WO2012137804A1 - オリゴヌクレオチドの配列決定法 - Google Patents

オリゴヌクレオチドの配列決定法 Download PDF

Info

Publication number
WO2012137804A1
WO2012137804A1 PCT/JP2012/059160 JP2012059160W WO2012137804A1 WO 2012137804 A1 WO2012137804 A1 WO 2012137804A1 JP 2012059160 W JP2012059160 W JP 2012059160W WO 2012137804 A1 WO2012137804 A1 WO 2012137804A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
hydrophobic
sequence
tagged
fragment
Prior art date
Application number
PCT/JP2012/059160
Other languages
English (en)
French (fr)
Inventor
伸 宮川
順司 山浦
恵美礼 猪股
昇平 塩山
理恵子 後藤
Original Assignee
株式会社Jclバイオアッセイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jclバイオアッセイ filed Critical 株式会社Jclバイオアッセイ
Publication of WO2012137804A1 publication Critical patent/WO2012137804A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6872Methods for sequencing involving mass spectrometry

Definitions

  • the present invention relates to an oligonucleotide sequencing method.
  • it relates to a method for sequencing modified oligonucleotides.
  • the human genome project has revealed the base sequences that make up human genomic DNA. At present, it is expected to promote the development of pharmaceuticals consisting of low molecular weight compounds and proteins based on genomic information. Attempts to use DNA and RNA itself as pharmaceuticals Has become active. One of them is an antisense oligonucleotide, which binds to a target gene associated with a disease in a complementary manner and suppresses its function. In addition, pharmaceutical preparations such as siRNA using RNA interference, decoy oligos that bind to transcription factors and suppress their functions, and aptamers that specifically bind to proteins and suppress their functions are being promoted.
  • modified oligonucleotides having a short length of about 10 to 50 nucleotides, and their activity and toxicity depend on the sequence. For example, in the case of antisense, if -CGAC- is mistakenly synthesized with -CAGC-, mismatches occur at two locations and the drug efficacy changes. In addition, there is a possibility of binding to other genes, increasing the risk of side effects. In the case of an aptamer, if the base is changed, the three-dimensional structure may change and the activity may be affected. For this reason, sequence confirmation is a very important issue for quality assurance of nucleic acid drugs.
  • Oligonucleotides are generally synthesized on a solid phase using the phosphoramidite method. Actually, a commercially available nucleic acid synthesizer is used, and mononucleotides are automatically coupled one by one based on the input sequence information. Mononucleotide is supplied in the form of an amidite with a protecting group and an active group, and a bottle containing a necessary type of amidite is set in a nucleic acid synthesizer and used. When the synthesis is completed to the desired length, the resin is cut out and deprotected, and purified by chromatography to obtain the final product.
  • nucleic acid drugs are highly modified so that they do not degrade in vivo, so enzymes such as polymerase do not react, cannot be cleanly degraded by exonuclease, and there are many types of fragments and analysis is impossible For this reason, accurate analysis is difficult.
  • MS / MS method for acquiring information on fragment ions, it is only confirmed whether or not fragment ions that are theoretically conceivable are detected from the base sequence of the target nucleic acid drug. MS / MS fragment ions are complicated, and even if the base sequence is wrong, the same fragment ions may be generated by chance. With this method, it is difficult to accurately determine the presence or absence of an error sequence. In particular, C and U have a mass difference of 1, and it is difficult to distinguish this.
  • the object of the present invention is to provide a method for quickly and accurately determining the sequence of oligonucleotides that cannot be analyzed by conventional methods, particularly modified oligonucleotides that cannot be sequenced by ordinary methods.
  • an oligonucleotide in which a hydrophobic compound is bound to an oligonucleotide and a hydrophobic compound is bound in the oligonucleotide sequencing method by mass spectrometry Fragments (hydrophobic tagged fragments) and non-oligonucleotide fragments (untagged fragments) can be easily separated using reverse-phase chromatography, and these can be easily analyzed from this mass spectrum. It was found that the sequence could be determined, and the present invention was completed.
  • the present invention provides a method for determining the sequence of an oligonucleotide comprising the steps of (1) preparing a hydrophobic tagged oligonucleotide to which a hydrophobic compound is bound, (2) the hydrophobic tagging Decomposing oligonucleotides to obtain hydrophobic tagged fragments, (3) separating the hydrophobic tagged fragments by reverse phase chromatography and subjecting them to mass spectrometry to obtain mass spectra, and (4) Analyzing the mass spectrum.
  • the hydrophobic compound is an alkane.
  • the alkane has a carbon number of 50 or less.
  • the alkane is octadecane.
  • the hydrophobic compound is a steroid.
  • the steroids are cholesterols.
  • the hydrophobic compound is triphenylmethane.
  • the hydrophobic tagged oligonucleotide is degraded by a nuclease.
  • the hydrophobic tagged oligonucleotide is chemically degraded.
  • the hydrophobic tagged oligonucleotide is degraded with alkali or acid.
  • the hydrophobic tagged oligonucleotide is physically degraded.
  • the hydrophobic tagged oligonucleotide is degraded by heat or ultrasound.
  • the oligonucleotide is a modified oligonucleotide.
  • the modified oligonucleotide comprises 2'-methoxylated nucleotides or 2'-fluorinated nucleotides.
  • the modified oligonucleotide comprises a phosphorothioate linkage.
  • the oligonucleotide is 2-100 nucleotides in length.
  • the present invention it is possible to provide a method for quickly and accurately determining the sequence of an oligonucleotide that cannot be analyzed by a conventional method, particularly a modified oligonucleotide that cannot be sequenced by a normal method.
  • 2 is a mass spectrometry chromatogram of a sample obtained by treating Chol-MCUGEN with an alkali. It is a mass spectrometry chromatogram of a sample obtained by treating Chol-MCUGEN with nuclease P1. It is a mass spectrometry chromatogram of a sample obtained by treating Chol-MCUGEN with a highly active nuclease P1. It is a mass spectrometry chromatogram of a sample obtained by treating Chol-MCUGEN with benzonase. It is a mass spectrometry chromatogram of the sample which processed ODT-MACUGEN with the nuclease P1.
  • 2 is a mass spectrometry chromatogram of a sample obtained by treating JR-DMT1 with nuclease P1.
  • 2 is a mass spectrometry chromatogram of a sample obtained by treating JR-DMT2 with nuclease P1.
  • 2 is a mass spectrometry chromatogram of a sample obtained by treating JR-MMT1 with nuclease P1.
  • nucleotide means a nucleoside having a phosphate group ester-bonded.
  • Oligonucleotide means a phosphodiester bond in which 2 to 200, preferably 4 to 100, more preferably 6 to 50, phosphosides are bonded to the same or different nucleoside. The phosphodiester moiety is thioated. Also included.
  • the nucleoside includes a natural nucleoside in which a purine or pyrimidine base and a sugar are bonded, a modified saccharide moiety, and a modified purine or pyrimidine base. Nucleosides other than these natural nucleosides are particularly referred to as modified nucleosides.
  • the modification of the sugar moiety is not particularly limited. Examples thereof include those in which the oxygen atom at the 2′-position, 3′-position, 4′-position and / or 5′-position of the sugar is replaced with another atom. Examples of modifications include fluorination, O-alkylation (eg, O-methylation, O-ethylation, O-methoxyethylation), O-allylation, S-alkylation (eg, S-methylation) , S-ethylation), S-allylation, amination (eg, —NH 2 ).
  • O-alkylation eg, O-methylation, O-ethylation, O-methoxyethylation
  • S-alkylation eg, S-methylation
  • S-ethylation S-allylation
  • amination eg, —NH 2 .
  • 4′-SRNA in which oxygen at the 4 ′ position is replaced with sulfur LNA (Locked Nucleic Acid) in which the 2 ′ position and the 4 ′ position are cross-linked via methylene, and the 3 ′ and 4 ′ positions LNA bridged through an alkyl chain (for example, methylene), N-phosphoramidate nucleic acid in which 3′-position or 5′-position hydroxyl group is replaced with amino group, 5′-position hydroxyl group is replaced with amino group, and further 3 ′ LNA which bridge
  • the types of sugars include those in which ribose is replaced with other sugars. Examples of the sugar to be replaced include glycerol, cyclohexene, and throse.
  • the modification of the base moiety is not particularly limited.
  • 5-position pyrimidine modification, 6-position, 7-position and / or 8-position purine modification for example, O-methyl modification
  • exocyclic amine modification for example, O-methyl modification
  • 4-thiouridine Substitution 5-bromo or 5-iodo-uracil, 5-methylcytosine, amino acid motif modification.
  • Specific examples include 3-methyluracil, 5-methyluracil, 5-propynyluracil, 2-thiouracil, 5-pseudouracil, 1 ′-(2,4-difluoro-5-methyl-benzyl), dihydrouracil.
  • Examples of the modification of the phosphoric acid diester bond portion include a P (O) O group having P (O) S (thioate), P (S) S (dithioate), P (O) NR 2 (amidate), P ( O) R, R (O) OR ′, CO or CH 2 (formacetal) or 3′-amine (—NH—CH 2 —CH 2 —), wherein R or R ′ is a hydrogen atom, Methyl group, ethyl group, etc.).
  • linking group examples include —O—, —N—, and —S—, and the linking group can be bonded to an adjacent nucleotide through these linking groups.
  • Modifications may also include 3 'and 5' end modifications.
  • terminal modifications include polyethylene glycol, amino acid, peptide, inverted dT, nucleic acid, nucleoside, myristoyl, oleyl lithocolate, docosanyl, lauroyl, stearoyl, palmitoyl, oleoyl, linoleoyl, other lipids, steroids, cholesterol, caffeine, Modifications including vitamins, dyes, fluorescent substances, anticancer agents, toxins, enzymes, radioactive substances, biotin.
  • the method for synthesizing the oligonucleotide is not particularly limited.
  • the oligonucleotide can be synthesized by the phosphoramidite method.
  • an oligonucleotide is synthesized on a solid phase from the 3 'end.
  • the first nucleoside is attached to a support such as Controlled Porous Glass (CPG) or polymer.
  • CPG Controlled Porous Glass
  • a protecting group is added to an amino group or a hydroxyl group that is not desired to be reacted so that a coupling reaction occurs only with the target hydroxyl group.
  • the second nucleotide is supplied as an amidite with a protecting group and an active group, and is coupled with the first nucleoside at the phosphate group moiety.
  • an oligonucleotide having the target sequence can be synthesized.
  • Chemical synthesis by the phosphoramidite method is a commonly performed method. For details, see Yukio Sugiura, “Nucleic acid ⁇ 1> Synthesis and analysis of nucleic acids (Biopharmaceutical Science Laboratory)”, Volume 2, As stated in Yodogawa Shoten Co., Ltd., January 20, 2005.
  • a commercially available nucleic acid synthesizer is generally used.
  • the bottle containing the mononucleotide amidite contained in the target sequence is attached to the synthesizer, and nucleotides are bound one by one based on the set program. Therefore, a modified nucleotide other than the amidite used is not contained in the final product as a main component.
  • a sequence different from the target sequence may be synthesized. If the molecular weights of the final products are different, the error can be found by mass spectrometry. However, if the molecular weight is the same, such as a change of nucleotides between adjacent nucleotides, the error cannot be found without sequence analysis.
  • a hydrophobic tagged oligonucleotide to which a hydrophobic compound is bound is prepared.
  • the hydrophobic compound is not particularly limited, and examples thereof include chain hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, and derivatives thereof. Specific examples include alkanes, steroids, dicoxygenin, triphenylmethane, biotin, various hydrophobic fluorescent substances, and derivatives thereof. Although it does not specifically limit as alkane, Preferably it is 50 or less carbon number, for example, octane, decane, tetradecane, hexadecane, and octadecane are mentioned.
  • steroids examples include, but are not limited to, for example, sterols (eg, cholesterols (eg, cholesterol, cholesterol ester, stigmasterol, lanosterol, ergosterol), sitosterol, ergosterol), steroid hormones (eg, testosterone, Estradiol, progesterone, cortisol, cortisone, aldosterone, corticosterone, deoxycorticosterone), strophanthidine, and cholestanol.
  • sterols examples include esters with hydrogenated dihydrocholesterol, lower or higher fatty acids.
