WO2012137753A1 - 表示装置および表示装置の制御方法 - Google Patents

表示装置および表示装置の制御方法 Download PDF

Info

Publication number
WO2012137753A1
WO2012137753A1 PCT/JP2012/059030 JP2012059030W WO2012137753A1 WO 2012137753 A1 WO2012137753 A1 WO 2012137753A1 JP 2012059030 W JP2012059030 W JP 2012059030W WO 2012137753 A1 WO2012137753 A1 WO 2012137753A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio
luminance
color
pixel
pixels
Prior art date
Application number
PCT/JP2012/059030
Other languages
English (en)
French (fr)
Inventor
健 稲田
大和 朝日
中野 武俊
柳 俊洋
正一 和田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2013508867A priority Critical patent/JPWO2012137753A1/ja
Publication of WO2012137753A1 publication Critical patent/WO2012137753A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • each pixel is composed of three color signals of R (red), G (green), and B (blue), and each pixel has RGBX four colors obtained by adding a predetermined one color X to the above three RGB colors.
  • the present invention relates to a display device that converts and displays a converted image composed of color signals and a control method thereof.
  • a color image display device generally expresses various colors by mixing three colors of R (red), G (green), and B (blue).
  • RGB color filters are arranged for each pixel of the display panel, and light from the backlight is transmitted through these color filters, whereby RGB light is emitted.
  • Patent Documents 1 and 2 describe a method of converting RGB data into RGBW data in a liquid crystal display device having an RGBW pixel array.
  • Japanese Patent Publication Japanese Unexamined Patent Application Publication No. 2007-286618
  • Japanese Patent Publication Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2009-86054 (published on April 23, 2009)”
  • RGB and C cyan
  • M magenta
  • Y yellow
  • FIG. 13 is a diagram showing how the display looks when RGB data is converted into RGBW data by a conventional conversion method.
  • the yellow display area 60 and the white display area 61 are adjacent to each other in the left-side RGB data, but yellow is vividly displayed. However, when RGB data is converted into RGBW data, the luminance of each RGB decreases, so that the yellow color displayed in the yellow display area 60 becomes dull like the right RGBW data.
  • Patent Documents 1 and 2 do not consider this problem at all.
  • the present invention has been made in view of the above-described problems, and the object thereof is to input an image in which each pixel is composed of RGB color signals, and each pixel has a predetermined one color X for the above three RGB colors.
  • An object of the present invention is to provide a display device capable of efficiently preventing dullness of pixels displaying a dark color in a display device that converts and displays a converted image composed of four RGBX color signals.
  • the display device includes each of the red (R), green (G), and blue (B) subpixels and the fourth subpixel (X) as one pixel.
  • a display device that includes a display unit included therein, converts an input image composed of RGB color signals into a converted image composed of RGBX color signals, and displays the converted image.
  • a display unit that displays the converted image on the non-self-luminous display unit, an illumination unit that irradiates the display unit with illumination light, and vividness for all pixels of the input image.
  • the luminance of the illumination light of the illumination unit is controlled to the first luminance, and the ratio
  • the ratio detected by the detection unit is equal to or greater than the predetermined ratio
  • the brightness of the illumination light of the serial illumination unit is characterized by and a lighting control unit for controlling the high second luminance than the first luminance.
  • the display device control method includes red (R), green (G), and blue (B) subpixels and a fourth subpixel (X).
  • R red
  • G green
  • B blue
  • X fourth subpixel
  • the luminance of the illumination unit that illuminates the display unit is controlled to the first luminance and detected in the ratio detection step.
  • Ratio is above
  • the luminance of the illumination unit is characterized in that it comprises an illumination control step of controlling to a higher second luminance than the first luminance.
  • the luminance of the illumination light of the illumination unit is controlled to the first luminance.
  • the ratio of bright pixels in the input image is equal to or greater than a predetermined ratio, the luminance of the illumination light of the illumination unit is controlled to the second luminance higher than the first luminance.
  • luminance luminance (brightness of an illumination part) conventionally used can be used, for example.
  • the brightness of the illumination light is controlled to the second brightness higher than the first brightness (for example, the conventional brightness), so that dull pixels are prevented from being dull.
  • the ratio of vivid pixels is less than the predetermined ratio, vivid pixels are not conspicuous in the entire image, and the luminance of the illumination light is controlled to the first luminance (for example, conventional luminance).
  • the luminance of the illumination light is increased to the second luminance only when a bright pixel is conspicuous, so that dullness of the bright pixel is efficiently prevented.
  • a display device includes a display unit having red (R), green (G), and blue (B) subpixels and a fourth subpixel (X) in one pixel, and RGB3
  • a display device for converting an input image composed of color signals of colors into a converted image composed of RGBX4 color signals and displaying the converted image, a conversion unit for converting the input image into the converted image, and the conversion
  • a display control unit that displays an image on the non-self-luminous display unit, an illumination unit that irradiates the display unit with illumination light, and a ratio of pixels that display vivid colors to all pixels of the input image.
  • the ratio detection unit to detect and the ratio detected by the ratio detection unit are less than a predetermined ratio
  • the luminance of the illumination light of the illumination unit is controlled to the first luminance
  • the ratio detected by the ratio detection unit is the predetermined ratio If the ratio is greater than or equal to the ratio, increase the brightness of the illumination light of the illumination section.
  • a lighting control unit for controlling the high second luminance than the first luminance.
  • the display device control method includes a display having red (R), green (G), and blue (B) subpixels and a fourth subpixel (X) in one pixel.
  • the ratio detected in the ratio detection step is less than a predetermined ratio
  • the luminance of the illumination unit that illuminates the display unit is controlled to the first luminance
  • the ratio detected in the ratio detection step is greater than or equal to the predetermined ratio. If on The brightness of the illumination unit includes, an illumination control step of controlling to a higher second luminance than the first luminance.
  • FIG. 4 is a diagram for explaining a procedure when the RGB data conversion unit included in the display device illustrated in FIG. 1 converts RGB data into RGBW data, where (a) is an input RGB gradation and an added W gradation; (B) is a diagram for explaining a state in which the gradation of input RGB is multiplied by the conversion coefficient, and (c) is a gradation of W from the gradation obtained by multiplying each conversion coefficient of input RGB.
  • (d) is a figure explaining the gradation of RGBW after conversion. It is a graph which shows the curve showing the relationship between the gradation ratio used by the conversion coefficient calculating part with which the display apparatus shown in FIG. 1 is equipped, and a conversion coefficient. It is a graph which shows the relationship between the ratio of an object pixel, and an inclination coefficient.
  • FIG. 1 is a block diagram showing a configuration of a display device 100 according to an embodiment of the present invention.
  • the display device 100 includes an RGB data acquisition unit 1, a gradation ratio calculation unit 2, a detection unit 3 (ratio detection unit), a conversion coefficient calculation unit 4 (conversion unit), and an RGB data conversion unit 5 ( Conversion unit), display control unit 6 (display control unit), determination unit 7, timing control unit 8, source driver 9, gate driver 10, backlight control unit 11 (illumination control unit), backlight 12 (illumination unit), A backlight driving circuit 15 and a display panel 20 (non-self-luminous display unit) are provided.
  • the display device 100 is a display device having a pixel arrangement of R (red), G (green), B (blue), and W (white). That is, the display device 100 is a display device that converts an input image in which each pixel is configured with RGB color signals into a converted image in which each pixel is configured with RGBW color signals and displays the converted image. In the present embodiment, the display device 100 has an RGBW pixel array, but other colors such as Y (yellow) may be adopted instead of W.
  • the pixel 21 is composed of four subpixels 22, 23, 24, and 25. Although not shown, a plurality of pixels 21 are arranged in a matrix on the display panel 20. Yes.
  • the display panel 20 is a liquid crystal display panel, and each pixel 21 of the display panel 20 is connected to the source driver 9 through a plurality of source lines, and the gate driver 10 through a plurality of gate lines. It is connected to the. Therefore, by controlling the voltage applied to each pixel 21, the light transmittance of each sub-pixel changes.
  • the target color is reproduced by mixing three colors of light of red, green, and blue. These colors are obtained, for example, by arranging red, green, and blue color filters so as to correspond to the RGB sub-pixels and transmitting light emitted from the backlight 12 provided on the back surface of the display panel 20. It is done.
  • the pixel 21 includes the W sub-pixel 25 in addition to the RGB sub-pixels 22, 23, and 24, the brightness of the displayed image is brighter than that of a display panel having only the RGB sub-pixels. can do.
  • the RGBW sub-pixels 22, 23, 24, and 25 are arranged in two rows and two columns, the R sub-pixel 22 in the upper left, the G sub-pixel 23 in the upper right, the B sub-pixel 24 in the lower left
  • the W sub-pixel 25 is arranged at the lower right, the arrangement of the sub-pixels is not limited to this.
  • the RGB data acquisition unit 1 acquires RGB data constituting an input image from an external data transmission source.
  • RGB data is a signal transmitted by separating the color component of an image (input image) to be displayed into three colors of R, G, and B. Specifically, the shades of RGB colors are expressed stepwise as gradations, and various colors can be expressed by adjusting the gradations assigned to each color.
  • RGB data since 8-bit data is assigned to each color of RGB, it can be expressed by 255 gradations.
  • the present invention is not limited to this range, and the number of gradations that can be expressed by the data assigned to RGB is not limited. Can be changed.
  • a data transmission source of RGB data for example, a TV tuner or a personal computer can be cited.
  • the gradation ratio calculation unit 2 calculates the ratio of the lowest gradation to the highest gradation among the RGB gradations (hereinafter also referred to as “gradation ratio”). Specifically, the gradation ratio in one pixel indicated by the RGB data acquired by the RGB data acquisition unit 1 is calculated for each pixel.
  • each gradation of RGB is assigned to each pixel so as to correspond to the expressed color, and the display device 100 controls the light transmittance of each sub-pixel to achieve the target.
  • gradation that is, the lower the gradation, the darker the color because the light transmittance is lowered, and the higher the gradation, the brighter the red, green, or blue, the higher the light transmittance.
  • the ratio of the lowest gradation to the highest gradation among the RGB gradations being 0 means that any gradation of RGB is 0. That is, a color is expressed by the shade of any one color of RGB, or a color is expressed by a mixed color of any two colors.
  • the colors expressed thereby are, for example, red, green, blue, cyan (C), magenta (M), or yellow (Y). These colors are sometimes called primary colors.
  • the ratio of the lowest gradation to the highest gradation being 1 means that the RGB gradations are all the same value.
  • the color expressed thereby is white.
  • the detection unit 3 determines a target pixel to be detected from all the pixels of the input image based on the gradation ratio calculated by the gradation ratio calculation unit 2, and detects the ratio.
  • the target pixel is a pixel that displays a dark color (hereinafter referred to as a dark pixel (bright pixel)).
  • the dark color (bright color) is at least a primary color such as RGBCMY, and may include a color close to the primary color.
  • the detection part 3 determines by whether the gradation ratio of a pixel is below a predetermined fixed value, for example.
  • the detection unit 3 determines a pixel having a gradation ratio of 0 as a target pixel. That is, a pixel in which any gradation of RGB is 0 is determined as a target pixel.
  • the value of the gradation ratio is not limited to 0.
  • the determination criterion for the target pixel may be a pixel with a gradation ratio of 0.
  • the determination criterion for the target pixel may be a pixel having a gradation ratio of 0.1 or less, for example.
  • the dark color is a vivid color having a saturation S larger than a predetermined value in the HSV color space of the cylindrical model.
  • MAX is the gradation value of the color with the highest gradation among the three colors of RGB
  • MIN is the gradation value of the color with the lowest gradation among the three colors of RGB. That is, if the gradation ratio is 0, the saturation S is 1, and if the gradation ratio is 1, the saturation S is 0.
  • a dark pixel with a gradation ratio of 0.1 or less is a bright pixel with a saturation S of 0.9 or more. Therefore, the above-described dark pixel can also be called a bright pixel.
  • a vivid color having a saturation S greater than a predetermined value in the HSV color space of the cylindrical model may be a dark color.
  • the conversion coefficient calculation unit 4 obtains a conversion coefficient for converting RGB data into RGBW data using the ratio of the target pixel detected by the detection unit 3.
  • the conversion coefficient is a value used when the RGB data conversion unit 5 described later converts RGB data to RGBW data. For example, when creating RGBW data by an expansion method, what is the RGB gradation indicated by the RGB data? Indicates whether to double expand. In this specification, converting to RGBW data is also referred to as creating RGBW data.
  • RGBCMY when a color is expressed in a pixel composed of four RGBW sub-pixels, a color such as RGBCMY may be displayed dull. This is due to the fact that by adding W subpixels, the RGB subpixel areas are relatively reduced, so that RGB luminance cannot be obtained sufficiently, especially when displaying yellow. It is easy to occur.
  • the conversion coefficient used when creating the RGBW data is determined according to the ratio of vivid pixels, that is, how many regions such as RGBCMY are represented in the image to be displayed, RGBCMY or the like. Colors can be displayed vividly.
  • the conversion coefficient calculation unit 4 obtains a conversion coefficient using, for example, a curve representing the relationship between the gradation ratio calculated by the gradation ratio calculation unit 2 and the conversion coefficient. At that time, the conversion coefficient calculation unit 4 changes the conversion coefficient of the pixels other than the target pixel according to the ratio of the target pixel detected by the detection unit 3. In addition to the ratio of the target pixels, the element used by the conversion coefficient calculation unit 4 to obtain the conversion coefficient can use, for example, a result determined by the determination unit 7 described later.
  • the RGB data conversion unit 5 converts the RGB data into RGBW data corresponding to each pixel using the conversion coefficient, and sends the converted RGBW data to the display control unit 6.
  • the RGB data acquired by the RGB data acquisition unit 1 is data corresponding to a pixel composed of three RGB sub-pixels. Therefore, in the display device 100 having a pixel composed of four RGBW sub-pixels, it is necessary to convert the acquired RGB data so as to correspond to the pixel.
  • the RGB data conversion unit 5 converts the RGB data into RGBW data and sends it to the display control unit 6, so that even the display device 100 having four RGBW subpixels can display a color image suitably. .
  • the display control unit 6 generates an image (converted image) that can be displayed on the display panel 20 from the RGBW data converted by the RGB data conversion unit 5, and displays the image on the display panel 20.
  • the display control unit 6 includes a timing control unit 8, which generates a control signal corresponding to RGBW data and transmits the control signal to the source driver 9 and the gate driver 10.
  • Examples of the control signal include a source start signal, a source clock signal, a gate start signal, and a gate clock signal.
  • the source driver 9 and the gate driver 10 apply a voltage to the RGBW sub-pixels 22, 23, 24, and 25 arranged in each pixel 21 in accordance with the received control signal, and control the transmittance thereof. Is expressed.
  • the determination unit 7 determines whether or not the ratio of the pixels designated to be displayed with the maximum gradation with respect to the total number of pixels of the converted image in the generated RGBW data exceeds a predetermined value.
  • the RGBW data converted by the RGB data conversion unit 5 is referred to, and the number of pixels designated so that any of the RGB gradations is displayed with a gradation exceeding the maximum gradation is measured. . Then, it is determined whether the designated pixel ratio exceeds a predetermined upper limit value or less than a predetermined lower limit value for all the numbers of pixels.
  • the maximum gradation is 255 gradations, but is not limited to this.
  • the predetermined upper limit value may be set to 2%, for example, and the predetermined lower limit value may be set to 1%, for example, but is not limited to these values.
  • the result determined by the determination unit 7 is used when the conversion coefficient calculation unit 4 obtains the conversion coefficient in the next frame.
  • the backlight drive circuit 15 adjusts the luminance of the backlight 12 under the control of the backlight control unit 11.
  • FIG. 2 is a graph showing the relationship between the backlight brightness used by the backlight control unit 11 and the ratio of the target pixel.
  • the backlight control unit 11 determines the luminance of the backlight 12 via the backlight drive circuit 15 according to the ratio T of the target pixel (that is, a bright pixel) detected by the detection unit 3 with respect to all the pixels of the input image. L is controlled. Specifically, as illustrated in FIG. 2, the backlight control unit 11 performs backlighting when the ratio T of vivid pixels is less than a predetermined ratio T 0 (that is, when the ratio T of vivid pixels is not high).
  • the ratio T of the bright pixel is equal to or greater than the predetermined ratio T 0 (ie, when the ratio T of bright pixels high) is the luminance L of the backlight 12 Then, the second luminance L2 higher than the first luminance L1 is controlled.
  • the ratio T of the bright pixels is less than the predetermined ratio T 0 , the ratio of the bright pixels is low and the dullness of the bright pixels is not noticeable.
  • the luminance L of the backlight 12 is controlled to the first luminance L1 lower than the second luminance L2.
  • the second luminance L2 for example, a minimum luminance that can be displayed without dulling a bright pixel can be employed.
  • the first luminance L1 for example, a minimum luminance that can be displayed without dulling pixels other than vivid pixels can be employed.
  • the luminance of the backlight is fixed, but here, the conventional luminance can be adopted as the first luminance.
  • the predetermined ratio T 0 for example, 50% can be adopted, but it is not limited to this value.
  • the ratio of the target pixel is the ratio for all the pixels of the input image, but may be the ratio for the entire screen or the ratio for a part of the screen area.
  • the power consumption of the backlight 12 at the second luminance L2 is higher than the power consumption of the backlight 12 at the first luminance L1.
  • the backlight 12 emits light toward the display panel 20.
  • the light emitted from the backlight 12 may be white light.
  • Examples of the light source of the backlight 12 include electroluminescence (EL), a cold cathode tube (CCFL), and a light emitting diode (LED).
  • the display device 100 having such a configuration can be used as various display devices such as a television receiver, a personal computer, a mobile phone, or a game machine.
  • FIG. 3 is a diagram for explaining a procedure when the RGB data conversion unit 5 included in the display device 100 shown in FIG. 1 converts RGB data into RGBW data. Note that each bar graph shown in FIG. 3 indicates RGBW gradations.
  • RGBW data is created from the acquired RGB data using an expansion method.
  • the extension method is to create the lowest gradation among the RGB gradations indicated by the RGB data, and then multiply each RGB gradation by a conversion coefficient to expand the value of each gradation.
  • RGB data is converted into RGBW data by further subtracting the gradation value of W.
  • RGB gradations are indicated by components 41, 42, and 43, respectively.
  • the RGB data converter 5 sets this value to the W gradation (component 44).
  • the gradation of RGB is expanded by multiplying each gradation of RGB by the conversion coefficient obtained by the conversion coefficient calculation unit 4 ((b) of FIG. 3).
  • the conversion coefficient can take a value of 1 to 2
  • the gradation of RGB is expanded to 1 to 2 times, respectively.
  • the range of values that the conversion coefficient can take is not limited to this.
  • the value of the W gradation that is, the value of the R gradation indicated by the original RGB data is subtracted from each of the expanded RGB gradations ((c) in FIG. 3). As a result, it is converted into RGBW data to which the gradation shown in FIG.
  • the RGB gradation indicated by the original RGB data is multiplied by the conversion coefficient obtained by the conversion coefficient calculation unit 4 and expanded. Therefore, the light transmittance (and hence the luminance) of the pixel designated to adjust the gradation with the low value conversion coefficient is low, and the light of the pixel designated to adjust the gradation with the high value conversion coefficient.
  • the transmittance (and hence the brightness) is increased. That is, the light transmittance of a pixel increases / decreases as the conversion coefficient of the pixel increases / decreases.
  • the conversion coefficient calculation unit 4 determines a conversion coefficient (accordingly, light transmittance) for each pixel in accordance with the ratio of target pixels (that is, bright pixels) detected by the detection unit 3. Specifically, when the ratio of the target pixels detected by the detection unit 3 is less than the predetermined ratio T 0 (hereinafter, this case is referred to as the first case), the conversion coefficient calculation unit 4 calculates the conversion coefficient and the scale.
  • the conversion coefficient of each pixel is determined from the gradation ratio of each pixel using a characteristic line (here, a curve) that defines the relationship with the gradation ratio.
  • the characteristic line is, for example, a curve in which the conversion coefficient increases as the gradation ratio increases.
  • the conversion coefficient calculation unit 4 converts the conversion coefficient of the vivid pixels. Uses the same conversion coefficient as the conversion coefficient (first conversion coefficient) of the vivid pixel in the first case, while the conversion coefficient of pixels other than the vivid pixel has the vividness in the first case.
  • a conversion coefficient (third conversion coefficient) smaller than the conversion coefficient (second conversion coefficient) of a pixel other than a normal pixel is used.
  • the small conversion coefficient for example, the same conversion coefficient as that of a bright pixel is employed.
  • the light transmittance of the bright pixel is controlled to the first light transmittance corresponding to the first conversion coefficient, and the light transmittance of the pixels other than the bright pixel is the second light transmittance.
  • the second light transmittance corresponding to the conversion coefficient is controlled.
  • the light transmittance of the bright pixel is controlled to the same light transmittance as the first light transmittance, and the light transmittance of the pixels other than the bright pixel is the third conversion coefficient.
  • the third light transmittance corresponding to the above that is, the light transmittance smaller than the second light transmittance).
  • the ratio of vivid pixels is relatively small, the dullness is not so noticeable even if vivid pixels are displayed in a dull state. For this reason, by determining the conversion coefficient so that the conversion coefficient (and hence the light transmittance) becomes larger as the pixel has a larger gradation ratio, the display brightness is emphasized.
  • the ratio of vivid pixels is relatively large, the conversion coefficient (and hence the light transmittance) of pixels other than vivid pixels is reduced, and the brightness of pixels other than vivid pixels is vivid. By making the brightness close to that of a clear pixel, the dullness of vivid pixels is made inconspicuous.
  • the conversion coefficient calculation unit 4 creates the curve (characteristic line) used to calculate the conversion coefficient.
  • FIG. 4 is a graph showing a curve representing the relationship between the gradation ratio and the conversion coefficient used by the conversion coefficient calculation unit 4 included in the display device shown in FIG.
  • the horizontal axis represents the gradation ratio (R)
  • the vertical axis represents the conversion coefficient (S).
  • the conversion coefficient calculation unit 4 uses a curve as shown in FIG. 4 to determine the conversion coefficient based on the gradation ratio calculated from the RGB data corresponding to each pixel. For example, when the gradation ratio of a certain pixel is 0.8, the conversion coefficient obtained using the curve 30 is 1.6.
  • the conversion coefficient is derived if the gradation ratio of the pixel is obtained. For this reason, even when the gradation ratio is the same, as the slope of the curve increases (for example, curve 30), the brightness of white is enhanced, and an image is displayed with high brightness. Luminance is suppressed and RGBCMY colors are displayed more vividly.
  • the slope of the curve may be set using the ratio of target pixels (bright pixels) detected by the detection unit 3.
  • a method for setting the inclination according to the ratio of the target pixel for example, a method using a relational expression between the inclination coefficient (K) for setting the inclination and the ratio of the target pixel can be mentioned.
  • FIG. 5 is a graph showing the relationship between the ratio of the target pixel and the slope coefficient.
  • the horizontal axis represents the ratio of target pixels
  • the vertical axis represents the slope coefficient (K).
  • the slope coefficient is a coefficient for increasing / decreasing the slope of the curve used for calculating the conversion coefficient, and is not particularly limited, but may be a value of 0 to 1, for example. That is, the slope of the curve increases as the slope coefficient value increases, and the slope of the curve decreases as the slope coefficient value decreases.
  • the ratio of the target pixel when the ratio of the target pixel is small, it means that there are many areas to be displayed in a light color. Therefore, the value of the inclination coefficient is large, and when the ratio of the target pixel is large, a bright color is displayed. Means that there are many areas to be displayed, so the value of the slope coefficient is small.
  • the light color here is a color with low saturation as expressed in the range of the gradation ratio of 0.9 to 1, for example, and the vivid color is as described above.
  • the color is expressed with a gradation ratio of about 0.
  • a pixel displaying a light color may be referred to as a “thin pixel”.
  • FIG. 6 shows three types of images (a) to (c) with different vivid pixel ratios.
  • FIG. 6 is a display example of an image in which the ratio between a region displaying a bright color and a region displaying a light color is different.
  • the upper row shows the displayed image, and the lower row shows the distribution of the darkness in the upper image. Show.
  • the area A that displays a light color is large, and the ratio of bright pixels is, for example, 0.03%.
  • this image (a) it is preferable to display the image with more emphasis on the brightness of the screen than the vividness of the color, and therefore the inclination of the characteristic line is set to be large.
  • the area B displaying a brighter color is larger than that in the image (a), and the ratio of vivid pixels is, for example, 8%.
  • this image (b) it is preferable to display the color vividness and the screen brightness in a balanced manner, and therefore, the inclination of the characteristic line is set smaller than that in the case of the image (a).
  • the area B displaying a bright color is large, and the ratio of the bright pixel is, for example, 25%.
  • the inclination of the characteristic line is set to be smaller.
  • the conversion coefficient calculation unit 4 can create the curve for calculating the conversion coefficient by further using the result determined by the determination unit 7. Specifically, the intercept of the characteristic line (curve) is set according to the result determined by the determination unit 7.
  • the determination unit 7 first refers to the RGBW data converted by the RGB data conversion unit 5 and designates a pixel designated so that any of the RGB gradations is displayed with a gradation exceeding the maximum gradation. Measure the number of Then, it is determined whether the designated pixel ratio exceeds a predetermined upper limit value or less than a predetermined lower limit value for all the numbers of pixels.
  • FIG. 7 is a diagram illustrating an example of pixels designated to display at a gradation exceeding the maximum gradation in the RGBW data.
  • the conversion coefficient calculation unit 4 lowers the intercept of the curve. As a result, the value when expanding the RGB gradation becomes small, and the number of pixels exceeding 255 gradations can be reduced.
  • the conversion coefficient calculation unit 4 increases the intercept of the curve. That is, when the ratio of pixels exceeding the maximum gradation is low, the luminance of the entire image may not be sufficient. Therefore, it is possible to display with sufficient luminance by increasing the value when the RGB gradation is expanded.
  • section setting method will be described taking the three types of images shown in FIG. 6 as an example.
  • FIG. 8 is a graph showing the movement of the intercept of the curve used when displaying the image (a) shown in FIG. Since the ratio of thin pixels is high in the image (a), the slope of the curve is large as shown in FIG.
  • the curve 50 is shifted downward along the vertical axis, and the curve 51 Move closer to.
  • the curve 52 is shifted upward in the vertical axis to the curve 51. Move closer.
  • FIG. 9 is a graph showing the movement of the intercept of the curve used when displaying the image (b) shown in FIG. As described above, since the ratio of bright pixels in the image (b) is higher than that in the image (a), the slope of the curve is smaller than the curve used when displaying the image (a) as shown in FIG.
  • FIG. 10 is a graph showing the movement of the intercept of the curve used when displaying the image (c) shown in FIG.
  • the image has good color reproducibility, In addition, it is possible to display with sufficient luminance.
  • the determination unit 7 refers to the RGBW data converted from the RGB data of a certain frame, the determination unit 7 determines that the conversion coefficient calculation unit 4 determines the intercept in the next frame of the certain frame. Used when seeking. However, since there is almost no difference in images displayed between consecutive frames, it can be displayed without any problem.
  • the curve having the slope derived from the ratio of the target pixel and the intercept derived from the result determined by the determination unit 7 can be expressed by, for example, the following formula (1).
  • FIG. 11 is a diagram showing the relationship between the equations (1) and (2).
  • the conversion coefficient of pixels other than vivid pixels that is, pixels with a gradation ratio ⁇ 0
  • the coefficient is determined to be smaller than the value (second conversion coefficient) in the first case (that is, in the case of Expression (1)).
  • Expression (3) is an expression in which, in Expression (1), the slope K is decreased as the ratio T of the target pixels detected by the detection unit 3 is increased.
  • the conversion coefficient (third conversion coefficient) of the pixels other than the bright pixels is controlled to be smaller as the ratio of the target pixels (that is, the bright pixels) detected by the detection unit 3 is larger. It becomes possible. That is, as the ratio of the target pixels (that is, bright pixels) detected by the detection unit 3 is larger, the light transmittance (third light transmittance) of pixels other than the bright pixels can be controlled to be smaller.
  • the function form of Formula (3) is an example, and is not limited to such a function form. If the slope K decreases as the ratio T increases, a similar function form may be used.
  • FIG. 12 is a flowchart for explaining the operation of the display device 100.
  • step S1 the RGB data acquisition unit 1 acquires RGB data constituting an input image from an external transmission source. Then, the gradation ratio calculation unit 2 calculates, for each pixel, the ratio (gradation ratio) of the lowest gradation to the highest gradation among the gradations of RGB in one pixel indicated by the RGB data.
  • step S2 the detection unit 3 detects the ratio of the target pixel (that is, a vivid pixel) whose gradation ratio calculated by the gradation ratio calculation unit 2 is 0 to the input image.
  • step S3 the detection unit 3, further, the ratio is detected whether a predetermined ratio T 0 or more. Then, if the ratio of the target pixel is less than a predetermined ratio T 0, the process proceeds to step S4, on the other hand, if the ratio of the target pixel is greater than a predetermined ratio T 0, the process proceeds to step S5.
  • step S4 the conversion coefficient calculation unit 4 acquires the conversion coefficient of each pixel when the dullness of the target pixel is not noticeable. That is, first, the conversion coefficient calculation unit 4 obtains a characteristic line (curve in this step) for obtaining the conversion coefficient.
  • the conversion coefficient calculation unit 4 determines the slope K and intercept C of the curve.
  • the gradient K is determined by the conversion coefficient calculation unit 4 using the ratio of the target pixels detected by the detection unit 3 based on, for example, FIG.
  • the intercept C is determined by the transform coefficient calculation unit 4 by performing shift correction as necessary based on the result of the determination that the determination unit 7 has already made based on the previous frame (determination in step S7 described later). Is done.
  • the conversion coefficient calculation unit 4 obtains the curve based on, for example, the equation (1) using the slope K and the intercept C.
  • the conversion coefficient calculation unit 4 acquires the conversion coefficient of each pixel based on the gradation ratio of each pixel using the above curve.
  • step S5 the conversion coefficient calculation unit 4 acquires the conversion coefficient of each pixel when the dullness of the target pixel is noticeable. That is, first, the conversion coefficient calculation unit 4 obtains a characteristic line for obtaining the conversion coefficient (in this step, for example, a straight line with zero slope). Specifically, the conversion coefficient calculation unit 4 determines the intercept C of the straight line. This intercept C is determined by the conversion coefficient calculation unit 4 in the same manner as in step S4. And the conversion factor calculating part 4 calculates
  • step S5 instead of obtaining the characteristic line using equation (2), the characteristic C is calculated based on equation (3) using the intercept C and the ratio T of the target pixel obtained in step S2. You may ask for a line.
  • the characteristic line is a curve.
  • the change coefficient of each pixel has the same value.
  • Expression (3) the conversion coefficient of each pixel has a different value depending on the gradation ratio of each pixel. .
  • step S6 when RGBW data is generated, the light transmittance of pixels other than the target pixel is made closer to the light transmittance of the target pixel as compared to the case of step S4. Dullness of the target pixel is prevented.
  • step S6 the RGB data converter 5 converts the RGB data into RGBW data using the conversion coefficient acquired in step S4 or S5.
  • step S7 the determination unit 7 refers to the RGBW data converted in step S6, counts pixels that exceed 255 gradations, and according to the count number, the characteristic line used by the conversion coefficient calculation unit 4 is counted. A determination for shifting the intercept C is performed. The result of this determination is used by the transform coefficient calculation unit 4 to shift the intercept C of the characteristic line in the next frame.
  • step S8 the display control unit 6 generates a control signal for controlling the source driver 9 and the gate driver 10 based on the RGBW data converted in step S6, and transmits the control signal to the source driver 9 and the gate driver 10. To do. Then, the source driver 9 and the gate driver 10 apply a voltage to the RGBW sub-pixels arranged in each pixel in accordance with the received control signal, and the light transmittance is controlled to express the color. . As a result, an image indicated by the RGBW data is displayed on the display panel 20.
  • step S9 if the process has passed through the No in step S3 in the way leading to the step S9 (i.e., when the ratio of the target image is less than a predetermined ratio T 0), the processing proceeds to step S10, backlight control section 11 The luminance of the backlight 12 is controlled to the first luminance via the backlight driving circuit 15. As a result, the image displayed on the display panel 20 is illuminated by the backlight having the first luminance.
  • step S9 the process may (if the ratio of words target image is equal to or greater than a predetermined ratio T 0) having passed through the Yes in step S3 in the way leading to the step S9, the process proceeds to step S11, backlight control unit 11 controls the luminance of the backlight 12 to the second luminance higher than the first luminance via the backlight driving circuit 15. As a result, the image displayed on the display panel 20 is illuminated by the backlight having the second luminance.
  • the display device 100 when the ratio of the target image (i.e. bright pixel) is less than a predetermined ratio T 0 (i.e., less percentage of bright pixels in the displayed image, inconspicuous dull bright pixels If), the process goes through steps S4 and S10. That is, in step S4, the conversion coefficient of each pixel is determined so that the conversion coefficient of each pixel increases as the gradation ratio of each pixel increases.
  • the luminance of the backlight 12 is set to the first luminance (for example, the conventional luminance). Brightness). As a result, the display image is displayed with the luminance increased (that is, as usual) according to the gradation ratio.
  • step S5 the conversion coefficient of the target pixel is the same as the conversion coefficient in step S4, and the conversion coefficients of the pixels other than the target pixel are smaller than those in step S4.
  • the conversion coefficient of each pixel is determined (that is, the difference between the light transmittance of pixels other than the target pixel is reduced and the light transmittance of the target pixel is reduced), and the brightness of the backlight 12 is determined in step S10. Is controlled to a second luminance higher than the first luminance.
  • dullness of bright pixels in the display image is prevented by controlling the luminance of the backlight 12 to the second luminance higher than the first luminance.
  • the light transmittance of the pixels other than the vivid pixels is reduced while the light transmittance of the vivid pixels remains unchanged, thereby reducing the luminance difference between the vivid pixels and the pixels other than the vivid pixels. Vivid pixel dullness is further prevented.
  • a display device includes a display portion including red (R), green (G), and blue (B) subpixels and a fourth subpixel (X) in one pixel.
  • a display unit that converts an input image composed of RGB color signals into a converted image composed of RGBX color signals and displays the converted image, and a conversion unit that converts the input image into the converted image;
  • a display control unit that displays the converted image on the non-self-luminous display unit, an illumination unit that illuminates the display unit with illumination light, and pixels that display vivid colors for all the pixels of the input image
  • a display device control method includes red (R), green (G), and blue (B) subpixels and a fourth subpixel (X) in one pixel.
  • a control method for a display device comprising a display unit, for converting an input image composed of RGB color signals into a converted image composed of RGBX color signals, wherein the input image is converted to the converted image.
  • a conversion step for converting the image into a display a display control step for displaying the converted image on the non-self-luminous display unit, and a ratio detection for detecting a ratio of pixels displaying a vivid color with respect to all the pixels of the input image.
  • the luminance of the illumination unit that illuminates the display unit is controlled to the first luminance, and the ratio detected in the ratio detection step is equal to or greater than the predetermined ratio.
  • the brightness of the serial illumination unit including an illumination control step of controlling to a higher second luminance than the first luminance.
  • luminance of the illumination light of an illumination part is controlled to 1st brightness
  • the luminance of the illumination light of the illumination unit is controlled to a second luminance higher than the first luminance.
  • luminance the brightness
  • the brightness of the illumination light is controlled to the second brightness higher than the first brightness (for example, the conventional brightness), so that dull pixels are prevented from being dull.
  • the ratio of vivid pixels is less than the predetermined ratio, vivid pixels are not conspicuous in the entire image, and the luminance of the illumination light is controlled to the first luminance (for example, conventional luminance).
  • the luminance of the illumination light is increased to the second luminance only when a bright pixel is conspicuous, so that dullness of the bright pixel is efficiently prevented.
  • the illumination unit may have a configuration in which power consumption at the second luminance is higher than power consumption at the first luminance.
  • the conversion unit transmits light transmittance of pixels that display the vivid color in the converted image. Is controlled to the first light transmittance, and the light transmittance of the pixel displaying the color other than the vivid color is controlled to the second light transmittance higher than the first light transmittance, while the ratio detection is performed.
  • the ratio detected by the unit is equal to or higher than the predetermined ratio
  • the light transmittance of the pixel displaying the bright color in the converted image is controlled to the first light transmittance, and a color other than the bright color is used. It is also possible to adopt a configuration in which the light transmittance of the pixel displaying the image is controlled to a third light transmittance lower than the second light transmittance.
  • the ratio of the pixel which displays a vivid color is less than predetermined ratio
  • the light transmittance of the vivid pixel in a conversion image is controlled by the 1st light transmittance
  • a vivid pixel In the case where the light transmittance of the other pixels is controlled to the second light transmittance, and the ratio of the bright pixels is equal to or higher than the predetermined ratio, the light transmittance of the bright pixels in the converted image is the first light transmittance. And the light transmittance of the pixels other than the bright pixels is controlled to a third light transmittance lower than the second light transmittance.
  • the conventional light transmittance used with the vivid pixel can be used.
  • the second light transmittance a conventional light transmittance that has been used in pixels other than vivid pixels can be used.
  • the ratio of vivid pixels is less than the predetermined ratio, the vivid pixels are not conspicuous.
  • the light transmittance of the pixels other than the bright pixels is controlled to the second light transmittance (for example, the conventional light transmittance used in the pixels other than the bright pixels).
  • the ratio of the bright pixels is equal to or higher than the predetermined ratio, the bright pixels are conspicuous. Therefore, the light transmittance of the bright pixels remains the first light transmittance, and the light transmittance of the pixels other than the bright pixels is the same. By reducing the third light transmittance to be lower than the second light transmittance, dullness of vivid pixels is prevented.
  • the conversion unit may be configured to control the third light transmittance so that the third light transmittance is decreased as the ratio detected by the ratio detection unit is increased.
  • the third light transmittance is controlled so as to be smaller as the ratio of pixels displaying a vivid color is larger. Therefore, the light transmittance of pixels other than the vivid pixels is changed to a vivid pixel. It can be finely controlled according to the ratio.
  • the vivid color is a color in which the ratio of the minimum luminance to the maximum luminance is defined as 0 or about 0 for each luminance of RGB in one pixel of the input image. You can also.
  • the vivid color is a color defined by a ratio of a minimum luminance to a maximum luminance of 0.1 or less for each luminance of RGB in one pixel of the input image. You can also.
  • the vivid color may be a color whose saturation in the HSV color space is larger than a predetermined value.
  • the bright colors include R (red), B (blue), G (green), C (cyan), M (magenta), and Y (yellow). You can also
  • vivid colors include R (red), B (blue), G (green), C (cyan), M (magenta), and Y (yellow). Can be prevented.
  • the predetermined one color X may be a W (white) color.
  • the above effect can be applied to the display device that converts the RGB color signal into the RGBW four color signal.
  • the display unit may be a liquid crystal display panel.
  • the above-described effects can be achieved in a liquid crystal display device using a liquid crystal panel as the display unit.
  • the display device may be realized by a computer.
  • a program for causing a computer to operate as each of the above-described units and a computer-readable recording medium recording the program also fall within the scope of the present invention.
  • each unit included in the display device 100 may be configured by hardware logic. Moreover, you may implement
  • the display device 100 includes a CPU that executes instructions of a program that realizes each function, a ROM that stores the program, a RAM that expands the program into an executable format, and a memory that stores the program and various data. And other storage devices (recording media). With this configuration, the object of the present invention can be achieved by a predetermined recording medium.
  • This recording medium only needs to record the program code (execution format program, intermediate code program, source program) of the program of the display device 100, which is software that realizes the functions described above, so that it can be read by a computer.
  • This recording medium is supplied to the display device 100.
  • the display device 100 or CPU or MPU as a computer may read and execute the program code recorded on the supplied recording medium.
  • the recording medium that supplies the program code to the display device 100 is not limited to a specific structure or type. That is, this recording medium is, for example, a tape system such as a magnetic tape or a cassette tape, a magnetic disk such as a floppy (registered trademark) disk / hard disk, or a disk including an optical disk such as CD-ROM / MO / MD / DVD / CD-R. System, a card system such as an IC card (including a memory card) / optical card, or a semiconductor memory system such as a mask ROM / EPROM / EEPROM / flash ROM.
  • a tape system such as a magnetic tape or a cassette tape
  • a magnetic disk such as a floppy (registered trademark) disk / hard disk
  • a disk including an optical disk such as CD-ROM / MO / MD / DVD / CD-R.
  • a card system such as an IC card (including a memory card) / optical card, or a semiconductor memory system
  • the display device 100 is configured to be connectable to a communication network, the object of the present invention can be achieved.
  • the program code is supplied to the display device 100 via the communication network.
  • the communication network is not limited to a specific type or form as long as it can supply the program code to the display device 100.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication network, etc. may be used.
  • the transmission medium constituting the communication network may be any medium that can transmit the program code, and is not limited to a specific configuration or type.
  • wired lines such as IEEE1394, USB, power line carrier, cable TV line, telephone line, ADSL (Asymmetric Digital Subscriber Line) line, infrared rays such as IrDA and remote control, Bluetooth (registered trademark), 802.11 wireless, HDR, mobile phone It can also be used by radio such as a telephone network, a satellite line, and a terrestrial digital network.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • the present invention can be suitably used for various display devices such as a television receiver, a personal computer, a mobile phone, or a game machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明に係る表示装置(100)は、RGBの入力画像をRGBWの変換画像に変換するRGBデータ変換部(5)と、表示パネル(20)に表示する表示制御部(6)と、バックライト(12)と、入力画像中の鮮やかな色を表示する画素の比率を検出する検出部(3)と、当該比率が所定比率未満の場合はバックライト(12)を第1輝度に制御し、当該比率が所定比率以上の場合はバックライト(12)を第1輝度よりも高い第2輝度に制御するバックライト制御部(11)とを備える。

Description

表示装置および表示装置の制御方法
 本発明は、各画素がR(赤)G(緑)B(青)3色の色信号で構成された入力画像を、各画素が上記RGB3色に所定の1色Xを加えたRGBX4色の色信号で構成された変換画像に変換して表示する表示装置およびその制御方法に関するものである。
 カラー画像表示装置では、一般的にR(赤)、G(緑)及びB(青)の三色を混色することによって様々な色を表現している。例えば、表示パネルの各画素にRGBそれぞれのカラーフィルターを配し、バックライトからの光を、これらカラーフィルターを透過させることによってRGBの光が出射される。
 また、近年ではRGBに加えてW(白)のサブピクセルを各画素に設ける技術が知られている。この場合、カラー画像表示装置が取得する画像データは通常RGBデータの形式であるため、RGBWの画素に対応するデータに変換する必要がある。
 例えば、特許文献1及び2には、RGBWの画素配列を有する液晶表示装置において、RGBデータをRGBWデータに変換する方法が記載されている。
日本国公開特許公報「特開2007-286618号公報(2007年11月1日公開)」 日本国公開特許公報「特開2009-86054号公報(2009年4月23日公開)」
 しかしながら、RGBW4つのサブピクセルから構成される画素において色を表現するとき、RGB、及びC(シアン)、M(マゼンダ)及びY(黄)等の濃い(鮮やかな)色がくすんで表示されることがある。
 これは、Wのサブピクセルを加えることによって、RGBそれぞれのサブピクセルの面積が相対的に縮小するためにRGBのそれぞれの輝度が十分に得られないこと、および、薄い色(例えば白色)を表示する画素の比率が高い画像のときでも濃い色(例えばRGBYCM等の原色)を表示する画素の比率が高い画像のときでもバックライトの輝度が一定であることに起因している。図13は、従来の変換方法によってRGBデータをRGBWデータに変換したときの表示の見え方を示す図である。
 図13において、左側のRGBデータでは黄色表示領域60と白色表示領域61とが隣接しているが、黄色は鮮やかに表示されている。しかし、RGBデータをRGBWデータに変換すると、RGBのそれぞれの輝度が下がるため、右側のRGBWデータのように、黄色表示領域60に表示される黄色がくすむ。
 特許文献1及び2に記載の方法では、この問題について何ら考慮されていない。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、各画素がRGB3色の色信号で構成された入力画像を、各画素が上記RGB3色に所定の1色Xを加えたRGBX4色の色信号で構成された変換画像に変換して表示する表示装置において、効率的に、濃い色を表示する画素のくすみを防止することができる表示装置を提供することにある。
 本発明に係る表示装置は、上記の課題を解決するために、赤(R)、緑(G)、青(B)の各サブピクセル、および、4つ目のサブピクセル(X)を一画素中に有する表示部を備え、RGB3色の色信号で構成された入力画像をRGBX4色の色信号で構成された変換画像に変換して表示する表示装置であって、上記入力画像を上記変換画像に変換する変換部と、上記変換画像を非自発光型の上記表示部に表示する表示制御部と、上記表示部に照明光を照射する照明部と、上記入力画像の全ての画素に対する、鮮やかな色を表示する画素の比率を検出する比率検出部と、上記比率検出部が検出した比率が所定比率未満の場合は、上記照明部の照明光の輝度を第1輝度に制御し、上記比率検出部が検出した比率が上記所定比率以上の場合は、上記照明部の照明光の輝度を上記第1輝度よりも高い第2輝度に制御する照明制御部と、を備えることを特徴としている。
 本発明に係る表示装置の制御方法は、上記の課題を解決するために、赤(R)、緑(G)、青(B)の各サブピクセル、および、4つ目のサブピクセル(X)を一画素中に有する表示部を備え、RGB3色の色信号で構成された入力画像をRGBX4色の色信号で構成された変換画像に変換して表示する表示装置の制御方法であって、上記入力画像を上記変換画像に変換する変換ステップと、上記変換画像を非自発光型の上記表示部に表示する表示制御ステップと、上記入力画像の全ての画素に対する、鮮やかな色を表示する画素の比率を検出する比率検出ステップと、上記比率検出ステップで検出した比率が所定比率未満の場合は、上記表示部を照明する照明部の輝度を第1輝度に制御し、上記比率検出ステップで検出した比率が上記所定比率以上の場合は、上記照明部の輝度を上記第1輝度よりも高い第2輝度に制御する照明制御ステップと、を含むことを特徴としている。
 上記の構成によれば、入力画像中の鮮やかな色を表示する画素(以後、鮮やかな画素と呼ぶ)の比率が所定比率未満の場合は、照明部の照明光の輝度が第1輝度に制御され、入力画像中の鮮やかな画素の比率が所定比率以上の場合は、照明部の照明光の輝度が第1輝度よりも高い第2輝度に制御される。上記第1輝度としては、例えば従来使用されていた輝度(照明部の輝度)を使用することができる。
 つまり、鮮やかな画素はくすんで見え易いので、鮮やかな画素の比率が所定比率以上の場合は、画像全体の中で鮮やかな画素が目立つ。そのため、その場合は、照明光の輝度が第1輝度(例えば従来の輝度)よりも高い第2輝度に制御されることで、鮮やかな画素のくすみが防止される。他方、鮮やかな画素の比率が所定比率未満の場合は、画像全体の中で鮮やかな画素は目立たないので、照明光の輝度は第1輝度(例えば従来の輝度)に制御される。このように、鮮やかな画素が目立つ場合だけ照明光の輝度が第2輝度に上げられることで、効率的に鮮やかな画素のくすみが防止される。
 本発明に係る表示装置は、赤(R)、緑(G)、青(B)の各サブピクセル、および、4つ目のサブピクセル(X)を一画素中に有する表示部を備え、RGB3色の色信号で構成された入力画像をRGBX4色の色信号で構成された変換画像に変換して表示する表示装置であって、上記入力画像を上記変換画像に変換する変換部と、上記変換画像を非自発光型の上記表示部に表示する表示制御部と、上記表示部に照明光を照射する照明部と、上記入力画像の全ての画素に対する、鮮やかな色を表示する画素の比率を検出する比率検出部と、上記比率検出部が検出した比率が所定比率未満の場合は、上記照明部の照明光の輝度を第1輝度に制御し、上記比率検出部が検出した比率が上記所定比率以上の場合は、上記照明部の照明光の輝度を上記第1輝度よりも高い第2輝度に制御する照明制御部と、を備えている。
 また、本発明に係る表示装置の制御方法は、赤(R)、緑(G)、青(B)の各サブピクセル、および、4つ目のサブピクセル(X)を一画素中に有する表示部を備え、RGB3色の色信号で構成された入力画像をRGBX4色の色信号で構成された変換画像に変換して表示する表示装置の制御方法であって、上記入力画像を上記変換画像に変換する変換ステップと、上記変換画像を非自発光型の上記表示部に表示する表示制御ステップと、上記入力画像の全ての画素に対する、鮮やかな色を表示する画素の比率を検出する比率検出ステップと、上記比率検出ステップで検出した比率が所定比率未満の場合は、上記表示部を照明する照明部の輝度を第1輝度に制御し、上記比率検出ステップで検出した比率が上記所定比率以上の場合は、上記照明部の輝度を上記第1輝度よりも高い第2輝度に制御する照明制御ステップと、を含んでいる。
 それゆえ、効率的に鮮やかな画素のくすみを防止できるという効果を奏する。
本発明の一実施形態に係る表示装置の構成を示すブロック図である。 図1に示す表示装置が備えるバックライト制御部が用いるバックライト輝度と対象画素の比率との関係を示すグラフである。 図1に示す表示装置が備えるRGBデータ変換部がRGBデータをRGBWデータに変換するときの手順を説明するための図であり、(a)は、入力RGBの階調および追加したWの階調を説明する図であり、(b)は、入力RGBの階調を変換係数倍した状態を説明する図であり、(c)は、入力RGBの各変換係数倍した階調からWの階調分を引いた状態を説明する図であり、(d)は、変換後のRGBWの階調を説明する図である。 図1に示す表示装置が備える変換係数演算部が用いる階調比と変換係数との関係を表す曲線を示すグラフである。 対象画素の比率と傾き係数との関係を示すグラフである。 鮮やかな色を表示する領域と薄い色を表示する領域との割合が異なる画像の表示例を示す図であり、(a)は、鮮やかな画素の比率が少ない場合の一例を示し、(b)は、(a)よりも鮮やかな画素の比率が多い場合の一例であり、(c)は、(b)よりも鮮やかな画素の比率が多い場合の一例である。 RGBWデータのうち、最大階調を超える階調で表示するように指定された画素の例を示す図である。 図6に示す画像(a)を表示する際に用いる曲線の切片を移動させるところを示すグラフである。 図6に示す画像(b)を表示する際に用いる曲線の切片を移動させるところを示すグラフである。 図6に示す画像(c)を表示する際に用いる曲線の切片を移動させるところを示すグラフである。 図1に示す表示装置が備える変換係数演算部が用いる階調比と変換係数との関係を表す曲線を示すグラフである。 図1に示す表示装置の動作を説明するフローチャートである。 従来の変換方法によってRGBデータをRGBWデータに変換したときの表示の見え方を示す図である。
 以下、本発明に係る表示装置の一実施形態について、図1~11を参照して説明する。
 (表示装置100の構成)
 図1は、本発明の一実施形態に係る表示装置100の構成を示すブロック図である。
 図1に示すように、表示装置100は、RGBデータ取得部1、階調比算出部2、検出部3(比率検出手段)、変換係数演算部4(変換手段)、RGBデータ変換部5(変換手段)、表示制御部6(表示制御手段)、判定部7、タイミング制御部8、ソースドライバ9、ゲートドライバ10、バックライト制御部11(照明制御手段)、バックライト12(照明手段)、バックライト駆動回路15及び表示パネル20(非自発光型の表示部)を備えている。
 表示装置100は、R(赤)G(緑)B(青)W(白)の画素配列を有する表示装置である。即ち、表示装置100は、各画素がRGB3色の色信号で構成された入力画像を、各画素がRGBW4色の色信号で構成された変換画像に変換して表示する表示装置である。本実施形態では、表示装置100は、RGBWの画素配列を有するが、Wの代わりにY(黄色)等の他の色を採用しても構わない。
 本実施形態では、図1に示すように、画素21は4つのサブピクセル22,23,24,25から構成されており、図示しないが複数の画素21が表示パネル20にマトリクス状に配置されている。
 また、本実施形態において表示パネル20は液晶表示パネルであり、表示パネル20の各画素21は複数のソースラインを介してソースドライバ9に接続されると共に、複数のゲートラインを介してゲートドライバ10に接続されている。そのため、各画素21への印加電圧を制御することによって、各サブピクセルの光の透過率が変わる。
 本実施形態の表示装置100は、RGBのサブピクセルを有しているため、赤、緑及び青の三色の光を混色して目的の色を再現している。これらの色は、例えば、RGBのサブピクセルに対応するように赤、緑及び青のカラーフィルターを配置し、表示パネル20の背面に設けたバックライト12から照射された光を透過することによって得られる。
 また、画素21はRGBのサブピクセル22,23,24に加えてWのサブピクセル25を有しているため、RGBのサブピクセルのみを有する表示パネルと比較して表示される画像の輝度を明るくすることができる。
 なお、図1においてRGBWのサブピクセル22,23,24,25の配置は2行2列であり、左上にRのサブピクセル22、右上にGのサブピクセル23、左下にBのサブピクセル24及び右下にWのサブピクセル25が配されているが、サブピクセルの配置はこれに限定されるものではない。
 RGBデータ取得部1は、外部のデータ送信元から、入力画像を構成するRGBデータを取得する。
 RGBデータとは、表示すべき画像(入力画像)の色成分をR,G,Bの3つの色に分解して伝送される信号である。具体的には、RGBそれぞれの色の濃淡が階調として段階的に表現されており、各色に割り当てられた階調を調節することによって、様々な色を表現することができる。
 本実施形態では、RGBの各色に8ビット分のデータが割り当てられるため、それぞれ255階調ずつ表現できるが、この範囲に限定されるものではなく、RGBに割り当てるデータによって表現可能な階調数を変えることができる。RGBデータのデータ送信元としては、例えば、テレビチューナー又はパソコン等が挙げられる。
 階調比算出部2は、RGBの階調のうち最も高い階調に対する最も低い階調の比(以下、「階調比」ともいう)を算出する。具体的には、RGBデータ取得部1が取得したRGBデータが示す一画素内における階調比を画素毎に算出する。
 上述したように、RGBデータは表現される色に対応するようにRGBそれぞれの階調が画素毎に割り当てられており、表示装置100では各サブピクセルの光の透過率を制御することによって目的の階調を表現している。つまり、階調が低いほど光の透過率を下げるために暗い色になり、階調が高いほど光の透過率を上げるために赤、緑又は青が鮮やかに表現される。
 ここで、RGBの階調のうち、最も高い階調に対する最も低い階調の比が0であるということは、RGBいずれかの階調が0であることを意味する。つまり、RGBのうちいずれか1つの色の濃淡で色が表現されるか、いずれか2つの色の混色で色が表現される。これにより表現される色は、例えば、赤色、緑色、青色、シアン(C)、マゼンダ(M)又は黄色(Y)である。これらの色を原色と呼ぶことがある。
 また、最も高い階調に対する最も低い階調の比が1であるということは、RGBの階調がすべて同じ値であることを意味する。これにより表現される色は白色である。
 検出部3は、階調比算出部2が算出した階調比に基づいて、入力画像のすべての画素の中から検出対象の対象画素を判定し、その比率を検出する。ここでは、対象画素は、濃い色を表示する画素(以後、濃い画素(鮮やかな画素)と呼ぶ)である。濃い色(鮮やかな色)とは、少なくともRGBCMYといった原色であり、さらに原色に近い色を含めてもよい。
 そして、検出部3が濃い画素と判定する基準としては、例えば、画素の階調比が予め定められた一定値以下であるか否かにより判定できる。本実施形態では、検出部3は、階調比が0である画素を対象画素と判定する。すなわち、RGBいずれかの階調が0である画素を対象画素と判定する。ただし、階調比の値は0に限定されるものではなく、例えばRGBCMYに近い色が表現される階調比の画素も対象画素と判定するように適宜設定することも可能である。
 階調比が0の場合、表現される色は、例えば、RGBCMYであるため、階調比が0.1以下であればRGBCMYに近い色が表現される。よって、濃い色を原色に限定する場合は、対象画素の判定基準を階調比0の画素とすればよい。また、濃い色に、原色だけでなく、原色に近い色も含める場合は、対象画素の判定基準を例えば階調比0.1以下の画素とすればよい。
 ここで言う濃い色とは、円柱モデルのHSV色空間において彩度Sが所定の値より大きい鮮やかな色のことである。円柱モデルのHSV色空間における彩度Sは、S=(MAX-MIN)/MAX=1-(MIN/MAX)で表される。ここで、MAXは、RGBの3色のうち最も階調が高い色の階調値であり、MINは、RGBの3色のうち最も階調が低い色の階調値である。すなわち、上記階調比が0であれば、彩度Sは1となり、上記階調比が1であれば、彩度Sは0となる。階調比0.1以下の濃い画素とは、言い換えれば、彩度Sが0.9以上の鮮やかな画素である。よって、上記の濃い画素は鮮やかな画素とも呼ぶことができる。
 なお、円柱モデルのHSV色空間において彩度Sが所定の値より大きい鮮やかな色を、濃い色としてもよい。円錐モデルのHSV色空間における彩度Sは、S=MAX-MINで表される。すなわち、検出部3は、最も高い階調と最も低い階調との差を基準として、鮮やかな画素を判定してもよい。
 変換係数演算部4は、検出部3が検出した対象画素の比率を用いて、RGBデータをRGBWデータに変換するための変換係数を求める。
 変換係数とは、後述するRGBデータ変換部5がRGBデータをRGBWデータに変換するときに用いる値であり、例えば、拡張方式によりRGBWデータを作成する場合、RGBデータが示すRGBの階調を何倍拡張するかを示す。なお、本明細書ではRGBWデータに変換することを、RGBWデータを作成するともいう。
 例えば、RGBW4つのサブピクセルから構成される画素において色を表現するとき、RGBCMY等の色がくすんで表示されることがある。これは、Wのサブピクセルを加えることによって、RGBそれぞれのサブピクセルの面積が相対的に縮小するためにRGBの輝度が十分に得られないことに起因しており、特に、黄色を表示するときに生じ易い。
 表示装置100では、RGBWデータの作成時に用いる変換係数を、鮮やかな画素の比率、すなわち表示すべき画像にRGBCMY等の色が表現される領域がどの程度あるかに応じて求めるため、RGBCMY等の色を鮮やかに表示することができる。
 詳細は後述するが、変換係数演算部4は、例えば階調比算出部2が算出する階調比と変換係数との関係を表す曲線等を用いて変換係数を求める。その際、変換係数演算部4は、検出部3で検出された対象画素の比率に応じて、対象画素以外の画素の変換係数を変化させる。また、変換係数演算部4が変換係数を求めるために用いる要素は対象画素の比率に加え、例えば、後述する判定部7が判定した結果を用いることができる。
 RGBデータ変換部5は、変換係数を用いてRGBデータを各画素に応じたRGBWデータに変換し、変換したRGBWデータを表示制御部6に送る。
 RGBデータ取得部1が取得するRGBデータは、RGB3つのサブピクセルから構成される画素に対応するデータである。そのため、RGBW4つのサブピクセルから構成される画素を有する表示装置100では、取得したRGBデータを該画素に対応するように変換する必要がある。
 そこで、RGBデータ変換部5がRGBデータをRGBWデータに変換してから表示制御部6に送ることによって、RGBW4つのサブピクセルを有する表示装置100であっても好適にカラー画像を表示することができる。
 表示制御部6は、RGBデータ変換部5が変換したRGBWデータから、表示パネル20に表示可能な画像(変換画像)を生成し、その画像を表示パネル20に表示する。
 本実施形態において、表示制御部6はタイミング制御部8を有しており、タイミング制御部8はRGBWデータに対応する制御信号を生成し、ソースドライバ9及びゲートドライバ10に該制御信号をそれぞれ送信する。この制御信号としては、例えばソーススタート信号、ソースクロック信号、ゲートスタート信号及びゲートクロック信号が挙げられる。
 ソースドライバ9及びゲートドライバ10は、受信した制御信号に応じて各画素21に配されたRGBWのサブピクセル22,23,24,25へ電圧を印加して、その透過率を制御することによって色が表現される。
 判定部7は、作成されたRGBWデータにおいて、変換画像のすべての画素数に対して最大階調で表示するように指定された画素の割合が、所定値を超えるか否かを判定する。
 具体的には、まずRGBデータ変換部5において変換されたRGBWデータを参照して、RGBいずれかの階調が最大階調を超える階調で表示するように指定された画素の数を測定する。そして、指定された画素の割合がすべての画素数に対して所定の上限値を超えるか、又は所定の下限値未満であるかを判定する。
 本実施形態において、最大階調は255階調であるがこれに限定されるものではない。また、所定の上限値としては例えば2%にすればよく、所定の下限値としては例えば1%にすればよいが、これらの値に限定されるものではない。
 判定部7が判定した結果は、変換係数演算部4が次のフレームにおいて変換係数を求めるときに用いられる。
 バックライト駆動回路15は、バックライト制御部11の制御によりバックライト12の輝度を調整するものである。
 図2は、バックライト制御部11が用いるバックライト輝度と対象画素の比率との関係を示すグラフである。
 バックライト制御部11は、入力画像の全ての画素に対する、検出部3で検出された対象画素(即ち鮮やかな画素)の比率Tに応じて、バックライト駆動回路15を介してバックライト12の輝度Lを制御する。具体的には、図2に示すように、バックライト制御部11は、鮮やかな画素の比率Tが所定比率T未満の場合(即ち鮮やかな画素の比率Tが高くない場合)は、バックライトの輝度Lを第1輝度L1に制御し、他方、鮮やかな画素の比率Tが上記所定比率T以上の場合(即ち鮮やかな画素の比率Tが高い場合)は、バックライト12の輝度Lを、上記第1輝度L1よりも高い第2輝度L2に制御する。
 即ち、RGBW4つのサブピクセルから構成される画素においては、RGBCMY等の鮮やかな色を表示するときは、色がくすむことがある一方、鮮やかな色以外の色を表示するときは、殆ど色がくすむことはない。このため、鮮やかな画素の比率Tが所定比率T以上の場合は、鮮やかな画素の比率が高く鮮やかな画素のくすみが目立つので、バックライト12の輝度Lを上げて第2輝度L2として、鮮やかな画素のくすみを防止する。
 他方、鮮やかな画素の比率Tが所定比率T未満の場合は、鮮やかな画素の比率が低く鮮やかな画素のくすみが目立たない。この場合は、特にバックライト12の輝度Lを上げる必要はないので、バックライト12の輝度Lを第2輝度L2よりも低い第1輝度L1に制御している。
 なお、第2輝度L2としては、例えば、鮮やかな画素をくすむことなく表示できる最低限の輝度を採用することができる。また、第1輝度L1としては、例えば、鮮やかな画素以外の画素をくすむことなく表示できる最低限の輝度を採用することができる。従来では、バックライトの輝度は固定されていたが、ここでは、第1輝度として、その従来の輝度を採用することができる。
 また、所定比率Tとしては、例えば50%を採用することができるが、この値に限定されるものではない。
 なお、本実施の形態では、対象画素の比率は、入力画像の全ての画素に対する比率であるが、画面全体についての比率でもよいし、画面の一部の領域についての比率であってもよい。
 なお、第2輝度L2のときのバックライト12の消費電力は、第1輝度L1のときのバックライト12の消費電力よりも高くなっている。
 バックライト12は、表示パネル20に向けて光を照射する。本実施形態において、バックライト12から照射される光は白色光であればよい。バックライト12の光源としては、例えば、エレクトロ・ルミネッセンス(EL)、冷陰極管(CCFL)又は発光ダイオード(LED)等が挙げられる。
 このような構成の表示装置100は、例えば、テレビジョン受像機、パソコン、携帯電話又はゲーム機器等の種々の表示装置として利用できる。
 (RGBWデータの作成)
 次に、本実施形態の表示装置100において、取得したRGBデータからRGBWデータを作成する処理の流れについて、図3を参照して説明する。
 図3は、図1に示す表示装置100が備えるRGBデータ変換部5がRGBデータをRGBWデータに変換するときの手順を説明するための図である。なお、図3に示す棒グラフは、それぞれRGBWの階調を示している。
 本実施形態では、取得したRGBデータから拡張方式を用いてRGBWデータを作成する。拡張方式の作成方法とは、RGBデータが示すRGBそれぞれの階調のうち、最も低い階調をWの階調にし、RGBそれぞれの階調に変換係数を乗じて各階調の値を拡張した後、さらにWの階調の値を引くことによってRGBデータをRGBWデータに変換する方法である。
 例えば、図3の(a)のグラフでは、RGBの階調がそれぞれ成分41,42,43によって示されている。これらのうち、成分41で示すRの階調が最も低いため、RGBデータ変換部5はこの値をWの階調(成分44)にする。
 次に、RGBそれぞれの階調に変換係数演算部4が求めた変換係数を乗じて、RGBの階調を拡張する(図3の(b))。ここで、変換係数は例えば1~2の値を取り得るため、RGBの階調はそれぞれ1~2倍に拡張される。なお、変換係数が取り得る値の範囲はこれに限定されるものではない。
 その後、拡張したRGBそれぞれの階調からWの階調の値、つまり、元のRGBデータが示すRの階調の値を引く(図3の(c))。これにより、図3の(d)に示す階調が割り当てられたRGBWデータに変換される。
 このように、RGBWデータを作成するときに、元のRGBデータが示すRGBの階調に、変換係数演算部4が求めた変換係数を乗じて拡張している。よって、低い値の変換係数で階調を調整するように指定された画素の光透過率(従って輝度)は低くなり、高い値の変換係数で階調を調整するように指定された画素の光透過率(従って輝度)は高くなる。即ち、画素の光透過率は、当該画素の変換係数の増加/減少に応じて、増加/減少するものである。
 (変換係数の算出方法)
 ここで、本実施形態における変換係数の算出方法について説明する。
 変換係数演算部4は、検出部3で検出された対象画素(即ち鮮やかな画素)の比率に応じて、各画素毎に変換係数(従って光透過率)を決定する。具体的には、検出部3で検出された対象画素の比率が所定比率T未満の場合(以後、この場合を第1の場合と呼ぶ)は、変換係数演算部4は、変換係数と階調比との関係を規定した特性線(ここでは曲線)を用いて、各画素の階調比から各画素の変換係数を決定する。上記特性線は、例えば、階調比の増加に伴って変換係数が増加する曲線となっている。
 他方、検出部3で検出された対象画素の比率が所定比率T以上の場合(以後、この場合を第2の場合と呼ぶ)は、変換係数演算部4は、鮮やかな画素の変換係数には、上記第1の場合の当該鮮やかな画素の変換係数(第1変換係数)と同じ変換係数を用い、他方、鮮やかな画素以外の画素の変換係数には、上記第1の場合の当該鮮やかな画素以外の画素の変換係数(第2変換係数)よりも小さい変換係数(第3変換係数)を用いる。ここでは、上記小さい変換係数として、例えば、鮮やかな画素の変換係数と同じ変換係数が採用される。
 即ち、上記第1の場合は、鮮やかな画素の光透過率は、上記第1変換係数に対応した第1光透過率に制御され、鮮やかな画素以外の画素の光透過率は、上記第2変換係数に対応した第2光透過率に制御される。他方、上記第2の場合は、鮮やかな画素の光透過率は、上記第1光透過率と同じ光透過率に制御され、鮮やかな画素以外の画素の光透過率は、上記第3変換係数に対応した第3光透過率(即ち第2光透過率よりも小さい光透過率)に制御される。
 このように、上記第1の場合は、鮮やかな画素の比率が比較的少ないので、鮮やかな画素がくすんで表示されても、そのくすみはあまり目立たない。このため、階調比の大きい画素ほど変換係数(従って光透過率)が大きくなるように変換係数を決定することで、画面の輝度を重視して表示するようになっている。他方、上記第2の場合は、鮮やかな画素の比率が比較的多いので、鮮やかな画素以外の画素の変換係数(従って光透過率)を低減して、鮮やかな画素以外の画素の輝度を鮮やかな画素の輝度に近づけることで、鮮やかな画素のくすみが目立たないようにしている。
 (第1の場合の変換係数の決定方法)
 上記第1の場合の変換係数の決定方法について、もう少し詳しく説明すると、以下の通りである。
 まず、変換係数演算部4は、変換係数を算出するために用いる上記曲線(特性線)を作成する。
 図4は、図1に示す表示装置が備える変換係数演算部4が用いる階調比と変換係数との関係を表す曲線を示すグラフである。このグラフにおいて、横軸は階調比(R)を表し、縦軸は変換係数(S)を表している。
 そして、変換係数演算部4は、変換係数を求めるとき、図4に示すような曲線を用いて、各画素に対応するRGBデータから算出した階調比に基づいて変換係数を決定する。例えば、ある画素の階調比が0.8のとき、曲線30を用いて求めた変換係数は1.6になる。
 このように、変換係数は画素の階調比が求まれば導出される。そのため、同じ階調比であっても曲線の傾きが大きくなるほど(例えば曲線30)白の輝度がより強調され、高輝度で画像が表示され、曲線の傾きが小さくなるほど(例えば曲線32)白の輝度が抑えられ、RGBCMYの色がより鮮やかに表示される。
 曲線の傾きは、検出部3が検出した対象画素(鮮やかな画素)の比率を用いて設定すればよい。対象画素の比率に応じた傾きの設定方法としては、例えば、傾きを設定するための傾き係数(K)と、対象画素の比率との関係式を用いる方法が挙げられる。
 図5は、対象画素の比率と傾き係数との関係を示すグラフである。図5のグラフにおいて、横軸は対象画素の比率を表し、縦軸は傾き係数(K)を表す。
 傾き係数とは、変換係数を算出するために用いる曲線の傾きを増減させるための係数であり、特に限定されないが、例えば0~1の値であってもよい。つまり、傾き係数の値が大きいほど曲線の傾きは増し、傾き係数の値が小さいほど曲線の傾きは緩やかになる。
 図5に示すように、対象画素の比率が少ないときは薄い色で表示する領域が多いことを意味するため、傾き係数の値は大きくなっており、対象画素の比率が多いときは鮮やかな色で表示する領域が多いことを意味するため、傾き係数の値が小さくなっている。
 ここでいう薄い色(くすんだ色)とは、例えば階調比が0.9~1の範囲で表現されるような彩度が低い色であり、鮮やかな色とは、上述したように、例えば階調比が約0で表現される色である。なお、以降において、薄い色を表示する画素を「薄い画素」と呼ぶことがある。
 例えば、図6に鮮やかな画素の比率が異なる3種類の画像(a)~(c)を示す。図6は、鮮やかな色を表示する領域と薄い色を表示する領域との割合が異なる画像の表示例であり、上段は表示される画像を示し、下段は上段の画像における濃さの分布を示している。
 図6において、画像(a)は薄い色を表示する領域Aの占める割合が多く、鮮やかな画素の比率は例えば0.03%である。この画像(a)を表示する場合、色の鮮やかさよりも画面の輝度を重視して表示することが好ましいため、特性線の傾きを大きく設定する。
 また、画像(b)では画像(a)よりも鮮やかな色を表示する領域Bの占める割合が多く、鮮やかな画素の比率は例えば8%である。この画像(b)を表示する場合、色の鮮やかさと画面の輝度をバランスよく表示することが好ましいため、画像(a)のときよりも特性線の傾きを小さく設定する。
 さらに、画像(c)では鮮やかな色を表示する領域Bの占める割合が多く、鮮やかな画素の比率は例えば25%である。この画像(c)を表示する場合、画面の輝度よりも色の鮮やかさを重視して表示することが好ましいため、特性線の傾きをさらに小さく設定する。
 また、変換係数演算部4は、判定部7が判定した結果をさらに用いて変換係数を算出するための上記曲線を作成することができる。具体的には、判定部7が判定した結果に応じて、特性線(曲線)の切片を設定する。
 上述したように、判定部7は、まずRGBデータ変換部5において変換されたRGBWデータを参照して、RGBいずれかの階調が最大階調を超える階調で表示するように指定された画素の数を測定する。そして、指定された画素の割合がすべての画素数に対して所定の上限値を超えるか、又は所定の下限値未満であるかを判定する。
 つまり、RGBデータ変換部5がRGBWデータを作成するとき、RGBの階調を拡張するためにいずれかの階調が最大階調を超えることがある。例えば、図7ではGの階調(成分42)が最大階調である255階調を超えて表示するように指定されている。図7は、RGBWデータのうち、最大階調を超える階調で表示するように指定された画素の例を示す図である。
 この場合、Gによって表現できる上限は255階調であるため、他の色とのバランスが崩れて本来のデータに示される色とは異なる色が表示され得る。
 そのため、255階調を超える階調で表示するように指定された画素の数が、すべての画素数に対して例えば2%を超える場合、変換係数演算部4は曲線の切片を下げる。これにより、RGBの階調を拡張するときの値が小さくなり、255階調を超える画素の数を減少させることができる。
 一方、255階調を超える階調で表示するように指定された画素の数がすべての画素数に対して、例えば1%を下回る場合、変換係数演算部4は曲線の切片を上げる。つまり、最大階調を超える画素の割合が低い場合、画像全体の輝度が十分でないことがある。そのため、RGBの階調を拡張するときの値を大きくすることにより、十分な輝度で表示することができる。
 ここで、図6に示す3種類の画像を例に切片の設定方法を説明する。
 図8は、図6に示す画像(a)を表示する際に用いる曲線の切片を移動させるところを示すグラフである。画像(a)は薄い画素の比率が高いため、図8に示すように曲線の傾きが大きい。
 ここで、255階調を超える階調で表示するように指定された画素の数が、すべての画素数に対して例えば2%を超える場合、曲線50を縦軸下方向にシフトさせて曲線51に近づける。一方、255階調を超える階調で表示するように指定された画素の数がすべての画素数に対して、例えば1%を下回る場合、曲線52を縦軸上方向にシフトさせて曲線51に近づける。
 図9は、図6に示す画像(b)を表示する際に用いる曲線の切片を移動させるところを示すグラフである。上述したように、画像(b)は画像(a)よりも鮮やかな画素の比率が高いため、図9に示すように曲線の傾きが画像(a)を表示する際に用いる曲線よりも小さい。
 この曲線においても、255階調を超える階調で表示するように指定された画素の数が、すべての画素数に対して例えば2%を超える場合、曲線50を縦軸下方向にシフトさせて曲線51に近づける。一方、255階調を超える階調で表示するように指定された画素の数がすべての画素数に対して、例えば1%を下回る場合、曲線52を縦軸上方向にシフトさせて曲線51に近づける。
 また、図6に示す画像(c)を表示する際に用いる曲線のように、傾きを小さくした場合であっても、同様に最大階調を超える階調で表示するように指定された画素が多ければ曲線を縦軸下方向にシフトさせ、該画素が少なければ曲線を縦軸上方向にシフトさせる。図10は、図6に示す画像(c)を表示する際に用いる曲線の切片を移動させるところを示すグラフである。
 このように、最大階調を超える画素の割合が所定の上限値を超えるか、又は所定の下限値未満であるかによって曲線の切片(C)を上下させることにより、画像を色再現性よく、且つ十分な輝度で表示することができる。
 なお、判定部7は、あるフレームのRGBデータから変換されたRGBWデータを参照して判定するため、判定部7が判定した結果は、あるフレームの次のフレームにおいて変換係数演算部4が切片を求めるときに用いられる。しかし、連続するフレーム間において表示される画像にはほとんど差がないため、問題なく表示することができる。
 対象画素の比率から導出された傾きと、判定部7が判定した結果から導出された切片とを有する曲線は、例えば下記式(1)によって表すことができる。
 変換係数(S)=(-0.5×R+1.15×R)×K+C・・・式(1)
 なお、式(1)中、Rは階調比、Kは傾き係数、及びCは切片をそれぞれ表す。変換係数演算部4は、この式(1)を用いることによって容易に上記第1の場合の変換係数を求めることができる。
 (第2の場合の変換係数の決定方法)
 また、上記第2の場合の変換係数の決定方法について、もう少し詳しく説明すると、以下の通りである。
 上記第2の場合、変換係数演算部4は、式(1)の曲線において例えば傾きK=0として得られる横軸に平行な直線を用いて、各画素の変換係数を決定する。即ち、変換係数演算部4は、判定部7が判定した結果から導出された切片Cで規定される下記式(2)を用いて、各画素の変換係数を決定する。
 変換係数(S)=C・・・式(2)
 図11は、式(1)と式(2)の関係を示した図である。図11から分かるように、鮮やかな画素(即ち階調比=0の画素)の変換係数は、上記第1の場合(即ち式(1)の場合)と第2の場合(式(2)の場合)とで同じ値であるが、鮮やかな画素以外の画素(即ち階調比≠0の画素)の変換係数は、第2の場合(即ち式(2)の場合)の値(第3変換係数)は第1の場合(即ち式(1)の場合)の値(第2変換係数)よりも小さな値に決定される。
 なお、式(2)は、式(1)において傾きK=0とした式であるが、式(2)の変形例として、下記式(3)を用いてもよい。
 変換係数(S)=(-0.5×R+1.15×R)×K+C・・・式(3)
但し、K=M/T(M:正の定数、T:対象画像の比率)
 式(3)は、式(1)において、傾きKが、検出部3で検出された対象画素の比率Tが大きいほど小さくなるようにした式である。式(3)を用いた場合は、検出部3で検出された対象画素(即ち鮮やかな画素)の比率が大きいほど、鮮やかな画素以外の画素の変換係数(第3変換係数)を小さく制御することが可能になる。即ち、検出部3で検出された対象画素(即ち鮮やかな画素)の比率が大きいほど、鮮やかな画素以外の画素の光透過率(第3光透過率)を小さく制御することが可能になる。
 なお、式(3)の関数形は一例であり、このような関数形に限定されるものではなく、比率Tの増加に応じて傾きKが減少すれば、同様な関数形でもよい。
 (表示装置100の制御方法)
 次に、図12に基づいて表示装置100の動作を説明する。図12は、表示装置100の動作を説明するフローチャートである。
 ステップS1では、RGBデータ取得部1が、外部の送信元から、入力画像を構成するRGBデータを取得する。そして、階調比算出部2が、該RGBデータが示す一画素内におけるRGBそれぞれの階調のうち、最も高い階調に対する最も低い階調の比(階調比)を画素毎に算出する。
 ステップS2では、検出部3が、階調比算出部2により算出された階調比が0である対象画素(即ち鮮やかな画素)が当該入力画像に占める比率を検出する。
 そして、ステップS3では、検出部3が、更に、その比率が所定比率T以上であるか否かを検出する。そして、対象画素の比率が所定比率T未満の場合は、処理がステップS4に進み、他方、対象画素の比率が所定比率T以上の場合は、処理がステップS5に進む。
 ステップS4では、変換係数演算部4が、対象画素のくすみが目立たない場合の各画素の変換係数を取得する。即ち、まず、変換係数演算部4が、当該変換係数を求めるための特性線(このステップでは曲線)を求める。
 具体的には、変換係数演算部4が、上記曲線の傾きKおよび切片Cを決定する。その際、傾きKは、変換係数演算部4により、例えば図5に基づいて、検出部3が検出した対象画素の比率を用いて決定される。また、切片Cは、変換係数演算部4により、判定部7が前フレームに基づいて既に行った判定(後述のステップS7の判定)の結果に基づいて、必要に応じてシフト補正されて、決定される。そして、変換係数演算部4が、上記の傾きKおよび切片Cを用いて、例えば上記式(1)に基づいて、上記曲線を求める。そして、変換係数演算部4が、上記曲線を用いて、各画素の階調比に基づいて各画素の変換係数を取得する。
 ステップS5では、変換係数演算部4が、対象画素のくすみが目立つ場合の各画素の変換係数を取得する。即ち、まず、変換係数演算部4が、当該変換係数を求めるための特性線(このステップでは例えば傾きゼロの直線)を求める。具体的には、変換係数演算部4が、上記直線の切片Cを決定する。この切片Cは、変換係数演算部4により、ステップS4の場合と同様に決定される。そして、変換係数演算部4が、上記切片Cを用いて、例えば上記式(2)に基づいて、上記直線を求める。そして、変換係数演算部4が、上記直線を用いて、各画素の階調比に基づいて各画素の変換係数を取得する。
 なお、ステップS5において、式(2)を用いて上記特性線を求める代わりに、切片CおよびステップS2で求められた対象画素の比率Tを用いて、上記式(3)に基づいて、上記特徴線を求めてもよい。この場合の上記特性線は曲線になる。
 式(2)を用いた場合は、各画素の変化係数は同じ値となり、式(3)を用いた場合は、各画素の変換係数は、各画素の階調比に応じて異なる値となる。何れの場合においても、対象画素(階調比R=0の画素)の変換係数は、ステップS4の場合と同じ値となり、対象画素以外の画素(階調比R≠0の画素)の変換係数は、ステップS4の場合と比べて小さい値となる。これにより、後述(ステップS6)のように、RGBWデータが生成されたときに、ステップS4の場合と比べて、対象画素以外の画素の光透過率が対象画素の光透過率に近づけられることで、対象画素のくすみが防止される。
 ステップS6では、RGBデータ変換部5が、ステップS4またはS5で取得された変換係数を用いて、RGBデータをRGBWデータに変換する。
 ステップS7では、判定部7が、ステップS6において変換されたRGBWデータを参照して、255階調を超えた画素をカウントし、そのカウント数に応じて、変換係数演算部4が用いる特性線の切片Cをシフトさせるための判定を行う。この判定の結果は、次のフレームにおいて、変換係数演算部4が特性線の切片Cをシフトさせるために用いられる。
 ステップS8では、表示制御部6が、ステップS6で変換されたRGBWデータに基づいて、ソースドライバ9およびゲートドライバ10を制御するための制御信号を生成して、ソースドライバ9およびゲートドライバ10に送信する。そして、ソースドライバ9およびゲートドライバ10が、受信した制御信号に応じて各画素に配されたRGBWのサブピクセルへ電圧を印加して、その光透過率が制御されることによって色が表現される。これにより、表示パネル20には、RGBWデータによって示される画像が表示される。
 ステップS9では、処理が当該ステップS9に至る途中でステップS3のNoを経た場合(即ち対象画像の比率が所定比率T未満の場合)は、処理がステップS10に進み、バックライト制御部11が、バックライト駆動回路15を介して、バックライト12の輝度を第1輝度に制御する。これにより、表示パネル20に表示された画像が第1輝度のバックライト光により照らし出される。
 また、ステップS9では、処理が当該ステップS9に至る途中でステップS3のYesを経た場合(即ち対象画像の比率が所定比率T以上の場合)は、処理がステップS11に進み、バックライト制御部11が、バックライト駆動回路15を介して、バックライト12の輝度を、第1輝度よりも高い第2輝度に制御する。これにより、表示パネル20に表示された画像が第2輝度のバックライト光により照らし出される。
 このように、表示装置100では、対象画像(即ち鮮やかな画素)の比率が所定比率T未満の場合(即ち、表示画像中の鮮やかな画素の比率が少なく、鮮やかな画素のくすみが目立たない場合)は、処理がステップS4およびS10を経由する。即ち、ステップS4で、各画素の階調比が大きいほど各画素の変換係数が大きくなるように各画素の変換係数が決定され、ステップS10で、バックライト12の輝度が第1輝度(例えば従来の輝度)に制御される。これにより、階調比に応じて輝度を高めて(即ち従来通りに)表示画像が表示される。
 他方、対象画像の比率が所定比率T以上の場合(即ち、表示画像中に鮮やかな画素が多く存在し、鮮やかな画素のくすみが目立つ場合)は、処理はステップS5およびS11を経由する。即ち、ステップS5で、対象画素の変換係数はステップS4の場合と同じ値の変換係数となり、且つ対象画素以外の画素の変換係数はステップS4の場合と比べて小さい値の変換係数となるように(即ち、対象画素以外の画素の光透過率が低減されて対象画素の光透過率との差が小さくなるように)、各画素の変換係数が決定され、ステップS10で、バックライト12の輝度が第1輝度よりも高い第2輝度に制御される。
 このように、バックライト12の輝度が第1輝度よりも高い第2輝度に制御されることで、表示画像中の鮮やかな画素のくすみが防止される。更に、鮮やかな画素の光透過率はそのままで、鮮やかな画素以外の画素の光透過率が低減されることで、鮮やかな画素と鮮やかな画素以外の画素との間の輝度差が小さくなって、鮮やかな画素のくすみが、一層、防止される。
 (変形例)
 本発明の一態様に係る表示装置は、赤(R)、緑(G)、青(B)の各サブピクセル、および、4つ目のサブピクセル(X)を一画素中に有する表示部を備え、RGB3色の色信号で構成された入力画像をRGBX4色の色信号で構成された変換画像に変換して表示する表示装置であって、上記入力画像を上記変換画像に変換する変換部と、上記変換画像を非自発光型の上記表示部に表示する表示制御部と、上記表示部に照明光を照射する照明部と、上記入力画像の全ての画素に対する、鮮やかな色を表示する画素の比率を検出する比率検出部と、上記比率検出部が検出した比率が所定比率未満の場合は、上記照明部の照明光の輝度を第1輝度に制御し、上記比率検出部が検出した比率が上記所定比率以上の場合は、上記照明部の照明光の輝度を上記第1輝度よりも高い第2輝度に制御する照明制御部と、を備える。
 本発明の一態様に係る表示装置の制御方法は、赤(R)、緑(G)、青(B)の各サブピクセル、および、4つ目のサブピクセル(X)を一画素中に有する表示部を備え、RGB3色の色信号で構成された入力画像をRGBX4色の色信号で構成された変換画像に変換して表示する表示装置の制御方法であって、上記入力画像を上記変換画像に変換する変換ステップと、上記変換画像を非自発光型の上記表示部に表示する表示制御ステップと、上記入力画像の全ての画素に対する、鮮やかな色を表示する画素の比率を検出する比率検出ステップと、上記比率検出ステップで検出した比率が所定比率未満の場合は、上記表示部を照明する照明部の輝度を第1輝度に制御し、上記比率検出ステップで検出した比率が上記所定比率以上の場合は、上記照明部の輝度を上記第1輝度よりも高い第2輝度に制御する照明制御ステップと、を含む。
 上記の構成によれば、入力画像中の鮮やかな色を表示する画素の比率が所定比率未満の場合は、照明部の照明光の輝度が第1輝度に制御され、入力画像中の鮮やかな画素の比率が所定比率以上の場合は、照明部の照明光の輝度が第1輝度よりも高い第2輝度に制御される。上記第1輝度としては、例えば従来使用されていた輝度(照明部の輝度)を使用することができる。
 つまり、鮮やかな画素はくすんで見え易いので、鮮やかな画素の比率が所定比率以上の場合は、画像全体の中で鮮やかな画素が目立つ。そのため、その場合は、照明光の輝度が第1輝度(例えば従来の輝度)よりも高い第2輝度に制御されることで、鮮やかな画素のくすみが防止される。他方、鮮やかな画素の比率が所定比率未満の場合は、画像全体の中で鮮やかな画素は目立たないので、照明光の輝度は第1輝度(例えば従来の輝度)に制御される。このように、鮮やかな画素が目立つ場合だけ照明光の輝度が第2輝度に上げられることで、効率的に鮮やかな画素のくすみが防止される。
 本発明の一態様に係る表示装置では、上記照明部は、上記第2輝度のときの消費電力が、上記第1輝度のときの消費電力よりも高くなっている構成とすることもできる。
 本発明の一態様に係る表示装置では、上記変換部は、上記比率検出部が検出した比率が上記所定比率未満の場合は、上記変換画像中の上記鮮やかな色を表示する画素の光透過率を第1光透過率に制御すると共に、上記鮮やかな色以外の色を表示する画素の光透過率を上記第1光透過率よりも高い第2光透過率に制御し、他方、上記比率検出部が検出した比率が上記所定比率以上の場合は、上記変換画像中の上記鮮やかな色を表示する画素の光透過率を上記第1光透過率に制御すると共に、上記鮮やかな色以外の色を表示する画素の光透過率を上記第2光透過率よりも低い第3光透過率に制御する構成とすることもできる。
 上記の構成によれば、鮮やかな色を表示する画素の比率が所定比率未満の場合は、変換画像中の鮮やかな画素の光透過率が第1光透過率に制御されると共に、鮮やかな画素以外の画素の光透過率が第2光透過率に制御され、他方、鮮やかな画素の比率が所定比率以上の場合は、変換画像中の鮮やかな画素の光透過率が上記第1光透過率に制御されると共に、鮮やかな画素以外の画素の光透過率が上記第2光透過率よりも低い第3光透過率に制御される。上記第1光透過率としては、鮮やかな画素で使用されていた従来の光透過率を使用することができる。また、上記第2光透過率としては、鮮やかな画素以外の画素で使用されていた従来の光透過率を使用することができる。
 つまり、鮮やかな画素はくすんで見え易い一方、鮮やかな画素以外の画素は明るく見え易いので、鮮やかな画素の周囲に鮮やかな画素以外の画素が存在する場合は、鮮やかな画素のくすみが一層目立つ。
 そのため、鮮やかな画素の比率が所定比率未満の場合は、鮮やかな画素は目立たないので、鮮やかな画素の光透過率が第1光透過率(例えば鮮やかな画素で使用されていた従来の光透過率)に制御され、鮮やかな画素以外の画素の光透過率が、第2光透過率(例えば鮮やかな画素以外の画素で使用されていた従来の光透過率)に制御される。他方、鮮やかな画素の比率が所定比率以上の場合は、鮮やかな画素は目立つので、鮮やかな画素の光透過率は第1光透過率のままで、鮮やかな画素以外の画素の光透過率が第2光透過率より低い第3光透過率に低減されることで、鮮やかな画素のくすみが防止される。
 即ち、鮮やかな画素が目立つ場合だけ、鮮やかな画素以外の画素の光透過率が第2光透過率から第3光透過率に低減されることで、効率的に鮮やかな画素のくすみが防止される。
 本発明の一態様に係る表示装置では、上記変換部は、上記第3光透過率を、上記比率検出部が検出した比率が大きいほど小さくなるように制御する構成とすることもできる。
 上記の構成によれば、第3光透過率は、鮮やかな色を表示する画素の比率が大きいほど小さくなるように制御されるので、鮮やかな画素以外の画素の光透過率を、鮮やかな画素の比率に応じて細やかに制御できる。
 本発明の一態様に係る表示装置では、上記鮮やかな色は、上記入力画像の一画素中のRGBの各輝度について、最大輝度に対する最小輝度の比が0または約0で規定される色とすることもできる。
 上記の構成によれば、上記比が0の場合は、R(赤)、B(青)、G(緑)、C(シアン)、M(マゼンダ)およびY(黄)を鮮やかな色として扱うことができる。また、上記比が約0の場合は、RBGCMYだけでなく、それらに近い色も鮮やかな色として扱うことができる。
 本発明の一態様に係る表示装置では、上記鮮やかな色は、上記入力画像の一画素中のRGBの各輝度について、最大輝度に対する最小輝度の比が0.1以下で規定される色とすることもできる。
 本発明の一態様に係る表示装置では、上記鮮やかな色は、HSV色空間における彩度が所定の値より大きい色とすることもできる。
 本発明の一態様に係る表示装置では、上記鮮やかな色は、R(赤)、B(青)、G(緑)、C(シアン)、M(マゼンダ)およびY(黄)を含む構成とすることもできる。
 上記の構成によれば、鮮やかな色は、R(赤)、B(青)、G(緑)、C(シアン)、M(マゼンダ)およびY(黄)を含むので、これらの色のくすみを防止できる。
 本発明の一態様に係る表示装置では、上記所定の1色Xは、W(白)色とすることもできる。
 上記の構成によれば、所定の1色は白色であるので、RGB3色の色信号をRGBW4色の色信号に変換する表示装置において、上記効果を適用することができる。
 本発明の一態様に係る表示装置では、上記表示部は、液晶表示パネルである構成とすることもできる。
 上記の構成によれば、上記表示部として液晶パネルを用いた液晶表示装置において、上記の効果を奏することができる。
 なお、上記表示装置は、コンピュータによって実現してもよい。この場合、コンピュータを上記各部として動作させるためのプログラム、及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 (プログラム及び記録媒体)
 最後に、表示装置100に含まれている各部は、ハードウェアロジックによって構成すればよい。また、次のように、CPUを用いてソフトウェアによって実現してもよい。
 即ち、表示装置100は、各機能を実現するプログラムの命令を実行するCPU、このプログラムを格納したROM、上記プログラムを実行可能な形式に展開するRAM、および、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)を備えている。この構成により、本発明の目的は所定の記録媒体によっても達成できる。
 この記録媒体は、上述した機能を実現するソフトウェアである表示装置100のプログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録していればよい。表示装置100に、この記録媒体を供給する。これにより、コンピュータとしての表示装置100(又はCPUやMPU)が、供給された記録媒体に記録されているプログラムコードを読み出し、実行すればよい。
 プログラムコードを表示装置100に供給する記録媒体は、特定の構造又は種類のものに限定されない。すなわちこの記録媒体は、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスク又はCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、もしくはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などとすることができる。
 また、表示装置100を通信ネットワークと接続可能に構成しても、本発明の目的を達成できる。この場合、上記のプログラムコードを、通信ネットワークを介して表示装置100に供給する。この通信ネットワークは表示装置100にプログラムコードを供給できるものであればよく、特定の種類又は形態に限定されない。例えばインターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(Virtual Private Network)、電話回線網、移動体通信網、衛星通信網等であればよい。
 この通信ネットワークを構成する伝送媒体も、プログラムコードを伝送可能な任意の媒体であればよく、特定の構成又は種類のものに限定されない。例えばIEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL(Asymmetric Digital Subscriber Line)回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、例えばテレビジョン受像機、パソコン、携帯電話又はゲーム機器等の種々の表示装置に好適に利用することができる。
 1   RGBデータ取得部
 2   階調比算出部
 3   検出部(比率検出手段)
 4   変換係数演算部(変換手段)
 5   RGBデータ変換部(変換手段)
 6   表示制御部(表示制御手段)
 7   判定部
 8   タイミング制御部
 9   ソースドライバ
 10  ゲートドライバ
 11  バックライト制御部(照明制御手段)
 12  バックライト(照明手段)
 15  バックライト駆動回路
 20  表示パネル(表示部)
 100 表示装置

