WO2012139446A1 - 过电压保护装置的放电模块 - Google Patents

过电压保护装置的放电模块 Download PDF

Info

Publication number
WO2012139446A1
WO2012139446A1 PCT/CN2012/072048 CN2012072048W WO2012139446A1 WO 2012139446 A1 WO2012139446 A1 WO 2012139446A1 CN 2012072048 W CN2012072048 W CN 2012072048W WO 2012139446 A1 WO2012139446 A1 WO 2012139446A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
arc
protection device
discharge
trigger
Prior art date
Application number
PCT/CN2012/072048
Other languages
English (en)
French (fr)
Inventor
许年生
尹天文
王碧云
颜沧苇
曹阳
许龙
李人杰
Original Assignee
上海电科电器科技有限公司
浙江正泰电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电科电器科技有限公司, 浙江正泰电器股份有限公司 filed Critical 上海电科电器科技有限公司
Publication of WO2012139446A1 publication Critical patent/WO2012139446A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel

Definitions

  • This invention relates to electrical equipment for overvoltage protection, and more particularly to a discharge module for an overvoltage protection device, particularly for low voltage distribution systems. Background technique
  • I EC standard I EC62305-1 and standard I EC62305-4 establish a lightning protection system by specifying the division of Lightning Protection Zone LPZ (Lighting Protection Zone). This method has become a routine basis after many years of practical application. .
  • SPD Silicone Protective Devices
  • LPZ0 and LPZ1 areas should have the ability to pass Class I test, that is, to be able to discharge some of the direct lightning.
  • the early technology adopted two An isolated (insulated) electrode is used in the protected system. This type of product is called a “switched surge protector". The principle is to break down with high amplitude characteristics of lightning or other transient overvoltage. Electrodes that are isolated (especially air media) form the "channel" required to bleed lightning current for lightning protection purposes.
  • the early "switching surge protector" products Due to the limitations of the times, the early "switching surge protector" products have poor protection performance. There are two main disadvantages. One is that the protection performance of the product still has a potential difference of several kilovolts when the lightning current is discharged. The high potential difference directly acts on the protected device to form a huge insulation breakdown pressure; the second is that the product will cause the power frequency to flow out and reduce the voltage difference between the two ends of the electrode when the discharge current is reduced.
  • the electrode distance for the bleeder current isolation setting is extremely small, which makes it easy for the power frequency voltage between the two electrodes to have the ability to maintain the "arc" channel formed when the lightning current is discharged. On the one hand, this The setting method reduces the freewheeling capability under the power frequency voltage.
  • a trigger electrode As an auxiliary measure by adding a third electrode (generally called a trigger electrode) to the original discharge.
  • the gap exerts an influence to facilitate the formation of a channel for discharging the lightning current.
  • the implementation of the triggering technology breaks the contradiction between "protection performance” and “power frequency continuous current interrupting capability", and provides a strong support for "switching SPD” to better protect systems and equipment.
  • the third electrode is placed between the first electrode and the second electrode that is responsible for the lightning current of the amplified portion.
  • the third electrode is placed between the third electrode and the first or second electrode therein.
  • the setting is bigger.
  • the above-mentioned triggering technology greatly facilitates the design of the first and second electrodes that are responsible for the leakage current of the amplified portion, and also allows the designer to consider how to prevent harmful freewheeling under the power frequency voltage. select.
  • the size of the spatial distance between the first and second electrodes will have an effect on the trigger arc and the corresponding trigger circuit, which is limited by the volume of the product, and this effect will spread to the entire surge protector.
  • Product performance and functionality For example: Increasing the spatial distance between the first and second electrodes will prolong the formation of most of the lightning current channels, that is, increase the load carrying capacity of the trigger circuit, and at the same time increase the residual voltage value accordingly, thereby reducing the protection performance of the product. ;
  • the present invention is directed to a solution for a discharge channel capable of solving the above structural disadvantages and having high freewheeling interrupting capability.
  • the arc is dependent on input power.
  • the arc is extinguished by the moment when the AC power source has zero crossing, or the current limiting means is used.
  • the electric field strength formed by the shortest distance on the electrode is the largest, and the electric field strength of the two sides gradually decreases as the distance from the center line increases.
  • the embodiment of the present invention is characterized in that the discharge path for accommodating the arc is arranged along the relatively weak peripheral arc electric field line formed by the electrodes at both ends of the discharge channel, so that two formations are beneficial to improve the intermittent power frequency of the product.
  • the ability of freewheeling On the one hand, it avoids the unfavorable disconnection of freewheeling conditions due to the strongest electric field in the irregular electric field, which is beneficial to improve the relatively high discontinuity of the product; on the other hand, through the discharge circuit on the electrode
  • the formed magnetic field acts on the arc body in the arc-shaped discharge channel and forces the radial expansion of the arc under the action of Lorentz force, so that the arc is compressed on the largest radius side of the arc-shaped discharge channel, thus ensuring the arc Maximizing the length also controls the diameter of the arc column of the arc, which is beneficial to increase the arc drop and improve the ability of the product to disconnect the freewheeling.
  • the design of the arc-shaped discharge channel can maximize the space utilization.
  • By increasing the arc angle or arc length different arc voltage drops can be obtained, so that it can be adapted to the voltage level requirements of different systems, and the product can be expanded. Seriality and scope of use.
  • a discharge module of an overvoltage protection device includes: a housing formed of a pressure resistant metal member; a receiving space in the pressure resistant metal member; and an independent and insulated arrangement An electrode and a second electrode are disposed in the accommodation space. The first electrode and the second electrode are connected by a discharge channel in the accommodating space, and the path of the discharge channel is disposed along an arc electric field line formed by the first electrode and the second electrode at the end face of the discharge channel.
  • the pressure resistant metal member is composed of a first metal outer casing and a second metal outer casing.
  • the accommodating space is composed of a combination of the first structural member and the second structural member, and the trigger electrode and the triggering member are disposed in the accommodating space. a structure for forming an electrical connection between the first electrode, the trigger electrode and the triggering element.
  • the discharge channel is curved
  • the trigger electrode has at least one end face that is hat-shaped
  • the trigger element is hat-shaped
  • the first electrode is irregular
  • one end surface of the second electrode has a semi-annular boss.
  • the other end face has a semicircular groove.
  • the first structural member has a hat-shaped recess and an irregular shaped recess
  • the trigger electrode is embedded in the cap-shaped recess
  • the triggering element is stacked on the hat-shaped end surface of the trigger electrode
  • the first electrode is embedded in the first electrode
  • the shape of the irregular shaped groove matches the first electrode.
  • the second structural member has two semi-circular combined holes of different radii, the semi-annular boss of the second electrode is inserted into the combined hole, and the semicircular groove on the other end face of the second electrode is placed outward.
  • a circular boss is disposed on one end surface of the trigger electrode, and the circular boss extends to the outside through the small hole in the first structural member to form a trigger circuit external connection outside the discharge module of the overvoltage protection device. end.
  • the trigger electrode has a second structural feature, a second embodiment designed in accordance with the present invention.
  • One end surface of the trigger electrode is provided with a circular boss with a through hole, and the through hole has an internal thread, and the internal thread and the external thread of the external conductive rod are screwed to each other through the small hole in the first structural member to form an overvoltage A trigger circuit outside the discharge module of the protection device.
  • the first electrode has a circular shaft that is inserted into the large aperture of the first structural member, the trigger electrode, the triggering member, and the first electrode are in conductive contact.
  • the second metal housing has a coil-shaped recess.
  • the semicircular recess and the coiled recess of the second electrode are closed by a circular member having a circular boss having one end face in contact with the second electrode and the other end surface in contact with the second metal casing.
  • the second electrode is in electrically conductive contact with the circular member and the second metal housing.
  • the upper end surface of the first structural member is fitted into the first metal casing, the upper end surface of the first structural member has a large annular boss and a small annular boss, and the large annular boss is inserted into the first metal casing. In the large hole, the small ring boss is inserted into the small hole of the first metal casing.
  • the central angle of the arcuate passage of the discharge passage is optimally set at 90. Between 240°.
  • the discharge module of the overvoltage protection device of the present invention provides a solution for a discharge channel having a high freewheeling interrupting capability, which is simple and easy to implement.
