WO2012139325A1 - 一种波长转换器件及其制备方法 - Google Patents

一种波长转换器件及其制备方法 Download PDF

Info

Publication number
WO2012139325A1
WO2012139325A1 PCT/CN2011/075788 CN2011075788W WO2012139325A1 WO 2012139325 A1 WO2012139325 A1 WO 2012139325A1 CN 2011075788 W CN2011075788 W CN 2011075788W WO 2012139325 A1 WO2012139325 A1 WO 2012139325A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion device
wavelength
light
layer
Prior art date
Application number
PCT/CN2011/075788
Other languages
English (en)
French (fr)
Inventor
陈豪轩
Original Assignee
广东佛照新光源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东佛照新光源科技有限公司 filed Critical 广东佛照新光源科技有限公司
Publication of WO2012139325A1 publication Critical patent/WO2012139325A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0095Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to a wavelength conversion device, and more particularly to light or radiation of a particular wavelength or spectrum that is different from the wavelength of the excitation source by excitation of a suitable source of light by the conversion material contained therein.
  • the wavelength converting material is based on a fluorescent or phosphorescent material and can be used to convert light of a particular wavelength or to radiate light or radiation of another different wavelength.
  • up-converting materials can convert longer wavelengths of light to shorter wavelengths, ie, infrared or X-rays to visible light
  • down-converting materials can be used to convert short wavelengths of light to longer wavelengths of light, For example: from ultraviolet light to visible light, from blue light to green light, yellow light and red light.
  • This wavelength conversion has many technical applications, such as three-dimensional color light recording/display, illumination, bioanalysis and labeling, and insect trapping.
  • the position of the wavelength converting material and the excitation source can be separated by a certain distance.
  • the wavelength converting material can be immersed in the liquid while the excitation source is placed outside of the liquid.
  • the light from the excitation source can be selected to not attract insects or prey, and the light from the light-converting material excited by the excitation wavelength can attract insects or prey.
  • James discloses a wavelength converting material for use as a coating on a cover layer of a luminaire.
  • the phosphor coating of the disclosed structure is carried out by a slurry coating or spraying method, which does not guarantee the uniformity of the thickness of the coating, nor does it guarantee the desired desired thickness. This is due to gravitational movement, where liquid material flows to a lower point on the surface of the coating during solidification. Due to the extremely high phosphor concentration, the output of light is very sensitive to the thickness of the phosphor layer.
  • An object of the present invention is to provide a wavelength converting material which is provided to solve the deficiencies of the prior art, and which can emit light or radiation of a specific wavelength or spectrum by a suitable light source.
  • Another object of the present invention is to provide a method of fabricating a wavelength conversion device.
  • a wavelength conversion device comprising a basic structure, wherein the base structure has a groove and a surrounding groove, and the wavelength conversion layer fills the entire surrounding groove and the surrounding groove.
  • the basic structure of the wavelength conversion device is made of a transparent material at a specific wavelength or spectrum.
  • the transparent material is selected from the group consisting of glass, glass ceramics, ceramics, polymers such as polytetrafluoroethylene, polymethyl methacrylate, polycarbonate, and silicon or polymer composites.
  • the wavelength conversion layer fills the top surface of the chassis and completely covers the base structure.
  • the base structure has an inverted cylindrical, square, rectangular or polygonal structure and cuts the shape of one of a cylindrical or conical or spherical shape; the basic structure also has an inner cylindrical or rectangular or truncated conical surface, a groove and The surrounding groove is a top outer groove surrounding the base structure, and an island-like structure is formed in the middle; the wavelength conversion layer is filled in the outer surface of the top surface and covers the island structure, and the inner surface of the structure may have a cylindrical shape or a curved shape. Or one of the polygonal shapes forms a light source receiving cavity.
  • the top and bottom surfaces of the chassis are parallel.
  • the distance between the outer and inner top surfaces of one of the top surfaces of the base structure is shorter at the center line and larger at the distance from the center line.
  • the central top surface of the base structure is a flat surface.
  • the central top surface of the base structure has a textured structure.
  • the surrounding groove of the base structure is zigzag, circular or rectangular and is cut by a plane perpendicular to the vertical axis of the wavelength conversion device.
  • the outer layer of the base structure is serrated, circular or rectangular and is cut by a plane perpendicular to the vertical axis of the wavelength conversion device.