  • cholesteryl hydroxystearate examples include cholesteryl hydroxystearate, cholesteryl oleate, cholesteryl isostearate, lanolin fatty acid cholesteryl, macadamia nut oil fatty acid cholesteryl, cholesteryl nonanoate, cholesteryl stearate, and cholesteryl butyrate, which are commercially available.
  • Vitamin A, vitamin D, vitamin E, vitamin K and the like may be used.
  • the derivative of triphenylmethane is not particularly limited, and examples thereof include a compound containing a dimethoxytrityl group (DMT) and a compound containing a monomethoxytrityl group (MMT).
  • DMT dimethoxytrityl group
  • MMT monomethoxytrityl group
  • the method for binding the hydrophobic compound to the oligonucleotide is not particularly limited.
  • an amino group can be introduced into an oligonucleotide and coupled to a carboxyl group of a hydrophobic compound.
  • ethyl-3-carbodiimide hydrochloride, N-hydroxysuccinimide and the like can be used as the condensation polymerization agent.
  • This method is generally used for protein immobilization.
  • a method for introducing an amino group into an oligonucleotide has already been established, and can be added using a phosphoramidite method. When introducing an amino group at the 5 'end, 5'-TFA-aminohexyl amidite or the like can be used.
  • T-C6 (NH-TFA) CPG support or the like When introducing an amino group at the 3 'end, T-C6 (NH-TFA) CPG support or the like can be used.
  • T-C6 (NH-TFA) CPG support or the like When introduced in the middle of an oligonucleotide, it can be prepared by the phosphoramidite method using an amidite in which an amino group is bonded to the 5-position of pyrimidine or the 8-position of purine with a C6 linker interposed therebetween.
  • a hydrophobic compound can be bound to an oligonucleotide by introducing an amino group into the oligonucleotide, introducing an active group into the hydrophobic compound, and mixing them.
  • the active group used for the hydrophobic compound is not particularly limited, and examples thereof include a P-nitrophenylcarbonyl group, a maleimide group, an N-hydroxysuccinimide group, a carboxyl group, an aldehyde group, and an aminoxy group.
  • an active group may be added to the oligonucleotide, and an amino group may be added to the hydrophobic substance.
  • the amino group those originally contained in oligonucleotides and hydrophobic compounds may be used.
  • Hydrophobic compounds can also be bonded using thiol groups or cyanobromo groups.
  • a hydrophobic compound having a thiol group into an oligonucleotide using a compound capable of coupling with both an amino group and a thiol group.
  • a compound is not particularly limited, and examples thereof include BMPS (N- ( ⁇ -Maleimidopropyloxy) succinimide ester).
  • HydraLink registered trademark
  • Hydrophobic compounds can also be added during oligonucleotide synthesis using amidites containing hydrophobic compounds.
  • amidites include, but are not limited to, for example, TEG (Tetraethylene Glycol) cholesterol CED OP (ChemGenes; CLP-2704), cholesterol (TEG) CED OP (ChemGenes; CLP-2703), cholesterol 3′- lcaa CPG (ChemGenes; N-9166-05), cholesteryl TEG phosphoramidite (Glen Research; 10-1975-95), 3′-cholesteryl TEG CPG (Glen Research; 20-2975-01), DNP- TEG CED OP (ChemGenes; CLP-9907), Dabcyl CED OP (ChemGenes; CLP-1522), 6-FAM phosphoramidite (ChemGenes; CLP-9777), tetrachlorofluorescein phosphoramidite (ChemGenes; CLP) -
  • aptamer pharmaceuticals often add polyethylene glycol (PEG) to the end.
  • PEG polyethylene glycol
  • the end product is obtained by chemically synthesizing an aptamer having an amino group bonded to the terminal using the phosphoramidite method, and coupling PEG after purification.
  • a part of the purified oligonucleotide-bound oligonucleotide is mixed with a hydrophobic compound having a coupling active group to obtain a hydrophobic tagged oligonucleotide. be able to.
  • the target sequence is solid-phase synthesized by the phosphoramidite method, and then a portion of the support to which the target oligonucleotide is bound is taken and cholesterol amidite is coupled there. can do.
  • a small column for sequence analysis can be separately attached to the nucleic acid synthesizer, and cholesterol amidite can be coupled by adding only the small column after the synthesis of the target oligonucleotide.
  • DMT or MMT is added as a protecting group to the 5 'end of the amidite used for synthesis, and is removed by deprotection after nucleic acid synthesis. Since DMT and MMT have strong hydrophobicity, they can be used as hydrophobic tagged oligonucleotides without removing them.
  • the binding site of the hydrophobic compound may be at the 5 'end, 3' end or in the middle of the oligonucleotide, but preferably at the 5 'end or 3' end, more preferably at the 5 'end.
  • the number of hydrophobic compounds bonded to the oligonucleotide is not particularly limited, but is preferably one or two, more preferably one. When two hydrophobic compounds are bonded, it is preferable that they are bonded to the 5 'end and the 3' end, respectively, and it is more preferable that the types of the hydrophobic compounds are different.
  • the hydrophobic tagged oligonucleotide is then decomposed to obtain a hydrophobic tagged fragment.
  • the fragmentation method is not particularly limited, and examples thereof include degradation by an enzyme such as nuclease, chemical and / or physical degradation.
  • the nuclease includes RNA nuclease, DNA nuclease, endonuclease and exonuclease.
  • the endonuclease is not particularly limited.
  • Mircrococcal DNaseI, nuclease P1, nuclease S1, benzonase, mung bean nuclease, nuclease S7, BAL31 nuclease, Neurospora crassa nuclease, RNase H, RNase V1, RNase III, RNase HII, RNase A, RNase T1, RNase T2, mRNA -Interferase-MazF, RNase I, RNase II, RNase III, RNase Phy M, RNase U2, Ribozyme, RNase CL3, RNase E, RNase G, RNase L, RNase P. Nuclease P1 is preferred. Restriction enzymes that recognize and cleave specific base sequences are not preferred.
  • the conditions for enzyme degradation are optimized for each enzyme, including the optimum buffer solution, enzyme concentration, substrate concentration, temperature, and reaction time.
  • optimum buffer solution for example, about 0.002 U of nuclease P1 is added to a modified oligonucleotide of several mg / mL in a buffer containing zinc, and an appropriate fragment is obtained by incubating at 70 ° C. for 15 minutes.
  • the amount (concentration) of the enzyme may be increased in the range of about 5 to 100 times according to the required fragment amount.
  • the temperature can be changed to room temperature, 37 ° C., 60 ° C., etc. depending on the amount of fragments required, and the time can be in the range of about 5 to 60 minutes.
  • Chemical decomposition methods include alkali decomposition methods (for example, sodium hydroxide, potassium hydroxide, ammonia), acid decomposition methods (for example, hydrochloric acid, sulfuric acid, nitric acid), formamide, dimethyl sulfate, diethyl pyrocarbonate, 1-cyclohexyl- 3- (2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, ⁇ -ethoxy- ⁇ -ketobutyraldehyde, bisulfite , Ethyl nitrosourea, methidium propyl-EDTA, Fe (II), Pb 2+ , Eu 3+ , Mn 2+ , Mg 2+ and the like.
  • alkali decomposition methods for example, sodium hydroxide, potassium hydroxide, ammonia
  • acid decomposition methods for example, hydrochloric acid, sulfuric acid, nitric acid
  • formamide dimethyl sul
  • Examples of the alkali decomposition method include a method in which 0.1N sodium hydroxide is mixed with a hydrophobic tagged oligonucleotide and left at room temperature for several hours. Moreover, you may heat.
  • Examples of the acid decomposition method include a method in which 0.1N hydrochloric acid or 0.1N trifluoroacetic acid is mixed with a hydrophobic tagged oligonucleotide and left at room temperature for several hours. Moreover, you may heat.
  • Examples of the physical decomposition method include a heat decomposition method, an ultrasonic decomposition method, a mechanical decomposition method by passing through a fine tube, and a light decomposition method.
  • Decomposition method may be one type or a combination of a plurality of methods. For example, a method in which one or several sites are cleaved by endonuclease and then further cleaved by exonuclease, a method in which one or several sites are cleaved by chemical degradation and further cleaved by exonuclease, and a phosphorylation by phosphodiesterase after chemical degradation. The method of removing is mentioned. These decomposition methods are appropriately selected according to the length of the hydrophobic tagged oligonucleotide, the modification, and the type of the hydrophobic compound.
  • the hydrophobic tagged fragment is then separated by reverse phase chromatography and subjected to mass spectrometry to obtain a mass spectrum.
  • the column carrier used for reverse phase chromatography is not particularly limited as long as the hydrophobic tagged fragments can be separated with general reproducibility, and can be appropriately set by those skilled in the art.
  • silica, a polymer resin, and a carrier in which a part of silica is crosslinked with ethylene are preferable, and a carrier in which a part of chemically stable silica is crosslinked with ethylene is preferable.
  • the functional group of the carrier is not particularly limited as long as the hydrophobic tagged fragment can be separated to an analyzable level, and may be appropriately set by those skilled in the art.
  • an octadecyl group, an octyl group, a butyl group, and a phenyl group may be used.
  • Examples thereof include a modified carrier and a carrier in which a hydrophobic functional group is modified on a polymer resin.
  • the particle size of the carrier is not particularly limited as long as the hydrophobic tagged fragment can be separated to an analyzable level, and can be appropriately set by those skilled in the art, but is preferably 1.5 to 5 ⁇ m, more preferably 1 .5 to 2 ⁇ m.
  • the mobile phase used for reverse phase chromatography is not particularly limited, and examples thereof include a phosphate buffer and an ammonium acetate buffer.
  • the conditions for reverse phase chromatography are not particularly limited as long as the hydrophobic tagged fragment and the untagged fragment can be separated at an analyzable level, and can be appropriately set by those skilled in the art.
  • the column temperature is The composition of the mobile phase at 20 to 80 ° C. may be isocratic or a gradient of two or more liquids. These conditions are appropriately selected depending on the properties of the hydrophobic tagged fragment so that separation suitable for mass spectrometry can be obtained.
  • the mass spectrometer used for mass spectrometry is not particularly limited, and examples include those using the ESI method, APCI method, APPI method, MALDI method, and FAB method.
  • One of the most difficult things in performing mass spectrometry is to distinguish between cytidine monophosphate and uridine monophosphate, which have a molecular weight difference of only 1 Da. Therefore, the error of the obtained mass number needs to be less than 1 Da.
  • the conditions for mass spectrometry are not particularly limited as long as they have the above-mentioned resolution, and can be appropriately set by those skilled in the art.
  • the mass spectrum is then analyzed.
  • the chromatogram obtained by the present invention consists of a peak derived from a hydrophobic tagged fragment and a peak derived from an untagged fragment. These peaks can be easily distinguished because the elution times differ greatly. Peaks derived from hydrophobic tagged fragments are used to determine the oligonucleotide sequence. Peaks are detected from the chromatogram using certain parameters, and the start time and end time of each peak are confirmed. The parameters may be those generally used and can be easily set as appropriate by those skilled in the art. The mass spectra obtained between the start time and end time of each peak are integrated to obtain an average mass spectrum of the peak.
  • the value of m / z and its valence are confirmed for a signal that satisfies a certain condition from the average mass spectrum.
  • This condition is not particularly limited, and examples thereof include an ion intensity of 2000 or more and a relative intensity of 20% or more with respect to the maximum intensity spectrum. Since the mass spectrum obtained by the present invention is in the negative ion mode, the mass of the proton (1.000728 Da) is added to the value of m / z, and the molecular weight of the fragment is obtained by the product of the sum and the valence.
  • the sequence is determined by calculating the molecular weight difference between two types of hydrophobic tagged fragments with different nucleotide numbers, and making the molecular weight difference correspond to the molecular weight of the constituent mononucleotide.
  • Example 1 (Oligonucleotide to be analyzed) Formula (I) having the same sequence as an oligonucleotide (hereinafter referred to as MACUGEN), which is an active ingredient of a nucleic acid pharmaceutical “MACUGEN” (registered trademark), and including a cholesterol skeleton:
  • MACUGEN oligonucleotide
