WO2012137147A1 - Compositions - Google Patents
Compositions Download PDFInfo
- Publication number
- WO2012137147A1 WO2012137147A1 PCT/IB2012/051660 IB2012051660W WO2012137147A1 WO 2012137147 A1 WO2012137147 A1 WO 2012137147A1 IB 2012051660 W IB2012051660 W IB 2012051660W WO 2012137147 A1 WO2012137147 A1 WO 2012137147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrophobin
- composition according
- amino acid
- cys
- sequence
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38627—Preparations containing enzymes, e.g. protease or amylase containing lipase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
- C12N9/20—Triglyceride splitting, e.g. by means of lipase
Definitions
- This invention relates to a composition, particularly although not exclusively for use as a detergent.
- the invention also relates to methods of cieaning surfaces and items, such as clothing items and tableware items, using the composition.
- hydrophobins are proteins generally of fungal origin that play a broad range of roles in the growth and development of filamentous fungi. For example, they are involved in the formation of aerial structures and in the attachment of hyphae to hydrophobic surfaces.
- hydrophobins are divided into Classes I and II.
- the assembled amphipathic films of Class II hydrophobins are capable of redissoiving in a range of solvents (particularly although not exclusively an aqueous ethanol) at room temperature.
- the assembled amphipathic films of Class I hydrophobins are much less soluble, redissoiving only in strong acids such as trifluoroacetic acid or formic acid.
- hydrophobins are known in the art.
- US 2009/0101 167 (corresponding to WO 2007/014897) describes the use of hydrophobins, particularly fusion hydrophobins, for washing textiles and washing compositions containing them.
- composition comprising: (a) a lipolytic enzyme; and
- composition comprising:
- composition comprising:
- GX lipolytic enzyme (a) a GX lipolytic enzyme, wherein G is glycine and X is an oxyanion hole-forming amino acid residue, wherein the GX lipolytic enzyme belongs to an alpha/beta hydrolase superfamily selected from the group consisting of abH23, abH25, and abH15; and
- composition comprising:
- a method of removing a lipid-based stain from a surface by contacting the surface with a composition as defined herein.
- compositions as defined herein to reduce or remove lipid stains from a surface.
- a method of cleaning a surface comprising contacting the surface with a composition as defined herein.
- a method of cleaning an item comprising contacting the item with a composition as defined herein.
- the combination of hydrophobin, lipolytic enzyme and, optionally, detergent is capable of removing oily soils from surfaces, such as textile, clothing or tableware surfaces: it is generally problematic to remove such soils using existing commercial detergents. This effect confers the potential for using the combination in washing compositions.
- the combination of hydrophobin and GX lipolytic enzyme selected from the abH superfamilies referred to above exhibits a ' greatly improved cleaning effect than would be expected from an additive effect of either of these proteins when used alone. These properties confer the potential for using the combination as a replacement for detergent in washing compositions, thereby minimising the environmental impact of such compositions. It has also surprisingly been found that the combination of hydrophobin, GX lipolytic enzyme and detergent exhibits a greatly improved cleaning effect than would be expected from an additive effect of any of these three components when used alone. These properties confer the potential for using the combination to minimise the amount of detergent required in washing compositions, thereby minimising the environmental impact of such compositions.
- Fig. 1a shows the % change in Stain Removal index (SRI) as a function of the detergent concentration at various specified hydrophobin concentrations in the presence of heat-inactivated liquid detergent ARIELTM Color, but in the absence of a lipolytic enzyme;
- Fig. 1 b shows the % change in SRI as a function of the hydrophobin concentration at various specified detergent concentrations in the presence of heat-inactivated liquid detergent ARIELTM Color, but in the absence of a lipolytic enzyme
- Fig. l c shows the % change in SRI as a function of the detergent concentration at various specified hydrophobin concentrations in the presence of heat-inactivated powder detergent ARIELTM Color, but in the absence of a lipolytic enzyme
- Fig. 2a shows the % change in SRI as a function of the detergent concentration at various specified hydrophobin concentrations in the presence of the lipolytic enzyme LIPEXTM and the heat-inactivated liquid detergent ARIELTM Color;
- Fig. 2b shows the % change in SRI as a function of the hydrophobin concentration at various specified detergent concentrations in the presence of the lipolytic enzyme LIPEXTM and the heat-inactivated liquid detergent ARIELTM Color;
- Fig. 2c shows the % change in SRI as a function of the detergent concentration at various specified hydrophobin concentrations in the presence of the lipolytic enzyme LIPEX
- Fig. 2d shows the % change in SRI as a function of the hydrophobin concentration at various specified detergent concentrations in the presence of the lipolytic enzyme LIPEXTM and the heat-inactivated powder detergent ARIELTM Color;
- Fig. 2e shows the % change in SRI as a function of the hydrophobin concentration in the presence of the lipolytic enzyme LIPEXTM but in the absence of detergent;
- Fig. 3a shows the % change in SRI as a function of the detergent concentration at various specified hydrophobin concentrations in the presence of the lipolytic enzyme LIPOMAXTM and the heat-inactivated liquid detergent ARIELTM Color;
- Fig. 3b shows the % change in SRI as a function of the hydrophobin concentration at various specified detergent concentrations in the presence of the lipolytic enzyme LIPOMAXTM and the heat-inactivated liquid detergent ARIELTM Color;
- Fig. 3c shows the % change in SRI as a function of the detergent concentration at various specified hydrophobin concentrations in the presence of the lipolytic enzyme LIPOMAXTM and the heat-inactivated powder detergent ARIELTM Color;
- Fig. 3d shows the % change in SRI as a function of the hydrophobin concentration at various specified detergent concentrations in the presence of the lipolytic enzyme LIPOMAXTM and the heat-inactivated powder detergent ARIELTM Color;
- Fig. 3e shows the % change in SRI as a function of the hydrophobin concentration in the presence of the lipolytic enzyme LIPOMAXTM but in the absence of detergent
- Fig. 4a shows the % change in SRI as a function of the detergent concentration at various specified hydrophobin concentrations in the presence of the lipolytic enzyme SprLip2 and the heat-inactivated liquid detergent ARIELTM Color;
- Fig. 4b shows the % change in SRI as a function of the hydrophobin concentration at various specified detergent concentrations in the presence of the lipolytic enzyme SprLip2 and the heat-inactivated liquid detergent ARIELTM Color
- Fig. 4c shows the % change in SRI as a function of the detergent concentration at various specified hydrophobin concentrations in the presence of the lipolytic enzyme SprUp2 and the heat-inactivated powder detergent ARIELTM Color;
- Fig. 4d shows the % change in SRI as a function of the hydrophobin concentration at various specified detergent concentrations in the presence of the lipolytic enzyme SprLip2 and the heat-inactivated powder detergent ARIELTM Color;
- Fig. 4e shows the % change in SRi as a function of the hydrophobin concentration in the presence of the lipolytic enzyme Sprl_ip2 but in the absence of detergent;
- Fig. 5a shows the % change in SRi as a function of the detergent concentration at various specified hydrophobin concentrations in the presence of the lipolytic enzyme TfuLip2 and the heat-inactivated liquid detergent ARIELTM Color;
- Fig. 5b shows the % change in SR! as a function of the hydrophobin concentration at various specified detergent concentrations in the presence of the lipolytic enzyme TfuLip2 and the heat-inactivated liquid detergent ARIELTM Color;
- Fig. 5c shows the % change in SRI as a function of the detergent concentration at various specified hydrophobin concentrations in the presence of the lipolytic enzyme TfuLip2 and the heat-inactivated powder detergent ARIELTM Color;
- Fig. 5d shows the % change in SRI as a function of the hydrophobin concentration at various specified detergent concentrations in the presence of the lipolytic enzyme TfuLip2 and the heat-inactivated powder detergent ARIELTM Color;
- Fig. 5e shows the % change in SRI as a function of the hydrophobin concentration in the presence of the lipolytic enzyme TfuLip2 but in the absence of detergent;
- Fig. 6 shows SEQ ID NO: 1 , the DNA sequence encoding the hydrophobin
- Trichoderma reesei HFBII (Y1 1894.1 );
- Fig. 7 shows SEQ ID NO: 2, the amino acid sequence of the hydrophobin
- Trichoderma reesei HFBII (P79073.1 );
- Fig. 8 shows SEO ID NO: 3, the DNA sequence encoding the hydrophobin
- Trichoderma reesei HFBI (Z68124.1 );
- Fig. 9 shows SEQ ID NO: 4, the amino acid sequence of the hydrophobin
- Trichoderma reesei H FBI (P52754.1 );
- Fig. 10 shows SEQ ID NO: 5, the DNA sequence encoding the hydrophobin
- Fig. 1 1 shows SEQ ID NO: 6, the amino acid sequence of the hydrophobin ⁇ Schizophyllum commune SC3 (AAA96324.1 );
- Fig. 12 shows SEQ ID NO: 7, the DNA sequence encoding the hydrophobin
- Fig. 13 shows SEQ ID NO: 8, the amino acid sequence of the hydrophobin
- Neurospora crassa EAS (AAB24462.1 );
- Fig. 14 shows SEQ ID NO: 9, Talaromyces thermophilus TT1 (the DNA sequence encoding the precursor TT1 hydrophobin, SEQ ID NO: 4 of US 7241734);
- Fig. 15 shows SEQ ID NO: 10, Talaromyces thermophilus TT1 (the amino acid sequence of the precursor TT1 hydrophobin, SEQ ID NO: 3 of US 7241734);
- Fig. 16 shows SEQ ID NO: 1 1 the mature amino acid sequence of LIPEXTM
- Fig. 17 shows SEQ ID NO: 12 the full amino acid sequence for Sprl_ip2
- Fig. 18 shows SEQ ID NO: 13 the mature amino acid sequence of the Fusarium heterosporum phosphoiipase (disclosed in WO 2005/087918 and available from Danisco A/S as GRINDAMYL POWERBAKE 4100TM);
- Fig. 19 shows SEQ ID NO: 29 the full amino acid sequence of Lipase 3 disclosed in WO 98/45453, residues 1 to 270 comprise the mature sequence referred to herein as SEQ ID NO: 14;
- Fig. 19a shows SEQ ID NO: 14 the mature amino acid sequence of Lipase 3;
- Fig. 20 shows SEQ ID NO: 15 the mature amino acid sequence of LIPOMAXTM
- Fig. 21 shows SEQ ID NO: 16 the mature amino acid sequence of TfuLip2;
- Fig. 22 shows SEQ ID NO: 17 the mature amino acid sequence of SprLip2;
- Fig. 23 shows SEQ ID NO: 18 the full amino acid sequence of LIPEX, including the signal sequence (amino acid residues 1 to 17), propeptide (amino acid residues 18 to 22) and mature sequence (amino acid residues 23 to 291 - shown in Fig. 16 as SEQ ID NO: 1 1 );
- Fig. 24 shows SEQ ID NO: 19 the full amino acid sequence of LIPOMAX, including the signal sequence (amino acid residues 1 to 24) and mature sequence (amino acid residues 25 to 313 - shown in Fig. 20 as SEQ ID NO: 15);
- Fig. 25 shows SEQ ID NO: 20 the full amino acid sequence of TfuLip2, including the signal sequence (amino acid residues 1 to 40) and mature sequence (amino acid residues 41 to 301 - shown in Fig. 21 as SEQ ID NO: 16);
- Fig. 26 shows a protein preprosequence SEQ ID NO: 21 of a lipolytic enzyme from Fusarium heterosporum CBS 782.83 (wild type) disclosed in WO 2005/087918 - the preprosequence undergoes translational modification such that the mature form of the enzyme preferably comprises the enzyme shown in Fig. 18 as SEQ ID NO: 13; in some host organisms the protein may be N-terminally processed such that a number of additional amino acids are added to the N or C terminus;
- Fig. 27 shows SEQ ID NO: 22 the nucleotide sequence of the synthesized SprUp2 gene;
- Fig. 28 shows SEQ ID NO: 23 the nucleotide sequence of the SprLip2 gene from expression piasmid pZQ205 (celA signal sequence is underlined);
- Fig. 29 shows SEQ ID NO: 24 the amino acid sequence of Sprl_ip2 produced from p!asmid pZQ205 (signal sequence is underlined);
- Fig. 30 shows the piasmid map of pZQ205 expression vector
- Fig. 31 shows pNB hydrolysis by Sprl_ip2
- Fig. 32 shows pNPP hydrolysis by SprLip2
- Fig. 33 shows trioctanoate hydrolysis in the absence of detergent by SprLip2;
- Fig. 34 shows trioctanoate hydrolysis in the presence of detergent by SprLip2;
- Fig. 35 shows the performance of SprLip2 in the presence and absence of detergent
- Fig. 36 shows SEQ !D NO: 25, the amino acid sequence of a lipase from Geobacillus stearotherrnophilus strain T1 (GeoT1 ) which is available on the NCBS database as accession number JC8061 (signal sequence is underlined);
- Fig. 37 shows SEQ !D NO: 26 the amino acid sequence of the BCE-GeoT1 fusion protein which is a fusion of SEQ ID NO: 25 and the carboxy-terminus of the catalytic domain of a bacterial cellulase;
- Fig. 38 shows SEQ ID NO: 27 the amino acid sequence of a lipase from Bacillus subtilis 168 (LipA) which is available as GENBANK Accession No. P37957 (signal sequence is underlined);
- Fig. 39 shows SEQ ID NO: 28 the amino acid sequence of the BCE-LipA fusion protein which is a fusion of SEQ ID NO: 27 and the carboxy-terminus of the catalytic domain of a bacterial cellulase;
- Fig. 40 shows SEQ ID NO: 30 the nucieotide sequence of the Nsil-Mlul-Hpal enzyme restriction sites before the BamHI site.
- hydrophobin is defined as meaning a polypeptide capable of self-assembly at a hydrophilic / hydrophobic interface, and having the general formula (I):
- B-i , B 2 , B 3 , B 4l B 5 , B 6 , B 7 and B 8 are each independently amino acids selected from Cys, Leu, Ala, Pro, Ser, Thr, Met or Gly, at least 6 of the residues Bi through B 8 being Cys;
- X-j , X 2 , X 3 , X > X 5 , X 6 , X 7 , Yi and Y 2 independently represent any amino acid;
- a 1 to 50
- b is 0 to 5;
- c 1 to 100
- d 1 to 100
- e 1 to 50;
- f is 0 to 5;
- g 1 to 100.
- the hydrophobin has a sequence of between 40 and 120 amino acids in the hydrophobin core. More preferably, the hydrophobin has a sequence of between 45 and 100 amino acids in the hydrophobin core. In one embodiment, the hydrophobin has a sequence of between 50 and 90, preferably 50 to 75, and more preferably 55 to 65 amino acids in the hydrophobin core. In this specification the term "the hydrophobin core" means the sequence beginning with the residue B t and terminating with the residue B 8 .
- m is suitably 0 to 500, preferably 0 to 200, more preferably 0 to 100, still more preferably 0 to 20, yet more preferably 0 to 10, still more preferably 0 to 5, and most preferably 0.
- n is suitably 0 to 500, preferably 0 to 200, more preferably 0 to 100, still more preferably 0 to 20, yet more preferably 0 to 10, and most preferably 0 to 3.
- a is preferably 3 to 25, more preferably 5 to 15. In one
- a is 5 to 9.
- b is preferably 0 to 2, more preferably 0. in the formula 0), c is preferably 5 to 50, more preferabiy 5 to 40. In one embodiment, c is i 1 to 39. in the formula (I), d is preferabiy 2 to 35, more preferabiy 4 to 23. In one
- d is 8 to 23.
- e is preferabiy 2 to 15, more preferabiy 5 to 12. In one
- e is 5 to 9.
- f is preferabiy 0 to 2, more preferabiy 0. in the formula (i), g is preferably 3 to 35, more preferably 6 to 21 . in one embodiment, g is 6 to 18.
- the hydrophobins used in the present invention have the general formula (II):
- n and n are independently 0 to 20;
- formula B 4 , B 5 , B 6 , B 7 and B 8 are each independently amino acids selected from
- a 3 to 25;
- b is 0 to 2;
- c 5 to 50
- d 2 to 35;
- e 2 to 15;
- f is 0 to 2;
- g 3 to 35.