  • the wavelength conversion layer comprises a wavelength converting material and a binder, or a mixture comprising a wavelength converting material and a binder.
  • the wavelength converting material is a phosphor, a luminescent material, a nanocrystal or a composite thereof, and the binder material is transparent at a specific wavelength of light.
  • the wavelength converting material is at least up-converting and/or down-converting phosphor material, emitting at least visible light or infrared light, and exciting a ray, visible light or infrared light through the ultraviolet light; and the wavelength converting material is an upward conversion luminescent material, the light
  • the longer wavelength light is converted into a shorter wavelength light, such as infrared light into visible light; when the wavelength conversion material is a down conversion luminescent material, the shorter wavelength light is converted into a longer wavelength light, such as converted X-rays.
  • ultraviolet to visible light and converted by infrared light, or blue light into a longer wavelength of light, such as green or yellow or red, or from green wavelengths to yellow or red.
  • the wavelength conversion layer further contains an oxide material, and the oxide material and the wavelength conversion material and the binder are on the upper surface coating layer of the wavelength conversion layer.
  • the wavelength conversion layer is partially exposed to the air.
  • the shape of the wavelength conversion layer is adapted to the shape of the groove and groove of the base structure.
  • the wavelength conversion layer is a conversion structure that converts the wavelength of the excitation source to a desired specific wavelength of light or radiation.
  • the excitation source is at least one of an LED source, a laser source, and a source of fluorescence.
  • the preparation method of the wavelength conversion device of the present invention is as follows:
  • the base structure and the wavelength conversion layer are then fixed together with an adhesive material.
  • the preparation method of the wavelength conversion device of the present invention may further be:
  • the wavelength is converted into a layer and inserted into the second mold
  • the secondary injection process forms the basic structure and complete wavelength conversion device.
  • the preparation method of the wavelength conversion device of the present invention may further be:
  • a wavelength conversion layer is formed by a coating method.
  • the invention utilizes the water pressure of the faucet to control the drainer activation device through the control switch, so that the water pressure in the hydraulic cylinder changes, so that the push rod in the hydraulic cylinder presses the drain cover to seal the water cover, thereby realizing the drainer
  • the sealing cover is opened and closed, the structure is simple, and the operation is convenient.
  • control switch has no direct connection relationship with the water sealing cover
  • the water sealing cover is in the form of active installation. Therefore, in the state of water stop and water pressure, the water sealing cover can also be directly opened by hand, which is convenient to use.
  • the invention has wide application range and is suitable for opening or closing a controllable drainer such as a kitchen sink, a bathroom washbasin, a bidet, a bathtub, and the like.
  • Figure 1 is a cross-sectional view showing an example of a wavelength conversion device according to the present invention.
  • the wavelength conversion device 10 of 1 includes the base structure 1 and the wavelength conversion layer 2.
  • the basic structure of the wavelength conversion device 10 is made of a material having excellent optical clarity and being transparent at a specific wavelength or spectrum. Transparent materials are selected from the group consisting of glass, glass ceramics, ceramics, polymers such as polytetrafluoroethylene, polymethyl methacrylate, polycarbonate, and silicon or polymer composites.
  • the wavelength conversion layer 2 fills the top surface of the base structure 1 and completely covers the base structure 1.
  • the base structure has an inverted cylindrical, square, rectangular or polygonal structure and cuts the shape of one of the cylindrical or conical or spherical shapes.
  • the base structure also has an inner cylindrical or rectangular or truncated conical surface, the surrounding groove and the surrounding groove are surrounding the outer outer groove of the basic structure, forming an island-like structure in the middle; the wavelength conversion layer is filled on the outer surface of the top surface And covering the island-like structure, the inner surface of the structure may have one of a cylindrical or curved or polygonal shape to form a light source receiving cavity.
  • the top and bottom surfaces of the infrastructure are parallel. The distance between the outer and inner top surfaces of one of the top surfaces of the base structure is shorter at the center line and larger at the distance from the center line.
  • the center top surface of the base structure is a flat surface or has a textured structure.
  • the footprint of the base structure is zigzag, circular or rectangular, as if it were cut by a plane perpendicular to the vertical axis of the wavelength conversion device.