  • MACUGEN nucleic acid pharmaceutical
  • the parentheses mean modification, (F) is the ribose modified at the 2 ′ position with a fluorine atom, and (M) is the ribose modified at the 2 ′ position with an O-methyl group.
  • the fourth and fifth nucleotides from the 5 ′ end are unmodified adenosine monophosphate (molecular weight: 329.206; monoisotopic mass: 329.053; molecular formula: C 10 H 12 N 5 O 6 P) is there.
  • the mononucleotide contained in the above sequence is as follows.
  • the nucleotide at the 3 ′ end of MACUGEN is the abbreviation idT: translocated form of thymidine monophosphate represented by the formula (VI) (molecular weight: 305.201; monoisotopic mass: 305.054; molecular formula: C 10 H 14 N 2 O 7 P).
  • Chol-MACUGEN (Synthesis of 5 ′ terminal cholesterol-tagged oligoribonucleotide) Chol-MACUGEN was chemically synthesized. The chemical synthesis uses the phosphoramidite method, and 3′-DMT-5′deoxythymidine CPG, 5′-DMT-2′-O-methyladenosine (n-bz) CED phosphoramidite, 5′-DMT- is used as a raw material.
  • the obtained sample was analyzed using HPLC-LTQ FT.
  • the analysis conditions are as follows.
  • HPLC Alliance 2795 separation module (manufactured by Waters) Analytical column: Acquity UPLC (registered trademark) BEH C18 (manufactured by Waters; particle size: 1.7 ⁇ m; column size: 2.1 mm ⁇ 50 mm)
  • Mobile phase A 100 mM hexafluoroisopropanol (HFIP) /8.6 mM triethylamine (TEA) aqueous solution
  • Mobile phase B 100 mM HFIP / 8.6 mM TEA methanol solution
  • Mass spectrometer LTQ FT (manufactured by Thermo Fisher Scientific)
  • Ionization method ESI Ion polarity: negative ion mode Measurement m / z range: m / z 400-2000
  • the obtained mass spectrometry chromatogram is shown in FIG.
  • the molecular weight of the Chol-MCUGEN fragment contained in the sample was calculated from the mass spectrum. The results are shown in Table 1.
  • the phosphate bond on the 3 'side of the unmodified ribonucleotide is hydrolyzed as shown below. If the sequence is correct, it should be cleaved at the 4th and 5th unmodified adenosine monophosphate from the 5 'end of Chol-MCUGEN to generate a fragment with a phosphate group added to the 3' end. . Experimental results indicated the presence of these fragments, indicating that at least the fourth and fifth sequences were correct.
  • the degradation products of Chol-MCUGEN include a hydrophobic tagged fragment in which the hydrophobic compound Chol is bound to the 5 'end and an untagged fragment consisting only of an oligonucleotide without the hydrophobic compound Chol.
  • hydrophobic tagged fragments with long elution times can be easily distinguished from untagged fragments with short elution times, and hydrophobic tagged fragments elute in the order of increasing number of nucleotides. It was found that the difference can also be distinguished.
  • the obtained sample was analyzed using HPLC-LTQ FT in the same manner as the above alkali-treated sample.
  • the obtained mass spectrometry chromatogram is shown in FIG.
  • the molecular weight of the Chol-MCUGEN fragment contained in the sample was calculated from the mass spectrum. The results are shown in Table 2.
  • the phosphate ester bond of the modified nucleotide and the unmodified nucleotide is hydrolyzed and the 3 'end becomes a hydroxyl group.
  • CF26 in Table 2 was estimated to be a fragment obtained by adding 26 nucleotides to a hydrophobic compound
  • CF25 was estimated to be a fragment obtained by adding 25 nucleotides to a hydrophobic compound.
  • the sequence of 22 nucleotides could be determined. These sequences were confirmed to match the target sequence.
  • the molecular weight difference between CF28 and CF26 was 663.1 Da, and the nucleotide corresponding to this molecular weight difference was G (M) -idT (theoretical value: 663). Other than .1 Da) is unthinkable. Since idT is supplied as a CPG body in nucleic acid synthesis, there is no possibility of sequence errors. Therefore, the nucleotide at position 27 from the 5 ′ end of Chol-MACUGEN is G (M), and the nucleotide at position 28 is idT. It was estimated.
  • the obtained sample was analyzed using HPLC-LTQ FT in the same manner as the above alkali-treated sample.
  • the obtained mass spectrometry chromatogram is shown in FIG.
  • the molecular weight of the Chol-MCUGEN fragment contained in the sample was calculated from the mass spectrum. The results are shown in Table 3.
  • the obtained sample was analyzed using HPLC-LTQ FT in the same manner as the above alkali-treated sample.
  • Table 4 shows the results of calculating the molecular weight of the Chol-MCUGEN fragment contained in the sample from the mass spectrum.
  • the molecular weight was calculated from the monoisotopic peak of each fragment, and the sequence was determined in the same manner as described above. As a result, it was estimated that the nucleotides at the 17th, 7th and 6th positions from the 5 'end were U (F), C (F) and U (F), respectively. These are consistent with the sequence of MACUGEN, and it was proved that at least CF6, 7, and 17 of the synthesized oligonucleotide were correct sequences.
  • Oligo having the following sequence in which a hydrophobic compound (ODT; molecular weight: 553.86; monoisotopic mass: 553.404; molecular formula: C 31 H 57 N 2 O 4 S) represented by Ribonucleotides (ODT-MCUGEN) were analyzed.
  • ODT hydrophobic compound
  • Oligo having the following sequence in which a hydrophobic compound (ODT; molecular weight: 553.86; monoisotopic mass: 553.404; molecular formula: C 31 H 57 N 2 O 4 S) represented by Ribonucleotides (ODT-MCUGEN) were analyzed.
  • a hydrophobic tag oligonucleotide having ODT added to the 5 ′ end was synthesized using an oligoribonucleotide having a 5 ′ end structure represented by the formula (“NH 2 -MACUGEN”).
  • NH 2 -MACUGEN an oligoribonucleotide having a 5 ′ end structure represented by the formula (“NH 2 -MACUGEN”).
  • 40 kDa polyethylene glycol is bonded to the 5 ′ end of MACUGEN, it is obtained by chemically synthesizing and purifying NH 2 -MACUGEN and then binding PEG.
  • NH 2 -MACUGEN was chemically synthesized using the phosphoramidite method. This was mixed with crosslinker reagent 3-maleimidopropionic acid NHS (BMPS) to form BMPS-MACUGEN, and further reacted with 1-octadecanethiol to synthesize ODT-MACUGEN as follows.
  • BMPS crosslinker reagent 3-maleimidopropionic acid NHS
  • the obtained sample was analyzed using HPLC-LTQ FT.
  • the analysis conditions are as follows.
  • the obtained mass spectrometry chromatogram is shown in FIG.
  • the molecular weight of the ODT-MCUGEN fragment contained in the sample was calculated from the mass spectrum. The results are shown in Table 5.
  • the nucleotide at position 27 from the 5 ′ end of ODT-MACUGEN is G (M), and the nucleotide at position 28 is idT. It was estimated.
  • the obtained sample was analyzed using HPLC-LTQ FT in the same manner as the nuclease-treated sample.
  • the obtained mass spectrometry chromatogram is shown in FIG.
  • the molecular weight of the ODT-MCUGEN fragment contained in the sample was calculated from the mass spectrum. The results are shown in Table 6.
  • JR-DMT1 An oligoribonucleotide (JR-DMT1) having the following sequence to which a dimethoxytrityl group (DMT; molecular weight: 319.37; monoisotopic mass: 319.133; molecular formula: C 21 H 19 O 3 ) represented by Was analyzed.
  • the parentheses mean modification, (F) is the ribose modified at the 2 ′ position with a fluorine atom, and (M) is the ribose modified at the 2 ′ position with an O-methyl group. Show. Lower case letters represent DNA.
  • Mononucleotides contained in the above sequences are as follows in addition to A (M), G (M), C (F), U (F) shown in Example 1.
  • DMT is a protecting group for the 5 ′ hydroxyl group contained in the amidite.
  • solid phase synthesis is performed from the 3 ′ end using the phosphoramidite method, it is bonded to the 5 ′ end of the target sequence after the synthesis is completed. It is. Therefore, there is no need to separately bind a sequence analysis tag as in the first and second embodiments.
  • JR-DMT1 was obtained by chemically synthesizing by the phosphoramidite method and finally without de-DMT treatment.
  • the obtained sample was analyzed using HPLC-LTQ FT.
  • the analysis conditions are as follows.
  • the obtained mass spectrometry chromatogram is shown in FIG.
  • the molecular weight of the JR-DMT1 fragment contained in the sample was calculated from the mass spectrum. The results are shown in Table 7.
  • the molecular weight was calculated from the monoisotopic peak of each oligonucleotide fragment, and the sequence was determined in the same manner as in Example 1.
  • the sequence calculated from the difference in molecular weight of each oligonucleotide fragment was identical to the sequence of JR-DMT1. Therefore, it was proved that the oligonucleotide obtained by the above synthesis was the sequence of JR-DMT1.
  • the hydrophobic tag oligo-oligonucleotide can be prepared by not performing the de-DMT treatment after the nucleic acid synthesis, and the sequence analysis can be performed quickly and with high accuracy.
  • Example 4 Modified oligonucleotide to be analyzed
  • Monodeoxynucleotides contained in the above sequences are as follows in addition to c shown in Example 3.
  • the obtained sample was analyzed in the same manner as in Example 3 using HPLC-LTQ FT.
  • the obtained mass spectrometry chromatogram is shown in FIG.
  • the molecular weight of the oligonucleotide fragment contained in the sample was calculated from the mass spectrum. The results are shown in Table 8.
  • peaks indicating a number of hydrophobic tagged fragments were confirmed.
  • a fragment in which n nucleotides are added to the hydrophobic compound DMT is represented as DFn. All oligonucleotide fragments had a hydroxyl group at the 3 'end. Oligonucleotide fragments DF1 to DF7 were detected in the fraction having a longer elution time than the peak showing JR-DMT2.
  • the molecular weight was calculated from the monoisotopic peak of each oligonucleotide fragment, and the sequence was determined in the same manner as in Example 1.
  • the sequence calculated from the molecular weight difference of each oligonucleotide fragment was identical to the sequence of JR-DMT2. Therefore, it was proved that the oligonucleotide obtained by the above synthesis was the sequence of JR-DMT2.
  • the hydrophobic tag oligo-oligonucleotide can be prepared by not performing the de-DMT treatment after the nucleic acid synthesis, and the sequence analysis can be performed quickly and with high accuracy.
  • a monomethoxytrityl group (MMT; molecular weight: 289.35; monoisotopic mass: 289.123; molecular formula: C 20 H 17 O 2 ) represented by ) was analyzed.
  • the structure other than the 5 ′ end modification of JR-MMT1 is the same as that of JR-DMT1 (Example 3).
  • the parentheses mean modification, (F) is the ribose modified at the 2 ′ position with a fluorine atom, and (M) is the ribose modified at the 2 ′ position with an O-methyl group. Show. Lower case letters represent DNA.
  • MMT is a protecting group for the 5 ′ hydroxyl group contained in the amidite.
  • solid phase synthesis is performed from the 3 ′ end using the phosphoramidite method, it is bound to the 5 ′ end of the target sequence after the synthesis is completed. It is. Therefore, there is no need to separately bind a sequence analysis tag as in the first and second embodiments.
  • JR-MMT1 was obtained by chemical synthesis by the phosphoramidite method, and finally without de-MMT treatment.
  • the obtained sample was analyzed in the same manner as in Example 3 using HPLC-LTQ FT.
  • the obtained mass spectrometry chromatogram is shown in FIG.
  • the molecular weight of the oligonucleotide fragment contained in the sample was calculated from the mass spectrum.
  • the results are shown in Table 9.
  • peaks indicating a number of hydrophobic tagged fragments could be confirmed.
  • An oligonucleotide fragment obtained by adding n nucleotides to the MMT of the hydrophobic compound is represented as MFn. All oligonucleotide fragments had a hydroxyl group at the 3 'end. Oligonucleotide fragments MF1 to MF7 were detected at an elution time later than the peak indicating JR-MMT1.
  • the molecular weight was calculated from the monoisotopic peak of each oligonucleotide fragment, and the sequence was determined in the same manner as in Example 1.
  • the sequence calculated from the difference in molecular weight of each oligonucleotide fragment was identical to the sequence of JR-MMT1. Therefore, the oligonucleotide obtained by the above synthesis was proved to be the sequence of JR-MMT1.
  • the hydrophobic tag oligo-oligonucleotide can be prepared by not performing the deMMT treatment after the nucleic acid synthesis, and the sequence analysis can be performed quickly and with high accuracy.
  • the present invention it is possible to provide a method for quickly and accurately determining the sequence of an oligonucleotide that cannot be analyzed by a conventional method, particularly a modified oligonucleotide that cannot be sequenced by a normal method.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

