WO2012138010A1 - Power management system for an electric vehicle using a detachable tablet pc, and electric vehicle including same - Google Patents

Power management system for an electric vehicle using a detachable tablet pc, and electric vehicle including same Download PDF

Info

Publication number
WO2012138010A1
WO2012138010A1 PCT/KR2011/003809 KR2011003809W WO2012138010A1 WO 2012138010 A1 WO2012138010 A1 WO 2012138010A1 KR 2011003809 W KR2011003809 W KR 2011003809W WO 2012138010 A1 WO2012138010 A1 WO 2012138010A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
signal
voltages
electric vehicle
power
Prior art date
Application number
PCT/KR2011/003809
Other languages
French (fr)
Korean (ko)
Inventor
조재명
권미화
오영하
한솔
조혜민
조용민
Original Assignee
제이엠씨엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엠씨엔지니어링 주식회사 filed Critical 제이엠씨엔지니어링 주식회사
Publication of WO2012138010A1 publication Critical patent/WO2012138010A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the present invention relates to power management, and more particularly, to a power management system for an electric vehicle using a detachable tablet PC (personal computer) and an electric vehicle including the power management system.
  • a detachable tablet PC personal computer
  • Eco-friendly vehicles are being developed to solve various problems such as environmental regulations, energy security threats and fossil fuel depletion.
  • various environmental vehicles of the future that require eco-friendly and high-efficiency advanced technology, research on electric vehicles using electric motors as a driving source is being actively conducted.
  • the electric vehicle further includes a battery for supplying power to the electric motor, and may further include various kinds of power consumption means such as a heating and cooling device, an audio device, and a lighting device.
  • the battery must supply power to not only an electric motor but also various power consumption means as described above, and thus a power management system capable of efficiently supplying power to the electric motor and various power consumption means is needed.
  • One object of the present invention is to provide a power management system of an electric vehicle using a detachable tablet PC capable of performing efficient power management.
  • Another object of the present invention is to provide an electric vehicle including a power management system of an electric vehicle using the detachable tablet PC.
  • the power management system of an electric vehicle is an alternator (alternator), multi-channel solar charging module, multi-channel converter, multi-channel power supply, control circuit and tablet PC (personal computer).
  • the alternator is provided to correspond to the driving wheel of the electric vehicle, and generates a plurality of first generation voltages corresponding to the rotational energy of the driving wheel.
  • the multi-channel solar charging module generates a plurality of second generation voltages by performing photoelectric conversion based on sunlight incident on the electric vehicle.
  • the multi-channel converter converts the plurality of first generation voltages and the plurality of second generation voltages to generate a plurality of battery charging voltages.
  • the multi-channel power supply device is charged based on the plurality of battery charging voltages, supplies driving power to driving motors and power consumption means included in the electric vehicle, and displays a remaining battery indication signal indicating remaining capacity of the battery. Occurs.
  • the control circuit compares the battery remaining amount indication signal with a battery reference signal to operate the power consumption means normally when the remaining capacity of the battery is greater than a predetermined reference value and the remaining capacity of the battery is smaller than the predetermined reference value. In this case, the driving of at least one of the power consumption means is stopped.
  • the tablet PC is connected to the control circuit, provides an interface for the user to control the operation of the control circuit, and is implemented to be detachable to the electric vehicle.
  • the power management system of the electric vehicle may further include a cradle in which the tablet PC is mounted.
  • the cradle may include a cradle, a charging terminal and a communication cable.
  • the mounting portion may be formed to be recessed to mount the tablet PC.
  • the charging terminal may protrude from the mounting portion to contact the battery terminal of the tablet PC to supply the driving power to the tablet PC.
  • the communication cable may electrically connect the tablet PC and the control circuit.
  • the multi-channel converter may include a plurality of DC converters configured to convert one of the plurality of first generation voltages and one of the plurality of second generation voltages to generate one of the plurality of battery charging voltages. have.
  • Each of the plurality of DC converters may include a first transform block and a second transform block.
  • the first conversion block can step down one of the plurality of first generation voltages to generate one of the plurality of battery charging voltages.
  • the second conversion block may generate one of the plurality of battery charging voltages by step-down converting one of the plurality of second generation voltages.
  • the multi-channel power supply device may include a plurality of battery units, a battery comparator, a power controller, a power output unit, and a battery charger.
  • the plurality of battery units respectively generate a battery confirmation signal indicating a detached state of the battery by comparing an output voltage level of a battery with a preset confirmation voltage level, and outputting the output voltage level of the battery to a preset first discharge voltage level;
  • First and second battery discharge signals indicating whether the battery is discharged may be generated as compared with a second discharge voltage level lower than the first discharge voltage level, respectively.
  • the battery comparator may generate a battery comparison signal by comparing the output voltage levels of the batteries sensed by the battery units with each other.
  • the power control unit may generate a battery control signal and the battery level indicator signal based on the battery confirmation signal, the first and second battery discharge signals, and the battery comparison signal.
  • the power output unit may supply the driving power by selecting a battery included in one of the battery units as a power supply battery based on the battery control signal.
  • the battery charger may charge a non-powered battery that is not selected as the power supply battery among the batteries provided in the plurality of battery units, respectively, based on the plurality of battery charging voltages.
  • the power supply battery may be changed in an overlap period in which the activation period of the first battery discharge signal and the deactivation period of the second battery discharge signal overlap.
  • the first battery discharge signal may be activated when the output voltage level of the battery is lower than the first discharge voltage level and may be deactivated when the output voltage level of the battery is higher than the first discharge voltage level.
  • the second battery discharge signal may be activated when the output voltage level of the battery is lower than the second discharge voltage level, and may be deactivated when the output voltage level of the battery is higher than the second discharge voltage level.
  • the battery confirmation signal may be activated when the output voltage level of the battery is higher than the confirmation voltage level and may be deactivated when the output voltage level of the battery is lower than the confirmation voltage level.
  • the battery charger may include a voltage detector, a current detector, a charge controller, and a charge current generator.
  • the voltage detector may output a voltage detection result signal by comparing voltages of the batteries included in the plurality of battery units with a reference voltage, respectively.
  • the current detector may output a current detection result signal by comparing the currents of the batteries with a reference current.
  • the charging control unit may generate a pulse width modulation (PWM) signal based on the voltage detection result signal and the current detection result signal.
  • PWM pulse width modulation
  • the charging current generator may supply a charging current to the non-powered battery based on the plurality of battery charging voltages and the PWM signal.
  • the control circuit calculates a moving distance from a current position to a destination when the user inputs a destination of the electric vehicle through the tablet PC, and based on the moving distance and the remaining capacity of the battery, the multi-channel
  • the charging time of the power supply device may be calculated, and the calculation result may be provided through the tablet PC.
  • an electric vehicle driven using a driving motor includes a plurality of driving wheels, a plurality of alternators, a multichannel solar charging module, a multichannel converter, Multi-channel power supplies, control circuits and tablet personal computers (PCs).
  • the plurality of driving wheels rotate to correspond to the rotational energy of the driving motor so that the electric vehicle travels.
  • the plurality of alternators are provided to correspond to the plurality of driving wheels, and generate a plurality of first generation voltages corresponding to rotational energies of the plurality of driving wheels.
  • the multi-channel solar charging module generates a plurality of second generation voltages by performing photoelectric conversion based on sunlight incident on the electric vehicle.
  • the multi-channel converter converts the plurality of first generation voltages and the plurality of second generation voltages to generate a plurality of battery charging voltages.
  • the multi-channel power supply device is charged based on the plurality of battery charging voltages, supplies driving power to the driving motor and power consumption means included in the electric vehicle, and displays a remaining battery capacity indicating a remaining capacity of the battery. Generate a signal.
  • the control circuit compares the battery remaining amount indication signal with a battery reference signal to operate the power consumption means normally when the remaining capacity of the battery is greater than a predetermined reference value and the remaining capacity of the battery is smaller than the predetermined reference value. In this case, the driving of at least one of the power consumption means is stopped.
  • the tablet PC is connected to the control circuit, provides an interface for the user to control the operation of the control circuit, and is implemented to be detachable to the electric vehicle.
  • the power management system of an electric vehicle can efficiently charge the battery even while the electric vehicle is running by using an alternator and a multi-channel solar charging module, and the battery is provided through a multi-channel converter. It can be efficiently charged without generating heat, and the driving power can be stably supplied to the driving motor by controlling the driving of the power consumption means according to the remaining capacity of the battery. Therefore, the driving power can be efficiently supplied and efficient power management can be performed.
  • the driver can be efficiently provided with various information required for driving the electric vehicle, and the driver can improve convenience and safety in driving the vehicle.
  • FIG. 1 is a block diagram showing a power management system of an electric vehicle according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating an example of a tablet PC and a cradle included in the power management system of the electric vehicle of FIG. 1.
  • FIG. 3 is a block diagram illustrating an example of a multi-channel converter included in a power management system of an electric vehicle of FIG. 1.
  • FIG. 4 is a circuit diagram illustrating an example of a first DC converter included in the multichannel converter of FIG. 3.
  • FIG. 5 is a block diagram illustrating an example of a multi-channel power supply device included in the power management system of the electric vehicle of FIG. 1.
  • FIG. 6 is a block diagram illustrating an example of a battery unit included in the multi-channel power supply of FIG. 5.
  • FIG. 7 is a block diagram illustrating an example of a battery charger included in the multichannel power supply of FIG. 5.
  • FIG. 8 is a view showing an electric vehicle according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms may be used for the purpose of distinguishing one component from another component.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • a function or operation specified in a specific block may occur out of the order specified in the flowchart. For example, two consecutive blocks may actually be performed substantially simultaneously, and the blocks may be performed upside down depending on the function or operation involved.
  • FIG. 1 is a block diagram showing a power management system of an electric vehicle according to an embodiment of the present invention.
  • an electric vehicle power management system 100 includes an alternator 110, a multichannel solar charging module 120, a multichannel converter 130, a multichannel power supply 140, and a control. Circuit 150 and tablet PC (personal computer) 160.
  • the power management system 100 of the electric vehicle may further include a cradle 170, a driving motor 180, and power consumption means 190.
  • the alternator 110 is provided corresponding to a driving wheel (not shown) of the electric vehicle and generates a plurality of first generation voltages ALTV corresponding to the rotational energy of the driving wheel.
  • 1 illustrates one alternator 110 for convenience, the number of alternators may be equal to the number of driving wheels of the electric vehicle according to an embodiment.
  • a typical four-wheeled electric vehicle comprising two front wheels and two rear wheels may include four alternators attached to each drive wheel.
  • the number of first generation voltages ALTV may be equal to the number of alternators.
  • the multi-channel solar charging module 120 generates a plurality of second generation voltages SUNV by performing photoelectric conversion based on the sunlight incident on the electric vehicle.
  • the multi-channel solar charging module 120 may include a solar cell panel and a voltage output circuit.
  • the number of the second generation voltages SUNV may be equal to the number of the first generation voltages ALTV, and the multi-channel solar charging module may depend on the number of the second generation voltages SUNV.
  • the number of channels of 120 may be determined.
  • the multi-channel converter 130 converts the plurality of first generation voltages ALTV and the plurality of second generation voltages SUNV to generate the plurality of battery charging voltages BCV.
  • the multi-channel converter 130 converts the plurality of first generation voltages ALTV and the plurality of second generation voltages SUNV, which are AC voltages, to convert the plurality of battery charging voltages BCV, which are DC voltages. May occur.
  • the multi-channel converter 130 may include a plurality of battery charging voltages based on one of the plurality of first generation voltages ALTV and one of the plurality of second generation voltages SUNV. It may include a plurality of DC converters for generating one of the (BCV).
  • the number of battery charge voltages BCV may be equal to the number of second generation voltages SUNV and the number of first generation voltages ALTV, respectively.
  • the multichannel power supply 140 operates based on the first control signal CONB.
  • the multi-channel power supply 140 is charged based on the plurality of battery charging voltages BCV, supplies the driving power POWER_BAT to the driving motor 180 and the power consumption means 190, and the battery remains.
  • a battery remaining indication signal BCIS indicating capacity is generated.
  • the multi-channel power supply 140 may include a plurality of batteries, and may be implemented by supplying driving power POWER_BAT by alternately at least one of the plurality of batteries.
  • the power management system 100 of the electric vehicle may include a plurality of multi-channel power supplies.
  • the multi-channel power supply 140 may be charged based on a commercial voltage supplied from an external charging module.
  • the power management system 100 of an electric vehicle may not only charge the multichannel power supply 140 using an external multichannel charging terminal, but also use the alternator 110.
  • the multi-channel power supply unit 140 may be charged even while the electric vehicle is in operation, and the multi-channel power supply unit 140 may be charged at any place where sunlight is incident using the multi-channel solar charging module 120. can do. Therefore, the power management system 100 of the electric vehicle can efficiently supply the driving power (POWER_BAT).
  • the driving motor 180 rotates the driving wheels by converting electrical energy into kinetic energy based on a driving power source POWER_BAT and a second control signal COND, and allows the electric vehicle to operate.
  • the power consumption means 190 may be all devices that operate based on the third control signal CONP and consume power in addition to the driving motor 180.
  • the driving control device, the audio device, the navigation device, the lighting It may include a device, a heating and cooling device, a speedometer, a tacho meter, a revolution per minute (RPM) meter, a motor for a window, a motor for a wiper, a door-lock motor, and the like.
  • the control circuit 150 controls the operation of the power consumption means 190 based on the battery remaining amount indication signal BCIS. Specifically, the control circuit 150 compares the battery remaining indication signal BCIS with the battery reference signal to operate the power consumption means 190 normally when the remaining capacity of the battery is greater than a predetermined reference value. If the remaining capacity of less than the predetermined reference value stops driving of at least one of the power consumption means (190).
  • the control circuit 150 may include at least one of the power consumption means 190, for example, a current consumption when the remaining capacity of the battery is about 40% or less of a fully charged capacity (ie, a buffer capacity). It is possible to stop driving of a large air conditioner or the like.
  • the control circuit 150 may provide first to third control signals CONB, COND, and CONP, and use the multi-channel power supply 140, the driving motor 180, and the RS-485 communication method. Communication with the power consumption means 190 may be performed.
  • the most important point in the operation of the electric vehicle is to stably supply the driving power (POWER_BAT) to the driving motor 180. If the power consumption means 190 consumes excessive power and the driving power POWER_BAT is not stably supplied to the driving motor 180, the electric vehicle may not operate normally. Therefore, the control circuit 150 checks the remaining capacity of the battery of the multi-channel power supply device 140 in real time to at least one of the power consumption means 190 when the remaining capacity of the battery is less than the predetermined reference value. By stopping the driving of the driving motor 180, the driving power POWER_BAT may be stably supplied to the driving motor 180, and thus the power management system 100 may perform efficient power management.
  • the tablet PC 160 is connected to the control circuit 150, provides an interface for a user (ie, a driver) to control the operation of the control circuit 150, and is detachable to the electric vehicle.
  • the tablet PC 160 may be directly connected to the control circuit 150 or may be connected to the control circuit 150 through the cradle 170.
  • the cradle 170 may serve to electrically connect the tablet PC 160 and the control circuit 150 and to stably fix the tablet PC 160 to the electric vehicle.
  • the tablet PC 160 may provide the user with various information such as the current position of the electric vehicle, the traveling speed, the remaining battery capacity, and the like. For example, when the user inputs the destination of the electric vehicle through the tablet PC 160, the control circuit 150 calculates the moving distance from the current position to the destination, and supplies the moving distance and the multi-channel power supply. The charging time of the multi-channel power supply device 140 is calculated based on the remaining capacity of the battery of the device 140, and the calculation result (ie, the moving distance and the charging time) is provided to the user through the tablet PC 160. You can do that. In performing the above operation, the self chargeable capacity according to the level of the first generation voltage ALTV and the second generation voltage SUNV may be further considered. The tablet PC 160 may display the current consumption of the multi-channel power supply 140 and the remaining battery level as a percentage and a bar graph. The tablet PC 160 checks the remaining battery level of the multi-channel power supply 140 to determine the driving distance of the vehicle. Can be represented.
  • the control circuit 150 calculates the moving distance from the
  • the tablet PC 160 may provide the above various information only when the user is a registered user. For example, the tablet PC 160 receives the user's password and / or the user's unique ID, and then, if the input password and / or the ID matches the registered user's password and / or ID, Information can be provided. In another example, the tablet PC 160 may determine whether the user is the registered user by using various methods such as fingerprint recognition or face recognition.
  • Power management system 100 of an electric vehicle includes a removable tablet PC 160, to efficiently provide a variety of information necessary for the operation of the electric vehicle to the driver driving the electric vehicle.
  • the driver can improve convenience and safety in driving the vehicle.
  • FIG. 2 is a perspective view illustrating an example of a tablet PC and a cradle included in the power management system of the electric vehicle of FIG. 1.
  • the tablet PC 160 may be, for example, an iPad of Apple Inc. or a Galaxy Tab of Samsung Electronics Co., Ltd., but is not limited thereto, and any type of tablet PCs may be used. It can be one.
  • the tablet PC 160 may be mounted to the cradle 170.
  • the cradle 170 may be attached to be fixed to the electric vehicle, and may include a cradle 171, a charging terminal 177, and a communication cable 179.
  • the mounting portion 171 may be formed by recessing the upper surface portion to mount the tablet PC 160.
  • the mounting part 171 may be a space defined by the left and right side walls 173 and the lower wall 175 on the lower side.
  • the charging terminal 177 may be formed at the lower end side of the mounting portion 171. That is, the charging terminal 177 may protrude from the bottom surface of the cradle 170 of the cradle 170 to be partially exposed to the outside.
  • the charging terminal 177 may be elastically supported to smoothly contact the battery terminal (not shown) of the tablet PC 160. By such contact, the driving power POWER_BAT provided from the multi-channel power supply 140 may be transferred to the tablet PC 160 to drive the tablet PC 160.
  • the communication cable 179 may electrically connect the tablet PC 160 and the control circuit 150.
  • the communication cable 179 may be a communication cable of the RS-485 communication method.
  • the cradle 170 may further include fixing means for stably fixing the tablet PC 160.
  • the fixing means may be a locking protrusion formed on the left and right sidewalls 173 of the mounting portion 171, the holder fixedly coupled to one of the left and right sidewalls 173 and selectively bound to the other one It may be.
  • FIG. 3 is a block diagram illustrating an example of a multi-channel converter included in a power management system of an electric vehicle of FIG. 1.
  • the multi-channel converter 130 may include a plurality of DC converters 131a, 131b,..., 131n.
  • the plurality of DC converters 131a, 131b,..., 131n may include one of the plurality of first generation voltages ALTV1, ALTV2,..., ALTVn and a plurality of second generation voltages SUNV1, SUNV2,
  • One of the plurality of battery charging voltages BCV1, BCV2, ..., BCVn may be generated by converting one of ..., SUNVn.
  • the plurality of DC converters 131a, 131b,..., 131n includes first to n-th DC converters 131a, 131b,..., 131n, and the plurality of first generation voltages ALTV1, ALTV2, ..., ALTVn) includes first to nth alternator voltages ALTV1, ALTV2, ..., ALTVn, and a plurality of second generation voltages SUNV1, SUNV2, ..., SUNVn.
  • the charging voltages BCV1, BCV2,..., BCVn may be included.
  • the first DC converter 131a may generate the first battery charge voltage BCV1 by converting the first alternator voltage ALTV1 and the first solar power voltage SUNV1.
  • the first battery charge voltage BCV1 is generated based on the first alternator battery charge voltage and the first photovoltaic voltage SUNV1 generated based on the first alternator voltage ALTV1. It may include a photovoltaic battery charging voltage.
  • FIG. 4 is a circuit diagram illustrating an example of a first DC converter included in the multichannel converter of FIG. 3.
  • the first DC converter 131a may include a first transform block 1311a and a second transform block 1313a.
  • the first conversion block 1311a charges the plurality of batteries by stepping down the first alternator voltage ALTV1, which is one of the plurality of first generation voltages ALTV1, ALTV2,..., ALTVn.
  • the first battery charge voltage BCV1 may be one of the voltages BCV1, BCV2, ..., BCVn, and in particular, the first alternator battery charge voltage BCV1a may be generated among the first battery charge voltages BCV1.
  • the first conversion block 1311a includes one NJM2360 chip U63, a plurality of diodes D27, D29, D30, and D33, and a plurality of resistors R110, R112, R115, R117, R118, R121, R122, and R123. ) And a plurality of capacitors C64, C66, C68, and C70.
  • the second conversion block 1313a may step-down convert the first photovoltaic voltage SUNV1, which is one of the plurality of second generation voltages SUNV1, SUNV2,..., SUNVn, to charge the plurality of battery charge voltages.
  • the first battery charging voltage BCV1, which is one of (BCV1, BCV2,..., BCVn) may be generated, and particularly, the first solar power battery charging voltage BCV1b may be generated among the first battery charging voltages BCV1.
  • the second conversion block 1313a includes one NJM2360 chip U65, a plurality of diodes D35, D37, D38, and D41, and a plurality of resistors R126, R128, R130, R132, R134, R136, R138, and R139.
  • the diode D30 included in the first conversion block 1311a and the diode D38 included in the second conversion block 1313a are configurations that cannot be identified in a general step-down conversion circuit.
  • D38 may prevent the voltage charged in the multi-channel power supply 140 from being discharged backward through the first and second conversion blocks 1311a and 1313a.