  • the outer layer of the base structure is zigzag, circular or rectangular, as if it were cut by a plane perpendicular to the vertical axis of the wavelength conversion device.
  • the wavelength conversion layer includes a wavelength converting material and a binder.
  • the binder material is transparent at specific wavelengths of light.
  • the wavelength converting material is at least up-converting and/or down-converting the phosphor material, at least emitting visible light or infrared light, and in the ultraviolet light, x exciting a light, visible light or infrared light.
  • the wavelength converting material When the wavelength converting material is an up-converting luminescent material, light having a longer wavelength of light is converted into light having a shorter wavelength, such as infrared light, and converted into visible light; and when the wavelength converting material is a down-converting luminescent material, light having a shorter wavelength is converted.
  • light having a shorter wavelength For longer wavelengths of light, such as converting X-rays or ultraviolet light to visible light and converting from infrared light, or blue light, to a longer wavelength of light, such as green or yellow or red light, or from green wavelengths to yellow or red light.
  • the wavelength conversion layer further comprises an oxide material or a heat radiation material; the oxide material or the heat radiation material and the wavelength conversion material and the binder are located on the upper surface coating layer of the wavelength conversion layer.
  • the heat radiating material can be used in combination with the phosphor material and the binder.
  • the wavelength conversion layer is partially exposed to the air to enhance heat dissipation.
  • the shape of the wavelength conversion layer is adapted to the shape of the groove and groove of the base structure.
  • the wavelength conversion layer can convert the wavelength of the excitation source to a desired specific wavelength of light or radiation.
  • the excitation source is at least one of a light source, a laser source and a source of fluorescence.
  • the base structure 1 is a cross-sectional view of a wavelength conversion device in accordance with an embodiment of the present invention.
  • the base structure 1 has a groove ET formed between the surfaces S1 and S2, a groove formed between the surfaces of the slopes S6 and S7, and a cavity formed between the inner surfaces S4 and S5 of the base structure 1.
  • a top surface S3 may be a flat or textured surface to prevent delamination of the wavelength conversion layer 2 on S3.
  • the surfaces of S1 and S2 may be flat, curved, and tortuous, and they are cut by a plane perpendicular to the vertical axis, as shown in Fig. 1.
  • the zigzag structure will prevent large CCT changes if they occur at these layers and re-layering on the surface.
  • the wavelength conversion layer 2 fills the surrounding groove EG and the surrounding groove ET and sufficiently covers the top surface S3.
  • the presence of the siir EG is used to prevent the accumulation of moisture at the internal interface. Therefore, it reduces the possibility of stratification in the internal interface.
  • the geometry of the wavelength conversion layer 2 depends on the surface of the trench ET, the grooves EG and S3.
  • the top surface of the wavelength conversion layer 2 is flat or curved.
  • the surface of S5 may have a concave shape to further suppress such surface light emission, directing the wavelength conversion device side surface of the light, resulting in a wide distribution of light.
  • the wavelength conversion device 10 may have one of a cylindrical shape, a square shape, a rectangular shape, a truncated cone shape, an inverted cylinder shape, and an inverted polygonal shape.
  • the side surface S8 of the wavelength conversion device 10 can be planar or curved, making the device 10 look like a truncated cylindrical or spherical shape.
  • the surface of the S8 can be a sawtooth-like structure that is cut from a plane perpendicular to the vertical axis, as shown in Figure 1.
  • the base structure 1 has excellent optical clarity and is made of a material that is transparent at a suitable wavelength or wavelength spectrum.
  • the wavelength conversion device emits a desired specific wavelength or spectrum of light or radiation after activation of the remote excitation source.
  • the wavelength conversion device 10 When the wavelength conversion device 10 receives at least one excitation light source through its excitation optical cavity 3 or cover surface, that is, the LED light source or laser source emits a wavelength that emits a luminescent material in the wavelength converter 10 to emit at least one different specific wavelength. Light.
  • different colors of light including white light, can be provided by the wavelength conversion device 10 and used in different applications.
  • the wavelength converter 10 can obtain different colors of light by using different phosphor materials as needed without changing the entire excitation light source or structure.