  • FIG. 1 discloses a basic principle diagram of an embodiment of a discharge module of an overvoltage protection device in accordance with the present invention.
  • Fig. 2 is a view showing the construction of a discharge path in a discharge module of an overvoltage protection device according to a first embodiment of the present invention.
  • Fig. 3 is a view showing an exploded configuration of a discharge module of an overvoltage protection device according to a first embodiment of the present invention.
  • Fig. 4 is a view showing the construction of a discharge path in a discharge module of an overvoltage protection device according to a second embodiment of the present invention.
  • Fig. 5 is a view showing an exploded configuration of a discharge module of an overvoltage protection device according to a second embodiment of the present invention. detailed description
  • the design principle of the present invention is to better achieve the freewheeling interruption after the arc is triggered in the overvoltage protection device. Due to the simple construction of the discharge module, the constructed discharge channel can be adjusted according to the applied grid voltage to ensure high grid free-flow interruption capability.
  • the discharge module of the overvoltage protection device is arranged and constructed in such a manner as to comprise a first electrode and a second electrode, the two electrodes being arranged opposite each other inside the overvoltage protection device. Between the two electrodes there is a third electrode that assists ignition - the trigger electrode, and the formation of most of the lightning current And an insulating structural member connecting the discharge channels of the first electrode and the second electrode, and a metal casing for accommodating the three electrodes and the insulating structural member.
  • the insulating structural member of the discharge channel is preferably composed of a high strength, high temperature resistant, arc resistant engineering plastic.
  • the insulating structure includes two plastic structural members, and the first structural member has a groove having a shape of at least one arc, and correspondingly, the second structural member has a boss of the same length and the same shape.
  • the arcuate boss on the second structural member is embedded in the arcuate groove on the first structural member, the height of the arcuate boss is smaller than the depth of the arcuate groove and
  • the sealing cavity can be relatively closed and formed in addition to the two ports, and in such an assembly case, a closed arc-shaped discharge channel is formed.
  • the main features of the gap structure between the first electrode and the second electrode are formed: a curved channel type discharge gap having at least one specific angle.
  • the shape is an arc channel type discharge gap with at least one specific angle, and the specific angle corresponding to the curved portion can be adjusted according to the requirements of different grounding systems, that is, the requirements of overvoltage protection and freewheeling breaking under different grid voltages are met. .
  • a specific angle is greater than 90 degrees and less than 240 degrees in accordance with the case where the overvoltage protection device forms a series of products corresponding to different grid voltages.
  • the above-mentioned arc-shaped discharge channel is arranged along the external electric field line between the two electrodes, so that there are three advantages:
  • the electric field strength and the ability to generate an arc or maintain the arc are forward characteristics.
  • the discharge channel is provided along the peripheral electric field between the two electrodes, which can effectively reduce the electric field to maintain the power frequency voltage.
  • the ability of the arc facilitates the interruption of the freewheeling;
  • the Lorentz force of the arc by the magnetic field can force the outer diameter of the arc near the arcuate discharge channel after the arc is formed, thus maximizing the arc length of the arc, which is favorable for forming a high arc voltage Drop, limit the freewheeling value under the power frequency voltage;
  • the design of the arc-shaped discharge channel can maximize the space utilization.
  • By increasing the arc angle or arc length different arc voltage drops can be obtained, so that it can be adapted to the voltage level requirements of different systems, and the product can be expanded. The range and scope of use.
  • a third electrode ie, a trigger electrode
  • a first electrode ie, a first electrode
  • a second electrode are respectively disposed at two ports of the arc-shaped discharge channel, wherein a trigger gap between the first electrode and the third electrode and the arc-shaped discharge channel is assembled therein
  • One port forms a sealed cavity
  • the second electrode is disposed in a curved discharge
  • the other end of the track and the inner cavity of the arc-shaped discharge channel are connected to the external space.
  • the arc discharge channel When the lightning current is discharged, the arc discharge channel is closed by one port, and the one port is connected to the external space.
  • the first electrode and the third electrode form a trigger arc
  • the arc is triggered due to the expansion of the gas.
  • the released plasma enters the arc-shaped discharge channel along the movement of the airflow, which is beneficial to trigger the arc to affect the insulation inside the arc-shaped discharge channel more quickly;
  • the discharge arc or plasma in the arc discharge channel Due to the internal high air pressure and the external relative barometric pressure state, the discharge arc or plasma in the arc discharge channel can be caused to be discharged to the external space as soon as possible, so that the weight in the arc discharge channel under the power frequency voltage can be avoided.
  • the drawbacks of burning the formation of power continue to flow.
  • the trigger gap between the first electrode and the third electrode is preferably electrically connected by means of an element capable of generating a triggering arc, and an end face capable of generating a triggering arc is placed toward the arcuate discharge channel.
  • the third electrode is disposed in an outer space between the first electrode and the second electrode, and is capable of fixing an externally-connected connecting rod on the third electrode.
  • the third electrode in the outer space between the first electrode and the second electrode can prevent the third electrode from being ablated by the arc generated by the bleeder current, thereby ensuring the life of the third electrode and the component generating the triggered arc;
  • the problem is that the triggering arc cannot be present between the first electrode and the second electrode for the first time, which has an influence on the generation of an arc channel that generates a lightning current between the first electrode and the second electrode.
  • a U-shaped circuit is formed between the first electrode and the third electrode and the generated trigger arc, and the first electrode and the third electrode form two vertical lines of the U-shaped circuit to trigger arc formation
  • the horizontal line at the bottom of the "U"-shaped circuit can cause the arc to move rapidly, avoiding the loss of the electrode caused by the triggering of the arc, and also capable of lengthening the triggering arc to release more plasma, thereby increasing Insulating the large-influenced arc-shaped discharge channel, on the other hand, forcing the triggering arc to rapidly enter the arc-shaped discharge channel between the first electrode and the second electrode under the Lorentz force, thus accelerating the first electrode and the second electrode Forming a discharge arc or channel carrying a bleeder current, which reduces the load capacity requirements of the trigger circuit and also improves the protection performance of the product.
  • the insulation structure of the discharge channel it should be able to withstand the lightning current, the impact pressure when the power grid is free flowing, and use insulating materials with good physical properties such as POM, PA, etc. Perform construction.
  • the first electrode carrying the lightning current discharge function As the first electrode carrying the lightning current discharge function, the second electrode, and the third electrode carrying the trigger arc, it is required to withstand the high temperature and resistance of the impact stress caused by the arc ablation and the rapid expansion of the internal space gas when the arc is generated.
  • Impact conductor A copper-tungsten alloy is preferably used as the electrode material in the present design.
  • the discharge passage structural member described above is a structural member mainly composed of a gas generating material.
  • the gap arc is triggered, on the one hand, due to the effect of gas production by the gas generating material and the weak electric field effect, the application of the gas generating material can enhance the gas pressure inside the arc discharge channel after the arc is formed, and strengthen the plasma composite.
  • the process on the other hand, causes the hot plasma to flow more rapidly along the airflow toward the outer space of the arcuate discharge channel, thereby increasing the ability to interrupt the freewheeling at the power frequency voltage.
  • the arc length and shape of the arcuate discharge channel can be adjusted for different grounding system requirements. This can meet the requirements of overvoltage protection for different grid voltages.
  • the present invention discloses a discharge module for an overvoltage protection device.
  • Fig. 1 discloses the basic constituent elements of the discharge module: a first electrode 103, a second electrode 104, an accommodating space 1 17 including a discharge path 102, and a pressure-resistant metal member 16 are provided.
  • the discharge module 101 of the overvoltage protection device includes a housing formed of the pressure resistant metal member 16 , a receiving space 1 17 located in the pressure resistant metal member 16 , and a first electrode 103 disposed independently of each other and insulated.
  • the second electrode 104, the first electrode 103 and the second electrode 104 are disposed in the accommodating space 117.