  • the first DC converter 131a may include, for example, when the level of the first alternator voltage ALTV1 is higher than the level of the first photovoltaic voltage SUNV1, such as when an electric vehicle is in operation.
  • the first alternator battery charging voltage BCV1a generated in 1311a may be output as the first battery charging voltage BCV1, and in this case, the multi-channel power supply 140 may be connected to the first alternator battery charging voltage BCV1a. Can be charged on the basis.
  • the first DC converter 131a may have a high level.
  • the first photovoltaic battery charging voltage BCV1b generated by the second conversion block 1313a may be output as the first battery charging voltage BCV1, and in this case, the multi-channel power supply 140 may include the first The battery may be charged based on the photovoltaic battery charging voltage BCV1b. In another example, the multichannel power supply 140 may be charged based on both the first alternator battery charge voltage BCV1a and the first photovoltaic battery charge voltage BCV1b. That is, the first DC converter 131a may efficiently charge the multi-channel power supply 140 without generating heat by selectively generating the first battery charging voltage BCV1 according to a situation.
  • the second to n-th DC converters 131b,..., 131n may also have substantially the same structure as the first DC converter 131a. .
  • FIG. 5 is a block diagram illustrating an example of a multi-channel power supply device included in the power management system of the electric vehicle of FIG. 1.
  • the multi-channel power supply 140 may include a battery bank 141, a battery comparator 143, a power controller 145, a power output unit 147, and a battery charger 149.
  • the battery bank 141 includes first to nth battery parts 141a, 141b,..., And 141n, and the first to nth battery parts 141a, 141b,. Since the batteries are included, the battery bank 141 may include n batteries.
  • the n batteries included in the battery bank 141 may be implemented to be detachable to the first to nth battery units 141a, 141b,..., 141n, respectively.
  • the multi-channel power supply 140 may determine whether the plurality of batteries are attached or detached, and determine a battery (ie, a power supply battery) to supply driving power POWER_BAT by determining a discharge degree of the plurality of batteries. Whether the batteries are attached or detached and the degree of discharge may be determined based on the output voltage BAT level of the battery included in each of the first to nth battery parts 141a, 141b,..., 141n.
  • the first to nth battery units 141a, 141b,..., 141n respectively generate and output a battery confirmation signal BAT_IN and a battery discharge signal Q_BAT based on the output voltage BAT level of the battery. can do.
  • the first to n-th battery units 141a, 141b,..., 141n respectively generate a battery confirmation signal BAT_IN by comparing the output voltage BAT level of the battery with a predetermined confirmation voltage level.
  • the battery discharge signal Q_BAT may be generated by comparing the output voltage BAT level of the battery with a preset discharge voltage level.
  • the battery confirmation signal BAT_IN may indicate a detached state of the battery, and the battery discharge signal Q_BAT may indicate whether the battery is discharged.
  • activation of the battery check signal BAT_IN means that the battery is mounted in the corresponding battery compartment
  • deactivation of the battery check signal BAT_IN means that the battery is not mounted in the corresponding battery compartment. Can be.
  • activation of the battery discharge signal Q_BAT may mean that the battery is discharged
  • deactivation of the battery discharge signal Q_BAT may mean that the battery is not discharged.
  • the battery confirmation signal BAT_IN may be activated when the output voltage BAT level of the battery is higher than the preset confirmation voltage level, and the output voltage BAT level of the battery is set to the preset voltage. Can be disabled if it is below the confirmation voltage level.
  • the battery discharge signal Q_BAT may be activated when the output voltage BAT level of the battery is lower than the preset discharge voltage level, and the output voltage BAT level of the battery is higher than the preset discharge voltage level. It can be deactivated if high.
  • the confirmation voltage level and the discharge voltage level may be variously determined by the user according to a condition required for the driving motor 180 and the power consumption means 190.
  • the battery comparator 143 may generate the battery comparison signal CMP by comparing the output voltage BAT level of the battery included in the first to nth battery parts 141a, 141b,..., 141n, respectively. have.
  • the battery comparison signal CMP is provided to the power control unit 145 and may be the basis for generating the battery control signal BAT_CON.
  • the battery comparison signal CMP senses an output voltage BAT level of a battery included in each of the first to nth battery parts 141a, 141b,..., 141n, and compares them with each other. Can be generated.
  • the battery comparison signal CMP may include battery information having the highest output voltage level among the batteries included in the first to n th battery parts 141a, 141b,..., 141n and / or the first to n th battery parts. Information on an output voltage level ratio between the batteries included in the nth battery units 141a, 141b,..., 141n may be included.
  • the battery comparison signal CMP may set the output voltage BAT level of the battery included in the first to nth battery parts 141a, 141b,..., 141n to the first to nth battery parts 141a. , 141b,..., And 141n may be divided by the sum of output battery (BAT) levels of the battery.
  • the battery comparison signal CMP may be a value obtained by dividing the output voltage BAT level of one battery by the output voltage BAT level of another battery. .
  • the power control unit 145 receives the first control signal CONB from the control circuit 150 and receives the battery confirmation signal BAT_IN from the first to nth battery units 141a, 141b,..., 141n, respectively.
  • the battery control signal BAT_CON and the battery remaining amount display signal BCIS may be generated.
  • the battery control signal BAT_CON may represent a criterion for selecting a power supply battery among a plurality of batteries included in the battery bank 141.
  • the criterion for selecting the power supply battery is to select a battery having the highest output voltage level among the plurality of batteries as the power supply battery to maximize battery usage time and to secure time for charging the low output voltage batteries.
  • the selection criteria of the power supply battery may be variously set according to the conditions required for the driving motor 180 and the power consumption means 190.
  • the battery remaining amount indication signal BCIS is provided to the control circuit 150, and the control circuit 150 may control the operation of the power consumption means 190 based on the battery remaining amount indication signal BCIS.
  • the power output unit 147 selects one of the batteries included in the first to nth battery units 141a, 141b,..., 141n as a power supply battery based on the battery control signal BAT_CON.
  • the output voltage BAT of the supply battery can be supplied as the driving power supply POWER_BAT.
  • the power output unit 147 may be composed of switches connected to the first to nth battery units 141a, 141b,..., 141n of the battery bank 141, respectively.
  • the switch connected to the battery unit including the power supply battery may be turned on, and the switches connected to other battery units (that is, the non-powered battery) may be turned off.
  • the other batteries may be charged through the battery charging unit 149. .
  • the battery charger 149 is a power source that is not selected as a power supply battery among the batteries included in the first to nth battery units 141a, 141b,..., 141n based on the plurality of battery charge voltages BCV. Can charge non-supply batteries.
  • the battery charger 149 may generate a charging current CI for charging the non-powered battery based on the output voltage VB and the output current IB of the non-powered battery.
  • the battery charger 149 may be implemented in the form of a separate power supply voltage and current detector for balancing the respective batteries so as to prevent overcharging and uniformly charge all the batteries included in the battery bank 141. have.
  • the battery charger 149 may further include a four-terminal charging module that charges a non-powered battery by using an externally supplied DC power.
  • the multi-channel power supply 140 operates based on a plurality of batteries, and supplies a driving power (POWER_BAT) by alternately supplying the plurality of batteries, thereby driving the driving motor due to a lack of power due to battery discharge.
  • a driving power POWER_BAT
  • 180 and the power consumption means 190 may not solve the problem.
  • FIG. 6 is a block diagram illustrating an example of a battery unit included in the multi-channel power supply of FIG. 5.
  • the battery unit may include a battery 1411, a discharge detector 1413, and a battery check unit 1415.
  • the battery 1411 may be any voltage providing device capable of charging, and the battery 1411 may be detachable, and thus the detachable state may be confirmed by the battery checker 1415.
  • the detached state of the battery 1411 may be sensed based on the output voltage BAT level of the battery 1411.
  • the charging operation of the batteries 1411 included in the first to nth battery parts 141a, 141b,..., 141n may be individually controlled, and the first to nth battery parts 141a, 141b,...
  • the batteries 1411 included in 141n may be simultaneously charged or sequentially charged based on the output voltage BAT level.
  • the battery 1411 may be charged by a four terminal charging module (not shown) having a four terminal network.
  • the four-terminal charging module measures the input voltage, input current, output voltage and output current provided to the battery 1411 through the four-terminal network to control heat generation based on the current output voltage and output current of the battery 1411. You can check the charge level.
  • the discharge detector 1413 may generate the battery discharge signal Q_BAT by sensing the output voltage BAT level of the battery 1411.
  • the discharge detector 1413 When the output voltage BAT level of the battery 1411 is changed as the power of the battery 1411 is provided to the driving motor 180 and / or the power consumption means 190, the discharge detector 1413 When the output voltage BAT level of 1411 is lower than the preset discharge voltage level, the battery discharge signal Q_BAT may be activated.
  • the discharge detector 1413 may change the output voltage BAT level of the battery 1411 as the power of the battery 1411 is provided to the driving motor 180 and / or the power consumption means 190.
  • the battery discharge signal Q_BAT When the output voltage BAT level of the battery 1411 is higher than the preset discharge voltage level, the battery discharge signal Q_BAT may be deactivated.
  • the change of the power supply battery between the batteries 1411 included in the first to nth battery parts 141a, 141b,..., 141n is performed in an activation period of the battery discharge signal Q_BAT.
  • the preset discharge voltage level may be about 4.2V.
  • the discharge detector 1413 determines that the battery 1411 is discharged to such an extent that it cannot drive the driving motor 180 and / or the power consumption means 190. do.
  • the power control unit 145 is configured to change the power supply battery so that the battery 1411 is completely discharged and the operation of the driving motor 180 and / or the power consumption means 190 is stopped. 147).
  • the battery discharge signal Q_BAT may include a first battery discharge signal Q_BAT_1 and a second battery discharge signal Q_BAT_2. That is, the present invention can detect the output voltage BAT level of the battery 1411 based on reference voltages having different discharge voltage levels for the discharge determination. For example, the discharge detector 1413 generates the first battery discharge signal Q_BAT_1 by comparing the output voltage BAT level of the battery 1411 with a preset first discharge voltage level, and generates the first battery discharge signal Q_BAT_1.
  • the second battery discharge signal Q_BAT_2 may be generated by comparing the output voltage BAT level with a second discharge voltage level lower than the preset first discharge voltage level.
  • the discharge detector 1413 activates the first battery discharge signal Q_BAT_1 when the output voltage BAT level of the battery 1411 is lower than the first discharge voltage level, and output voltage BAT of the battery 1411. When the level is higher than the first discharge voltage level, the first battery discharge signal Q_BAT_1 may be deactivated. In addition, the discharge detector 1413 activates the second battery discharge signal Q_BAT_2 when the output voltage BAT level of the battery 1411 is lower than the second discharge voltage level, and outputs the output voltage of the battery 1411. When the BAT) level is higher than the second discharge voltage level, the second battery discharge signal Q_BAT_2 may be deactivated.
  • the power of the battery 1411 is provided to the driving motor 180 and / or the power consumption means 190 so that the output voltage BAT level of the battery 1411 is lowered.
  • the second battery discharge signal Q_BAT_2 is activated.
  • the change of the power supply battery between the batteries 1411 included in the first to nth battery units 141a, 141b,..., 141n may be performed by the activation period of the first battery discharge signal Q_BAT_1 and the first period.
  • the deactivation period of the battery discharge signal Q_BAT_2 may be overlapped. As such, before the power supply battery is completely discharged, the operation of the driving motor 180 and / or the power consumption means 190 may be stopped by changing the power supply battery to another battery.
  • the multi-channel power supply 140 may continuously supply a stable power (POWER_BAT).
  • the battery checker 1415 may generate a battery check signal BAT_IN by checking whether the battery 1411 is currently mounted in each of the first to nth battery parts 141a, 141b,..., 141n. .
  • the battery check unit 1415 may initialize the discharge detector 1413 by activating the battery discharge detection initialization signal RST when the battery 1411 is detached and remounted.
  • the discharge detector 1413 is initialized based on the battery discharge detection initialization signal RST, the previous battery discharge signal Q_BAT may be initialized to a logic state 'low'.
  • the discharge detector 1413 may include a plurality of comparators, a plurality of resistors, and a flip-flop.
  • the battery checker 1415 may include a comparator, a plurality of resistors, and a capacitor.
  • FIG. 7 is a block diagram illustrating an example of a battery charger included in the multichannel power supply of FIG. 5.
  • the battery charger 149 may be implemented in the form of a separate power voltage and current detector, and includes a voltage detector 1491, a current detector 1493, a charge controller 1495, and a charge current generator 1497. ) May be included.
  • the voltage detector 1491 may detect the voltage VB of the batteries and output the voltage detection result signal VS, respectively.
  • the voltage detection result signal VS may be used to generate a pulse width modulation (PWM) signal PS output by the charging controller 1495 to control the charging current CI.
  • PWM pulse width modulation
  • the voltage detector 1491 may compare the voltage VB of the batteries with a reference voltage and output a voltage detection result signal VS corresponding to the difference.
  • the duty ratio of the charging current CI may be determined based on the magnitude of the voltage detection result signal VS together with the current detection result signal IS.
  • the voltage detector 1491 may include a comparator, a plurality of resistors, and a capacitor, and may output the voltage detection result signal VS to the charge controller 1495 through a photo coupler.
  • the voltage detection unit 1491 and the charging control unit 1495 operate in an electrically insulated state, thereby preventing damage and malfunction of the device.
  • the current detector 1493 may detect the current IB of the batteries and output the current detection result signal IS, respectively.
  • the current detection result signal IS may be used to generate a PWM signal PS output by the charging control unit 1495 to control the charging current CI.
  • the current detector 1493 may compare the current IB of the batteries with a reference current and output the current detection result signal IS corresponding to the difference. For example, the current detector 1493 may change the current IB of the batteries into a converted voltage in the form of a voltage in order to detect the current IB of the batteries.
  • the comparator may compare the converted voltage with a reference current voltage corresponding to the reference current, and output the current detection result signal IS based on the difference.
  • the duty ratio of the charging current CI may be determined based on the magnitude of the current detection result signal IS together with the voltage detection result signal VS.
  • the current detector 1493 may be implemented by including a plurality of comparators, a plurality of resistors, and a plurality of capacitors, and the current detection result signal IS is transferred to the charging controller 1495 through a photo coupler. You can print When the current detection result signal IS is output through the photocoupler, the current detector 1493 and the charge controller 1495 operate in an electrically insulated state, and are arranged in a multi-channel in the multi-channel power supply 140. Since the grounds of the batteries and the ground of the charging control unit 1495 are insulated from each other, damage and malfunction of the device may be prevented.
  • the charging controller 1495 may output a PWM signal PS for controlling the charging current CI based on the voltage detection result signal VS and the current detection result signal IS.
  • the charging control unit 1495 may adjust the duty ratio of the charging current CI based on the voltage detection result signal VS and the current detection result signal IS.
  • the charging controller 1495 may adjust the duty ratio of the PWM signal PS output to the charging current generator 1497.
  • the charging current generator 1497 may output the charging current CI having the same duty ratio as the duty ratio of the PWM signal PS input from the charging control unit 1495, and the charging control unit 1495
  • the charging current CI may be controlled by the output PWM signal PS.
  • the charging current generator 1497 may control the charging current CI supplied to the non-powered battery based on the plurality of battery charging voltages BCV and the PWM signal PS.
  • the charging current CI may have a waveform of a PWM form, and the level of the charging current CI may be controlled by adjusting the duty ratio of the charging current CI.
  • the duty ratio may be adjusted by the charge controller 1495, and the charge current generator 1497 may amplify a current corresponding to the adjusted duty ratio and output the amplified current through the diode.
  • the charging current generator 1497 may include at least one current amplifier.
  • the charge current generator 1497 may include a plurality of Bipolar Junction Transistors (BJTs), a plurality of resistors, and a plurality of capacitors, and a PWM signal ( PS) may be input from the charging control unit 1495.
  • BJTs Bipolar Junction Transistors
  • PS PWM signal
  • the charging control unit 1495 and the charging current generating unit 1497 operate in an electrically insulated state, thereby causing damage and malfunction of the device. Can be prevented.
  • the voltage detector 1491, the current detector 1493, and the charge current generator 1497 are implemented by including a photo coupler, such that the power supply on the battery side and the power supply on the charge control unit 1495 side are connected to the photo coupler. It can be separated and stable voltage and current detection and battery charging, and by setting the terminal voltage and the reference voltage of the series-connected battery differently for each battery to perform accurate battery balancing, the voltage detection result signal (VB) and Since charging of each battery is performed based on the current detection result signal IB, charging and balancing of batteries can be performed more quickly and stably.
  • FIG. 8 is a view showing an electric vehicle according to an embodiment of the present invention.
  • the electric vehicle 200 includes a driving motor 280, a plurality of driving wheels 201a, 201b, 202a, and 202b, a plurality of alternators 210a, 210b, 210c, and 210d, and multichannel solar light.
  • the charging module 220, the multichannel converter 230, the multichannel power supply 240, the control circuit 250, and the tablet PC 260 are included.
  • the electric vehicle 200 includes a cradle 270, power consumption means 290, a front wheel shaft 201c, a rear wheel shaft 202c, a plurality of chains 212a, 212b, 212c, 212d, and a motor driving shaft 282. And a transmission 284.
  • the driving motor 280 converts electrical energy into kinetic energy (that is, rotational energy) based on the driving power source POWER_BAT and the second control signal COND so that the electric vehicle 200 may run.
  • the drive motor 280 rotates the motor drive shaft 282, and the rotational energy of the motor drive shaft 282 is provided to the drive wheels 201a and 201b through the transmission 284 at an appropriate gear ratio.
  • 8 illustrates the case of the front wheel drive, according to the embodiment, the rotation energy of the motor drive shaft 282 may be provided to the driving wheels 202a and 202b in the case of the rear wheel drive, and in the case of the four wheel drive, Rotational energy of 282 may be provided to the drive wheels 201a, 201b, 202a, and 202b.
  • the plurality of driving wheels 201a, 201b, 202a, and 202b rotate to drive the electric vehicle 200 in correspondence with the rotational movement of the driving motor 280.
  • the plurality of driving wheels 201a, 201b, 202a, and 202b are connected to both ends of the front wheel shaft 201c, and rotated when the front wheel shaft 201c rotates to drive the electric vehicle 200 by friction with the ground.
  • the rear wheels 201a and 201b and rear wheels 202c may include rear wheels 202a and 202b connected to both ends.
  • the plurality of alternators 210a, 210b, 210c, and 210d are attached to the plurality of drive wheels 201a, 201b, 202a, and 202b, and correspond to the rotational energy of the plurality of drive wheels 201a, 201b, 202a, and 202b.
  • a plurality of first generation voltages ALTV is generated.
  • the plurality of alternators 210a, 210b, 210c, and 210d are connected to the front wheel shaft 201c or the rear wheel shaft 202c through one of the plurality of chains 212a, 212b, 212c, and 212d, and supply rotational energy. I can receive it.
  • the first alternator 210a is connected to the front wheel shaft 201c through the first chain 212a, receives rotational energy of the front wheels 201a and 201b through the first chain 212a, and front wheels.
  • a generation voltage corresponding to the rotational energy of 201a and 201b may be generated.
  • the multichannel solar charging module 220 generates a plurality of second generation voltages SUNV by performing photoelectric conversion based on sunlight incident on the electric vehicle 200.
  • the multi-channel converter 230 converts the plurality of first generation voltages ALTV and the plurality of second generation voltages SUNV to generate the plurality of battery charging voltages BCV.
  • the multi-channel power supply 240 operates based on the first control signal CONB, is charged based on the plurality of battery charging voltages BCV, the driving motor 280 and the power consumption means 290.
  • a driving power supply (POWER_BAT) is provided to the battery, and a battery remaining indication signal BCIS indicating a remaining capacity of the battery is generated.
  • the control circuit 250 compares the battery remaining amount indication signal BCIS with the battery reference signal to operate the power consumption means 290 normally when the remaining capacity of the battery is larger than a predetermined reference value and the remaining capacity of the battery. When the value is smaller than the predetermined reference value, the operation of at least one of the power consumption means 290 is stopped.
  • the power consumption means 290 may be all devices that operate based on the third control signal CONP and consume power in addition to the driving motor 280.
  • the tablet PC 260 is connected to the control circuit 250, provides an interface for the driver to control the operation of the control circuit 250, and is detachable to the electric vehicle 200.
  • the cradle 270 is equipped with a tablet PC 260, and electrically connects the tablet PC 160 and the control circuit 150.
  • a plurality of alternators 210a, 210b, 210c, 210d, multichannel solar charging module 220, multichannel converter 230, multichannel power supply 240, control circuit 250, tablet PC 260 ), Cradle 270, drive motor 280 and power consumption means 290 are respectively alternator 110, multichannel solar charging module 120, multichannel converter 130, multichannel power supply of FIG. 1.
  • the supply device 140, the control circuit 150, the tablet PC 160, the cradle 170, the driving motor 180 and the power consumption means 190 may be substantially the same.
  • a four-wheeled electric vehicle 200 including four driving wheels 201a, 201b, 202a, and 202b is illustrated, but the electric vehicle according to the embodiments of the present invention may have any number of driving wheels. It may be one of various kinds of vehicles such as buses, trucks, vans, passenger cars, SUVs, and the like.
  • the power management system of an electric vehicle may be applied to an electric vehicle to perform efficient power management, and may improve driver convenience and driving safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The invention relates to a power management system for an electric vehicle, including an alternator, a multichannel solar charging module, a multichannel converter, a multichannel power supply device, a control circuit, and a tablet PC. The multichannel converter converts first generated voltages generated by the alternator and second generated voltages generated by the multichannel solar charging module in order to generate voltages for charging a battery. The multichannel power supply device is charged with the voltages for charging the battery, supplies a driving voltage, and generates a remaining battery-charge display signal. The control circuit compares the remaining battery-charge display signal with a battery reference signal, and if the remaining charge of a battery is less than a predetermined reference value, stops at least one power consumption means. The tablet PC provides an interface for controlling the operation of the control circuit, and is detachable from an electric vehicle.