  • the wavelength conversion device can assemble two prefabricated structures by using a suitable bonding material; the wavelength conversion device can be first molded into the wavelength conversion layer 2 by an overmolding process, and then the base structure 1 is molded; the wavelength conversion layer 2 It can be achieved by a slurry coating method covering the surrounding surface of the furrow, the surrounding groove and the foundation structure 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Description

一种波长转换器件及其制备方法 技术领域
本发明涉及一种波长转换器件,具体是涉及通过其中包含的转换材料,在适当的光源激发下产生与激发光源波长不同的特定波长或光谱的光或者辐射。
背景技术
波长转换材料以荧光或磷光材料为基础,可用于转换一特定波长的光或者辐射到另外一个不同波长的光或者辐射。例如,向上转换材料,可把波长较长的光转换到更短的波长,即由红外光或X射线转换为可见光;向下转换材料,可用于转换短的光波长到更长的光波长,例如:由紫外线到可见光,由蓝光到绿光,黄光和红光等。这种波长转换已有许多技术上的应用,如三维彩色光记录/显示,照明,生物分析和标签,昆虫诱捕。
波长转换材料和激发光源的位置可以由一定的距离分开放置的。例如,在一种昆虫诱捕器件中,波长转换材料可以浸泡在液体而激发光源放置在液体之外。可以选择激发光源发出的光不吸引昆虫或猎物,而在激发波长的激发下的光转换材料发出来的光,能吸引昆虫或猎物。在美国专利申请US20080054280,詹姆斯公开了一种波长转换材料作为涂层应用在灯具的覆盖层上。然而,披露结构的荧光粉涂层由浆料涂层或喷施方法实施,不能保证涂层厚度均匀性,也不能保障能否达到所需的理想的厚度。这是因为引力运动,固化过程中液体物质流向涂层表面较低点。由于极高的荧光粉薄层浓度,光的输出对荧光粉层的厚度是非常敏感的。
技术问题
本发明的目的就是为了解决现有技术之不足而提供的一种其包含的波长转换材料,可以通过适当的光源激发产生特定的波长或光谱的光或者辐射的波长转换器件。
本发明的另一目的是提供一种波长转换器件的制备方法。
技术解决方案
本发明是采用如下技术解决方案来实现上述目的:一种波长转换器件,包括基础结构,其特征在于:所述基础结构有一围沟和围槽,波长转换层填满整个围沟和围槽。
进一步地,波长转换器件的基础结构由在一个特定的波长或光谱的透明的材料制成。
所述透明的材料为玻璃、玻璃陶瓷、陶瓷、聚合物如聚四氟乙烯、聚甲基丙烯酸甲酯、聚碳酸脂和硅或聚合物复合材料一组中选出。
所述波长转换层填满基础结构的顶面,并完全覆盖所述基础结构。
所述基础结构有一个倒截圆柱形、方形、长方形或多边形结构,并截断圆柱或圆锥形或球形形状之一的形状;基础结构还具有内在的圆柱形或长方形或截圆锥面,围沟和围槽为环绕基础结构的顶面外沟,在中间形成一个岛状结构;所述波长转换层填充在上面顶面外沟,并覆盖上述岛状结构,该结构内表面可能有圆柱形或弯曲或多边形的形状之一,形成了一个光源接收腔。
所述基础结构外部和内部的顶面是平行的。
基础结构其中一顶面之间的外部和内部顶面间的距离在中心线较短,而离开中线间距较大。
所述基础结构的中心顶面是一个平坦的面。
所述基础结构的中心顶面具有纹理结构。
所述基础结构的围槽为锯齿字形、圆形或长方形,是由一个平面垂直于波长转换器件的垂直轴切。
所述基础结构的外层为锯齿字形、圆形或长方形,是由一个平面垂直于波长转换器件的垂直轴切。
所述波长转换层包括波长转换材料和粘合剂,或包括波长转换材料的混合物及粘合剂。
所述波长转换材料是荧光粉、发光材料、纳米晶或它们的复合材料,粘合剂材料在特定的光波长是透明的。
所述波长转换材料至少是上转换和/或下转换荧光粉材料,至少发射可见光或红外光,经紫外光中,x激发一射线,可见光或红外线;波长转换材料为向上转换发光材料时,光波长较长的光转换成一波长更短的光,如红外光转换成可见光;波长转换材料为一个降频转换发光材料时,由波长较短的光转换为波长较长的光,如转换X射线或紫外线到可见光和由红外光、或蓝光转换成一个波长较长的光,如绿或黄或红光、或由绿色波长转换为黄色或红色光。
所述波长转换层还含有氧化物材料,该氧化物材料与所述波长转换材料及粘结剂位于波长转换层上表面涂层。