 本発明は、従来の方法では解析不可能なオリゴヌクレオチド、特に通常の方法では配列を決定できない修飾オリゴヌクレオチドの配列を迅速かつ高精度に決定するための方法を提供することを目的とする。本発明のオリゴヌクレオチドの配列を決定するための方法は、(1)疎水性化合物が結合した疎水性タグ化オリゴヌクレオチドを調製する工程、(2)該疎水性タグ化オリゴヌクレオチドを分解して疎水性タグ化断片を得る工程、(3)該疎水性タグ化断片を逆相クロマトグラフィーにより分離し、質量分析に供してマススペクトルを取得する工程、および(4)該マススペクトルを解析する工程を含む。

Description

オリゴヌクレオチドの配列決定法
 本発明は、オリゴヌクレオチドの配列決定法に関する。特に、修飾オリゴヌクレオチドの配列決定法に関する。
 ヒトゲノムプロジェクトによりヒトゲノムDNAを構成する塩基配列が明らかにされた現在、ゲノム情報に基づいて低分子化合物やタンパク質からなる医薬品の開発の促進が期待される一方、DNAおよびRNAそのものを医薬品として利用する試みが活発化している。その一つがアンチセンスオリゴヌクレオチドであり、疾患に関連する標的遺伝子に対して配列相補的に結合し、その機能を抑制する。また、RNA干渉を利用したsiRNA、転写因子に結合してその機能を抑制するデコイオリゴ、タンパク質に特異的に結合してその機能を抑制するアプタマーなどの医薬品化が進められている。これらは10~50ヌクレオチド程度の長さの短い修飾オリゴヌクレオチドであり、その活性や毒性は配列に依存する。例えば、アンチセンスの場合、-CGAC-を-CAGC-と誤って合成すると2カ所にミスマッチが生じ薬効が変化する。また、他の遺伝子に結合する可能性が生じ副作用のリスクが高まる。アプタマーの場合は塩基の入れ替わりがあると立体構造が変化して活性に影響が出る可能性がある。このため、核酸医薬品の品質保証として配列確認は極めて重要な課題である。
 オリゴヌクレオチドは一般にホスホロアミダイト法を用いて固相合成される。実際には市販の核酸合成機が使用され、入力した配列情報に基づいて、自動的にモノヌクレオチドが一つずつ順番にカップリングされる。モノヌクレオチドは保護基と活性基が付いたアミダイト体で供給され、必要な種類のアミダイトが入ったボトルを核酸合成機にセットして使用する。目的の長さまで合成が終了すると、樹脂からの切り出しや脱保護を行い、クロマトグラフィーで精製して最終産物とする。その際、配列の入力ミスやアミダイトのボトルの付け間違いなどがあると誤った配列で合成される。構成ヌクレオチドの割合が異なる場合は質量分析により分子量を確認することでそのエラーを見つけることができるが、構成ヌクレオチドの割合が変化しない場合は分子量が変わらないのでその方法ではエラーを見極めることができない。特に、隣同士のヌクレオチドの入れ替わりは配列解析をしなければ発見することができない。
 天然のDNAやRNAは従来のサンガー法やマクサム-ギルバート法、エキソヌクレアーゼを用いて分解しLC/MSで分析する方法などで配列解析が可能であることが知られている(特許文献1)。一方、核酸医薬品は生体内で分解しないように高度に修飾が加えられているため、ポリメラーゼなどの酵素が反応しない、エキソヌクレアーゼできれいに分解できない、断片が多種類におよび解析が不可能であるなどの理由から、正確な解析が困難である。
 フラグメントイオンの情報を取得するMS/MS法(特許文献2)では、対象となる核酸医薬品の塩基配列から理論的に考えられるフラグメントイオンが検出されるかどうかの確認に留まっている。MS/MSフラグメントイオンは複雑であり、誤った塩基配列であっても偶然同様のフラグメントイオンが生じる可能性があり、この方法ではエラー配列の有無を正確に判別することは難しい。特にCとUは質量差が1であり、この区別をすることは難しい。
 核酸合成において、個々のヌクレオチドのカップリング効率は100%ではないので、鎖長が伸びるごとに短い配列のものがわずかに生成する。この不純物をLC/MSで分析することで配列確認することができる(フェイラーシーケンス法)。しかし、この方法は最終産物を直接分析しているわけではない点が問題となる。このように既存の方法は核酸医薬品の品質保証という点では不十分であり、迅速かつ高精度に配列解析ができる新しい方法が求められている。
特表2002-507883号公報 特開昭59-26064号公報
 従来の方法では、配列解析の対象であるオリゴヌクレオチドの断片イオンが質量分析計で検出されるかどうかの確認に留まっており、事前に配列情報がないと配列解析ができなかった。
 本発明は、従来の方法では解析不可能なオリゴヌクレオチド、特に通常の方法では配列を決定できない修飾オリゴヌクレオチドの配列を迅速かつ高精度に決定するための方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、質量分析法によるオリゴヌクレオチドの配列決定法において、オリゴヌクレオチドに疎水性化合物を結合し、疎水性化合物が結合したオリゴヌクレオチド断片(疎水性タグ化断片)とそうでないオリゴヌクレオチド断片(非タグ化断片)とを逆相クロマトグラフィーを用いて容易に分離することができ、これらを質量分析することで、このマススペクトルから容易に配列を決定できることを見出し、本発明を完成させた。
 本発明は、オリゴヌクレオチドの配列を決定するための方法を提供し、該方法は、(1)疎水性化合物が結合した疎水性タグ化オリゴヌクレオチドを調製する工程、(2)該疎水性タグ化オリゴヌクレオチドを分解して疎水性タグ化断片を得る工程、(3)該疎水性タグ化断片を逆相クロマトグラフィーにより分離し、質量分析に供してマススペクトルを取得する工程、および(4)該マススペクトルを解析する工程を含む。
 1つの実施態様では、上記疎水性化合物は、アルカンである。
 1つの実施態様では、上記アルカンは、50以下の炭素数である。
 1つの実施態様では、上記アルカンは、オクタデカンである。
 1つの実施態様では、上記疎水性化合物は、ステロイド類である。
 1つの実施態様では、上記ステロイド類は、コレステロール類である。
 1つの実施態様では、上記疎水性化合物は、トリフェニルメタンである。
 1つの実施態様では、上記疎水性タグ化オリゴヌクレオチドは、ヌクレアーゼにより分解される。
 1つの実施態様では、上記疎水性タグ化オリゴヌクレオチドは、化学的に分解される。
 1つの実施態様では、上記疎水性タグ化オリゴヌクレオチドは、アルカリまたは酸により分解される。
 1つの実施態様では、上記疎水性タグ化オリゴヌクレオチドは、物理的に分解される。
 1つの実施態様では、上記疎水性タグ化オリゴヌクレオチドは、熱または超音波により分解される。
 1つの実施態様では、上記オリゴヌクレオチドは、修飾オリゴヌクレオチドである。
 1つの実施態様では、上記修飾オリゴヌクレオチドは、2’-メトキシ化ヌクレオチドまたは2’-フッ素化ヌクレオチドを含む。
 1つの実施態様では、上記修飾オリゴヌクレオチドは、ホスホロチオエート結合を含む。
 1つの実施態様では、上記オリゴヌクレオチドは、2~100ヌクレオチドの長さである。
 本発明によれば、従来の方法では解析不可能なオリゴヌクレオチド、特に通常の方法では配列を決定できない修飾オリゴヌクレオチドの配列を迅速かつ高精度に決定するための方法を提供することができる。
 疎水性化合物のタグ化を行わないで配列解析する従来法では、質量分析で得られた質量数に該当するオリゴヌクレオチド断片が複数となり、エラー配列の有無を正確に判別できなかった。本発明では疎水性タグが付加した断片のみが解析対象となるため、得られた質量数に対する断片は一つに定めることができ、エラー配列を正確に検出することができる。
Chol-MACUGENをアルカリで処理した試料の質量分析クロマトグラムである。 Chol-MACUGENをヌクレアーゼP1で処理した試料の質量分析クロマトグラムである。 Chol-MACUGENを高活性ヌクレアーゼP1で処理した試料の質量分析クロマトグラムである。 Chol-MACUGENをベンゾナーゼで処理した試料の質量分析クロマトグラムである。 ODT-MACUGENをヌクレアーゼP1で処理した試料の質量分析クロマトグラムである。 ODT-MACUGENを高活性ヌクレアーゼP1で処理した試料の質量分析クロマトグラムである。 JR-DMT1をヌクレアーゼP1で処理した試料の質量分析クロマトグラムである。 JR-DMT2をヌクレアーゼP1で処理した試料の質量分析クロマトグラムである。 JR-MMT1をヌクレアーゼP1で処理した試料の質量分析クロマトグラムである。
 本発明において、ヌクレオチドとは、ヌクレオシドにリン酸基がエステル結合したものをいう。また、オリゴヌクレオチドとは、同一または異なるヌクレオシドがリン酸ジエステル結合で2~200個、好ましくは4~100個、より好ましくは6~50個結合したものをいい、リン酸ジエステル部分がチオエート化されたものなども含む。
 本発明において、ヌクレオシドとは、プリンまたはピリミジン塩基と糖とが結合した天然のヌクレオシドのほか、糖部分が修飾されたもの、プリンまたはピリミジン塩基が修飾されたものも含む。これらの天然のヌクレオシド以外のヌクレオシドは、特に修飾ヌクレオシドという。
 糖部分の修飾としては、特に限定されない。例えば、糖の2’位、3’位、4’位および/または5’位の酸素原子を他の原子に置き換えたものが挙げられる。修飾の種類としては、例えば、フルオロ化、O-アルキル化(例えば、O-メチル化、O-エチル化、O-メトキシエチル化)、O-アリル化、S-アルキル化(例えば、S-メチル化、S-エチル化)、S-アリル化、アミノ化(例えば、-NH)が挙げられる。ほかにも、4’位の酸素を硫黄に置き換えた4’-SRNA、2’位と4’位とをメチレンを介して架橋したLNA(Locked Nucleic Acid)、3’位と4’位とをアルキル鎖(例えば、メチレン)を介して架橋したLNA、3’位または5’位の水酸基をアミノ基に置き換えたN-ホスホロアミデート核酸、5’位の水酸基をアミノ基に置き換えさらに3’位と5’位とをメチレンを介して架橋したLNAが挙げられる。さらに、糖の種類もリボースを他の糖に置き換えたものが挙げられる。置き換える糖の種類としては、例えば、グリセロールやシクロヘキセン、スレオースが挙げられる。
 塩基部分の修飾としては、特に限定されないが、例えば、5位ピリミジン改変、6位、7位および/または8位プリン改変(例えば、O-メチル修飾)、環外アミンでの改変、4-チオウリジンでの置換、5-ブロモまたは5-ヨード-ウラシル、5-メチルシトシン、アミノ酸モチーフ修飾が挙げられる。具体例としては、3-メチルウラシル、5-メチルウラシル、5-プロピニルウラシル、2-チオウラシル、5-プソイドウラシル(pseudouracil)、1’-(2,4-ジフルオロ-5-メチル-ベンジル)、ジヒドロウラシル、1’-(2,4-ジクロロベンジル)、2’-アミノエチル-1’-(4,6-ジフルオロベンズイミダゾリル)、N6-メチルアデニン、7-デアザグアノシン、イソグアノシン、イソシトシン、プリン-2,6-ジアミン、5-(N-ベンジルカルボキシアミド)-2’-デオキシウラシル、5-ベンジルウラシル、5-ナフチルウラシル、5-トリプトアミノウラシル、5-イソブチルウラシル、2-ニトロピロール、2-ニトロ-4-プロピニルピロール、4-[3-(6-アミノヘキサンアミド)-1-プロピニル]-2-ニトロピロール、7-(2,2’-ビチエン-5-イル)イミダゾ[4,5-b]ピリジンが挙げられる。
 リン酸ジエステル結合部分の修飾としては、例えば、P(O)O基が、P(O)S(チオエート)、P(S)S(ジチオエート)、P(O)NR(アミデート)、P(O)R、R(O)OR’、COまたはCH(ホルムアセタール)または3’-アミン(-NH-CH-CH-)が挙げられる(ここで、RまたはR’は水素原子、メチル基、エチル基などである)。
 連結基としては、例えば、-O-、-N-または-S-が挙げられ、これらの連結基を通じて隣接するヌクレオチドに結合し得る。
 修飾はまた、3’および5’の末端修飾を含んでもよい。末端修飾としては、例えば、ポリエチレングリコール、アミノ酸、ペプチド、inverted dT、核酸、ヌクレオシド、ミリストイル、リトコール酸オレイル、ドコサニル、ラウロイル、ステアロイル、パルミトイル、オレオイル、リノレオイル、その他脂質、ステロイド、コレステロール、カフェイン、ビタミン、色素、蛍光物質、抗癌剤、毒素、酵素、放射性物質、ビオチンを含む修飾が挙げられる。
 オリゴヌクレオチドの合成法としては、特に限定されないが、例えば、ホスホロアミダイト法により合成することができる。この方法はオリゴヌクレオチドを3’末端から固相合成するものである。最初のヌクレオシドはControlled Porous Glass(CPG)やポリマーなどのサポートに結合している。反応させたくないアミノ基や水酸基には保護基を付加し、目的の水酸基とのみカップリング反応が起るようにする。第2番目のヌクレオチドは保護基と活性基の付いたアミダイト体として供給し、第1番目のヌクレオシドとリン酸基部分でカップリングする。その後、5’水酸基の保護基を除去し、第3番目のヌクレオチドと反応させる。この反応を繰り返すことで目的の配列を持ったオリゴヌクレオチドを合成することができる。ホスホロアミダイト法による化学合成は一般的に行われている方法であり、その詳細は、杉浦幸雄編、「核酸<1>核酸の合成と分析(生物薬科学実験講座)」、第2巻、株式会社廣川書店、2005年1月20日などに記載のとおりである。ホスホロアミダイト法を用いてオリゴヌクレオチドの化学合成を行う場合、一般に市販の核酸合成機が用いられる。目的配列に含まれるモノヌクレオチドのアミダイト体が入ったボトルを合成機に装着し、設定したプログラムに基づいてヌクレオチドを一つ一つ結合していく。したがって、使用したアミダイト体以外の修飾ヌクレオチドが主成分として最終産物に含まれることはない。しかし、誤ったプログラムを使用したり、アミダイト体が入ったボトルの装着順を誤ったりすると、目的配列と異なる配列が合成される可能性がある。最終産物の分子量が異なる場合は質量分析によりその誤りを見つけることができるが、隣同士のヌクレオチドの入れ替わりなど分子量が同じ場合は、配列解析を行わないとその誤りを見つけることはできない。
 本発明の方法では、まず疎水性化合物が結合した疎水性タグ化オリゴヌクレオチドを調製する。