  • the first electrode 103 and the second electrode 104 are connected by a discharge channel 102 in the accommodating space 1 17 , and the path of the discharge channel 102 follows the arc electric field line formed by the first electrode 103 and the second electrode 104 at the inner end surface of the discharge channel 102 .
  • Settings are configured.
  • Figs. 2 and 3 show a first embodiment in accordance with the present invention, in the first embodiment,
  • the pressure-resistant metal member 1 16 is composed of a first metal casing 107 and a second metal casing 108, and the first metal casing 107 and the second metal casing 108 are nested with each other to form a casing.
  • the first structural member 1 1 1 and the second structural member 1 12 are combined to form an accommodation space 1 17 .
  • the first electrode 103, the second electrode 104, the trigger electrode 105, and the triggering member 106 are disposed in the above-described accommodation space 1 17 .
  • the first electrode 103 is disposed above the second electrode 104, at the A discharge channel 102 is disposed between an electrode 103 and the second electrode 104.
  • the first electrode 103, the trigger electrode 105 and the triggering element 106 form an electrical connection.
  • the ignition between the first electrode 103 and the trigger electrode 105 is generated to generate the ignition arc 109
  • the ignition arc 109 is subjected to the Lorentz force of the magnetic field.
  • the pull-in discharge channel 102 generates a gap arc 110 connecting the first electrode 103 and the second electrode 104.
  • the discharge channel 102 is curved and has an arc of 90. To 240. The central angle of the range of variation. At least one end face of the trigger electrode 105 is hat-shaped. Trigger element 106 is hat shaped. The first electrode 103 is irregular. The one end surface of the second electrode 104 has a semi-annular boss and the other end surface has a semicircular groove.
  • the discharge passage 102 is located in the accommodating space 117, and the accommodating space 117 includes the first structural member 111 and the second structural member 112.
  • the first structural member 111 has a hat-shaped recess 113 and an irregular shaped recess.
  • the trigger electrode 105 is embedded in the cap-shaped recess 113.
  • the triggering electrode 106 is stacked on the trigger electrode 105, and the first electrode 103 is embedded in the first structure.
  • the shape of the irregular shaped groove matches the first electrode 103.
  • the back end of the cap-shaped end of the trigger electrode 105 has a circular table extending through the small hole in the first structural member 111 to the outside of the discharge module to form a trigger circuit outside the discharge module of the overvoltage protection device.
  • the first electrode 103 has a circular shaft that is inserted into the large hole of the first junction member 111, and the trigger electrode 105, the triggering member 106, and the first electrode 103 are in conductive contact.
  • the second structural member 112 has a semicircular hole into which the semicircular boss of the second electrode 104 is inserted, and the semicircular recess on the other end face of the second electrode 104 is placed outward.
  • the second metal casing 108 has a coil-shaped recess, and the semicircular recess and the coil-shaped recess of the second electrode 104 are closed by a circular member 115 having a circular boss, and one end of the circular member 115 The second electrode 104 is in contact with the other end surface in contact with the second metal casing 108.
  • the upper end surface of the first structural member 111 is fitted into the first metal casing 107.
  • the upper end surface of the first structural member 111 has a large annular boss and a small annular boss, and the large annular boss is inserted into the first metal casing 107.
  • the small ring boss is inserted into the small hole of the first metal casing 107.
  • the second electrode 104 is in electrically conductive contact with the circular member 115 and the second metal housing 108.
  • the discharge module 101 of the overvoltage protection device includes a first electrode (upper electrode) 103, a second electrode (lower electrode) 104, and further includes a trigger electrode 105 and a trigger element 106, and a device for accommodating the above device.
  • An arcuate discharge channel 102 is provided between the first electrode 103 and the second electrode 104.
  • the ignition arc 109 when the ignition arc 109 is generated by the breakdown between the first electrode 103 and the trigger electrode 105, the ignition arc 109 is pulled into the arc-shaped discharge channel 102 to generate a connection due to the effect of the magnetic field on the Lorentz force of the ignition arc 109.
  • the gap between the electrode 103 and the second electrode 104 is arced 10 10 .
  • the first electrode 103, the trigger electrode 105, and the triggering member 106 are electrically connected.
  • This structure is formed by the internal construction and assembly of the first structural member 1 1 1 of the discharge channel 102 and the second structural member 1 12 .
  • a cap-shaped trigger electrode 105 is embedded in the hat-shaped recess 1 13 of the first structural member 1 1 1 .
  • a circular boss is disposed on one end surface of the trigger electrode 105, and the circular boss extends through the small hole in the first structural member 11 to the outside of the discharge module, thereby forming a discharge module outside the discharge module 101 of the overvoltage protection device. Trigger loop.
  • a hat-shaped triggering member 106 having a notch is stacked on the triggering electrode 105, and the irregularly shaped first electrode 103 is sequentially embedded in the groove having the corresponding irregular shape on the first structural member 1 1 1 .
  • the circular axis on the first electrode 103 should be correspondingly inserted into the large hole of the first structural member 11 1 and ensure that the trigger electrode 105, the triggering component 106 and the first electrode 103 can be in close and effective conductive contact after assembly. . This contact is ensured by the assembly of the discharge passage 102 structure into the first metal casing 107 and the second metal casing 108, by tightening the two metal casings 107 and 108 with a prescribed torque.
  • the upper half annular boss of the second electrode 104 is inserted into the semicircular hole corresponding to the second structural member 12, so that the semicircular groove on the other side is placed outward.
  • the circular member 1 15 with a circular boss in FIG. 4 serves as a cover for closing the semicircular groove and the groove of the second metal casing 108, and the one end face and the second electrode of the circular member 115 104 is in contact with the other end face being in contact with the second metal casing 108.
  • the triggering element 106 when a lightning overvoltage is applied to the triggering arc, the triggering element 106 exerts an influence on the medium (air) in the nearby space, thereby generating a triggering arc under the combination of other factors, and the triggering arc further The effect of the ground on the channel that discharges the lightning current, and finally reaches the channel that establishes the energy of the main discharge lightning current.
  • the discharge channel 102 is horizontal with respect to the end face of the cylindrical discharge module, the electric field formed by the first electrode 103 and the second electrode 104 has only a horizontal horizontal component to the discharge channel 102, There is a cut in the vertical direction.
  • the arc-shaped discharge passage 102 is constituted by the first structural member 1 1 1 and the second structural member 112.
  • the trigger electrode 105 is assembled with the first electrode 103 and the first structural member 11 1
  • the second electrode 104 is assembled with the second structural member 1 12 such that the first electrode 103 and the second electrode 104 are respectively disposed with the arc discharge channel Both ends of 102.
  • the arrangement of FIG. 3 is such that the direction of the discharge channel 102 follows the direction of the external arc electric field of the electric field formed by the first electrode 103 and the second electrode 104, since the arc-shaped discharge channel 102 does not pass through the first electrode 103 and the second electrode 104.
  • the electric field effect of the arc formed between the ends of the electrodes in the discharge channel 102 that is, the electric field effect between the gaps is a weak electric field effect, and the plasma in the arc gas is subjected to a relatively weak electric field. Move along the arcuate discharge channel.
  • the structural member of the discharge channel 102 is required to withstand high temperature and high pressure and can withstand arc burning, and the structural member of the discharge channel 102 is required to be stable after assembly, and the two end faces are matched. Reliable and smooth.
  • the upper end surface of the first structural member 1 1 1 of the discharge channel 102 is fitted into the first metal casing 107, and correspondingly, the large annular boss is inserted into the large hole of the first metal casing 107, which is small.
  • the annular boss is inserted into the small hole of the first metal casing 107, and the creepage distance of the trigger electrode 105, the first electrode 103 and the metal casing is ensured.
  • the second electrode 104 is in conductive contact with the circular member 115 and the second metal casing 108 having the annular boss as shown.
  • the arc length and shape of the discharge channel 102 can be adjusted according to the requirements of different grounding systems. With such an adjustment, the length of the discharge path 102 changes, but is still horizontally placed with respect to the end face of the cylindrical discharge module, and the cross-sectional area is constant.
  • the trigger electrode 105 and the external trigger circuit have a second connection mode.
  • one end surface of the trigger electrode 105 is provided with a circular boss having a through hole, and the through hole has an internal thread which is connected to the external thread on the external conductive rod 14
  • the small holes in the first structural member 1 1 1 are screwed to each other to form a trigger circuit outside the discharge module 101 of the overvoltage protection device.
  • the discharge module of the overvoltage protection device of the present invention provides a solution for a discharge channel having a high freewheeling interrupting capability, which is simple and easy to implement.