所述的波长转换层是部分暴露在空气中。
所述波长转换层的形状与基础结构的围沟和槽形状相适应。
所述波长转换层为转换激发光源的波长到一个所需的特定波长的光或者辐射的转换结构。
所述激发光源至少是发光二极管光源、激光光源和荧光来源之一。
本发明的波长转换器件的制备方法如下:
1、由模压成型的方法预制制成基础结构和波长转换层;
2、基础结构和波长转换层再用粘合材料固定在一起。
本发明的波长转换器件的制备方法,其制备方法还可以为:
1、由模压成型方法预制波长转换层;
2、波长转换成层插入第二个模具;
3、二次注塑过程,形成基础结构和完整波长转换器件。
本发明的波长转换器件的制备方法,其制备方法还可以为:
1、由模压成型方法预制基础结构;
2、由涂层方法形成波长转换层。
有益效果
本发明采用上述技术解决方案所能达到的有益效果是:
1、本发明利用水龙头水压通过控制开关来控制排水器启用装置,令其水压缸内的水压产生变化,使水压缸内的推杆顶压排水器封水盖,从而实现排水器封水盖的开启、关闭,结构简单,操作方便。
2、本发明由于控制开关与封水盖无直接连接关系,封水盖为活动安装形式,因此,在停水无水压状态下,也可以直接用手开启封水盖,使用方便。
3、本发明适用范围广,适合于厨房洗菜盆、浴室洗脸盆、净身盆、浴缸等可控排水器的开启或关闭。
附图说明
附图标记说明:
图1是一个根据本发明的波长转换器件例子的横截面视图。
附图标记说明:1、基础结构 2、波长转换层 3、空腔 S1、S2、表面 S3、顶面 S4、S5、内表面 S6、S7、斜面 S8、侧表面 ET、壕沟 EG、围槽 10、波长转换器件。
本发明的最佳实施方式
如图1所示,本发明的一种波长转换器件,图 1的波长转换器件10包括基础结构1和波长转换层2。波长转换器件10的基础结构由具有优良的光学清晰度、并在一个特定的的波长或光谱为透明的材料制成。透明的材料为玻璃、玻璃陶瓷、陶瓷、聚合物如聚四氟乙烯、聚甲基丙烯酸甲酯、聚碳酸脂和硅或聚合物复合材料一组中选出。波长转换层2填满基础结构1的顶面,并完全覆盖所述基础结构1。基础结构有一个倒截圆柱形、方形、长方形或多边形结构,并截断圆柱或圆锥形或球形形状之一的形状。基础结构还具有内在的圆柱形或长方形或截圆锥面,围沟和围槽为环绕基础结构的顶面外沟,在中间形成一个岛状结构;所述波长转换层填充在上面顶面外沟,并覆盖上述岛状结构,该结构内表面可能有圆柱形或弯曲或多边形的形状之一,形成了一个光源接收腔。基础结构外部和内部的顶面是平行的。基础结构其中一顶面之间的外部和内部顶面间的距离在中心线较短,而离开中线间距较大。基础结构的中心顶面是一个平坦的面或是具有纹理结构。基础结构的围槽为锯齿字形、圆形或长方形,它就像是由一个平面垂直于波长转换器件的垂直轴切。基础结构的外层为锯齿字形、圆形或长方形,它就像是由一个平面垂直于波长转换器件的垂直轴切。波长转换层包括波长转换材料和粘合剂。粘合剂材料在特定的光波长是透明的。其中的波长转换材料至少是上转换和/或向下转换荧光粉材料,至少发射可见光或红外光一,经紫外光中,x激发一射线,可见光或红外线的光。波长转换材料为向上转换发光材料时,光波长较长的光转换成一波长更短的光,如红外光转换成可见光;波长转换材料为一个降频转换发光材料时,由波长较短的光转换为波长较长的光,如转换X射线或紫外线到可见光和由红外光、或蓝光转换成一个波长较长的光,如绿或黄或红光、或由绿色波长转换为黄色或红色光。其中的波长转换层还含有氧化物材料或热辐射材料;该氧化物材料或热辐射材料与所述波长转换材料及粘结剂位于波长转换层上表面涂层。热辐射材料可与荧光粉材料和粘合剂可以混合使用。波长转换层是部分暴露在空气中,以加强散热。其中的波长转换层的形状与基础结构的围沟和槽形状相适应。波长转换层可以转换激发光源的波长到一个所需的特定波长的光或者辐射。其中的激发光源至少是发光二极管光源,激光光源和荧光来源之一。
图1是根据一本发明体现的一种波长转换器件的横截面视图。本实施例中,基础结构1有一个是表面S1和S2之间形成的壕沟ET,斜面S6和S7表面之间形成的一围槽,基础结构1的内表面S4和S5之间形成的空腔3,一顶面S3可以是平坦或有纹理的表面,以防止在S3上的波长转换层2脱层。
S1和S2的表面可能是平的、弯曲的,和曲折,它们是由一个平面垂直于垂直轴切,如图1所示形结构。锯齿形的结构将防止大CCT的变化,如果在这些分层和重新分层在表面发生。
波长转换层2填满了围槽EG和围沟ET,并充分覆盖了顶面S3。围槽EG的存在是用于阻止水分在内部接口的积累。因此,它减少了在内部界面分层的可能性。波长转换层2的几何形状取决于壕沟ET,围槽EG和S3的表面。该波长转换层2的顶面是平坦或弯曲的。
S5的表面可能有一个凹形状,以进一步遏制这种表面光发射,引导光的波长转换器件侧表面,造成光的广泛分布。
