel a path that begins in the direction of the bisector of the angle formed by the Sun at the time of the ortho, the heliostat and the receiver, ends in the direction of the bisector of the angle formed by the Sun at the time of sunset, the heliostat and the receiver, naturally passing through the direction of the bisector of the angle formed by the Sun as it passes through the meridian, the heliostat and the receiver.
  • Figure 3 shows the angle ⁇ formed by the normal to the optical plane of the heliostat with the incident ray coming from the Sun. This motivates that the energy used in each position is equivalent to the product of the energy flow multiplied by the area of the heliostat and by the cosine of a, apart from the reflection yields.
  • a disadvantage of the aforementioned system is that the larger the angle ⁇ , the lower its cosine, thereby reducing energy intake for purely geometric reasons, which is known as the "cosine effect”.
  • the amplitude of the angle ⁇ at certain times of the day and days of the year causes a loss of the potential capacity of energy capture of solar tower plants, which until now has been assumed as an intrinsic limitation of the system.
  • An object of the solar thermal concentration system is to provide a variable geometry to a tower of the solar thermal system where the tower is adapted to be moved along a vertical axis of the tower and rotated along the axis vertical or turning the tower, so that the receiver located at the upper distal end of a tower absorbs the incident solar radiation redirected to it by a set of fixed and / or mobile heliostats.
  • Another object of the solar thermal concentration system is to provide heliostats mounted on a mobile frame that horizontally translates the heliostat to avoid the appearance of shadows caused by other heliostats or by the tower itself, and allows to find the best possible orientation angle thereof , therefore, energy collection is improved.
  • the heliostats are displaceable at will depending on the position of the sun at each moment of the day, so that they always have an advantageous orientation, allow to increase the energy efficiency of the solar thermal concentration system thus improving the energy capture.
  • Another object of the concentration system is to maximize the collection of solar energy by also varying the geometry of the tower depending on the time of day and the position of the heliostats.
  • thermosolar system of variable geometry concentration is to allow the height of the tower receiver to be varied relative to the ground, provided by a relative movement between a fixed segment and a mobile segment of the tower. Therefore, the center of the receiver moves between a maximum and minimum height with respect to the ground, which allows to optimize for each day and time the relative position heliostats-receiver to increase the uptake of radiant energy.
  • Figure 1 shows in a diagram a system for collecting solar thermal energy concentration of the tower type according to the state of the art
  • Figures 2 to 4 show the way in which a heliostat reflects solar radiation towards the tower of the tower-type solar thermal energy collection system according to the state of the art
  • Figure 5 shows in a diagram a system for collecting solar thermal energy of concentration of the variable geometry tower type
  • Figure 6 shows in a diagram a detail of a carriage rolling system on which a heliostat is installed
  • Figure 7 shows in a perspective view of the tower of the solar thermal energy collection system of variable geometry concentration
  • Figure 8 shows in a perspective view the tower with its shaft deployed and folded.
  • thermosolar energy of variable geometry comprises a plurality of heliostats 12 that can be moved at will depending on the position of the sun at each moment of the day ; that receive solar energy from the sun to reflect it towards the upper distal end of a tower 13, which houses, at said distal end 51, a receiver to receive the radiation reflected by heliostats 12 and the reflected solar energy received is transformed into thermal energy that , in turn, is transformed into electrical or chemical energy, for example hydrogen.
  • Heliostat 12 is located on a motorized carriage or mobile platform 53 that includes a displacement unit, namely, displacer that is horizontally movable on the terrain of the heliostat field; a tracking unit, that is, a follower of the position of the sun that allows azimuthal and zenithal turns to be made to heliostat 12, and provides control signals to the displacer to position heliostat 12, so that it reflects the maximum incident solar radiation towards the receiver located at the upper distal end 51 of the tower 1 1, regardless of the position of the sun over a day and year.
  • the movement of heliostats 12 can occur both by predetermined paths and freely and autonomously on the surface of the heliostat field of the 1 1 thermosolar system. The movement of heliostats 12 following a predetermined path facilitates both the supply of energy for the movements of heliostat 12 and the control thereof.