 疎水性化合物としては、特に限定されないが、例えば、鎖状炭化水素、環状炭化水素、芳香族炭化水素、これらの誘導体が挙げられる。具体例としては、アルカン、ステロイド類、ジコキシゲニン、トリフェニルメタン、ビオチン、各種疎水性蛍光物質、これらの誘導体が挙げられる。アルカンとしては、特に限定されないが、好ましくは50以下の炭素数であり、例えば、オクタン、デカン、テトラデカン、ヘキサデカン、オクタデカンが挙げられる。ステロイド類としては、特に限定されないが、例えば、ステロール類(例えば、コレステロール類(例えば、コレステロール、コレステロールエステル、スチグマステロール、ラノステロール、エルゴステロール)、シトステロール、エルゴステロール)、ステロイドホルモン(例えば、テストステロン、エストラジオール、プロゲステロン、コルチゾール、コルチゾン、アルドステロン、コルチコステロン、デオキシコルチコステロン)、ストロファンチジン、コレスタノールが挙げられる。好ましくはステロール類であり、より好ましくはコレステロール類である。コレステロール類は誘導体化されていてもよく、コレステロール誘導体としては、例えば、水素添加したジヒドロコレステロール、低級または高級脂肪酸とのエステル体が挙げられる。具体例としては、ヒドロキシステアリン酸コレステリル、オレイン酸コレステリル、イソステアリン酸コレステリル、ラノリン脂肪酸コレステリル、マカデミアナッツ油脂肪酸コレステリル、ノナン酸コレステリル、ステアリン酸コレステリル、酪酸コレステリルが挙げられ、これらは市販されている。ビタミンA、ビタミンD、ビタミンE、ビタミンKなどであってもよい。トリフェニルメタンの誘導体としては、特に限定されないが、例えば、ジメトキシトリチル基(DMT)を含む化合物、モノメトキシトリチル基(MMT)を含む化合物が挙げられる。蛍光物質としては、FAM(5’-カルボキシフルオレセイン)骨格を含む化合物、N-エチル-N’-[5-(N”-スクシンイミジルオキシカルボニル)ペンチル]インドカルボシアニン(N-Ethyl-N'-[5-(N"-succinimidyloxycarbonyl)pentyl]indocarbocyanine)骨格を含む化合物、スルホローダミン(1H,5H,11H,15H-Xantheno[2,3,4-ij:5,6,7-i'j']diquinolizin-18-ium, 9-(2-sulfo-4-chlorosulfophenyl)-2,3,6,7,12,13,16,17-octahydro-,inner salt)骨格を含む化合物が挙げられる。
 オリゴヌクレオチドに疎水性化合物を結合する方法としては、特に限定されない。例えば、オリゴヌクレオチドにアミノ基を導入して、疎水性化合物のカルボキシル基とカップリングさせることができる。その際、縮重合剤としてエチル-3-カルボジイミド塩酸塩とN-ヒドロキシスクシンイミドなどを用いることができる。この方法はタンパク質の固定化などで一般に使用されている方法である。オリゴヌクレオチドにアミノ基を導入する方法は既に確立されており、ホスホロアミダイト法を用いて付加することができる。5’末端にアミノ基を導入する場合は5’-TFA-アミノヘキシルアミダイトなどを使用することができる。3’末端にアミノ基を導入する場合はT-C6(NH-TFA)CPGサポートなどを使用することができる。オリゴヌクレオチドの途中に導入する場合は、ピリミジンの5位やプリンの8位にC6リンカーなどを挟んでアミノ基が結合したアミダイトを用い、ホスホロアミダイト法で作製することができる。
 また、オリゴヌクレオチドにアミノ基を導入し、疎水性化合物に活性基を導入し、これらを混合することでオリゴヌクレオチドに疎水性化合物を結合することができる。疎水性化合物に使用する活性基としては、特に限定されないが、例えば、P-ニトロフェニルカルボニル基、マレイミド基、N-ヒドロキシスクシンイミド基、カルボキシル基、アルデヒド基、アミノキシ基が挙げられる。また、オリゴヌクレオチドに活性基を付加し、疎水性物質にアミノ基を付加してもよい。アミノ基としてはオリゴヌクレオチドや疎水性化合物にもともと含まれているものを用いてもよい。チオール基やシアノブロモ基を用いて疎水性化合物を結合することもできる。
 さらに、アミノ基とチオール基の両方とカップリングすることができる化合物を用いてチオール基を有する疎水性化合物をオリゴヌクレオチドに導入することが可能である。このような化合物としては、特に限定されないが、例えば、BMPS(N-(β-Maleimidopropyloxy)succinimide ester)が挙げられる。また、ヒドラジン基とベンゾアルデヒド基とのカップリングを利用したHydraLink(登録商標)、アルキンとアジド化合物との反応であるクリックケミストリーの利用などが挙げられる。
 疎水性化合物を含むアミダイトを用いて、オリゴヌクレオチド合成中に疎水性化合物を付加することもできる。このようなアミダイトとしては、特に限定されないが、例えば、TEG(Tetraethylene Glycol)コレステロールCED OP(ChemGenes社;CLP-2704)、コレステロール(TEG)CED OP(ChemGenes社;CLP-2703)、コレステロール3’-lcaa CPG(ChemGenes社;N-9166-05)、コレステリルTEGホスホロアミダイト(Glen Research社;10-1975-95)、3’-コレステリルTEG CPG(Glen Research社;20-2975-01)、DNP-TEG CED OP(ChemGenes社;CLP-9907)、Dabcyl CED OP(ChemGenes社;CLP-1522)、6-FAMホスホロアミダイト(ChemGenes社;CLP-9777)、テトラクロロフルオレセインホスホロアミダイト(ChemGenes社;CLP-9778)、フルオレセインCED OP(ChemGenes社;CLP-4282)、ソラレン(Psoralen)ホスホロアミダイト(ChemGenes社;CLP-6644)、Cy3ホスホロアミダイト(ChemGenes社;CLP-1528)、Cy5ホスホロアミダイト(ChemGenes社;CLP-9800)、5-カルボキシテトラメチルローダミン(5-carboxytetramethylrhodamine:5-TAMRA)CED OP(ChemGenes社;CLP-9066)、アクリジンホスホロアミダイト(Glen Research社;10-1973-95)が挙げられる。
 例えば、アプタマー医薬品では末端にポリエチレングリコール(PEG)を付加することがよく行われる。この場合、ホスホロアミダイト法を用いて末端にアミノ基が結合したアプタマーを化学合成し、精製後にPEGをカップリングすることで最終産物を得る。このようなタイプの核酸医薬品の場合、精製後のアミノ基が結合したオリゴヌクレオチドを一部取り、カップリング用の活性基を有する疎水性化合物と混合することで、疎水性タグ化オリゴヌクレオチドを得ることができる。
 核酸医薬品がその製造過程でアミノ基を有さない場合は、ホスホロアミダイト法で目的配列を固相合成した後に、目的のオリゴヌクレオチドが結合したサポートを一部取り、そこにコレステロールアミダイトをカップリングすることができる。また、配列解析用の小型のカラムを別途核酸合成機に装着し、目的オリゴヌクレオチドの合成後に小型カラムだけ追加でコレステロールアミダイトをカップリングすることができる。
 一般にオリゴヌクレオチドの合成においては、DMTまたはMMTが合成に用いるアミダイトの5’末端に保護基として付加されており、核酸合成後、脱保護処理により除去される。このDMTとMMTは疎水性が強いので、これらの除去を行わずに疎水性タグ化オリゴヌクレオチドとして使用可能である。
 疎水性化合物の結合場所はオリゴヌクレオチドの5’末端、3’末端、またはその途中であってよいが、好ましくは5’末端または3’末端、より好ましくは5’末端にあるのがよい。また、オリゴヌクレオチドに結合している疎水性化合物の数は、特に限定されないが、好ましくは1つまたは2つ、より好ましくは1つである。疎水性化合物が2つ結合している場合は、5’末端と3’末端にそれぞれ結合していることが好ましく、疎水性化合物の種類が異なっていることがより好ましい。
 本発明の方法では、次いで上記疎水性タグ化オリゴヌクレオチドを分解して疎水性タグ化断片を得る。断片化する方法としては、特に限定されないが、例えば、ヌクレアーゼなどの酵素による分解、化学的および/または物理的分解が挙げられる。ここでヌクレアーゼとは、RNAヌクレアーゼ、DNAヌクレアーゼ、エンドヌクレアーゼ、エキソヌクレアーゼを含む。
 エンドヌクレアーゼとしては、特に限定されないが、例えば、Mircrococcal、DNaseI、ヌクレアーゼP1、ヌクレアーゼS1、ベンゾナーゼ、マングビーンヌクレアーゼ、ヌクレアーゼS7、BAL31ヌクレアーゼ、Neurospora crassaヌクレアーゼ、RNase H、RNase V1、RNase III、RNase HII、RNase A、RNase T1、RNase T2、mRNA Interferase-MazF,RNase I、RNase II、RNase III、RNase Phy M、RNase U2、Ribozyme、RNase CL3、RNase E、RNase G、RNase L、RNase Pが挙げられる。好ましくはヌクレアーゼP1である。特定の塩基配列を認識して切断する制限酵素は好ましくない。
 酵素による分解の条件としては、酵素ごとに最適な緩衝液、酵素の濃度、基質の濃度、温度、反応時間が最適化されており、市販の酵素を用いる場合は添付資料の条件に従う。例えば、ヌクレアーゼP1の場合、亜鉛を含む緩衝液中、数mg/mLの修飾オリゴヌクレオチドに対して0.002U程度のヌクレアーゼP1を添加し、70℃にて15分間インキュベートすることで適当な断片を得ることができる。酵素の量(濃度)は必要な断片量により上記の5倍~100倍程度の範囲で増やしてもよい。さらに温度も必要な断片量により室温、37℃、60℃などと変更することができ、時間も5~60分間程度の範囲で行うことができる。
 化学的分解法としては、アルカリ分解法(例えば、水酸化ナトリウム、水酸化カリウム、アンモニア)、酸分解法(例えば、塩酸、硫酸、硝酸)、ホルムアミド、ジメチル硫酸、ジエチルピロカーボネート、1-シクロヘキシル-3-(2-モルホリノエチル)カルボジイミドメト-p-トルエンスルホナート(1-cyclohexyl-3-(2-morpholinoethyl)carbodiimidine metho-p-toluene sulfonate)、β-エトキシ-α-ケトブチルアルデヒド、重亜硫酸塩、エチルニトロソ尿素、メチジウムプロピル-EDTA、Fe(II)、Pb2+、Eu3+、Mn2+、Mg2+などを用いる方法がある。アルカリ分解法としては、例えば、0.1N水酸化ナトリウムを疎水性タグ化オリゴヌクレオチドと混合し数時間室温で放置する方法が挙げられる。また、加熱してもよい。酸分解法としては、例えば、0.1N塩酸または0.1Nトリフルオロ酢酸を疎水性タグ化オリゴヌクレオチドと混合し数時間室温で放置する方法が挙げられる。また、加熱してもよい。
 物理的分解法としては、例えば、加熱分解法、超音波分解法、微細管通過による力学的分解法、光による分解法が挙げられる。
 分解方法は1種類の方法でもよいし、複数の方法を組み合わせてもよい。例えば、エンドヌクレアーゼにより1カ所または数カ所を切断した後にエキソヌクレアーゼによりさらに切断する方法、化学的分解により1カ所または数カ所を切断した後にエキソヌクレアーゼによりさらに切断する方法、化学的分解後にホスホジエステラーゼによりリン酸を取り除く方法が挙げられる。これらの分解方法は、疎水性タグ化オリゴヌクレオチドの長さ、修飾、疎水性化合物の種類に応じて適宜選択される。
 本発明の方法では、次いで上記疎水性タグ化断片を逆相クロマトグラフィーにより分離し、質量分析に供してマススペクトルを取得する。
 逆相クロマトグラフィーに用いるカラムの担体としては、疎水性タグ化断片が一般的な再現性をもって分離できる限り、特に限定されず、当業者によって適宜設定され得る。例えば、シリカやポリマー樹脂、シリカの一部をエチレン架橋した担体が挙げられ、好ましくは化学的に安定なシリカの一部をエチレン架橋した担体である。
 担体の官能基としては、疎水性タグ化断片が解析可能なレベルに分離できる限り、特に限定されず、当業者によって適宜設定され得るが、例えば、オクタデシル基、オクチル基、ブチル基、フェニル基が修飾された担体や、ポリマー樹脂に疎水性の官能基が修飾された担体が挙げられる。
 担体の粒子径としては、疎水性タグ化断片が解析可能なレベルに分離できる限り、特に限定されず、当業者によって適宜設定され得るが、好ましくは1.5~5μmであり、より好ましくは1.5~2μmである。
 逆相クロマトグラフィーに用いる移動相としては、特に限定されないが、例えば、リン酸緩衝液や酢酸アンモニウム緩衝液が挙げられる。
 逆相クロマトグラフィーの条件としては、疎水性タグ化断片と非タグ化断片とが解析可能なレベルで分離できる限り、特に限定されず、当業者によって適宜設定され得るが、例えば、カラムの温度は20~80℃、移動相の組成はアイソクラテックまたは2液以上のグラジエントが挙げられる。これらの条件は、疎水性タグ化断片の性質に応じて、質量分析に適した分離が得られるように適宜選択される。
 質量分析に用いる質量分析計としては、特に限定されないが、例えば、ESI法、APCI法、APPI法、MALDI法、FAB法を利用するものが挙げられる。
 質量分析を行うにあたり最も困難なことの一つは、分子量差が1Daしかないシチジン一リン酸とウリジン一リン酸を区別することである。そのため得られる質量数の誤差は1Da未満である必要がある。質量分析の条件としては、上記分解能を有している限り、特に限定されず、当業者によって適宜設定され得る。
 本発明の方法では、次いで上記マススペクトルを解析する。
 本発明で得られるクロマトグラムは、疎水性タグ化断片由来のピークと、非タグ化断片由来のピークからなる。これらのピークは溶出時間が大きく異なることから、容易に区別することができる。オリゴヌクレオチドの配列の決定には、疎水性タグ化断片由来のピークを利用する。クロマトグラムから一定のパラメーターを用いてピークを検出し、各ピークの開始時点と終了時点を確認する。パラメーターは一般的に使用されるものでよく、当業者によって容易に適宜設定され得る。各ピークの開始時点と終了時点間に得られたマススペクトルを積算し、そのピークの平均的なマススペクトルを得る。平均的なマススペクトルから一定の条件を満たすシグナルについて、m/zの値とその価数を確認する。この条件は、特に限定されないが、例えば、イオン強度が2000以上かつ最大強度のスペクトルに対する相対強度が20%以上が挙げられる。本発明で得られるマススペクトルはネガティブイオンモードであるので、m/zの値にプロトンの質量(1.00728Da)を加算し、その和と価数の積により断片の分子量を得る。ヌクレオチド数が1異なる2種類の疎水性タグ化断片の分子量差を算出し、この分子量差と構成モノヌクレオチドの分子量とを対応させることにより、配列を決定する。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 (実施例1)
 (解析対象のオリゴヌクレオチド)
 核酸医薬品「MACUGEN」(登録商標)の有効成分であるオリゴヌクレオチド(以下、MACUGENと記載する)と同一の配列を有し、コレステロール骨格を含む式(I):
Figure JPOXMLDOC01-appb-C000001
で表される疎水性化合物(Chol;分子量:662.96;モノアイソトピック質量:662.500;分子式:C3968NO)が5’末端に結合した、以下の配列のオリゴリボヌクレオチド(Chol-MACUGEN)を解析した。
 (5’)Chol-C(F)G(M)G(M)AAU(F)C(F)A(M)G(M)U(F)G(M)A(M)A(M)U(F)G(M)C(F)U(F)U(F)A(M)U(F)A(M)C(F)A(M)U(F)C(F)C(F)G(M)-idT(3’)
 上記配列において、カッコ内は修飾を意味し、(F)はリボースの2’位がフッ素原子で修飾されたもの、(M)はリボースの2’位がO-メチル基で修飾されたものを示す。5’末端から第4番目と第5番目のヌクレオチドは非修飾のアデノシン一リン酸(分子量:329.206;モノアイソトピック質量:329.053;分子式:C1012P)である。
 上記配列に含まれるモノヌクレオチドは以下のとおりである。