波长转换器件10可能有圆柱形、方形、长方形、截锥形、倒截圆柱,并倒截多边形形状之一。该波长转换设备10的侧表面S8可以是平面或曲面,使设备10看起来像一个被截断的圆柱形或球形。S8的表面可以是锯齿一样的结构,它是由一个垂直于垂直轴切出来的平面,如图1所示。基础结构1具有优良的光学清晰度,并在适当波长或波长频谱透明的材料制成。
波长转换器件在远置的激发光源激活后发出一个所需的特定的波长或光谱的光或者辐射。
当波长转换器件10通过其激发光腔3或覆盖表面接收至少一个激发光源,即LED光源或激光源发出一个能使波长转换器10里的发光材料激发的波长的发射出来至少一个不同的特定波长的光。这样,不同颜色的光,包括白光,都可以通过波长转换器件10来提供,并用于不同的应用。
波长转换器10,根据需要,通过使用不同的荧光粉材料,而无需改变整个激发光源或者结构,而可以获得不同颜色的光。
在制备方法方面,波长转换器件可以通过使用适当的粘合材料组装两预制结构;波长转换器件可以通过二次注塑工艺,首先模压形成波长转换层2,再模压制基础结构1;波长转换层2可以通过形浆涂层的方法实现,覆盖围沟,围槽和基础结构1的顶面。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (23)

1、一种波长转换器件,包括基础结构,其特征在于:所述基础结构有一围沟和围槽,波长转换层填满整个围沟和围槽。
2、根据权利要求1所述的波长转换器件,其特征在于,波长转换器件的基础结构由在一个特定的波长或光谱的透明的材料制成。
3、根据权利要求2所述的波长转换器件,其特征在于,所述透明的材料为玻璃、玻璃陶瓷、陶瓷、聚合物如聚四氟乙烯、聚甲基丙烯酸甲酯、聚碳酸脂和硅或聚合物复合材料一组中选出。
4、根据权利要求1所述的波长转换器件,其特征在于,所述波长转换层填满基础结构的顶面,并完全覆盖所述基础结构。
5、根据权利要求4所述的波长转换器件,其特征在于,所述基础结构有一个倒截圆柱形、方形、长方形或多边形结构,并截断圆柱或圆锥形或球形形状之一的形状;基础结构还具有内在的圆柱形或长方形或截圆锥面,围沟和围槽为环绕基础结构的顶面外沟,在中间形成一个岛状结构;所述波长转换层填充在上面顶面外沟,并覆盖上述岛状结构,该结构内表面可能有圆柱形或弯曲或多边形的形状之一,形成了一个光源接收腔。
6、根据权利要求5所述的波长转换器件,其特征在于,所述基础结构外部和内部的顶面是平行的。
7、根据权利要求5所述的波长转换器件,其特征在于,基础结构其中一顶面之间的外部和内部顶面间的距离在中心线较短,而离开中线间距较大。
8、根据权利要求4所述的波长转换器件,其特征在于,所述基础结构的中心顶面是一个平坦的面。
9、根据权利要求4所述的波长转换器件,其特征在于,所述基础结构的中心顶面具有纹理结构。
10、根据权利要求4所述的波长转换器件,其特征在于,所述基础结构的围槽为锯齿字形、圆形或长方形,是由一个平面垂直于波长转换器件的垂直轴切。
11、根据权利要求5所述的波长转换器件,其特征在于,所述基础结构的外层为锯齿字形、圆形或长方形,是由一个平面垂直于波长转换器件的垂直轴切。
12、根据权利要求1所述的波长转换器件,其特征在于,所述波长转换层包括波长转换材料和粘合剂,或包括波长转换材料的混合物及粘合剂。
13、根据权利要求12所述的波长转换器件,其特征在于,所述波长转换材料是荧光粉、发光材料、纳米晶或它们的复合材料,粘合剂材料在特定的光波长是透明的。
14、根据权利要求12所述的波长转换器件,其特征在于,所述波长转换材料至少是上转换和/或下转换荧光粉材料,至少发射可见光或红外光,经紫外光中,x激发一射线,可见光或红外线。
15、根据权利要求12所述的波长转换器件,其特征在于,所述波长转换层还含有氧化物材料。
16、根据权利要求15所述的波长转换器件,其特征在于,该氧化物材料与所述波长转换材料及粘结剂位于波长转换层上表面涂层。
17、根据权利要求1所述的波长转换器件,其特征在于,所述的波长转换层是部分暴露在空气中。
18、根据权利要求1所述的波长转换器件,其特征在于,所述波长转换层的形状与基础结构的围沟和槽形状相适应。
19、根据权利要求1所述的波长转换器件,其特征在于,所述波长转换层为转换激发光源的波长到一个所需的特定波长的光或者辐射的转换结构。
20、根据权利要求1所述的波长转换器件,其特征在于,所述激发光源至少是发光二极管光源、激光光源和荧光来源之一。
21、一种权利要求1-20任意一项中所述的波长转换器件的制备方法,其特征在于,它的制备方法如下:
(1)、由模压成型的方法预制制成基础结构和波长转换层;
(2)、基础结构和波长转换层再用粘合材料固定在一起。
22、一种权利要求1-20任意一项中所述的波长转换器件的制备方法,其特征在于,它的制备方法如下:
(1)、由模压成型方法预制波长转换层;
(2)、波长转换成层插入第二个模具;
3、二次注塑过程,形成基础结构和完整波长转换器件。