  • heliostat 12 Since heliostat 12 is transferable from one position to another much more advantageous from the point of view of the cosine effect, a smaller angle ⁇ implies a greater surface area normal to the incident ray, thus improving energy collection and providing the possibility to avoid the appearance of shadows caused by other heliostats 12 or by the tower 13 of the thermosolar system 1 1.
  • the car 53 is provided with a motorization system, either autonomous or centralized, which allows it to move the heliostats from one position to another.
  • the carriage 53 includes a rolling system of the solid or pneumatic wheel type adapted to roll on prepared or not prepared ground, wheel and rail systems, air mattress systems or even platform systems floating on water sheet, being the devices used for both electromechanical and mechanical cable traction.
  • the carriage 53 is adapted to move on a track 54 formed by two rails arranged in parallel and concentric with respect to the tower 12, other arrangements of the different rails being also possible. of the circular; on which a plurality of cars 53 circulate, each of which supports a heliostat 12.
  • Parallel to the rails 54 runs a power and control rail 61 adapted to supply electrical power to the heliostats 12 and for order communication from a central heliostat control system 12.
  • each heliostat 12 follows an individual path of horizontal translation and orientation throughout the day and year.
  • Heliostats 12 may enter a position of defense or configuration corresponding to the exposure of minimum surface to wind to ensure its stability and integrity in case of adverse weather events such as strong wind.
  • the carriage 53 comprises a stress absorber of the wheelset type, claws located under the support rail 54 of hydraulic or electromechanical actuation to materialize the emergency anchoring of the heliostats 12 to the support rail 54 that supports them, therefore capable of absorbing vertical tensile stresses.
  • the follower governs the azimuthal and zenithal rotation of the heliostat 12 and also the horizontal translation of the mobile frame 53 on the ground.
  • the tower 13 comprises, from the foundation thereof, a fixed shaft segment 81 that rises substantially vertically from the foundation, a mobile shaft segment 82, namely , shaft segment assembled in telescopic mode that allows the segment 82 of telescopic shaft to carry out a translation movement in ascending or descending elevation along a vertical axis AA 'of tower 13 and a rotating segment 83 in the form of a rotating gondola, comprising a cavity 52 where the receiver of tower 13 is housed.
  • the rotating gondola 83 allows a rotation movement to the receiver along a vertical axis AA 'of the tower 13, so that the rotating gondola 83 travels an arc of circumference in both directions of rotation, that is, west-east and vice versa.
  • the receiver is located in the cavity 52 of the distal end of the tower 13 mechanically connected to the rotating gondola 83, so that the axis of the receiver is aligned with the axis of rotation of the gondola 83, thereby avoiding totally the risk of blurring during system movements, consequently achieving maximum energy uptake possible in the center of the receiver plane.
  • the telescopic shaft segment 82 is connected from its upper or distal part to the lower or proximal part of the rotating gondola 83 by means of a rotating mechanical joining device that allows a rotating movement of the rotating gondola 83 to be carried out with respect to to segment 82 of telescopic shaft.
  • the rotary mechanical joining device is of the toothed bearing type that allows the rotation of the rotating gondola 83 and, therefore, of the receiver itself.
  • the telescopic shaft segment 82 is connected in its proximal or lower part to the top of the fixed shaft segment 81 by means of a mechanical lifting and lowering device that allows the vertical translation movement in elevation and descent to be carried out. along the vertical axis AA ', to the telescopic shaft segment 82 with respect to the fixed shaft segment 81.
  • the lifting device is of the self-climbing type, which comprises a telescopic and guiding mechanism which, in turn, includes an arrangement of cylinders and mechanical grips, so that with successive movements of extension and compression of the arrangement of cylinders, the telescopic shaft segment 82 performs an ascent or descent movement.
  • the lifting device can be of the rack-and-pinion type, cylinder with pulley arrangement, etc.
  • the rotating gondola 83 and the mobile shaft segment 82 comprise protective elements to prevent damage caused by concentrated solar radiation that affects parts of the rotating gondola 83 external to the receiver of tower 1 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