 略称A(M):式(II)で表されるアデノシン一リン酸の2’-メトキシ体すなわち2’-メトキシアデニル酸(分子量:343.232;モノアイソトピック質量:343.068;分子式:C1114P)
Figure JPOXMLDOC01-appb-C000002
 略称G(M):式(III)で表されるグアノシン一リン酸の2’-メトキシ体すなわち2’-メトキシグアニル酸(分子量:359.232;モノアイソトピック質量:359.063;分子式:C1114P)
Figure JPOXMLDOC01-appb-C000003
 略称C(F):式(IV)で表されるシチジン一リン酸の2’-フッ素体すなわち2’-フルオロシチジル酸(分子量:307.172;モノアイソトピック質量:307.037;分子式:C11FNP)
Figure JPOXMLDOC01-appb-C000004
 略称U(F):式(V)で表されるウリジン一リン酸の2’-フッ素体すなわち2’-フルオロウリジル酸(分子量:308.157;モノアイソトピック質量:308.021;分子式:C10FNP)
Figure JPOXMLDOC01-appb-C000005
 MACUGENの3’末端のヌクレオチドは、略称idT:式(VI)で表されるチミジン一リン酸の転置体(分子量:305.201;モノアイソトピック質量:305.054;分子式:C1014P)である。
Figure JPOXMLDOC01-appb-C000006
 (5’末端コレステロールタグ化オリゴリボヌクレオチドの合成)
 Chol-MACUGENを化学合成した。化学合成はホスホロアミダイト法を用い、原料として3’-DMT-5’デオキシチミジンCPG、5’-DMT-2’-O-メチルアデノシン(n-bz)CEDホスホロアミダイト、5’-DMT-2’-O-メチルグアノシン(n-ibu)CEDホスホロアミダイト、5’-DMT-2’-フルオロシチジン(n-アセチル)CEDホスホロアミダイト、5’-DMT-2’-フルオロウリジンCEDホスホロアミダイト、5’-DMT-2’-tBDシリルアデノシン(n-bz)CEDホスホロアミダイト、コレステロール(TEG)CED OPを用いた。合成後、脱保護、逆相クロマトグラフィーによる精製、凍結乾燥を行い、純度約90%の最終産物を得た。最終産物は逆相HPLC法、ポリアクリルアミド電気泳動法、MALDI-TOF-MS法を用いて分析した。
 (アルカリ処理試料の逆相クロマトグラフィーと質量分析)
 5mg/mL Chol-MACUGEN水溶液40μL、1mol/L水酸化ナトリウム水溶液10μL、および水10μLを混合し、室温にて4時間インキュベートした。
 得られた試料をHPLC-LTQ FTを用いて分析した。分析条件は以下のとおりである。
 HPLC:Alliance 2795セパレーションモジュール(Waters社製)
 分析カラム:Acquity UPLC(登録商標) BEH C18(Waters社製;粒子径:1.7μm;カラムサイズ:2.1mm×50mm)
 移動相A:100mM ヘキサフルオロイソプロパノール(HFIP)/8.6mM トリエチルアミン(TEA)水溶液
 移動相B:100mM HFIP/8.6mM TEAメタノール溶液
 質量分析計:LTQ FT(Thermo Fisher Scientific社製)
 イオン化法:ESI
 イオン極性:負イオンモード
 測定m/z範囲:m/z 400-2000
 得られた質量分析クロマトグラムを図1に示す。試料に含まれるChol-MACUGEN断片の分子量をマススペクトルから算出した。結果を表1に示す。
 図1および表1より明らかなように、Chol-MACUGEN(溶出時間52.80分)を示すピークのほかに、2つのオリゴヌクレオチド断片を示すピークが確認された。断片の質量数からそれぞれが疎水性化合物Cholに5つヌクレオチドが付加したオリゴヌクレオチド断片(CF5p)および疎水性化合物Cholに4つヌクレオチドが付加したオリゴヌクレオチド断片(CF4p)であることが推定された。これらの分子量差は2426.7-2097.7=329.0Daであり、この分子量差が非修飾アデノシン一リン酸(A)の分子量と一致することから、Chol-MACUGENの5’末端から第5位のヌクレオチドはアデノシン一リン酸(A)と推定された。
 アルカリ処理では、以下に示すとおり、非修飾リボヌクレオチドの3’側のリン酸エステル結合が加水分解される。配列が正しい場合、Chol-MACUGENの5’末端から第4番目と第5番目の非修飾アデノシン一リン酸の部分で切断され、3’末端にリン酸基が付加した断片が生成するはずである。実験結果はこれらの断片の存在を示しており、少なくとも第4番目と第5番の配列が正しいことが示された。
Figure JPOXMLDOC01-appb-C000008
 Chol-MACUGENの分解物には、5’末端に疎水性化合物Cholが結合した疎水性タグ化断片と、疎水性化合物Cholがないオリゴヌクレオチドのみからなる非タグ化断片とがある。逆相クロマトグラフィーにおいて、溶出時間の長い疎水性タグ化断片は、溶出時間の短い非タグ化断片と容易に区別でき、疎水性タグ化断片はヌクレオチド数が多い順に溶出し、1ヌクレオチドの長さの違いも区別できることがわかった。
 (ヌクレアーゼP1処理試料の逆相クロマトグラフィーと質量分析)
 5mg/mL Chol-MACUGEN水溶液40μL、緩衝液(100mM酢酸ナトリウム(pH5.2)、100mM NaCl、および50mM ZnCl)5μL、水5μL、および0.01U/μL ヌクレアーゼP1(和光純薬工業株式会社)水溶液1μLを混合し、70℃にて15分間インキュベートした。
 得られた試料を上記のアルカリ処理試料と同様にしてHPLC-LTQ FTを用いて分析した。
 得られた質量分析クロマトグラムを図2に示す。試料に含まれるChol-MACUGEN断片の分子量をマススペクトルから算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000009
 図2および表2より明らかなように、Chol-MACUGEN(溶出時間52.17分)を示すピークのほかに、多数の疎水性タグ化断片を示すピークが確認された。表2では、疎水性化合物Cholにn個のヌクレオチドが付加した断片をCFnと表す。いずれの断片も3’末端は水酸基であった。
 ヌクレアーゼP1処理では、以下に示すとおり、修飾ヌクレオチドおよび非修飾ヌクレオチドのリン酸エステル結合が加水分解され、3’末端は水酸基となる。
Figure JPOXMLDOC01-appb-C000010
 図2および表2より、例えば、表2のCF26は疎水性化合物に26ヌクレオチドが付加した断片であると推定され、CF25は疎水性化合物に25ヌクレオチドが付加した断片であると推定された。これらの分子量差は9173.70-8866.66=307.04Daであり、この分子量差がC(F)の分子量と一致することから、Chol-MACUGENの5’末端から第26位のヌクレオチドはC(F)と推定された。同様にして他のヌクレオチドの同定を試みた結果、22ヌクレオチドの配列を決定することができた。これらの配列は目的配列と一致することが確認された。CF27に該当するオリゴヌクレオチド断片を示すピークは検出されなかったが、CF28とCF26との分子量差は663.1Daであり、この分子量差に該当するヌクレオチドはG(M)-idT(理論値:663.1Da)のほかに考えられない。idTは核酸合成でCPG体として供給されたものなので配列の誤りを起こす可能性はないため、Chol-MACUGENの5’末端から第27位のヌクレオチドはG(M)、第28位のヌクレオチドはidTと推定された。このように目的のオリゴヌクレオチドに疎水性化合物を結合することで、迅速かつ高精度に配列決定が行える。疎水性化合物を結合しない場合は、図2の上段に示すように非常に多くの断片が混在し、未知配列の解析をすることは不可能である。
 (高活性ヌクレアーゼP1処理試料の逆相クロマトグラフィーと質量分析)
 5mg/mL Chol-MACUGEN水溶液8μL、緩衝液(100mM酢酸ナトリウム(pH5.2)、100mM NaCl、および50mM ZnCl)1μL、および0.2U/μL ヌクレアーゼP1水溶液1μLを混合し、70℃にて30分間インキュベートした。
 得られた試料を上記のアルカリ処理試料と同様にしてHPLC-LTQ FTを用いて分析した。
 得られた質量分析クロマトグラムを図3に示す。試料に含まれるChol-MACUGEN断片の分子量をマススペクトルから算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000011
 図3および表3より明らかなように、Chol-MACUGENを示すピークは検出されなかったが、比較的ヌクレオチド数が少ない疎水性タグ化断片を示すピークが多く検出され、図2では検出されなかったCF3、CF2およびCF1に該当するオリゴヌクレオチド断片を示すピークが検出された。これらの断片の質量分析の結果から、12ヌクレオチドの配列を決定することができ、さらに上記分析において決定できなかった5’末端から第1位~第4位のヌクレオチドを決定することができた。これらの配列は目的配列と一致することが確認された。CF2に該当するオリゴヌクレオチド断片を示すピークは検出されなかったが、CF3とCF1との分子量差は718.2Daであり、この分子量差に該当するヌクレオチドはG(M)G(M)(理論値:718.1Da)のほかに考えられない。したがって、Chol-MACUGENの5’末端から第2位および第3位のヌクレオチドはいずれもG(M)と推定された。CF15に関してはピークが検出されなかったため、CF16とCF14の分子量差から該当する2つのヌクレオチドを推定した。分子量差666.1Daに一致するものはC(F)G(M)またはG(M)C(F)であることがわかった。同様に、CF9に該当するピークが検出されなかったため、CF10とCF8の分子量差から2つのヌクレオチドを推定したところ、5’末端から第10位および第9位のヌクレオチドはU(F)G(M)またはG(M)U(F)と推定された。
 上記表2および表3の実験結果を合わせることで、化学合成により得られたChol-MACUGENの配列はMACUGENの配列と完全に一致することが証明された。このように、疎水性タグ化オリゴヌクレオチドをヌクレアーゼで断片化し、この混合物を逆相クロマトグラフィーで分離、溶出した後に質量分析することによって、未知のオリゴヌクレオチドの配列を決定できることがわかった。
 (ベンゾナーゼ処理試料の逆相クロマトグラフィーと質量分析)
 5mg/mL Chol-MACUGEN水溶液40μL、緩衝液(200mM Tris(pH8.9)、150mM MgCl)5μL、および0.5U/μL ベンゾナーゼ(Novagen社)水溶液2μL、水3μLを混合し、37℃にて1時間インキュベートした。
 得られた試料を上記のアルカリ処理試料と同様にしてHPLC-LTQ FTを用いて分析した。
 得られた質量分析クロマトグラムを図4に示す。試料に含まれるChol-MACUGEN断片の分子量をマススペクトルから算出した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000012
 図4および表4より明らかなように、Chol-MACUGEN(溶出時間50.83分)を示すピークのほかに、8種類の疎水性タグ化断片を示すピークが確認できた。表4では、疎水性化合物Cholにn個のヌクレオチドが付加した断片をCFnと表す。いずれの断片も3’末端は水酸基であった。
 各断片のモノアイソトピックピークから分子量を算出し、上述と同様に配列を決定した。この結果、5’末端から第17位、第7位および第6位のヌクレオチドはそれぞれU(F)、C(F)、U(F)であることが推定された。これらはMACUGENの配列と一致しており、合成したオリゴヌクレオチドの少なくともCF6、7、17は正しい配列であることが証明された。また、CF15に該当するピークが検出されなかったが、CF16とCF14に該当するピークが検出されたため、それらの分子量差666.1Daから、5’末端から第16位および第15位のヌクレオチドはC(F)G(M)またはG(M)C(F)と推定された。
 このように、疎水性タグの付いた修飾オリゴヌクレオチドをベンゾナーゼで断片化し、この混合物を逆相クロマトグラフィーで分離、溶出した後に質量分析することによって、未知配列を決定できることがわかった。
 (実施例2)
 (解析対象のオリゴヌクレオチド)
 MACUGENと同一の配列を有し、オクタデカン骨格を含む式(VII):
Figure JPOXMLDOC01-appb-C000013
で表される疎水性化合物(ODT;分子量:553.86;モノアイソトピック質量:553.404;分子式:C3157S)が5’末端に結合した、以下の配列のオリゴリボヌクレオチド(ODT-MACUGEN)を解析した。
 (5’)ODT-C(F)G(M)G(M)AAU(F)C(F)A(M)G(M)U(F)G(M)A(M)A(M)U(F)G(M)C(F)U(F)U(F)A(M)U(F)A(M)C(F)A(M)U(F)C(F)C(F)G(M)-idT(3’)
 (5’末端ODTタグ化オリゴリボヌクレオチドの合成)
 MACUGENと同一の配列を有し、式(VIII):
Figure JPOXMLDOC01-appb-C000014
で表される5'末端構造を有するオリゴリボヌクレオチド(「NH-MACUGEN」)を用いて、以下に示すように、5’末端にODTが付加した疎水性タグオリゴヌクレオチドを合成した。なお、MACUGENの5'末端に40kDaのポリエチレングリコールが結合しているが、それは、NH-MACUGENを化学合成し精製した後にPEGを結合することにより得られている。
Figure JPOXMLDOC01-appb-C000015
 NH-MACUGENはホスホロアミダイト法を用いて化学合成した。これにクロスリンカー試薬である3-マレイミドプロピオン酸NHS(BMPS)を混合してBMPS-MACUGENを作り、さらに1-オクタデカンチオールを反応させて、以下のように、ODT-MACUGENを合成した。
 5mM NH-MACUGEN水溶液3μL、500mM HEPES緩衝液(pH8.5)2μL、水5μL、50mM BMPS(Thermo Fisher Scientific社)のDMSO溶液2μL、およびDMSO 8μLを混合し、室温にて3時間インキュベートした。さらに、50mM BMPSのDMSO溶液1μLを添加し、室温にて3時間インキュベートした(NH-MACUGENとBMPSとのカップリング)。
 得られた溶液20μL、および200mM 1-オクタデカンチオール(和光純薬工業株式会社)のクロロホルム/DMSO溶液(クロロホルム:DMSO=1:1)20μLを混合し、室温にて16時間インキュベートした(BMPS-MACUGENと1-オクタデカンチオールとのカップリング)。次いで、クロロホルムを添加して混合後、上清を分取し、濃縮した(ODT-MACUGEN溶液)。この溶液中のODT-MACUGENの濃度は計算上3mMである。
 (ヌクレアーゼ処理試料の逆相クロマトグラフィーと質量分析)
 ODT-MACUGEN水溶液1μL、および0.5U/μL ヌクレアーゼP1水溶液(緩衝液(100mM酢酸ナトリウム(pH5.2)、100mM NaCl、および50mM ZnCl)含有)1μLを混合し、70℃にて30分間インキュベートした。