Claims (11)

  1.  赤(R)、緑(G)、青(B)の各サブピクセル、および、4つ目のサブピクセル(X)を一画素中に有する表示部を備え、RGB3色の色信号で構成された入力画像をRGBX4色の色信号で構成された変換画像に変換して表示する表示装置であって、
     上記入力画像を上記変換画像に変換する変換部と、
     上記変換画像を非自発光型の上記表示部に表示する表示制御部と、
     上記表示部に照明光を照射する照明部と、
     上記入力画像の全ての画素に対する、鮮やかな色を表示する画素の比率を検出する比率検出部と、
     上記比率検出部が検出した比率が所定比率未満の場合は、上記照明部の照明光の輝度を第1輝度に制御し、上記比率検出部が検出した比率が上記所定比率以上の場合は、上記照明部の照明光の輝度を上記第1輝度よりも高い第2輝度に制御する照明制御部と、
    を備えることを特徴とする表示装置。
  2.  上記照明部は、上記第2輝度のときの消費電力が、上記第1輝度のときの消費電力よりも高いことを特徴とする請求項1に記載の表示装置。
  3.  上記変換部は、上記比率検出部が検出した比率が上記所定比率未満の場合は、上記変換画像中の上記鮮やかな色を表示する画素の上記表示部での光透過率が第1光透過率になるように上記入力画像を変換すると共に、上記変換画像中の上記鮮やかな色以外の色を表示する画素の上記表示部での光透過率が上記第1光透過率よりも高い第2光透過率になるように上記入力画像を変換し、他方、上記比率検出部が検出した比率が上記所定比率以上の場合は、上記変換画像中の上記鮮やかな色を表示する画素の上記表示部での光透過率が上記第1光透過率になるように上記入力画像を変換すると共に、上記変換画像中の上記鮮やかな色以外の色を表示する画素の上記表示部での光透過率が上記第2光透過率よりも低い第3光透過率になるように上記入力画像を変換することを特徴とする請求項1または2に記載の表示装置。
  4.  上記変換部は、上記第3光透過率を、上記比率検出部が検出した比率が大きいほど小さくなるように制御することを特徴とする請求項3に記載の表示装置。
  5.  上記鮮やかな色は、上記入力画像の一画素中のRGBの各輝度について、最大輝度に対する最小輝度の比が0または約0で規定される色であることを特徴とする請求項1から4の何れか1項に記載の表示装置。
  6.  上記鮮やかな色は、上記入力画像の一画素中のRGBの各輝度について、最大輝度に対する最小輝度の比が0.1以下で規定される色であることを特徴とする請求項1から4の何れか1項に記載の表示装置。
  7.  上記鮮やかな色は、HSV色空間における彩度が所定の値より大きい色であることを特徴とする請求項1から4の何れか1項に記載の表示装置。
  8.  上記鮮やかな色は、R(赤)、B(青)、G(緑)、C(シアン)、M(マゼンダ)およびY(黄)を含むことを特徴とする請求項1から4の何れか1項に記載の表示装置。
  9.  上記所定の1色Xは、W(白)色であることを特徴とする請求項1から8の何れか1項に記載の表示装置。
  10.  上記表示部は、液晶表示パネルであることを特徴とする請求項1から9の何れか1項に記載の表示装置。
  11.  赤(R)、緑(G)、青(B)の各サブピクセル、および、4つ目のサブピクセル(X)を一画素中に有する表示部を備え、RGB3色の色信号で構成された入力画像をRGBX4色の色信号で構成された変換画像に変換して表示する表示装置の制御方法であって、
     上記入力画像を上記変換画像に変換する変換ステップと、
     上記変換画像を非自発光型の上記表示部に表示する表示制御ステップと、
     上記入力画像の全ての画素に対する、鮮やかな色を表示する画素の比率を検出する比率検出ステップと、
     上記比率検出ステップで検出した比率が所定比率未満の場合は、上記表示部を照明する照明部の輝度を第1輝度に制御し、上記比率検出ステップで検出した比率が上記所定比率以上の場合は、上記照明部の輝度を上記第1輝度よりも高い第2輝度に制御する照明制御ステップと、
    を含むことを特徴とする表示装置の制御方法。
PCT/JP2012/059030 2011-04-07 2012-04-03 表示装置および表示装置の制御方法 WO2012137753A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013508867A JPWO2012137753A1 (ja) 2011-04-07 2012-04-03 表示装置および表示装置の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-085814 2011-04-07
JP2011085814 2011-04-07

Publications (1)

Publication Number Publication Date
WO2012137753A1 true WO2012137753A1 (ja) 2012-10-11

Family

ID=46969151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059030 WO2012137753A1 (ja) 2011-04-07 2012-04-03 表示装置および表示装置の制御方法

Country Status (2)

Country Link
JP (1) JPWO2012137753A1 (ja)
WO (1) WO2012137753A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179253A (ja) * 2014-02-25 2015-10-08 キヤノン株式会社 表示装置及びその制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005242300A (ja) * 2004-02-23 2005-09-08 Samsung Electronics Co Ltd 画像表示方法及び表示装置並びにその駆動装置及び方法
WO2006025190A1 (ja) * 2004-09-01 2006-03-09 Mitsubishi Denki Kabushiki Kaisha 画像表示装置、および画像表示方法
WO2007125630A1 (ja) * 2006-04-26 2007-11-08 Sharp Kabushiki Kaisha 画像表示装置、画像表示装置の駆動方法、駆動プログラム、およびコンピュータ読み取り可能な記録媒体
JP2009053669A (ja) * 2007-08-27 2009-03-12 Samsung Electronics Co Ltd Rgbw映像信号の彩度向上システムおよび方法
JP2009192887A (ja) * 2008-02-15 2009-08-27 Hitachi Displays Ltd 表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005242300A (ja) * 2004-02-23 2005-09-08 Samsung Electronics Co Ltd 画像表示方法及び表示装置並びにその駆動装置及び方法
WO2006025190A1 (ja) * 2004-09-01 2006-03-09 Mitsubishi Denki Kabushiki Kaisha 画像表示装置、および画像表示方法
WO2007125630A1 (ja) * 2006-04-26 2007-11-08 Sharp Kabushiki Kaisha 画像表示装置、画像表示装置の駆動方法、駆動プログラム、およびコンピュータ読み取り可能な記録媒体
JP2009053669A (ja) * 2007-08-27 2009-03-12 Samsung Electronics Co Ltd Rgbw映像信号の彩度向上システムおよび方法
JP2009192887A (ja) * 2008-02-15 2009-08-27 Hitachi Displays Ltd 表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179253A (ja) * 2014-02-25 2015-10-08 キヤノン株式会社 表示装置及びその制御方法
US9607555B2 (en) 2014-02-25 2017-03-28 Canon Kabushiki Kaisha Display apparatus and control method thereof

Also Published As

Publication number Publication date
JPWO2012137753A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2012008342A1 (ja) 表示装置、表示装置の制御方法、プログラム及び記録媒体
TWI413098B (zh) 顯示裝置
US10373551B2 (en) Display unit, image processing unit, and display method for improving image quality
JP5735100B2 (ja) 表示装置、及び表示方法
US8390656B2 (en) Image display device and image display method
JP5963933B2 (ja) 信号変換装置及び方法、並びにプログラム及び記録媒体
US9666113B2 (en) Display, image processing unit, and display method for improving image quality
US8681190B2 (en) Liquid crystal display
CN109686323B (zh) 一种显示装置及其驱动方法以及电子设备
JP5897159B2 (ja) 表示装置及びその制御方法
WO2012017899A1 (ja) 表示制御方法、表示制御装置、液晶表示装置、表示制御プログラムおよびコンピュータ読取可能な記録媒体
US9990878B2 (en) Data clipping method using red, green, blue and white data, and display device using the same
US20140125689A1 (en) Display device, electronic apparatus, and drive method for display device
JP6395232B2 (ja) 画像表示装置及び光源調光方法
EP2094006B1 (en) Contrast ratio promotion method
WO2012137753A1 (ja) 表示装置および表示装置の制御方法
WO2010150299A1 (ja) 液晶表示装置
US20150130856A1 (en) Signal generation apparatus, signal generation program, signal generation method, and image display apparatus
JP2012226178A (ja) 表示制御装置、表示システム、画像データ出力方法、プログラム、及び記録媒体
KR101870991B1 (ko) 표시 장치의 색 보정장치 및 방법
KR102533411B1 (ko) 영상 처리부, 그것을 포함하는 표시 장치, 및 영상 처리 방법
EP3382685A1 (en) Method and device for adapting a rendering visibility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508867

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12767725

Country of ref document: EP

Kind code of ref document: A1