Un sistema (11) de captación de energía termosolar de concentración del tipo torre, con una torre (13) con parte fija (81) y móvil (82), donde la parte móvil realiza un movimiento de traslación en elevación o descenso según un eje de la torre (13) y está dotada de una góndola (83) con capacidad para realizar un movimiento de giro azimutal, y donde un conjunto de helióstatos (12), con capacidad para desplazarse alrededor de la torre (13), dirigen la radiación solar hacia un receptor.

Description

SISTEMA DE CAPTACIÓN DE ENERGÍA TERMOSOLAR
DE GEOMETRÍA VARIABLE
OBJETO DE LA INVENCIÓN
[0001] La presente invención se refiere a un sistema de captación de energía termosolar de concentración del tipo torre, donde un conjunto de concentradores individuales o helióstatos dirigen la radiación solar hacia el receptor.
ESTADO DE LA TÉCNICA
[0002] En relación con la figura 1, es conocido en el estado de la técnica un sistema de captación de energía termosolar, a saber, sistema de torre central que comprende una pluralidad de helióstatos, dispositivo reflector dotado de dos grados de libertad que hacen posible su orientación en cualquier dirección del espacio, que convenientemente dirigidos de forma individual por un sistema de puntería basado en sensores luminosos o en ecuaciones solares, permiten concentrar en un receptor, situado generalmente a cierta altura sobre una torre a propósito, la radiación recibida del sol por el conjunto de todos los helióstatos, logrando de esta forma una gran densidad de energía en dicho receptor que hace posible su utilización para la generación eléctrica, mediante un ciclo de vapor clásico, o bien para el desarrollo de reacciones fuertemente endotérmicas.
[0003] Resumiendo, un receptor fijo situado en una torre recibe el flujo de radiación procedente de una pluralidad de helióstatos también fijos, aunque dotados de dos grados de libertad giratorios, generalmente dispuestos en montaje acimutal, aunque teóricamente son también posibles montajes ecuatoriales
[0004] En relación ahora con las figuras 2 a 4, dado que el ángulo formado por el rayo incidente con la normal es igual al que forma el reflejado, el accionamiento de los helióstatos tiene por finalidad que el eje óptico de sus espejos apunte en cada instante en la dirección de la bisectriz del ángulo formado por el Sol, el helióstato y el receptor elevado, lo que requiere una considerable precisión en su construcción y en su control. Como durante un día el Sol recorre un camino aparente, debido en realidad al movimiento de rotación de que está animada la Tierra, que comienza aproximadamente en el Este y termina aproximadamente en el Oeste, encontrando su punto más elevado al atravesar el meridiano del lugar, siendo variables las coordenadas de situación del Sol en función de la latitud del lugar, de la hora o ángulo horario y de la estación o ángulo de declinación, resulta que el recorrido del accionamiento de cada helióstato debe recorrer un camino que comienza en la dirección de la bisectriz del ángulo formado por el Sol en el momento del orto, el helióstato y el receptor, termina en la dirección de la bisectriz del ángulo formado por el Sol en el momento del ocaso, el helióstato y el receptor, pasando naturalmente por la dirección de la bisectriz del ángulo formado por el Sol a su paso por el meridiano, el helióstato y el receptor.
[0005] La figura 3 muestra el ángulo α formado por la normal al plano óptico del helióstato con el rayo incidente procedente del Sol, esto motiva que la energía aprovechada en cada posición sea equivalente al producto del flujo energético multiplicado por el área del helióstato y por el coseno de a, aparte de los rendimientos de reflexión.
[0006] Una desventaja del antedicho sistema es que cuanto mayor sea el ángulo α menor es su coseno, reduciéndose en consecuencia la captación energética por motivos puramente geométricos, lo que se conoce como "efecto coseno". [0007] La amplitud del ángulo α en determinadas horas del día y días del año ocasiona una pérdida de la capacidad potencial de captación energética de las plantas solares de torre, lo que hasta ahora se ha asumido como una limitación intrínseca del sistema.
[0008] En la tecnología de los heliotropos en general y de los colectores solares fotovoltaicos en particular existen numerosos ejemplos de disposiciones de uno y de dos grados de libertad, que aspiran a minimizar el efecto coseno mediante la orientación más favorable y directa posible hacia el Sol. No obstante, estos dispositivos, por su propia naturaleza, captan únicamente el flujo correspondiente a su propia superficie, prescindiendo del efecto de reflexión y concentración energética asociado a los campos de helióstatos.
SUMARIO
[0009] La presente invención busca resolver uno o más de los inconvenientes expuestos anteriormente mediante un sistema de captación de energía termosolar de geometría variable como es reivindicado en las reivindicaciones. [0010] Un objeto del sistema termosolar de concentración es proporcionar una geometría variable a una torre del sistema termosolar donde la torre está adaptada para ser desplazada según un eje vertical de la torre y ser girada según el eje vertical o de giro de la torre, de manera que el receptor ubicado en el extremo distal superior de una torre, absorbe la radiación solar incidente redirigida hacia el mismo por un conjunto de helióstatos fijos y/o móviles.