23、一种权利要求1-20任意一项中所述的波长转换器件的制备方法,其特征在于,它的制备方法如下:
(1)、由模压成型方法预制基础结构;
(2)、由涂层方法形成波长转换层。
PCT/CN2011/075788 2011-04-12 2011-06-16 一种波长转换器件及其制备方法 WO2012139325A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110090827.2 2011-04-12
CN2011100908272A CN102252273A (zh) 2011-04-12 2011-04-12 一种波长转换器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2012139325A1 true WO2012139325A1 (zh) 2012-10-18

Family

ID=44979717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075788 WO2012139325A1 (zh) 2011-04-12 2011-06-16 一种波长转换器件及其制备方法

Country Status (2)

Country Link
CN (1) CN102252273A (zh)
WO (1) WO2012139325A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840064A (zh) * 2014-03-06 2014-06-04 晶科电子(广州)有限公司 一种立体式发光的led器件及其制作方法
CN104167482B (zh) * 2014-07-29 2018-01-23 广东晶科电子股份有限公司 一种白光led芯片及其制作方法
CN110364596B (zh) * 2019-07-30 2021-09-03 广东省半导体产业技术研究院 补色led器件和补色led器件的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252376A (ja) * 2001-02-23 2002-09-06 Seiwa Electric Mfg Co Ltd 表面実装型発光ダイオード及びその製造方法
CN1574407A (zh) * 2003-06-18 2005-02-02 丰田合成株式会社 发光器件
CN2809881Y (zh) * 2005-05-20 2006-08-23 光鼎电子股份有限公司 高亮度发光二极管
CN2819481Y (zh) * 2005-05-19 2006-09-20 光鼎电子股份有限公司 高亮度发光二极管结构
US20070228390A1 (en) * 2006-03-30 2007-10-04 Yasushi Hattori Semiconductor light-emitting device
CN101075655A (zh) * 2007-06-05 2007-11-21 诸建平 白光面光源发光装置
WO2010104275A2 (en) * 2009-03-10 2010-09-16 Nepes Led Corporation Lamp cover and led lamp using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352011B2 (en) * 2004-11-15 2008-04-01 Philips Lumileds Lighting Company, Llc Wide emitting lens for LED useful for backlighting
KR100764148B1 (ko) * 2006-01-17 2007-10-05 루시미아 주식회사 시트상 형광체와 그 제조방법 및 이를 이용한 발광장치
CN201307605Y (zh) * 2008-12-05 2009-09-09 弘凯光电(深圳)有限公司 Led封装结构
CN101805602B (zh) * 2009-02-18 2014-03-26 深圳市绎立锐光科技开发有限公司 光波长转换材料的封装方法及结构
CN202253391U (zh) * 2011-04-12 2012-05-30 广东佛照新光源科技有限公司 一种波长转换器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252376A (ja) * 2001-02-23 2002-09-06 Seiwa Electric Mfg Co Ltd 表面実装型発光ダイオード及びその製造方法
CN1574407A (zh) * 2003-06-18 2005-02-02 丰田合成株式会社 发光器件