Description

탈부착 가능한 태블릿 PC를 이용하는 전기자동차의 전원관리 시스템 및 이를 포함하는 전기자동차Power management system of an electric vehicle using a detachable tablet PC and an electric vehicle including the same
본 발명은 전원관리에 관한 것으로서, 더욱 상세하게는 탈부착 가능한 태블릿 PC(personal computer)를 이용하는 전기자동차의 전원관리 시스템 및 상기 전원관리 시스템을 포함하는 전기자동차에 관한 것이다.The present invention relates to power management, and more particularly, to a power management system for an electric vehicle using a detachable tablet PC (personal computer) and an electric vehicle including the power management system.
환경규제, 에너지 안보위협 및 화석연료의 고갈 등의 다양한 문제를 해결하기 위하여 친환경 자동차가 개발되고 있다. 친환경, 고효율의 첨단기술을 필요로 하는 다양한 미래형 환경 자동차들 중에서 특히 전기모터를 구동원으로 사용하는 전기자동차에 대한 연구가 활발하게 진행되고 있다.Eco-friendly vehicles are being developed to solve various problems such as environmental regulations, energy security threats and fossil fuel depletion. Among various environmental vehicles of the future that require eco-friendly and high-efficiency advanced technology, research on electric vehicles using electric motors as a driving source is being actively conducted.
전기자동차는 전기모터 외에도 상기 전기모터에 전원을 공급하기 위한 배터리를 더 포함하며, 냉난방 장치, 오디오 장치 및 조명 장치 등과 같은 다양한 종류의 전원소비 수단들을 더 포함할 수 있다. 배터리는 전기모터뿐 아니라 상기와 같은 다양한 전원소비 수단들에 전원을 공급해야 하며, 따라서 전기모터 및 다양한 전원소비 수단들에 효율적으로 전원을 공급할 수 있는 전원관리 시스템이 필요하다.In addition to the electric motor, the electric vehicle further includes a battery for supplying power to the electric motor, and may further include various kinds of power consumption means such as a heating and cooling device, an audio device, and a lighting device. The battery must supply power to not only an electric motor but also various power consumption means as described above, and thus a power management system capable of efficiently supplying power to the electric motor and various power consumption means is needed.
본 발명의 일 목적은 효율적인 전원관리를 수행할 수 있는 탈부착 가능한 태블릿 PC를 이용하는 전기자동차의 전원관리 시스템을 제공하는 것이다.One object of the present invention is to provide a power management system of an electric vehicle using a detachable tablet PC capable of performing efficient power management.
본 발명의 다른 목적은 상기 탈부착 가능한 태블릿 PC를 이용하는 전기자동차의 전원관리 시스템을 포함하는 전기자동차를 제공하는 것이다.Another object of the present invention is to provide an electric vehicle including a power management system of an electric vehicle using the detachable tablet PC.
상기 일 목적을 달성하기 위해, 본 발명의 일 실시예에 따른 전기자동차의 전원관리 시스템은 알터네이터(alternator), 다채널 태양광 충전 모듈, 다채널 컨버터, 다채널 전원공급장치, 제어 회로 및 태블릿 PC(personal computer)를 포함한다. 상기 알터네이터는 상기 전기자동차의 구동륜에 상응하도록 구비되고, 상기 구동륜의 회전에너지에 상응하는 복수의 제1 발전 전압들을 발생한다. 상기 다채널 태양광 충전 모듈은 상기 전기자동차에 입사되는 태양광을 기초로 광전 변환을 수행하여 복수의 제2 발전 전압들을 발생한다. 상기 다채널 컨버터는 상기 복수의 제1 발전 전압들 및 상기 복수의 제2 발전 전압들을 변환하여 복수의 배터리 충전 전압들을 발생한다. 상기 다채널 전원공급장치는 상기 복수의 배터리 충전 전압들에 기초하여 충전되고, 상기 전기자동차에 포함되는 구동모터 및 전원소비 수단들에 구동 전원을 공급하며, 배터리의 잔존 용량을 나타내는 배터리 잔량 표시 신호를 발생한다. 상기 제어 회로는 상기 배터리 잔량 표시 신호와 배터리 기준 신호를 비교하여, 상기 배터리의 잔존 용량이 미리 정해진 기준값보다 큰 경우에 상기 전원소비 수단들을 정상 동작시키고 상기 배터리의 잔존 용량이 상기 미리 정해진 기준값보다 작은 경우에 상기 전원소비 수단들 중 적어도 하나의 구동을 중지시킨다. 상기 태블릿 PC는 상기 제어 회로와 연결되고, 사용자가 상기 제어 회로의 동작을 제어하기 위한 인터페이스를 제공하며, 상기 전기자동차에 탈부착이 가능하도록 구현된다.In order to achieve the above object, the power management system of an electric vehicle according to an embodiment of the present invention is an alternator (alternator), multi-channel solar charging module, multi-channel converter, multi-channel power supply, control circuit and tablet PC (personal computer). The alternator is provided to correspond to the driving wheel of the electric vehicle, and generates a plurality of first generation voltages corresponding to the rotational energy of the driving wheel. The multi-channel solar charging module generates a plurality of second generation voltages by performing photoelectric conversion based on sunlight incident on the electric vehicle. The multi-channel converter converts the plurality of first generation voltages and the plurality of second generation voltages to generate a plurality of battery charging voltages. The multi-channel power supply device is charged based on the plurality of battery charging voltages, supplies driving power to driving motors and power consumption means included in the electric vehicle, and displays a remaining battery indication signal indicating remaining capacity of the battery. Occurs. The control circuit compares the battery remaining amount indication signal with a battery reference signal to operate the power consumption means normally when the remaining capacity of the battery is greater than a predetermined reference value and the remaining capacity of the battery is smaller than the predetermined reference value. In this case, the driving of at least one of the power consumption means is stopped. The tablet PC is connected to the control circuit, provides an interface for the user to control the operation of the control circuit, and is implemented to be detachable to the electric vehicle.
상기 전기자동차의 전원관리 시스템은 상기 태블릿 PC가 장착되는 크래들(cradle)을 더 포함할 수 있다. 상기 크래들은 거치부, 충전단자 및 통신 케이블을 포함할 수 있다. 상기 거치부는 상기 태블릿 PC가 장착되도록 요입되어 형성될 수 있다. 상기 충전단자는 상기 태블릿 PC의 배터리 단자와 접촉하여 상기 태블릿 PC에 상기 구동 전원을 공급하도록 상기 거치부에 돌출 형성될 수 있다. 상기 통신 케이블은 상기 태블릿 PC와 상기 제어 회로를 전기적으로 연결시킬 수 있다.The power management system of the electric vehicle may further include a cradle in which the tablet PC is mounted. The cradle may include a cradle, a charging terminal and a communication cable. The mounting portion may be formed to be recessed to mount the tablet PC. The charging terminal may protrude from the mounting portion to contact the battery terminal of the tablet PC to supply the driving power to the tablet PC. The communication cable may electrically connect the tablet PC and the control circuit.
상기 다채널 컨버터는 상기 복수의 제1 발전 전압들 중 하나 및 상기 복수의 제2 발전 전압들 중 하나를 변환하여 상기 복수의 배터리 충전 전압들 중 하나를 발생하는 복수의 DC 변환부들을 포함할 수 있다. 상기 복수의 DC 변환부들 각각은 제1 변환 블록 및 제2 변환 블록을 포함할 수 있다. 상기 제1 변환 블록은 상기 복수의 제1 발전 전압들 중 하나를 스텝-다운(step down) 변환하여 상기 복수의 배터리 충전 전압들 중 하나를 발생할 수 있다. 상기 제2 변환 블록은 상기 복수의 제2 발전 전압들 중 하나를 스텝-다운 변환하여 상기 복수의 배터리 충전 전압들 중 하나를 발생할 수 있다.The multi-channel converter may include a plurality of DC converters configured to convert one of the plurality of first generation voltages and one of the plurality of second generation voltages to generate one of the plurality of battery charging voltages. have. Each of the plurality of DC converters may include a first transform block and a second transform block. The first conversion block can step down one of the plurality of first generation voltages to generate one of the plurality of battery charging voltages. The second conversion block may generate one of the plurality of battery charging voltages by step-down converting one of the plurality of second generation voltages.
상기 다채널 전원공급장치는 복수의 배터리부들, 배터리 비교부, 전원 제어부, 전원 출력부 및 배터리 충전부를 포함할 수 있다. 상기 복수의 배터리부들은 배터리의 출력 전압 레벨을 기 설정된 확인 전압 레벨과 비교하여 상기 배터리의 탈착 상태를 나타내는 배터리 확인 신호를 각각 발생하고, 상기 배터리의 출력 전압 레벨을 기 설정된 제1 방전 전압 레벨 및 상기 제1 방전 전압 레벨보다 낮은 제2 방전 전압 레벨과 비교하여 상기 배터리의 방전 여부를 나타내는 제1 및 제2 배터리 방전 신호를 각각 발생할 수 있다. 상기 배터리 비교부는 상기 배터리부들로부터 감지되는 상기 배터리의 출력 전압 레벨을 서로 비교하여 배터리 비교 신호를 발생할 수 있다. 상기 전원 제어부는 상기 배터리 확인 신호, 상기 제1 및 제2 배터리 방전 신호 및 상기 배터리 비교 신호에 기초하여 배터리 제어 신호 및 상기 배터리 잔량 표시 신호를 발생할 수 있다. 상기 전원 출력부는 상기 배터리 제어 신호에 기초하여 상기 배터리부들 중의 하나에 구비된 배터리를 전원 공급 배터리로 선택하여 상기 구동 전원을 공급할 수 있다. 상기 배터리 충전부는 상기 복수의 배터리 충전 전압들에 기초하여 상기 복수의 배터리부들에 각각 구비된 상기 배터리들 중에서 상기 전원 공급 배터리로 선택되지 않은 전원 비공급 배터리를 충전할 수 있다. 상기 제1 배터리 방전 신호의 활성화 구간과 상기 제2 배터리 방전 신호의 비활성화 구간이 겹쳐지는 오버랩 구간에서 상기 전원 공급 배터리가 변경될 수 있다.The multi-channel power supply device may include a plurality of battery units, a battery comparator, a power controller, a power output unit, and a battery charger. The plurality of battery units respectively generate a battery confirmation signal indicating a detached state of the battery by comparing an output voltage level of a battery with a preset confirmation voltage level, and outputting the output voltage level of the battery to a preset first discharge voltage level; First and second battery discharge signals indicating whether the battery is discharged may be generated as compared with a second discharge voltage level lower than the first discharge voltage level, respectively. The battery comparator may generate a battery comparison signal by comparing the output voltage levels of the batteries sensed by the battery units with each other. The power control unit may generate a battery control signal and the battery level indicator signal based on the battery confirmation signal, the first and second battery discharge signals, and the battery comparison signal. The power output unit may supply the driving power by selecting a battery included in one of the battery units as a power supply battery based on the battery control signal. The battery charger may charge a non-powered battery that is not selected as the power supply battery among the batteries provided in the plurality of battery units, respectively, based on the plurality of battery charging voltages. The power supply battery may be changed in an overlap period in which the activation period of the first battery discharge signal and the deactivation period of the second battery discharge signal overlap.
상기 제1 배터리 방전 신호는 상기 배터리의 출력 전압 레벨이 상기 제1 방전 전압 레벨보다 낮은 경우에 활성화되고 상기 배터리의 출력 전압 레벨이 상기 제1 방전 전압 레벨보다 높은 경우에 비활성화될 수 있다. 상기 제2 배터리 방전 신호는 상기 배터리의 출력 전압 레벨이 상기 제2 방전 전압 레벨보다 낮은 경우에 활성화시키고, 상기 배터리의 출력 전압 레벨이 상기 제2 방전 전압 레벨보다 높은 경우에 비활성화될 수 있다. 상기 배터리 확인 신호는 상기 배터리의 출력 전압 레벨이 상기 확인 전압 레벨보다 높은 경우에 활성화되고 상기 배터리의 출력 전압 레벨이 상기 확인 전압 레벨보다 낮은 경우에 비활성화될 수 있다.The first battery discharge signal may be activated when the output voltage level of the battery is lower than the first discharge voltage level and may be deactivated when the output voltage level of the battery is higher than the first discharge voltage level. The second battery discharge signal may be activated when the output voltage level of the battery is lower than the second discharge voltage level, and may be deactivated when the output voltage level of the battery is higher than the second discharge voltage level. The battery confirmation signal may be activated when the output voltage level of the battery is higher than the confirmation voltage level and may be deactivated when the output voltage level of the battery is lower than the confirmation voltage level.
상기 배터리 충전부는 전압 검출부, 전류 검출부, 충전 제어부 및 충전 전류 발생부를 포함할 수 있다. 상기 전압 검출부는 상기 복수의 배터리부들에 각각 구비된 상기 배터리들의 전압을 기준 전압과 비교하여 전압 검출 결과 신호를 각각 출력할 수 있다. 상기 전류 검출부는 상기 배터리들의 전류를 기준 전류와 비교하여 전류 검출 결과 신호를 각각 출력할 수 있다. 상기 충전 제어부는 상기 전압 검출 결과 신호 및 상기 전류 검출 결과 신호에 기초하여 펄스 폭 변조(pulse width modulation; PWM) 신호를 발생할 수 있다. 상기 충전 전류 발생부는 상기 복수의 배터리 충전 전압들 및 상기 PWM 신호에 기초하여 충전 전류를 상기 전원 비공급 배터리에 공급할 수 있다.The battery charger may include a voltage detector, a current detector, a charge controller, and a charge current generator. The voltage detector may output a voltage detection result signal by comparing voltages of the batteries included in the plurality of battery units with a reference voltage, respectively. The current detector may output a current detection result signal by comparing the currents of the batteries with a reference current. The charging control unit may generate a pulse width modulation (PWM) signal based on the voltage detection result signal and the current detection result signal. The charging current generator may supply a charging current to the non-powered battery based on the plurality of battery charging voltages and the PWM signal.
상기 제어 회로는 상기 사용자가 상기 태블릿 PC를 통하여 상기 전기자동차의 목적지를 입력하는 경우에, 현재 위치에서 목적지까지의 이동 거리를 연산하고, 상기 이동 거리 및 상기 배터리의 잔존 용량에 기초하여 상기 다채널 전원공급장치의 충전시기를 연산하며, 상기 연산 결과를 상기 태블릿 PC를 통하여 제공하도록 할 수 있다.The control circuit calculates a moving distance from a current position to a destination when the user inputs a destination of the electric vehicle through the tablet PC, and based on the moving distance and the remaining capacity of the battery, the multi-channel The charging time of the power supply device may be calculated, and the calculation result may be provided through the tablet PC.
상기 다른 목적을 달성하기 위해, 본 발명의 일 실시예에 따른 구동모터를 이용하여 구동되는 전기자동차는 복수의 구동륜들, 복수의 알터네이터(alternator)들, 다채널 태양광 충전 모듈, 다채널 컨버터, 다채널 전원공급장치, 제어 회로 및 태블릿 PC(personal computer)를 포함한다. 상기 복수의 구동륜들은 상기 구동모터의 회전에너지에 상응하여 상기 전기자동차가 운행하도록 회전한다. 상기 복수의 알터네이터들은 상기 복수의 구동륜들에 상응하도록 구비되고, 상기 복수의 구동륜들의 회전에너지에 상응하는 복수의 제1 발전 전압들을 발생한다. 상기 다채널 태양광 충전 모듈은 상기 전기자동차에 입사되는 태양광을 기초로 광전 변환을 수행하여 복수의 제2 발전 전압들을 발생한다. 상기 다채널 컨버터는 상기 복수의 제1 발전 전압들 및 상기 복수의 제2 발전 전압들을 변환하여 복수의 배터리 충전 전압들을 발생한다. 상기 다채널 전원공급장치는 상기 복수의 배터리 충전 전압들에 기초하여 충전되고, 상기 전기자동차에 포함되는 상기 구동모터 및 전원소비 수단들에 구동 전원을 공급하며, 배터리의 잔존 용량을 나타내는 배터리 잔량 표시 신호를 발생한다. 상기 제어 회로는 상기 배터리 잔량 표시 신호와 배터리 기준 신호를 비교하여, 상기 배터리의 잔존 용량이 미리 정해진 기준값보다 큰 경우에 상기 전원소비 수단들을 정상 동작시키고 상기 배터리의 잔존 용량이 상기 미리 정해진 기준값보다 작은 경우에 상기 전원소비 수단들 중 적어도 하나의 구동을 중지시킨다. 상기 태블릿 PC는 상기 제어 회로와 연결되고, 사용자가 상기 제어 회로의 동작을 제어하기 위한 인터페이스를 제공하며, 상기 전기자동차에 탈부착이 가능하도록 구현된다.In order to achieve the above object, an electric vehicle driven using a driving motor according to an embodiment of the present invention includes a plurality of driving wheels, a plurality of alternators, a multichannel solar charging module, a multichannel converter, Multi-channel power supplies, control circuits and tablet personal computers (PCs). The plurality of driving wheels rotate to correspond to the rotational energy of the driving motor so that the electric vehicle travels. The plurality of alternators are provided to correspond to the plurality of driving wheels, and generate a plurality of first generation voltages corresponding to rotational energies of the plurality of driving wheels. The multi-channel solar charging module generates a plurality of second generation voltages by performing photoelectric conversion based on sunlight incident on the electric vehicle. The multi-channel converter converts the plurality of first generation voltages and the plurality of second generation voltages to generate a plurality of battery charging voltages. The multi-channel power supply device is charged based on the plurality of battery charging voltages, supplies driving power to the driving motor and power consumption means included in the electric vehicle, and displays a remaining battery capacity indicating a remaining capacity of the battery. Generate a signal. The control circuit compares the battery remaining amount indication signal with a battery reference signal to operate the power consumption means normally when the remaining capacity of the battery is greater than a predetermined reference value and the remaining capacity of the battery is smaller than the predetermined reference value. In this case, the driving of at least one of the power consumption means is stopped. The tablet PC is connected to the control circuit, provides an interface for the user to control the operation of the control circuit, and is implemented to be detachable to the electric vehicle.
상기와 같은 본 발명의 실시예들에 따른 전기자동차의 전원관리 시스템은 알터네이터 및 다채널 태양광 충전 모듈을 이용하여 전기자동차의 운행 중에도 배터리를 효율적으로 충전할 수 있고, 다채널 컨버터를 통하여 배터리를 열 발생 없이 효율적으로 충전할 수 있으며, 배터리의 잔존 용량에 따라 전원소비 수단들의 구동을 제어하여 구동모터에 안정적으로 구동 전원을 공급할 수 있다. 따라서 효율적으로 구동 전원을 공급하며, 효율적인 전원관리를 수행할 수 있다. 또한, 탈부착 가능한 태블릿 PC를 이용하여 운전자가 전기자동차의 운행에 필요한 다양한 정보들을 효율적으로 제공받을 수 있으며, 운전자가 차량을 운행하는데 있어서 편리성 및 안전성을 향상시킬 수 있다.The power management system of an electric vehicle according to the embodiments of the present invention as described above can efficiently charge the battery even while the electric vehicle is running by using an alternator and a multi-channel solar charging module, and the battery is provided through a multi-channel converter. It can be efficiently charged without generating heat, and the driving power can be stably supplied to the driving motor by controlling the driving of the power consumption means according to the remaining capacity of the battery. Therefore, the driving power can be efficiently supplied and efficient power management can be performed. In addition, by using a detachable tablet PC, the driver can be efficiently provided with various information required for driving the electric vehicle, and the driver can improve convenience and safety in driving the vehicle.
도 1은 본 발명의 일 실시예에 따른 전기자동차의 전원관리 시스템을 나타내는 블록도이다.1 is a block diagram showing a power management system of an electric vehicle according to an embodiment of the present invention.
도 2는 도 1의 전기자동차의 전원관리 시스템에 포함되는 태블릿 PC 및 크래들의 일 예를 나타내는 사시도이다.FIG. 2 is a perspective view illustrating an example of a tablet PC and a cradle included in the power management system of the electric vehicle of FIG. 1.
도 3은 도 1의 전기자동차의 전원관리 시스템에 포함되는 다채널 컨버터의 일 예를 나타내는 블록도이다.3 is a block diagram illustrating an example of a multi-channel converter included in a power management system of an electric vehicle of FIG. 1.
도 4는 도 3의 다채널 컨버터에 포함되는 제1 DC 변환부의 일 예를 나타내는 회로도이다.4 is a circuit diagram illustrating an example of a first DC converter included in the multichannel converter of FIG. 3.
도 5는 도 1의 전기자동차의 전원관리 시스템에 포함되는 다채널 전원공급장치의 일 예를 나타내는 블록도이다.FIG. 5 is a block diagram illustrating an example of a multi-channel power supply device included in the power management system of the electric vehicle of FIG. 1.
도 6은 도 5의 다채널 전원공급장치에 포함되는 배터리부의 일 예를 나타내는 블록도이다.6 is a block diagram illustrating an example of a battery unit included in the multi-channel power supply of FIG. 5.
도 7은 도 5의 다채널 전원공급장치에 포함되는 배터리 충전부의 일 예를 나타내는 블록도이다.FIG. 7 is a block diagram illustrating an example of a battery charger included in the multichannel power supply of FIG. 5.
도 8은 본 발명의 일 실시예에 따른 전기자동차를 나타내는 도면이다.8 is a view showing an electric vehicle according to an embodiment of the present invention.
본문에 개시되어 있는 본 발명의 실시예들에 대해서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본문에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니 된다.With respect to the embodiments of the present invention disclosed in the text, specific structural to functional descriptions are merely illustrated for the purpose of describing embodiments of the present invention, embodiments of the present invention may be implemented in various forms and It should not be construed as limited to the embodiments described in.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.As the inventive concept allows for various changes and numerous modifications, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로 사용될 수 있다. 예를 들어, 본 발명의 권리 범위로부터 이탈되지 않은 채 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms may be used for the purpose of distinguishing one component from another component. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between. Other expressions describing the relationship between components, such as "between" and "immediately between," or "neighboring to," and "directly neighboring to" should be interpreted as well.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof that is described, and that one or more other features or numbers are present. It should be understood that it does not exclude in advance the possibility of the presence or addition of steps, actions, components, parts or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미이다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미인 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. .
한편, 어떤 실시예가 달리 구현 가능한 경우에 특정 블록 내에 명기된 기능 또는 동작이 순서도에 명기된 순서와 다르게 일어날 수도 있다. 예를 들어, 연속하는 두 블록이 실제로는 실질적으로 동시에 수행될 수도 있고, 관련된 기능 또는 동작에 따라서는 상기 블록들이 거꾸로 수행될 수도 있다.On the other hand, when an embodiment is otherwise implemented, a function or operation specified in a specific block may occur out of the order specified in the flowchart. For example, two consecutive blocks may actually be performed substantially simultaneously, and the blocks may be performed upside down depending on the function or operation involved.
도 1은 본 발명의 일 실시예에 따른 전기자동차의 전원관리 시스템을 나타내는 블록도이다.1 is a block diagram showing a power management system of an electric vehicle according to an embodiment of the present invention.
도 1을 참조하면, 전기자동차의 전원관리 시스템(100)은 알터네이터(alternator, 110), 다채널 태양광 충전 모듈(120), 다채널 컨버터(130), 다채널 전원공급장치(140), 제어 회로(150) 및 태블릿 PC(personal computer, 160)를 포함한다. 전기자동차의 전원관리 시스템(100)은 크래들(cradle, 170), 구동모터(180) 및 전원소비 수단들(190)을 더 포함할 수 있다.Referring to FIG. 1, an electric vehicle power management system 100 includes an alternator 110, a multichannel solar charging module 120, a multichannel converter 130, a multichannel power supply 140, and a control. Circuit 150 and tablet PC (personal computer) 160. The power management system 100 of the electric vehicle may further include a cradle 170, a driving motor 180, and power consumption means 190.
알터네이터(110)는 상기 전기자동차의 구동륜(미도시)에 상응하여 구비되며, 상기 구동륜의 회전에너지에 상응하는 복수의 제1 발전 전압들(ALTV)을 발생한다. 도 1에서는 편의상 하나의 알터네이터(110)를 도시하였으나, 실시예에 따라서 상기 알터네이터의 개수는 상기 전기자동차의 구동륜의 개수와 동일할 수 있다. 예를 들어, 두 개의 전륜 및 두 개의 후륜을 포함하는 일반적인 사륜 전기자동차는 각각의 구동륜에 부착되는 네 개의 알터네이터를 포함할 수 있다. 또한 제1 발전 전압들(ALTV)의 개수는 상기 알터네이터의 개수와 동일할 수 있다.The alternator 110 is provided corresponding to a driving wheel (not shown) of the electric vehicle and generates a plurality of first generation voltages ALTV corresponding to the rotational energy of the driving wheel. 1 illustrates one alternator 110 for convenience, the number of alternators may be equal to the number of driving wheels of the electric vehicle according to an embodiment. For example, a typical four-wheeled electric vehicle comprising two front wheels and two rear wheels may include four alternators attached to each drive wheel. In addition, the number of first generation voltages ALTV may be equal to the number of alternators.