[0011] Al dotar a la torre de una góndola giratoria se consigue maximizar el aprovechamiento de la energía captada por la misma, por ejemplo, alineando el eje del receptor con el eje de giro de la góndola, con lo que se evita totalmente el riesgo de que se produzcan desenfoques durante los movimientos del sistema compuesto por helióstatos y torre móviles, consiguiéndose en consecuencia la máxima captación energética posible. [0012] Otro objeto del sistema termosolar de concentración es proporcionar helióstatos montados sobre un bastidor móvil que traslade horizontalmente el helióstato para evitar la aparición de sombras originadas por otros helióstatos o por la propia torre, y permite buscar el mejor ángulo de orientación posible del mismo, por tanto, se mejora la captación energética. [0013] Los helióstatos son desplazables a voluntad en función de la posición del sol en cada momento del día, de forma que siempre presenten una ventajosa orientación, permiten incrementar el rendimiento energético del sistema termosolar de concentración mejorando por tanto la captación energética.
[0014] Otro objeto del sistema de concentración es maximizar la captación de energía solar variando también la geometría de la torre en función de la hora del día y de la posición de los helióstatos.
[0015] Aún otro objeto del sistema termosolar de concentración de geometría variable es permitir variar la altura del receptor de la torre con relación al suelo, proporcionado mediante un movimiento relativo entre un segmento fijo y un segmento móvil de la torre. Por lo tanto, el centro del receptor se desplaza entre una altura máxima y mínima con respecto al suelo, que permite optimizar para cada día y hora la posición relativa helióstatos-receptor para aumentar la captación de energética radiante.
BREVE ENUNCIADO DE LAS FIGURAS
[0016] Una explicación más detallada de la invención se da en descripción que sigue y que se basa en las figuras adjuntas: [0017] la figura 1 muestra en un esquema un sistema de captación de energía termosolar de concentración del tipo torre de acuerdo al estado de la técnica,
[0018] las figura 2 a 4 muestran la forma en que un helióstato refleja la radiación solar hacia la torre del sistema de captación de energía termosolar de concentración del tipo torre de acuerdo al estado de la técnica,
[0019] la figura 5 muestra en un esquema un sistema de captación de energía termosolar de concentración del tipo torre de geometría variable,
[0020] la figura 6 muestra en un esquema un detalle de un sistema de rodadura de un carro sobre el que está instalado un helióstato, [0021] la figura 7 muestra en una vista en perspectiva de la torre del sistema de captación de energía termosolar de concentración de geometría variable, y
[0022] la figura 8 muestra en una vista en perspectiva la torre con su fuste desplegado y plegado.
DESCRIPCIÓN DE UN MODO DE REALIZACIÓN [0023] En relación ahora con la figura 5, un sistema 1 1 de captación de energía termosolar de geometría variable comprende una pluralidad de helióstatos 12 desplazables a voluntad en función de la posición del sol en cada momento del día; que reciben energía solar del sol para reflejarla hacia el extremo distal superior de una torre 13, que aloja, en dicho extremo 51 distal, un receptor para recibir la radiación reflejada por los helióstatos 12 y la energía solar reflejada recibida es transformada en energía térmica que, a su vez, es transformada en energía eléctrica o química, por ejemplo, hidrógeno.
[0024] El helióstato 12 está ubicado sobre un carro o plataforma móvil 53 motorizado que incluye una unidad de desplazamiento, a saber, desplazador que es desplazable horizontalmente sobre el terreno del campo de helióstatos; una unidad de seguimiento, a saber, seguidor de la posición del sol que permite realizar giros acimutales y cenitales al helióstato 12, y suministra señales de control al desplazador para posicionar el helióstato 12, de manera que el mismo refleje la máxima radiación solar incidente hacia el receptor situado en el extremo 51 distal superior de la torre 1 1, independientemente de la posición del sol a lo largo de un día y del año. [0025] El movimiento de los helióstatos 12 puede producirse tanto siguiendo caminos predeterminados como de forma libre y autónoma sobre la superficie del campo de helióstatos del sistema 1 1 termosolar. El movimiento de los helióstatos 12 siguiendo un recorrido prefijado facilita tanto el suministro de energía para los movimientos del helióstato 12 como el control del mismo.
[0026] Al ser trasladable el helióstato 12 de una posición a otra mucho más ventajosa desde el punto de vista del efecto coseno, un menor ángulo α implica una mayor superficie normal al rayo incidente mejorando, por tanto, la captación energética y proporcionando la posibilidad de evitar la aparición de sombras originadas por otros helióstatos 12 o por la propia torre 13 del sistema 1 1 termosolar.
[0027] El carro 53 está dotado de un sistema de motorización, bien autónomo o bien centralizado, que le permite trasladar los helióstatos de una posición a otra.