- At (east 7, and preferably all 8 of the residues B i through B 8 are Cys.
- hydrophobins used in the present invention have the general formula (111):
- n and n are independently 0 to 20;
- B, B 2 B ?
- treat B 4 , B 5 , B 6 , B 7 and B 8 are each independently amino acids selected from Cys, Leu, Ala, Pro, Ser, Thr, Met or Gly, at least 7 of the residues through B 8 being Cys;
- a 5 to 15
- e is 5 to 12;
- the formula (ill), at least 7, and preferably 8 of the residues B-i through B 8 are Cys.
- the residues B 3 through B 7 are Cys.
- the cysteine residues of the hydrophobins used in the present invention may be present in reduced form or form disulfide (-S-S-) bridges with one another in any possible combination.
- disulfide bridges may be formed between one or more (preferably at least 2, more preferably at least 3, most preferably all 4) of the following pairs of cysteine residues: ⁇ and B 6 ; B 2 and B 5 ; B 3 and B 4 ; B 7 and B 8 .
- disulfide bridges may be formed between one or more (preferably at least 2, more preferably at least 3, most preferably all 4) of the following pairs of cysteine residues: ⁇ and B 2 ; B 3 and B 4 ; B 5 and B 6 ; B 7 and B 8 .
- Examples of specific hydrophobic useful in the present invention include those described and exemplified in the following publications: Under ef aL FEMS
- the hydrophobin is a polypeptide selected from SEO ID NOs: 2, 4, 6 8 or 10, or a polypeptide having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, or at least 99% sequence identity in the
- hydrophobin core to any thereof and retaining the above-described self-assembly property of hydrophobins.
- the hydrophobin is obtained or obtainable from a microorganism.
- the microorganism may preferably be a bacteria or a fungus, more preferably a fungus.
- the hydrophobin is obtained or obtainable from a filamentous fungus.
- the hydrophobin is obtained or obtainable from fungi of the phyla Basidiomycota or Ascornycota.
- the hydrophobin is obtained or obtainable from fungi of the genera Cladosporium (particularly C. fulvum or C. herbarum), Ophistoma (particularly O. ulmi), Cryphonectria (particularly C. parasitica), Trichoderma (particularly T.
- hydrophobins used in the present invention is the self-assembly property of the hydrophobins at a hydrophilic / hydrophobic interface.
- self-assembly can be detected by adsorbing the protein to polytetrafluoroethylene (TEFLON®) and using Circular Dichroism (CD) to establish the change in secondary structure exemplified by the occurrence of motifs in the CD spectrum corresponding to a newly formeda- helix) (De Vocht ef a/., Biophys. J. 1998, 74, 2059-2068).
- TEFLON® polytetrafluoroethylene
- CD Circular Dichroism
- hydrophobins used in the present invention are
- the surface property may be surface tension (especially equilibrium surface tension) or surface shear rheology, particularly the surface shear elasticity (storage modulus).
- the hydrophobin may cause the equilibrium surface tension at a water/air interface to reduce to below 45 mN/m, preferably below 40 mN/m, and more preferably below 35 mN/m.
- the surface tension of pure water is 72 mN/m room temperature.
- such a reduction in the equilibrium surface tension at a water/air interface may be achieved using a hydrophobin concentration of between 5 x 10 "8 M and 2 x 10 "6 M, more preferably between 1 x 10 "7 M and 1 x 10 ⁇ 6 M.
- such a reduction in the equilibrium surface tension at a water/air interface may be achieved at a temperature ranging from 0°C to 50°C, especially room temperature.
- the change in equilibrium surface tension can be measured using a tensiometer following the method described in Cox et al. , Langmuir, 2007, 23, 7995- 8002.
- the hydrophobin may cause the surface shear elasticity at a water/air interface to increase to 300-700 mN/m, preferably 400-600 mN/m.
- a surface shear elasticity at a water/air interface may be achieved using a hydrophobin concentration of between 1 x 10 "4 M and 0.01 M, preferably between 5 x 10 "4 M and 2 x 10 "3 M, especially 1 x 10 "3 .
- a surface shear elasticity at a water/air interface may be achieved at a temperature ranging from 0°C to 50°C, especially room temperature.
- the change in equilibrium surface tension can be measured using a rheometer following the method described in Cox ef a/. , Langmuir, 2007, 23, 7995-8002.
- the hydrophobins used in the present invention are biosurfactants.
- Biosurfactants are surface-active substances synthesised by living cells. They have the properties of reducing surface tension, stabilising emulsions, promoting foaming and are generally non-toxic and biodegradable. Examples of specific hydrophobins useful in the compositions of the present invention are listed in Table 1 below.
- hydrophobin in the context of the present invention includes fusion proteins of a hydrophobin and another polypeptide as well as conjugates of hydrophobin and other molecules such as polysaccharides.
- the hydrophobin is a hydrophobin fusion protein.
- fusion protein means a hydrophobin sequence (as defined and exemplified above) bonded to a further peptide sequence (described herein as "a fusion partner") which does not occur naturally in a hydrophobin.
- the fusion partner may be bonded to the amino terminus of the hydrophobin core, thereby forming the group (Yi) m -
- m may range from 1 to 2000, preferably 2 to 1000, more preferably 5 to 500, even more preferably 10 to 200, still more preferably 20 to 100.
- the fusion partner may be bonded to the carboxyl terminus of the hydrophobin core, thereby forming the group (Y 2 ) n .
- n may range from 1 to 2000, preferably 2 to 1000, more preferably 5 to 500, even more preferably 10 to 200, still more preferably 20 to 100.
- fusion partners may be bonded to both the amino and carboxyl termini of the hydrophobin core.
- the fusion partners may be the same or different, and preferably have amino acid sequences having the number of amino acids defined above by the preferred values of m and n.
- the hydrophobin is not a fusion protein and m and n are 0.
- hydrophobins are divided into Classes I and II. It is known in the art that hydrophobins of Classes I and II can be distinguished on a number of grounds, including solubility. As described herein, hydrophobins self-assemble at an interface (especially a water/air interface) into amphipathic interfacial films. The assembled amphipathic films of Class I hydrophobins are generally re-solubilised only in strong acids (typically those having a pK a of lower than 4, such as formic acid or trifluoroacetic acid), whereas those of Class II are soluble in a wider range of solvents. In one embodiment, the hydrophobin is a Class II hydrophobin. In another embodiment, the hydrophobin is a Class I hydrophobin.
- Class II hydrophobin means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property at a water/air interface, the assembled amphipathic films being capable of redissolving to a concentration of at least 0.1 % (w/w) in an aqueous ethanol solution (60% v/v) at room temperature.
- Class I hydrophobin means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property but which does not have this specified redissolution property.
- C!ass Si hydrophobin means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property at a water/air interface and the assembled amphipathic films being capable of redissoiving to a concentration of at least 0.1 % (w/w) in an aqueous sodium dodecy! sulphate solution (2% w/w) at room temperature.
- Class I hydrophobin means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property but which does not have this specified redissolution property.
- Hydrophobins of Classes I and II may also be distinguished by the hydrophobicity / hydrophiiicity of a number of regions of the hydrophobin protein.
- Class II hydrophobin means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property and in which the region between the residues B 3 and B 4 , i.e.
- Class 1 hydrophobin means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property but in which the region between the residues B 3 and B 4 , i.e. the group (X 3 ) c , is predominantly hydrophilic.
- Class II hydrophobin means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property and in which the region between the residues B 7 and B 8 , i.e. the moiety (X 7 ) g , is predominantly hydrophobic.
- Class I hydrophobin means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property but in which the region between the residues B 7 and B 8 , i.e. the moiety (X 7 ) g , is predominantly hydrophilic.
- the relative hydrophobicity / hydrophiiicity of the various regions of the hydrophobin protein can be established by comparing the hydropathy pattern of the hydrophobin using the method set out in Kyte and Doolittle, J. Moi. Biol., 1982, 157, 105-132.
- a computer program can be used to progressively evaluate the hydrophiiicity and hydrophobicity of a protein along its amino acid sequence.
- the method uses a hydropathy scale (based on a number of experimental observations derived from the literature) comparing the hydrophilic and hydrophobic properties of each of the 20 amino acid side-chains.
- the program uses a moving-segment approach that continuously determines the average hydropathy within a segment of predetermined length as it advances through the sequence.
- the consecutive scores are plotted from the amino to the carboxy terminus.
- a midpoint line is printed that corresponds to the grand average of the hydropathy of the amino acid compositions found in most of the sequenced proteins.
- the method is further described for hydrophobins in Wessels, Adv. Microbial Physiol. 1997, 38, 1-45.
- Class II hydrophobin TM means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property and in which the region between the residues B 3 and B 4 , i.e. the moiety (X 3 ) c , is predominantly hydrophobic.
- Class I hydrophobin means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property but in which the region between the residues B 3 and B 4 , i.e. the group (X 3 ) c , is predominantly hydrophilic.
- Class II hydrophobin means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property and in which the region between the residues B 7 and B 8 , i.e. the moiety (X 7 ) g , is predominantly hydrophobic.
- Class I hydrophobin means a hydrophobin (as defined and exemplified herein) having the above-described self-assembly property but in which the region between the residues B 7 and B 8 , i.e. the moiety (X 7 ) g , is predominantly hydrophilic.
- the relative hydrophobicity / hydrophilicity of the various regions of the hydrophobin protein can be established by comparing the hydropathy pattern of the hydrophobin using the method set out in Kyte and Doolittle, J. Mol. Biol. , 1982, 157, 105-132 and described for hydrophobins in Wessels, Adv. Microbial Physiol. 1997, 38, 1-45.
- Class II hydrophobins may also be characterised by their conserved sequences.
- the Class II hydrophobins used in the present invention have the general formula (IV):
- n and n are independently 0 to 200; ⁇ ,, B 2 , B 3 , B 4 , B 5 , B 6 , B 7 and B 8 are each independently amino acids selected from
- a 6 to 12
- d 2 to 20
- e 4 to 12;
- g is 5 to 15 in the formula (IV), a is preferably 7 to 1 1.
- c is preferably 10 to 12, more preferably 1 1 .
- d is preferably 4 to 18, more preferably 4 to 16.
- e is preferably 6 to 10, more preferably 9 or 10.
- g is preferably 6 to 12, more preferably 7 to 10.
- the Class II hydrophobins used in the present invention have the general formula (V):
- n and n are independently 0 to 10;
- ⁇ , , B 2 , B 3I B 4 , B 5 , B 6 , B 7 and B 8 are each independently amino acids selected from Cys, Leu or Ser, at least 7 of the residues ⁇ ⁇ through B 8 being Cys;
- a 7 to 1 1 ;
- c 1 1 ;
- d 4 to 1 8;
- e 6 to 1 0;
- g is 7 to 10.
- at least 7, and preferably all 8 of the residues through B 8 are Cys.
- the residues B 3 through B 7 are Cys.
- the group (X 3 ) c comprises the sequence motif 2ZXZ, wherein Z is an aliphatic amino acid; and X is any amino acid.
- aliphatic amino acid means an amino acid selected from the group consisting of glycine (G), alanine (A), leucine (L), isoleucine (I), valine (V) and proline (P).
- the group (X 3 ) c comprises the sequence motif selected from the group consisting of LLXV, ILXV, 1LXL, VLXL and VLXV. Most preferably, the group (X 3 ) c comprises the sequence motif VLXV.
- the group (X 3 ) c comprises the sequence motif ZZXZZXZ, wherein Z is an aliphatic amino acid; and X is any amino acid. More preferably, the group (X 3 ) c comprises the sequence motif VLZVZXL, wherein Z is an aliphatic amino acid; and X is any amino acid.
- the hydrophobin is a polypeptide selected from SEQ ID NOs: 2, 4, 6, 8 or 10, or a polypeptide having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, or at least 99% sequence identity in the hydrophobin core to any thereof.
- the hydrophobin core is meant the sequence beginning with the residue B-i and terminating with the residue B 8 .
- the hydrophobin is obtained or obtainable from fungi of the phylum Ascomycota. In one embodiment, the hydrophobin is obtained or obtainable from fungi of the genera Cladosporium (particularly C. fulvum), Ophistoma
- the bycirophofain is obtained or obtainable from fungi of the genus Trichoderma (particularly T. harzianum, T. longibrichiatum, T. asperellum, T. Koningiopsis, T. aggressivum, T. stromaticum or 7. reesei).
- the hydrophobin is obtained or obtainable from fungi of the species 7. reesei.
- the hydrophobin is the protein selected from the group consisting of:
- HFB HFB
- SEO ID NO: 4 obtainable from the fungus Trichoderma reesei
- EAS SEQ ID NO: 8; obtainable from the fungus Neurospora crassa
- TT1 SEQ ID NO: 10; obtainable from the fungus Talaromyces thermophiius
- a protein having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, or at least 99% sequence identity in the hydrophobin core to any thereof.
- the hydrophobin is the protein encoded by the polynucleotide selected from the group consisting of:
- HFBi SEQ ID NO: 3; obtainable from the fungus Trichoderma reesei
- EAS SEQ ID NO: 7; obtainable from the fungus Neurospora crassa
- TT1 SEQ ID NO: 9; obtainable from the fungus Talaromyces thermophiius
- the hydrophobin is the protein "HFBII" (SEQ ID NO: 2; obtainable from Trichoderma reesei) or a protein having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, or at least 99% sequence identity in the hydrophobin core thereof.
- the hydrophobin may be present as an initial component of the composition.
- the hydrophobin may be generated in situ in the composition (for example, by in situ hydrolysis of a hydrophobin fusion protein).
- the hydrophobin may be replaced wholly or partially with a chaplin.
- Chaplins are hydrophobin-iike proteins which are also capable of self- assembly at a hydrophobic-hydrophi!ic interface, and are therefore functional equivalents to hydrophobins. Chaplins have been identified in filamentous fungi and bacteria such as Actinomyceies and Streptomyces. Unlike hydrophobins, they may have only two cysteine residues and may form only one disulphide bridge. Examples of chaplins are described in WO 01/74864, US 2010/0151525 and US 2010/0099844 and in Talbot, Curr. Biol, 2003, 13, R696-R698. LIPOLYTIC ENZYME
- the term 'lipolytic enzyme' is defined as an enzyme capable of acting on a lipid substrate to liberate a free fatty acid molecule.
- the lipolytic enzyme is an enzyme capable of hydrolysing an ester bond in a lipid substrate (particularly although not exclusively a triglyceride, a glycolipid and/or a phospholipid) to liberate a free fatty acid molecule. Examples of possible lipid substrate are described below.
- the lipolytic enzyme used in the present invention preferably has activity on both non-polar and polar lipids.
- polar lipids as used herein means
- polar lipids as used herein means both phospholipids and glycolipids.
- Polar and non-polar lipids are discussed in Eliasson and Larsson, "Cereals in Breadmaking: A Molecular Colloidal Approach", publ. Marcel Dekker, 1993.
- the lipolytic enzyme used in the present invention preferably has activity on the following classes of lipids: triglycerides; phospholipids, particularly but not exclusively phosphatidylcholine (PC) and/or N-acylphosphatidylethanolamine (APE); and glycolipids, particularly although not exclusively digalactosyl diglyceride (DGDG).
- lipids particularly but not exclusively phosphatidylcholine (PC) and/or N-acylphosphatidylethanolamine (APE); and glycolipids, particularly although not exclusively digalactosyl diglyceride (DGDG).
- such an acyl group is an aikanoyl group.
- such an acyl group comprises an alkenoyl group, which may have, for example, 1 to 5 double bonds, preferably 1 , 2 or 3 double bonds.
- the lipolytic enzyme for use in the present invention may have one or more of the following activities selected from the group consisting of: phospholipase activity
- glycolipa.se activity (E.G. 3.1.1.26), triacylglycerol hydrolysing activity (E.G.