다채널 태양광 충전 모듈(120)은 상기 전기자동차에 입사되는 태양광을 기초로 광전 변환을 수행하여 복수의 제2 발전 전압들(SUNV)을 발생한다. 다채널 태양광 충전 모듈(120)은 태양전지 패널 및 전압 출력 회로를 포함하여 구현될 수 있다. 일 실시예에서, 제2 발전 전압들(SUNV)의 개수는 제1 발전 전압들(ALTV)의 개수와 동일할 수 있으며, 제2 발전 전압들(SUNV)의 개수에 따라서 다채널 태양광 충전 모듈(120)의 채널 개수가 결정될 수 있다.The multi-channel solar charging module 120 generates a plurality of second generation voltages SUNV by performing photoelectric conversion based on the sunlight incident on the electric vehicle. The multi-channel solar charging module 120 may include a solar cell panel and a voltage output circuit. In an embodiment, the number of the second generation voltages SUNV may be equal to the number of the first generation voltages ALTV, and the multi-channel solar charging module may depend on the number of the second generation voltages SUNV. The number of channels of 120 may be determined.
다채널 컨버터(130)는 복수의 제1 발전 전압들(ALTV) 및 복수의 제2 발전 전압들(SUNV)을 변환하여 복수의 배터리 충전 전압들(BCV)을 발생한다. 예를 들어, 다채널 컨버터(130)는 교류 전압인 복수의 제1 발전 전압들(ALTV) 및 복수의 제2 발전 전압들(SUNV)을 변환하여 직류 전압인 복수의 배터리 충전 전압들(BCV)을 발생할 수 있다. 도 3을 참조하여 후술하는 바와 같이, 다채널 컨버터(130)는 복수의 제1 발전 전압들(ALTV) 중 하나 및 복수의 제2 발전 전압들(SUNV) 중 하나에 기초하여 복수의 배터리 충전 전압들(BCV) 중 하나를 발생하는 복수의 DC 변환부들을 포함할 수 있다. 일 실시예에서, 배터리 충전 전압들(BCV)의 개수는 제2 발전 전압들(SUNV)의 개수 및 제1 발전 전압들(ALTV)의 개수와 각각 동일할 수 있다.The multi-channel converter 130 converts the plurality of first generation voltages ALTV and the plurality of second generation voltages SUNV to generate the plurality of battery charging voltages BCV. For example, the multi-channel converter 130 converts the plurality of first generation voltages ALTV and the plurality of second generation voltages SUNV, which are AC voltages, to convert the plurality of battery charging voltages BCV, which are DC voltages. May occur. As described below with reference to FIG. 3, the multi-channel converter 130 may include a plurality of battery charging voltages based on one of the plurality of first generation voltages ALTV and one of the plurality of second generation voltages SUNV. It may include a plurality of DC converters for generating one of the (BCV). In an embodiment, the number of battery charge voltages BCV may be equal to the number of second generation voltages SUNV and the number of first generation voltages ALTV, respectively.
다채널 전원공급장치(140)는 제1 제어 신호(CONB)에 기초하여 동작한다. 다채널 전원공급장치(140)는 복수의 배터리 충전 전압들(BCV)에 기초하여 충전되고, 구동모터(180) 및 전원소비 수단들(190)에 구동 전원(POWER_BAT)을 공급하며, 배터리의 잔존 용량을 나타내는 배터리 잔량 표시 신호(BCIS)를 발생한다. 일 실시예에서, 다채널 전원공급장치(140)는 복수의 배터리들을 포함할 수 있으며, 상기 복수의 배터리들 중 적어도 하나가 번갈아 가면서 구동 전원(POWER_BAT)을 공급하는 방식으로 구현될 수 있다. 도 1에서는 편의상 하나의 다채널 전원공급장치(140)를 도시하였으나, 실시예에 따라서 전기자동차의 전원관리 시스템(100)은 복수의 다채널 전원공급장치들을 포함할 수 있다. 도시하지는 않았으나, 다채널 전원공급장치(140)는 외부의 충전 모듈에서 공급되는 상용 전압에 기초하여 충전될 수도 있다.The multichannel power supply 140 operates based on the first control signal CONB. The multi-channel power supply 140 is charged based on the plurality of battery charging voltages BCV, supplies the driving power POWER_BAT to the driving motor 180 and the power consumption means 190, and the battery remains. A battery remaining indication signal BCIS indicating capacity is generated. In an embodiment, the multi-channel power supply 140 may include a plurality of batteries, and may be implemented by supplying driving power POWER_BAT by alternately at least one of the plurality of batteries. In FIG. 1, one multi-channel power supply 140 is illustrated for convenience, but according to an embodiment, the power management system 100 of the electric vehicle may include a plurality of multi-channel power supplies. Although not shown, the multi-channel power supply 140 may be charged based on a commercial voltage supplied from an external charging module.
본 발명의 일 실시예에 따른 전기자동차의 전원관리 시스템(100)은 외부의 다채널 충전 단자를 이용하여 다채널 전원공급장치(140)를 충전할 수 있을 뿐 아니라, 알터네이터(110)를 이용하여 전기자동차의 운행 중에도 다채널 전원공급장치(140)를 충전할 수 있으며, 다채널 태양광 충전 모듈(120)을 이용하여 태양광이 입사되는 임의의 장소에서 다채널 전원공급장치(140)를 충전할 수 있다. 따라서 전기자동차의 전원관리 시스템(100)은 효율적으로 구동 전원(POWER_BAT)을 공급할 수 있다.The power management system 100 of an electric vehicle according to an embodiment of the present invention may not only charge the multichannel power supply 140 using an external multichannel charging terminal, but also use the alternator 110. The multi-channel power supply unit 140 may be charged even while the electric vehicle is in operation, and the multi-channel power supply unit 140 may be charged at any place where sunlight is incident using the multi-channel solar charging module 120. can do. Therefore, the power management system 100 of the electric vehicle can efficiently supply the driving power (POWER_BAT).
구동모터(180)는 구동 전원(POWER_BAT) 및 제2 제어 신호(COND)를 기초로 전기에너지를 운동에너지로 변환하여 상기 구동륜들을 회전시키며, 상기 전기자동차가 운행할 수 있도록 한다. 전원소비 수단들(190)은 제3 제어 신호(CONP)에 기초하여 동작하고 구동모터(180) 이외에 전원을 소비하는 모든 장치들일 수 있으며, 예를 들어 주행 제어 장치, 오디오 장치, 네비게이션 장치, 조명 장치, 냉난방 장치, 속도계, 회전속도계(tacho meter), RPM(revolution per minute)계, 윈도우(window)용 모터, 와이퍼(wiper)용 모터, 도어락(door-lock) 모터 등을 포함할 수 있다.The driving motor 180 rotates the driving wheels by converting electrical energy into kinetic energy based on a driving power source POWER_BAT and a second control signal COND, and allows the electric vehicle to operate. The power consumption means 190 may be all devices that operate based on the third control signal CONP and consume power in addition to the driving motor 180. For example, the driving control device, the audio device, the navigation device, the lighting It may include a device, a heating and cooling device, a speedometer, a tacho meter, a revolution per minute (RPM) meter, a motor for a window, a motor for a wiper, a door-lock motor, and the like.
제어 회로(150)는 배터리 잔량 표시 신호(BCIS)에 기초하여 전원소비 수단들(190)의 동작을 제어한다. 구체적으로, 제어 회로(150)는 배터리 잔량 표시 신호(BCIS)와 배터리 기준 신호를 비교하여, 상기 배터리의 잔존 용량이 미리 정해진 기준값보다 큰 경우에 전원소비 수단들(190)을 정상 동작시키고 상기 배터리의 잔존 용량이 상기 미리 정해진 기준값보다 작은 경우에 전원소비 수단들(190) 중 적어도 하나의 구동을 중지시킨다. 예를 들어, 제어 회로(150)는 상기 배터리의 잔존 용량이 완전히 충전된 용량(즉, 완충 용량)의 약 40% 이하인 경우에 전원소비 수단들(190) 중 적어도 하나, 예를 들어 소비 전류가 큰 냉난방 장치 등의 구동을 중지시킬 수 있다.The control circuit 150 controls the operation of the power consumption means 190 based on the battery remaining amount indication signal BCIS. Specifically, the control circuit 150 compares the battery remaining indication signal BCIS with the battery reference signal to operate the power consumption means 190 normally when the remaining capacity of the battery is greater than a predetermined reference value. If the remaining capacity of less than the predetermined reference value stops driving of at least one of the power consumption means (190). For example, the control circuit 150 may include at least one of the power consumption means 190, for example, a current consumption when the remaining capacity of the battery is about 40% or less of a fully charged capacity (ie, a buffer capacity). It is possible to stop driving of a large air conditioner or the like.
제어 회로(150)는 제1 내지 제3 제어 신호들(CONB, COND, CONP)을 제공할 수 있으며, RS-485 통신 방식을 이용하여 다채널 전원공급장치(140), 구동모터(180) 및 전원소비 수단들(190)과 각각 통신을 수행할 수 있다.The control circuit 150 may provide first to third control signals CONB, COND, and CONP, and use the multi-channel power supply 140, the driving motor 180, and the RS-485 communication method. Communication with the power consumption means 190 may be performed.
전기자동차의 운행에 있어서 가장 중요한 사항은 구동모터(180)에 안정적으로 구동 전원(POWER_BAT)을 공급하는 것이다. 전원소비 수단들(190)이 과도하게 전원을 소비하여 구동모터(180)에 구동 전원(POWER_BAT)이 안정적으로 공급되지 않는다면, 전기자동차는 정상적으로 운행할 수 없다. 따라서, 제어 회로(150)는 실시간으로 다채널 전원공급장치(140)의 배터리의 잔존 용량을 체크하여 상기 배터리의 잔존 용량이 상기 미리 정해진 기준값보다 작은 경우에 전원소비 수단들(190) 중 적어도 하나의 구동을 중지시킴으로써, 구동모터(180)에 안정적으로 구동 전원(POWER_BAT)을 공급할 수 있으며, 따라서 전원관리 시스템(100)은 효율적인 전원관리를 수행할 수 있다.The most important point in the operation of the electric vehicle is to stably supply the driving power (POWER_BAT) to the driving motor 180. If the power consumption means 190 consumes excessive power and the driving power POWER_BAT is not stably supplied to the driving motor 180, the electric vehicle may not operate normally. Therefore, the control circuit 150 checks the remaining capacity of the battery of the multi-channel power supply device 140 in real time to at least one of the power consumption means 190 when the remaining capacity of the battery is less than the predetermined reference value. By stopping the driving of the driving motor 180, the driving power POWER_BAT may be stably supplied to the driving motor 180, and thus the power management system 100 may perform efficient power management.
태블릿 PC(160)는 제어 회로(150)와 연결되고, 사용자(즉, 운전자)가 제어 회로(150)의 동작을 제어하기 위한 인터페이스를 제공하며, 상기 전기자동차에 탈부착이 가능하다. 태블릿 PC(160)는 제어 회로(150)와 직접 연결될 수도 있고, 크래들(170)을 통하여 제어 회로(150)와 연결될 수도 있다. 크래들(170)은 태블릿 PC(160)와 제어 회로(150)를 전기적으로 연결시키는 역할 및 태블릿 PC(160)를 상기 전기자동차에 안정적으로 고정시키는 역할을 수행할 수 있다.The tablet PC 160 is connected to the control circuit 150, provides an interface for a user (ie, a driver) to control the operation of the control circuit 150, and is detachable to the electric vehicle. The tablet PC 160 may be directly connected to the control circuit 150 or may be connected to the control circuit 150 through the cradle 170. The cradle 170 may serve to electrically connect the tablet PC 160 and the control circuit 150 and to stably fix the tablet PC 160 to the electric vehicle.
일 실시예에서, 태블릿 PC(160)는 상기 전기자동차의 현재 위치, 주행 속도, 배터리의 잔량 등과 같은 다양한 정보를 상기 사용자에게 제공할 수 있다. 예를 들어, 사용자가 태블릿 PC(160)를 통하여 전기자동차의 목적지를 입력하는 경우에, 제어 회로(150)는 현재 위치에서 목적지까지의 이동 거리를 연산하고, 상기 이동 거리 및 상기 다채널 전원공급장치(140)의 배터리의 잔존 용량에 기초하여 다채널 전원공급장치(140)의 충전시기를 연산하며, 상기 연산 결과(즉, 이동 거리 및 충전시기)를 태블릿 PC(160)를 통하여 사용자에게 제공하도록 할 수 있다. 상기와 같은 연산을 수행함에 있어서, 제1 발전 전압(ALTV) 및 제2 발전 전압(SUNV)의 레벨에 따른 자체 충전 가능 용량이 더 고려될 수 있다. 태블릿 PC(160)는 다채널 전원공급장치(140)의 소비 전류와 배터리 잔량을 백분율과 막대그래프로 나타낼 수 있으며, 다채널 전원공급장치(140)의 배터리 잔량을 체크하여 차량의 주행 가능 거리를 나타낼 수 있다.In one embodiment, the tablet PC 160 may provide the user with various information such as the current position of the electric vehicle, the traveling speed, the remaining battery capacity, and the like. For example, when the user inputs the destination of the electric vehicle through the tablet PC 160, the control circuit 150 calculates the moving distance from the current position to the destination, and supplies the moving distance and the multi-channel power supply. The charging time of the multi-channel power supply device 140 is calculated based on the remaining capacity of the battery of the device 140, and the calculation result (ie, the moving distance and the charging time) is provided to the user through the tablet PC 160. You can do that. In performing the above operation, the self chargeable capacity according to the level of the first generation voltage ALTV and the second generation voltage SUNV may be further considered. The tablet PC 160 may display the current consumption of the multi-channel power supply 140 and the remaining battery level as a percentage and a bar graph. The tablet PC 160 checks the remaining battery level of the multi-channel power supply 140 to determine the driving distance of the vehicle. Can be represented.
일 실시예에서, 태블릿 PC(160)는 상기 사용자가 등록된 사용자인 경우에만 상기와 같은 다양한 정보들을 제공할 수 있다. 예를 들어, 태블릿 PC(160)는 사용자 비밀번호 및/또는 사용자의 고유 아이디를 입력받은 후에 상기 입력된 비밀번호 및/또는 아이디가 상기 등록된 사용자의 비밀번호 및/또는 아이디와 일치하는 경우에만 상기의 다양한 정보들을 제공할 수 있다. 다른 예에서, 태블릿 PC(160)는 지문 인식 또는 안면 인식 등과 같은 다양한 방법을 이용하여 상기 사용자가 상기 등록된 사용자인지 여부를 판단할 수 있다.In one embodiment, the tablet PC 160 may provide the above various information only when the user is a registered user. For example, the tablet PC 160 receives the user's password and / or the user's unique ID, and then, if the input password and / or the ID matches the registered user's password and / or ID, Information can be provided. In another example, the tablet PC 160 may determine whether the user is the registered user by using various methods such as fingerprint recognition or face recognition.
본 발명의 일 실시예에 따른 전기자동차의 전원관리 시스템(100)은 탈부착이 가능한 태블릿 PC(160)를 포함함으로써, 상기 전기자동차를 운전하는 운전자에게 전기자동차의 운행에 필요한 다양한 정보들을 효율적으로 제공할 수 있으며, 운전자가 차량을 운행하는데 있어서 편리성 및 안전성을 향상시킬 수 있다. Power management system 100 of an electric vehicle according to an embodiment of the present invention includes a removable tablet PC 160, to efficiently provide a variety of information necessary for the operation of the electric vehicle to the driver driving the electric vehicle. The driver can improve convenience and safety in driving the vehicle.
도 2는 도 1의 전기자동차의 전원관리 시스템에 포함되는 태블릿 PC 및 크래들의 일 예를 나타내는 사시도이다.FIG. 2 is a perspective view illustrating an example of a tablet PC and a cradle included in the power management system of the electric vehicle of FIG. 1.
도 2를 참조하면, 태블릿 PC(160)는 예를 들어 애플사의 아이패드(iPad) 또는 삼성전자주식회사의 갤럭시탭(Galaxy Tab)일 수 있으나, 이에 한정되지 않으며, 임의의 종류의 태블릿 PC들 중 하나일 수 있다.Referring to FIG. 2, the tablet PC 160 may be, for example, an iPad of Apple Inc. or a Galaxy Tab of Samsung Electronics Co., Ltd., but is not limited thereto, and any type of tablet PCs may be used. It can be one.
태블릿 PC(160)는 크래들(170)에 장착될 수 있다. 크래들(170)은 상기 전기자동차에 고정되도록 부착될 수 있으며, 거치부(171), 충전단자(177) 및 통신 케이블(179)을 포함하여 형성될 수 있다.The tablet PC 160 may be mounted to the cradle 170. The cradle 170 may be attached to be fixed to the electric vehicle, and may include a cradle 171, a charging terminal 177, and a communication cable 179.
거치부(171)는 태블릿 PC(160)가 장착되도록 상면부가 요입되어 형성될 수 있다. 거치부(171)는 좌우 양 측벽(173)과 하단부 측의 하부벽(175)에 의하여 한정되는 공간일 수 있다.The mounting portion 171 may be formed by recessing the upper surface portion to mount the tablet PC 160. The mounting part 171 may be a space defined by the left and right side walls 173 and the lower wall 175 on the lower side.
충전단자(177)는 상기 거치부(171)의 하단부 측에 형성될 수 있다. 즉, 충전단자(177)는 크래들(170)의 거치부(171)를 이루는 저면에서 돌출하여 일부가 외부로 노출되도록 형성될 수 있다. 충전단자(177)는 탄력적으로 지지되어 태블릿 PC(160)의 배터리 단자(미도시)와 매끄럽게 접촉할 수 있다. 상기와 같은 접촉에 의해, 다채널 전원공급장치(140)로부터 제공되는 구동 전원(POWER_BAT)이 태블릿 PC(160)에 전달되어 태블릿 PC(160)가 구동될 수 있다.The charging terminal 177 may be formed at the lower end side of the mounting portion 171. That is, the charging terminal 177 may protrude from the bottom surface of the cradle 170 of the cradle 170 to be partially exposed to the outside. The charging terminal 177 may be elastically supported to smoothly contact the battery terminal (not shown) of the tablet PC 160. By such contact, the driving power POWER_BAT provided from the multi-channel power supply 140 may be transferred to the tablet PC 160 to drive the tablet PC 160.
통신 케이블(179)은 태블릿 PC(160)와 제어 회로(150)를 전기적으로 연결시킬 수 있다. 일 실시예에서, 통신 케이블(179)은 RS-485 통신 방식의 통신 케이블일 수 있다.The communication cable 179 may electrically connect the tablet PC 160 and the control circuit 150. In one embodiment, the communication cable 179 may be a communication cable of the RS-485 communication method.
도시하지는 않았지만, 크래들(170)은 태블릿 PC(160)를 안정적으로 고정하기 위한 고정 수단을 더 포함할 수 있다. 예를 들어, 상기 고정 수단은 거치부(171)의 좌우 양 측벽(173)에 형성되는 잠금돌기일 수도 있고, 좌우 양 측벽(173) 중 하나에 고정 결합되고 나머지 하나에 선택적으로 결착 결합되는 홀더일 수도 있다.Although not illustrated, the cradle 170 may further include fixing means for stably fixing the tablet PC 160. For example, the fixing means may be a locking protrusion formed on the left and right sidewalls 173 of the mounting portion 171, the holder fixedly coupled to one of the left and right sidewalls 173 and selectively bound to the other one It may be.
도 3은 도 1의 전기자동차의 전원관리 시스템에 포함되는 다채널 컨버터의 일 예를 나타내는 블록도이다.3 is a block diagram illustrating an example of a multi-channel converter included in a power management system of an electric vehicle of FIG. 1.
도 3을 참조하면, 다채널 컨버터(130)는 복수의 DC 변환부들(131a, 131b, ..., 131n)을 포함할 수 있다.Referring to FIG. 3, the multi-channel converter 130 may include a plurality of DC converters 131a, 131b,..., 131n.
복수의 DC 변환부들(131a, 131b, ..., 131n)은 복수의 제1 발전 전압들(ALTV1, ALTV2, ..., ALTVn) 중 하나 및 복수의 제2 발전 전압들(SUNV1, SUNV2, ..., SUNVn) 중 하나를 변환하여 복수의 배터리 충전 전압들(BCV1, BCV2, ..., BCVn) 중 하나를 발생할 수 있다. 복수의 DC 변환부들(131a, 131b, ..., 131n)은 제1 내지 제n DC 변환부들(131a, 131b, ..., 131n)을 포함하고, 복수의 제1 발전 전압들(ALTV1, ALTV2, ..., ALTVn)은 제1 내지 제n 알터네이터 전압들(ALTV1, ALTV2, ..., ALTVn)을 포함하고, 복수의 제2 발전 전압들(SUNV1, SUNV2, ..., SUNVn)은 제1 내지 제n 태양광 발전 전압들(SUNV1, SUNV2, ..., SUNVn)을 포함하며, 복수의 배터리 충전 전압들(BCV1, BCV2, ..., BCVn)은 제1 내지 제n 배터리 충전 전압들(BCV1, BCV2, ..., BCVn)을 포함할 수 있다. 예를 들어, 제1 DC 변환부(131a)는 제1 알터네이터 전압(ALTV1) 및 제1 태양광 발전 전압(SUNV1)을 변환하여 제1 배터리 충전 전압(BCV1)을 발생할 수 있다. 일 실시예에서, 제1 배터리 충전 전압(BCV1)은 제1 알터네이터 전압(ALTV1)에 기초하여 발생되는 제1 알터네이터 배터리 충전 전압 및 제1 태양광 발전 전압(SUNV1)에 기초하여 발생되는 제1 태양광 발전 배터리 충전 전압을 포함할 수 있다.The plurality of DC converters 131a, 131b,..., 131n may include one of the plurality of first generation voltages ALTV1, ALTV2,..., ALTVn and a plurality of second generation voltages SUNV1, SUNV2, One of the plurality of battery charging voltages BCV1, BCV2, ..., BCVn may be generated by converting one of ..., SUNVn. The plurality of DC converters 131a, 131b,..., 131n includes first to n- th DC converters 131a, 131b,..., 131n, and the plurality of first generation voltages ALTV1, ALTV2, ..., ALTVn) includes first to nth alternator voltages ALTV1, ALTV2, ..., ALTVn, and a plurality of second generation voltages SUNV1, SUNV2, ..., SUNVn. Includes first to nth solar power voltages SUNV1, SUNV2,..., And SUNVn, and the plurality of battery charging voltages BCV1, BCV2,..., BCVn are first to nth batteries. The charging voltages BCV1, BCV2,..., BCVn may be included. For example, the first DC converter 131a may generate the first battery charge voltage BCV1 by converting the first alternator voltage ALTV1 and the first solar power voltage SUNV1. In one embodiment, the first battery charge voltage BCV1 is generated based on the first alternator battery charge voltage and the first photovoltaic voltage SUNV1 generated based on the first alternator voltage ALTV1. It may include a photovoltaic battery charging voltage.
도 4는 도 3의 다채널 컨버터에 포함되는 제1 DC 변환부의 일 예를 나타내는 회로도이다.4 is a circuit diagram illustrating an example of a first DC converter included in the multichannel converter of FIG. 3.
도 4를 참조하면, 제1 DC 변환부(131a)는 제1 변환 블록(1311a) 및 제2 변환 블록(1313a)을 포함할 수 있다.Referring to FIG. 4, the first DC converter 131a may include a first transform block 1311a and a second transform block 1313a.
제1 변환 블록(1311a)은 복수의 제1 발전 전압들(ALTV1, ALTV2, ..., ALTVn) 중 하나인 제1 알터네이터 전압(ALTV1)을 스텝-다운(step down) 변환하여 복수의 배터리 충전 전압들(BCV1, BCV2, ..., BCVn) 중 하나인 제1 배터리 충전 전압(BCV1)을 발생할 수 있으며, 특히 제1 배터리 충전 전압(BCV1) 중 제1 알터네이터 배터리 충전 전압(BCV1a)을 발생할 수 있다. 제1 변환 블록(1311a)은 하나의 NJM2360칩(U63), 복수의 다이오드들(D27, D29, D30, D33), 복수의 저항들(R110, R112, R115, R117, R118, R121, R122, R123) 및 복수의 커패시터들(C64, C66, C68, C70)을 포함하여 구현될 수 있다.The first conversion block 1311a charges the plurality of batteries by stepping down the first alternator voltage ALTV1, which is one of the plurality of first generation voltages ALTV1, ALTV2,..., ALTVn. The first battery charge voltage BCV1 may be one of the voltages BCV1, BCV2, ..., BCVn, and in particular, the first alternator battery charge voltage BCV1a may be generated among the first battery charge voltages BCV1. Can be. The first conversion block 1311a includes one NJM2360 chip U63, a plurality of diodes D27, D29, D30, and D33, and a plurality of resistors R110, R112, R115, R117, R118, R121, R122, and R123. ) And a plurality of capacitors C64, C66, C68, and C70.
제2 변환 블록(1313a)은 복수의 제2 발전 전압들(SUNV1, SUNV2, ..., SUNVn) 중 하나인 제1 태양광 발전 전압(SUNV1)을 스텝-다운 변환하여 복수의 배터리 충전 전압들(BCV1, BCV2, ..., BCVn) 중 하나인 제1 배터리 충전 전압(BCV1)을 발생할 수 있으며, 특히 제1 배터리 충전 전압(BCV1) 중 제1 태양광 발전 배터리 충전 전압(BCV1b)을 발생할 수 있다. 제2 변환 블록(1313a)은 하나의 NJM2360칩(U65), 복수의 다이오드들(D35, D37, D38, D41), 복수의 저항들(R126, R128, R130, R132, R134, R136, R138, R139) 및 복수의 커패시터들(C72, C74, C76, C78)을 포함하여 구현될 수 있다. 특히 제1 변환 블록(1311a)에 포함된 다이오드(D30) 및 제2 변환 블록(1313a)에 포함된 다이오드(D38)는 일반적인 스텝-다운 변환 회로에서는 확인할 수 없는 구성으로서, 상기의 다이오드들(D30, D38)은 다채널 전원공급장치(140)에 충전된 전압이 제1 및 제2 변환 블록들(1311a, 1313a)을 통하여 역으로 방전되는 것을 방지할 수 있다.The second conversion block 1313a may step-down convert the first photovoltaic voltage SUNV1, which is one of the plurality of second generation voltages SUNV1, SUNV2,..., SUNVn, to charge the plurality of battery charge voltages. The first battery charging voltage BCV1, which is one of (BCV1, BCV2,..., BCVn), may be generated, and particularly, the first solar power battery charging voltage BCV1b may be generated among the first battery charging voltages BCV1. Can be. The second conversion block 1313a includes one NJM2360 chip U65, a plurality of diodes D35, D37, D38, and D41, and a plurality of resistors R126, R128, R130, R132, R134, R136, R138, and R139. ) And a plurality of capacitors C72, C74, C76, and C78. In particular, the diode D30 included in the first conversion block 1311a and the diode D38 included in the second conversion block 1313a are configurations that cannot be identified in a general step-down conversion circuit. , D38 may prevent the voltage charged in the multi-channel power supply 140 from being discharged backward through the first and second conversion blocks 1311a and 1313a.