CN2819481Y (zh) * 2005-05-19 2006-09-20 光鼎电子股份有限公司 高亮度发光二极管结构
CN2809881Y (zh) * 2005-05-20 2006-08-23 光鼎电子股份有限公司 高亮度发光二极管
US20070228390A1 (en) * 2006-03-30 2007-10-04 Yasushi Hattori Semiconductor light-emitting device
CN101075655A (zh) * 2007-06-05 2007-11-21 诸建平 白光面光源发光装置
WO2010104275A2 (en) * 2009-03-10 2010-09-16 Nepes Led Corporation Lamp cover and led lamp using the same

Also Published As

Publication number Publication date
CN102252273A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
TW533602B (en) Radiation-emitting semiconductor-element with luminescence-conversion-element, its production method, LED-lighting unit and image-forming optical system
WO2012139325A1 (zh) 一种波长转换器件及其制备方法
KR101295971B1 (ko) 고 열전도성 플레이트로 덮혀진 led 어레이 패키지
KR101111256B1 (ko) Led 리드 프레임 패키지, 이를 이용한 led 패키지 및 상기 led 패키지의 제조 방법
TWI712189B (zh) 發光裝置及其製造方法
KR100973485B1 (ko) 진공 또는 불활성 가스가 패키징된 엘이디용 일체형 게터
JP3707688B2 (ja) 発光装置およびその製造方法
TW201214790A (en) Optoelectronic component and method for manufacturing an optoelectronic component and a composite
US20140367734A1 (en) Light emitting diode
US20100230693A1 (en) White light emitting diode package and method of making the same
TW201216528A (en) Light emitting device and method of manufacturing the light emitting device
US8648370B2 (en) Wafer-type light emitting device having precisely coated wavelength-converting layer
JP2000156528A (ja) 発光素子
KR20040111700A (ko) 발광 변환 소자를 포함하는 발광 반도체 소자
CN104066814A (zh) 用于发光应用的模制纳米粒子磷光体
US20080296607A1 (en) Environmentally robust lighting devices and methods of manufacturing same
CN107665940A (zh) 发光装置及其制造方法
TW201140886A (en) Package structure and package process of light emitting diode
JP6065408B2 (ja) 発光装置およびその製造方法
CN102549745A (zh) 带有多个半导体器件的浇注的光电子模块以及用于制造光电子模块的方法
JP2004327518A (ja) 白色発光装置
JP2003197977A (ja) 発光ダイオードの製造方法
JP2011082339A (ja) 光半導体封止用キット
TW201034260A (en) Light emitting diode package structure and manufacturing method thereof
JP5770084B2 (ja) Ledに関する近接コリメータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863592

Country of ref document: EP

Kind code of ref document: A1