- lipid acyltransferase activity (generally classified as E.G. 2.3.1.x in accordance with the Enzyme Nomenclature Recommendations (1992) of the
- the lipolytic enzyme for use in the present invention may be a
- phospholipase such as a phospholipase A1 (E.G. 3.1.1.32) or phospholipase A2 (E.G. 3.1 .1.4)); glycolipase or galactolipase (E.G. 3.1.1.26), triacylglyceride lipase (E.G. 3.1.1.3).
- Such enzyme may exhibit additional side activities such as lipid acyltransferase side activity.
- the lipolytic enzyme for use in the present invention has triacylglycerol hydrolysing activity (E.G. 3.1.1.3).
- a lipolytic enzyme may be categorised as belonging to one of three classes (GX, GGGX or Y) based on structure and sequence analysis of the oxyanion hole of the enzyme.
- GX lipolytic enzyme is one where the oxyanion hole-forming residue X of the enzyme is structurally well conserved and is preceded by a strictly conserved glycine.
- GGGX enzyme is one where there is a well conserved GGG pattern, followed by a conserved hydrophobic amino acid X and the backbone amide of glycine preceding the residue X forms the oxyanion hole.
- a ⁇ lipolytic enzyme in one in which the oxyanion hole is not formed by a backbone amide but by the hydroxy! group of a tyrosine side chain.
- the present invention relates to the use of a GX lipolytic enzyme.
- the oxyanion hole forming residue X may be M, Q, F, S, T, A, L or 1.
- the oxyanion hole forming residue X may be M, Q, F, S or T.
- the lipolytic enzyme may belong to one of the following alpha/beta hydrolase superfamilies abH23 (preferably abH23.01 ), abH25 (preferably 25.01 ), abH16 (preferably 16.01 ), abH18 (preferably abH 18.01 ) and abH15
- the lipolytic enzyme may belong to one of the following alpha/beta hydrolase superfamilies abH23 (preferably abH23.01 ), abH25 (preferably 25.01 ), abH16 (preferably 16.01 ) and abH15 (preferably 15.02).
- the lipolytic enzyme is classified as a member of the abH23 superfamily, preferably as a member of the abH23.01 homologous family in the Lipase Engineering Database.
- a lipolytic enzyme may be considered to belong to the abH23 superfamily if it is a GX lipolytic enzyme from a filamentous fungus.
- a lipolytic enzyme is a GX lipolytic enzyme if the catalytic triad of the enzyme aligns with that of a lipase from Rhizopus miehei, such as swissprot P19515.
- lipolytic enzymes belonging to the abH23 superfamily include those indicated in Table 2. Table 2
- the oxyanion hole forming residue is a serine or threonine.
- the lipolytic enzyme belongs to the Rhizopus miehei like homologous family abH23.01 .
- particularly preferred enzymes for use in the present invention may include any lipolytic enzymes classified in homologous family abH23.01 from Thermomyces (preferably, T. lanuginosus), Fusarium (preferably F. hetereosporum), Aspergillus (preferably A. tubiengisis and/or A. fumigatus) and Rhizopus (preferably, R. arrihzus), preferably from Thermomyces (preferably, T. lanuginosus), Fusarium (preferably F. hetereosporum), or Aspergillus (preferably A. tubiengisis).
- lipolytic enzymes examples include LIPEXTM (a Thermomyces lanuginosus lipolytic enzyme disclosed in WO 94/02617 and shown herein as SEQ ID NO: 1 1 , the Fusarium heterosporum lipolytic enzyme disclosed in
- SEQ ID NO: 13 available from Danisco A/S as Grindamyl POWERBAKE 4100TM ⁇ and Lipase 3 (an Aspergillus tubigensis lipolytic enzyme disclosed in WO 98/45453 and shown herein as SEQ ID NO: 14).
- a lipolytic enzyme may be considered to belong to the abH25 superfamily if the catalytic triad aligns with that of the Moraxella lipase 1 like lipolytic enzyme as shown in the swissprot protein knowledge base (http://www.expasy.org/sprot/ and http://www.ebi.ac.uk/swissprot/) under accession number P19833 - version of 26 July 2005.
- lipolytic enzymes belonging to this family include those listed in Table 3.
- a iipoiytsc enzyme may be considered to belong to the abH16 superfamify if the cataiytic triad aligns with that of Streptomvces.
- lipolytic enzymes belonging to this family include those indicated in Table 4. Table 4
- the oxyanion hole forming residue is T or Q.
- a lipolytic enzyme may be considered to belong to the abH15 superfamily if the catalytic triad aligns with that of a GX
- lipolytic enzymes belonging to this family include those indicated in Table 5 and LIPOMAX as shown herein as SEQ ID NO: 15.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mycology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Detergent Compositions (AREA)
- Enzymes And Modification Thereof (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/110,481 US20140031272A1 (en) | 2011-04-08 | 2012-04-04 | Compositions |
CN201280017388.5A CN103502265A (en) | 2011-04-08 | 2012-04-04 | Composition |
KR1020137029372A KR20140024365A (en) | 2011-04-08 | 2012-04-04 | Compositions |
CA2830579A CA2830579A1 (en) | 2011-04-08 | 2012-04-04 | Compositions |
AU2012241055A AU2012241055A1 (en) | 2011-04-08 | 2012-04-04 | Compositions |
EP12716642.9A EP2694537A1 (en) | 2011-04-08 | 2012-04-04 | Compositions |
BR112013025811A BR112013025811A2 (en) | 2011-04-08 | 2012-04-04 | "composition and method for removing a lipid based stain from a surface" |
JP2014503258A JP6027092B2 (en) | 2011-04-08 | 2012-04-04 | Composition |
MX2013011617A MX2013011617A (en) | 2011-04-08 | 2012-04-04 | Compositions. |
RU2013149861/10A RU2013149861A (en) | 2011-04-08 | 2012-04-04 | COMPOSITIONS |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2011/000614 | 2011-04-08 | ||
CN2011000614 | 2011-04-08 | ||
US201161561044P | 2011-11-17 | 2011-11-17 | |
US61/561,044 | 2011-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012137147A1 true WO2012137147A1 (en) | 2012-10-11 |
Family
ID=45999917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2012/051660 WO2012137147A1 (en) | 2011-04-08 | 2012-04-04 | Compositions |
Country Status (11)
Country | Link |
---|---|
US (1) | US20140031272A1 (en) |
EP (1) | EP2694537A1 (en) |
JP (1) | JP6027092B2 (en) |
KR (1) | KR20140024365A (en) |
AR (1) | AR085845A1 (en) |
AU (1) | AU2012241055A1 (en) |
BR (1) | BR112013025811A2 (en) |
CA (1) | CA2830579A1 (en) |
MX (1) | MX2013011617A (en) |
RU (1) | RU2013149861A (en) |
WO (1) | WO2012137147A1 (en) |
Cited By (266)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013076259A2 (en) | 2011-11-25 | 2013-05-30 | Novozymes A/S | Polypeptides having lysozyme activity and polynucleotides encoding same |
WO2013098205A2 (en) | 2011-12-29 | 2013-07-04 | Novozymes A/S | Detergent compositions |
WO2013110766A1 (en) | 2012-01-26 | 2013-08-01 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
WO2013149858A1 (en) | 2012-04-02 | 2013-10-10 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2013167581A1 (en) | 2012-05-07 | 2013-11-14 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
WO2013171241A1 (en) | 2012-05-16 | 2013-11-21 | Novozymes A/S | Compositions comprising lipase and methods of use thereof |
WO2013189972A2 (en) | 2012-06-20 | 2013-12-27 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
WO2014068083A1 (en) | 2012-11-01 | 2014-05-08 | Novozymes A/S | Method for removal of dna |
WO2014087011A1 (en) | 2012-12-07 | 2014-06-12 | Novozymes A/S | Preventing adhesion of bacteria |
WO2014096259A1 (en) | 2012-12-21 | 2014-06-26 | Novozymes A/S | Polypeptides having protease activiy and polynucleotides encoding same |
WO2014147127A1 (en) | 2013-03-21 | 2014-09-25 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2014184164A1 (en) | 2013-05-14 | 2014-11-20 | Novozymes A/S | Detergent compositions |
WO2014183921A1 (en) | 2013-05-17 | 2014-11-20 | Novozymes A/S | Polypeptides having alpha amylase activity |
WO2014194117A2 (en) | 2013-05-29 | 2014-12-04 | Danisco Us Inc. | Novel metalloproteases |
WO2014207227A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2014207224A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2015001017A2 (en) | 2013-07-04 | 2015-01-08 | Novozymes A/S | Polypeptides having anti-redeposition effect and polynucleotides encoding same |
WO2015004102A1 (en) | 2013-07-09 | 2015-01-15 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2015049370A1 (en) | 2013-10-03 | 2015-04-09 | Novozymes A/S | Detergent composition and use of detergent composition |
WO2015051121A1 (en) | 2013-10-02 | 2015-04-09 | E. I. Du Pont De Nemours And Company | Hydrophobin composition and process for treating surfaces |
WO2015109972A1 (en) | 2014-01-22 | 2015-07-30 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2015134729A1 (en) | 2014-03-05 | 2015-09-11 | Novozymes A/S | Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase |
WO2015134737A1 (en) | 2014-03-05 | 2015-09-11 | Novozymes A/S | Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase |
WO2015150457A1 (en) | 2014-04-01 | 2015-10-08 | Novozymes A/S | Polypeptides having alpha amylase activity |
WO2015158237A1 (en) | 2014-04-15 | 2015-10-22 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2015181119A2 (en) | 2014-05-27 | 2015-12-03 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2015189371A1 (en) | 2014-06-12 | 2015-12-17 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2016001319A1 (en) | 2014-07-03 | 2016-01-07 | Novozymes A/S | Improved stabilization of non-protease enzyme |
WO2016079110A2 (en) | 2014-11-19 | 2016-05-26 | Novozymes A/S | Use of enzyme for cleaning |
WO2016079305A1 (en) | 2014-11-20 | 2016-05-26 | Novozymes A/S | Alicyclobacillus variants and polynucleotides encoding same |
WO2016087401A1 (en) | 2014-12-05 | 2016-06-09 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2016096996A1 (en) | 2014-12-16 | 2016-06-23 | Novozymes A/S | Polypeptides having n-acetyl glucosamine oxidase activity |
WO2016135351A1 (en) | 2015-06-30 | 2016-09-01 | Novozymes A/S | Laundry detergent composition, method for washing and use of composition |
WO2016162556A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Laundry method, use of dnase and detergent composition |
WO2016164596A2 (en) | 2015-04-07 | 2016-10-13 | Novozymes A/S | Methods for selecting enzymes having lipase activity |
WO2016162558A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Detergent composition |
WO2016184944A1 (en) | 2015-05-19 | 2016-11-24 | Novozymes A/S | Odor reduction |
EP3101109A1 (en) | 2015-06-04 | 2016-12-07 | The Procter and Gamble Company | Hand dishwashing liquid detergent composition |
EP3106508A1 (en) | 2015-06-18 | 2016-12-21 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
WO2016202739A1 (en) | 2015-06-16 | 2016-12-22 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2016202785A1 (en) | 2015-06-17 | 2016-12-22 | Novozymes A/S | Container |
WO2017046260A1 (en) | 2015-09-17 | 2017-03-23 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
WO2017046232A1 (en) | 2015-09-17 | 2017-03-23 | Henkel Ag & Co. Kgaa | Detergent compositions comprising polypeptides having xanthan degrading activity |
WO2017060505A1 (en) | 2015-10-07 | 2017-04-13 | Novozymes A/S | Polypeptides |
WO2017064253A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2017064269A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptide variants |
WO2017066510A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Cleaning of water filtration membranes |
WO2017089366A1 (en) | 2015-11-24 | 2017-06-01 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2017093318A1 (en) | 2015-12-01 | 2017-06-08 | Novozymes A/S | Methods for producing lipases |
WO2017174769A2 (en) | 2016-04-08 | 2017-10-12 | Novozymes A/S | Detergent compositions and uses of the same |
WO2017186943A1 (en) | 2016-04-29 | 2017-11-02 | Novozymes A/S | Detergent compositions and uses thereof |
WO2017207762A1 (en) | 2016-06-03 | 2017-12-07 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2017210188A1 (en) | 2016-05-31 | 2017-12-07 | Novozymes A/S | Stabilized liquid peroxide compositions |
WO2017220422A1 (en) | 2016-06-23 | 2017-12-28 | Novozymes A/S | Use of enzymes, composition and method for removing soil |
WO2018001959A1 (en) | 2016-06-30 | 2018-01-04 | Novozymes A/S | Lipase variants and compositions comprising surfactant and lipase variant |
WO2018002261A1 (en) | 2016-07-01 | 2018-01-04 | Novozymes A/S | Detergent compositions |
WO2018007435A1 (en) | 2016-07-05 | 2018-01-11 | Novozymes A/S | Pectate lyase variants and polynucleotides encoding same |
WO2018007573A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Detergent compositions with galactanase |
WO2018011276A1 (en) | 2016-07-13 | 2018-01-18 | The Procter & Gamble Company | Bacillus cibi dnase variants and uses thereof |
WO2018015295A1 (en) | 2016-07-18 | 2018-01-25 | Novozymes A/S | Lipase variants, polynucleotides encoding same and the use thereof |
EP3284805A1 (en) | 2016-08-17 | 2018-02-21 | The Procter & Gamble Company | Cleaning composition comprising enzymes |
WO2018037064A1 (en) | 2016-08-24 | 2018-03-01 | Henkel Ag & Co. Kgaa | Detergent compositions comprising xanthan lyase variants i |
WO2018037061A1 (en) | 2016-08-24 | 2018-03-01 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
WO2018037062A1 (en) | 2016-08-24 | 2018-03-01 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
WO2018037065A1 (en) | 2016-08-24 | 2018-03-01 | Henkel Ag & Co. Kgaa | Detergent composition comprising gh9 endoglucanase variants i |
WO2018060216A1 (en) | 2016-09-29 | 2018-04-05 | Novozymes A/S | Use of enzyme for washing, method for washing and warewashing composition |
EP3309249A1 (en) | 2013-07-29 | 2018-04-18 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2018077938A1 (en) | 2016-10-25 | 2018-05-03 | Novozymes A/S | Detergent compositions |
WO2018083093A1 (en) | 2016-11-01 | 2018-05-11 | Novozymes A/S | Multi-core granules |
EP3321360A2 (en) | 2013-01-03 | 2018-05-16 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2018099762A1 (en) | 2016-12-01 | 2018-06-07 | Basf Se | Stabilization of enzymes in compositions |
WO2018108865A1 (en) | 2016-12-12 | 2018-06-21 | Novozymes A/S | Use of polypeptides |
WO2018177938A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
WO2018178061A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having rnase activity |
WO2018177936A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
EP3385361A1 (en) | 2017-04-05 | 2018-10-10 | Henkel AG & Co. KGaA | Detergent compositions comprising bacterial mannanases |
EP3385362A1 (en) | 2017-04-05 | 2018-10-10 | Henkel AG & Co. KGaA | Detergent compositions comprising fungal mannanases |
WO2018185150A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Polypeptides |
WO2018185269A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184816A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185181A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Glycosyl hydrolases |
WO2018185152A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Polypeptide compositions and uses thereof |
WO2018185285A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185280A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184817A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184873A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Detergent compositions and uses thereof |
WO2018185267A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184818A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018202846A1 (en) | 2017-05-05 | 2018-11-08 | Novozymes A/S | Compositions comprising lipase and sulfite |
EP3401385A1 (en) | 2017-05-08 | 2018-11-14 | Henkel AG & Co. KGaA | Detergent composition comprising polypeptide comprising carbohydrate-binding domain |
WO2018206535A1 (en) | 2017-05-08 | 2018-11-15 | Novozymes A/S | Carbohydrate-binding domain and polynucleotides encoding the same |
WO2019038058A1 (en) | 2017-08-24 | 2019-02-28 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
WO2019038057A1 (en) | 2017-08-24 | 2019-02-28 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
WO2019038060A1 (en) | 2017-08-24 | 2019-02-28 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase variants ii |
WO2019038059A1 (en) | 2017-08-24 | 2019-02-28 | Henkel Ag & Co. Kgaa | Detergent compositions comprising gh9 endoglucanase variants ii |
EP3453757A1 (en) | 2013-12-20 | 2019-03-13 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2019057758A1 (en) | 2017-09-20 | 2019-03-28 | Novozymes A/S | Use of enzymes for improving water absorption and/or whiteness |
WO2019057902A1 (en) | 2017-09-22 | 2019-03-28 | Novozymes A/S | Novel polypeptides |
WO2019067390A1 (en) | 2017-09-27 | 2019-04-04 | The Procter & Gamble Company | Detergent compositions comprising lipases |
WO2019063499A1 (en) | 2017-09-27 | 2019-04-04 | Novozymes A/S | Lipase variants and microcapsule compositions comprising such lipase variants |
WO2019076834A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Low dusting granules |
WO2019076800A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2019076833A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Low dusting granules |
WO2019084349A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
WO2019081724A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
DE102017125558A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANING COMPOSITIONS CONTAINING DISPERSINE I |
DE102017125560A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE III |
DE102017125559A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE II |
WO2019086530A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
WO2019086532A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Methods for cleaning medical devices |
WO2019086528A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
EP3483246A1 (en) * | 2017-11-13 | 2019-05-15 | The Procter & Gamble Company | Cleaning composition comprising hydrophobins |
WO2019105780A1 (en) | 2017-11-29 | 2019-06-06 | Basf Se | Compositions, their manufacture and use |
WO2019110462A1 (en) | 2017-12-04 | 2019-06-13 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2019121057A1 (en) | 2017-12-20 | 2019-06-27 | Basf Se | Laundry formulation for removing fatty compounds having a melting temperature>30°c deposited on textiles |
EP3521434A1 (en) | 2014-03-12 | 2019-08-07 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
US10377974B2 (en) | 2015-06-04 | 2019-08-13 | The Procter & Gamble Company | Hand dishwashing liquid detergent composition |
WO2019162000A1 (en) | 2018-02-23 | 2019-08-29 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase and endoglucanase variants |
WO2019180111A1 (en) | 2018-03-23 | 2019-09-26 | Novozymes A/S | Subtilase variants and compositions comprising same |
WO2019201783A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
WO2019201793A1 (en) | 2018-04-17 | 2019-10-24 | Novozymes A/S | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric. |
WO2019201785A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
WO2019201636A1 (en) | 2018-04-19 | 2019-10-24 | Basf Se | Compositions and polymers useful for such compositions |
EP3569611A1 (en) | 2013-04-23 | 2019-11-20 | Novozymes A/S | Liquid automatic dish washing detergent compositions with stabilised subtilisin |
WO2019238761A1 (en) | 2018-06-15 | 2019-12-19 | Basf Se | Water soluble multilayer films containing wash active chemicals and enzymes |
WO2020002604A1 (en) | 2018-06-28 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020002255A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Subtilase variants and compositions comprising same |
WO2020002608A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020007875A1 (en) | 2018-07-03 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008024A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020007863A1 (en) | 2018-07-02 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008043A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3608403A2 (en) | 2014-12-15 | 2020-02-12 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
WO2020030623A1 (en) | 2018-08-10 | 2020-02-13 | Basf Se | Packaging unit comprising a detergent composition containing an enzyme and at least one chelating agent |
EP3611260A1 (en) | 2013-07-29 | 2020-02-19 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2020069915A1 (en) | 2018-10-05 | 2020-04-09 | Basf Se | Compounds stabilizing hydrolases in liquids |
WO2020070011A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
WO2020070209A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
WO2020070249A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Cleaning compositions |
WO2020070063A2 (en) | 2018-10-01 | 2020-04-09 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020069913A1 (en) | 2018-10-05 | 2020-04-09 | Basf Se | Compounds stabilizing hydrolases in liquids |
WO2020070014A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition comprising anionic surfactant and a polypeptide having rnase activity |
WO2020070199A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same |
WO2020069914A1 (en) | 2018-10-05 | 2020-04-09 | Basf Se | Compounds stabilizing amylases in liquids |
WO2020074545A1 (en) | 2018-10-11 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074499A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074498A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3647397A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins iv |
EP3647398A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins v |
WO2020104231A1 (en) | 2018-11-19 | 2020-05-28 | Basf Se | Powders and granules containing a chelating agent and an enzyme |
WO2020114965A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | LOW pH POWDER DETERGENT COMPOSITION |
WO2020114968A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | Powder detergent compositions |
WO2020127796A2 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
WO2020127775A1 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Detergent pouch comprising metalloproteases |
EP3677676A1 (en) | 2019-01-03 | 2020-07-08 | Basf Se | Compounds stabilizing amylases in liquids |
EP3690037A1 (en) | 2014-12-04 | 2020-08-05 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3702452A1 (en) | 2019-03-01 | 2020-09-02 | Novozymes A/S | Detergent compositions comprising two proteases |
WO2020182521A1 (en) | 2019-03-08 | 2020-09-17 | Basf Se | Cationic surfactant and its use in laundry detergent compositions |
WO2020188095A1 (en) | 2019-03-21 | 2020-09-24 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
EP3715442A1 (en) | 2016-03-23 | 2020-09-30 | Novozymes A/S | Use of polypeptide having dnase activity for treating fabrics |
WO2020201403A1 (en) | 2019-04-03 | 2020-10-08 | Novozymes A/S | Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions |
EP3722406A1 (en) | 2014-04-11 | 2020-10-14 | Novozymes A/S | Detergent composition |
WO2020207944A1 (en) | 2019-04-10 | 2020-10-15 | Novozymes A/S | Polypeptide variants |
WO2020208056A1 (en) | 2019-04-12 | 2020-10-15 | Novozymes A/S | Stabilized glycoside hydrolase variants |
EP3739029A1 (en) | 2014-07-04 | 2020-11-18 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2020229480A1 (en) | 2019-05-14 | 2020-11-19 | Basf Se | Compounds stabilizing hydrolases in liquids |
EP3741848A2 (en) | 2014-12-19 | 2020-11-25 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3741849A2 (en) | 2014-12-19 | 2020-11-25 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2021009067A1 (en) | 2019-07-12 | 2021-01-21 | Novozymes A/S | Enzymatic emulsions for detergents |
EP3786269A1 (en) | 2013-06-06 | 2021-03-03 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2021037878A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Composition comprising a lipase |
WO2021037895A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Detergent composition |
WO2021053127A1 (en) | 2019-09-19 | 2021-03-25 | Novozymes A/S | Detergent composition |
WO2021064068A1 (en) | 2019-10-03 | 2021-04-08 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
WO2021074430A1 (en) | 2019-10-18 | 2021-04-22 | Basf Se | Storage-stable hydrolase containing liquids |
WO2021105330A1 (en) | 2019-11-29 | 2021-06-03 | Basf Se | Compositions and polymers useful for such compositions |
WO2021115912A1 (en) | 2019-12-09 | 2021-06-17 | Basf Se | Formulations comprising a hydrophobically modified polyethyleneimine and one or more enzymes |
WO2021121394A1 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Stabilized liquid boron-free enzyme compositions |
WO2021122121A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins ix |
WO2021122118A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins vi |
WO2021122117A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning composition coprising a dispersin and a carbohydrase |
WO2021123307A2 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
WO2021122120A2 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins viii |
WO2021133701A1 (en) | 2019-12-23 | 2021-07-01 | The Procter & Gamble Company | Compositions comprising enzymes |
WO2021130167A1 (en) | 2019-12-23 | 2021-07-01 | Novozymes A/S | Enzyme compositions and uses thereof |
WO2021148364A1 (en) | 2020-01-23 | 2021-07-29 | Novozymes A/S | Enzyme compositions and uses thereof |
WO2021152120A1 (en) | 2020-01-31 | 2021-08-05 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
WO2021152123A1 (en) | 2020-01-31 | 2021-08-05 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
EP3872175A1 (en) | 2015-06-18 | 2021-09-01 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3878960A1 (en) | 2014-07-04 | 2021-09-15 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3878957A1 (en) | 2014-05-27 | 2021-09-15 | Novozymes A/S | Methods for producing lipases |
EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
WO2021204838A1 (en) | 2020-04-08 | 2021-10-14 | Novozymes A/S | Carbohydrate binding module variants |
WO2021214059A1 (en) | 2020-04-21 | 2021-10-28 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
EP3907271A1 (en) | 2020-05-07 | 2021-11-10 | Novozymes A/S | Cleaning composition, use and method of cleaning |
WO2021239818A1 (en) | 2020-05-26 | 2021-12-02 | Novozymes A/S | Subtilase variants and compositions comprising same |
WO2021254824A1 (en) | 2020-06-18 | 2021-12-23 | Basf Se | Compositions and their use |
EP3929285A2 (en) | 2015-07-01 | 2021-12-29 | Novozymes A/S | Methods of reducing odor |
WO2021259099A1 (en) | 2020-06-24 | 2021-12-30 | Novozymes A/S | Use of cellulases for removing dust mite from textile |
EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
WO2022008732A1 (en) | 2020-07-10 | 2022-01-13 | Basf Se | Enhancing the activity of antimicrobial preservatives |
WO2022008416A1 (en) | 2020-07-09 | 2022-01-13 | Basf Se | Compositions and their applications |
EP3950939A2 (en) | 2015-07-06 | 2022-02-09 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
EP3957711A2 (en) | 2015-10-28 | 2022-02-23 | Novozymes A/S | Detergent composition comprising amylase and protease variants |
WO2022043563A1 (en) | 2020-08-28 | 2022-03-03 | Novozymes A/S | Polyester degrading protease variants |
WO2022043321A2 (en) | 2020-08-25 | 2022-03-03 | Novozymes A/S | Variants of a family 44 xyloglucanase |
WO2022063699A1 (en) | 2020-09-22 | 2022-03-31 | Basf Se | Improved combination of protease and protease inhibitor with secondary enzyme |
WO2022074037A2 (en) | 2020-10-07 | 2022-04-14 | Novozymes A/S | Alpha-amylase variants |
WO2022084303A2 (en) | 2020-10-20 | 2022-04-28 | Novozymes A/S | Use of polypeptides having dnase activity |
WO2022083949A1 (en) | 2020-10-20 | 2022-04-28 | Basf Se | Compositions and their use |
WO2022090361A2 (en) | 2020-10-29 | 2022-05-05 | Novozymes A/S | Lipase variants and compositions comprising such lipase variants |
WO2022090320A1 (en) | 2020-10-28 | 2022-05-05 | Novozymes A/S | Use of lipoxygenase |
WO2022103725A1 (en) | 2020-11-13 | 2022-05-19 | Novozymes A/S | Detergent composition comprising a lipase |
WO2022106404A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of proteases |
WO2022106400A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of immunochemically different proteases |
EP4032966A1 (en) | 2021-01-22 | 2022-07-27 | Novozymes A/S | Liquid enzyme composition with sulfite scavenger |
WO2022162043A1 (en) | 2021-01-28 | 2022-08-04 | Novozymes A/S | Lipase with low malodor generation |
EP4039806A1 (en) | 2021-02-04 | 2022-08-10 | Henkel AG & Co. KGaA | Detergent composition comprising xanthan lyase and endoglucanase variants with im-proved stability |
WO2022171872A1 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Stabilized biological detergents |
WO2022171780A2 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Alpha-amylase variants |
EP4047088A1 (en) | 2021-02-22 | 2022-08-24 | Basf Se | Amylase variants |
WO2022175435A1 (en) | 2021-02-22 | 2022-08-25 | Basf Se | Amylase variants |
WO2022189521A1 (en) | 2021-03-12 | 2022-09-15 | Novozymes A/S | Polypeptide variants |
EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
WO2022194673A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Dnase variants |
WO2022199418A1 (en) | 2021-03-26 | 2022-09-29 | Novozymes A/S | Detergent composition with reduced polymer content |
WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
EP4134423A1 (en) | 2021-08-12 | 2023-02-15 | Henkel AG & Co. KGaA | Sprayable laundry pre-treatment composition |
WO2023061827A1 (en) | 2021-10-13 | 2023-04-20 | Basf Se | Compositions comprising polymers, polymers, and their use |
WO2023061928A1 (en) | 2021-10-12 | 2023-04-20 | Novozymes A/S | Endoglucanase with improved stability |
WO2023088777A1 (en) | 2021-11-22 | 2023-05-25 | Basf Se | Compositions comprising polymers, polymers, and their use |
WO2023118015A1 (en) | 2021-12-21 | 2023-06-29 | Basf Se | Environmental attributes for care composition ingredients |
WO2023116569A1 (en) | 2021-12-21 | 2023-06-29 | Novozymes A/S | Composition comprising a lipase and a booster |
EP4206309A1 (en) | 2021-12-30 | 2023-07-05 | Novozymes A/S | Protein particles with improved whiteness |
WO2023148086A1 (en) | 2022-02-04 | 2023-08-10 | Basf Se | Compositions comprising polymers, polymers, and their use |
EP4234664A1 (en) | 2022-02-24 | 2023-08-30 | Evonik Operations GmbH | Composition comprising glucolipids and enzymes |
WO2023165507A1 (en) | 2022-03-02 | 2023-09-07 | Novozymes A/S | Use of xyloglucanase for improvement of sustainability of detergents |
WO2023165950A1 (en) | 2022-03-04 | 2023-09-07 | Novozymes A/S | Dnase variants and compositions |
WO2023194204A1 (en) | 2022-04-08 | 2023-10-12 | Novozymes A/S | Hexosaminidase variants and compositions |
WO2023232194A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents with an improved enzyme stability |
DE102022205591A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING AGENTS WITH IMPROVED ENZYME STABILITY |
WO2023232192A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Detergent and cleaning agent with improved enzyme stability |
DE102022205594A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | PERFORMANCE-IMPROVED AND STORAGE-STABLE PROTEASE VARIANTS |
WO2023247664A2 (en) | 2022-06-24 | 2023-12-28 | Novozymes A/S | Lipase variants and compositions comprising such lipase variants |
WO2024033134A1 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Enzyme compositions comprising protease, mannanase, and/or cellulase |
WO2024033133A2 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Enzyme compositions comprising an amylase |
WO2024033135A2 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Amylase variants |
WO2024033136A1 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Amylase variants |
EP4324900A1 (en) | 2022-08-17 | 2024-02-21 | Henkel AG & Co. KGaA | Detergent composition comprising enzymes |
EP4339282A2 (en) | 2014-12-04 | 2024-03-20 | Novozymes A/S | Liquid cleaning compositions comprising protease variants |
WO2024083819A1 (en) | 2022-10-20 | 2024-04-25 | Novozymes A/S | Lipid removal in detergents |
WO2024083589A1 (en) | 2022-10-18 | 2024-04-25 | Basf Se | Detergent compositions, polymers and methods of manufacturing the same |
WO2024094732A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
WO2024094735A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
WO2024094733A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
WO2024115754A1 (en) | 2022-12-02 | 2024-06-06 | Basf Se | Aqueous compositions containing polyalkoxylates, polyalkoxylates, and use |
DE102022131732A1 (en) | 2022-11-30 | 2024-06-06 | Henkel Ag & Co. Kgaa | Improved washing performance through the use of a protease fused with a special adhesion promoter peptide |
WO2024121058A1 (en) | 2022-12-05 | 2024-06-13 | Novozymes A/S | A composition comprising a lipase and a peptide |
WO2024121070A1 (en) | 2022-12-05 | 2024-06-13 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2024126483A1 (en) | 2022-12-14 | 2024-06-20 | Novozymes A/S | Improved lipase (gcl1) variants |
EP4389864A1 (en) | 2022-12-20 | 2024-06-26 | Basf Se | Cutinases |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
WO2024156628A1 (en) | 2023-01-23 | 2024-08-02 | Novozymes A/S | Cleaning compositions and uses thereof |
EP4410938A1 (en) | 2023-02-02 | 2024-08-07 | AMSilk GmbH | Automatic dishwashing composition comprising a structural polypeptide |
WO2024194245A1 (en) | 2023-03-21 | 2024-09-26 | Novozymes A/S | Detergent compositions based on biosurfactants |
WO2024213513A1 (en) | 2023-04-12 | 2024-10-17 | Novozymes A/S | Compositions comprising polypeptides having alkaline phosphatase activity |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3259350A4 (en) | 2015-02-16 | 2018-11-07 | Ozymes | Multi-domain enzymes having cutinase activity, compositions comprising same and uses thereof |
HUE039080T2 (en) | 2015-04-29 | 2018-12-28 | Procter & Gamble | Method of treating a fabric |
EP3243894A1 (en) | 2016-05-10 | 2017-11-15 | The Procter and Gamble Company | Cleaning composition |
US10590401B2 (en) * | 2016-07-12 | 2020-03-17 | Carbios | Esterases and uses thereof |
WO2019094913A2 (en) | 2017-11-13 | 2019-05-16 | The Procter & Gamble Company | Personal care composition |
EP3483247A1 (en) * | 2017-11-13 | 2019-05-15 | The Procter & Gamble Company | Cleaning composition comprising chaplin proteins |
WO2023200284A1 (en) * | 2022-04-15 | 2023-10-19 | 재단법인대구경북과학기술원 | Method for purifying and concentrating lipid-associated protein in biological sample to perform mass spectrometry of lipid-associated protein |
Citations (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3817837A (en) | 1971-05-14 | 1974-06-18 | Syva Corp | Enzyme amplification assay |
US3850752A (en) | 1970-11-10 | 1974-11-26 | Akzona Inc | Process for the demonstration and determination of low molecular compounds and of proteins capable of binding these compounds specifically |
US3939350A (en) | 1974-04-29 | 1976-02-17 | Board Of Trustees Of The Leland Stanford Junior University | Fluorescent immunoassay employing total reflection for activation |
US3996345A (en) | 1974-08-12 | 1976-12-07 | Syva Company | Fluorescence quenching with immunological pairs in immunoassays |
GB1483591A (en) | 1973-07-23 | 1977-08-24 | Novo Industri As | Process for coating water soluble or water dispersible particles by means of the fluid bed technique |
US4106991A (en) | 1976-07-07 | 1978-08-15 | Novo Industri A/S | Enzyme granulate composition and process for forming enzyme granulates |
US4275149A (en) | 1978-11-24 | 1981-06-23 | Syva Company | Macromolecular environment control in specific receptor assays |
US4277437A (en) | 1978-04-05 | 1981-07-07 | Syva Company | Kit for carrying out chemically induced fluorescence immunoassay |
US4366241A (en) | 1980-08-07 | 1982-12-28 | Syva Company | Concentrating zone method in heterogeneous immunoassays |
US4435307A (en) | 1980-04-30 | 1984-03-06 | Novo Industri A/S | Detergent cellulase |
US4661452A (en) | 1984-05-29 | 1987-04-28 | Novo Industri A/S | Enzyme containing granulates useful as detergent additives |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
EP0238216A1 (en) | 1986-02-20 | 1987-09-23 | Albright & Wilson Limited | Protected enzyme systems |
EP0238023A2 (en) | 1986-03-17 | 1987-09-23 | Novo Nordisk A/S | Process for the production of protein products in Aspergillus oryzae and a promoter for use in Aspergillus |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
WO1989006270A1 (en) | 1988-01-07 | 1989-07-13 | Novo-Nordisk A/S | Enzymatic detergent |
WO1989006279A1 (en) | 1988-01-07 | 1989-07-13 | Novo-Nordisk A/S | Mutated subtilisin genes |
WO1989009259A1 (en) | 1988-03-24 | 1989-10-05 | Novo-Nordisk A/S | A cellulase preparation |
EP0449375A2 (en) | 1990-03-23 | 1991-10-02 | Gist-Brocades N.V. | The expression of phytase in plants |
WO1991017243A1 (en) | 1990-05-09 | 1991-11-14 | Novo Nordisk A/S | A cellulase preparation comprising an endoglucanase enzyme |
EP0495257A1 (en) | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Compact detergent compositions with high activity cellulase |
WO1992019729A1 (en) | 1991-05-01 | 1992-11-12 | Novo Nordisk A/S | Stabilized enzymes and detergent compositions |
WO1992019709A1 (en) | 1991-04-30 | 1992-11-12 | The Procter & Gamble Company | Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme |
WO1992019708A1 (en) | 1991-04-30 | 1992-11-12 | The Procter & Gamble Company | Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme |
EP0531315A1 (en) | 1990-05-09 | 1993-03-17 | Novo Nordisk As | An enzyme capable of degrading cellulose or hemicellulose. |
WO1993024618A1 (en) | 1992-06-01 | 1993-12-09 | Novo Nordisk A/S | Peroxidase variants with improved hydrogen peroxide stability |
WO1994002617A2 (en) | 1992-07-23 | 1994-02-03 | Gist-Brocades N.V. | Cloning and expression of a lipase modulator gene from pseudomonas pseudoalcaligenes |
EP0583265A1 (en) | 1991-04-16 | 1994-02-23 | Evotec BioSystems GmbH | Method for preparing new biopolymers |
WO1994007998A1 (en) | 1992-10-06 | 1994-04-14 | Novo Nordisk A/S | Cellulase variants |
WO1994025583A1 (en) | 1993-05-05 | 1994-11-10 | Novo Nordisk A/S | A recombinant trypsin-like protease |
WO1995010602A1 (en) | 1993-10-13 | 1995-04-20 | Novo Nordisk A/S | H2o2-stable peroxidase variants |
WO1995024471A1 (en) | 1994-03-08 | 1995-09-14 | Novo Nordisk A/S | Novel alkaline cellulases |
WO1995030011A2 (en) | 1994-05-02 | 1995-11-09 | The Procter & Gamble Company | Subtilisin 309 variants having decreased adsorption and increased hydrolysis |
WO1996011262A1 (en) | 1994-10-06 | 1996-04-18 | Novo Nordisk A/S | An enzyme and enzyme preparation with endoglucanase activity |
WO1996018729A1 (en) | 1994-12-13 | 1996-06-20 | Genencor International, Inc. | Fusarium isolate and lipases, cutinases and enzyme compositions derived therefrom |
WO1996029397A1 (en) | 1995-03-17 | 1996-09-26 | Novo Nordisk A/S | Novel endoglucanases |
WO1996034108A2 (en) | 1995-04-28 | 1996-10-31 | Genencor International, Inc. | Alkaline cellulase and method for producing the same |
WO1996034946A1 (en) | 1995-05-05 | 1996-11-07 | Novo Nordisk A/S | Protease variants and compositions |
EP0752008A1 (en) | 1994-02-17 | 1997-01-08 | Affymax Technologies N.V. | Dna mutagenesis by random fragmentation and reassembly |
WO1997007202A1 (en) | 1995-08-11 | 1997-02-27 | Novo Nordisk A/S | Novel lipolytic enzymes |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
US5674707A (en) | 1992-12-10 | 1997-10-07 | Gist-Brocades N.V. | Production of heterologous proteins in filamentous fungi |
WO1998008940A1 (en) | 1996-08-26 | 1998-03-05 | Novo Nordisk A/S | A novel endoglucanase |
WO1998012307A1 (en) | 1996-09-17 | 1998-03-26 | Novo Nordisk A/S | Cellulase variants |
WO1998015257A1 (en) | 1996-10-08 | 1998-04-16 | Novo Nordisk A/S | Diaminobenzoic acid derivatives as dye precursors |
US5741665A (en) | 1994-05-10 | 1998-04-21 | University Of Hawaii | Light-regulated promoters for production of heterologous proteins in filamentous fungi |
WO1998020115A1 (en) | 1996-11-04 | 1998-05-14 | Novo Nordisk A/S | Subtilase variants and compositions |
EP0866796A1 (en) | 1995-09-22 | 1998-09-30 | Medical Research Council | Improvements in or relating to mutagenesis of nucleic acids |
WO1998045453A1 (en) | 1997-04-09 | 1998-10-15 | Danisco A/S | Lipase and use of same for improving doughs and baked products |
WO1999001544A1 (en) | 1997-07-04 | 1999-01-14 | Novo Nordisk A/S | FAMILY 6 ENDO-1,4-β-GLUCANASE VARIANTS AND CLEANING COMPOSIT IONS CONTAINING THEM |
WO1999025846A2 (en) | 1997-11-19 | 1999-05-27 | Genencor International, Inc. | Cellulase produced by actinomycetes and method for producing same |
WO2000058517A1 (en) | 1999-03-26 | 2000-10-05 | Diversa Corporation | Exonuclease-mediated nucleic acid reassembly in directed evolution |
US6180406B1 (en) | 1994-02-17 | 2001-01-30 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
WO2001014629A1 (en) | 1999-08-20 | 2001-03-01 | Genencor International, Inc. | Enzymatic modification of the surface of a polyester fiber or article |
WO2001016308A2 (en) | 1999-08-30 | 2001-03-08 | Monsanto Technology Llc | Plant sterol acyltransferases |
WO2001034899A1 (en) | 1999-11-05 | 2001-05-17 | Genencor International, Inc. | Enzymes useful for changing the properties of polyester |
WO2001034835A2 (en) | 1999-11-09 | 2001-05-17 | Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V. | Method for the production of biopolymers with modified properties |
WO2001039544A1 (en) | 1999-11-25 | 2001-05-31 | Natural Colour Kari Kirjavainen Oy | Electromechanic film and acoustic element |
WO2001057066A2 (en) | 2000-02-04 | 2001-08-09 | Applied Nanosystems B.V. | Method of stabilizing a hydrophobin-containing solution and a method of coating a surface with a hydrophobin |
WO2001057528A1 (en) | 2000-02-04 | 2001-08-09 | Applied Nanosystems, B.V. | Method of treating a surface of an object with a hydrophobin-containing solution |
US6287841B1 (en) | 1988-02-11 | 2001-09-11 | Genencor International, Inc. | High alkaline serine protease |
WO2001074864A1 (en) | 2000-03-30 | 2001-10-11 | Applied Nanosystems B.V. | Protein capable of self-assembly at a hydrophobic-hydrophilic interface and uses thereof |
WO2002006457A2 (en) | 2000-07-13 | 2002-01-24 | Maxygen, Inc. | Novel lipase genes |
US6344328B1 (en) | 1995-12-07 | 2002-02-05 | Diversa Corporation | Method for screening for enzyme activity |
US6361974B1 (en) | 1995-12-07 | 2002-03-26 | Diversa Corporation | Exonuclease-mediated nucleic acid reassembly in directed evolution |
WO2005087918A2 (en) | 2004-03-12 | 2005-09-22 | Danisco A/S | Fungal lipolytic enzymes |
EP1595949A1 (en) * | 2002-10-23 | 2005-11-16 | Tohoku Techno Arch Co., Ltd. | Method of degrading plastic and process for producing useful substance using the same |
US20060154843A1 (en) | 2004-12-23 | 2006-07-13 | Huaming Wang | Neutral cellulase catalytic core and method of producing same |
WO2006082253A2 (en) | 2005-02-07 | 2006-08-10 | Basf Aktiengesellschaft | Method for coating surfaces with hydrophobins |
WO2006103230A1 (en) | 2005-03-30 | 2006-10-05 | Basf Aktiengesellschaft | Use of hydrophobins for the surface treatment of hardened mineral building materials, natural stone, artificial stone and ceramics |
WO2006103225A1 (en) | 2005-03-31 | 2006-10-05 | Basf Aktiengesellschaft | Use of polypeptides in the form of adhesive agents |
WO2007014897A1 (en) | 2005-08-01 | 2007-02-08 | Basf Se | Use of surface-active non-enzymatic proteins for washing textiles |
WO2007030966A2 (en) | 2005-09-14 | 2007-03-22 | Urs Jaeger | Device for production of mixed drinks and pressurised container for the same |
US7241734B2 (en) | 2004-08-18 | 2007-07-10 | E. I. Du Pont De Nemours And Company | Thermophilic hydrophobin proteins and applications for surface modification |
WO2007087968A1 (en) | 2006-01-31 | 2007-08-09 | Unilever Plc | Aerated compositions comprising hydrophobin |
WO2007087967A1 (en) | 2006-01-31 | 2007-08-09 | Unilever Plc | Aerated product |
WO2008019965A1 (en) | 2006-08-15 | 2008-02-21 | Basf Se | Method for the production of dry free-flowing hydrophobin preparations |
WO2008107439A1 (en) | 2007-03-06 | 2008-09-12 | Basf Se | Open-cell foam modified with hydrophobines |
WO2008110456A2 (en) | 2007-03-12 | 2008-09-18 | Basf Se | Method of treating cellulosic materials with hydrophobins |
WO2008116715A1 (en) | 2007-03-26 | 2008-10-02 | Unilever N.V. | Aerated food products being warm or having been heated up and methods for producing them |
WO2008120310A1 (en) | 2007-03-28 | 2008-10-09 | Pioneer Corporation | Music piece reproduction apparatus, music piece reproduction method, and music piece reproduction program |
EP2042156A1 (en) | 2007-09-28 | 2009-04-01 | Basf Se | Method for removing water-insoluble substances from substrate surfaces |
US20100099844A1 (en) | 2008-10-16 | 2010-04-22 | Conopco, Inc., D/B/A Unilever | Hydrophobin Solution Containing Antifoam |
US20100151525A1 (en) | 2008-12-16 | 2010-06-17 | Conopco, Inc., D/B/A Unilever | Method for extracting hydrophobin from a solution |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4411349A1 (en) * | 1994-03-31 | 1995-10-05 | Henkel Kgaa | Textile detergent containing lipase |
WO2007052398A1 (en) * | 2005-11-01 | 2007-05-10 | Reverse Proteomics Research Institute Co., Ltd. | Method of screening compound useful in treating allergic disease |
BRPI0808144A2 (en) * | 2007-02-27 | 2014-06-24 | Danisco Us Inc | CLEANING ENVIRONMENT AND PREVENTION OF MAL ODOR |
-
2012
- 2012-04-04 EP EP12716642.9A patent/EP2694537A1/en not_active Withdrawn
- 2012-04-04 MX MX2013011617A patent/MX2013011617A/en not_active Application Discontinuation
- 2012-04-04 BR BR112013025811A patent/BR112013025811A2/en not_active IP Right Cessation
- 2012-04-04 CA CA2830579A patent/CA2830579A1/en not_active Abandoned
- 2012-04-04 RU RU2013149861/10A patent/RU2013149861A/en not_active Application Discontinuation
- 2012-04-04 WO PCT/IB2012/051660 patent/WO2012137147A1/en active Application Filing
- 2012-04-04 US US14/110,481 patent/US20140031272A1/en not_active Abandoned
- 2012-04-04 AU AU2012241055A patent/AU2012241055A1/en not_active Abandoned
- 2012-04-04 KR KR1020137029372A patent/KR20140024365A/en not_active Application Discontinuation
- 2012-04-04 JP JP2014503258A patent/JP6027092B2/en not_active Expired - Fee Related
- 2012-04-04 AR ARP120101164A patent/AR085845A1/en unknown
Patent Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3850752A (en) | 1970-11-10 | 1974-11-26 | Akzona Inc | Process for the demonstration and determination of low molecular compounds and of proteins capable of binding these compounds specifically |
US3817837A (en) | 1971-05-14 | 1974-06-18 | Syva Corp | Enzyme amplification assay |
GB1483591A (en) | 1973-07-23 | 1977-08-24 | Novo Industri As | Process for coating water soluble or water dispersible particles by means of the fluid bed technique |
US3939350A (en) | 1974-04-29 | 1976-02-17 | Board Of Trustees Of The Leland Stanford Junior University | Fluorescent immunoassay employing total reflection for activation |
US3996345A (en) | 1974-08-12 | 1976-12-07 | Syva Company | Fluorescence quenching with immunological pairs in immunoassays |
US4106991A (en) | 1976-07-07 | 1978-08-15 | Novo Industri A/S | Enzyme granulate composition and process for forming enzyme granulates |
US4277437A (en) | 1978-04-05 | 1981-07-07 | Syva Company | Kit for carrying out chemically induced fluorescence immunoassay |
US4275149A (en) | 1978-11-24 | 1981-06-23 | Syva Company | Macromolecular environment control in specific receptor assays |
US4435307A (en) | 1980-04-30 | 1984-03-06 | Novo Industri A/S | Detergent cellulase |
US4366241B1 (en) | 1980-08-07 | 1988-10-18 | ||
US4366241A (en) | 1980-08-07 | 1982-12-28 | Syva Company | Concentrating zone method in heterogeneous immunoassays |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4661452A (en) | 1984-05-29 | 1987-04-28 | Novo Industri A/S | Enzyme containing granulates useful as detergent additives |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4683202B1 (en) | 1985-03-28 | 1990-11-27 | Cetus Corp | |
EP0238216A1 (en) | 1986-02-20 | 1987-09-23 | Albright & Wilson Limited | Protected enzyme systems |
EP0238023A2 (en) | 1986-03-17 | 1987-09-23 | Novo Nordisk A/S | Process for the production of protein products in Aspergillus oryzae and a promoter for use in Aspergillus |
WO1989006270A1 (en) | 1988-01-07 | 1989-07-13 | Novo-Nordisk A/S | Enzymatic detergent |
WO1989006279A1 (en) | 1988-01-07 | 1989-07-13 | Novo-Nordisk A/S | Mutated subtilisin genes |
US6287841B1 (en) | 1988-02-11 | 2001-09-11 | Genencor International, Inc. | High alkaline serine protease |
US5691178A (en) | 1988-03-22 | 1997-11-25 | Novo Nordisk A/S | Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase |
WO1989009259A1 (en) | 1988-03-24 | 1989-10-05 | Novo-Nordisk A/S | A cellulase preparation |
US5776757A (en) | 1988-03-24 | 1998-07-07 | Novo Nordisk A/S | Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
EP0449375A2 (en) | 1990-03-23 | 1991-10-02 | Gist-Brocades N.V. | The expression of phytase in plants |
US5763254A (en) | 1990-05-09 | 1998-06-09 | Novo Nordisk A/S | Enzyme capable of degrading cellulose or hemicellulose |
EP0531372A1 (en) | 1990-05-09 | 1993-03-17 | Novo Nordisk As | A cellulase preparation comprising an endoglucanase enzyme. |
EP0531315A1 (en) | 1990-05-09 | 1993-03-17 | Novo Nordisk As | An enzyme capable of degrading cellulose or hemicellulose. |
WO1991017243A1 (en) | 1990-05-09 | 1991-11-14 | Novo Nordisk A/S | A cellulase preparation comprising an endoglucanase enzyme |
US5686593A (en) | 1990-05-09 | 1997-11-11 | Novo Nordisk A/S | Enzyme capable of degrading cellulose or hemicellulose |
US5457046A (en) | 1990-05-09 | 1995-10-10 | Novo Nordisk A/S | Enzyme capable of degrading cellullose or hemicellulose |
EP0495257A1 (en) | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Compact detergent compositions with high activity cellulase |
EP0583265A1 (en) | 1991-04-16 | 1994-02-23 | Evotec BioSystems GmbH | Method for preparing new biopolymers |
WO1992019708A1 (en) | 1991-04-30 | 1992-11-12 | The Procter & Gamble Company | Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme |
WO1992019709A1 (en) | 1991-04-30 | 1992-11-12 | The Procter & Gamble Company | Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme |
WO1992019729A1 (en) | 1991-05-01 | 1992-11-12 | Novo Nordisk A/S | Stabilized enzymes and detergent compositions |
WO1993024618A1 (en) | 1992-06-01 | 1993-12-09 | Novo Nordisk A/S | Peroxidase variants with improved hydrogen peroxide stability |
WO1994002617A2 (en) | 1992-07-23 | 1994-02-03 | Gist-Brocades N.V. | Cloning and expression of a lipase modulator gene from pseudomonas pseudoalcaligenes |
WO1994007998A1 (en) | 1992-10-06 | 1994-04-14 | Novo Nordisk A/S | Cellulase variants |
US5674707A (en) | 1992-12-10 | 1997-10-07 | Gist-Brocades N.V. | Production of heterologous proteins in filamentous fungi |
WO1994025583A1 (en) | 1993-05-05 | 1994-11-10 | Novo Nordisk A/S | A recombinant trypsin-like protease |
WO1995010602A1 (en) | 1993-10-13 | 1995-04-20 | Novo Nordisk A/S | H2o2-stable peroxidase variants |
EP0752008A1 (en) | 1994-02-17 | 1997-01-08 | Affymax Technologies N.V. | Dna mutagenesis by random fragmentation and reassembly |
US6180406B1 (en) | 1994-02-17 | 2001-01-30 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
WO1995024471A1 (en) | 1994-03-08 | 1995-09-14 | Novo Nordisk A/S | Novel alkaline cellulases |
WO1995030011A2 (en) | 1994-05-02 | 1995-11-09 | The Procter & Gamble Company | Subtilisin 309 variants having decreased adsorption and increased hydrolysis |
US5741665A (en) | 1994-05-10 | 1998-04-21 | University Of Hawaii | Light-regulated promoters for production of heterologous proteins in filamentous fungi |
WO1996011262A1 (en) | 1994-10-06 | 1996-04-18 | Novo Nordisk A/S | An enzyme and enzyme preparation with endoglucanase activity |
US5990069A (en) | 1994-12-13 | 1999-11-23 | Genencor International, Inc. | Fusarium isolate and lipases, cutinases and enzyme compositions derived therefrom |
WO1996018729A1 (en) | 1994-12-13 | 1996-06-20 | Genencor International, Inc. | Fusarium isolate and lipases, cutinases and enzyme compositions derived therefrom |
WO1996029397A1 (en) | 1995-03-17 | 1996-09-26 | Novo Nordisk A/S | Novel endoglucanases |
WO1996034108A2 (en) | 1995-04-28 | 1996-10-31 | Genencor International, Inc. | Alkaline cellulase and method for producing the same |
WO1996034946A1 (en) | 1995-05-05 | 1996-11-07 | Novo Nordisk A/S | Protease variants and compositions |
WO1997007202A1 (en) | 1995-08-11 | 1997-02-27 | Novo Nordisk A/S | Novel lipolytic enzymes |
EP0866796A1 (en) | 1995-09-22 | 1998-09-30 | Medical Research Council | Improvements in or relating to mutagenesis of nucleic acids |
EP1138763A2 (en) | 1995-11-30 | 2001-10-04 | Maxygen, Inc. | Method for generating polynucleotides having desired characteristics by iterative selection and recombination |
EP1103606A2 (en) | 1995-11-30 | 2001-05-30 | Maxygen, Inc. | Methods for generating polynucleotides having desired characteristics by iterative selection and recombination |
US6344328B1 (en) | 1995-12-07 | 2002-02-05 | Diversa Corporation | Method for screening for enzyme activity |
US6361974B1 (en) | 1995-12-07 | 2002-03-26 | Diversa Corporation | Exonuclease-mediated nucleic acid reassembly in directed evolution |
WO1998008940A1 (en) | 1996-08-26 | 1998-03-05 | Novo Nordisk A/S | A novel endoglucanase |
WO1998012307A1 (en) | 1996-09-17 | 1998-03-26 | Novo Nordisk A/S | Cellulase variants |
WO1998015257A1 (en) | 1996-10-08 | 1998-04-16 | Novo Nordisk A/S | Diaminobenzoic acid derivatives as dye precursors |
WO1998020115A1 (en) | 1996-11-04 | 1998-05-14 | Novo Nordisk A/S | Subtilase variants and compositions |
WO1998045453A1 (en) | 1997-04-09 | 1998-10-15 | Danisco A/S | Lipase and use of same for improving doughs and baked products |
WO1999001544A1 (en) | 1997-07-04 | 1999-01-14 | Novo Nordisk A/S | FAMILY 6 ENDO-1,4-β-GLUCANASE VARIANTS AND CLEANING COMPOSIT IONS CONTAINING THEM |
WO1999025846A2 (en) | 1997-11-19 | 1999-05-27 | Genencor International, Inc. | Cellulase produced by actinomycetes and method for producing same |
WO2000058517A1 (en) | 1999-03-26 | 2000-10-05 | Diversa Corporation | Exonuclease-mediated nucleic acid reassembly in directed evolution |
WO2001014629A1 (en) | 1999-08-20 | 2001-03-01 | Genencor International, Inc. | Enzymatic modification of the surface of a polyester fiber or article |
WO2001016308A2 (en) | 1999-08-30 | 2001-03-08 | Monsanto Technology Llc | Plant sterol acyltransferases |
WO2001034899A1 (en) | 1999-11-05 | 2001-05-17 | Genencor International, Inc. | Enzymes useful for changing the properties of polyester |
WO2001034835A2 (en) | 1999-11-09 | 2001-05-17 | Max-Planck Gesellschaft zur Förderung der Wissenschaften e.V. | Method for the production of biopolymers with modified properties |
WO2001039544A1 (en) | 1999-11-25 | 2001-05-31 | Natural Colour Kari Kirjavainen Oy | Electromechanic film and acoustic element |
WO2001057066A2 (en) | 2000-02-04 | 2001-08-09 | Applied Nanosystems B.V. | Method of stabilizing a hydrophobin-containing solution and a method of coating a surface with a hydrophobin |
WO2001057528A1 (en) | 2000-02-04 | 2001-08-09 | Applied Nanosystems, B.V. | Method of treating a surface of an object with a hydrophobin-containing solution |
US20060228484A1 (en) | 2000-02-04 | 2006-10-12 | Applied Nanosystems, B.V. | Method of treating a surface of an object with a hydrophobin-containing solution |
WO2001074864A1 (en) | 2000-03-30 | 2001-10-11 | Applied Nanosystems B.V. | Protein capable of self-assembly at a hydrophobic-hydrophilic interface and uses thereof |
WO2002006457A2 (en) | 2000-07-13 | 2002-01-24 | Maxygen, Inc. | Novel lipase genes |
EP1595949A1 (en) * | 2002-10-23 | 2005-11-16 | Tohoku Techno Arch Co., Ltd. | Method of degrading plastic and process for producing useful substance using the same |
WO2005087918A2 (en) | 2004-03-12 | 2005-09-22 | Danisco A/S | Fungal lipolytic enzymes |
US7241734B2 (en) | 2004-08-18 | 2007-07-10 | E. I. Du Pont De Nemours And Company | Thermophilic hydrophobin proteins and applications for surface modification |
US20060154843A1 (en) | 2004-12-23 | 2006-07-13 | Huaming Wang | Neutral cellulase catalytic core and method of producing same |
WO2006082253A2 (en) | 2005-02-07 | 2006-08-10 | Basf Aktiengesellschaft | Method for coating surfaces with hydrophobins |
WO2006103230A1 (en) | 2005-03-30 | 2006-10-05 | Basf Aktiengesellschaft | Use of hydrophobins for the surface treatment of hardened mineral building materials, natural stone, artificial stone and ceramics |
WO2006103225A1 (en) | 2005-03-31 | 2006-10-05 | Basf Aktiengesellschaft | Use of polypeptides in the form of adhesive agents |
US20090101167A1 (en) | 2005-08-01 | 2009-04-23 | Basf Aktiengesellschaft | Use of Surface-Active Non-Enzymatic Proteins for Washing Textiles |
WO2007014897A1 (en) | 2005-08-01 | 2007-02-08 | Basf Se | Use of surface-active non-enzymatic proteins for washing textiles |
WO2007030966A2 (en) | 2005-09-14 | 2007-03-22 | Urs Jaeger | Device for production of mixed drinks and pressurised container for the same |
WO2007087968A1 (en) | 2006-01-31 | 2007-08-09 | Unilever Plc | Aerated compositions comprising hydrophobin |
WO2007087967A1 (en) | 2006-01-31 | 2007-08-09 | Unilever Plc | Aerated product |
WO2008019965A1 (en) | 2006-08-15 | 2008-02-21 | Basf Se | Method for the production of dry free-flowing hydrophobin preparations |
WO2008107439A1 (en) | 2007-03-06 | 2008-09-12 | Basf Se | Open-cell foam modified with hydrophobines |
WO2008110456A2 (en) | 2007-03-12 | 2008-09-18 | Basf Se | Method of treating cellulosic materials with hydrophobins |
WO2008116715A1 (en) | 2007-03-26 | 2008-10-02 | Unilever N.V. | Aerated food products being warm or having been heated up and methods for producing them |
WO2008120310A1 (en) | 2007-03-28 | 2008-10-09 | Pioneer Corporation | Music piece reproduction apparatus, music piece reproduction method, and music piece reproduction program |
EP2042156A1 (en) | 2007-09-28 | 2009-04-01 | Basf Se | Method for removing water-insoluble substances from substrate surfaces |
WO2009050000A1 (en) | 2007-09-28 | 2009-04-23 | Basf Se | Method for removing water-insoluble substances from substrate surfaces |
US20100099844A1 (en) | 2008-10-16 | 2010-04-22 | Conopco, Inc., D/B/A Unilever | Hydrophobin Solution Containing Antifoam |
US20100151525A1 (en) | 2008-12-16 | 2010-06-17 | Conopco, Inc., D/B/A Unilever | Method for extracting hydrophobin from a solution |
Non-Patent Citations (75)
Title |
---|
ALTSCHUL ET AL., J. MOL. BIOL., 1990, pages 403 - 410 |
ARCHER; PEBERDY, CRIT. REV. BIOTECHNOL., vol. 17, 1997, pages 273 - 306 |
ASKOLIN ET AL., BIOMACROMOLECULES, vol. 7, 2006, pages 1295 - 1301 |
AUSUBEL ET AL.: "Short Protocol in Molecular Biology, 4th Ed", 1999, article "Chapter 18" |
BEGGS, J D, NATURE, LONDON, vol. 275, 1978, pages 104 |
BERGER; KIMMEL: "Guide to Molecular Cloning Techniques Methods in Enzymology", vol. 152, 1987, ACADEMIC PRESS |
BESSETTE: "Efficient folding of proteins with multiple disulphide bonds in the Escherichia coli cytoplasm", PROC NATL ACAD SCI USA, vol. 96, 1999, pages 13703 - 13708, XP002233564, DOI: doi:10.1073/pnas.96.24.13703 |
BEUCAGE S.L, TETRAHEDRON LETTERS, vol. 22, 1981, pages 1859 - 1869 |
BLIJDENSTEIN, SOFT MATTER, vol. 6, 2010, pages 1799 - 1808 |
BRUMLIK ET AL., J. BACTERIOL., vol. 178, April 1996 (1996-04-01), pages 2060 - 4 |
CARUTHERS MH ET AL., NUC ACIDS RES SYMP, 1980, pages 215 - 23 |
CHRISTOU, AGRO-FOOD-LNDUSTRY HI-TECH, 17 March 1994 (1994-03-17) |
COX ET AL., LANGMUIR, vol. 23, 2007, pages 7995 - 8002 |
CURR OPIN BIOTECHNOL, vol. 8, 1997, pages 554 - 60 |
CURR. OPIN. BIOTECHNOL., vol. 6, 1995, pages 501 - 6 |
DAVIS; DE SERRES, METHODS ENZYMOL, vol. 17A, 1971, pages 79 - 143 |
DE VOCHT ET AL., BIOPHYS. J., vol. 74, 1998, pages 2059 - 2068 |
E HINCHCLIFFE; E KENNY: "Yeasts, 2nd edition,", vol. 5, 1993, ACADEMIC PRESS LTD., article "Yeast as a vehicle for the expression of heterologous genes" |
FEMS MICROBIOL LETT, vol. 174, 1999, pages 247 - 50 |
FEMS MICROBIOL LETT, vol. 177, 1999, pages 187 - 8 |
FEMS MICROBIOL REV, vol. 24, 2000, pages 45 - 66 |
GUPTA ET AL., BIOTECHNOL. APPL. BIOCHEM., vol. 37, 2003, pages 63 - 71 |
HAKANPÄÄ ET AL., ACTA CRYSTALLOGR. D. BIOL. CRYSTALLOGR., vol. 62, 2006, pages 356 - 367 |
HAKANPÄÄ ET AL., J. BIOL. CHEM., vol. 279, 2004, pages 534 - 539 |
HASAN F ET AL: "Enzymes used in detergents: Lipases", AFRICAN JOURNAL OF BIOTECHNOLOGY, ACADEMIC PRESS, US, vol. 9, no. 31, 2 August 2010 (2010-08-02), pages 4836 - 4844, XP003027509, ISSN: 1684-5315 * |
HEKTOR; SCHOLTMEIJER, CURR. OPIN. BIOTECH., vol. 16, 2005, pages 434 - 439 |
HIGGINS DG; SHARP PM, GENE, vol. 73, 1988, pages 237 - 244 |
HILTON; BUCKLEY, J. BIOL. CHEM., vol. 266, 15 January 1991 (1991-01-15), pages 997 - 1000 |
HINNEN ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 75, 1978, pages 1929 |
HORN T ET AL., NUC ACIDS RES SYMP SER, 1980, pages 225 - 232 |
HORWELL DC, TRENDS BIOTECHNOL., vol. 13, 1995, pages 132 - 134 |
ITO, H ET AL., J BACTERIOLOGY, vol. 153, 1983, pages 163 - 168 |
J. SAMBROOK; E. F. FRITSCH; T. MANIATIS: "Molecular Cloning: A Laboratory Manual, Second Edition,", 1989, COLD SPRING HARBOR LABORATORY PRESS |
JOSÉ M. PALOMO ET AL: "Solid-Phase Handling of Hydrophobins: Immobilized Hydrophobins as a New Tool To Study Lipases", BIOMACROMOLECULES, vol. 4, no. 2, 1 March 2003 (2003-03-01), pages 204 - 210, XP055030962, ISSN: 1525-7797, DOI: 10.1021/bm020071l * |
KALLIO ET AL., J. BIOL. CHEM., vol. 282, 2007, pages 28733 - 28739 |
KANE: "Effects of rare codon clusters on high-level expression of heterologous proteins in E. colP°", CURR OPIN BIOTECHNOL, vol. 6, 1995, pages 494 - 500, XP002926790, DOI: doi:10.1016/0958-1669(95)80082-4 |
KIRKLAND; KEYHANI, J. IND. MICROBIOL. BIOTECHNOL., 17 July 2010 (2010-07-17) |
KISKO ET AL., LANGMUIR, vol. 25, 2009, pages 1612 - 1619 |
KUBICEK ET AL., BMC EVOLUTIONARY BIOLOGY, vol. 8, 2008, pages 4 |
KWAN, J. MOL. BIOL., vol. 382, 2008, pages 708 - 720 |
KYTE; DOOLITTLE, J. MOL. BIOL., vol. 157, 1982, pages 105 - 132 |
LAAKSONEN ET AL., LANGMUIR, vol. 25, 2009, pages 5185 - 5192 |
LAHTINEN ET AL., PROTEIN EXPR. PURIF., vol. 59, 2008, pages 18 - 24 |
LINDER ET AL., BIOMACROMOLECULES, vol. 2, 2001, pages 511 - 517 |
LINDER ET AL., FEMS MICROBIOLOGY REV., vol. 29, 2005, pages 877 - 896 |
LINDER M B ET AL: "Hydrophobins: the protein-amphiphiles of filamentous fungi", FEMS MICROBIOLOGY REVIEWS, ELSEVIER, AMSTERDAM, NL, vol. 29, no. 5, 1 November 2005 (2005-11-01), pages 877 - 896, XP027666169, ISSN: 0168-6445, [retrieved on 20051101] * |
LUMSDON ET AL., COLLOIDS & SURFACES B: BIOINTERFACES, vol. 44, 2005, pages 172 - 178 |
MATTHES ET AL., EMBO J., vol. 3, 1984, pages 801 - 805 |
MESSAOUDI ABDELMONAEM ET AL: "Classification of EC 3.1.1.3 bacterial true lipases using phylogenetic analysis", AFRICAN JOURNAL OF BIOTECHNOLOGY, vol. 9, no. 48, November 2010 (2010-11-01), pages 8243 - 8247, XP002678951, ISSN: 1684-5315 * |
METHODS MOL BIOL, vol. 49, 1995, pages 341 - 54 |
MORINAGA ET AL., BIOTECHNOLOGY, vol. 2, 1984, pages 646 - 649 |
NELSON; LONG, ANALYTICAL BIOCHEMISTRY, vol. 180, 1989, pages 147 - 151 |
PALOMO ET AL., BIOMACROMOLECULES, vol. 4, 2003, pages 204 - 210 |
PEELMAN ET AL., PROTEIN SCI., vol. 7, March 1998 (1998-03-01), pages 587 - 99 |
POTRYKUS, ANNU REV PLANT PHYSIOL PLANT MOL BIOL, vol. 42, 1991, pages 205 - 225 |
PUNT, TRENDS BIOTECHNOL., vol. 20, no. 5, 2002, pages 200 - 6 |
ROBERTSON ET AL., J. BIOL. CHEM., vol. 269, 21 January 1994 (1994-01-21), pages 2146 - 50 |
SAIKI R K, SCIENCE, vol. 239, 1988, pages 487 - 491 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual,2nd edition,", 1989, COLD SPRING HARBOR LABORATORY PRESS |
SCHOLTMEIJER ET AL., APPL. ENVIRON. MICROBIOL., vol. 68, 2002, pages 1367 - 1373 |
SCHOLTMEIJER ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 56, 2001, pages 1 - 8 |
SIMON RJ, PNAS, vol. 89, 1992, pages 9367 - 9371 |
STÜBNER ET AL., INT. J. FOOD MICROBIOL., 30 June 2010 (2010-06-30) |
SUNDE ET AL., MICRON, vol. 39, 2008, pages 773 - 784 |
SZILVAY ET AL., BIOCHEMISTRY, vol. 46, 2007, pages 2345 - 2354 |
SZILVAY ET AL., FEBS LETT., vol. 5811, 2007, pages 2721 - 2726 |
TALBOT, CURR. BIOL., vol. 13, 2003, pages R696 - R698 |
TURNER G.: "Aspergillus: 50 years on. Progress in industrial microbiology", vol. 29, 1994, ELSEVIER, article "Vectors for genetic manipulation", pages: 641 - 666 |
WANG ET AL., PROTEIN SCI., vol. 13, 2004, pages 810 - 821 |
WESSELS, ADV. MICR. PHYSIOL., vol. 38, 1997, pages 1 - 45 |
WESSELS, ADV. MICROBIAL PHYSIOL., vol. 38, 1997, pages 1 - 45 |
WÖSTEN ET AL., EMBO J., vol. 13, 1994, pages 5848 - 5854 |
WÖSTEN, ANNU. REV. MICROBIOL., vol. 55, 2001, pages 625 - 646 |
YANG ET AL., BMC BIOINFORMATICS, vol. 7, no. 4, 2006, pages S16 |
YU ET AL., MICROBIOLOGY, vol. 154, 2008, pages 1677 - 1685 |
Cited By (312)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013076253A1 (en) | 2011-11-25 | 2013-05-30 | Novozymes A/S | Polypeptides having lysozyme activity and polynucleotides encoding same |
WO2013076259A2 (en) | 2011-11-25 | 2013-05-30 | Novozymes A/S | Polypeptides having lysozyme activity and polynucleotides encoding same |
EP3382003A1 (en) | 2011-12-29 | 2018-10-03 | Novozymes A/S | Detergent compositions with lipase variants |
WO2013098205A2 (en) | 2011-12-29 | 2013-07-04 | Novozymes A/S | Detergent compositions |
WO2013110766A1 (en) | 2012-01-26 | 2013-08-01 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
WO2013149858A1 (en) | 2012-04-02 | 2013-10-10 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2013167581A1 (en) | 2012-05-07 | 2013-11-14 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
WO2013171241A1 (en) | 2012-05-16 | 2013-11-21 | Novozymes A/S | Compositions comprising lipase and methods of use thereof |
WO2013189972A2 (en) | 2012-06-20 | 2013-12-27 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
WO2014068083A1 (en) | 2012-11-01 | 2014-05-08 | Novozymes A/S | Method for removal of dna |
WO2014087011A1 (en) | 2012-12-07 | 2014-06-12 | Novozymes A/S | Preventing adhesion of bacteria |
EP3556836A1 (en) | 2012-12-07 | 2019-10-23 | Novozymes A/S | Preventing adhesion of bacteria |
WO2014096259A1 (en) | 2012-12-21 | 2014-06-26 | Novozymes A/S | Polypeptides having protease activiy and polynucleotides encoding same |
EP3321360A2 (en) | 2013-01-03 | 2018-05-16 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2014147127A1 (en) | 2013-03-21 | 2014-09-25 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
EP3569611A1 (en) | 2013-04-23 | 2019-11-20 | Novozymes A/S | Liquid automatic dish washing detergent compositions with stabilised subtilisin |
WO2014184164A1 (en) | 2013-05-14 | 2014-11-20 | Novozymes A/S | Detergent compositions |
WO2014183921A1 (en) | 2013-05-17 | 2014-11-20 | Novozymes A/S | Polypeptides having alpha amylase activity |
WO2014194117A2 (en) | 2013-05-29 | 2014-12-04 | Danisco Us Inc. | Novel metalloproteases |
EP3786269A1 (en) | 2013-06-06 | 2021-03-03 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2014207227A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2014207224A1 (en) | 2013-06-27 | 2014-12-31 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2015001017A2 (en) | 2013-07-04 | 2015-01-08 | Novozymes A/S | Polypeptides having anti-redeposition effect and polynucleotides encoding same |
WO2015004102A1 (en) | 2013-07-09 | 2015-01-15 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
EP3613853A1 (en) | 2013-07-29 | 2020-02-26 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3611260A1 (en) | 2013-07-29 | 2020-02-19 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3309249A1 (en) | 2013-07-29 | 2018-04-18 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2015051121A1 (en) | 2013-10-02 | 2015-04-09 | E. I. Du Pont De Nemours And Company | Hydrophobin composition and process for treating surfaces |
WO2015049370A1 (en) | 2013-10-03 | 2015-04-09 | Novozymes A/S | Detergent composition and use of detergent composition |
EP3453757A1 (en) | 2013-12-20 | 2019-03-13 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2015109972A1 (en) | 2014-01-22 | 2015-07-30 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2015134737A1 (en) | 2014-03-05 | 2015-09-11 | Novozymes A/S | Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase |
WO2015134729A1 (en) | 2014-03-05 | 2015-09-11 | Novozymes A/S | Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase |
EP3521434A1 (en) | 2014-03-12 | 2019-08-07 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2015150457A1 (en) | 2014-04-01 | 2015-10-08 | Novozymes A/S | Polypeptides having alpha amylase activity |
EP3722406A1 (en) | 2014-04-11 | 2020-10-14 | Novozymes A/S | Detergent composition |
WO2015158237A1 (en) | 2014-04-15 | 2015-10-22 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
EP3878957A1 (en) | 2014-05-27 | 2021-09-15 | Novozymes A/S | Methods for producing lipases |
WO2015181119A2 (en) | 2014-05-27 | 2015-12-03 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
EP3760713A2 (en) | 2014-05-27 | 2021-01-06 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2015189371A1 (en) | 2014-06-12 | 2015-12-17 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2016001319A1 (en) | 2014-07-03 | 2016-01-07 | Novozymes A/S | Improved stabilization of non-protease enzyme |
EP3739029A1 (en) | 2014-07-04 | 2020-11-18 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3878960A1 (en) | 2014-07-04 | 2021-09-15 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2016079110A2 (en) | 2014-11-19 | 2016-05-26 | Novozymes A/S | Use of enzyme for cleaning |
WO2016079305A1 (en) | 2014-11-20 | 2016-05-26 | Novozymes A/S | Alicyclobacillus variants and polynucleotides encoding same |
EP3690037A1 (en) | 2014-12-04 | 2020-08-05 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP4339282A2 (en) | 2014-12-04 | 2024-03-20 | Novozymes A/S | Liquid cleaning compositions comprising protease variants |
WO2016087401A1 (en) | 2014-12-05 | 2016-06-09 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
EP4067485A2 (en) | 2014-12-05 | 2022-10-05 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
US10760036B2 (en) | 2014-12-15 | 2020-09-01 | Henkel Ag & Co. Kgaa | Detergent composition comprising subtilase variants |
EP3608403A2 (en) | 2014-12-15 | 2020-02-12 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
WO2016096996A1 (en) | 2014-12-16 | 2016-06-23 | Novozymes A/S | Polypeptides having n-acetyl glucosamine oxidase activity |
EP3741849A2 (en) | 2014-12-19 | 2020-11-25 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3741848A2 (en) | 2014-12-19 | 2020-11-25 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2016164596A2 (en) | 2015-04-07 | 2016-10-13 | Novozymes A/S | Methods for selecting enzymes having lipase activity |
WO2016162558A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Detergent composition |
WO2016162556A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Laundry method, use of dnase and detergent composition |
WO2016184944A1 (en) | 2015-05-19 | 2016-11-24 | Novozymes A/S | Odor reduction |
EP3101109A1 (en) | 2015-06-04 | 2016-12-07 | The Procter and Gamble Company | Hand dishwashing liquid detergent composition |
US10377973B2 (en) | 2015-06-04 | 2019-08-13 | The Procter & Gamble Company | Hand dishwashing liquid detergent composition |
US10377974B2 (en) | 2015-06-04 | 2019-08-13 | The Procter & Gamble Company | Hand dishwashing liquid detergent composition |
EP3284811A1 (en) | 2015-06-04 | 2018-02-21 | The Procter & Gamble Company | Hand dishwashing liquid detergent composition |
WO2016196872A1 (en) | 2015-06-04 | 2016-12-08 | The Procter & Gamble Company | Hand dishwashing liquid detergent composition |
WO2016202739A1 (en) | 2015-06-16 | 2016-12-22 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2016202785A1 (en) | 2015-06-17 | 2016-12-22 | Novozymes A/S | Container |
EP4071244A1 (en) | 2015-06-18 | 2022-10-12 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3872175A1 (en) | 2015-06-18 | 2021-09-01 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3106508A1 (en) | 2015-06-18 | 2016-12-21 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
WO2016135351A1 (en) | 2015-06-30 | 2016-09-01 | Novozymes A/S | Laundry detergent composition, method for washing and use of composition |
EP3929285A2 (en) | 2015-07-01 | 2021-12-29 | Novozymes A/S | Methods of reducing odor |
EP3950939A2 (en) | 2015-07-06 | 2022-02-09 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2017046232A1 (en) | 2015-09-17 | 2017-03-23 | Henkel Ag & Co. Kgaa | Detergent compositions comprising polypeptides having xanthan degrading activity |
WO2017046260A1 (en) | 2015-09-17 | 2017-03-23 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
WO2017060505A1 (en) | 2015-10-07 | 2017-04-13 | Novozymes A/S | Polypeptides |
EP3708660A2 (en) | 2015-10-07 | 2020-09-16 | Novozymes A/S | Polypeptides |
WO2017066510A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Cleaning of water filtration membranes |
WO2017064253A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2017064269A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptide variants |
EP4324919A2 (en) | 2015-10-14 | 2024-02-21 | Novozymes A/S | Polypeptide variants |
EP3957711A2 (en) | 2015-10-28 | 2022-02-23 | Novozymes A/S | Detergent composition comprising amylase and protease variants |
WO2017089366A1 (en) | 2015-11-24 | 2017-06-01 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2017093318A1 (en) | 2015-12-01 | 2017-06-08 | Novozymes A/S | Methods for producing lipases |
EP3715442A1 (en) | 2016-03-23 | 2020-09-30 | Novozymes A/S | Use of polypeptide having dnase activity for treating fabrics |
WO2017174769A2 (en) | 2016-04-08 | 2017-10-12 | Novozymes A/S | Detergent compositions and uses of the same |
WO2017186943A1 (en) | 2016-04-29 | 2017-11-02 | Novozymes A/S | Detergent compositions and uses thereof |
EP3693449A1 (en) | 2016-04-29 | 2020-08-12 | Novozymes A/S | Detergent compositions and uses thereof |
WO2017210188A1 (en) | 2016-05-31 | 2017-12-07 | Novozymes A/S | Stabilized liquid peroxide compositions |
WO2017207762A1 (en) | 2016-06-03 | 2017-12-07 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2017220422A1 (en) | 2016-06-23 | 2017-12-28 | Novozymes A/S | Use of enzymes, composition and method for removing soil |
WO2018001959A1 (en) | 2016-06-30 | 2018-01-04 | Novozymes A/S | Lipase variants and compositions comprising surfactant and lipase variant |
WO2018002261A1 (en) | 2016-07-01 | 2018-01-04 | Novozymes A/S | Detergent compositions |
WO2018007435A1 (en) | 2016-07-05 | 2018-01-11 | Novozymes A/S | Pectate lyase variants and polynucleotides encoding same |
WO2018007573A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Detergent compositions with galactanase |
WO2018011276A1 (en) | 2016-07-13 | 2018-01-18 | The Procter & Gamble Company | Bacillus cibi dnase variants and uses thereof |
WO2018011277A1 (en) | 2016-07-13 | 2018-01-18 | Novozymes A/S | Bacillus cibi dnase variants |
EP3950941A2 (en) | 2016-07-13 | 2022-02-09 | Novozymes A/S | Dnase polypeptide variants |
EP4357453A2 (en) | 2016-07-18 | 2024-04-24 | Novozymes A/S | Lipase variants, polynucleotides encoding same and the use thereof |
WO2018015295A1 (en) | 2016-07-18 | 2018-01-25 | Novozymes A/S | Lipase variants, polynucleotides encoding same and the use thereof |
WO2018034842A1 (en) | 2016-08-17 | 2018-02-22 | The Procter & Gamble Company | Cleaning composition comprising enzymes |
EP3284805A1 (en) | 2016-08-17 | 2018-02-21 | The Procter & Gamble Company | Cleaning composition comprising enzymes |
WO2018037064A1 (en) | 2016-08-24 | 2018-03-01 | Henkel Ag & Co. Kgaa | Detergent compositions comprising xanthan lyase variants i |