[0028] En relación ahora con la figura 6, el carro 53 incluye un sistema de rodadura del tipo rueda sólida o neumática adaptadas para rodar sobre suelo preparado o no, sistemas de rueda y carril, sistemas de colchón de aire o incluso sistemas de plataforma flotante sobre lámina de agua, pudiendo ser los dispositivos utilizados para la tracción tanto electromecánicos como mecánicos por cable. [0029] En relación ahora con las figuras 5 y 6, el carro 53 está adaptado para desplazarse sobre una vía 54 formada por dos carriles dispuestos de forma paralela y concéntrica con relación a la torre 12, siendo también posibles otras disposiciones de los carriles distintas de la circular; sobre los cuales circulan una pluralidad de carros 53, cada uno de los cuales soporta un helióstato 12. Paralelamente a los carriles 54 discurre un carril 61 de alimentación y de control adaptado para suministrar energía eléctrica a los helióstatos 12 y para la comunicación de órdenes desde un sistema central de control a los helióstatos 12.
[0030] El movimiento de traslación de los distintos helióstatos 12 puede efectuarse tanto de forma simultánea como sucesiva. Por lo tanto, cada helióstato 12 sigue una trayectoria individual de traslación horizontal y orientación a lo largo del día y del año.
[0031] Los helióstatos 12 pueden pasar a una posición de defensa o configuración correspondiente a la exposición de mínima superficie al viento para garantizar su estabilidad e integridad en caso de presentarse fenómenos meteorológicos adversos tal como fuerte viento.
[0032] Sin embargo, puede ocurrir que por la súbita aparición del fenómeno meteorológico no sea posible completar la maniobra de puesta en posición de defensa del helióstato 12, o incluso estando en posición de defensa sea necesario. Por lo tanto, el carro 53 comprende un absorbedor de esfuerzos del tipo juego de ruedas, garras situadas bajo el carril 54 de apoyo de accionamiento hidráulico o electromecánico para materializar el anclaje de emergencia de los helióstatos 12 al carril 54 de apoyo que los soporta, capaces por tanto de absorber esfuerzos de tracción vertical.
[0033] El seguidor gobierna el giro acimutal y el giro cenital del helióstato 12 y, también, la traslación horizontal del bastidor 53 móvil sobre el terreno.
[0034] En relación ahora con las figuras 7 y 8, la torre 13 comprende, desde la cimentación de la misma, un segmento 81 de fuste fijo que se eleva substancialmente en vertical desde la cimentación, un segmento 82 de fuste móvil, a saber, segmento de fuste ensamblado en modo telescópico que permite al segmento 82 de fuste telescópico la realización de un movimiento de traslación en elevación ascendente o descendente según un eje AA' vertical de la torre 13 y un segmento 83 de giro en forma de góndola giratoria, que comprende una cavidad 52 donde está alojado el receptor de la torre 13.
[0035] Al efectuar los helióstatos 12 su movimiento de traslación alrededor de la torre 13, los rayos reflejados giran al mismo tiempo que se dirigen hacia ai el receptor de la torre 13 y para conseguir el máximo aprovechamiento de la energía captada la orientación acimutal del receptor se efectúa de forma simultánea o sucesiva a la traslación de los helióstatos 12.
[0036] La góndola giratoria 83 permite un movimiento de giro al receptor según un eje AA' vertical de la torre 13, de forma que la góndola giratoria 83 recorre un arco de circunferencia en ambos sentidos de giro, es decir, oeste-este y viceversa.
[0037] El receptor está ubicado en la cavidad 52 del extremo distal de la torre 13 unido mecánicamente a la góndola giratoria 83, de manera que está alineado el eje del receptor con el eje de giro de la góndola 83, con lo que se evita totalmente el riesgo de que se produzcan desenfoques durante los movimientos del sistema, consiguiéndose en consecuencia la máxima captación energética posible en el centro del plano del receptor.
[0038] El segmento 82 de fuste telescópico está unido por su parte superior o distal a la parte inferior o proximal de la góndola giratoria 83 mediante un dispositivo de unión mecánica giratorio que permite la realización de un movimiento giratorio de la góndola giratoria 83 con respecto al segmento 82 de fuste telescópico.
[0039] El dispositivo de unión mecánica giratorio es del tipo rodamiento dentado que permite el giro de la góndola giratoria 83 y, por lo tanto, del receptor propiamente dicho. [0040] El segmento 82 de fuste telescópico está unido por su parte proximal o inferior a la parte superior del segmento 81 de fuste fijo mediante un dispositivo de unión mecánica elevadora y de descenso que permite la realización del movimiento de translación vertical en elevación y descenso según el eje vertical AA', al segmento 82 de fuste telescópico con respecto al segmento 81 de fuste fijo.
[0041] El dispositivo elevador es del tipo autotrepante, que comprende un mecanismo telescópico y de guiado que, a su vez, incluye una disposición de cilindros y agarres mecánicos, de manera que con sucesivos movimientos de extensión y compresión de la disposición de cilindros, el segmento 82 de fuste telescópico realiza un movimiento de ascenso o descenso.
[0042] El dispositivo elevador puede ser del tipo piñón cremallera, cilindro con disposición de poleas, etc..
[0043] La góndola giratoria 83 y el segmento 82 fuste móvil comprende elementos de protección para evitar daños causados por la radiación solar concentrada que incide en partes de la góndola giratoria 83 externas al receptor de la torre 1 1.