Description

过电压保护装置的放电模块 技术领域
本发明涉及用于过电压保护的电气设备, 更具体地说, 涉及一种过电 压保护装置的放电模块, 特别适用于低压配电系统。 背景技术
根据现有认识可知, 由雷电引起电力系统或信号系统的过电压有两种 途径, 一种是通过地电位反击、 雷击线路等途径直接作用于电气系统并损 坏电力设备和其他电器; 另一种是云闪、 雷击大地或雷击其他建筑物通过 耦合途径, 间接作用于电气系统并损坏电力设备和其他电器。 针对这些不 同的侵入途径, I EC标准 I EC62305-1 与标准 I EC62305-4通过规定雷电保 护区域 LPZ ( Lighting Protection Zone ) 的划分建立防雷系统, 该方法经 过多年的实际应用已经成为了常规依据。
才艮据 LPZ的划分,安装在 LPZ0与 LPZ1 区域的 SPD( Surge Protective Devices )应具有通过 I级试验能力, 即能够对部分直接雷进行泄放, 为了 达到这种能力, 早期的技术是采用两个隔离设置 (绝缘) 的电极应用于被 保护系统中, 这种构造的产品被称之为 "开关型电涌保护器" , 其原理是 利用雷电或其他瞬时过电压的高幅值特性击穿被隔离设置 (尤其是空气介 质) 的电极, 形成泄放雷电流所需的 "通道" 以达到防雷目的。
由于时代的局限性, 早期的 "开关型电涌保护器" 产品保护性能较差, 主要缺点有两个, 一个是产品的保护性能 在泄放雷电流时仍然存在几 千伏的电位差, 这种高的电位差直接作用在被保护设备上以致形成巨大的 绝缘击穿压力; 其二是产品在泄放雷电流后会导致工频续流 出于降低 放电时电极两端的电压差达到最小的要求, 用于泄放雷电流隔离设置的电 极距离极小, 这就很容易使得两电极之间的工频电压具有一直维持在泄放 雷电流时形成的 "电弧" 通道的能力, 一方面, 这种设置方式降低了遮断 工频电压下的续流能力, 另一方面, 无论是相线与中性线之间、 还是相线 与地线之间所产生的工频电压下的续流也对被保护系统造成影响。 中国专利 CN 1044952C揭示了一种 "羊角形" 的放电腔结构, 主要对 放电腔的电极特别是电极上的形状特征, 设置位置与方式, 起弧辅助件的 形状与位置作为其专利技术特征。 这样的结构属于被动的触发放电间隙, 是早期的保护装置形式, 初步形成触发装置与放电腔放电结合的雏形, 拉 长电弧, 产生高的电弧电压以利于熄弧。
目前,市场上的开关型 SPD大多采用的是与冲击变压器触发配合的方 式, 通过工艺设计, 设置一个小间隙作为主体放电间隙的产品。
随着技术的不断发展, 科研人员不断对此类产品进行研究, 并创造性 地提出了 "触发技术" 这一辅助措施, 该措施是通过增加第三电极 (一般 称触发电极 )对原有的放电间隙施加影响, 以利于形成泄放雷电流的通道。 触发技术的实施打破了 "保护性能" 与 "工频续流遮断能力" 不能同时提 高的矛盾局面, 为 "开关型 SPD" 更好地为系统和设备提供保护提供了有 力支持。
在现有的技术中, 将第三电极置于承担泄放大部分雷电流的第一和第 二电极之间, 在一定条件下, 第三电极与其中的第一或第二电极之间、 先 产生能够持续存在的电弧 触发电弧, 进而利用该触发电弧影响第一和 第二电极的放电条件, 这种技术称之为触发技术, 该技术有助于第一和第 二电极之间的空间距离设置的更大。
上述的触发技术的出现, 极大地方便了对承担泄放大部分雷电流的第 一和第二电极的设计, 也使得设计人员在考虑如何防止工频电压下形成有 害的续流有了更多的选择。
现在的问题在于, 首先, 第一和第二电极之间的空间距离的大小会对 产生触发电弧以及相应的触发电路产生影响, 受产品体积的限制, 这种影 响会扩散到整个电涌保护器产品的性能和功能。 例如: 增加第一和第二电 极之间的空间距离会延长承担大部分雷电流通道的形成, 即提高触发电路 的承载负担, 同时也会相应地增大残压值, 降低了产品的保护性能;
其次, 由于电力系统存在多个电压等级, 这种不同电压等级的系统也 需要不同的保护等级, 如此就对产品提出了不同的要求, 需要考虑的是, 如何使得产品具有系列特征的设计并满足不同电压等级的要求。 发明内容
本发明旨在提出一种能够解决上述结构缺点且具有高的续流遮断能力 的放电通道的方案。
在电弧理论中, 电弧是依赖于输入功率而存在的。 在低压电器领域, 流系统中, 利用交流电源有过零的瞬间来熄灭电弧, 或者利用限流手段来 另外, 根据公知的电场强度与电场线的分布原理, 在不规则电场中, 不同电位的电极上最短距离所形成的电场强度最大, 两侧面的电场强度随 着与中心线的距离增大而逐步降低。
本发明的实施结构的特征在于, 是通过将容纳电弧的放电通道顺着放 电通道两端电极所形成的相对较弱的外围弧形电场线设置, 如此形成两个 有利于提高产品断续工频续流的能力: 一方面可避免由于不规则电场中最 强电场造成的不利于断开续流条件, 从而有利于提高产品相对较高的断续 能力; 另一方面, 通过电极上的放电回路形成的磁场, 会作用于弧形放电 通道内的电弧本体上, 并在洛伦茨力作用下迫使电弧的径向扩张, 使得电 弧压缩在弧形放电通道的最大半径侧, 如此既保证了电弧长度的最大化, 也控制了电弧的弧柱直径, 有利于增加电弧压降, 达到提高产品断开续流 的能力。
此外, 弧形放电通道的设计可以最大限度地提高空间利用率, 通过增 大弧形角度或弧长, 即可得到不同的电弧压降, 如此可适应于不同系统的 电压等级需要, 扩大产品的系列性和使用范围。
根据本发明的一实施例, 提出一种过电压保护装置的放电模块, 该放 电模块包括: 耐压金属件形成的壳体; 位于耐压金属件内的容纳空间; 相 互独立且绝缘设置的第一电极和第二电极, 设置在容纳空间内。 第一电极 和第二电极通过容纳空间内的放电通道相连, 放电通道的路径顺着第一电 极和第二电极在放电通道内端面所形成的弧形电场线设置。