 得られた試料をHPLC-LTQ FTを用いて分析した。分析条件は以下のとおりである。
 HPLC: Acquity UPLC(登録商標)(Waters社製)
 分析カラム:Acquity UPLC(登録商標) BEH C18(Waters社製;粒子径:1.7μm;カラムサイズ:1mm×100mm)
 移動相A:100mM HFIP/8.6mM TEA水溶液
 移動相B:100mM HFIP/8.6mM TEAメタノール溶液
 質量分析計:LTQ FT(Thermo Fisher Scientific社製)
 イオン化法:ESI
 イオン極性:負イオンモード
 測定m/z範囲:m/z 400-2000
 得られた質量分析クロマトグラムを図5に示す。試料に含まれるODT-MACUGEN断片の分子量をマススペクトルから算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000016
 図5および表5より明らかなように、ODT-MACUGEN(溶出時間49.29分)を示すピークのほかに、多数の疎水性タグ化断片を示すピークが確認された。表5では、疎水性化合物のODTにn個のヌクレオチドが付加した断片をOFnと表す。いずれの断片も3’末端は水酸基であった。
 図5および表5より、実施例1と同様に、例えば、表5のOF21は疎水性化合物に21ヌクレオチドが付加したオリゴヌクレオチド断片であると推定され、OF20は疎水性化合物に20ヌクレオチドが付加したオリゴヌクレオチド断片であると推定された。これらの分子量差は7492.4-7149.3=343.1Daであり、この分子量差がA(M)の分子量と一致することから、ODT-MACUGENの5’末端から第21位のヌクレオチドはA(M)と推定された。同様にして他のヌクレオチドの同定を試みた結果、21ヌクレオチドの配列を決定することができた。これらの配列は目的配列と一致した。
 OF27に該当するオリゴヌクレオチド断片を示すピークは検出されず、さらにOF26については分子量の厳密な計算に必要となるモノアイソトピックピークが他のピークと重なってしまい識別できなかった。しかし、表5に示すとおり、OF26の最大強度のピークは検出されており、この最大強度から算出したOF28の分子量(9731.7Da)とOF26の分子量(9067.6Da)との差は664.1Daであることが確認された。この分子量差に該当するヌクレオチドはG(M)-idT(理論値:663.1Da)のほかに考えられない。idTは核酸合成でCPG体として供給されたものなので配列の誤りを起こす可能性はないため、ODT-MACUGENの5’末端から第27位のヌクレオチドはG(M)、第28位のヌクレオチドはidTと推定された。
 表5に示すとおり、OF28とOF25のモノアイソトピックピークから算出した分子量差は970.1Daであることが確認された。上記のとおり、5’末端から第27位のヌクレオチドはG(M)、第28位のヌクレオチドはidTと推定されることから、第26位のヌクレオチドの分子量は307.1Daとなり、C(F)と推定された。したがって、上記解析により24ヌクレオチドの配列を決定することができた。これらの配列は目的配列と一致した。
 (高活性ヌクレアーゼ処理試料の逆相クロマトグラフィーと質量分析)
 ODT-MACUGEN水溶液1μL、緩衝液(50mM酢酸ナトリウム(pH5.2)、50mM NaCl、および25mM ZnCl)0.5μL、および1U/μL ヌクレアーゼP1水溶液1μLを混合し、70℃にて30分間インキュベートした。
 得られた試料を上記のヌクレアーゼ処理試料と同様にしてHPLC-LTQ FTを用いて分析した。
 得られた質量分析クロマトグラムを図6に示す。試料に含まれるODT-MACUGEN断片の分子量をマススペクトルから算出した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000017
 図6および表6より明らかなように、ODT-MACUGEN(溶出時間49.53分)のほかに、ヌクレオチド数が少ない疎水性タグ化断片を示すピークが多く検出された。図5では検出されなかったOF3およびOF1に該当するオリゴヌクレオチド断片を示すピークも検出された。配列の同定を試みた結果、13ヌクレオチドの配列を決定することができ、これらの配列は目的配列と一致することが確認された。OF2に該当するオリゴヌクレオチド断片を示すピークは検出されなかったが、OF3とOF1との分子量差は718.1Daであり、この分子量差に該当するヌクレオチドはG(M)G(M)(理論値:718.1Da)のほかに考えられない。したがって、ODT-MACUGENの5’末端から第2位および第3位のヌクレオチドはいずれもG(M)と推定された。
 上記表5および表6の実験結果を合わせることで、化学合成により得られたオリゴヌクレオチドの配列はMACUGENの配列と完全に一致することが証明された。このように、ODT-MACUGENをヌクレアーゼで処理した試料を逆相クロマトグラフィーで分離、溶出した後に質量分析することによって、オリゴヌクレオチドの未知配列を決定できることがわかった。
 (実施例3)
 (解析対象の修飾オリゴヌクレオチド)
 5’末端に式(IX):
Figure JPOXMLDOC01-appb-C000018
で表されるジメトキシトリチル基(DMT;分子量:319.37;モノアイソトピック質量:319.133;分子式:C2119)が結合した、以下の配列のオリゴリボヌクレオチド(JR-DMT1)を解析した。
 (5’)DMT-G(M)C(F)A(M)U(F)C(M)U(F)A(M)c(3’)
 上記配列において、カッコ内は修飾を意味し、(F)はリボースの2’位がフッ素原子で修飾されたもの、(M)はリボースの2’位がO-メチル基で修飾されたものを示す。小文字はDNAを表わす。
 上記配列に含まれるモノヌクレオチドは、実施例1で示したA(M)、G(M)、C(F)、U(F)のほか、以下のとおりである。
 略称C(M):式(X)で表されるシチジン一リン酸の2’-メトキシ体すなわち2’-メトキシシチジル酸(分子量:319.208;モノアイソトピック質量:319.057;分子式:C1014P)
Figure JPOXMLDOC01-appb-C000019
 略称c:デオキシシチジン一リン酸(分子量:289.182;モノアイソトピック質量:289.046;分子式:C12P)
 (5’末端DMTタグ化オリゴリボヌクレオチドの合成)
 DMTはアミダイト体に含まれる5’水酸基の保護基であり、ホスホロアミダイト法を用いて3’末端から固相合成を行った場合、合成終了後に目的配列の5’末端に結合しているものである。したがって、実施例1や2のように配列解析用のタグを別途結合する必要がない。JR-DMT1はホスホロアミダイト法により化学合成し、最後に脱DMT処理を行わないことで得た。
 (ヌクレアーゼ処理試料の逆相クロマトグラフィーと質量分析)
 5mg/mL JR-DMT1水溶液5μL、および0.01U/μL ヌクレアーゼP1水溶液(緩衝液(20mM酢酸ナトリウム(pH5.2)、20mM NaCl、および10mM ZnCl)含有)5μLを混合し、70℃にて5分間インキュベートした。
 得られた試料をHPLC-LTQ FTを用いて分析した。分析条件は以下のとおりである。
 HPLC: Acquity UPLC(登録商標)(Waters社製)
 分析カラム:Acquity UPLC(登録商標) BEH C18(Waters社製;粒子径:1.7μm;カラムサイズ:2.1mm×50mm)
 移動相A:100mM HFIP/8.6mM TEA水溶液
 移動相B:100mM HFIP/8.6mM TEAメタノール溶液
 質量分析計:LTQ FT(Thermo Fisher Scientific社製)
 イオン化法:ESI
 イオン極性:負イオンモード
 測定m/z範囲:m/z 400-2000
 得られた質量分析クロマトグラムを図7に示す。試料に含まれるJR-DMT1断片の分子量をマススペクトルから算出した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000020
 図7および表7より明らかなように、JR-DMT1(溶出時間29.92分)を示すピークのほかに、多数の疎水性タグ化断片を示すピークが確認された。表7では、疎水性化合物のDMTにn個のヌクレオチドが付加した断片をDFnと表す。いずれの断片も3’末端は水酸基であった。これはヌクレアーゼ処理による分解物であることを示している。JR-DMT1を示すピークよりも溶出時間が長い画分にオリゴヌクレオチド断片DF1~DF7が検出された。
 各オリゴヌクレオチド断片のモノアイソトピックピークから分子量を算出し、実施例1と同様に配列を決定した。この結果、各オリゴヌクレオチド断片の分子量差から算出した配列はJR-DMT1の配列と一致した。したがって、上記合成で得られたオリゴヌクレオチドはJR-DMT1の配列であることが証明された。このように、核酸合成後に脱DMT処理しないことで疎水性タグオリゴオリゴヌクレオチドを準備することができ、迅速かつ高精度に配列解析が行えることがわかった。
 (実施例4)
 (解析対象の修飾オリゴヌクレオチド)
 5’末端に上記式(IX)で表されるDMTが結合した、以下の配列のオリゴリボヌクレオチド(JR-DMT2)を解析した。
 (5’)DMT-gcatctac(3’)
 上記配列に含まれるモノデオキシヌクレオチドは、実施例3で示したcのほか、以下のとおりである。
 略称a:デオキシアデノシン一リン酸(分子量:329.206;モノアイソトピック質量:329.053;分子式:C1012P)
 略称t:デオキシシチジン一リン酸(分子量:304.193;モノアイソトピック質量:304.046;分子式:C1013P)
 略称g:デオキシグアノシン一リン酸(分子量:313.206;モノアイソトピック質量:313.058;分子式:C1012P)
 (5’末端DMTタグ化オリゴリボヌクレオチドの合成)
 実施例3と同様、JR-DMT2はホスホロアミダイト法により化学合成し、最後に脱DMT処理を行わないことで得た。
 (ヌクレアーゼ処理試料の逆相クロマトグラフィーと質量分析)
 5mg/mL JR-DMT2水溶液5μL、および0.01U/μL ヌクレアーゼP1水溶液(緩衝液(20mM酢酸ナトリウム(pH5.2)、20mM NaCl、および10mM ZnCl)含有)5μLを混合し、70℃にて5分間インキュベートした。
 得られた試料を実施例3と同様にしてHPLC-LTQ FTを用いて分析した。
 得られた質量分析クロマトグラムを図8に示す。試料に含まれるオリゴヌクレオチド断片の分子量をマススペクトルから算出した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000021
 図8および表8より明らかなように、JR-DMT2(溶出時間27.65分)を示すピークのほかに、多数の疎水性タグ化断片を示すピークが確認された。表8でも、疎水性化合物のDMTにn個のヌクレオチドが付加した断片をDFnと表す。いずれのオリゴヌクレオチド断片も3’末端は水酸基であった。JR-DMT2を示すピークよりも溶出時間が長い画分にオリゴヌクレオチド断片DF1~DF7が検出された。
 各オリゴヌクレオチド断片のモノアイソトピックピークから分子量を算出し、実施例1と同様に配列を決定した。この結果、各オリゴヌクレオチド断片の分子量差から算出した配列はJR-DMT2の配列と一致した。したがって、上記合成で得られたオリゴヌクレオチドはJR-DMT2の配列であることが証明された。このように、核酸合成後に脱DMT処理しないことで疎水性タグオリゴオリゴヌクレオチドを準備することができ、迅速かつ高精度に配列解析が行えることがわかった。
 (実施例5)
(解析対象の修飾オリゴヌクレオチド)
 5’末端に式(XI):
Figure JPOXMLDOC01-appb-C000022
で表されるモノメトキシトリチル基(MMT;分子量:289.35;モノアイソトピック質量:289.123;分子式:C2017)が結合した、以下の配列のオリゴリボヌクレオチド(JR-MMT1)を解析した。JR-MMT1の5’末端修飾以外の構造は、JR-DMT1(実施例3)と同じである。
 (5’)MMT-G(M)C(F)A(M)U(F)C(M)U(F)A(M)c(3’)
 上記配列において、カッコ内は修飾を意味し、(F)はリボースの2’位がフッ素原子で修飾されたもの、(M)はリボースの2’位がO-メチル基で修飾されたものを示す。小文字はDNAを表わす。
 (5’末端MMTタグ化オリゴリボヌクレオチドの合成)
 MMTはアミダイト体に含まれる5’水酸基の保護基であり、ホスホロアミダイト法を用いて3’末端から固相合成を行った場合、合成終了後に目的配列の5’末端に結合しているものである。したがって、実施例1や2のように配列解析用のタグを別途結合する必要がない。JR-MMT1はホスホロアミダイト法により化学合成し、最後に脱MMT処理を行わないことで得た。
 (ヌクレアーゼ処理試料の逆相クロマトグラフィーと質量分析)
 20mg/mL JR-MMT1水溶液1μL、および0.01U/μL ヌクレアーゼP1水溶液(緩衝液(20mM酢酸ナトリウム(pH5.2)、20mM NaCl、および10mM ZnCl2)含有)1μLを混合し、70℃にて5分間インキュベートした。
 得られた試料を実施例3と同様にしてHPLC-LTQ FTを用いて分析した。
 得られた質量分析クロマトグラムを図9に示す。試料に含まれるオリゴヌクレオチド断片の分子量をマススペクトルから算出した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000023
 図9および表9より明らかなように、JR-MMT1(溶出時間29.96分)を示すピークのほかに、多数の疎水性タグ化断片を示すピークが確認できた。疎水性化合物のMMTにn個のヌクレオチドが付加したオリゴヌクレオチド断片をMFnと表す。いずれのオリゴヌクレオチド断片も3’末端は水酸基であった。JR-MMT1を示すピークよりも遅い溶出時間にオリゴヌクレオチド断片MF1~MF7が検出された。
 各オリゴヌクレオチド断片のモノアイソトピックピークから分子量を算出し、実施例1と同様に配列を決定した。この結果、各オリゴヌクレオチド断片の分子量差から算出した配列はJR-MMT1の配列と一致した。したがって、上記合成で得られたオリゴヌクレオチドはJR-MMT1の配列であることが証明された。このように、核酸合成後に脱MMT処理しないことで疎水性タグオリゴオリゴヌクレオチドを準備することができ、迅速かつ高精度に配列解析が行えることがわかった。
 本発明によれば、従来の方法では解析不可能なオリゴヌクレオチド、特に通常の方法では配列を決定できない修飾オリゴヌクレオチドの配列を迅速かつ高精度に決定するための方法を提供することができる。
 疎水性化合物のタグ化を行わないで配列解析する従来法では、質量分析で得られた質量数に該当するオリゴヌクレオチド断片が複数となり、エラー配列の有無を正確に判別できなかった。本発明では疎水性タグが付加した断片のみが解析対象となるため、得られた質量数に対する断片は一つに定めることができ、エラー配列を正確に検出することができる。迅速かつ高精度に核酸医薬品中のオリゴヌクレオチドの配列を確認することができるため、核酸医薬品の優れた品質保証法を提供することができる。