Claims

REIVINDICACIONES
1. Un sistema de captación de energía termosolar de concentración que comprende una torre (13) y helióstatos (12); caracterizado porque la torre (13) comprende un segmento (81) fijo de fuste y un segmento (82) móvil de fuste que cooperan mecánicamente para variar la altura de la torre (13).
2. Sistema de acuerdo a la reivindicación 1 ; caracterizado porque el sistema (1 1) comprende también una pluralidad de helióstatos (12) desplazables horizontalmente a voluntad en función de la posición del sol en cada momento del día.
3. Sistema de acuerdo a la reivindicación 1 ; caracterizado porque la torre (13) comprende también un segmento (83) giratorio ensamblado en modo giratorio al extremo distal del segmento (82) móvil de fuste, y el segmento (83) giratorio es girable con respecto al eje AA' de la torre (13).
4. Sistema de acuerdo a la reivindicación 3; caracterizado porque el segmento (83) giratorio comprende un receptor adaptado para ser alojado en una cavidad (52) del extremo distal de la torre (13).
5. Sistema de acuerdo a la reivindicación 4; caracterizado porque el centro geométrico del receptor coincide con el eje AA' de giro acimutal de la góndola giratoria (83).
6. Sistema de acuerdo a la reivindicación 2; caracterizado porque el helióstato (12) está adaptado para ser montado sobre un carro (53) móvil que incluye una unidad desplazadora desplazable horizontalmente; una unidad giratoria adaptada para girar acimutalmente y cenitalmente el helióstato (12); una unidad suministradora de energía eléctrica y una unidad seguidora adaptada para suministrar señales de control a la unidad desplazadora y giratoria para que el helióstato (12) siga la posición del sol en todo instante reflejando la máxima radiación solar incidente hacia el receptor alojado en una cavidad (52) del extremo distal de la torre (13).
7. Sistema de acuerdo a la reivindicación 6; caracterizado porque la unidad seguidora está adaptada para suministrar independientemente señales de control a la unidad desplazadora y/o giratoria.
8. Una torre de un sistema de captación de energía termosolar de concentración; caracterizado porque la torre (13) comprende un segmento (81) fijo de fuste y un segmento (82) móvil de fuste que cooperan mecánicamente para variar la altura de la torre (13).
9. Torre de acuerdo a la reivindicación 8; caracterizado porque la torre (13) comprende también un segmento (83) giratorio ensamblado mecánicamente al extremo distal del segmento (82) móvil de fuste, donde el segmento (83) giratorio es girable con respecto al eje AA' de la torre (13).
10. Torre de acuerdo a la reivindicación 9; caracterizado porque la torre (13) comprende receptor alojado en una cavidad (52) del extremo distal de la torre (13).
11. Torre de acuerdo a la reivindicación 10; caracterizado porque el centro geométrico del plano de la ventana de entrada al receptor coincide con el eje AA' de giro acimutal de la góndola giratoria (83).
12. Torre de acuerdo a la reivindicación 8; caracterizado porque el segmento (83) giratorio comprende una zona libre adaptada para permitir el paso de conducciones rígidas y/o flexibles.
PCT/ES2011/070252 2011-04-13 2011-04-13 Sistema de captación de energía termosolar de geometría variable WO2012140281A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2013011946A MX2013011946A (es) 2011-04-13 2011-04-13 Sistema de captacion de energia termosolar de geometria variable.
MA36337A MA35046B1 (fr) 2011-04-13 2011-04-13 Systeme de captage d'energie thermosolaire a geometrie variable
EP11863493.0A EP2698536A4 (en) 2011-04-13 2011-04-13 VARIABLE GEOMETRY SYSTEM FOR DETECTING THERMOSOLARY ENERGY
US14/110,696 US20140116419A1 (en) 2011-04-13 2011-04-13 Variable geometry system for capturing thermosolar energy
PCT/ES2011/070252 WO2012140281A1 (es) 2011-04-13 2011-04-13 Sistema de captación de energía termosolar de geometría variable
ZA2013/07587A ZA201307587B (en) 2011-04-13 2013-10-11 Variable geometry system for capturing thermosolar energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070252 WO2012140281A1 (es) 2011-04-13 2011-04-13 Sistema de captación de energía termosolar de geometría variable

Publications (1)

Publication Number Publication Date
WO2012140281A1 true WO2012140281A1 (es) 2012-10-18

Family

ID=47008859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070252 WO2012140281A1 (es) 2011-04-13 2011-04-13 Sistema de captación de energía termosolar de geometría variable

Country Status (6)

Country Link
US (1) US20140116419A1 (es)
EP (1) EP2698536A4 (es)
MA (1) MA35046B1 (es)
MX (1) MX2013011946A (es)
WO (1) WO2012140281A1 (es)
ZA (1) ZA201307587B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422153A (zh) * 2013-09-06 2015-03-18 中广核太阳能开发有限公司 塔式太阳能聚光系统及聚光方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010303403A1 (en) * 2009-10-07 2012-05-03 Robert Orsello Method and system for concentration of solar thermal energy
JP2013181669A (ja) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd 集光装置、その回転軸線の設定方法、集光装置を備えている集熱設備及び太陽熱発電設備
US10050583B2 (en) 2012-11-30 2018-08-14 Arizona Board Of Regents On Behalf Of University Of Arizona Solar generator with large reflector dishes and concentrator photovoltaic cells in flat arrays
US9897076B1 (en) * 2013-05-31 2018-02-20 Raymond Johnson, Jr. Solar power tower with spray nozzle and rotating receiver
WO2015061323A1 (en) 2013-10-22 2015-04-30 The Arizona Board Of Regents On Behalf Of The University Of Arizona Octohedral frame and tripod for rotating equipment
ES2575743B1 (es) * 2014-12-30 2017-04-18 Egbert Daniel RODRÍGUEZ MESSMER Equipo captador solar
WO2016115502A1 (en) 2015-01-16 2016-07-21 The Arizona Board Of Regents On Behalf Of The University Of Arizona Micro-scale concentrated photovoltaic module
WO2016141041A1 (en) 2015-03-02 2016-09-09 The Arizona Board Of Regents On Behalf Of The University Of Arizona Glass forming mold of adjustable shape
US10686400B2 (en) 2015-06-12 2020-06-16 THE ARIZONA BOARD OR REGENTS on behalf of THE UNIVERSITY OF ARIZONA Tandem photovoltaic module with diffractive spectral separation
US10551089B2 (en) 2015-08-03 2020-02-04 The Arizona Board Of Regents On Behalf Of The University Of Arizona Solar concentrator for a tower-mounted central receiver
DE102018203030A1 (de) * 2018-02-28 2019-08-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solarvorrichtung,Verfahren zum Betreiben einer Solarvorrichtung, Solarkraftwerk und Verfahren zum Betreiben eines Solarkraftwerks
CN108266906B (zh) * 2018-03-17 2023-11-28 绿华能源(福建)有限公司 一种水上塔式太阳能聚光平台
US11262103B1 (en) * 2018-06-29 2022-03-01 Heliogen, Inc. Heliostat localization in camera field-of-view with induced motion
DE102020125045B4 (de) 2020-09-25 2022-04-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Heliostat für Solarkraftwerke oder Solarkonzentratoren, sowie Solaranlage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466423A (en) * 1982-09-30 1984-08-21 The United States Of America As Represented By The United States Department Of Energy Rim-drive cable-aligned heliostat collector system
US5787878A (en) * 1996-09-23 1998-08-04 Ratliff, Jr.; George D. Solar concentrator
US20030041856A1 (en) * 2001-08-30 2003-03-06 Blackmon James B. Geometric dome stowable tower reflector
US20060118104A1 (en) * 2004-12-02 2006-06-08 Hon Wai M Solar power station
EP1998122A1 (en) * 2007-05-29 2008-12-03 Miguel Angel Orta Alava Two-axis solar tracker
US20100252024A1 (en) * 2009-03-18 2010-10-07 Convery Mark R System and Method for Aligning Heliostats of a Solar Power Tower