在一个实施例中, 耐压金属件由第一金属外壳和第二金属外壳构成, 容纳空间由第一结构件和第二结构件组合后构成, 触发电极和触发元件, 设置在容纳空间内。 第一电极、 触发电极与触发元件之间形成电气连接的 结构, 第一电极与触发电极之间击穿产生点火电弧时, 点火电弧受磁场的 洛伦茨力的作用而被拉入放电通道产生连接第一电极与第二电极的间隙电 弧。
在一个实施例中, 放电通道是弧形、 触发电极至少有一个端面是帽形、 触发元件是帽形、 第一电极是不规则形、 第二电极的一侧端面具有半圆环 凸台, 另一侧端面具有半圆凹槽。
在一个实施例中, 第一结构件具有帽形凹槽和不规则形凹槽, 触发电 极嵌入在帽形凹槽中, 触发电极的帽形的端面上叠放触发元件, 第一电极 嵌入第一结构件的不规则形凹槽中, 该不规则形凹槽的形状与第一电极匹 配。 第二结构件具有两个不同半径的半圆形的组合孔, 第二电极的半圆环 凸台插入组合孔内, 第二电极的另一侧端面上的半圆凹槽向外放置。
在一个实施例中, 触发电极的一个端面上设有圆形凸台, 圆形凸台通 过第一结构件上的小孔延伸到外部, 形成过电压保护装置的放电模块外的 触发回路外部连接端。
优选的, 触发电极具有第二结构特征, 根据本发明设计的第二个实施 例。 触发电极的一个端面上设有带通孔的圆形凸台, 通孔中有内螺紋, 该 内螺紋与外部导电杆的外螺紋通过第一结构件上的小孔互相旋拧, 形成过 电压保护装置的放电模块外的触发回路。
在一个实施例中, 第一电极具有一圆轴, 该圆轴插入第一结构件的大 孔中, 触发电极、 触发元件以及第一电极导电接触。
在一个实施例中, 第二金属外壳上具有盘香形凹槽。 第二电极的半圆 凹槽与盘香形凹槽由一具有圆环形凸台的圆形件封闭, 该圆形件的一端面 与第二电极接触, 另一端面与第二金属外壳接触。 第二电极与圆形件以及 第二金属外壳导电接触。
在一个实施例中, 第一结构件的上端面装配入第一金属外壳, 第一结 构件的上端面具有大圆环凸台和小圆环凸台, 大圆环凸台插入第一金属外 壳的大孔中, 小圆环凸台插入第一金属外壳的小孔中。 在一个实施例中, 放电通道的弧形通道的圆心角最佳范围设置在 90。 至 240°之间。
本发明的过电压保护装置的放电模块提供了一种具有高的续流遮断能 力的放电通道的方案, 简单、 易于实现。 附图说明
本发明的上述的以及其他的特征、 性质和优势将通过下面结合附图和 实施例的描述而变得更加明显, 在附图中, 相同的附图标记始终表示相同 的特征, 其中:
图 1 揭示了根据本发明过电压保护装置的放电模块的实施例的基本原 理图。
图 2揭示了根据本发明的第一实施例的过电压保护装置的放电模块中 放电通道的结构图。
图 3揭示了根据本发明的第一实施例的过电压保护装置的放电模块的 分解结构图。
图 4揭示了根据本发明的第二实施例的过电压保护装置的放电模块中 放电通道的结构图。
图 5揭示了根据本发明的第二实施例的过电压保护装置的放电模块的 分解结构图。 具体实施方式
本发明的宗旨是提出一种具有高的续流遮断能力的放电通道的方案。 基于上述的宗旨, 本发明的设计原则是能够更好地实现过电压保护装 置中触发电弧后的续流遮断。 通过简单的放电模块的结构构造, 使得构造 出的放电通道可以根据施加的电网电压进行调整, 保证高的电网续流遮断 能力。
该过电压保护装置的放电模块如此地设置与构成: 包含第一电极、 ― 个第二电极, 两个电极在过电压保护装置内部相对布置。 在这两个电极之 间有一个辅助点火的第三电极——触发电极, 以及形成承载大部分雷电流 并连接第一电极与第二电极的放电通道的绝缘结构件, 以及一个用于容纳 上述三个电极与绝缘结构件的金属外壳。
放电通道的绝缘结构件优选地由高强度、 耐高温、 耐电弧的工程塑料 组成。 绝缘结构间包括两个塑料的结构件, 第一结构件带有一个形状为至 少带有一个弧形的凹槽, 对应的, 第二结构件上带有一个相同长度且相同 形状的凸台。 如此, 在过电压装置装配完成的状态下, 第二结构件上的弧 形凸台嵌入第一结构件上的弧形凹槽中, 该弧形凸台的高度小于弧形凹槽 的深度且能够相对合拢并形成除两头端口外的密封型腔, 在这样的装配情 况下, 构成了封闭的弧形放电通道。 如此, 形成了第一电极与第二电极之 间间隙结构的主要特点: 一个形状为至少带有一个特定角度的弧形通道型 放电间隙。
该形状为至少带有一个特定角度的弧形通道型放电间隙, 其弧形部分 对应的特定角度可根据不同接地制式的要求进行调整, 即满足不同电网电 压下过电压保护和续流分断的需求。 这样的特定角度按照过电压保护装置 对应不同电网电压形成系列产品的情况, 是大于 90度小于 240度的。
上述的弧形放电通道是顺着两个电极之间的外部电场线进行设置的, 如此有三个优点:
首先, 根据电场对电弧的作用影响可知, 电场强度与产生电弧或维持 电弧存在的能力是正向特性, 如此, 顺着两电极之间的外围电场设置放电 通道,可有效降低电场维持工频电压下的电弧的能力 有利于遮断续流; 其次, 利用磁场对电弧的洛伦茨力, 可迫使电弧形成后靠近弧形放电 通道的外径 如此使得电弧弧长最大化, 有利于形成高的弧压降, 限制 工频电压下的续流值;
第三, 弧形放电通道的设计可以最大限度地提高空间利用率, 通过增 大弧形角度或弧长, 即可得到不同的电弧压降, 如此可适应于不同系统的 电压等级需要, 扩大产品的系列性和使用范围。
在弧形放电通道的两端口分别设置第三电极 (即触发电极) 、 第一电 极和第二电极, 其中, 第一电极和第三电极以及之间的触发间隙装配在弧 形放电通道其中的一端口并形成密封的型腔, 第二电极设置在弧形放电通 道另外一端并使得弧形放电通道的内腔与外部空间相连。