Claims (16)

  1.  オリゴヌクレオチドの配列を決定するための方法であって、
     (1)疎水性化合物が結合した疎水性タグ化オリゴヌクレオチドを調製する工程、
     (2)該疎水性タグ化オリゴヌクレオチドを分解して疎水性タグ化断片を得る工程、
     (3)該疎水性タグ化断片を逆相クロマトグラフィーにより分離し、質量分析に供してマススペクトルを取得する工程、および
     (4)該マススペクトルを解析する工程、
    を含む方法。
  2.  前記疎水性化合物が、アルカンである、請求項1に記載の方法。
  3.  前記アルカンが、50以下の炭素数である、請求項2に記載の方法。
  4.  前記アルカンが、オクタデカンである、請求項2または3に記載の方法。
  5.  前記疎水性化合物が、ステロイド類である、請求項1に記載の方法。
  6.  前記ステロイド類が、コレステロール類である、請求項5に記載の方法。
  7.  前記疎水性化合物が、トリフェニルメタンである、請求項1に記載の方法。
  8.  前記疎水性タグ化オリゴヌクレオチドが、ヌクレアーゼにより分解される、請求項1~7のいずれかの項に記載の方法。
  9.  前記疎水性タグ化オリゴヌクレオチドが、化学的に分解される、請求項1~7のいずれかの項に記載の方法。
  10.  前記疎水性タグ化オリゴヌクレオチドが、アルカリまたは酸により分解される、請求項9に記載の方法。
  11.  前記疎水性タグ化オリゴヌクレオチドが、物理的に分解される、請求項1~7のいずれかの項に記載の方法。
  12.  前記疎水性タグ化オリゴヌクレオチドが、熱または超音波により分解される、請求項11に記載の方法。
  13.  前記オリゴヌクレオチドが、修飾オリゴヌクレオチドである、請求項1~12のいずれかの項に記載の方法。
  14.  前記修飾オリゴヌクレオチドが、2’-メトキシ化ヌクレオチドまたは2’-フッ素化ヌクレオチドを含む、請求項13に記載の方法。
  15.  前記修飾オリゴヌクレオチドが、ホスホロチオエート結合を含む、請求項13または14に記載の方法。
  16.  前記オリゴヌクレオチドが、2~100ヌクレオチドの長さである、請求項1~15のいずれかの項に記載の方法。
PCT/JP2012/059160 2011-04-04 2012-04-04 オリゴヌクレオチドの配列決定法 WO2012137804A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011083205 2011-04-04
JP2011-083205 2011-04-04

Publications (1)

Publication Number Publication Date
WO2012137804A1 true WO2012137804A1 (ja) 2012-10-11

Family

ID=46969198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059160 WO2012137804A1 (ja) 2011-04-04 2012-04-04 オリゴヌクレオチドの配列決定法

Country Status (1)

Country Link
WO (1) WO2012137804A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519665A (ja) * 2000-10-19 2004-07-02 ターゲット ディスカバリー, インコーポレイテッド オリゴマー配列の決定のための質量欠損標識
JP2004533608A (ja) * 2001-03-30 2004-11-04 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク 固相捕獲可能なジデオキシヌクレオチドおよび質量分析を使用する高い忠実度のdnaシーケンシング

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519665A (ja) * 2000-10-19 2004-07-02 ターゲット ディスカバリー, インコーポレイテッド オリゴマー配列の決定のための質量欠損標識
JP2004533608A (ja) * 2001-03-30 2004-11-04 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク 固相捕獲可能なジデオキシヌクレオチドおよび質量分析を使用する高い忠実度のdnaシーケンシング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHOHEI SHIOYAMA ET AL.: "Shitsuryo Bunsekikei o Mochiita Kakusan Iyakuhin no Enki Hairetsu Kakunin", DAI 59 KAI ANNUAL CONFERENCE ON MASS SPECTROMETRY (2011) KOEN YOSHISHU, 1 September 2011 (2011-09-01), pages 17 *

Similar Documents

Publication Publication Date Title
AU2008275915B2 (en) Method for generating aptamers with improved off-rates
US20220073962A1 (en) Methods for rna analysis
CN106661621B (zh) 用于增强rna产生的方法和工具
US20090004667A1 (en) Method for generating aptamers with improved off-rates
AU2014239250A1 (en) Quantitative assessment for cap efficiency of messenger RNA
EP1489171B1 (en) Functional molecule and process for producing the same
JP5766610B2 (ja) 質量分析法による核酸分子の配列決定
US8703416B2 (en) Method for purification and identification of sperm cells
WO2017068087A1 (en) Oligonucleotide detection method
EP1539953A2 (en) Proximity-aided synthesis of templated molecules
JP2021522815A (ja) 超並列シーケンシングを用いるlnaオリゴヌクレオチド治療法の品質管理法
JP2024010243A (ja) 直接核酸配列決定方法
WO2012137804A1 (ja) オリゴヌクレオチドの配列決定法
WO2012174496A2 (en) Method for purification and identification of sperm cells
CN117677710A (zh) 用于定量评估mRNA加帽效率的测定
AU2015249081B2 (en) Method for generating aptamers with improved off-rates
EP3187584B1 (en) Method for non-enzymatic combination of nucleic acid chains
KR20240082376A (ko) 구아닌이 풍부한 올리고뉴클레오티드의 분자종을 분리하는 방법
KR20240021235A (ko) 단일 가닥 rna 정제 방법
CN117616133A (zh) 富集环状多核糖核苷酸的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP