WO2012137670A1 - Load current detection circuit - Google Patents

Load current detection circuit Download PDF

Info

Publication number
WO2012137670A1
WO2012137670A1 PCT/JP2012/058455 JP2012058455W WO2012137670A1 WO 2012137670 A1 WO2012137670 A1 WO 2012137670A1 JP 2012058455 W JP2012058455 W JP 2012058455W WO 2012137670 A1 WO2012137670 A1 WO 2012137670A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
load
circuit
sense
detection circuit
Prior art date
Application number
PCT/JP2012/058455
Other languages
French (fr)
Japanese (ja)
Inventor
明宏 中原
相馬 治
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to JP2013508834A priority Critical patent/JP5666694B2/en
Publication of WO2012137670A1 publication Critical patent/WO2012137670A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Definitions

  • the present invention relates to a current detection circuit, and more particularly to a load current detection circuit for detecting a load current flowing in the load circuit.
  • FIG. 1 is a circuit diagram showing a configuration of a current detection circuit described in Patent Document 1.
  • the current detection circuit described in Patent Document 1 includes a power field-effect semiconductor component 101 for detecting a load current and another field-effect semiconductor component 102.
  • the drain terminals and gate terminals of both semiconductor components 101 and 102 are connected to each other.
  • a resistor 105 is connected in series to the source terminal of the semiconductor component 102 via a controllable resistor 106.
  • the other terminal of the resistor 105 is connected to a fixed voltage. By the action of the resistor 106, the drain-source voltages of the semiconductor components 101 and 102 are adjusted to be equal.
  • Patent Document 2 discloses a technique for significantly reducing power loss associated with current detection, performing current detection constantly, and detecting current stably and with high accuracy.
  • FIG. 2 is a circuit diagram showing a configuration of the current detection circuit described in Patent Document 2.
  • the power transistor 211 and the current detection transistor 212 are commonly supplied with the power supply voltage Vcc and the switch signal S1.
  • a buffer circuit 200 is provided so that an idling current Iidl is supplied to the output node of the current detection transistor 212, and the output voltages of both transistors are virtually the same voltage.
  • the buffer circuit 200 is always operated as a class A amplifier circuit.
  • the circuits shown in FIGS. 1 and 2 are generally called high-side switches, and supply current to a load connected to the GND side via a switch connected to the power supply side.
  • a high-side switch a plurality of loads may be driven by one switch.
  • the current detection circuit detects the disconnection state of the plurality of loads by detecting the load current. When the load connected to the switch is disconnected, the load current decreases rapidly. Even in such a case, a technique for accurately detecting the load current is required.
  • Patent Documents 1 and 2 as a method for detecting a load current, a small transistor (semiconductor component 102 or current detection) having a similar structure to an output MOSFET (power semiconductor component 101 or power transistor 211) for driving a load is disclosed. A technique for connecting the transistor 212) in parallel with the output MOSFET is disclosed.
  • the present invention provides a technique for accurately detecting a load current even when the load current decreases rapidly.
  • the load current detection circuit is provided between the power supply and the load circuit, and is arranged in parallel with the load current generation circuit for generating the load current to be supplied to the load circuit in response to the control signal, and for controlling the load current generation circuit.
  • a sense current generation circuit that generates an initial sense current in response to a signal, a sense current control circuit that monitors a change in the load current and changes the initial sense current in response to the change in the load current, and a load current fluctuation
  • An output node that receives a current for detection; a sense resistor that converts a current flowing into the output node into a voltage; and a compensation current generation circuit that supplies a compensation current that compensates for a change in the initial sense current to the output node.
  • the sense current control circuit generates a resistance element provided between the output terminal of the sense current generation circuit and the output node, and a resistance value control signal for controlling the resistance value of the resistance element.
  • the computing unit includes a first input terminal connected to the output terminal of the sense current generation circuit and a second input terminal connected to the output terminal of the load current generation circuit.
  • the initial sense current includes a first current supplied to the first input terminal and a second current supplied to the power supply terminal of the resistive element, and the compensation current generation circuit has the same amount as the first current. Current is supplied to the output node as a compensation current.
  • FIG. 1 is a circuit diagram showing a configuration of a current detection circuit described in Patent Document 1.
  • FIG. 2 is a circuit diagram showing a configuration of the current detection circuit described in Patent Document 2.
  • FIG. 3 is a block diagram illustrating a configuration when the load current detection circuit 10 of the present embodiment is applied to an electronic control system of an automobile.
  • FIG. 4 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the first embodiment.
  • FIG. 5 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the first embodiment.
  • FIG. 6 is a circuit diagram illustrating the configuration of a load current detection circuit of a comparative example.
  • FIG. 7 is a graph showing the ratio between the load current and the sense current (sense ratio).
  • FIG. 8 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the second embodiment.
  • FIG. 9 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the third embodiment.
  • FIG. 10 is a circuit diagram illustrating the configuration of the constant voltage circuit 57.
  • FIG. 11 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the fourth embodiment.
  • FIG. 3 is a block diagram illustrating a configuration when the load current detection circuit 10 of the present embodiment is applied to an electronic control system of an automobile.
  • the electronic control system includes an electronic control unit 1, a battery power source 3, and a load circuit 2 including a plurality of loads.
  • the load circuit 2 includes, for example, a load circuit 2-1, a load circuit 2-2, and a load circuit 2-n.
  • the electronic control unit 1 includes a power semiconductor device 4, a power supply IC 5, a microcomputer 6, a stabilization capacitor 7 a, a stabilization capacitor 7 b, and a Zener diode 8.
  • the stabilization capacitor 7a stabilizes between the power supply terminal VDD and the GND terminal.
  • the zener diode 8 clamps the voltage against the dump surge.
  • the electronic control unit 1 is connected to a battery power source 3 provided outside thereof.
  • the battery power supply 3 supplies a power supply voltage to the power supply IC 5 and the power semiconductor device 4 of the electronic control unit 1.
  • the power supply IC 5 creates a stabilized voltage based on the voltage supplied from the battery power supply 3 and supplies the power supply voltage to the microcomputer 6.
  • a stabilization capacitor 7b is connected between the output terminal of the power supply IC 5 and the GND terminal.
  • the power semiconductor device 4 is connected to a microcomputer 6.
  • a load circuit 2-1, a load circuit 2-2, and a load circuit 2-n are connected to the output terminal OUT of the power semiconductor device 4.
  • the power semiconductor device 4 is controlled to be turned on / off in response to an input signal IN from the microcomputer 6, and supplies power to the load circuit 2-1, load circuit 2-2,... Load circuit 2-n. To control.
  • the power semiconductor device 4 includes a load current detection circuit 10.
  • the load current detection circuit 10 causes a sense current proportional to the current flowing through the load circuit 2-1, the load circuit 2-2, and the load circuit 2-n to flow through the IS terminal.
  • the sense resistor 9 connected to the IS terminal converts the sense current into a sense voltage.
  • the voltage is input to the A / D converter of the microcomputer 6.
  • the microcomputer 6 can determine the magnitude of the load current by reading the voltage at the IS terminal.
  • the microcomputer 6 can determine the disconnection of the load circuit 2-1, the load circuit 2-2,..., The load circuit 2-n according to the change in the IS voltage. The microcomputer 6 can notify the user of the disconnection.
  • the current flowing through each is small.
  • the load circuit 2-1, the load circuit 2-2,..., The load circuit 2-n are all 5 W lamps and are driven by a battery voltage of 12V will be described below.
  • each steady current is about 0.4A.
  • the load current detection circuit 10 mounted on the electronic control unit 1 of this embodiment has improved detection accuracy for low load current. Therefore, it is possible to accurately detect whether one load is disconnected or whether two loads are disconnected.
  • FIG. 4 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the present embodiment.
  • the load current detection circuit 10 includes an output MOSFET 11 as a load current generation circuit, a sense MOSFET 12 as a sense current generation circuit, a sense current control circuit 13, a sense resistor 14 (corresponding to the sense resistor 9), and a compensation current supply circuit. 15.
  • the sense current control circuit 13 includes a P-channel MOSFET 21 as a resistive element, an operational amplifier 22 as an arithmetic unit, a level shift circuit 23, and a level shift circuit 24.
  • the level shift circuit 23 is provided with a diode 25 and a sense current side current source 26.
  • the level shift circuit 24 is provided with a diode 27 and a load current side current source 28.
  • the compensation current supply circuit 15 includes a compensation current side current source 31, a P-channel MOSFET 32, and a control terminal 33.
  • the drain of the output MOSFET 11 is connected to the power supply terminal 16, and the source of the output MOSFET 11 is connected to a fixed voltage (for example, GND) via the load (load circuit) 2.
  • the source of the output MOSFET 11 is connected to the anode of the diode 27 via the node N3.
  • the gate of the output MOSFET 11 is connected to the gate of the sense MOSFET 12.
  • the gate of the output MOSFET 11 is connected to the gate control terminal 18 via the resistor 19.
  • the drain of the sense MOSFET 12 is connected to the power supply terminal 16, and the source of the sense MOSFET 12 is connected to the anode of the diode 25 via the node N4.
  • the source of the sense MOSFET 12 is connected to the source of the P-channel MOSFET 21 through the node N4.
  • the cathode of the diode 25 is connected to one end of the sense current side current source 26.
  • the cathode of the diode 27 is connected to one end of the load current side current source 28.
  • the other end of the current source (sense current side current source 26, load current side current source 28) is connected to a fixed voltage.
  • the cathode of the diode 25 is connected to the inverting input terminal of the operational amplifier 22, and the cathode of the diode 27 is connected to the non-inverting input terminal of the operational amplifier 22.
  • the circuit constituted by the diode 25, the sense current side current source 26, the diode 27, and the load current side current source 28 provides a function as a level shift circuit for appropriately setting the input terminal voltage of the operational amplifier 22. ing.
  • the output terminal of the operational amplifier 22 is connected to the gate of the P-channel MOSFET 21.
  • the drain of the P-channel MOSFET 21 is connected to the output node N1 through the connection node N2.
  • a sense resistor 14 is connected between the output node N1 and the fixed voltage (ground terminal 17).
  • the source of the P-channel MOSFET 32 is connected to the power supply terminal 16.
  • the drain of the P-channel MOSFET 32 is connected to one end of the compensation current side current source 31.
  • the gate of the P-channel MOSFET 32 is connected to the control terminal 33.
  • the other end of the compensation current side current source 31 is connected to the output node N1 via the connection node N2.
  • the same current value is set for the compensation current side current source 31, the sense current side current source 26, and the load current side current source 28.
  • a control signal is supplied to the gate terminal 18 from a booster circuit (not shown) such as a charge pump.
  • the control terminal 33 is supplied with a low level / high level signal from a control circuit (not shown).
  • a low level signal is input to the gate terminal 18, the output MOSFET 11 is off and power is not supplied to the load circuit 2.
  • a high level signal is supplied to the control terminal 33, and the compensation current side current source 31 does not output a current to the output node N1. Also, no current flows through the sense MOSFET 12. Therefore, no sense current is output from the sense MOSFET 12 to the output node N1.
  • the sense current control circuit 13 includes a level shift circuit 23 including a diode 25 and a sense current side current source 26, and a level shift circuit 24 including a diode 27 and a load current side current source 28. Is provided.
  • the level shift circuit supplies, as an inverting input of the operational amplifier 22, a voltage that is lower than the source of the sense MOSFET 12 by the forward voltage (VF) of the diode 25. Further, a voltage that is reduced by the forward voltage (VF) of the diode 27 from the source of the output MOSFET 11 is supplied as a non-inverting input of the operational amplifier 22.
  • the drain-source voltage in the sense MOSFET 12 is larger than the drain-source voltage of the output MOSFET 11.
  • a voltage for controlling the P-channel MOSFET 21 to a higher resistance is supplied to the input terminal of the operational amplifier 22.
  • the current through the sense MOSFET 12 is adjusted until the difference between the input voltages to the input terminal of the operational amplifier 22 becomes zero, that is, the drain-source voltages of the output MOSFET 11 and the sense MOSFET 12 are equal. This means that a current that is always fixedly proportional to the load current flows through the sense resistor 14 in a regulated and steady state regardless of the load size of the load circuit 2.
  • the drain-source voltage in the output MOSFET 11 increases or decreases
  • the resistance value of the P-channel MOSFET 21 is controlled to decrease or increase, and the voltage difference at the input terminal of the operational amplifier 22 becomes zero.
  • a precondition for the proportionality between the current through the output MOSFET 11 and the current through the sense MOSFET 12 is that the Id-Vds characteristic curves of the respective MOSFETs are similar to each other.
  • the current passing through the sense MOSFET 12 as the initial sense current Isense is proportional to the current flowing through the output MOSFET 11.
  • the sense resistor 14 converts the current passing through the sense MOSFET 12 into a voltage proportional to the load current with reference to the ground point (ground terminal 17). This voltage is taken from the output node N1.
  • Similarity between the output MOSFET 11 and the sense MOSFET 12 can be easily achieved by configuring the output MOSFET 11 and the sense MOSFET 12 using unit cells having the same structure. By setting the ratio of the number of cells of the sense MOSFET 12 and the number of cells of the output MOSFET 11 to, for example, 1: 1000, a sense current corresponding to the ratio of the number of cells can be obtained.
  • Load current (fifth current I5) (current Iout flowing in the output MOSFET 11) ⁇ (fourth current I4 of the load current side current source 28) ⁇ 0.1 A
  • FIG. 5 is a circuit diagram illustrating a specific circuit configuration of the load current detection circuit 10 of the present embodiment.
  • the same members as those of the circuit illustrated in FIG. 4 are denoted by the same reference numerals in principle, and repeated description thereof is omitted.
  • the sense current side current source 26, the load current side current source 28, and the compensation current side current source 31 are constituted by a depletion type MOSFET.
  • the depletion type N-channel MOSFET 26 a corresponds to the sense current side current source 26.
  • the depletion type N-channel MOSFET 28 a corresponds to the load current side current source 28.
  • the depletion type N-channel MOSFET 31 a corresponds to the compensation current side current source 31.
  • the load current detection circuit 10 includes a diode 41, a diode 42, a diode 43, a resistor 44, and a capacitor 45.
  • the diode 41 is disposed between the power supply terminal 16 and the inverting input terminal of the operational amplifier 22.
  • the diode 42 is disposed between the power supply terminal 16 and the non-inverting input terminal of the operational amplifier 22.
  • the anode of the diode 43 is connected to the node N4, and the cathode is connected to the node N3.
  • the resistor 44 is connected between the output terminal of the operational amplifier 22 and the gate of the P-channel MOSFET 21.
  • One end of the capacitor 45 is connected to the gate of the P-channel MOSFET 21 and the other end is connected to the ground line.
  • the drain of the depletion type N-channel MOSFET 28 a is connected to the cathode of the diode 27.
  • the drain of the depletion type N-channel MOSFET 26 a is connected to the cathode of the diode 25.
  • the source and gate of the depletion type N-channel MOSFET 28a and the source and gate of the depletion type N-channel MOSFET 26a are each connected to a fixed voltage (GND).
  • the depletion type N-channel MOSFET 31a has a drain connected to the power supply terminal 16 via the P-channel MOSFET 32, and a gate and a source connected to the output node N1 via the connection node N2.
  • the sense current side current source 26, the load current side current source 28, and the compensation current side current source 31 are constituted by depletion type MOSFETs.
  • the depletion type N-channel MOSFET 26a, the depletion type N-channel MOSFET 28a, and the depletion type N-channel MOSFET 31a each operate as a transistor exhibiting constant current characteristics. Therefore, by making each transistor size the same, the constant current values can be made equal.
  • the sense current in the load current detection circuit 10 of FIG. 5 is a current as shown by the following equation.
  • the detection accuracy can be improved.
  • FIG. 5 discloses a specific circuit configuration for realizing the load current detection circuit 10. Similar to the load current detection circuit 10 illustrated in FIG. 4, an error in the sense current is canceled by adding the same amount of current as the sense current shunted to the level shift circuit to the output node N1 via the connection node N2. It is possible. As a result, the sense ratio (the ratio between the load current and the sense current) can be improved over the low load current region.
  • FIG. 6 is a circuit diagram showing a comparative example of this embodiment.
  • the load current detection circuit 310 is a circuit when the above-described load current detection circuit 10 is not provided with the compensation current supply circuit 15.
  • the load current detection circuit 310 includes a power supply terminal 316, a gate terminal 318, an output node N301, an output MOSFET (load current generation circuit) 311, a sense MOSFET (sense current generation circuit) 312, a load resistor 302, and a sense.
  • a resistor 314, a diode 341, a diode 342, a diode 325, a diode 327, a diode 343, a current source 326, a current source 328, an operational amplifier (arithmetic unit) 322, a P-channel MOSFET 321, a resistor 319, a resistor 344, and a capacitor 345 are provided.
  • the connection of each element of the load current detection circuit 310 is the same as that of the load current detection circuit 10 described above.
  • the operation of the load current detection circuit 310 will be briefly described.
  • the output MOSFET 311 When a low level signal is input to the gate terminal 318, the output MOSFET 311 is off and no power is supplied to the load resistor 302.
  • the output MOSFET 311 When a high level signal is input to the gate terminal 318, the output MOSFET 311 is on and power is supplied from the power supply terminal 316 to the load resistor 302.
  • the output MOSFET 311 and the sense MOSFET 312 are connected in parallel, and the operational amplifier 322 controls the resistance of the P-channel MOSFET 321 so that the source voltages of the output MOSFET 311 and the sense MOSFET 312 are equal.
  • a current (sense current) proportional to the load is output to the output node N301.
  • the sense resistor 314 converts the sense current into a sense voltage.
  • the microcomputer 6 can determine the current flowing through the load by reading the sense voltage.
  • the input terminal of the operational amplifier 322 passes through a level shift circuit composed of a diode 325, a diode 327, a current source 326, and a current source 328.
  • the source of the output MOSFET 311 and the source of the sense MOSFET 312 are connected.
  • the sense current flowing through the sense MOSFET 312 is also reduced proportionally. At this time, part of the sense current flows to the current source 326 constituting the level shift circuit, so that the sense current output to the output node N301 decreases.
  • the load current flowing through the load is similarly reduced by the current source 328. However, the effect is small compared to the sense current.
  • FIG. 7 is a graph showing the ratio of the load current to the sense current (sense ratio) with the load current as a parameter.
  • the dotted line 47 in FIG. 7 indicates the ratio of the load current to the sense current (sense ratio) of the load current detection circuit 310. Represents. In the case of the configuration like the load current detection circuit 310, the sense current becomes small at a low load current, and the sense ratio increases. For this reason, the load current detection accuracy deteriorates.
  • a solid line 46 in FIG. 7 is a graph showing a ratio (sense ratio) between the load current and the sense current of the load current detection circuit 10 described above. As shown in FIG. 7, the load current detection circuit 10 can obtain a constant sense ratio up to a low load current. That is, highly accurate current detection can be performed.
  • FIG. 8 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the second embodiment.
  • the same members of the circuit illustrated in the first embodiment are denoted by the same reference numerals in principle, and the repeated description thereof is omitted.
  • the sense current side current source 26 and the load current side current source 28 are enhanced MOSFETs (enhancement type N channel MOSFET 26b, enhancement type N channel MOSFET 28b). It consists of The configuration shown in the load current detection circuit 10 of FIG. 8 is superior in matching of the constant current characteristics than the constant current source of the first embodiment, and can detect the load current with higher accuracy.
  • the N-channel MOSFET 26b and the N-channel MOSFET 28b are enhancement type. As shown in FIG. 8, the drain of the enhancement type N-channel MOSFET 26 b is connected to the cathode of the diode 25, and the drain of the enhancement type N-channel MOSFET 28 b is connected to the cathode of the diode 27. Further, the sources of the enhancement type N-channel MOSFET 26b and the enhancement type N-channel MOSFET 28b are respectively connected to a fixed voltage.
  • the gates of the enhancement type N-channel MOSFET 26b and the enhancement type N-channel MOSFET 28b are connected to the bias circuit 15a.
  • the bias circuit 15 a includes an N channel transistor 51 and an N channel transistor 55.
  • the bias circuit 15 a includes a P channel MOSFET 32, a P channel transistor 52, a P channel transistor 53, and a P channel transistor 54.
  • the drain and gate of the N channel transistor 51 are connected in common to the gate of the enhancement type N channel MOSFET 26b and the gate of the enhancement type N channel MOSFET 28b. Thereby, the bias circuit 15a biases the gate of the enhancement type N-channel MOSFET 26b and the gate of the enhancement type N-channel MOSFET 28b.
  • the drain and gate of the N channel transistor 51 are connected to the drain of the P channel transistor 52.
  • the P channel transistor 52 is connected to the power supply terminal 16 via the P channel MOSFET 32.
  • the gate of the P channel transistor 52 is connected to the gate of the P channel transistor 53.
  • the gate of the P channel transistor 52 is connected to the drain of the N channel transistor 55.
  • the source of the P channel transistor 54 is connected to the power supply terminal 16.
  • the N-channel transistor 55 is supplied with a fixed voltage at its gate and source.
  • the N-channel transistor 55 is a depletion type, exhibits a constant current characteristic by this connection, and provides a function as a current source.
  • the P channel transistor 54 and the P channel transistor 52 constitute a current mirror.
  • the current mirror causes the constant current of the N channel transistor 55 to flow through the N channel transistor 51.
  • the N-channel transistor 51, the enhancement type N-channel MOSFET 26b, and the enhancement type N-channel MOSFET 28b constitute a current mirror.
  • the current mirror causes a current of the same amount as that of the N-channel transistor 51 to flow through the enhancement-type N-channel MOSFET 26b and the enhancement-type N-channel MOSFET 28b. That is, a constant current determined by the N-channel transistor 55 flows through the N-channel transistor 51, the enhancement-type N-channel MOSFET 26b, and the enhancement-type N-channel MOSFET 28b.
  • a P-channel transistor 53 is further connected between the P-channel MOSFET 32 and the output node N1.
  • the source of the P channel transistor 53 is connected to the drain of the P channel MOSFET 32.
  • the drain of the P-channel transistor 53 is connected to the output node N1.
  • the gate of the P channel transistor 53 is connected to the gate of the P channel transistor 54.
  • the P channel transistor 54 and the P channel transistor 53 constitute a current mirror. Therefore, the same current as the constant current flowing through the N channel transistor 55 flows through the P channel transistor 53. That is, the constant current of the N channel transistor 55 is added at the output node N1.
  • the method of configuring the constant current source with the current mirror configuration has better relative accuracy than using the depletion type current source.
  • a method of making a constant current circuit using a current mirror circuit using an enhancement type N-channel MOSFET 26b and an enhancement type N-channel MOSFET 28b constituted by enhancement type transistors is higher than obtaining a constant current using a depletion type N-channel transistor. Accurate constant current characteristics can be obtained. Therefore, more accurate load current detection can be performed as compared with the load current detection circuit 10 illustrated in FIG.
  • FIG. 9 is a circuit diagram illustrating the configuration of the load current detection circuit 10 according to the third embodiment of the invention.
  • configurations and operations different from the load current detection circuit 10 of the first and second embodiments will be described in detail.
  • the same members of the circuits illustrated in the first and second embodiments described above are denoted by the same reference numerals in principle, and repeated description thereof is omitted.
  • the compensation current supply circuit 15b of the load current detection circuit 10 further includes P for the bias circuit 15a (compensation current supply circuit 15) of the load current detection circuit 10 (FIG. 8) according to the second embodiment.
  • a channel transistor 56 and a constant voltage circuit 57 are provided.
  • the sources of the N channel transistor 55, the N channel transistor 51, the enhancement type N channel MOSFET 26b, and the enhancement type N channel MOSFET 28b are connected to the output of the constant voltage circuit 57.
  • the matching of the constant current characteristics is superior to that of the constant current source of the second embodiment, and more accurate load current detection is possible.
  • the drain of the P channel transistor 53 is referred to as a node Na
  • the output of the constant voltage circuit 57 is referred to as a node Nb
  • the drain of the P channel transistor 52 is referred to as a node Nc.
  • the constant voltage circuit 57 is connected between the power supply voltage terminal 16 and the fixed voltage terminal (GND), and outputs a constant voltage between them to the node Nb.
  • the constant voltage circuit 57 outputs a voltage of VBB-6V (the voltage of the power supply terminal 16 is VBB) to the node Nb.
  • FIG. 10 is a circuit diagram illustrating the configuration of the constant voltage circuit 57.
  • 10 has a Zener diode 61, an N channel transistor 62, an N channel transistor 63, a P channel transistor 64, a power supply terminal 16, and a fixed voltage (ground) terminal 17.
  • the cathode of the Zener diode 61 is connected to the power supply voltage terminal 16.
  • the anode of the Zener diode 61 is connected to the drain of the N-channel transistor 62.
  • the Zener diode 61 has a breakdown voltage of 6V.
  • the N channel transistor 62 serves as a current source that determines the operating current of the Zener diode 61.
  • the N-channel transistor 62 is a depletion type, and the drain, source, and gate are respectively connected to the anode of the Zener diode 61, the fixed voltage, and the fixed voltage. Used as a current source.
  • the N-channel transistor 63 serves as a pull-up element for the node Nb that is the output of the constant voltage circuit 57.
  • the N-channel transistor 63 is a depletion type.
  • the drain of the N channel transistor 63 is connected to the power supply terminal 16.
  • the source of the N channel transistor 63 is connected to the node Nb.
  • the gate of the N channel transistor 63 is connected to the node Nb.
  • the N channel transistor 63 is used as a constant current source.
  • the P channel transistor 64 is an enhancement type and serves as an output buffer for the node Nb.
  • the drain of the P-channel transistor 64 is connected to a fixed voltage (ground terminal 17).
  • the source of the P channel transistor 64 is connected to the node Nb.
  • the gate of the P channel transistor 64 is connected to the anode of the Zener diode 61.
  • the voltage of 6V as viewed from the power supply terminal 16 is output to the anode of the Zener diode 61. Assuming that the threshold voltage of the P-channel transistor 64 is Vtp2 and the voltage of the power supply terminal 16 is VBB, a voltage of VBB-6V + Vtp2 is output to the node Nb.
  • the drain of the P-channel transistor 53 is connected to the output node N1.
  • a P-channel transistor 56 is connected between the P-channel transistor 53 and the output node N1.
  • the source of the P channel transistor 56 is connected to the node Na.
  • the drain of the P-channel transistor 56 is connected to the output node N1.
  • the gate of the P channel transistor 56 is connected to the node Nb.
  • the sources of the N-channel transistor 55, the N-channel transistor 51, the enhancement-type N-channel MOSFET 26b, and the enhancement-type N-channel MOSFET 28b are connected to a fixed voltage (substantially the GND voltage). It was.
  • the sources of the N-channel transistor 55, the N-channel transistor 51, the enhancement type N-channel MOSFET 26b, and the enhancement type N-channel MOSFET 28b are connected to the output (node Nb) of the constant voltage circuit 57. It is connected.
  • the P-channel transistor 54 and the P-channel transistor 53 constitute a current mirror. If the channel modulation effect of the P-channel transistor 54 and the P-channel transistor 53 constituting the current mirror is large, the current mirror accuracy is deteriorated.
  • the channel modulation effect is the slope of the saturation current with respect to the drain-source voltage.
  • the drain voltage of the P-channel transistor 53 decreases to near a fixed voltage. Therefore, the channel modulation effect of the P channel transistor 54 and the P channel transistor 53 constituting the current mirror is increased, and the accuracy of the current mirror of the P channel transistor 54 and the P channel transistor 53 may be deteriorated.
  • the P-channel transistor 56 operates as a source follower. Therefore, the voltage at node Na is about node Nb + Vtp (Vtp: threshold voltage of P channel transistor 56). That is, the drain (node Na) of the P-channel transistor 53 does not drop greatly to the fixed voltage side.
  • the voltage of the drain (node Nc) of the P-channel transistor 52 is about node Nb + Vtn (Vtn: threshold voltage of the N-channel transistor 51). Therefore, when Vtp and Vtn are substantially equal, the node Na and the node Nc have substantially the same voltage. As a result, the currents flowing through the P channel transistor 53 and the P channel transistor 52 have substantially the same value.
  • FIG. 11 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the fourth embodiment.
  • the same members as those of the circuits illustrated in the first to third embodiments are denoted by the same reference numerals in principle, and the repetitive description thereof is omitted.
  • the compensation current supply circuit 15c of the load current detection circuit 10 of the fourth embodiment further includes an operational amplifier 58 in addition to the compensation current supply circuit 15b of the load current detection circuit 10 (FIG. 9) of the third embodiment. Further, the load current detection circuit 10 of the fourth embodiment is different from the third embodiment in the connection of the P-channel transistor 56. The load current detection circuit 10 of the fourth embodiment is superior to the constant current characteristic matching of the constant current source of the third embodiment, and can detect a load current with higher accuracy.
  • the operational amplifier 58 has a non-inverting terminal and an inverting terminal connected to the node Nc and the node Nb, respectively.
  • the output terminal of the operational amplifier 58 is connected to the gate of the P channel transistor 56.
  • the operational amplifier 58 controls the resistance value of the P-channel transistor 56 so that the voltages at the node Na and the node Nc are equal.