在泄放雷电流时, 弧形放电通道一端口封闭、 一端口与外部空间相连 的设置, 一方面, 在第一电极与第三电极形成触发电弧时, 由于气体的膨 胀原因, 将使得触发电弧释放的等离子体沿着气流的运动作用而进入弧形 放电通道中, 有利于触发电弧更快地影响弧形放电通道内部的绝缘性; 另 一方面, 在雷电流泄放时以及泄放完成后, 由于内部高气压和外部相对氐 气压的状态, 可促使弧形放电通道内的放电电弧或等离子体尽快地排到外 部空间, 如此也能够避免在工频电压作用下弧形放电通道内的重燃形成工 频续流的弊端。
第一电极和第三电极之间的触发间隙优选地采用能够产生触发电弧的 元件进行导电性连接设置, 并使得能够产生触发电弧的一端面朝向弧形放 电通道放置。 此外, 第三电极设置在第一电极和第二电极之间的外部空间, 并能够在第三电极上固定一个外部导入的连接杆。
将第三电极置于第一电极和第二电极之间的外部空间, 可避免第三电 极受泄放雷电流产生的电弧的烧蚀, 保证了第三电极以及产生触发电弧的 元件使用寿命; 但是带来的问题是触发电弧不能第一时间出现在第一电极 和第二电极之间, 对第一电极和第二电极之间产生泄放雷电流的电弧通道 的产生形成影响。
根据本发明设计方案, 在第一电极和第三电极以及产生的触发电弧之 间形成 " U" 形电路, 第一电极和第三电极形成 " U" 形电路的两条竖线, 触发电弧形成 " U " 形电路底部的横线部分, 一方面, 如此可使得触发电 弧快速运动, 避免触发电弧停留下来造成的耗损电极的同时还能够拉长触 发电弧以释放出更多的等离子体, 进而增大影响弧形放电通道的绝缘性, 另一方面, 迫使触发电弧在洛伦茨力作用下快速进入第一电极和第二电极 之间的弧形放电通道, 如此加快第一电极和第二电极形成承载泄放雷电流 的放电电弧或通道, 在减轻对触发电路的负载能力要求外同时还提高了产 品的保护性能。
作为放电通道的绝缘结构件, 应同时能够承担泄放雷电流, 电网续流 时的冲击压力, 使用如 POM、 PA等之类的具有良好物理性能的绝缘材料 进行构造。
作为承载雷电流泄放功能的第一电极、 第二电极以及承载触发电弧的 第三电极, 需要能够耐受电弧烧蚀以及产生电弧时内部空间气体急剧膨胀 带来的冲击应力的耐高温、 耐冲击的导电体。 在本设计方案中优选地采用 铜钨合金作为电极材料。
本发明的另一个优选的构成, 是在上文所述的放电通道结构件是以产 气材料为主的结构件。 当间隙电弧被触发时, 一方面, 由于产气材料产气 的效果与弱电场效应的配合, 产气材料的应用可使得在电弧形成后增强弧 形放电通道内部的气压, 加强等离子体的复合过程, 另一方面, 使得热的 等离子体更快速地沿着气流运动流向弧形放电通道的外部空间, 从而提高 遮断工频电压下续流的能力。
根据本发明的特征, 对于不同接地制式的要求, 可对弧形放电通道的 弧长与形状进行调整。 如此即可满足不同电网电压对过电压保护的要求。
结合上述的设计原理,本发明揭示了一种过电压保护装置的放电模块。 图 1 揭示了放电模块的基本构成要素: 隔离设置的第一电极 103、 第 二电极 104、 含有放电通道 102的容纳空间 1 17以及耐压金属件 1 16。 具 体而言, 该过电压保护装置的放电模块 101 包括耐压金属件 1 16形成的壳 体, 位于耐压金属件 1 16 内的容纳空间 1 17, 以及相互独立且绝缘设置的 第一电极 103和第二电极 104 , 第一电极 103和第二电极 104设置在容纳 空间 1 17内。第一电极 103和第二电极 104通过容纳空间 1 17内的放电通 道 102相连,放电通道 102的路径顺着第一电极 103和第二电极 104在放 电通道 102内端面所形成的弧形电场线设置。
根据图 1揭示的基本构成要素, 图 2和图 3显示了依据本发明的第一 实施例, 在该第一实施例中,
耐压金属件 1 16由第一金属外壳 107和第二金属外壳 108构成,第一 金属外壳 107和第二金属外壳 108相互嵌套形成壳体。第一结构件 1 1 1和 第二结构件 1 12组合后构成容纳空间 1 17。
第一电极 103、 第二电极 104、 触发电极 105和触发元件 106设置在 上述的容纳空间 1 17内。 第一电极 103设置在第二电极 104的上方, 在第 一电极 103和第二电极 104之间设置放电通道 102。 第一电极 103、 触发 电极 105与触发元件 106之间形成电气连接的结构,第一电极 103与触发 电极 105之间击穿产生点火电弧 109时,点火电弧 109受磁场的洛伦茨力 的作用而被拉入放电通道 102产生连接第一电极 103与第二电极 104的间 隙电弧 110。
在一个实施例中, 放电通道 102是弧形, 该弧形具有 90。至 240。变化 范围的圆心角。 触发电极 105至少有一个端面是帽形。 触发元件 106是帽 形。第一电极 103是不规则形。第二电极 104的一侧端面具有半圆环凸台, 另一侧端面具有半圆凹槽。
在第一个实施例中,放电通道 102处于容纳空间 117内,容纳空间 117 包括第一结构件 111和第二结构件 112。 其中的第一结构件 111具有帽形 凹槽 113和不规则形凹槽, 触发电极 105嵌入在帽形凹槽 113中, 触发电 极 105上叠放触发元件 106, 第一电极 103嵌入第一结构件 111 的不规则 形凹槽中, 该不规则形凹槽的形状与第一电极 103匹配。
在第一个实施例中, 触发电极 105的帽形端背面有一圆台, 该圆台通 过第一结构件 111上的小孔延伸到放电模块的体外, 形成过电压保护装置 的放电模块外的触发回路。 第一电极 103具有一圆轴, 该圆轴插入第一结 构件 111 的大孔中, 触发电极 105、 触发元件 106以及第一电极 103导电 接触。 第二结构件 112具有半圆孔, 第二电极 104的半圆环凸台插入该半 圆孔内, 第二电极 104的另一侧端面上的半圆凹槽向外放置。 第二金属外 壳 108上具有盘香形凹槽, 第二电极 104的半圆凹槽与盘香形凹槽由一具 有圆环形凸台的圆形件 115封闭, 该圆形件 115的一端面与第二电极 104 接触, 另一端面与第二金属外壳 108接触。