제1 DC 변환부(131a)는 예를 들어 전기자동차가 운행 중인 경우와 같이 제1 알터네이터 전압(ALTV1)의 레벨이 제1 태양광 발전 전압(SUNV1)의 레벨보다 높은 경우에는 제1 변환 블록(1311a)에서 생성된 제1 알터네이터 배터리 충전 전압(BCV1a)을 제1 배터리 충전 전압(BCV1)으로서 출력할 수 있으며, 이 경우 다채널 전원공급장치(140)는 제1 알터네이터 배터리 충전 전압(BCV1a)에 기초하여 충전될 수 있다. 또한 제1 DC 변환부(131a)는 예를 들어 전기자동차가 낮 시간에 주차중인 경우와 같이 상기 제1 태양광 발전 전압(SUNV1)의 레벨이 상기 제1 알터네이터 전압(ALTV1)의 레벨보다 높은 경우에는 제2 변환 블록(1313a)에서 생성된 제1 태양광 발전 배터리 충전 전압(BCV1b)을 제1 배터리 충전 전압(BCV1)으로서 출력할 수 있으며, 이 경우 다채널 전원공급장치(140)는 제1 태양광 발전 배터리 충전 전압(BCV1b)에 기초하여 충전될 수 있다. 다른 예에서, 다채널 전원공급장치(140)는 제1 알터네이터 배터리 충전 전압(BCV1a) 및 제1 태양광 발전 배터리 충전 전압(BCV1b) 모두에 기초하여 충전될 수도 있다. 즉, 제1 DC 변환부(131a)는 상황에 따라 선택적으로 제1 배터리 충전 전압(BCV1)을 발생함으로써 다채널 전원공급장치(140)를 열 발생 없이 효율적으로 충전시킬 수 있다.The first DC converter 131a may include, for example, when the level of the first alternator voltage ALTV1 is higher than the level of the first photovoltaic voltage SUNV1, such as when an electric vehicle is in operation. The first alternator battery charging voltage BCV1a generated in 1311a may be output as the first battery charging voltage BCV1, and in this case, the multi-channel power supply 140 may be connected to the first alternator battery charging voltage BCV1a. Can be charged on the basis. In addition, when the level of the first photovoltaic voltage SUNV1 is higher than the level of the first alternator voltage ALTV1, for example, when the electric vehicle is parked during the day, the first DC converter 131a may have a high level. The first photovoltaic battery charging voltage BCV1b generated by the second conversion block 1313a may be output as the first battery charging voltage BCV1, and in this case, the multi-channel power supply 140 may include the first The battery may be charged based on the photovoltaic battery charging voltage BCV1b. In another example, the multichannel power supply 140 may be charged based on both the first alternator battery charge voltage BCV1a and the first photovoltaic battery charge voltage BCV1b. That is, the first DC converter 131a may efficiently charge the multi-channel power supply 140 without generating heat by selectively generating the first battery charging voltage BCV1 according to a situation.
도 4에서는 제1 DC 변환부(131a)만을 도시하였으나, 제2 내지 제n DC 변환부들(131b, ..., 131n) 역시 제1 DC 변환부(131a)와 실질적으로 동일한 구성을 가질 수 있다.Although only the first DC converter 131a is illustrated in FIG. 4, the second to n-th DC converters 131b,..., 131n may also have substantially the same structure as the first DC converter 131a. .
도 5는 도 1의 전기자동차의 전원관리 시스템에 포함되는 다채널 전원공급장치의 일 예를 나타내는 블록도이다.FIG. 5 is a block diagram illustrating an example of a multi-channel power supply device included in the power management system of the electric vehicle of FIG. 1.
도 5를 참조하면, 다채널 전원공급장치(140)는 배터리 뱅크(141), 배터리 비교부(143), 전원 제어부(145), 전원 출력부(147) 및 배터리 충전부(149)를 포함할 수 있다. 배터리 뱅크(141)는 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)을 포함하며, 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)은 각각 내부에 배터리들을 포함하므로, 배터리 뱅크(141)는 n개의 배터리들을 포함할 수 있다.Referring to FIG. 5, the multi-channel power supply 140 may include a battery bank 141, a battery comparator 143, a power controller 145, a power output unit 147, and a battery charger 149. have. The battery bank 141 includes first to nth battery parts 141a, 141b,..., And 141n, and the first to nth battery parts 141a, 141b,. Since the batteries are included, the battery bank 141 may include n batteries.
배터리 뱅크(141) 내부에 포함되는 상기 n개의 배터리들은 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 각각 탈착이 가능한 형태로 구현될 수 있다. 다채널 전원공급장치(140)는 상기 복수의 배터리들의 탈착 여부를 판단하며, 상기 복수의 배터리들의 방전 정도를 파악하여 구동 전원(POWER_BAT)을 공급할 배터리(즉, 전원 공급 배터리)를 결정할 수 있다. 배터리들의 탈착 여부 및 방전 정도는 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 각각 포함된 배터리의 출력 전압(BAT) 레벨에 기초하여 판단될 수 있다.The n batteries included in the battery bank 141 may be implemented to be detachable to the first to nth battery units 141a, 141b,..., 141n, respectively. The multi-channel power supply 140 may determine whether the plurality of batteries are attached or detached, and determine a battery (ie, a power supply battery) to supply driving power POWER_BAT by determining a discharge degree of the plurality of batteries. Whether the batteries are attached or detached and the degree of discharge may be determined based on the output voltage BAT level of the battery included in each of the first to nth battery parts 141a, 141b,..., 141n.
제1 내지 제n 배터리부들(141a, 141b, ..., 141n)은 각각 포함하는 배터리의 출력 전압(BAT) 레벨에 기초하여 배터리 확인 신호(BAT_IN) 및 배터리 방전 신호(Q_BAT)를 발생하고 출력할 수 있다. 예를 들어, 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)은 상기 배터리의 출력 전압(BAT) 레벨을 기 설정된 확인 전압 레벨과 비교하여 배터리 확인 신호(BAT_IN)를 각각 발생하고, 상기 배터리의 출력 전압(BAT) 레벨을 기 설정된 방전 전압 레벨과 비교하여 배터리 방전 신호(Q_BAT)를 각각 발생할 수 있다.The first to nth battery units 141a, 141b,..., 141n respectively generate and output a battery confirmation signal BAT_IN and a battery discharge signal Q_BAT based on the output voltage BAT level of the battery. can do. For example, the first to n- th battery units 141a, 141b,..., 141n respectively generate a battery confirmation signal BAT_IN by comparing the output voltage BAT level of the battery with a predetermined confirmation voltage level. The battery discharge signal Q_BAT may be generated by comparing the output voltage BAT level of the battery with a preset discharge voltage level.
배터리 확인 신호(BAT_IN)는 배터리의 탈착 상태를 나타내며, 배터리 방전 신호(Q_BAT)는 배터리의 방전 여부를 나타낼 수 있다. 예를 들어, 배터리 확인 신호(BAT_IN)의 활성화는 배터리가 상응하는 배터리부에 장착되어 있음을 의미하고, 배터리 확인 신호(BAT_IN)의 비활성화는 배터리가 상응하는 배터리부에 장착되어 있지 않음을 의미할 수 있다. 또한, 배터리 방전 신호(Q_BAT)의 활성화는 배터리가 방전되어 있음을 의미하고, 배터리 방전 신호(Q_BAT)의 비활성화는 배터리가 방전되어 있지 않음을 의미할 수 있다. The battery confirmation signal BAT_IN may indicate a detached state of the battery, and the battery discharge signal Q_BAT may indicate whether the battery is discharged. For example, activation of the battery check signal BAT_IN means that the battery is mounted in the corresponding battery compartment, and deactivation of the battery check signal BAT_IN means that the battery is not mounted in the corresponding battery compartment. Can be. In addition, activation of the battery discharge signal Q_BAT may mean that the battery is discharged, and deactivation of the battery discharge signal Q_BAT may mean that the battery is not discharged.
일 실시예에서, 배터리 확인 신호(BAT_IN)는 상기 배터리의 출력 전압(BAT) 레벨이 상기 기 설정된 확인 전압 레벨보다 높은 경우에 활성화될 수 있고, 상기 배터리의 출력 전압(BAT) 레벨이 상기 기 설정된 확인 전압 레벨보다 낮은 경우에 비활성화될 수 있다. 또한, 배터리 방전 신호(Q_BAT)는 상기 배터리의 출력 전압(BAT) 레벨이 상기 기 설정된 방전 전압 레벨보다 낮은 경우에 활성화될 수 있고, 상기 배터리의 출력 전압(BAT) 레벨이 기 설정된 방전 전압 레벨보다 높은 경우에 비활성화될 수 있다. 이 때, 확인 전압 레벨 및 방전 전압 레벨은 구동모터(180) 및 전원소비 수단들(190)에 요구되는 조건에 따라 사용자에 의하여 다양하게 결정될 수 있다.In one embodiment, the battery confirmation signal BAT_IN may be activated when the output voltage BAT level of the battery is higher than the preset confirmation voltage level, and the output voltage BAT level of the battery is set to the preset voltage. Can be disabled if it is below the confirmation voltage level. In addition, the battery discharge signal Q_BAT may be activated when the output voltage BAT level of the battery is lower than the preset discharge voltage level, and the output voltage BAT level of the battery is higher than the preset discharge voltage level. It can be deactivated if high. In this case, the confirmation voltage level and the discharge voltage level may be variously determined by the user according to a condition required for the driving motor 180 and the power consumption means 190.
배터리 비교부(143)는 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 각각 포함된 배터리의 출력 전압(BAT) 레벨을 비교함으로써 배터리 비교 신호(CMP)를 생성할 수 있다. 배터리 비교 신호(CMP)는 전원 제어부(145)에 제공되며, 배터리 제어 신호(BAT_CON)를 생성하는 기초가 될 수 있다.The battery comparator 143 may generate the battery comparison signal CMP by comparing the output voltage BAT level of the battery included in the first to nth battery parts 141a, 141b,..., 141n, respectively. have. The battery comparison signal CMP is provided to the power control unit 145 and may be the basis for generating the battery control signal BAT_CON.
일 실시예에서, 배터리 비교 신호(CMP)는 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 각각 포함된 배터리의 출력 전압(BAT) 레벨을 감지하고, 이들을 서로 비교함으로써 생성될 수 있다. 다른 실시예에서, 배터리 비교 신호(CMP)는 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 포함된 배터리들 중에서 가장 출력 전압 레벨이 높은 배터리 정보 및/또는 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 포함된 배터리들 간의 출력 전압 레벨 비율에 대한 정보를 포함할 수 있다. 예를 들어, 배터리 비교 신호(CMP)는 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 포함된 배터리의 출력 전압(BAT) 레벨을 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 포함된 배터리의 출력 전압(BAT) 레벨의 합으로 나눈 값일 수 있다. 또한, 배터리 뱅크(141)가 두 개의 배터리부만을 포함하는 경우에는, 배터리 비교 신호(CMP)는 하나의 배터리의 출력 전압(BAT) 레벨을 다른 배터리의 출력 전압(BAT) 레벨로 나눈 값일 수도 있다.In one embodiment, the battery comparison signal CMP senses an output voltage BAT level of a battery included in each of the first to nth battery parts 141a, 141b,..., 141n, and compares them with each other. Can be generated. In another embodiment, the battery comparison signal CMP may include battery information having the highest output voltage level among the batteries included in the first to n th battery parts 141a, 141b,..., 141n and / or the first to n th battery parts. Information on an output voltage level ratio between the batteries included in the nth battery units 141a, 141b,..., 141n may be included. For example, the battery comparison signal CMP may set the output voltage BAT level of the battery included in the first to nth battery parts 141a, 141b,..., 141n to the first to nth battery parts 141a. , 141b,..., And 141n may be divided by the sum of output battery (BAT) levels of the battery. In addition, when the battery bank 141 includes only two battery units, the battery comparison signal CMP may be a value obtained by dividing the output voltage BAT level of one battery by the output voltage BAT level of another battery. .
전원 제어부(145)는 제어 회로(150)로부터 제1 제어 신호(CONB)를 수신하고, 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)로부터 각각 배터리 확인 신호(BAT_IN), 배터리 방전 신호(Q_BAT)를 수신하며, 배터리 비교부(143)로부터 배터리 비교 신호(CMP)를 수신함으로써, 배터리 제어 신호(BAT_CON) 및 배터리 잔량 표시 신호(BCIS)를 생성할 수 있다.The power control unit 145 receives the first control signal CONB from the control circuit 150 and receives the battery confirmation signal BAT_IN from the first to nth battery units 141a, 141b,..., 141n, respectively. By receiving the battery discharge signal Q_BAT and receiving the battery comparison signal CMP from the battery comparator 143, the battery control signal BAT_CON and the battery remaining amount display signal BCIS may be generated.
배터리 제어 신호(BAT_CON)는 배터리 뱅크(141)에 포함된 복수의 배터리들 중에서 전원 공급 배터리를 선택하는 기준을 나타낼 수 있다. 예를 들어, 상기 전원 공급 배터리를 선택하는 기준은, 복수의 배터리들 중에서 출력 전압 레벨이 가장 높은 배터리를 전원 공급 배터리로 선택하여 배터리 사용 시간을 최대화하고 출력 전압이 낮은 배터리들을 충전할 시간을 확보하도록 하는 방식, 또는 출력 전압 레벨이 가장 낮은 배터리를 전원 공급 배터리로 선택하고 이를 먼저 방전시킴으로써 충전을 필요로 하는 배터리들을 선별해내고 충전하도록 하는 방식 등을 포함할 수 있다. 이러한 전원 공급 배터리의 선택 기준은 구동모터(180) 및 전원소비 수단들(190)에 요구되는 조건에 따라 다양하게 설정될 수 있다. 배터리 잔량 표시 신호(BCIS)는 제어 회로(150)에 제공되며, 제어 회로(150)는 배터리 잔량 표시 신호(BCIS)에 기초하여 전원소비 수단들(190)의 동작을 제어할 수 있다.The battery control signal BAT_CON may represent a criterion for selecting a power supply battery among a plurality of batteries included in the battery bank 141. For example, the criterion for selecting the power supply battery is to select a battery having the highest output voltage level among the plurality of batteries as the power supply battery to maximize battery usage time and to secure time for charging the low output voltage batteries. Or a method of selecting a battery having the lowest output voltage level as a power supply battery and discharging it first to select and charge batteries that need to be charged. The selection criteria of the power supply battery may be variously set according to the conditions required for the driving motor 180 and the power consumption means 190. The battery remaining amount indication signal BCIS is provided to the control circuit 150, and the control circuit 150 may control the operation of the power consumption means 190 based on the battery remaining amount indication signal BCIS.
전원 출력부(147)는 배터리 제어 신호(BAT_CON)에 기초하여 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 포함된 배터리들 중에서 하나를 전원 공급 배터리로 선택하고, 전원 공급 배터리의 출력 전압(BAT)을 구동 전원(POWER_BAT)으로서 공급할 수 있다. 일 실시예에서, 전원 출력부(147)는 배터리 뱅크(141)의 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 각각 연결되는 스위치들로 구성될 수 있으며, 배터리 제어 신호(BAT_CON)에 응답하여 전원 공급 배터리를 포함하고 있는 배터리부에 연결된 스위치를 턴온시키고, 다른 배터리부(즉, 전원 비공급 배터리)들에 연결된 스위치들을 턴오프시킬 수 있다. 복수의 배터리들 중에서 하나의 배터리가 구동모터(180) 및 전원소비 수단들(190)의 구동에 필요한 구동 전원(POWER_BAT)을 공급하는 경우, 다른 배터리들은 배터리 충전부(149)를 통해서 충전될 수 있다.The power output unit 147 selects one of the batteries included in the first to nth battery units 141a, 141b,..., 141n as a power supply battery based on the battery control signal BAT_CON. The output voltage BAT of the supply battery can be supplied as the driving power supply POWER_BAT. In one embodiment, the power output unit 147 may be composed of switches connected to the first to nth battery units 141a, 141b,..., 141n of the battery bank 141, respectively. In response to the signal BAT_CON, the switch connected to the battery unit including the power supply battery may be turned on, and the switches connected to other battery units (that is, the non-powered battery) may be turned off. When one battery among the plurality of batteries supplies the driving power POWER_BAT for driving the driving motor 180 and the power consumption means 190, the other batteries may be charged through the battery charging unit 149. .
배터리 충전부(149)는 복수의 배터리 충전 전압들(BCV)에 기초하여 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 포함된 배터리들 중에서 전원 공급 배터리로 선택되지 않은 전원 비공급 배터리를 충전할 수 있다. 배터리 충전부(149)는 전원 비공급 배터리의 출력 전압(VB) 및 출력 전류(IB)에 기초하여 전원 비공급 배터리를 충전하기 위한 충전 전류(CI)를 발생할 수 있다. 일 실시예에서, 배터리 충전부(149)는 배터리 뱅크(141)에 포함되는 모든 배터리의 과충전을 방지하고 균일하게 충전시킬 수 있도록 각각의 배터리들을 밸런싱하는 전원 분리형 전압 및 전류 검출기의 형태로 구현될 수 있다. 다른 실시예에서, 배터리 충전부(149)는 외부에서 공급되는 직류 전원을 이용하여 전원 비공급 배터리를 충전하는 4단자 충전 모듈을 더 포함할 수 있다.The battery charger 149 is a power source that is not selected as a power supply battery among the batteries included in the first to nth battery units 141a, 141b,..., 141n based on the plurality of battery charge voltages BCV. Can charge non-supply batteries. The battery charger 149 may generate a charging current CI for charging the non-powered battery based on the output voltage VB and the output current IB of the non-powered battery. In one embodiment, the battery charger 149 may be implemented in the form of a separate power supply voltage and current detector for balancing the respective batteries so as to prevent overcharging and uniformly charge all the batteries included in the battery bank 141. have. In another embodiment, the battery charger 149 may further include a four-terminal charging module that charges a non-powered battery by using an externally supplied DC power.
상술한 바와 같이, 다채널 전원공급장치(140)는 복수의 배터리들에 기초하여 동작하며, 복수의 배터리들이 번갈아 가면서 구동 전원(POWER_BAT)을 공급하게 함으로써, 배터리 방전에 의한 전원 부족으로 구동모터(180) 및 전원소비 수단들(190)이 동작하지 않는 문제점을 해결할 수 있다.As described above, the multi-channel power supply 140 operates based on a plurality of batteries, and supplies a driving power (POWER_BAT) by alternately supplying the plurality of batteries, thereby driving the driving motor due to a lack of power due to battery discharge. 180 and the power consumption means 190 may not solve the problem.
도 6은 도 5의 다채널 전원공급장치에 포함되는 배터리부의 일 예를 나타내는 블록도이다.6 is a block diagram illustrating an example of a battery unit included in the multi-channel power supply of FIG. 5.
도 6을 참조하면, 배터리부는 배터리(1411), 방전 감지부(1413) 및 배터리 확인부(1415)를 포함할 수 있다.Referring to FIG. 6, the battery unit may include a battery 1411, a discharge detector 1413, and a battery check unit 1415.
배터리(1411)는 충전이 가능한 임의의 전압 제공 장치일 수 있으며, 탈착이 가능하여 배터리 확인부(1415)에 의해 탈착 상태가 확인될 수 있다. 배터리(1411)의 탈착 상태는 배터리(1411)의 출력 전압(BAT) 레벨에 기초하여 감지될 수 있다. 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 포함되는 배터리(1411)들의 충전 동작은 개별적으로 제어될 수 있으며, 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 포함되는 배터리(1411)들은 동시에 충전되거나, 출력 전압(BAT) 레벨에 기초하여 순차적으로 충전될 수 있다.The battery 1411 may be any voltage providing device capable of charging, and the battery 1411 may be detachable, and thus the detachable state may be confirmed by the battery checker 1415. The detached state of the battery 1411 may be sensed based on the output voltage BAT level of the battery 1411. The charging operation of the batteries 1411 included in the first to nth battery parts 141a, 141b,..., 141n may be individually controlled, and the first to nth battery parts 141a, 141b,... The batteries 1411 included in 141n may be simultaneously charged or sequentially charged based on the output voltage BAT level.
한편, 배터리(1411)는 4단자 망을 가지는 4단자 충전 모듈(미도시)에 의하여 충전될 수도 있다. 4단자 충전 모듈은 4단자 망을 통하여 배터리(1411)에 제공되는 입력 전압, 입력 전류, 출력 전압 및 출력 전류를 측정하여 배터리(1411)의 현재 출력 전압 및 출력 전류에 기초하여 열 발생을 제어하고 충전 정도를 확인할 수 있다.Meanwhile, the battery 1411 may be charged by a four terminal charging module (not shown) having a four terminal network. The four-terminal charging module measures the input voltage, input current, output voltage and output current provided to the battery 1411 through the four-terminal network to control heat generation based on the current output voltage and output current of the battery 1411. You can check the charge level.
방전 감지부(1413)는 배터리(1411)의 출력 전압(BAT) 레벨을 감지하여 배터리 방전 신호(Q_BAT)를 생성할 수 있다. 방전 감지부(1413)는 배터리(1411)의 전원이 구동모터(180) 및/또는 전원소비 수단들(190)에 제공됨에 따라 배터리(1411)의 출력 전압(BAT) 레벨이 변경될 때, 배터리(1411)의 출력 전압(BAT) 레벨이 기 설정된 방전 전압 레벨보다 낮아진 경우, 배터리 방전 신호(Q_BAT)를 활성화시킬 수 있다. 반면에, 방전 감지부(1413)는 배터리(1411)의 전원이 구동모터(180) 및/또는 전원소비 수단들(190)에 제공됨에 따라 배터리(1411)의 출력 전압(BAT) 레벨이 변경되더라도, 배터리(1411)의 출력 전압(BAT) 레벨이 기 설정된 방전 전압 레벨보다 높은 경우, 배터리 방전 신호(Q_BAT)를 비활성화시킬 수 있다. The discharge detector 1413 may generate the battery discharge signal Q_BAT by sensing the output voltage BAT level of the battery 1411. When the output voltage BAT level of the battery 1411 is changed as the power of the battery 1411 is provided to the driving motor 180 and / or the power consumption means 190, the discharge detector 1413 When the output voltage BAT level of 1411 is lower than the preset discharge voltage level, the battery discharge signal Q_BAT may be activated. On the other hand, the discharge detector 1413 may change the output voltage BAT level of the battery 1411 as the power of the battery 1411 is provided to the driving motor 180 and / or the power consumption means 190. When the output voltage BAT level of the battery 1411 is higher than the preset discharge voltage level, the battery discharge signal Q_BAT may be deactivated.
일 실시예에서, 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 포함되는 배터리(1411)들 사이의 전원 공급 배터리의 변경은 배터리 방전 신호(Q_BAT)의 활성화 구간에서 이루어질 수 있다. 일 실시예에서, 기 설정된 방전 전압 레벨은 약 4.2V 정도일 수 있다. 이와 같이, 방전 감지부(1413)는 배터리 방전 신호(Q_BAT)가 활성화되면, 배터리(1411)가 구동모터(180) 및/또는 전원소비 수단들(190)을 구동할 수 없을 정도로 방전된 것으로 판단한다. 이후, 전원 제어부(145)는 배터리(1411)가 완전 방전되어 구동모터(180) 및/또는 전원소비 수단들(190)의 동작이 멈추는 것을 방지하기 위하여, 전원 공급 배터리가 변경되도록 전원 출력부(147)를 제어할 수 있다.In one embodiment, the change of the power supply battery between the batteries 1411 included in the first to nth battery parts 141a, 141b,..., 141n is performed in an activation period of the battery discharge signal Q_BAT. Can be. In one embodiment, the preset discharge voltage level may be about 4.2V. As such, when the battery discharge signal Q_BAT is activated, the discharge detector 1413 determines that the battery 1411 is discharged to such an extent that it cannot drive the driving motor 180 and / or the power consumption means 190. do. Thereafter, the power control unit 145 is configured to change the power supply battery so that the battery 1411 is completely discharged and the operation of the driving motor 180 and / or the power consumption means 190 is stopped. 147).
일 실시예에서, 배터리 방전 신호(Q_BAT)는 제1 배터리 방전 신호(Q_BAT_1) 및 제 2 배터리 방전 신호(Q_BAT_2)를 포함할 수 있다. 즉, 본 발명은 방전 판단을 위한 상이한 방전 전압 레벨을 갖는 기준 전압들에 기초하여 배터리(1411)의 출력 전압(BAT) 레벨을 감지할 수 있다. 예를 들어, 방전 감지부(1413)는 배터리(1411)의 출력 전압(BAT) 레벨을 기 설정된 제1 방전 전압 레벨과 비교하여 제1 배터리 방전 신호(Q_BAT_1)를 생성하고, 배터리(1411)의 출력 전압(BAT) 레벨을 기 설정된 제1 방전 전압 레벨보다 낮은 제2 방전 전압 레벨과 비교하여 제2 배터리 방전 신호(Q_BAT_2)를 생성할 수 있다.In one embodiment, the battery discharge signal Q_BAT may include a first battery discharge signal Q_BAT_1 and a second battery discharge signal Q_BAT_2. That is, the present invention can detect the output voltage BAT level of the battery 1411 based on reference voltages having different discharge voltage levels for the discharge determination. For example, the discharge detector 1413 generates the first battery discharge signal Q_BAT_1 by comparing the output voltage BAT level of the battery 1411 with a preset first discharge voltage level, and generates the first battery discharge signal Q_BAT_1. The second battery discharge signal Q_BAT_2 may be generated by comparing the output voltage BAT level with a second discharge voltage level lower than the preset first discharge voltage level.
방전 감지부(1413)는 배터리(1411)의 출력 전압(BAT) 레벨이 제1 방전 전압 레벨보다 낮은 경우에 제1 배터리 방전 신호(Q_BAT_1)를 활성화시키고, 배터리(1411)의 출력 전압(BAT) 레벨이 제1 방전 전압 레벨보다 높은 경우에 제1 배터리 방전 신호(Q_BAT_1)를 비활성화시킬 수 있다. 또한, 방전 감지부(1413)는 배터리(1411)의 출력 전압(BAT) 레벨이 제2 방전 전압 레벨보다 낮은 경우에 제2 배터리 방전 신호(Q_BAT_2)를 활성화시키고, 배터리(1411)의 출력 전압(BAT) 레벨이 제2 방전 전압 레벨보다 높은 경우에 제2 배터리 방전 신호(Q_BAT_2)를 비활성화시킬 수 있다.The discharge detector 1413 activates the first battery discharge signal Q_BAT_1 when the output voltage BAT level of the battery 1411 is lower than the first discharge voltage level, and output voltage BAT of the battery 1411. When the level is higher than the first discharge voltage level, the first battery discharge signal Q_BAT_1 may be deactivated. In addition, the discharge detector 1413 activates the second battery discharge signal Q_BAT_2 when the output voltage BAT level of the battery 1411 is lower than the second discharge voltage level, and outputs the output voltage of the battery 1411. When the BAT) level is higher than the second discharge voltage level, the second battery discharge signal Q_BAT_2 may be deactivated.
이와 같이, 배터리(1411)의 전원이 구동모터(180) 및/또는 전원소비 수단들(190)에 제공되어 배터리(1411)의 출력 전압(BAT) 레벨이 낮아짐에 따라, 제1 배터리 방전 신호(Q_BAT_1)가 먼저 활성화된 이후, 제2 배터리 방전 신호(Q_BAT_2)가 활성화된다. 이 때, 제1 내지 제n 배터리부들(141a, 141b, ..., 141n)에 포함되는 배터리(1411)들 사이의 전원 공급 배터리의 변경은 제1 배터리 방전 신호(Q_BAT_1)의 활성화 구간과 제2 배터리 방전 신호(Q_BAT_2)의 비활성화 구간이 겹쳐지는 오버랩 구간에서 이루어질 수 있다. 이와 같이, 전원 공급 배터리가 완전 방전되기 이전에, 전원 공급 배터리를 다른 배터리로 변경하도록 함으로써 구동모터(180) 및/또는 전원소비 수단들(190)의 동작이 중지되지 않도록 할 수 있다.As such, the power of the battery 1411 is provided to the driving motor 180 and / or the power consumption means 190 so that the output voltage BAT level of the battery 1411 is lowered. After Q_BAT_1 is activated first, the second battery discharge signal Q_BAT_2 is activated. In this case, the change of the power supply battery between the batteries 1411 included in the first to nth battery units 141a, 141b,..., 141n may be performed by the activation period of the first battery discharge signal Q_BAT_1 and the first period. The deactivation period of the battery discharge signal Q_BAT_2 may be overlapped. As such, before the power supply battery is completely discharged, the operation of the driving motor 180 and / or the power consumption means 190 may be stopped by changing the power supply battery to another battery.
상술한 바와 같이, 오버랩 구간에서 전원 공급 배터리를 변경하여 전자 기기에 전원(POWER_BAT)을 계속적으로 공급함으로써, 전원 공급 배터리의 변경 시에 채터링(chattering)이 발생하는 것을 방지할 수 있다. 따라서, 다채널 전원공급장치(140)는 안정적인 전원(POWER_BAT)을 계속적으로 공급할 수 있다.As described above, by changing the power supply battery in the overlap period and continuously supplying the power (POWER_BAT) to the electronic device, it is possible to prevent chattering from occurring when the power supply battery is changed. Therefore, the multi-channel power supply 140 may continuously supply a stable power (POWER_BAT).
배터리 확인부(1415)는 배터리(1411)가 현재 제1 내지 제n 배터리부들(141a, 141b, ..., 141n) 각각에 장착되어 있는지 여부를 확인하여 배터리 확인 신호(BAT_IN)를 발생할 수 있다. 또한, 배터리 확인부(1415)는 배터리(1411)가 분리되었다가 다시 장착되는 경우, 배터리 방전 감지 초기화 신호(RST)를 활성화시킴으로써 방전 감지부(1413)를 초기화할 수 있다. 배터리 방전 감지 초기화 신호(RST)에 기초하여 방전 감지부(1413)가 초기화되면, 종전 배터리 방전 신호(Q_BAT)는 논리 상태 '로우'가 되는 등으로 초기화될 수 있다.The battery checker 1415 may generate a battery check signal BAT_IN by checking whether the battery 1411 is currently mounted in each of the first to nth battery parts 141a, 141b,..., 141n. . In addition, the battery check unit 1415 may initialize the discharge detector 1413 by activating the battery discharge detection initialization signal RST when the battery 1411 is detached and remounted. When the discharge detector 1413 is initialized based on the battery discharge detection initialization signal RST, the previous battery discharge signal Q_BAT may be initialized to a logic state 'low'.
일 실시예에서, 방전 감지부(1413)는 복수의 비교기들, 복수의 저항들 및 플립플롭을 포함하여 구현될 수 있다. 배터리 확인부(1415)는 비교기, 복수의 저항들 및 커패시터를 포함하여 구현될 수 있다.In an embodiment, the discharge detector 1413 may include a plurality of comparators, a plurality of resistors, and a flip-flop. The battery checker 1415 may include a comparator, a plurality of resistors, and a capacitor.
도 7은 도 5의 다채널 전원공급장치에 포함되는 배터리 충전부의 일 예를 나타내는 블록도이다.FIG. 7 is a block diagram illustrating an example of a battery charger included in the multichannel power supply of FIG. 5.
도 7을 참조하면, 배터리 충전부(149)는 전원 분리형 전압 및 전류 검출기의 형태로 구현될 수 있으며, 전압 검출부(1491), 전류 검출부(1493), 충전 제어부(1495) 및 충전 전류 발생부(1497)를 포함할 수 있다.Referring to FIG. 7, the battery charger 149 may be implemented in the form of a separate power voltage and current detector, and includes a voltage detector 1491, a current detector 1493, a charge controller 1495, and a charge current generator 1497. ) May be included.
전압 검출부(1491)는 배터리들의 전압(VB)을 검출하여 전압 검출 결과 신호(VS)를 각각 출력할 수 있다. 전압 검출 결과 신호(VS)는 충전 제어부(1495)가 충전 전류(CI)를 제어하기 위해 출력하는 펄스 폭 변조(Pulse Width Modulation; PWM) 신호(PS)를 발생하는 데 사용될 수 있다. 전압 검출부(1491)는 배터리들의 전압(VB)을 기준 전압과 비교하여 그 차이에 상응하는 전압 검출 결과 신호(VS)를 각각 출력할 수 있다. 전류 검출 결과 신호(IS)와 함께 상기 전압 검출 결과 신호(VS)의 크기에 기초하여 충전 전류(CI)의 듀티비(duty ratio)가 결정될 수 있다. The voltage detector 1491 may detect the voltage VB of the batteries and output the voltage detection result signal VS, respectively. The voltage detection result signal VS may be used to generate a pulse width modulation (PWM) signal PS output by the charging controller 1495 to control the charging current CI. The voltage detector 1491 may compare the voltage VB of the batteries with a reference voltage and output a voltage detection result signal VS corresponding to the difference. The duty ratio of the charging current CI may be determined based on the magnitude of the voltage detection result signal VS together with the current detection result signal IS.
일 실시예에서, 전압 검출부(1491)는 비교기, 복수의 저항들 및 커패시터를 포함하여 구현될 수 있으며, 포토 커플러를 통해 전압 검출 결과 신호(VS)를 충전 제어부(1495)로 출력할 수 있다. 포토 커플러를 통해 전압 검출 결과 신호(VS)를 출력하는 경우에, 전압 검출부(1491) 및 충전 제어부(1495)가 전기적으로 절연된 상태에서 동작하므로 장치의 손상 및 오작동을 방지할 수 있다.In an embodiment, the voltage detector 1491 may include a comparator, a plurality of resistors, and a capacitor, and may output the voltage detection result signal VS to the charge controller 1495 through a photo coupler. When the voltage detection result signal VS is output through the photo coupler, the voltage detection unit 1491 and the charging control unit 1495 operate in an electrically insulated state, thereby preventing damage and malfunction of the device.
전류 검출부(1493)는 배터리들의 전류(IB)를 검출하여 전류 검출 결과 신호(IS)를 각각 출력할 수 있다. 전류 검출 결과 신호(IS)는 충전 제어부(1495)가 충전 전류(CI)를 제어하기 위해 출력하는 PWM 신호(PS)를 발생하는 데 사용될 수 있다. 전류 검출부(1493)는 배터리들의 전류(IB)를 기준 전류와 비교하여 그 차이에 상응하는 전류 검출 결과 신호(IS)를 각각 출력할 수 있다. 예를 들어, 전류 검출부(1493)는 배터리들의 전류(IB)를 검출하기 위해 배터리들의 전류(IB)를 전압의 형태인 변환 전압으로 바꿀 수 있다. 그리고 비교기를 통해 상기 변환 전압을 기준 전류에 상응하는 기준 전류 전압과 비교하여 그 차이에 기초하여 전류 검출 결과 신호(IS)를 출력할 수 있다. 전압 검출 결과 신호(VS)와 함께 상기 전류 검출 결과 신호(IS)의 크기에 기초하여 충전 전류(CI)의 듀티비가 결정될 수 있다.The current detector 1493 may detect the current IB of the batteries and output the current detection result signal IS, respectively. The current detection result signal IS may be used to generate a PWM signal PS output by the charging control unit 1495 to control the charging current CI. The current detector 1493 may compare the current IB of the batteries with a reference current and output the current detection result signal IS corresponding to the difference. For example, the current detector 1493 may change the current IB of the batteries into a converted voltage in the form of a voltage in order to detect the current IB of the batteries. The comparator may compare the converted voltage with a reference current voltage corresponding to the reference current, and output the current detection result signal IS based on the difference. The duty ratio of the charging current CI may be determined based on the magnitude of the current detection result signal IS together with the voltage detection result signal VS.
일 실시예에서, 전류 검출부(1493)는 복수의 비교기들, 복수의 저항들 및 복수의 커패시터들을 포함하여 구현될 수 있으며, 포토 커플러를 통해 전류 검출 결과 신호(IS)를 충전 제어부(1495)로 출력할 수 있다. 포토 커플러를 통해 전류 검출 결과 신호(IS)를 출력하면 전류 검출부(1493) 및 충전 제어부(1495)가 전기적으로 절연된 상태에서 동작하며, 특히 다채널 전원공급장치(140) 내에서 다채널로 배열된 배터리들의 접지와 충전 제어부(1495)의 접지가 절연된 상태에서 동작하므로 장치의 손상 및 오작동을 방지할 수 있다.In an embodiment, the current detector 1493 may be implemented by including a plurality of comparators, a plurality of resistors, and a plurality of capacitors, and the current detection result signal IS is transferred to the charging controller 1495 through a photo coupler. You can print When the current detection result signal IS is output through the photocoupler, the current detector 1493 and the charge controller 1495 operate in an electrically insulated state, and are arranged in a multi-channel in the multi-channel power supply 140. Since the grounds of the batteries and the ground of the charging control unit 1495 are insulated from each other, damage and malfunction of the device may be prevented.
충전 제어부(1495)는 전압 검출 결과 신호(VS) 및 전류 검출 결과 신호(IS)에 기초하여 충전 전류(CI)를 제어하기 위한 PWM 신호(PS)를 출력할 수 있다. 충전 전류(CI)가 PWM 형태로 출력되는 경우, 충전 제어부(1495)는 전압 검출 결과 신호(VS) 및 전류 검출 결과 신호(IS)에 기초하여 충전 전류(CI)의 듀티비를 조절할 수 있다. 이를 위해, 충전 제어부(1495)는 충전 전류 발생부(1497)로 출력되는 PWM 신호(PS)의 듀티비를 조절할 수 있다. 이에 따라, 충전 전류 발생부(1497)는 충전 제어부(1495)로부터 입력되는 PWM 신호(PS)의 듀티비와 동일한 듀티비를 갖는 충전 전류(CI)를 출력할 수 있으며, 충전 제어부(1495)에서 출력되는 PWM 신호(PS)에 의해 충전 전류(CI)가 제어될 수 있다.The charging controller 1495 may output a PWM signal PS for controlling the charging current CI based on the voltage detection result signal VS and the current detection result signal IS. When the charging current CI is output in the PWM form, the charging control unit 1495 may adjust the duty ratio of the charging current CI based on the voltage detection result signal VS and the current detection result signal IS. To this end, the charging controller 1495 may adjust the duty ratio of the PWM signal PS output to the charging current generator 1497. Accordingly, the charging current generator 1497 may output the charging current CI having the same duty ratio as the duty ratio of the PWM signal PS input from the charging control unit 1495, and the charging control unit 1495 The charging current CI may be controlled by the output PWM signal PS.
충전 전류 발생부(1497)는 복수의 배터리 충전 전압들(BCV) 및 PWM 신호(PS)에 기초하여 전원 비공급 배터리에 공급되는 충전 전류(CI)를 제어할 수 있다. 충전 전류(CI)는 PWM 형태의 파형을 가질 수 있으며, 충전 전류(CI)의 레벨은 충전 전류(CI)의 듀티비를 조절함으로써 제어 가능하다. 상기 듀티비는 충전 제어부(1495)에서 조절될 수 있고, 충전 전류 발생부(1497)는 조절된 듀티비에 상응하는 전류를 증폭하여 다이오드를 통하여 출력할 수 있다. 이를 위해, 충전 전류 발생부(1497)는 적어도 하나 이상의 전류 증폭부를 포함할 수 있다. The charging current generator 1497 may control the charging current CI supplied to the non-powered battery based on the plurality of battery charging voltages BCV and the PWM signal PS. The charging current CI may have a waveform of a PWM form, and the level of the charging current CI may be controlled by adjusting the duty ratio of the charging current CI. The duty ratio may be adjusted by the charge controller 1495, and the charge current generator 1497 may amplify a current corresponding to the adjusted duty ratio and output the amplified current through the diode. To this end, the charging current generator 1497 may include at least one current amplifier.
일 실시예에서, 충전 전류 발생부(1497)는 복수의 바이폴라 접합 트랜지스터(Bipolar Junction Transistor; BJT)들, 복수의 저항들 및 복수의 커패시터들을 포함하여 구현될 수 있으며, 포토 커플러를 통해 PWM 신호(PS)를 충전 제어부(1495)로부터 입력 받을 수 있다. 포토 커플러를 통해 PWM 신호(PS)가 충전 전류 발생부(1497)로 입력되는 경우에, 충전 제어부(1495) 및 충전 전류 발생부(1497)가 전기적으로 절연된 상태에서 동작하므로 장치의 손상 및 오작동을 방지할 수 있다.In one embodiment, the charge current generator 1497 may include a plurality of Bipolar Junction Transistors (BJTs), a plurality of resistors, and a plurality of capacitors, and a PWM signal ( PS) may be input from the charging control unit 1495. When the PWM signal PS is input to the charging current generating unit 1497 through the photo coupler, the charging control unit 1495 and the charging current generating unit 1497 operate in an electrically insulated state, thereby causing damage and malfunction of the device. Can be prevented.
상술한 바와 같이, 전압 검출부(1491), 전류 검출부(1493) 및 충전 전류 발생부(1497)가 포토 커플러를 포함하여 구현됨으로써, 배터리 측의 전원과 충전 제어부(1495) 측의 전원이 포토 커플러를 통해 분리되어 안정적인 전압 및 전류 검출 및 배터리 충전을 수행할 수 있고, 직렬로 연결된 배터리들의 단자 전압 및 기준 전압을 배터리마다 다르게 설정하여 정확한 배터리 밸런싱을 수행할 수 있으며, 전압 검출 결과 신호(VB) 및 전류 검출 결과 신호(IB)를 기초로 각 배터리들의 충전을 수행하므로 더욱 신속하고 안정적으로 배터리의 충전 및 밸런싱을 수행할 수 있다.As described above, the voltage detector 1491, the current detector 1493, and the charge current generator 1497 are implemented by including a photo coupler, such that the power supply on the battery side and the power supply on the charge control unit 1495 side are connected to the photo coupler. It can be separated and stable voltage and current detection and battery charging, and by setting the terminal voltage and the reference voltage of the series-connected battery differently for each battery to perform accurate battery balancing, the voltage detection result signal (VB) and Since charging of each battery is performed based on the current detection result signal IB, charging and balancing of batteries can be performed more quickly and stably.
도 8은 본 발명의 일 실시예에 따른 전기자동차를 나타내는 도면이다.8 is a view showing an electric vehicle according to an embodiment of the present invention.
도 8을 참조하면, 전기자동차(200)는 구동모터(280), 복수의 구동륜들(201a, 201b, 202a, 202b), 복수의 알터네이터들(210a, 210b, 210c, 210d), 다채널 태양광 충전 모듈(220), 다채널 컨버터(230), 다채널 전원공급장치(240), 제어 회로(250) 및 태블릿 PC(260)를 포함한다. 전기자동차(200)는 크래들(270), 전원소비 수단들(290), 전륜축(201c), 후륜축(202c), 복수의 체인들(212a, 212b, 212c, 212d), 모터구동축(282) 및 트랜스미션(284)을 더 포함할 수 있다.Referring to FIG. 8, the electric vehicle 200 includes a driving motor 280, a plurality of driving wheels 201a, 201b, 202a, and 202b, a plurality of alternators 210a, 210b, 210c, and 210d, and multichannel solar light. The charging module 220, the multichannel converter 230, the multichannel power supply 240, the control circuit 250, and the tablet PC 260 are included. The electric vehicle 200 includes a cradle 270, power consumption means 290, a front wheel shaft 201c, a rear wheel shaft 202c, a plurality of chains 212a, 212b, 212c, 212d, and a motor driving shaft 282. And a transmission 284.
구동모터(280)는 구동 전원(POWER_BAT) 및 제2 제어 신호(COND)를 기초로 전기에너지를 운동에너지(즉, 회전에너지)로 변환하여 전기자동차(200)가 주행할 수 있도록 한다. 구동모터(280)는 모터구동축(282)을 회전시키며, 모터구동축(282)의 회전에너지는 트랜스미션(284)을 통하여 적절한 기어비에 의해 구동륜들(201a, 201b)에 제공된다. 도 8에서는 전륜구동인 경우를 도시하였으나, 실시예에 따라서 후륜구동의 경우에는 모터구동축(282)의 회전에너지가 구동륜들(202a, 202b)에 제공될 수 있고, 사륜구동의 경우에는 모터구동축(282)의 회전에너지가 구동륜들(201a, 201b, 202a, 202b)에 제공될 수 있다.The driving motor 280 converts electrical energy into kinetic energy (that is, rotational energy) based on the driving power source POWER_BAT and the second control signal COND so that the electric vehicle 200 may run. The drive motor 280 rotates the motor drive shaft 282, and the rotational energy of the motor drive shaft 282 is provided to the drive wheels 201a and 201b through the transmission 284 at an appropriate gear ratio. 8 illustrates the case of the front wheel drive, according to the embodiment, the rotation energy of the motor drive shaft 282 may be provided to the driving wheels 202a and 202b in the case of the rear wheel drive, and in the case of the four wheel drive, Rotational energy of 282 may be provided to the drive wheels 201a, 201b, 202a, and 202b.
복수의 구동륜들(201a, 201b, 202a, 202b)은 구동모터(280)의 회전 운동에 상응하여 전기자동차(200)가 주행하도록 회전한다. 복수의 구동륜들(201a, 201b, 202a, 202b)은 전륜축(201c)의 양쪽 끝에 연결되고, 전륜축(201c)의 회전 시에 회전하여 지면과의 마찰력에 의해 전기자동차(200)를 주행하도록 하는 전륜(201a, 201b) 및 후륜축(202c)의 양쪽 끝에 연결되는 후륜(202a, 202b)을 포함할 수 있다.The plurality of driving wheels 201a, 201b, 202a, and 202b rotate to drive the electric vehicle 200 in correspondence with the rotational movement of the driving motor 280. The plurality of driving wheels 201a, 201b, 202a, and 202b are connected to both ends of the front wheel shaft 201c, and rotated when the front wheel shaft 201c rotates to drive the electric vehicle 200 by friction with the ground. The rear wheels 201a and 201b and rear wheels 202c may include rear wheels 202a and 202b connected to both ends.
복수의 알터네이터들(210a, 210b, 210c, 210d)은 복수의 구동륜들(201a, 201b, 202a, 202b)에 부착되며, 복수의 구동륜들(201a, 201b, 202a, 202b)의 회전에너지에 상응하는 복수의 제1 발전 전압들(ALTV)을 발생한다. 복수의 알터네이터들(210a, 210b, 210c, 210d)은 복수의 체인들(212a, 212b, 212c, 212d) 중 하나를 통하여 전륜축(201c) 또는 후륜축(202c)과 연결되며, 회전에너지를 공급받을 수 있다. 예를 들어, 제1 알터네이터(210a)는 제1 체인(212a)을 통하여 전륜축(201c)과 연결되고, 제1 체인(212a)을 통하여 전륜(201a, 201b)의 회전에너지를 공급받으며, 전륜(201a, 201b)의 회전에너지에 상응하는 발전 전압을 발생할 수 있다.The plurality of alternators 210a, 210b, 210c, and 210d are attached to the plurality of drive wheels 201a, 201b, 202a, and 202b, and correspond to the rotational energy of the plurality of drive wheels 201a, 201b, 202a, and 202b. A plurality of first generation voltages ALTV is generated. The plurality of alternators 210a, 210b, 210c, and 210d are connected to the front wheel shaft 201c or the rear wheel shaft 202c through one of the plurality of chains 212a, 212b, 212c, and 212d, and supply rotational energy. I can receive it. For example, the first alternator 210a is connected to the front wheel shaft 201c through the first chain 212a, receives rotational energy of the front wheels 201a and 201b through the first chain 212a, and front wheels. A generation voltage corresponding to the rotational energy of 201a and 201b may be generated.
다채널 태양광 충전 모듈(220)은 전기자동차(200)에 입사되는 태양광을 기초로 광전 변환을 수행하여 복수의 제2 발전 전압들(SUNV)을 발생한다. 다채널 컨버터(230)는 복수의 제1 발전 전압들(ALTV) 및 복수의 제2 발전 전압들(SUNV)을 변환하여 복수의 배터리 충전 전압들(BCV)을 발생한다. 다채널 전원공급장치(240)는 제1 제어 신호(CONB)에 기초하여 동작하고, 복수의 배터리 충전 전압들(BCV)에 기초하여 충전되고, 구동모터(280) 및 전원소비 수단들(290)에 구동 전원(POWER_BAT)을 제공하며, 배터리의 잔존 용량을 나타내는 배터리 잔량 표시 신호(BCIS)를 발생한다.The multichannel solar charging module 220 generates a plurality of second generation voltages SUNV by performing photoelectric conversion based on sunlight incident on the electric vehicle 200. The multi-channel converter 230 converts the plurality of first generation voltages ALTV and the plurality of second generation voltages SUNV to generate the plurality of battery charging voltages BCV. The multi-channel power supply 240 operates based on the first control signal CONB, is charged based on the plurality of battery charging voltages BCV, the driving motor 280 and the power consumption means 290. A driving power supply (POWER_BAT) is provided to the battery, and a battery remaining indication signal BCIS indicating a remaining capacity of the battery is generated.
제어 회로(250)는 배터리 잔량 표시 신호(BCIS)와 배터리 기준 신호를 비교하여, 상기 배터리의 잔존 용량이 미리 정해진 기준값보다 큰 경우에 전원소비 수단들(290)을 정상 동작시키고 상기 배터리의 잔존 용량이 상기 미리 정해진 기준값보다 작은 경우에 전원소비 수단들(290) 중 적어도 하나의 동작을 중지시킨다. 전원소비 수단들(290)은 제3 제어 신호(CONP)에 기초하여 동작하고 구동모터(280) 이외에 전원을 소비하는 모든 장치들일 수 있다. 태블릿 PC(260)는 제어 회로(250)와 연결되고, 운전자가 제어 회로(250)의 동작을 제어하기 위한 인터페이스를 제공하며, 전기자동차(200)에 탈부착이 가능하다. 크래들(270)은 태블릿 PC(260)가 장착되며, 태블릿 PC(160)와 제어 회로(150)를 전기적으로 연결시킨다.The control circuit 250 compares the battery remaining amount indication signal BCIS with the battery reference signal to operate the power consumption means 290 normally when the remaining capacity of the battery is larger than a predetermined reference value and the remaining capacity of the battery. When the value is smaller than the predetermined reference value, the operation of at least one of the power consumption means 290 is stopped. The power consumption means 290 may be all devices that operate based on the third control signal CONP and consume power in addition to the driving motor 280. The tablet PC 260 is connected to the control circuit 250, provides an interface for the driver to control the operation of the control circuit 250, and is detachable to the electric vehicle 200. The cradle 270 is equipped with a tablet PC 260, and electrically connects the tablet PC 160 and the control circuit 150.
복수의 알터네이터들(210a, 210b, 210c, 210d), 다채널 태양광 충전 모듈(220), 다채널 컨버터(230), 다채널 전원공급장치(240), 제어 회로(250), 태블릿 PC(260), 크래들(270), 구동모터(280) 및 전원소비 수단들(290)은 각각 도 1의 알터네이터(110), 다채널 태양광 충전 모듈(120), 다채널 컨버터(130), 다채널 전원공급장치(140), 제어 회로(150), 태블릿 PC(160), 크래들(170), 구동모터(180) 및 전원소비 수단들(190)과 실질적으로 동일할 수 있다.A plurality of alternators 210a, 210b, 210c, 210d, multichannel solar charging module 220, multichannel converter 230, multichannel power supply 240, control circuit 250, tablet PC 260 ), Cradle 270, drive motor 280 and power consumption means 290 are respectively alternator 110, multichannel solar charging module 120, multichannel converter 130, multichannel power supply of FIG. 1. The supply device 140, the control circuit 150, the tablet PC 160, the cradle 170, the driving motor 180 and the power consumption means 190 may be substantially the same.
도 8에서는 네 개의 구동륜들(201a, 201b, 202a, 202b)을 포함하는 사륜 전기자동차(200)가 도시되었으나, 본 발명의 실시예들에 따른 전기자동차는 임의의 개수의 구동륜을 가질 수 있으며, 버스, 트럭, 승합차, 승용차, SUV 등과 같은 다양한 종류의 차량 중 하나일 수 있다.In FIG. 8, a four-wheeled electric vehicle 200 including four driving wheels 201a, 201b, 202a, and 202b is illustrated, but the electric vehicle according to the embodiments of the present invention may have any number of driving wheels. It may be one of various kinds of vehicles such as buses, trucks, vans, passenger cars, SUVs, and the like.
본 발명의 실시예들에 따른 전기자동차의 전원관리 시스템은 전기자동차에 적용되어 효율적인 전원관리를 수행할 수 있으며, 운전자의 편리성 및 운행의 안전성을 향상시킬 수 있다.The power management system of an electric vehicle according to embodiments of the present invention may be applied to an electric vehicle to perform efficient power management, and may improve driver convenience and driving safety.
상기에서는 본 발명이 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 것이다.Although the invention has been described above with reference to preferred embodiments, those skilled in the art will be able to variously modify and change the invention without departing from the spirit and scope of the invention as set forth in the claims below. I will understand.