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044753A (en) * 1976-04-28 1977-08-30 Nasa Solar energy collection system
US4509501A (en) * 1982-01-13 1985-04-09 Hunter Larry D Solar energy collecting system using a primary reflector based on a pyramid structure
US4608964A (en) * 1984-11-15 1986-09-02 Foster Wheeler Energy Corporation Tension solar mirror
US6708687B2 (en) * 2001-06-12 2004-03-23 James B. Blackmon, Jr. Thermally controlled solar reflector facet with heat recovery
US20030101565A1 (en) * 2001-11-30 2003-06-05 Butler Barry L. Pedestal jacking device and advanced drive for solar collector system
US7105940B2 (en) * 2004-03-31 2006-09-12 General Electric Company Mobile renewable energy generator
US20090178668A1 (en) * 2007-11-14 2009-07-16 Deepak Boggavarapu Central Receiver Solar Power Systems: Architecture And Controls Methods
WO2009105689A2 (en) * 2008-02-22 2009-08-27 Esolar, Inc. Solar receivers with internal reflections and flux-limiting patterns of reflectivity
US8915697B2 (en) * 2008-08-22 2014-12-23 Natural Power Concepts Inc. Mobile wind turbine
US8276379B2 (en) * 2009-11-16 2012-10-02 General Electric Company Systems and apparatus relating to solar-thermal power generation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466423A (en) * 1982-09-30 1984-08-21 The United States Of America As Represented By The United States Department Of Energy Rim-drive cable-aligned heliostat collector system
US5787878A (en) * 1996-09-23 1998-08-04 Ratliff, Jr.; George D. Solar concentrator
US20030041856A1 (en) * 2001-08-30 2003-03-06 Blackmon James B. Geometric dome stowable tower reflector
US20060118104A1 (en) * 2004-12-02 2006-06-08 Hon Wai M Solar power station
EP1998122A1 (en) * 2007-05-29 2008-12-03 Miguel Angel Orta Alava Two-axis solar tracker
US20100252024A1 (en) * 2009-03-18 2010-10-07 Convery Mark R System and Method for Aligning Heliostats of a Solar Power Tower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422153A (zh) * 2013-09-06 2015-03-18 中广核太阳能开发有限公司 塔式太阳能聚光系统及聚光方法

Also Published As

Publication number Publication date
MA35046B1 (fr) 2014-04-03
EP2698536A4 (en) 2014-11-26
MX2013011946A (es) 2014-04-14
EP2698536A1 (en) 2014-02-19
US20140116419A1 (en) 2014-05-01
ZA201307587B (en) 2014-07-30

Similar Documents

Publication Publication Date Title
WO2012140281A1 (es) Sistema de captación de energía termosolar de geometría variable
ES2745116T3 (es) Sistema colector de energía solar
US5325844A (en) Lightweight, distributed force, two-axis tracking, solar radiation collector structures
WO2008096029A1 (es) Seguidor solar hidráulico de dos ejes
ES2304116B1 (es) Seguidor solar.
US20110056484A1 (en) Self-erecting gimbal mounted solar radiation collectors
ES2559880T3 (es) Colector solar con espejos de Fresnel
KR101046230B1 (ko) 기둥형 집광장치를 구비한 태양광 발전 장치
WO2012046134A1 (en) Tracker apparatus for capturing solar energy and relative axis movement mechanism
WO2011020931A1 (es) Seguidor solar para la orientación de paneles solares
WO2012117142A1 (es) Seguidor solar
ES2715612T3 (es) Elemento de captación y concentración de la radiación solar directa
KR101182832B1 (ko) 태양광 발전장치
ES2373899A1 (es) Estructura de izado y montaje de heliostatos y carro de desplazamiento de dicho heliostato.
WO2011089437A2 (en) Solar energy collection apparatus
CN102706004A (zh) 聚焦式太阳能集热装置及集热系统
CN110737286B (zh) 一种光伏组件南北方向倾角可调的平单轴跟踪支架
WO2018015598A1 (es) Concentrador de energía solar con espejos móviles para su utilización en captadores solares térmicos planos o en módulos fotovoltaicos estáticos
WO2009034214A2 (es) Seguidor solar de dos ejes circular, para pequeñas y grandes instalaciones de captadores solares con un rango de potencia entre 5kwp- 2mwp y de superficie entre 50m2-25.000m2
CN105227081A (zh) 一种带有倾动和回转功能的扇形展开式太阳能发电装置
CN106301177A (zh) 一种两自由度转动刚柔混联聚光器支撑架机构
ES1063823U (es) Estructura soporte para seguidores solares.
ES2331721B2 (es) Seguidor solar basado en cinematica paralela de accionamiento individual.
CN202930417U (zh) 太阳能收集装置
WO2013117790A1 (es) Seguidor solar de concentración por refracción

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863493

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/011946

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011863493

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011863493

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14110696

Country of ref document: US