Abstract

Provided is a technique for accurately detecting a load current even when the load current falls rapidly or the like. A load current detection circuit is equipped with: a load current generation circuit for generating a load current; a sense current generation circuit for generating an initial sense current; a sense current control circuit for changing the initial sense current according to a fluctuation in the load current; and a compensation current generation circuit for causing a compensation current for compensating the amount of change in the initial sense current to be supplied to an output node. The initial sense current includes a first current supplied to a first input port, and a second current supplied to a power supply port of a resistance element. The compensation current generation circuit supplies a current in the same amount as the first current to the output node as a compensation current.

Description

負荷電流検出回路Load current detection circuit
 本発明は、電流検出回路に関し、特に負荷回路に流れる負荷電流を検出するための負荷電流検出回路に関する。 The present invention relates to a current detection circuit, and more particularly to a load current detection circuit for detecting a load current flowing in the load circuit.
 負荷に流れる電流(以下、負荷電流と記載する)を監視し、その負荷電流の変化に基づいて負荷の状態を判断する技術が知られている(例えば、特許文献1,2参照)。図1は、特許文献1に記載の電流検出回路の構成を示す回路図である。特許文献1に記載の電流検出回路は、負荷電流を検出しようとする電力用電界効果半導体構成要素101と、別の電界効果半導体構成要素102とを備えている。両方の半導体構成要素101、102のドレイン端子、及びゲート端子は、互いに接続されている。半導体構成要素102のソース端子には、制御可能な抵抗106を介して抵抗105が直列に接続されている。その抵抗105の他方の端子は、固定電圧に接続されている。抵抗106の作用により、半導体構成要素101、102のドレイン‐ソース間電圧が等しくなるように調節される。 2. Description of the Related Art A technique for monitoring a current flowing through a load (hereinafter referred to as a load current) and determining a load state based on a change in the load current is known (see, for example, Patent Documents 1 and 2). FIG. 1 is a circuit diagram showing a configuration of a current detection circuit described in Patent Document 1. In FIG. The current detection circuit described in Patent Document 1 includes a power field-effect semiconductor component 101 for detecting a load current and another field-effect semiconductor component 102. The drain terminals and gate terminals of both semiconductor components 101 and 102 are connected to each other. A resistor 105 is connected in series to the source terminal of the semiconductor component 102 via a controllable resistor 106. The other terminal of the resistor 105 is connected to a fixed voltage. By the action of the resistor 106, the drain-source voltages of the semiconductor components 101 and 102 are adjusted to be equal.
 また、特許文献2には、電流検出に伴う電力損失を大幅に少なくし、且つ電流検出を常時行うとともに電流を安定に高精度に検出するための技術が開示されている。図2は、特許文献2に記載の電流検出回路の構成を示す回路図である。特許文献2に記載の技術では、パワートランジスタ211と電流検出トランジスタ212には、電源電圧Vcc及びスイッチ信号S1が共通に供給されている。その電流検出トランジスタ212の出力ノードにアイドリング電流Iidlを供給し、且つ、両トランジスタの出力電圧が仮想同電圧となるようにバッファ回路200を設ける。これによりバッファ回路200を常にA級増幅回路として動作させている。 Patent Document 2 discloses a technique for significantly reducing power loss associated with current detection, performing current detection constantly, and detecting current stably and with high accuracy. FIG. 2 is a circuit diagram showing a configuration of the current detection circuit described in Patent Document 2. As shown in FIG. In the technique disclosed in Patent Document 2, the power transistor 211 and the current detection transistor 212 are commonly supplied with the power supply voltage Vcc and the switch signal S1. A buffer circuit 200 is provided so that an idling current Iidl is supplied to the output node of the current detection transistor 212, and the output voltages of both transistors are virtually the same voltage. Thus, the buffer circuit 200 is always operated as a class A amplifier circuit.
特開平8-334534号公報JP-A-8-334534 特開2005-249518号公報JP 2005-249518 A
 図1、2に示される回路は、一般的にハイサイドスイッチと呼ばれ、電源側に接続されたスイッチを介して、GND側に接続された負荷に電流を供給している。このようなハイサイドスイッチでは、一つのスイッチで複数の負荷を駆動する場合がある。電流検出回路は、負荷電流を検出することにより、その複数の負荷の断線状態などを検出している。スイッチに接続された負荷が断線すると、負荷電流が急激に減少する。このような場合であっても、精度良く負荷電流を検出する技術が求められている。 The circuits shown in FIGS. 1 and 2 are generally called high-side switches, and supply current to a load connected to the GND side via a switch connected to the power supply side. In such a high-side switch, a plurality of loads may be driven by one switch. The current detection circuit detects the disconnection state of the plurality of loads by detecting the load current. When the load connected to the switch is disconnected, the load current decreases rapidly. Even in such a case, a technique for accurately detecting the load current is required.
 特許文献1、2には、負荷電流の検出方法として、負荷を駆動する出力MOSFET(電力用半導体構成要素101やパワートランジスタ211)と構造が類似したサイズの小さなトランジスタ(半導体構成要素102や電流検出トランジスタ212)を、出力MOSFETと並列に接続する技術が開示されている。特許文献1、2に記載の技術では、小さな負荷電流のときに、その負荷電流を検出する精度が低下してしまうことがあった。本発明は、負荷電流が急激に減少するような場合であっても、精度良く負荷電流を検出する技術を提供する。 In Patent Documents 1 and 2, as a method for detecting a load current, a small transistor (semiconductor component 102 or current detection) having a similar structure to an output MOSFET (power semiconductor component 101 or power transistor 211) for driving a load is disclosed. A technique for connecting the transistor 212) in parallel with the output MOSFET is disclosed. In the techniques described in Patent Documents 1 and 2, when the load current is small, the accuracy of detecting the load current may be reduced. The present invention provides a technique for accurately detecting a load current even when the load current decreases rapidly.
 負荷電流検出回路は、電源と負荷回路との間に設けられ、制御信号に応答して負荷回路に供給する負荷電流を生成する負荷電流生成回路と、負荷電流生成回路に並列に配置され、制御信号に応答して初期センス電流を生成するセンス電流生成回路と、負荷電流の変動を監視し、負荷電流の変動に対応して初期センス電流を変化させるセンス電流制御回路と、負荷電流の変動を検出するための電流を受ける出力ノードと、出力ノードに流れ込む電流を電圧に変換するセンス抵抗と、出力ノードに、初期センス電流の変化分を補償する補償電流を供給する補償電流生成回路とを具備する。
 ここにおいて、センス電流制御回路は、センス電流生成回路の出力端と出力ノードとの間に設けられた抵抗性素子と、抵抗性素子の抵抗値を制御するための抵抗値制御信号を生成する演算器とを備えている。また、演算器は、センス電流生成回路の出力端に接続される第1入力端と、負荷電流生成回路の出力端に接続される第2入力端とを備えている。そして、初期センス電流は、第1入力端に供給される第1電流と、抵抗性素子の電源端に供給される第2電流とを含み、補償電流生成回路は、第1電流と同じ量の電流を、補償電流として出力ノードに供給する。
The load current detection circuit is provided between the power supply and the load circuit, and is arranged in parallel with the load current generation circuit for generating the load current to be supplied to the load circuit in response to the control signal, and for controlling the load current generation circuit. A sense current generation circuit that generates an initial sense current in response to a signal, a sense current control circuit that monitors a change in the load current and changes the initial sense current in response to the change in the load current, and a load current fluctuation An output node that receives a current for detection; a sense resistor that converts a current flowing into the output node into a voltage; and a compensation current generation circuit that supplies a compensation current that compensates for a change in the initial sense current to the output node. To do.
Here, the sense current control circuit generates a resistance element provided between the output terminal of the sense current generation circuit and the output node, and a resistance value control signal for controlling the resistance value of the resistance element. With a bowl. The computing unit includes a first input terminal connected to the output terminal of the sense current generation circuit and a second input terminal connected to the output terminal of the load current generation circuit. The initial sense current includes a first current supplied to the first input terminal and a second current supplied to the power supply terminal of the resistive element, and the compensation current generation circuit has the same amount as the first current. Current is supplied to the output node as a compensation current.
 本発明では、負荷電流が急激に減少するような場合であっても、精度良く負荷電流を検出することが可能となる。 In the present invention, it is possible to detect the load current with high accuracy even when the load current rapidly decreases.
図1は、特許文献1に記載の電流検出回路の構成を示す回路図である。FIG. 1 is a circuit diagram showing a configuration of a current detection circuit described in Patent Document 1. In FIG. 図2は、特許文献2に記載の電流検出回路の構成を示す回路図である。FIG. 2 is a circuit diagram showing a configuration of the current detection circuit described in Patent Document 2. As shown in FIG. 図3は、本実施形態の負荷電流検出回路10を、自動車の電子制御システムに適用した場合の構成を例示するブロック図である。FIG. 3 is a block diagram illustrating a configuration when the load current detection circuit 10 of the present embodiment is applied to an electronic control system of an automobile. 図4は、第1実施形態の負荷電流検出回路10の構成を例示する回路図である。FIG. 4 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the first embodiment. 図5は、第1実施形態の負荷電流検出回路10の構成を例示する回路図である。FIG. 5 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the first embodiment. 図6は、比較例の負荷電流検出回路の構成を例示する回路図である。FIG. 6 is a circuit diagram illustrating the configuration of a load current detection circuit of a comparative example. 図7は、負荷電流とセンス電流の比(センス比)を表すグラフである。FIG. 7 is a graph showing the ratio between the load current and the sense current (sense ratio). 図8は、第2実施形態の負荷電流検出回路10の構成を例示する回路図である。FIG. 8 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the second embodiment. 図9は、第3実施形態の負荷電流検出回路10の構成を例示する回路図である。FIG. 9 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the third embodiment. 図10は、定電圧回路57の構成を例示する回路図である。FIG. 10 is a circuit diagram illustrating the configuration of the constant voltage circuit 57. 図11は、第4実施形態の負荷電流検出回路10の構成を例示する回路図である。FIG. 11 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the fourth embodiment.
実施形態の説明Description of embodiment
 以下、実施の形態を図面に基づいて説明する。なお、実施の形態を説明するための図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments will be described with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
 [第1実施形態]
 図3は、本実施形態の負荷電流検出回路10を、自動車の電子制御システムに適用した場合の構成を例示するブロック図である。電子制御システムは、電子制御ユニット1と、バッテリー電源3と、複数の負荷を含む負荷回路2を備えている。その負荷回路2は、例えば、負荷回路2-1、負荷回路2-2、負荷回路2-nを含んでいる。また、電子制御ユニット1は、電力用半導体装置4と、電源IC5と、マイクロコンピュータ6と、安定化用容量7aと、安定化用容量7bと、ツェナーダイオード8とを備えている。安定化用容量7aは、電源端子VDDとGND端子との間を安定化させる。ツェナーダイオード8は、ダンプサージに対して電圧をクランプする。
[First Embodiment]
FIG. 3 is a block diagram illustrating a configuration when the load current detection circuit 10 of the present embodiment is applied to an electronic control system of an automobile. The electronic control system includes an electronic control unit 1, a battery power source 3, and a load circuit 2 including a plurality of loads. The load circuit 2 includes, for example, a load circuit 2-1, a load circuit 2-2, and a load circuit 2-n. The electronic control unit 1 includes a power semiconductor device 4, a power supply IC 5, a microcomputer 6, a stabilization capacitor 7 a, a stabilization capacitor 7 b, and a Zener diode 8. The stabilization capacitor 7a stabilizes between the power supply terminal VDD and the GND terminal. The zener diode 8 clamps the voltage against the dump surge.
 図3に示されているように、電子制御ユニット1は、その外部に設けられたバッテリー電源3に接続されている。バッテリー電源3は、電子制御ユニット1の電源IC5と電力用半導体装置4に対して、電源電圧を供給している。電源IC5は、バッテリー電源3から供給される電圧に基づいて、安定化電圧を作り、マイクロコンピュータ6に電源電圧を供給する。電源IC5の出力端子とGND端子との間には、安定化用容量7bが接続されている。電力用半導体装置4は、マイクロコンピュータ6に接続されている。また、電力用半導体装置4の出力端子OUTには、負荷回路2-1、負荷回路2-2、負荷回路2-nが接続されている。電力用半導体装置4は、マイクロコンピュータ6からの入力信号INに応じて、オン・オフが制御され、負荷回路2-1、負荷回路2-2・・・負荷回路2-nへの電力の供給を制御する。 As shown in FIG. 3, the electronic control unit 1 is connected to a battery power source 3 provided outside thereof. The battery power supply 3 supplies a power supply voltage to the power supply IC 5 and the power semiconductor device 4 of the electronic control unit 1. The power supply IC 5 creates a stabilized voltage based on the voltage supplied from the battery power supply 3 and supplies the power supply voltage to the microcomputer 6. A stabilization capacitor 7b is connected between the output terminal of the power supply IC 5 and the GND terminal. The power semiconductor device 4 is connected to a microcomputer 6. In addition, a load circuit 2-1, a load circuit 2-2, and a load circuit 2-n are connected to the output terminal OUT of the power semiconductor device 4. The power semiconductor device 4 is controlled to be turned on / off in response to an input signal IN from the microcomputer 6, and supplies power to the load circuit 2-1, load circuit 2-2,... Load circuit 2-n. To control.
 また、電力用半導体装置4は、負荷電流検出回路10を備えている。負荷電流検出回路10は、負荷回路2-1、負荷回路2-2、負荷回路2-nに流れる電流に比例したセンス電流を、IS端子を介して流す。IS端子に接続されたセンス抵抗9は、センス電流をセンス電圧に変換する。その電圧はマイクロコンピュータ6のA/D変換器に入力される。マイクロコンピュータ6は、IS端子の電圧を読みとることにより、負荷電流の大きさを判定することができる。 Further, the power semiconductor device 4 includes a load current detection circuit 10. The load current detection circuit 10 causes a sense current proportional to the current flowing through the load circuit 2-1, the load circuit 2-2, and the load circuit 2-n to flow through the IS terminal. The sense resistor 9 connected to the IS terminal converts the sense current into a sense voltage. The voltage is input to the A / D converter of the microcomputer 6. The microcomputer 6 can determine the magnitude of the load current by reading the voltage at the IS terminal.
 例えば、負荷回路2-1、負荷回路2-2・・・負荷回路2-nの少なくとも一つが断線すると、IS端子に出力される電流が小さくなり、それに応じてIS電圧も小さくなる。マイクロコンピュータ6は、IS電圧の変化に応じて、負荷回路2-1、負荷回路2-2・・・負荷回路2-nの断線を判定することができる。マイクロコンピュータ6は、ユーザーに対して断線を知らせることができる。 For example, if at least one of the load circuit 2-1, the load circuit 2-2,..., The load circuit 2-n is disconnected, the current output to the IS terminal decreases, and the IS voltage accordingly decreases. The microcomputer 6 can determine the disconnection of the load circuit 2-1, the load circuit 2-2,..., The load circuit 2-n according to the change in the IS voltage. The microcomputer 6 can notify the user of the disconnection.
 負荷回路2-1、負荷回路2-2・・・負荷回路2-nが低電力負荷の場合、それぞれに流れる電流は小さい。例えば、負荷回路2-1、負荷回路2-2・・・負荷回路2-nが全て5Wのランプで、12Vのバッテリー電圧で駆動する場合を以下に説明する。この場合、それぞれの定常電流は、0.4A程度となる。また、全ての負荷が接続されている正常状態では、1.2A(=0.4A×3個)となる。仮に、負荷が1つ断線すると0.8Aとなる。また、2つ断線すると0.4Aとなる。したがって、電子制御ユニット1は、低電流を検出することが必要となる。本実施形態の電子制御ユニット1に搭載された負荷電流検出回路10は、低負荷電流の検出精度が向上している。そのため、1つの負荷が断線しているか、2つの負荷が断線しているかなどを精度よく検出することできる。 Load circuit 2-1, load circuit 2-2... When the load circuit 2-n is a low power load, the current flowing through each is small. For example, a case where the load circuit 2-1, the load circuit 2-2,..., The load circuit 2-n are all 5 W lamps and are driven by a battery voltage of 12V will be described below. In this case, each steady current is about 0.4A. Further, in a normal state where all loads are connected, 1.2 A (= 0.4 A × 3) is obtained. If one load is disconnected, it becomes 0.8A. Moreover, it will be set to 0.4 A when two are disconnected. Therefore, the electronic control unit 1 needs to detect a low current. The load current detection circuit 10 mounted on the electronic control unit 1 of this embodiment has improved detection accuracy for low load current. Therefore, it is possible to accurately detect whether one load is disconnected or whether two loads are disconnected.
 図4は、本実施形態の負荷電流検出回路10の構成を例示する回路図である。負荷電流検出回路10は、負荷電流生成回路としての出力MOSFET11と、センス電流生成回路としてのセンスMOSFET12と、センス電流制御回路13と、センス抵抗14(センス抵抗9に相当)と、補償電流供給回路15とを備えている。センス電流制御回路13は、抵抗性素子としてのPチャンネルMOSFET21と、演算器としての演算増幅器22と、レベルシフト回路23と、レベルシフト回路24とを備えている。レベルシフト回路23には、ダイオード25とセンス電流側電流源26とが設けられている。レベルシフト回路24には、ダイオード27と負荷電流側電流源28とが設けられている。補償電流供給回路15は、補償電流側電流源31と、PチャンネルMOSFET32と、制御端子33とを備えている。 FIG. 4 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the present embodiment. The load current detection circuit 10 includes an output MOSFET 11 as a load current generation circuit, a sense MOSFET 12 as a sense current generation circuit, a sense current control circuit 13, a sense resistor 14 (corresponding to the sense resistor 9), and a compensation current supply circuit. 15. The sense current control circuit 13 includes a P-channel MOSFET 21 as a resistive element, an operational amplifier 22 as an arithmetic unit, a level shift circuit 23, and a level shift circuit 24. The level shift circuit 23 is provided with a diode 25 and a sense current side current source 26. The level shift circuit 24 is provided with a diode 27 and a load current side current source 28. The compensation current supply circuit 15 includes a compensation current side current source 31, a P-channel MOSFET 32, and a control terminal 33.
 出力MOSFET11のドレインは電源端子16に接続され、出力MOSFET11のソースは負荷(負荷回路)2を介して固定電圧(たとえばGND)に接続されている。また、出力MOSFET11のソースは、ノードN3を介して、ダイオード27のアノードに接続されている。出力MOSFET11のゲートは、センスMOSFET12のゲートに接続されている。その出力MOSFET11のゲートは、抵抗19を介してゲート制御端子18に接続されている。 The drain of the output MOSFET 11 is connected to the power supply terminal 16, and the source of the output MOSFET 11 is connected to a fixed voltage (for example, GND) via the load (load circuit) 2. The source of the output MOSFET 11 is connected to the anode of the diode 27 via the node N3. The gate of the output MOSFET 11 is connected to the gate of the sense MOSFET 12. The gate of the output MOSFET 11 is connected to the gate control terminal 18 via the resistor 19.
 センスMOSFET12のドレインは電源端子16に接続され、センスMOSFET12のソースはノードN4を介してダイオード25のアノードに接続されている。また、センスMOSFET12のソースはノードN4を介して、PチャンネルMOSFET21のソースに接続されている。 The drain of the sense MOSFET 12 is connected to the power supply terminal 16, and the source of the sense MOSFET 12 is connected to the anode of the diode 25 via the node N4. The source of the sense MOSFET 12 is connected to the source of the P-channel MOSFET 21 through the node N4.
 ダイオード25のカソードは、センス電流側電流源26の一端に接続されている。ダイオード27のカソードは、負荷電流側電流源28の一端に接続されている。電流源(センス電流側電流源26、負荷電流側電流源28)の他端は固定電圧に接続されている。さらに、ダイオード25のカソードは、演算増幅器22の反転入力端子に接続され、ダイオード27のカソードは演算増幅器22の非反転入力端子に接続されている。ダイオード25、センス電流側電流源26、ダイオード27、および負荷電流側電流源28によって構成される回路は、演算増幅器22の入力端子電圧を適正に設定するためのレベルシフト回路としての機能を提供している。演算増幅器22の出力端子は、PチャンネルMOSFET21のゲートに接続されている。 The cathode of the diode 25 is connected to one end of the sense current side current source 26. The cathode of the diode 27 is connected to one end of the load current side current source 28. The other end of the current source (sense current side current source 26, load current side current source 28) is connected to a fixed voltage. Further, the cathode of the diode 25 is connected to the inverting input terminal of the operational amplifier 22, and the cathode of the diode 27 is connected to the non-inverting input terminal of the operational amplifier 22. The circuit constituted by the diode 25, the sense current side current source 26, the diode 27, and the load current side current source 28 provides a function as a level shift circuit for appropriately setting the input terminal voltage of the operational amplifier 22. ing. The output terminal of the operational amplifier 22 is connected to the gate of the P-channel MOSFET 21.
 PチャンネルMOSFET21のドレインは接続ノードN2を介して、出力ノードN1に接続されている。出力ノードN1と固定電圧(接地端子17)の間には、センス抵抗14が接続されている。PチャンネルMOSFET32のソースは、電源端子16に接続されている。PチャンネルMOSFET32のドレインは、補償電流側電流源31の一端に接続されている。PチャンネルMOSFET32のゲートは、制御端子33に接続されている。補償電流側電流源31の他端は接続ノードN2を介して、出力ノードN1に接続されている。本実施形態の負荷電流検出回路10において、補償電流側電流源31、センス電流側電流源26、負荷電流側電流源28には同じ電流値が設定されている。 The drain of the P-channel MOSFET 21 is connected to the output node N1 through the connection node N2. A sense resistor 14 is connected between the output node N1 and the fixed voltage (ground terminal 17). The source of the P-channel MOSFET 32 is connected to the power supply terminal 16. The drain of the P-channel MOSFET 32 is connected to one end of the compensation current side current source 31. The gate of the P-channel MOSFET 32 is connected to the control terminal 33. The other end of the compensation current side current source 31 is connected to the output node N1 via the connection node N2. In the load current detection circuit 10 of the present embodiment, the same current value is set for the compensation current side current source 31, the sense current side current source 26, and the load current side current source 28.
 ゲート端子18には、チャージポンプなどの昇圧回路(図示されず)から、制御信号が供給される。また、制御端子33には、制御回路(図示されず)から、ローレベル/ハイレベルの信号が供給される。ゲート端子18にローレベル信号が入力された場合、出力MOSFET11はオフしており、負荷回路2へ電力は供給されない。このとき、制御端子33にはハイレベルの信号が供給され、補償電流側電流源31は出力ノードN1へ電流を出力しない。また、センスMOSFET12にも電流が流れない。従って、センスMOSFET12から出力ノードN1へはセンス電流が出力されない。 A control signal is supplied to the gate terminal 18 from a booster circuit (not shown) such as a charge pump. The control terminal 33 is supplied with a low level / high level signal from a control circuit (not shown). When a low level signal is input to the gate terminal 18, the output MOSFET 11 is off and power is not supplied to the load circuit 2. At this time, a high level signal is supplied to the control terminal 33, and the compensation current side current source 31 does not output a current to the output node N1. Also, no current flows through the sense MOSFET 12. Therefore, no sense current is output from the sense MOSFET 12 to the output node N1.
 ゲート端子18にハイレベル信号が入力された場合、出力MOSFET11およびセンスMOSFET12はオンする。それによって、負荷電流がノードN3を介して負荷回路2に供給される。また、センスMOSFET12、ダイオード25、PチャンネルMOSFET21、センス抵抗14を通って電流が流れる。センス電流制御回路13には、ダイオード25とセンス電流側電流源26とを備えるレベルシフト回路23、および、ダイオード27と負荷電流側電流源28とを備えるレベルシフト回路24から構成されるレベルシフト回路が設けられている。そのレベルシフト回路は、センスMOSFET12のソースからダイオード25の順方向電圧(VF)分下がった電圧を演算増幅器22の反転入力として供給している。また、出力MOSFET11のソースからダイオード27の順方向電圧(VF)分下がった電圧を、演算増幅器22の非反転入力として供給している。 When a high level signal is input to the gate terminal 18, the output MOSFET 11 and the sense MOSFET 12 are turned on. Thereby, the load current is supplied to the load circuit 2 via the node N3. Further, a current flows through the sense MOSFET 12, the diode 25, the P-channel MOSFET 21, and the sense resistor 14. The sense current control circuit 13 includes a level shift circuit 23 including a diode 25 and a sense current side current source 26, and a level shift circuit 24 including a diode 27 and a load current side current source 28. Is provided. The level shift circuit supplies, as an inverting input of the operational amplifier 22, a voltage that is lower than the source of the sense MOSFET 12 by the forward voltage (VF) of the diode 25. Further, a voltage that is reduced by the forward voltage (VF) of the diode 27 from the source of the output MOSFET 11 is supplied as a non-inverting input of the operational amplifier 22.
 ここにおいて、センスMOSFET12におけるドレイン-ソース間電圧が、出力MOSFET11のドレイン-ソース間電圧よりも大きいと仮定する。その場合、演算増幅器22の入力端に、PチャンネルMOSFET21をより高い抵抗に制御する電圧が供給される。センスMOSFET12を通る電流は、演算増幅器22の入力端への入力電圧の差が零になるまで、すなわち出力MOSFET11およびセンスMOSFET12のドレイン-ソース間電圧が等しくなるように、調整される。このことは、調整された定常的な状態でセンス抵抗14を通って、負荷回路2の負荷の大きさに無関係に負荷電流に常に固定的に比例している電流が流れることを意味する。すなわち、動作の進行中に、例えば部分的な短絡により、または、並列に接続されている負荷のいずれかの故障により負荷電流が変化すると、出力MOSFET11におけるドレイン-ソース間電圧が増大または減少し、その変化に応じてPチャンネルMOSFET21の抵抗値が、減少または増大するように制御され、演算増幅器22の入力端における電圧差が零になる。 Here, it is assumed that the drain-source voltage in the sense MOSFET 12 is larger than the drain-source voltage of the output MOSFET 11. In that case, a voltage for controlling the P-channel MOSFET 21 to a higher resistance is supplied to the input terminal of the operational amplifier 22. The current through the sense MOSFET 12 is adjusted until the difference between the input voltages to the input terminal of the operational amplifier 22 becomes zero, that is, the drain-source voltages of the output MOSFET 11 and the sense MOSFET 12 are equal. This means that a current that is always fixedly proportional to the load current flows through the sense resistor 14 in a regulated and steady state regardless of the load size of the load circuit 2. That is, when the load current changes during the operation, for example, due to a partial short circuit or due to a failure of any of the loads connected in parallel, the drain-source voltage in the output MOSFET 11 increases or decreases, In accordance with the change, the resistance value of the P-channel MOSFET 21 is controlled to decrease or increase, and the voltage difference at the input terminal of the operational amplifier 22 becomes zero.
 出力MOSFET11を通る電流とセンスMOSFET12を通る電流の比例性の前提条件は、それぞれのMOSFETのId-Vds特性曲線が互いに類似していることである。初期センス電流IsenseとしてのセンスMOSFET12を通る電流は、出力MOSFET11を流れる電流に比例している。センス抵抗14は、センスMOSFET12を通る電流を、接地点(接地端子17)を基準にして、負荷電流に比例する電圧に変換する。この電圧が出力ノードN1から取り出される。出力MOSFET11とセンスMOSFET12の相似性は、出力MOSFET11とセンスMOSFET12とを同じ構造の単位セルを用いて構成することで容易に達成される。センスMOSFET12のセル数と出力MOSFET11のセル数の比を、例えば1:1000などとすることで、セル数の比に応じたセンス電流が得られる。 A precondition for the proportionality between the current through the output MOSFET 11 and the current through the sense MOSFET 12 is that the Id-Vds characteristic curves of the respective MOSFETs are similar to each other. The current passing through the sense MOSFET 12 as the initial sense current Isense is proportional to the current flowing through the output MOSFET 11. The sense resistor 14 converts the current passing through the sense MOSFET 12 into a voltage proportional to the load current with reference to the ground point (ground terminal 17). This voltage is taken from the output node N1. Similarity between the output MOSFET 11 and the sense MOSFET 12 can be easily achieved by configuring the output MOSFET 11 and the sense MOSFET 12 using unit cells having the same structure. By setting the ratio of the number of cells of the sense MOSFET 12 and the number of cells of the output MOSFET 11 to, for example, 1: 1000, a sense current corresponding to the ratio of the number of cells can be obtained.
 ここで、負荷の断線により負荷電流が減少する現象を考える。このとき、出力MOSFET11を通る電流が減少する。それに伴い、センスMOSFET12を通る電流も減少する。センスMOSFET12を通る電流(初期センス電流Isense)のうち、第1電流I1がセンス電流側電流源26にながれ、センス端子(出力ノードN1)に出力される電流(第2電流I2)に大きな誤差を与えることがあった。 Here, let us consider the phenomenon in which the load current decreases due to the disconnection of the load. At this time, the current passing through the output MOSFET 11 decreases. As a result, the current through the sense MOSFET 12 also decreases. Of the current passing through the sense MOSFET 12 (initial sense current Isense), the first current I1 flows to the sense current side current source 26, and a large error is caused in the current (second current I2) output to the sense terminal (output node N1). There was to give.
 センス電流側電流源26による第1電流I1=10μA、
 負荷電流側電流源28による第4電流I4=10μA、
 出力MOSFET11の電流=0.1A、
 センスMOSFET12の電流=0.1A/1000=0.1mAとすると、
 負荷電流(第5電流I5) =(出力MOSFET11に流れる電流Iout)-(負荷電流側電流源28の第4電流I4)≒0.1A
 PチャンネルMOSFET21に流れ込む電流(第2電流I2) =(センスMOSFET12に流れる電流Isense)-(センス電流側電流源26の第1電流I1)=90μAとなる。
First current I1 = 10 μA from the sense current side current source 26,
Fourth current I4 = 10 μA by the load current side current source 28,
Output MOSFET 11 current = 0.1 A,
When the current of the sense MOSFET 12 = 0.1 A / 1000 = 0.1 mA,
Load current (fifth current I5) = (current Iout flowing in the output MOSFET 11) − (fourth current I4 of the load current side current source 28) ≈0.1 A
Current flowing into the P-channel MOSFET 21 (second current I2) = (current Isense flowing in the sense MOSFET 12) − (first current I1 of the sense current side current source 26) = 90 μA.
 本実施形態の負荷電流検出回路10は、補償電流供給回路15を備え、その補償電流供給回路15は、出力ノードN1に対して、補償電流側電流源31の電流(10μA)を供給(補償)している。そのため、
 センス電流=(センスMOSFET12に流れる電流Isense)-(センス電流側電流源26の第1電流I1)+(補償電流側電流源31の第3電流I3)=100μA=センスMOSFET12に流れる電流(初期センス電流Isense)
となる。即ち、補償電流側電流源31の第3電流は、センス電流側電流源26の第1電流I1に等しく、センス電流側電流源26の第1電流I1による変化分を補償している。
The load current detection circuit 10 of the present embodiment includes a compensation current supply circuit 15, and the compensation current supply circuit 15 supplies (compensates) the current (10 μA) of the compensation current side current source 31 to the output node N1. is doing. for that reason,
Sense current = (current Isense flowing in the sense MOSFET 12) − (first current I1 of the sense current side current source 26) + (third current I3 of the compensation current side current source 31) = 100 μA = current flowing in the sense MOSFET 12 (initial sense) Current Isense)
It becomes. That is, the third current of the compensation current side current source 31 is equal to the first current I1 of the sense current side current source 26, and compensates for a change caused by the first current I1 of the sense current side current source 26.
 図5は、本実施形態の負荷電流検出回路10の具体的な回路構成を例示する回路図である。以下では、本発明の理解を容易にするために、図4の負荷電流検出回路10と異なる構成・動作について詳細に説明を行う。また、図5に例示する回路図において、上述の図4で例示した回路の同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 FIG. 5 is a circuit diagram illustrating a specific circuit configuration of the load current detection circuit 10 of the present embodiment. In the following, in order to facilitate understanding of the present invention, a configuration and operation different from the load current detection circuit 10 of FIG. 4 will be described in detail. Further, in the circuit diagram illustrated in FIG. 5, the same members as those of the circuit illustrated in FIG. 4 are denoted by the same reference numerals in principle, and repeated description thereof is omitted.
 図5に示されている負荷電流検出回路10では、センス電流側電流源26、負荷電流側電流源28、および補償電流側電流源31が、デプレッション型MOSFETで構成されている。デプレッション型NチャンネルMOSFET26aはセンス電流側電流源26に対応している。デプレッション型NチャンネルMOSFET28aは、負荷電流側電流源28に対応している。デプレッション型NチャンネルMOSFET31aは、補償電流側電流源31に対応している。その負荷電流検出回路10は、ダイオード41と、ダイオード42と、ダイオード43と、抵抗44と、容量45とを備えている。 In the load current detection circuit 10 shown in FIG. 5, the sense current side current source 26, the load current side current source 28, and the compensation current side current source 31 are constituted by a depletion type MOSFET. The depletion type N-channel MOSFET 26 a corresponds to the sense current side current source 26. The depletion type N-channel MOSFET 28 a corresponds to the load current side current source 28. The depletion type N-channel MOSFET 31 a corresponds to the compensation current side current source 31. The load current detection circuit 10 includes a diode 41, a diode 42, a diode 43, a resistor 44, and a capacitor 45.
 ダイオード41は、電源端子16と演算増幅器22の反転入力端との間に配置されている。ダイオード42は、電源端子16と演算増幅器22の非反転入力端との間に配置されている。ダイオード43のアノードは、ノードN4に接続され、カソードはノードN3に接続されている。抵抗44は、演算増幅器22の出力端とPチャンネルMOSFET21のゲートとの間に接続されている。容量45の一端は、PチャンネルMOSFET21のゲートに接続され、他端は接地線に接続されている。 The diode 41 is disposed between the power supply terminal 16 and the inverting input terminal of the operational amplifier 22. The diode 42 is disposed between the power supply terminal 16 and the non-inverting input terminal of the operational amplifier 22. The anode of the diode 43 is connected to the node N4, and the cathode is connected to the node N3. The resistor 44 is connected between the output terminal of the operational amplifier 22 and the gate of the P-channel MOSFET 21. One end of the capacitor 45 is connected to the gate of the P-channel MOSFET 21 and the other end is connected to the ground line.
 デプレッション型NチャンネルMOSFET28aのドレインは、ダイオード27のカソードに接続されている。デプレッション型NチャンネルMOSFET26aのドレインはダイオード25のカソードに接続されている。デプレッション型NチャンネルMOSFET28aのソースとゲート、および、デプレッション型NチャンネルMOSFET26aソースとゲートは、それぞれ固定電圧(GND)に接続される。また、デプレッション型NチャンネルMOSFET31aは、ドレインがPチャンネルMOSFET32を介して電源端子16に接続され、ゲートとソースが、接続ノードN2を介して出力ノードN1に接続されている。 The drain of the depletion type N-channel MOSFET 28 a is connected to the cathode of the diode 27. The drain of the depletion type N-channel MOSFET 26 a is connected to the cathode of the diode 25. The source and gate of the depletion type N-channel MOSFET 28a and the source and gate of the depletion type N-channel MOSFET 26a are each connected to a fixed voltage (GND). The depletion type N-channel MOSFET 31a has a drain connected to the power supply terminal 16 via the P-channel MOSFET 32, and a gate and a source connected to the output node N1 via the connection node N2.
 本実施形態の負荷電流検出回路10を、図5に示されるように、センス電流側電流源26、負荷電流側電流源28、および補償電流側電流源31が、デプレッション型MOSFETで構成されている。デプレッション型NチャンネルMOSFET26a、デプレッション型NチャンネルMOSFET28a、およびデプレッション型NチャンネルMOSFET31aは、それぞれ定電流特性を示すトランジスタとして動作する。したがって、各トランジスタサイズを同じにすることにより、その定電流値を等しくすることができる。 In the load current detection circuit 10 of the present embodiment, as shown in FIG. 5, the sense current side current source 26, the load current side current source 28, and the compensation current side current source 31 are constituted by depletion type MOSFETs. . The depletion type N-channel MOSFET 26a, the depletion type N-channel MOSFET 28a, and the depletion type N-channel MOSFET 31a each operate as a transistor exhibiting constant current characteristics. Therefore, by making each transistor size the same, the constant current values can be made equal.
 図5の負荷電流検出回路10におけるセンス電流は、以下の式で示されるような電流となる。
 センス電流=(センスMOSFET12に流れる電流)-(デプレッション型NチャンネルMOSFET26aの電流)+(デプレッション型NチャンネルMOSFET31aの電流)=センスMOSFET12に流れる電流
となり、図4に例示した回路と同様に、負荷電流の検出精度が向上させることが可能となっている。
The sense current in the load current detection circuit 10 of FIG. 5 is a current as shown by the following equation.
Sense current = (current flowing in the sense MOSFET 12) − (current of the depletion type N-channel MOSFET 26a) + (current of the depletion type N-channel MOSFET 31a) = current flowing in the sense MOSFET 12, and the load current is similar to the circuit illustrated in FIG. The detection accuracy can be improved.
 図5は、負荷電流検出回路10を実現する具体的な回路構成について開示している。図4に例示した負荷電流検出回路10と同様に、レベルシフト回路へ分流したセンス電流と同じ電流量を、接続ノードN2を介して出力ノードN1に加算することにより、センス電流の誤差を相殺することが可能である。その結果、低負荷電流領域に渡って、センス比(負荷電流とセンス電流の比)を向上することができる。 FIG. 5 discloses a specific circuit configuration for realizing the load current detection circuit 10. Similar to the load current detection circuit 10 illustrated in FIG. 4, an error in the sense current is canceled by adding the same amount of current as the sense current shunted to the level shift circuit to the output node N1 via the connection node N2. It is possible. As a result, the sense ratio (the ratio between the load current and the sense current) can be improved over the low load current region.
 [比較例] 図6は、本実施例の比較例を示す回路図である。負荷電流検出回路310は、上述の負荷電流検出回路10に補償電流供給回路15が備えられていない場合の回路を示している。図6を参照すると、負荷電流検出回路310は、電源端子316、ゲート端子318、出力ノードN301、出力MOSFET(負荷電流生成回路)311、センスMOSFET(センス電流生成回路)312、負荷抵抗302、センス抵抗314、ダイオード341、ダイオード342、ダイオード325、ダイオード327、ダイオード343、電流源326、電流源328、演算増幅器(演算器)322、PチャンネルMOSFET321、抵抗319、抵抗344、容量345を備えている。負荷電流検出回路310の各素子の接続は、上述の負荷電流検出回路10と同様である。 [Comparative Example] FIG. 6 is a circuit diagram showing a comparative example of this embodiment. The load current detection circuit 310 is a circuit when the above-described load current detection circuit 10 is not provided with the compensation current supply circuit 15. Referring to FIG. 6, the load current detection circuit 310 includes a power supply terminal 316, a gate terminal 318, an output node N301, an output MOSFET (load current generation circuit) 311, a sense MOSFET (sense current generation circuit) 312, a load resistor 302, and a sense. A resistor 314, a diode 341, a diode 342, a diode 325, a diode 327, a diode 343, a current source 326, a current source 328, an operational amplifier (arithmetic unit) 322, a P-channel MOSFET 321, a resistor 319, a resistor 344, and a capacitor 345 are provided. . The connection of each element of the load current detection circuit 310 is the same as that of the load current detection circuit 10 described above.
 ここにおいて、負荷電流検出回路310の動作について簡単に説明する。ゲート端子318にローレベル信号が入力された場合、出力MOSFET311はオフしており、負荷抵抗302へ電力は供給されない。ゲート端子318にハイレベル信号が入力された場合、出力MOSFET311はオンしており、負荷抵抗302へ電源端子316から電力が供給される。 Here, the operation of the load current detection circuit 310 will be briefly described. When a low level signal is input to the gate terminal 318, the output MOSFET 311 is off and no power is supplied to the load resistor 302. When a high level signal is input to the gate terminal 318, the output MOSFET 311 is on and power is supplied from the power supply terminal 316 to the load resistor 302.
 出力MOSFET311とセンスMOSFET312は並列に接続されており、演算増幅器322はPチャンネルMOSFET321の抵抗を制御して、出力MOSFET311とセンスMOSFET312のソース電圧を等しくする。これにより、出力ノードN301には負荷に比例した電流(センス電流)が出力される。センス抵抗314は、センス電流をセンス電圧に変換する。マイクロコンピュータ6はセンス電圧を読みとることにより、負荷に流れている電流を判定することができる。 The output MOSFET 311 and the sense MOSFET 312 are connected in parallel, and the operational amplifier 322 controls the resistance of the P-channel MOSFET 321 so that the source voltages of the output MOSFET 311 and the sense MOSFET 312 are equal. As a result, a current (sense current) proportional to the load is output to the output node N301. The sense resistor 314 converts the sense current into a sense voltage. The microcomputer 6 can determine the current flowing through the load by reading the sense voltage.
 オン状態では出力MOSFET311のソース電圧は電源端子316の電圧に近いので、演算増幅器322の入力端子は、ダイオード325、ダイオード327および電流源326、電流源328から構成されるレベルシフト回路を介して、出力MOSFET311のソースおよびセンスMOSFET312のソースに接続されている。 Since the source voltage of the output MOSFET 311 is close to the voltage of the power supply terminal 316 in the ON state, the input terminal of the operational amplifier 322 passes through a level shift circuit composed of a diode 325, a diode 327, a current source 326, and a current source 328. The source of the output MOSFET 311 and the source of the sense MOSFET 312 are connected.
 出力MOSFET311に流れる電流が小さいとき、センスMOSFET312に流れるセンス電流も比例して小さくなる。このとき、センス電流の一部はレベルシフト回路を構成する電流源326に流れるので、出力ノードN301に出力されるセンス電流は減少する。負荷を流れる負荷電流も同様に電流源328により減少する。しかしながら、センス電流に比べてその影響は小さい。たとえば、
 電流源326=10μA、
 電流源328=10μA、
 出力MOSFET311の電流=0.1A、
 センスMOSFET312の電流=0.1A/1000=0.1mAとすると、
 負荷電流=(出力MOSFET311に流れる電流)-(電流源328の電流)≒0.1A
 センス電流=(センスMOSFET312に流れる電流-(電流源326の電流)=90μAとなる。
When the current flowing through the output MOSFET 311 is small, the sense current flowing through the sense MOSFET 312 is also reduced proportionally. At this time, part of the sense current flows to the current source 326 constituting the level shift circuit, so that the sense current output to the output node N301 decreases. The load current flowing through the load is similarly reduced by the current source 328. However, the effect is small compared to the sense current. For example,
Current source 326 = 10 μA,
Current source 328 = 10 μA,
Output MOSFET 311 current = 0.1 A,
If the current of the sense MOSFET 312 = 0.1 A / 1000 = 0.1 mA,
Load current = (current flowing in the output MOSFET 311) − (current of the current source 328) ≈0.1 A
Sense current = (current flowing in sense MOSFET 312− (current of current source 326)) = 90 μA.
 図7は、負荷電流とセンス電流の比(センス比)を、負荷電流をパラメータとして表すグラフである。負荷電流を横軸に、センス比(負荷電流/センス電流)を縦軸にプロットした場合に、図7の点線47は、負荷電流検出回路310の負荷電流とセンス電流の比(センス比)を表している。負荷電流検出回路310のような構成の場合、低負荷電流においてセンス電流が小さくなり、センス比が増大してしまう。そのため、負荷電流の検出精度が悪くなる。 FIG. 7 is a graph showing the ratio of the load current to the sense current (sense ratio) with the load current as a parameter. When the load current is plotted on the horizontal axis and the sense ratio (load current / sense current) is plotted on the vertical axis, the dotted line 47 in FIG. 7 indicates the ratio of the load current to the sense current (sense ratio) of the load current detection circuit 310. Represents. In the case of the configuration like the load current detection circuit 310, the sense current becomes small at a low load current, and the sense ratio increases. For this reason, the load current detection accuracy deteriorates.
 本実施形態の負荷電流検出回路10では、センス電流のうちレベルシフト回路への分流と同じ量の電流を出力ノードN1に供給することにより、分流によるセンス電流の変化分を補償することができる。その結果、低負荷電流領域に渡って、負荷電流の検出精度を向上することができる。図7の実線46は、上述の負荷電流検出回路10の負荷電流とセンス電流の比(センス比)を示すグラフである。図7に示されているように、負荷電流検出回路10は、低負荷電流まで一定のセンス比を得ることができる。すなわち、高精度な電流検出を行うことができる。 In the load current detection circuit 10 of the present embodiment, a change in the sense current due to the shunt can be compensated by supplying the output node N1 with the same amount of current as the shunt to the level shift circuit. As a result, the load current detection accuracy can be improved over the low load current region. A solid line 46 in FIG. 7 is a graph showing a ratio (sense ratio) between the load current and the sense current of the load current detection circuit 10 described above. As shown in FIG. 7, the load current detection circuit 10 can obtain a constant sense ratio up to a low load current. That is, highly accurate current detection can be performed.
 [第2実施形態]
 以下に、第2実施形態について説明を行う。図8は、第2実施形態の負荷電流検出回路10の構成を例示する回路図である。以下の実施形態においては、理解を容易にするために、第1実施形態の負荷電流検出回路10と異なる構成・動作について詳細に説明を行う。また、図8に例示する回路図において、上述の第1実施形態で例示した回路の同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
[Second Embodiment]
The second embodiment will be described below. FIG. 8 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the second embodiment. In the following embodiments, in order to facilitate understanding, configurations and operations different from the load current detection circuit 10 of the first embodiment will be described in detail. In the circuit diagram illustrated in FIG. 8, the same members of the circuit illustrated in the first embodiment are denoted by the same reference numerals in principle, and the repeated description thereof is omitted.
 図8を参照すると、第2実施形態の負荷電流検出回路10では、センス電流側電流源26と負荷電流側電流源28とが、エンハンスメント型MOSFET(エンハンスメント型NチャンネルMOSFET26b、エンハンスメント型NチャンネルMOSFET28b)で構成されている。図8の負荷電流検出回路10に示される構成では、第1実施形態の定電流源よりも、定電流特性のマッチングに優れ、より高精度な負荷の電流検出が可能である。 Referring to FIG. 8, in the load current detection circuit 10 of the second embodiment, the sense current side current source 26 and the load current side current source 28 are enhanced MOSFETs (enhancement type N channel MOSFET 26b, enhancement type N channel MOSFET 28b). It consists of The configuration shown in the load current detection circuit 10 of FIG. 8 is superior in matching of the constant current characteristics than the constant current source of the first embodiment, and can detect the load current with higher accuracy.
 上述のように、第2実施形態の負荷電流検出回路10において、NチャンネルMOSFET26bとNチャンネルMOSFET28bはエンハンスメント型である。図8に示されるように、エンハンスメント型NチャンネルMOSFET26bのドレインは、ダイオード25のカソードに接続され、エンハンスメント型NチャンネルMOSFET28bのドレインはダイオード27のカソードに接続されている。また、エンハンスメント型NチャンネルMOSFET26bとエンハンスメント型NチャンネルMOSFET28bのソースは、それぞれ固定電圧に接続される。 As described above, in the load current detection circuit 10 of the second embodiment, the N-channel MOSFET 26b and the N-channel MOSFET 28b are enhancement type. As shown in FIG. 8, the drain of the enhancement type N-channel MOSFET 26 b is connected to the cathode of the diode 25, and the drain of the enhancement type N-channel MOSFET 28 b is connected to the cathode of the diode 27. Further, the sources of the enhancement type N-channel MOSFET 26b and the enhancement type N-channel MOSFET 28b are respectively connected to a fixed voltage.
 エンハンスメント型NチャンネルMOSFET26bとエンハンスメント型NチャンネルMOSFET28bのゲートは、バイアス回路15aに接続されている。バイアス回路15aは、Nチャンネルトランジスタ51とNチャンネルトランジスタ55を備えている。また、バイアス回路15aは、PチャンネルMOSFET32と、Pチャンネルトランジスタ52と、Pチャンネルトランジスタ53と、Pチャンネルトランジスタ54とを備えている。Nチャンネルトランジスタ51のドレインとゲートは、エンハンスメント型NチャンネルMOSFET26bのゲート、および、エンハンスメント型NチャンネルMOSFET28bのゲートに共通に接続されている。それによって、バイアス回路15aは、エンハンスメント型NチャンネルMOSFET26bのゲートとエンハンスメント型NチャンネルMOSFET28bのゲートをバイアスする。また、Nチャンネルトランジスタ51のドレインとゲートは、Pチャンネルトランジスタ52のドレインに接続されている。 The gates of the enhancement type N-channel MOSFET 26b and the enhancement type N-channel MOSFET 28b are connected to the bias circuit 15a. The bias circuit 15 a includes an N channel transistor 51 and an N channel transistor 55. The bias circuit 15 a includes a P channel MOSFET 32, a P channel transistor 52, a P channel transistor 53, and a P channel transistor 54. The drain and gate of the N channel transistor 51 are connected in common to the gate of the enhancement type N channel MOSFET 26b and the gate of the enhancement type N channel MOSFET 28b. Thereby, the bias circuit 15a biases the gate of the enhancement type N-channel MOSFET 26b and the gate of the enhancement type N-channel MOSFET 28b. The drain and gate of the N channel transistor 51 are connected to the drain of the P channel transistor 52.
 Pチャンネルトランジスタ52は、PチャンネルMOSFET32を介して電源端子16と接続されている。Pチャンネルトランジスタ52のゲートは、Pチャンネルトランジスタ53のゲートに接続されている。また、そのPチャンネルトランジスタ52のゲートは、Nチャンネルトランジスタ55のドレインと接続される。 The P channel transistor 52 is connected to the power supply terminal 16 via the P channel MOSFET 32. The gate of the P channel transistor 52 is connected to the gate of the P channel transistor 53. The gate of the P channel transistor 52 is connected to the drain of the N channel transistor 55.
 Pチャンネルトランジスタ54のソースは、電源端子16と接続されている。Nチャンネルトランジスタ55は、ゲートとソースには固定電圧が供給される。本実施形態では、Nチャンネルトランジスタ55は、デプレッション型であり、この接続により定電流特性を示し、電流源としての機能を提供している。 The source of the P channel transistor 54 is connected to the power supply terminal 16. The N-channel transistor 55 is supplied with a fixed voltage at its gate and source. In the present embodiment, the N-channel transistor 55 is a depletion type, exhibits a constant current characteristic by this connection, and provides a function as a current source.
 Pチャンネルトランジスタ54とPチャンネルトランジスタ52とはカレントミラーを構成している。そのカレントミラーは、Nチャンネルトランジスタ55の定電流を、Nチャンネルトランジスタ51に流す。Nチャンネルトランジスタ51とエンハンスメント型NチャンネルMOSFET26b、エンハンスメント型NチャンネルMOSFET28bはカレントミラーを構成している。そのカレントミラーによって、Nチャンネルトランジスタ51の電流と同じ量の電流が、エンハンスメント型NチャンネルMOSFET26bとエンハンスメント型NチャンネルMOSFET28bに流れる。すなわち、Nチャンネルトランジスタ51、エンハンスメント型NチャンネルMOSFET26b、およびエンハンスメント型NチャンネルMOSFET28bは、それぞれNチャンネルトランジスタ55で決まる定電流が流れる。 The P channel transistor 54 and the P channel transistor 52 constitute a current mirror. The current mirror causes the constant current of the N channel transistor 55 to flow through the N channel transistor 51. The N-channel transistor 51, the enhancement type N-channel MOSFET 26b, and the enhancement type N-channel MOSFET 28b constitute a current mirror. The current mirror causes a current of the same amount as that of the N-channel transistor 51 to flow through the enhancement-type N-channel MOSFET 26b and the enhancement-type N-channel MOSFET 28b. That is, a constant current determined by the N-channel transistor 55 flows through the N-channel transistor 51, the enhancement-type N-channel MOSFET 26b, and the enhancement-type N-channel MOSFET 28b.
 PチャンネルMOSFET32と出力ノードN1との間には、更に、Pチャンネルトランジスタ53が接続されている。Pチャンネルトランジスタ53のソースは、PチャンネルMOSFET32のドレインに接続されている。Pチャンネルトランジスタ53のドレインは、出力ノードN1に接続されている。Pチャンネルトランジスタ53のゲートは、Pチャンネルトランジスタ54のゲートと接続されている。 A P-channel transistor 53 is further connected between the P-channel MOSFET 32 and the output node N1. The source of the P channel transistor 53 is connected to the drain of the P channel MOSFET 32. The drain of the P-channel transistor 53 is connected to the output node N1. The gate of the P channel transistor 53 is connected to the gate of the P channel transistor 54.
 上述のように、Pチャンネルトランジスタ54とPチャンネルトランジスタ53はカレントミラーを構成している。したがって、Nチャンネルトランジスタ55に流れる定電流と同じ電流がPチャンネルトランジスタ53に流れる。すなわち、出力ノードN1において、Nチャンネルトランジスタ55の定電流が加算される。以上により、センス電流は、
  センス電流 =(センスMOSFET12に流れる電流)-(エンハンスメント型NチャンネルMOSFET26bの電流)+(Pチャンネルトランジスタ53の電流) =センスMOSFET12を流れる電流
となり、第1実施形態の負荷電流検出回路10と同様に、負荷の電流検出精度が向上する。
As described above, the P channel transistor 54 and the P channel transistor 53 constitute a current mirror. Therefore, the same current as the constant current flowing through the N channel transistor 55 flows through the P channel transistor 53. That is, the constant current of the N channel transistor 55 is added at the output node N1. From the above, the sense current is
Sense current = (current flowing through the sense MOSFET 12) − (current of the enhancement type N-channel MOSFET 26b) + (current of the P-channel transistor 53) = current flowing through the sense MOSFET 12, and is the same as the load current detection circuit 10 of the first embodiment. , Load current detection accuracy is improved.
 このように、カレントミラー構成により定電流源を構成する方法は、デプレッション型電流源を用いるよりも相対精度が良い。エンハンスメント型トランジスタによって構成されるエンハンスメント型NチャンネルMOSFET26b、エンハンスメント型NチャンネルMOSFET28bを使い、カレントミラー回路で定電流回路を作る方式は、デプレッション型のNチャンネルトランジスタを用いて定電流を得るよりも、高精度な定電流特性を得ることができる。そのため、図5に例示した負荷電流検出回路10に比べて、より高精度な負荷の電流検出を行うことができる。 As described above, the method of configuring the constant current source with the current mirror configuration has better relative accuracy than using the depletion type current source. A method of making a constant current circuit using a current mirror circuit using an enhancement type N-channel MOSFET 26b and an enhancement type N-channel MOSFET 28b constituted by enhancement type transistors is higher than obtaining a constant current using a depletion type N-channel transistor. Accurate constant current characteristics can be obtained. Therefore, more accurate load current detection can be performed as compared with the load current detection circuit 10 illustrated in FIG.
 [第3実施形態]
 以下に、本願発明の第3実施形態について説明を行う。図9は、本願発明の第3実施形態の負荷電流検出回路10の構成を例示する回路図である。以下の実施形態においては、本願発明の理解を容易にするために、第1、第2実施形態の負荷電流検出回路10と異なる構成・動作について詳細に説明を行う。また、図9に例示する回路図において、上述の第1、第2実施形態で例示した回路の同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
[Third Embodiment]
The third embodiment of the present invention will be described below. FIG. 9 is a circuit diagram illustrating the configuration of the load current detection circuit 10 according to the third embodiment of the invention. In the following embodiments, in order to facilitate understanding of the present invention, configurations and operations different from the load current detection circuit 10 of the first and second embodiments will be described in detail. In the circuit diagram illustrated in FIG. 9, the same members of the circuits illustrated in the first and second embodiments described above are denoted by the same reference numerals in principle, and repeated description thereof is omitted.
 第3実施形態の負荷電流検出回路10の補償電流供給回路15bは、第2実施形態の負荷電流検出回路10(図8)のバイアス回路15a(補償電流供給回路15)に対して、さらに、Pチャンネルトランジスタ56、定電圧回路57を備えている。また、Nチャンネルトランジスタ55、Nチャンネルトランジスタ51、エンハンスメント型NチャンネルMOSFET26b、エンハンスメント型NチャンネルMOSFET28bのソースは、定電圧回路57の出力に接続されている。第3実施形態の負荷電流検出回路10の構成では、第2実施形態の定電流源よりも、定電流特性のマッチングに優れ、より高精度な負荷の電流検出が可能である。 The compensation current supply circuit 15b of the load current detection circuit 10 according to the third embodiment further includes P for the bias circuit 15a (compensation current supply circuit 15) of the load current detection circuit 10 (FIG. 8) according to the second embodiment. A channel transistor 56 and a constant voltage circuit 57 are provided. The sources of the N channel transistor 55, the N channel transistor 51, the enhancement type N channel MOSFET 26b, and the enhancement type N channel MOSFET 28b are connected to the output of the constant voltage circuit 57. In the configuration of the load current detection circuit 10 of the third embodiment, the matching of the constant current characteristics is superior to that of the constant current source of the second embodiment, and more accurate load current detection is possible.
 以下では、第2実施形態との差異を明確にし、理解を容易にするために、変更箇所以外の説明は省略する。また、以下の説明においては、Pチャンネルトランジスタ53のドレインをノードNa、定電圧回路57の出力をノードNb、Pチャンネルトランジスタ52のドレインをノードNcと称する。 In the following, in order to clarify the difference from the second embodiment and facilitate understanding, explanations other than the changed parts will be omitted. In the following description, the drain of the P channel transistor 53 is referred to as a node Na, the output of the constant voltage circuit 57 is referred to as a node Nb, and the drain of the P channel transistor 52 is referred to as a node Nc.
 図9に示されているように、定電圧回路57は電源電圧端子16と固定電圧端子(GND)との間に接続され、ノードNbにそれらの間の定電圧を出力する。本実施形態においては、定電圧回路57がノードNbにVBB―6V(電源端子16の電圧をVBBとする)の電圧を出力するものとする。 As shown in FIG. 9, the constant voltage circuit 57 is connected between the power supply voltage terminal 16 and the fixed voltage terminal (GND), and outputs a constant voltage between them to the node Nb. In the present embodiment, it is assumed that the constant voltage circuit 57 outputs a voltage of VBB-6V (the voltage of the power supply terminal 16 is VBB) to the node Nb.
 図10は、定電圧回路57の構成を例示する回路図である。図10の定電圧回路57は、ツェナーダイオード61、Nチャンネルトランジスタ62、Nチャンネルトランジスタ63、Pチャンネルトランジスタ64、電源端子16、固定電圧(接地)端子17を有する。ツェナーダイオード61のカソードは、電源電圧端子16に接続されている。ツェナーダイオード61のアノードは、Nチャンネルトランジスタ62のドレインに接続されている。第3実施形態の負荷電流検出回路10の定電圧回路57において、ツェナーダイオード61は、6Vの降伏電圧を有するものとする。 FIG. 10 is a circuit diagram illustrating the configuration of the constant voltage circuit 57. 10 has a Zener diode 61, an N channel transistor 62, an N channel transistor 63, a P channel transistor 64, a power supply terminal 16, and a fixed voltage (ground) terminal 17. The cathode of the Zener diode 61 is connected to the power supply voltage terminal 16. The anode of the Zener diode 61 is connected to the drain of the N-channel transistor 62. In the constant voltage circuit 57 of the load current detection circuit 10 of the third embodiment, it is assumed that the Zener diode 61 has a breakdown voltage of 6V.
 Nチャンネルトランジスタ62は、ツェナーダイオード61の動作電流を決める電流源としての役割を有する。第3実施形態の負荷電流検出回路10の定電圧回路57において、Nチャンネルトランジスタ62はデプレッション型で、ドレイン、ソース、ゲートが、それぞれツェナーダイオード61のアノード、固定電圧、固定電圧に接続された定電流源として使用される。 The N channel transistor 62 serves as a current source that determines the operating current of the Zener diode 61. In the constant voltage circuit 57 of the load current detection circuit 10 of the third embodiment, the N-channel transistor 62 is a depletion type, and the drain, source, and gate are respectively connected to the anode of the Zener diode 61, the fixed voltage, and the fixed voltage. Used as a current source.
 Nチャンネルトランジスタ63は、定電圧回路57の出力であるノードNbのプルアップ素子としての役割を有する。第3実施形態の負荷電流検出回路10の定電圧回路57では、Nチャンネルトランジスタ63がデプレッション型の場合を示している。Nチャンネルトランジスタ63のドレインは、電源端子16に接続されている。Nチャンネルトランジスタ63のソースは、ノードNbに接続されている。Nチャンネルトランジスタ63のゲートは、ノードNbに接続されている。Nチャンネルトランジスタ63は、定電流源として使用される。 The N-channel transistor 63 serves as a pull-up element for the node Nb that is the output of the constant voltage circuit 57. In the constant voltage circuit 57 of the load current detection circuit 10 of the third embodiment, the N-channel transistor 63 is a depletion type. The drain of the N channel transistor 63 is connected to the power supply terminal 16. The source of the N channel transistor 63 is connected to the node Nb. The gate of the N channel transistor 63 is connected to the node Nb. The N channel transistor 63 is used as a constant current source.
 Pチャンネルトランジスタ64はエンハンスメント型で、ノードNbに対する出力バッファとしての役割を有する。Pチャンネルトランジスタ64のドレインは、固定電圧(接地端子17)に接続されている。Pチャンネルトランジスタ64のソースは、ノードNbに接続されている。Pチャンネルトランジスタ64のゲートは、ツェナーダイオード61のアノードに接続されている。 The P channel transistor 64 is an enhancement type and serves as an output buffer for the node Nb. The drain of the P-channel transistor 64 is connected to a fixed voltage (ground terminal 17). The source of the P channel transistor 64 is connected to the node Nb. The gate of the P channel transistor 64 is connected to the anode of the Zener diode 61.
 ツェナーダイオード61のアノードには、電源端子16から見て6V降下した電圧が出力される。Pチャンネルトランジスタ64のしきい値電圧をVtp2、電源端子16の電圧をVBBとすると、ノードNbにはVBB-6V+Vtp2の電圧が出力される。 The voltage of 6V as viewed from the power supply terminal 16 is output to the anode of the Zener diode 61. Assuming that the threshold voltage of the P-channel transistor 64 is Vtp2 and the voltage of the power supply terminal 16 is VBB, a voltage of VBB-6V + Vtp2 is output to the node Nb.
 上述の第2実施形態の負荷電流検出回路10(図9)において、Pチャンネルトランジスタ53のドレインは出力ノードN1接続されていた。第3実施形態の負荷電流検出回路10においては、Pチャンネルトランジスタ53と出力ノードN1との間に、Pチャンネルトランジスタ56が接続されている。Pチャンネルトランジスタ56のソースはノードNaに接続されている。Pチャンネルトランジスタ56のドレインは、出力ノードN1に接続されている。Pチャンネルトランジスタ56のゲートは、ノードNbに接続されている。 In the load current detection circuit 10 (FIG. 9) of the second embodiment described above, the drain of the P-channel transistor 53 is connected to the output node N1. In the load current detection circuit 10 of the third embodiment, a P-channel transistor 56 is connected between the P-channel transistor 53 and the output node N1. The source of the P channel transistor 56 is connected to the node Na. The drain of the P-channel transistor 56 is connected to the output node N1. The gate of the P channel transistor 56 is connected to the node Nb.
 また、上述の第2実施形態では、Nチャンネルトランジスタ55、Nチャンネルトランジスタ51、エンハンスメント型NチャンネルMOSFET26b、およびエンハンスメント型NチャンネルMOSFET28bのソースは、固定電圧(実質的にはGND電圧)に接続されていた。第3実施形態の負荷電流検出回路10においては、Nチャンネルトランジスタ55、Nチャンネルトランジスタ51、エンハンスメント型NチャンネルMOSFET26b、およびエンハンスメント型NチャンネルMOSFET28bのソースは、定電圧回路57の出力(ノードNb)に接続されている。 In the second embodiment described above, the sources of the N-channel transistor 55, the N-channel transistor 51, the enhancement-type N-channel MOSFET 26b, and the enhancement-type N-channel MOSFET 28b are connected to a fixed voltage (substantially the GND voltage). It was. In the load current detection circuit 10 of the third embodiment, the sources of the N-channel transistor 55, the N-channel transistor 51, the enhancement type N-channel MOSFET 26b, and the enhancement type N-channel MOSFET 28b are connected to the output (node Nb) of the constant voltage circuit 57. It is connected.
 さらに、第2実施形態では、Pチャンネルトランジスタ54とPチャンネルトランジスタ53とでカレントミラーが構成されている。カレントミラーを構成するPチャンネルトランジスタ54とPチャンネルトランジスタ53のチャンネル変調効果が大きいと、カレントミラー精度が悪くなる。チャンネル変調効果とは、ドレイン-ソース間電圧に対する飽和電流の傾きのことである。 Furthermore, in the second embodiment, the P-channel transistor 54 and the P-channel transistor 53 constitute a current mirror. If the channel modulation effect of the P-channel transistor 54 and the P-channel transistor 53 constituting the current mirror is large, the current mirror accuracy is deteriorated. The channel modulation effect is the slope of the saturation current with respect to the drain-source voltage.
 第2実施形態では、負荷電流が小さいときに、Pチャンネルトランジスタ53のドレイン電圧が固定電圧近くまで下がる。そのため、カレントミラーを構成するPチャンネルトランジスタ54とPチャンネルトランジスタ53のチャンネル変調効果が大きくなり、Pチャンネルトランジスタ54とPチャンネルトランジスタ53のカレントミラーの精度が悪くなることがある。 In the second embodiment, when the load current is small, the drain voltage of the P-channel transistor 53 decreases to near a fixed voltage. Therefore, the channel modulation effect of the P channel transistor 54 and the P channel transistor 53 constituting the current mirror is increased, and the accuracy of the current mirror of the P channel transistor 54 and the P channel transistor 53 may be deteriorated.
 それに対して、第3実施形態の負荷電流検出回路10では、Pチャンネルトランジスタ56がソースホロワとして動作する。そのため、ノードNaの電圧は、ノードNb+Vtp(Vtp:Pチャンネルトランジスタ56のしきい値電圧)程度となる。すなわち、Pチャンネルトランジスタ53のドレイン(ノードNa)は、固定電圧側まで大きく下がることがない。また、Pチャンネルトランジスタ52のドレイン(ノードNc)の電圧は、ノードNb+Vtn(Vtn:Nチャンネルトランジスタ51のしきい値電圧)程度となる。従って、VtpとVtnがほぼ等しい場合には、ノードNaとノードNcはほぼ同電圧となる。これにより、Pチャンネルトランジスタ53とPチャンネルトランジスタ52に流れる電流は、ほぼ同じ値となる。 In contrast, in the load current detection circuit 10 of the third embodiment, the P-channel transistor 56 operates as a source follower. Therefore, the voltage at node Na is about node Nb + Vtp (Vtp: threshold voltage of P channel transistor 56). That is, the drain (node Na) of the P-channel transistor 53 does not drop greatly to the fixed voltage side. The voltage of the drain (node Nc) of the P-channel transistor 52 is about node Nb + Vtn (Vtn: threshold voltage of the N-channel transistor 51). Therefore, when Vtp and Vtn are substantially equal, the node Na and the node Nc have substantially the same voltage. As a result, the currents flowing through the P channel transistor 53 and the P channel transistor 52 have substantially the same value.
 そのため、レベルシフト回路の電流源(エンハンスメント型NチャンネルMOSFET26b)の電流は、
 レベルシフト回路の電流源の電流=Nチャンネルトランジスタ51の電流=Pチャンネルトランジスタ53の電流
となり、Pチャンネルトランジスタ53の電流は、Pチャンネルトランジスタ52の電流と等しくなる。したがって、出力ノードN1において、レベルシフト回路の電流源の電流を加算することになる。よって、電流センス比が向上する。
Therefore, the current of the current source (enhancement type N-channel MOSFET 26b) of the level shift circuit is
The current of the current source of the level shift circuit = the current of the N-channel transistor 51 = the current of the P-channel transistor 53, and the current of the P-channel transistor 53 is equal to the current of the P-channel transistor 52. Therefore, the current of the current source of the level shift circuit is added at the output node N1. Therefore, the current sense ratio is improved.
 [第4実施形態]
 以下に、第4実施形態について説明を行う。図11は、第4実施形態の負荷電流検出回路10の構成を例示する回路図である。以下の実施形態においては、理解を容易にするために、第1~第3実施形態の負荷電流検出回路10と異なる構成・動作について詳細に説明を行う。また、図11に例示する回路図において、上述の第1~第3実施形態で例示した回路の同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
[Fourth Embodiment]
The fourth embodiment will be described below. FIG. 11 is a circuit diagram illustrating the configuration of the load current detection circuit 10 of the fourth embodiment. In the following embodiments, in order to facilitate understanding, configurations and operations different from the load current detection circuit 10 of the first to third embodiments will be described in detail. Also, in the circuit diagram illustrated in FIG. 11, the same members as those of the circuits illustrated in the first to third embodiments are denoted by the same reference numerals in principle, and the repetitive description thereof is omitted.
 第4実施形態の負荷電流検出回路10の補償電流供給回路15cは、第3実施形態の負荷電流検出回路10(図9)の補償電流供給回路15bに、さらに、演算増幅器58を備えている。また、第4実施形態の負荷電流検出回路10は、Pチャンネルトランジスタ56の接続が第3実施形態とは異なっている。第4実施形態の負荷電流検出回路10は、第3実施形態の定電流源よりも、定電流特性のマッチングに優れ、より高精度な負荷の電流検出が可能である。 The compensation current supply circuit 15c of the load current detection circuit 10 of the fourth embodiment further includes an operational amplifier 58 in addition to the compensation current supply circuit 15b of the load current detection circuit 10 (FIG. 9) of the third embodiment. Further, the load current detection circuit 10 of the fourth embodiment is different from the third embodiment in the connection of the P-channel transistor 56. The load current detection circuit 10 of the fourth embodiment is superior to the constant current characteristic matching of the constant current source of the third embodiment, and can detect a load current with higher accuracy.
 図11を参照すると、演算増幅器58は非反転端子、反転端子が、それぞれノードNc、ノードNbに接続されている。演算増幅器58の出力端子は、Pチャンネルトランジスタ56のゲートに接続されている。演算増幅器58は、ノードNaとノードNcの電圧が等しくなるようにPチャンネルトランジスタ56の抵抗値を制御する。 Referring to FIG. 11, the operational amplifier 58 has a non-inverting terminal and an inverting terminal connected to the node Nc and the node Nb, respectively. The output terminal of the operational amplifier 58 is connected to the gate of the P channel transistor 56. The operational amplifier 58 controls the resistance value of the P-channel transistor 56 so that the voltages at the node Na and the node Nc are equal.
 (ノードNaの電圧>ノードNcの電圧)のときは、Pチャンネルトランジスタ56のゲートには、ローレベル信号が印加されるため、Pチャンネルトランジスタ56は、より導通状態となり、ノードNaの電圧を下げる。逆に、(ノードNaの電圧<ノードNcの電圧)のときは、Pチャンネルトランジスタ56のゲートには、ハイレベル信号が印加されるため、Pチャンネルトランジスタ56は、より非導通状態となり、ノードNaの電圧を上げる。このようなフィードバック動作が働き、ノードNaとノードNcは等しい電圧に保たれる。 When (the voltage of the node Na> the voltage of the node Nc), since the low level signal is applied to the gate of the P channel transistor 56, the P channel transistor 56 becomes more conductive and lowers the voltage of the node Na. . Conversely, when (the voltage at the node Na <the voltage at the node Nc), a high level signal is applied to the gate of the P-channel transistor 56, so that the P-channel transistor 56 becomes more non-conductive and the node Na Increase the voltage. Such a feedback operation works, and the node Na and the node Nc are kept at the same voltage.
 これにより、Pチャンネルトランジスタ53のドレイン-ソース間電圧とPチャンネルトランジスタ52のドレイン-ソース間電圧は等しくなり、高精度なカレントミラー特性を得ることができる。すなわち、Pチャンネルトランジスタ53とPチャンネルトランジスタ52の電流は、第3実施形態の負荷電流検出回路10よりもマッチングが取れた等しい電流が流れる。そのため、レベルシフト回路の電流源(エンハンスメント型NチャンネルMOSFET26b)の電流は、
 レベルシフト回路の電流源の電流=Nチャンネルトランジスタ51の電流=Pチャンネルトランジスタ53の電流
となり、そのPチャンネルトランジスタ53の電流は、Pチャンネルトランジスタ52の電流は等しくなる。出力ノードN1において、レベルシフト回路の電流源の電流が加算され、電流センス比が向上する。
As a result, the drain-source voltage of the P-channel transistor 53 is equal to the drain-source voltage of the P-channel transistor 52, and a highly accurate current mirror characteristic can be obtained. That is, as for the currents of the P-channel transistor 53 and the P-channel transistor 52, an equal current that is more matched than the load current detection circuit 10 of the third embodiment flows. Therefore, the current of the current source (enhancement type N-channel MOSFET 26b) of the level shift circuit is
The current of the current source of the level shift circuit = the current of the N-channel transistor 51 = the current of the P-channel transistor 53, and the current of the P-channel transistor 53 is equal to the current of the P-channel transistor 52. At the output node N1, the current of the current source of the level shift circuit is added, and the current sense ratio is improved.
 以上、本願発明の実施の形態を具体的に説明した。本願発明は上述の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 The embodiment of the present invention has been specifically described above. The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.
 本出願は、2011年4月5日に出願された日本国特許出願2011-083450を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-083450 filed on Apr. 5, 2011, the entire disclosure of which is incorporated herein.

Claims (7)

  1.  電源と負荷回路との間に設けられ、制御信号に応答して負荷電流を生成して前記負荷回路に供給する負荷電流生成回路と、
     前記負荷電流生成回路に並列に設けられ、前記制御信号に応答して初期センス電流を生成するセンス電流生成回路と、前記初期センス電流は、第1電流と第2電流とを含み、前記第1電流は出力ノードに供給され、
     前記負荷電流の変動に対応して前記第1電流を変化させるセンス電流制御回路と、
     前記電源に接続され、前記第2電流と同じ値の電流を補償電流として前記出力ノードに供給する補償電流生成回路と、
     前記出力ノードに供給される前記第1電流と前記補償電流の和を電圧に変換するセンス抵抗と
    を具備する
     負荷電流検出回路。
    A load current generating circuit provided between a power supply and a load circuit, generating a load current in response to a control signal and supplying the load current to the load circuit;
    A sense current generating circuit provided in parallel to the load current generating circuit and generating an initial sense current in response to the control signal; and the initial sense current includes a first current and a second current; Current is supplied to the output node,
    A sense current control circuit that changes the first current in response to a change in the load current;
    A compensation current generating circuit connected to the power supply and supplying a current having the same value as the second current to the output node as a compensation current;
    A load current detection circuit comprising: a sense resistor that converts a sum of the first current supplied to the output node and the compensation current into a voltage.
  2.  請求項1に記載の負荷電流検出回路において、
     前記補償電流生成回路は、
     スイッチと、
     前記スイッチがオンするとき前記補償電流を前記出力ノードに供給する補償電流側電流源とを備え、
     前記センス電流制御回路は、
     前記センス電流生成回路に接続される、第1ダイオードとセンス電流側電流源との直列結合と、
     前記センス電流生成回路と前記出力ノードとの間に設けられた抵抗性素子と、
     第1入力端と、前記負荷電流生成回路に接続される第2入力端とを備え、前記抵抗性素子の抵抗値を制御する演算器と
    を備え
     前記第1ダイオードと前記センス電流側電流源との間のノードは、前記第1入力端と接続され、
     前記補償電流側電流源は、
     前記センス電流側電流源と同じ電流値が設定されている
     負荷電流検出回路。
    The load current detection circuit according to claim 1,
    The compensation current generation circuit includes:
    A switch,
    A compensation current side current source for supplying the compensation current to the output node when the switch is turned on;
    The sense current control circuit includes:
    A series combination of a first diode and a sense current side current source connected to the sense current generation circuit;
    A resistive element provided between the sense current generating circuit and the output node;
    A first input terminal; a second input terminal connected to the load current generation circuit; and an arithmetic unit that controls a resistance value of the resistive element. The first diode, the sense current side current source, The node between is connected to the first input terminal,
    The compensation current side current source is:
    A load current detection circuit in which the same current value as that of the sense current side current source is set.
  3.  請求項2に記載の負荷電流検出回路において、
     前記補償電流側電流源は、
     前記スイッチと前記出力ノードとの間に配置され、前記補償電流を前記出力ノードに供給する
     負荷電流検出回路。
    The load current detection circuit according to claim 2,
    The compensation current side current source is:
    A load current detection circuit that is arranged between the switch and the output node and supplies the compensation current to the output node.
  4.  請求項2又は3に記載の負荷電流検出回路において、
     前記センス電流制御回路は、さらに、
     前記負荷電流生成回路に接続される、第2ダイオードと負荷回路側電流源との直列結合
    を備え、
     前記第2ダイオードと前記負荷回路側電流源の間のノードは、前記第2入力端と接続され、
     前記負荷回路側電流源は、
     前記補償電流側電流源と同じ電流値が設定されている
     負荷電流検出回路。
    In the load current detection circuit according to claim 2 or 3,
    The sense current control circuit further includes:
    A series connection of a second diode and a load circuit side current source connected to the load current generation circuit;
    A node between the second diode and the load circuit side current source is connected to the second input terminal,
    The load circuit side current source is:
    A load current detection circuit in which the same current value as that of the compensation current side current source is set.
  5.  請求項4に記載の負荷電流検出回路において、
     前記センス電流側電流源と前記補償電流側電流源の各々は、同じサイズのデプレッション型トランジスタを備える
     負荷電流検出回路。
    The load current detection circuit according to claim 4,
    Each of the sense current side current source and the compensation current side current source includes a depletion type transistor of the same size. Load current detection circuit.
  6.  請求項4に記載の負荷電流検出回路において、
     前記センス電流側電流源と前記補償電流側電流源の各々は、同じサイズの、カレントミラー接続されたエンハンスメント型トランジスタを備える
     負荷電流検出回路。
    The load current detection circuit according to claim 4,
    Each of the sense current side current source and the compensation current side current source includes an enhancement type transistor of the same size and connected in a current mirror. Load current detection circuit.
  7.  請求項1から6の何れか一項に記載の負荷電流検出回路において、
     前記センス電流生成回路は、
     前記負荷電流生成回路に流れる電流に比例した電流を前記初期センス電流として生成する
     負荷電流検出回路。
    In the load current detection circuit according to any one of claims 1 to 6,
    The sense current generation circuit includes:
    A load current detection circuit that generates a current proportional to a current flowing through the load current generation circuit as the initial sense current.
PCT/JP2012/058455 2011-04-05 2012-03-29 Load current detection circuit WO2012137670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013508834A JP5666694B2 (en) 2011-04-05 2012-03-29 Load current detection circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011083450 2011-04-05
JP2011-083450 2011-04-05

Publications (1)

Publication Number Publication Date
WO2012137670A1 true WO2012137670A1 (en) 2012-10-11

Family

ID=46969071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058455 WO2012137670A1 (en) 2011-04-05 2012-03-29 Load current detection circuit

Country Status (2)

Country Link
JP (1) JP5666694B2 (en)
WO (1) WO2012137670A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11012064B2 (en) 2018-02-16 2021-05-18 Fuji Electric Co., Ltd. Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6989462B2 (en) 2018-08-24 2022-01-05 株式会社東芝 Current detection circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113826A (en) * 1993-10-15 1995-05-02 Nippon Motorola Ltd Semiconductor integrated circuit apparatus for detecting load current without loss
JPH08334534A (en) * 1995-06-07 1996-12-17 Siemens Ag Circuit device for detection of load current of power semiconductor entity

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1213415B (en) * 1986-12-17 1989-12-20 Sgs Microelettronica Spa CIRCUIT FOR LINEAR MEASUREMENT OF THE CIRCULATING CURRENT ON A LOAD.
GB2206010A (en) * 1987-06-08 1988-12-21 Philips Electronic Associated Differential amplifier and current sensing circuit including such an amplifier
JP2764984B2 (en) * 1989-01-04 1998-06-11 日産自動車株式会社 Current sense circuit
JPH0754336B2 (en) * 1989-01-04 1995-06-07 日産自動車株式会社 Current sense circuit
GB2315176A (en) * 1996-07-10 1998-01-21 Motorola Inc Current sense arrangement for an FET using a transistor as a sensing element
JP3466928B2 (en) * 1998-08-05 2003-11-17 トヨタ自動車株式会社 Overcurrent detection circuit
JP3562453B2 (en) * 2000-09-06 2004-09-08 トヨタ自動車株式会社 Current detection circuit
US7005881B2 (en) * 2003-05-14 2006-02-28 International Rectifier Corporation Current sensing for power MOSFET operable in linear and saturated regions
JP4034278B2 (en) * 2004-03-03 2008-01-16 ローム株式会社 Current detection circuit, load drive circuit, and storage device
JP2009075957A (en) * 2007-09-21 2009-04-09 Renesas Technology Corp Power circuit and semiconductor device
JP4773411B2 (en) * 2007-09-26 2011-09-14 ルネサスエレクトロニクス株式会社 Current detection circuit and current detection method
JP5431994B2 (en) * 2010-02-10 2014-03-05 ルネサスエレクトロニクス株式会社 Current limit circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113826A (en) * 1993-10-15 1995-05-02 Nippon Motorola Ltd Semiconductor integrated circuit apparatus for detecting load current without loss
JPH08334534A (en) * 1995-06-07 1996-12-17 Siemens Ag Circuit device for detection of load current of power semiconductor entity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11012064B2 (en) 2018-02-16 2021-05-18 Fuji Electric Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP5666694B2 (en) 2015-02-12
JPWO2012137670A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
CN109992032B (en) Voltage regulator with voltage difference detector and bias current limiter and related method
US7315154B2 (en) Voltage regulator
KR101255996B1 (en) Voltage regulator
US7199566B2 (en) Voltage regulator
US8947008B2 (en) Driver circuit and related error detection circuit and method
JP5120111B2 (en) Series regulator circuit, voltage regulator circuit, and semiconductor integrated circuit
CN108885474B (en) Regulator circuit
US9141121B2 (en) Voltage regulator
US7932707B2 (en) Voltage regulator with improved transient response
US8233257B2 (en) Power supply circuit, overcurrent protection circuit for the same, and electronic device
US7511537B2 (en) Comparator circuit for reducing current consumption by suppressing glitches during a transitional period
JP2017126259A (en) Power supply unit
TWI672572B (en) Voltage Regulator
US10761549B2 (en) Voltage sensing mechanism to minimize short-to-ground current for low drop-out and bypass mode regulators
JP6962851B2 (en) Power supply circuit
US10491119B2 (en) Combined high side and low side current sensing
US9946276B2 (en) Voltage regulators with current reduction mode
US7652861B2 (en) Overcurrent detecting circuit and reference voltage generating circuit
JP2012112810A (en) Voltage measuring device
US11442480B2 (en) Power supply circuit alternately switching between normal operation and sleep operation
JP5666694B2 (en) Load current detection circuit
KR102658159B1 (en) Overheat protection circuit and semiconductor apparatus having the same
CN111258364B (en) Overheat protection circuit and semiconductor device provided with same
JP6046400B2 (en) regulator
JP2014052890A (en) Power supply circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768296

Country of ref document: EP

Kind code of ref document: A1