Claims (8)

  1. 전기자동차의 전원을 관리하는 전원관리 시스템으로서,As a power management system that manages the power of electric vehicles,
    상기 전기자동차의 구동륜에 상응하도록 구비되고, 상기 구동륜의 회전에너지에 상응하는 복수의 제1 발전 전압들을 발생하는 알터네이터(alternator);An alternator provided to correspond to the driving wheels of the electric vehicle and generating a plurality of first generation voltages corresponding to the rotational energy of the driving wheels;
    상기 전기자동차에 입사되는 태양광을 기초로 광전 변환을 수행하여 복수의 제2 발전 전압들을 발생하는 다채널 태양광 충전 모듈;A multi-channel solar charging module configured to generate a plurality of second power generation voltages by performing photoelectric conversion based on sunlight incident on the electric vehicle;
    상기 복수의 제1 발전 전압들 및 상기 복수의 제2 발전 전압들을 변환하여 복수의 배터리 충전 전압들을 발생하는 다채널 컨버터;A multi-channel converter configured to convert the plurality of first generation voltages and the plurality of second generation voltages to generate a plurality of battery charging voltages;
    상기 복수의 배터리 충전 전압들에 기초하여 충전되고, 상기 전기자동차에 포함되는 구동모터 및 전원소비 수단들에 구동 전원을 공급하며, 배터리의 잔존 용량을 나타내는 배터리 잔량 표시 신호를 발생하는 다채널 전원공급장치;Multi-channel power supply that is charged based on the plurality of battery charging voltages, supplies driving power to drive motors and power consumption means included in the electric vehicle, and generates a remaining battery indication signal indicating a remaining capacity of the battery. Device;
    상기 배터리 잔량 표시 신호와 배터리 기준 신호를 비교하여, 상기 배터리의 잔존 용량이 미리 정해진 기준값보다 큰 경우에 상기 전원소비 수단들을 정상 동작시키고 상기 배터리의 잔존 용량이 상기 미리 정해진 기준값보다 작은 경우에 상기 전원소비 수단들 중 적어도 하나의 구동을 중지시키는 제어 회로; 및The battery remaining power indication signal and the battery reference signal are compared to operate the power consumption means when the remaining capacity of the battery is greater than a predetermined reference value and the power supply when the remaining capacity of the battery is smaller than the predetermined reference value. A control circuit for stopping driving of at least one of the consuming means; And
    상기 제어 회로와 연결되고, 사용자가 상기 제어 회로의 동작을 제어하기 위한 인터페이스를 제공하며, 상기 전기자동차에 탈부착이 가능한 태블릿 PC(personal computer)를 포함하는 전기자동차의 전원관리 시스템.And a tablet PC (personal computer) connected to the control circuit and providing an interface for a user to control the operation of the control circuit and detachable to the electric vehicle.
  2. 제 1 항에 있어서, 상기 태블릿 PC가 장착되는 크래들(cradle)을 더 포함하고, 상기 크래들은,The cradle of claim 1, further comprising a cradle on which the tablet PC is mounted.
    상기 태블릿 PC가 장착되도록 요입된 거치부;A cradle recessed to mount the tablet PC;
    상기 태블릿 PC의 배터리 단자와 접촉하여 상기 태블릿 PC에 상기 구동 전원을 공급하도록 상기 거치부에 돌출 형성된 충전단자; 및A charging terminal protruding from the mounting portion to contact the battery terminal of the tablet PC to supply the driving power to the tablet PC; And
    상기 태블릿 PC와 상기 제어 회로를 전기적으로 연결시키는 통신 케이블을 포함하는 것을 특징으로 하는 전기자동차의 전원관리 시스템.And a communication cable electrically connecting the tablet PC and the control circuit.
  3. 제 1 항에 있어서, 상기 다채널 컨버터는 상기 복수의 제1 발전 전압들 중 하나 및 상기 복수의 제2 발전 전압들 중 하나를 변환하여 상기 복수의 배터리 충전 전압들 중 하나를 발생하는 복수의 DC 변환부들을 포함하고, 상기 복수의 DC 변환부들 각각은,The plurality of DCs of claim 1, wherein the multi-channel converter converts one of the plurality of first generation voltages and one of the plurality of second generation voltages to generate one of the plurality of battery charging voltages. Including a converter, each of the plurality of DC converter,
    상기 복수의 제1 발전 전압들 중 하나를 스텝-다운(step down) 변환하여 상기 복수의 배터리 충전 전압들 중 하나를 발생하는 제1 변환 블록; 및A first conversion block step-down converting one of the plurality of first generation voltages to generate one of the plurality of battery charge voltages; And
    상기 복수의 제2 발전 전압들 중 하나를 스텝-다운 변환하여 상기 복수의 배터리 충전 전압들 중 하나를 발생하는 제2 변환 블록을 포함하는 것을 특징으로 하는 전기자동차의 전원관리 시스템.And a second conversion block configured to generate one of the plurality of battery charging voltages by step-down converting one of the plurality of second generation voltages.
  4. 제 3 항에 있어서, 상기 다채널 전원공급장치는,The apparatus of claim 3, wherein the multi-channel power supply unit,
    배터리의 출력 전압 레벨을 기 설정된 확인 전압 레벨과 비교하여 상기 배터리의 탈착 상태를 나타내는 배터리 확인 신호를 각각 발생하고, 상기 배터리의 출력 전압 레벨을 기 설정된 제1 방전 전압 레벨 및 상기 제1 방전 전압 레벨보다 낮은 제2 방전 전압 레벨과 비교하여 상기 배터리의 방전 여부를 나타내는 제1 및 제2 배터리 방전 신호를 각각 발생하는 복수의 배터리부들;Comparing an output voltage level of a battery with a preset confirmation voltage level, a battery confirmation signal indicating a detached state of the battery is generated, respectively, and the output voltage level of the battery is a preset first discharge voltage level and the first discharge voltage level. A plurality of battery units respectively generating first and second battery discharge signals indicating whether the battery is discharged compared to a lower second discharge voltage level;
    상기 배터리부들로부터 감지되는 상기 배터리의 출력 전압 레벨을 서로 비교하여 배터리 비교 신호를 발생하는 배터리 비교부;A battery comparator configured to generate a battery comparison signal by comparing the output voltage levels of the batteries sensed by the battery parts with each other;
    상기 배터리 확인 신호, 상기 제1 및 제2 배터리 방전 신호 및 상기 배터리 비교 신호에 기초하여 배터리 제어 신호 및 상기 배터리 잔량 표시 신호를 발생하는 전원 제어부;A power controller configured to generate a battery control signal and the battery remaining amount display signal based on the battery confirmation signal, the first and second battery discharge signals, and the battery comparison signal;
    상기 배터리 제어 신호에 기초하여 상기 배터리부들 중의 하나에 구비된 배터리를 전원 공급 배터리로 선택하여 상기 구동 전원을 공급하는 전원 출력부; 및 A power output unit for supplying the driving power by selecting a battery included in one of the battery units as a power supply battery based on the battery control signal; And
    상기 복수의 배터리 충전 전압들에 기초하여 상기 복수의 배터리부들에 각각 구비된 상기 배터리들 중에서 상기 전원 공급 배터리로 선택되지 않은 전원 비공급 배터리를 충전하는 배터리 충전부를 포함하고,A battery charging unit configured to charge a non-powered battery not selected as the power supply battery among the batteries provided in the plurality of battery units, respectively, based on the plurality of battery charging voltages;
    상기 제1 배터리 방전 신호의 활성화 구간과 상기 제2 배터리 방전 신호의 비활성화 구간이 겹쳐지는 오버랩 구간에서 상기 전원 공급 배터리가 변경되는 것을 특징으로 하는 전기자동차의 전원관리 시스템.And the power supply battery is changed in an overlap section in which an activation section of the first battery discharge signal and an inactivation section of the second battery discharge signal overlap.
  5. 제 4 항에 있어서, 상기 제1 배터리 방전 신호는 상기 배터리의 출력 전압 레벨이 상기 제1 방전 전압 레벨보다 낮은 경우에 활성화되고 상기 배터리의 출력 전압 레벨이 상기 제1 방전 전압 레벨보다 높은 경우에 비활성화되고,The method of claim 4, wherein the first battery discharge signal is activated when the output voltage level of the battery is lower than the first discharge voltage level and is deactivated when the output voltage level of the battery is higher than the first discharge voltage level. Become,
    상기 제2 배터리 방전 신호는 상기 배터리의 출력 전압 레벨이 상기 제2 방전 전압 레벨보다 낮은 경우에 활성화시키고, 상기 배터리의 출력 전압 레벨이 상기 제2 방전 전압 레벨보다 높은 경우에 비활성화되며,The second battery discharge signal is activated when the output voltage level of the battery is lower than the second discharge voltage level, and deactivated when the output voltage level of the battery is higher than the second discharge voltage level,
    상기 배터리 확인 신호는 상기 배터리의 출력 전압 레벨이 상기 확인 전압 레벨보다 높은 경우에 활성화되고 상기 배터리의 출력 전압 레벨이 상기 확인 전압 레벨보다 낮은 경우에 비활성화되는 것을 특징으로 하는 전기자동차의 전원관리 시스템.The battery confirmation signal is activated when the output voltage level of the battery is higher than the confirmation voltage level and is deactivated when the output voltage level of the battery is lower than the confirmation voltage level.
  6. 제 4 항에 있어서, 상기 배터리 충전부는,The battery pack of claim 4, wherein the battery charger is:
    상기 복수의 배터리부들에 각각 구비된 상기 배터리들의 전압을 기준 전압과 비교하여 전압 검출 결과 신호를 각각 출력하는 전압 검출부;A voltage detector configured to output a voltage detection result signal by comparing voltages of the batteries provided in the plurality of battery units with a reference voltage, respectively;
    상기 배터리들의 전류를 기준 전류와 비교하여 전류 검출 결과 신호를 각각 출력하는 전류 검출부;A current detector for outputting a current detection result signal by comparing the current of the batteries with a reference current;
    상기 전압 검출 결과 신호 및 상기 전류 검출 결과 신호에 기초하여 펄스 폭 변조(pulse width modulation; PWM) 신호를 발생하는 충전 제어부; 및A charging controller configured to generate a pulse width modulation (PWM) signal based on the voltage detection result signal and the current detection result signal; And
    상기 복수의 배터리 충전 전압들 및 상기 PWM 신호에 기초하여 충전 전류를 상기 전원 비공급 배터리에 공급하는 충전 전류 발생부를 포함하는 것을 특징으로 하는 전기자동차의 전원관리 시스템.And a charging current generating unit configured to supply a charging current to the non-powered battery based on the plurality of battery charging voltages and the PWM signal.
  7. 제 1 항에 있어서, 상기 제어 회로는,The method of claim 1, wherein the control circuit,
    상기 사용자가 상기 태블릿 PC를 통하여 상기 전기자동차의 목적지를 입력하는 경우에, 현재 위치에서 목적지까지의 이동 거리를 연산하고, 상기 이동 거리 및 상기 배터리의 잔존 용량에 기초하여 상기 다채널 전원공급장치의 충전시기를 연산하며, 상기 연산 결과를 상기 태블릿 PC를 통하여 제공하도록 하는 것을 특징으로 하는 전기자동차의 전원관리 시스템.When the user inputs the destination of the electric vehicle through the tablet PC, the moving distance from the current position to the destination is calculated, and based on the moving distance and the remaining capacity of the battery, Calculating a charging time and providing the calculation result through the tablet PC.
  8. 구동모터를 이용하여 구동되는 전기자동차에 있어서,In an electric vehicle driven using a drive motor,
    상기 구동모터의 회전에너지에 상응하여 상기 전기자동차가 운행하도록 회전하는 복수의 구동륜들;A plurality of driving wheels rotating to drive the electric vehicle according to the rotational energy of the driving motor;
    상기 복수의 구동륜들에 상응하도록 구비되고, 상기 복수의 구동륜들의 회전에너지에 상응하는 복수의 제1 발전 전압들을 발생하는 복수의 알터네이터(alternator)들;A plurality of alternators provided to correspond to the plurality of driving wheels and generating a plurality of first generation voltages corresponding to rotational energy of the plurality of driving wheels;
    상기 전기자동차에 입사되는 태양광을 기초로 광전 변환을 수행하여 복수의 제2 발전 전압들을 발생하는 다채널 태양광 충전 모듈;A multi-channel solar charging module configured to generate a plurality of second power generation voltages by performing photoelectric conversion based on sunlight incident on the electric vehicle;
    상기 복수의 제1 발전 전압들 및 상기 복수의 제2 발전 전압들을 변환하여 복수의 배터리 충전 전압들을 발생하는 다채널 컨버터;A multi-channel converter configured to convert the plurality of first generation voltages and the plurality of second generation voltages to generate a plurality of battery charging voltages;
    상기 복수의 배터리 충전 전압들에 기초하여 충전되고, 상기 전기자동차에 포함되는 상기 구동모터 및 전원소비 수단들에 구동 전원을 공급하며, 배터리의 잔존 용량을 나타내는 배터리 잔량 표시 신호를 발생하는 다채널 전원공급장치;A multi-channel power supply that is charged based on the plurality of battery charging voltages, supplies driving power to the driving motor and power consumption means included in the electric vehicle, and generates a battery remaining indication signal indicating a remaining capacity of the battery Feeder;
    상기 배터리 잔량 표시 신호와 배터리 기준 신호를 비교하여, 상기 배터리의 잔존 용량이 미리 정해진 기준값보다 큰 경우에 상기 전원소비 수단들을 정상 동작시키고 상기 배터리의 잔존 용량이 상기 미리 정해진 기준값보다 작은 경우에 상기 전원소비 수단들 중 적어도 하나의 구동을 중지시키는 제어 회로; 및The battery remaining power indication signal and the battery reference signal are compared to operate the power consumption means when the remaining capacity of the battery is greater than a predetermined reference value and the power supply when the remaining capacity of the battery is smaller than the predetermined reference value. A control circuit for stopping driving of at least one of the consuming means; And
    상기 제어 회로와 연결되고, 사용자가 상기 제어 회로의 동작을 제어하기 위한 인터페이스를 제공하며, 상기 전기자동차에 탈부착이 가능한 태블릿 PC(personal computer)를 포함하는 전기자동차.And a tablet PC (personal computer) connected to the control circuit and providing an interface for a user to control the operation of the control circuit and detachable to the electric vehicle.
PCT/KR2011/003809 2011-04-05 2011-05-24 Power management system for an electric vehicle using a detachable tablet pc, and electric vehicle including same WO2012138010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110031042A KR101053830B1 (en) 2011-04-05 2011-04-05 Power management system of an electric vehicle using a detachable tablet PC and an electric vehicle including the same
KR10-2011-0031042 2011-04-05