第一结构件 111 的上端面装配入第一金属外壳 107, 第一结构件 111 的上端面具有大圆环凸台和小圆环凸台, 大圆环凸台插入第一金属外壳 107的大孔中,小圆环凸台插入第一金属外壳 107的小孔中。第二电极 104 与圆形件 115以及第二金属外壳 108导电接触。
下面结合附图 2-5对该第一实施例进行进一步的描述。 图 2-5揭示了 带有弧形放电通道 102的过电压保护装置的放电模块 101。 根据图 2所示,该过电压保护装置的放电模块 101 包含了第一电极(上 电极) 103、 第二电极(下电极) 104 , 还包括了触发电极 105与触发元件 106以及容纳上述器件的两个金属外壳, 第一金属外壳 107和第二金属外 壳 108。在第一电极 103和第二电极 104之间设有一个弧形放电通道 102。 其中, 当第一电极 103与触发电极 105之间击穿产生点火电弧 109时, 由 于磁场对点火电弧 109的洛伦茨力的作用, 点火电弧 109被拉入弧形放电 通道 102产生连接第一电极 103与第二电极 104之间的间隙电弧 1 10。
第一电极 103、 触发电极 105、 触发元件 106之间是电气连接的结构, 这种结构通过放电通道 102的第一结构件 1 1 1与第二结构件 1 12的内部构 造与装配组合形成。如图 2所示,帽形的触发电极 105嵌入第一结构件 1 1 1 的帽形凹槽 1 13中。 触发电极 105的一个端面上设有圆形凸台, 该圆形凸 台通过第一结构件 1 1 1上的小孔延伸到放电模块的体外, 从而形成过电压 保护装置的放电模块 101外的触发回路。
同时, 在触发电极 105上叠放带有缺口的帽形触发元件 106 , 并依次 将不规则形状的第一电极 103嵌入第一结构件 1 1 1上具有相应的不规则形 状的凹槽中。 其中, 第一电极 103上的圆轴应对应地插入第一结构件 1 1 1 的大孔, 并保证触发电极 105、 触发元件 106以及第一电极 103在装配完 成后能紧密且有效的导电接触。 这种接触通过将放电通道 102结构装配完 成后放入第一金属外壳 107与第二金属外壳 108后, 通过以规定的扭矩旋 紧两个金属外壳 107和 108保证。
按照图 2与图 3所示的第一实施例, 第二电极 104端面上半圆环凸台 插入第二结构件 1 12对应的半圆孔内 , 使得另一侧的半圆凹槽向外放置。 图 4 中的带圆环形凸台的圆形件 1 15 作为封闭半圆凹槽与第二金属外壳 108上盘香形凹槽的盖板, 圆形件 1 15的一侧端面与第二电极 104接触, 另一侧端面与第二金属外壳 108接触。
根据本发明实施要求, 对触发电弧施加能量较高的雷电过电压时, 使 得触发元件 106对附近空间的介质 (空气) 施加影响, 从而在其他因素共 同作用下产生触发电弧, 该触发电弧会进一步地对泄放雷电流的通道的影 响, 并最终达到建立承担主要泄放雷电流能量的通道。 如由图 2可见, 由于放电通道 102相对于圆柱形的放电模块的端面是 水平的,所以第一电极 103和第二电极 104构成的电场对放电通道 102仅 有水平水平方向上的分量, 不存在竖直方向上的切割。 另外由于弧形放电 通道 102由第一结构件 1 1 1 与第二结构件 1 12构成。触发电极 105与第一 电极 103和第一结构件 1 1 1装配, 第二电极 104与第二结构件 1 12装配, 如此装配使得第一电极 103与第二电极 104分别设置与弧形放电通道 102 的两端。 如图 3这样的设置使得放电通道 102方向跟随着第一电极 103、 第二电极 104构成的电场的外部弧形电场方向, 由于弧形放电通道 102不 经过第一电极 103、 第二电极 104在放电通道 102内的电极末端所形成的 最强电场范围内, 即间隙之间的电弧受到的电场效应是一个弱电场效应, 电弧气体中的等离子体受到一个相对而言的微弱电场的作用下, 沿着弧形 放电通道运动。
为了保证放电通道 102能够稳定地承担泄放雷电流大部分能量, 要求 放电通道 102的结构件可耐高温高压并可耐受电弧灼烧, 并要求放电通道 102结构件装配后稳定, 两端面配合可靠、 平整。
按图 2所示的,放电通道 102的第一结构件 1 1 1 的上端面装配入第一 金属外壳 107 , 对应地, 大的圆环形凸台插入第一金属外壳 107的大孔, 小的圆环形凸台插入第一金属外壳 107的小孔, 并保证触发电极 105、 第 一电极 103与金属外壳的爬电距离。 同时, 触发电极 105与第一电极 103 之间应有几欧姆到几百欧姆范围内的电阻。 另一方面, 第二电极 104按图 所示与带有圆环形凸台的圆形件 1 15、 第二金属外壳 108导电性接触。
放电通道 102的弧长与形状根据不同接地制式的要求可进行调整。 通 过这样的调整, 放电通道 102的长度随之改变, 但仍相对于圆柱形放电模 块的端面水平放置, 且截面积大小不变。
另外。 图 4和图 5揭示了依据本发明的第二实施例, 依据本发明基本 第一实施例的机构特征, 触发电极 105与外部触发回路存在第二种连接方 式。
根据第二实施例的结构特征, 触发电极 105的一个端面上设有带通孔 的圆形凸台, 通孔中有内螺紋, 该内螺紋与外部导电杆 1 14上的外螺紋通 过第一结构件 1 1 1 上的小孔互相旋拧, 形成过电压保护装置的放电模块 101外的触发回路。
本发明的过电压保护装置的放电模块提供了一种具有高的续流遮断能 力的放电通道的方案, 简单、 易于实现。
上述实施例是提供给熟悉本领域内的人员来实现或使用本发明的, 熟 悉本领域的人员可在不脱离本发明的发明思想的情况下, 对上述实施例做 出种种修改或变化, 因而本发明的保护范围并不被上述实施例所限, 而应 该是符合权利要求书提到的创新性特征的最大范围。

Claims

权利要求书
1. 一种过电压保护装置的放电模块, 其特征在于, 该放电模块( 101 ) 包括:
耐压金属件 ( 116) 形成的壳体;
容纳空间 ( 117) , 位于所述耐压金属件 ( 116) 内;
相互独立且绝缘设置的第一电极( 103) 和第二电极( 104) , 设置在 所述容纳空间 ( 117) 内;
所述第一电极 ( 103 ) 和第二电极 ( 104 ) 通过容纳空间 ( 117) 内的 放电通道 ( 102) 相连, 放电通道 ( 102) 的路径顺着第一电极 ( 103) 和 第二电极 ( 104) 在放电通道 ( 102) 内端面所形成的弧形电场线设置。
2. 如权利要求 1 所述的过电压保护装置的放电模块, 其特征在于, 所述耐压金属件( 116 )由第一金属外壳( 107 )和第二金属外壳( 108 ) 构成, 容纳空间 ( 117) 由第一结构件 ( 111 ) 和第二结构件 ( 112) 组合 后构成, 触发电极( 105)和触发元件( 106), 设置在所述容纳空间( 117) 内;
第一电极 ( 103) 、 触发电极 ( 105) 与触发元件 ( 106) 之间形成电 气连接的结构, 第一电极( 103) 与触发电极( 105)之间击穿产生点火电 弧( 109) 时, 点火电弧( 109) 受磁场的洛伦茨力的作用而被拉入放电通 道( 102)产生连接第一电极( 103)与第二电极( 104)的间隙电弧( 110)。
3. 如权利要求 2所述的过电压保护装置的放电模块, 其特征在于, 所述放电通道 ( 102) 是弧形;
所述触发电极 ( 105) 至少有一个端面是帽形;
所述触发元件 ( 106) 是帽形;
所述第一电极 ( 103) 是不规则形;
所述第二电极 ( 104) 的一侧端面具有半圆环凸台, 另一侧端面具有 半圆凹槽。
4. 如权利要求 2所述的过电压保护装置的放电模块, 其特征在于, 第一结构件 ( 111 ) 具有帽形凹槽 ( 113) 和不规则形凹槽, 触发电极
( 105) 嵌入在所述帽形凹槽 ( 113) 中, 触发电极 ( 105) 的帽形的端面 上叠放触发元件 ( 106) , 第一电极 ( 103) 嵌入所述第一结构件 ( 111 ) 的不规则形凹槽中, 该不规则形凹槽的形状与第一电极 ( 103) 匹配; 第二结构件 ( 112) 具有两个不同半径的半圆形的组合孔, 所述第二 电极( 104) 的半圆环凸台插入所述组合孔内, 第二电极( 104) 的另一侧 端面上的半圆凹槽向外放置。
5. 如权利要求 4所述的过电压保护装置的放电模块, 其特征在于, 所述触发电极 ( 105) 的一个端面上设有圆形凸台, 圆形凸台通过第 一结构件( 111 )上的小孔延伸到外部, 形成过电压保护装置的放电模块外 的触发回路。
6. 如权利要求 4所述的过电压保护装置的放电模块, 其特征在于, 所述触发电极 ( 105) 的一个端面上设有带通孔的圆形凸台, 通孔中 有内螺紋, 该内螺紋与连接线上的外螺紋通过第一结构件( 111 )上的小孔 互相旋拧, 形成过电压保护装置的放电模块外的触发回路。
7. 如权利要求 4所述的过电压保护装置的放电模块, 其特征在于, 第一电极( 103) 具有一圆轴, 该圆轴插入第一结构件 ( 111 ) 的大孔 中, 所述触发电极 ( 105) 、 触发元件 ( 106) 以及第一电极 ( 103) 导电 接触。
8. 如权利要求 2所述的过电压保护装置的放电模块, 其特征在于, 所述第二金属外壳 ( 108) 上具有盘香形凹槽;
第二电极 ( 104) 的半圆凹槽与所述盘香形凹槽由一具有圆环形凸台 的圆形件 ( 115) 封闭, 该圆形件 ( 115) 的一端面与第二电极 ( 104) 接 触, 另一端面与第二金属外壳 ( 108) 接触;
第二电极 ( 104) 与圆形件 ( 115) 以及第二金属外壳 ( 108) 导电接 触。
9. 如权利要求 2所述的过电压保护装置的放电模块, 其特征在于, 所述第一结构件 ( 111 ) 的上端面装配入第一金属外壳 ( 107) , 第一 结构件( 111 )的上端面具有大圆环凸台和小圆环凸台, 大圆环凸台插入第 一金属外壳 ( 107) 的大孔中, 小圆环凸台插入第一金属外壳 ( 107) 的小 孔中。
10. 如权利要求 1 所述的过电压保护装置的放电模块, 其特征在于, 所述放电通道( 102)的弧形通道的圆心角最佳范围设置在 90。至 240。 之间。
PCT/CN2012/072048 2011-04-15 2012-03-07 过电压保护装置的放电模块 WO2012139446A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110095780.9A CN102738785B (zh) 2011-04-15 2011-04-15 过电压保护装置的放电模块
CN201110095780.9 2011-04-15

Publications (1)

Publication Number Publication Date
WO2012139446A1 true WO2012139446A1 (zh) 2012-10-18

Family

ID=46993805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072048 WO2012139446A1 (zh) 2011-04-15 2012-03-07 过电压保护装置的放电模块

Country Status (2)

Country Link
CN (1) CN102738785B (zh)
WO (1) WO2012139446A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769736A (en) * 1986-06-25 1988-09-06 Siemens Aktiengesellschaft Gas discharge surge arrester
CN1588718A (zh) * 2004-08-17 2005-03-02 曾献昌 无续流金属陶瓷气体放电管
CN1890849A (zh) * 2003-12-09 2007-01-03 凤凰接触股份有限及两合公司 过电压保护装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10008764A1 (de) * 1999-03-04 2000-09-28 Phoenix Contact Gmbh & Co Überspannungsschutzeinrichtung
DE202004020260U1 (de) * 2004-12-28 2005-02-24 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzeinrichtung
CN100370670C (zh) * 2005-03-28 2008-02-20 西安交通大学 基于空心电极的过电压保护器件
DE102005024658B4 (de) * 2005-05-30 2007-02-15 Dehn + Söhne Gmbh + Co. Kg Gekapselte, druckfest ausgeführte, nicht hermetisch dichte, rotationssymmetrische Hochleistungsfunkenstrecke
CN101304159A (zh) * 2007-05-10 2008-11-12 大原武芳 突波保护器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769736A (en) * 1986-06-25 1988-09-06 Siemens Aktiengesellschaft Gas discharge surge arrester
CN1890849A (zh) * 2003-12-09 2007-01-03 凤凰接触股份有限及两合公司 过电压保护装置
CN1588718A (zh) * 2004-08-17 2005-03-02 曾献昌 无续流金属陶瓷气体放电管

Also Published As

Publication number Publication date
CN102738785B (zh) 2015-07-22
CN102738785A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
JP6018305B2 (ja) 無続流アークの間隙避雷保護装置
CN102486954B (zh) 多间隙自膨胀强气流灭弧防雷保护装置
BRPI0718187B1 (pt) arranjo de desconexão e método para operar um arranjo de desconexão
CN203056371U (zh) 喷气式并联间隙装置
CN107369508A (zh) 一种避雷器
CN209267172U (zh) 一种电涌保护装置及系统
WO2020108035A1 (zh) 一种电涌保护装置及系统
WO2012139446A1 (zh) 过电压保护装置的放电模块
CN100355164C (zh) 过压保护装置
CN108428526A (zh) 一种避雷器芯体和避雷器
CN102005322B (zh) 开关电器灭弧室
CN209298880U (zh) 一种电涌保护装置及系统
CN108365519A (zh) 一种输电线路过电压保护装置
CN204167901U (zh) 一种紧凑型高性能雷电放电器
CN207217201U (zh) 一种分体组合式压缩灭弧管
CN208507338U (zh) 一种避雷器芯体和避雷器
CN102738707B (zh) 过电压保护装置
CN206976098U (zh) 一种避雷器
CN203826144U (zh) 多间隙自膨胀强气流纵吹灭弧防雷保护装置
CN205429713U (zh) 一种过电压保护器
CN207765787U (zh) 一种输电线路过电压保护装置
CN201616416U (zh) 陶瓷高压放电管
CN207218002U (zh) 一种设有灭弧路径的裙边
CN201681780U (zh) 报警可靠的防雷保险丝及其浪涌过电压保护装置
CN107481822A (zh) 一种分体组合式压缩灭弧管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771258

Country of ref document: EP

Kind code of ref document: A1