Publications (1)

Publication Number Publication Date
WO2012138010A1 true WO2012138010A1 (en) 2012-10-11

Family

ID=44395513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003809 WO2012138010A1 (en) 2011-04-05 2011-05-24 Power management system for an electric vehicle using a detachable tablet pc, and electric vehicle including same

Country Status (2)

Country Link
KR (1) KR101053830B1 (en)
WO (1) WO2012138010A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571990B2 (en) 2017-05-16 2020-02-25 Hyundai Motor Company Method for optimizing the sleep mode of telematics multimedia unit data modem
US20220006381A1 (en) * 2019-03-22 2022-01-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power supply device, elecronic device and power supply method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140159478A1 (en) * 2011-08-30 2014-06-12 Toyota Jidosha Kabushiki Kaisha Power supply system for vehicle
KR102614609B1 (en) * 2021-11-19 2023-12-15 한국단자공업 주식회사 Battery device for electric vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215468A (en) * 2003-01-09 2004-07-29 Oki Electric Ind Co Ltd Method of supplying secondary battery power, communication system thereof, and program
JP2005047342A (en) * 2003-07-31 2005-02-24 Fujitsu Ten Ltd Vehicle control device and vehicle control system
KR20050098375A (en) * 2004-04-06 2005-10-12 씨멘스브이디오한라 주식회사 Control system for car using portable computer and docking apparatus
JP2010041819A (en) * 2008-08-05 2010-02-18 Kansai Electric Power Co Inc:The Charging controller for photovoltaic power generating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136608A (en) * 1999-11-09 2001-05-18 Saito Estate:Kk Electric drive vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215468A (en) * 2003-01-09 2004-07-29 Oki Electric Ind Co Ltd Method of supplying secondary battery power, communication system thereof, and program
JP2005047342A (en) * 2003-07-31 2005-02-24 Fujitsu Ten Ltd Vehicle control device and vehicle control system
KR20050098375A (en) * 2004-04-06 2005-10-12 씨멘스브이디오한라 주식회사 Control system for car using portable computer and docking apparatus
JP2010041819A (en) * 2008-08-05 2010-02-18 Kansai Electric Power Co Inc:The Charging controller for photovoltaic power generating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10571990B2 (en) 2017-05-16 2020-02-25 Hyundai Motor Company Method for optimizing the sleep mode of telematics multimedia unit data modem
US20220006381A1 (en) * 2019-03-22 2022-01-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power supply device, elecronic device and power supply method
US11722062B2 (en) * 2019-03-22 2023-08-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power supply device, electronic device and power supply method

Also Published As

Publication number Publication date
KR101053830B1 (en) 2011-08-03
KR20110060869A (en) 2011-06-08

Similar Documents

Publication Publication Date Title
EP3048697B1 (en) Power storage device and method for controlling power storage device
WO2012018206A2 (en) Battery management apparatus for an electric vehicle, and method for managing same
WO2020076127A1 (en) Battery management device and method
WO2011055937A2 (en) Electric car and control method thereof
EP2075892B1 (en) Cell balancing systems with multiple controllers
JP5552218B2 (en) Power supply
US10587127B2 (en) Charging device, charging control method, electricity storage device, power storage device, power system, and electric vehicle
WO2018021664A1 (en) Battery balancing device and method
WO2012144674A1 (en) Detachable battery module, and method and apparatus for the charge equalization of a battery string using same
WO2013119070A1 (en) Cell balancing circuit apparatus of battery management system using two-way dc-dc converter
WO2012018204A2 (en) Electric vehicle and charging control method for battery thereof
US20130320927A1 (en) Power supply apparatus and power supply switching method
WO2014084628A1 (en) Apparatus for measuring current of battery and method therefor
WO2018021661A1 (en) Current measurement apparatus using shunt resistor
KR20130058775A (en) Power supply system for electric vehicle
WO2012138010A1 (en) Power management system for an electric vehicle using a detachable tablet pc, and electric vehicle including same
JP2012090474A (en) Battery system
WO2018074809A1 (en) Cell balancing system and control method
WO2020149537A1 (en) Battery charging system and battery charging method
WO2015056999A1 (en) Communication system having synchronized units and synchronization method for units
JP4114310B2 (en) Battery status monitoring device
WO2016064224A1 (en) Apparatus and method for controlling electric currents
WO2013047973A1 (en) Power supply device for cell balancing using outer battery cells and cell balancing method thereof
WO2022265358A1 (en) Battery management system, battery pack, electric vehicle, and battery management method
WO2012141344A1 (en) Regenerative braking control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862894

Country of ref document: EP

Kind code of ref document: A1