WO2018037061A1 (en) | 2016-08-24 | 2018-03-01 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
WO2018037062A1 (en) | 2016-08-24 | 2018-03-01 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
WO2018037065A1 (en) | 2016-08-24 | 2018-03-01 | Henkel Ag & Co. Kgaa | Detergent composition comprising gh9 endoglucanase variants i |
WO2018060216A1 (en) | 2016-09-29 | 2018-04-05 | Novozymes A/S | Use of enzyme for washing, method for washing and warewashing composition |
WO2018077938A1 (en) | 2016-10-25 | 2018-05-03 | Novozymes A/S | Detergent compositions |
WO2018083093A1 (en) | 2016-11-01 | 2018-05-11 | Novozymes A/S | Multi-core granules |
WO2018099762A1 (en) | 2016-12-01 | 2018-06-07 | Basf Se | Stabilization of enzymes in compositions |
WO2018108865A1 (en) | 2016-12-12 | 2018-06-21 | Novozymes A/S | Use of polypeptides |
WO2018177938A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
WO2018178061A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having rnase activity |
WO2018177936A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
WO2018185152A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Polypeptide compositions and uses thereof |
WO2018185150A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Polypeptides |
WO2018185181A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Glycosyl hydrolases |
EP3385361A1 (en) | 2017-04-05 | 2018-10-10 | Henkel AG & Co. KGaA | Detergent compositions comprising bacterial mannanases |
EP3385362A1 (en) | 2017-04-05 | 2018-10-10 | Henkel AG & Co. KGaA | Detergent compositions comprising fungal mannanases |
WO2018184767A1 (en) | 2017-04-05 | 2018-10-11 | Henkel Ag & Co. Kgaa | Detergent compositions comprising bacterial mannanases |
WO2018185280A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185267A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185269A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184816A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018185285A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184817A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184873A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Detergent compositions and uses thereof |
EP3967756A1 (en) | 2017-04-06 | 2022-03-16 | Novozymes A/S | Detergent compositions and uses thereof |
WO2018184818A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3626809A1 (en) | 2017-04-06 | 2020-03-25 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018202846A1 (en) | 2017-05-05 | 2018-11-08 | Novozymes A/S | Compositions comprising lipase and sulfite |
EP3401385A1 (en) | 2017-05-08 | 2018-11-14 | Henkel AG & Co. KGaA | Detergent composition comprising polypeptide comprising carbohydrate-binding domain |
WO2018206178A1 (en) | 2017-05-08 | 2018-11-15 | Henkel Ag & Co. Kgaa | Detergent composition comprising polypeptide comprising carbohydrate-binding domain |
WO2018206535A1 (en) | 2017-05-08 | 2018-11-15 | Novozymes A/S | Carbohydrate-binding domain and polynucleotides encoding the same |
WO2019038060A1 (en) | 2017-08-24 | 2019-02-28 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase variants ii |
WO2019038059A1 (en) | 2017-08-24 | 2019-02-28 | Henkel Ag & Co. Kgaa | Detergent compositions comprising gh9 endoglucanase variants ii |
WO2019038057A1 (en) | 2017-08-24 | 2019-02-28 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
WO2019038058A1 (en) | 2017-08-24 | 2019-02-28 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
WO2019057758A1 (en) | 2017-09-20 | 2019-03-28 | Novozymes A/S | Use of enzymes for improving water absorption and/or whiteness |
WO2019057902A1 (en) | 2017-09-22 | 2019-03-28 | Novozymes A/S | Novel polypeptides |
WO2019063499A1 (en) | 2017-09-27 | 2019-04-04 | Novozymes A/S | Lipase variants and microcapsule compositions comprising such lipase variants |
WO2019067390A1 (en) | 2017-09-27 | 2019-04-04 | The Procter & Gamble Company | Detergent compositions comprising lipases |
WO2019076800A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2019076834A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Low dusting granules |
WO2019076833A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Low dusting granules |
WO2019084350A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
WO2019084349A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
WO2019081721A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
WO2019081724A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
DE102017125558A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANING COMPOSITIONS CONTAINING DISPERSINE I |
WO2019086532A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Methods for cleaning medical devices |
WO2019086520A1 (en) | 2017-11-01 | 2019-05-09 | Henkel Ag & Co. Kgaa | Cleaning compositions containing dispersins i |
WO2019086528A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
WO2019086526A1 (en) | 2017-11-01 | 2019-05-09 | Henkel Ag & Co. Kgaa | Cleaning compositions containing dispersins iii |
DE102017125560A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE III |
EP4379029A1 (en) | 2017-11-01 | 2024-06-05 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
WO2019086521A1 (en) | 2017-11-01 | 2019-05-09 | Henkel Ag & Co. Kgaa | Cleaning compositions containing dispersins ii |
DE102017125559A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE II |
WO2019086530A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
EP3483246A1 (en) * | 2017-11-13 | 2019-05-15 | The Procter & Gamble Company | Cleaning composition comprising hydrophobins |
US20190144801A1 (en) * | 2017-11-13 | 2019-05-16 | The Procter & Gamble Company | Cleaning composition |
WO2019105781A1 (en) | 2017-11-29 | 2019-06-06 | Basf Se | Storage-stable enzyme preparations, their production and use |
WO2019105780A1 (en) | 2017-11-29 | 2019-06-06 | Basf Se | Compositions, their manufacture and use |
WO2019110462A1 (en) | 2017-12-04 | 2019-06-13 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2019121057A1 (en) | 2017-12-20 | 2019-06-27 | Basf Se | Laundry formulation for removing fatty compounds having a melting temperature>30°c deposited on textiles |
WO2019162000A1 (en) | 2018-02-23 | 2019-08-29 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase and endoglucanase variants |
WO2019180111A1 (en) | 2018-03-23 | 2019-09-26 | Novozymes A/S | Subtilase variants and compositions comprising same |
WO2019201793A1 (en) | 2018-04-17 | 2019-10-24 | Novozymes A/S | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric. |
WO2019201783A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
WO2019201785A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
WO2019201636A1 (en) | 2018-04-19 | 2019-10-24 | Basf Se | Compositions and polymers useful for such compositions |
WO2019238761A1 (en) | 2018-06-15 | 2019-12-19 | Basf Se | Water soluble multilayer films containing wash active chemicals and enzymes |
WO2020002604A1 (en) | 2018-06-28 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020002255A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Subtilase variants and compositions comprising same |
WO2020002608A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020007863A1 (en) | 2018-07-02 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020007875A1 (en) | 2018-07-03 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008024A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008043A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020030623A1 (en) | 2018-08-10 | 2020-02-13 | Basf Se | Packaging unit comprising a detergent composition containing an enzyme and at least one chelating agent |
WO2020070063A2 (en) | 2018-10-01 | 2020-04-09 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020070209A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
WO2020070014A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition comprising anionic surfactant and a polypeptide having rnase activity |
WO2020070011A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
WO2020070199A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same |
WO2020070249A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Cleaning compositions |
WO2020069913A1 (en) | 2018-10-05 | 2020-04-09 | Basf Se | Compounds stabilizing hydrolases in liquids |
WO2020069915A1 (en) | 2018-10-05 | 2020-04-09 | Basf Se | Compounds stabilizing hydrolases in liquids |
WO2020069914A1 (en) | 2018-10-05 | 2020-04-09 | Basf Se | Compounds stabilizing amylases in liquids |
WO2020074499A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074498A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020074545A1 (en) | 2018-10-11 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020088957A1 (en) | 2018-10-31 | 2020-05-07 | Henkel Ag & Co. Kgaa | Cleaning compositions containing dispersins iv |
WO2020088958A1 (en) | 2018-10-31 | 2020-05-07 | Henkel Ag & Co. Kgaa | Cleaning compositions containing dispersins v |
EP3647398A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins v |
EP3647397A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins iv |
WO2020104231A1 (en) | 2018-11-19 | 2020-05-28 | Basf Se | Powders and granules containing a chelating agent and an enzyme |
WO2020114968A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | Powder detergent compositions |
WO2020114965A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | LOW pH POWDER DETERGENT COMPOSITION |
WO2020127796A2 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
WO2020127775A1 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Detergent pouch comprising metalloproteases |
EP3677676A1 (en) | 2019-01-03 | 2020-07-08 | Basf Se | Compounds stabilizing amylases in liquids |
WO2020178102A1 (en) | 2019-03-01 | 2020-09-10 | Novozymes A/S | Detergent compositions comprising two proteases |
EP3702452A1 (en) | 2019-03-01 | 2020-09-02 | Novozymes A/S | Detergent compositions comprising two proteases |
WO2020182521A1 (en) | 2019-03-08 | 2020-09-17 | Basf Se | Cationic surfactant and its use in laundry detergent compositions |
WO2020188095A1 (en) | 2019-03-21 | 2020-09-24 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2020201403A1 (en) | 2019-04-03 | 2020-10-08 | Novozymes A/S | Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions |
WO2020207944A1 (en) | 2019-04-10 | 2020-10-15 | Novozymes A/S | Polypeptide variants |
WO2020208056A1 (en) | 2019-04-12 | 2020-10-15 | Novozymes A/S | Stabilized glycoside hydrolase variants |
WO2020229480A1 (en) | 2019-05-14 | 2020-11-19 | Basf Se | Compounds stabilizing hydrolases in liquids |
WO2021009067A1 (en) | 2019-07-12 | 2021-01-21 | Novozymes A/S | Enzymatic emulsions for detergents |
WO2021037895A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Detergent composition |
WO2021037878A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Composition comprising a lipase |
WO2021053127A1 (en) | 2019-09-19 | 2021-03-25 | Novozymes A/S | Detergent composition |
WO2021064068A1 (en) | 2019-10-03 | 2021-04-08 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
WO2021074430A1 (en) | 2019-10-18 | 2021-04-22 | Basf Se | Storage-stable hydrolase containing liquids |
WO2021105336A1 (en) | 2019-11-29 | 2021-06-03 | Basf Se | Compositions comprising polymer and enzyme |
WO2021105330A1 (en) | 2019-11-29 | 2021-06-03 | Basf Se | Compositions and polymers useful for such compositions |
WO2021115912A1 (en) | 2019-12-09 | 2021-06-17 | Basf Se | Formulations comprising a hydrophobically modified polyethyleneimine and one or more enzymes |
WO2021122120A2 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins viii |
WO2021123307A2 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
WO2021122117A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning composition coprising a dispersin and a carbohydrase |
WO2021122118A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins vi |
WO2021122121A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins ix |
WO2021121394A1 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Stabilized liquid boron-free enzyme compositions |
WO2021133701A1 (en) | 2019-12-23 | 2021-07-01 | The Procter & Gamble Company | Compositions comprising enzymes |
WO2021130167A1 (en) | 2019-12-23 | 2021-07-01 | Novozymes A/S | Enzyme compositions and uses thereof |
WO2021148364A1 (en) | 2020-01-23 | 2021-07-29 | Novozymes A/S | Enzyme compositions and uses thereof |
WO2021152123A1 (en) | 2020-01-31 | 2021-08-05 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
WO2021152120A1 (en) | 2020-01-31 | 2021-08-05 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
WO2021204838A1 (en) | 2020-04-08 | 2021-10-14 | Novozymes A/S | Carbohydrate binding module variants |
WO2021214059A1 (en) | 2020-04-21 | 2021-10-28 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
EP3907271A1 (en) | 2020-05-07 | 2021-11-10 | Novozymes A/S | Cleaning composition, use and method of cleaning |
WO2021224389A1 (en) | 2020-05-07 | 2021-11-11 | Novozymes A/S | Medical cleaning composition, use and method of cleaning |
WO2021239818A1 (en) | 2020-05-26 | 2021-12-02 | Novozymes A/S | Subtilase variants and compositions comprising same |
WO2021254824A1 (en) | 2020-06-18 | 2021-12-23 | Basf Se | Compositions and their use |
WO2021259099A1 (en) | 2020-06-24 | 2021-12-30 | Novozymes A/S | Use of cellulases for removing dust mite from textile |
EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
WO2022008387A1 (en) | 2020-07-08 | 2022-01-13 | Henkel Ag & Co. Kgaa | Cleaning compositions and uses thereof |
WO2022008416A1 (en) | 2020-07-09 | 2022-01-13 | Basf Se | Compositions and their applications |
WO2022008732A1 (en) | 2020-07-10 | 2022-01-13 | Basf Se | Enhancing the activity of antimicrobial preservatives |
WO2022043321A2 (en) | 2020-08-25 | 2022-03-03 | Novozymes A/S | Variants of a family 44 xyloglucanase |
WO2022043547A1 (en) | 2020-08-28 | 2022-03-03 | Novozymes A/S | Protease variants with improved solubility |
WO2022043563A1 (en) | 2020-08-28 | 2022-03-03 | Novozymes A/S | Polyester degrading protease variants |
WO2022063699A1 (en) | 2020-09-22 | 2022-03-31 | Basf Se | Improved combination of protease and protease inhibitor with secondary enzyme |
WO2022074037A2 (en) | 2020-10-07 | 2022-04-14 | Novozymes A/S | Alpha-amylase variants |
WO2022084303A2 (en) | 2020-10-20 | 2022-04-28 | Novozymes A/S | Use of polypeptides having dnase activity |
WO2022083949A1 (en) | 2020-10-20 | 2022-04-28 | Basf Se | Compositions and their use |
WO2022090320A1 (en) | 2020-10-28 | 2022-05-05 | Novozymes A/S | Use of lipoxygenase |
WO2022090361A2 (en) | 2020-10-29 | 2022-05-05 | Novozymes A/S | Lipase variants and compositions comprising such lipase variants |
WO2022103725A1 (en) | 2020-11-13 | 2022-05-19 | Novozymes A/S | Detergent composition comprising a lipase |
WO2022106404A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of proteases |
WO2022106400A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of immunochemically different proteases |
WO2022157311A1 (en) | 2021-01-22 | 2022-07-28 | Novozymes A/S | Liquid enzyme composition with sulfite scavenger |
EP4032966A1 (en) | 2021-01-22 | 2022-07-27 | Novozymes A/S | Liquid enzyme composition with sulfite scavenger |
WO2022162043A1 (en) | 2021-01-28 | 2022-08-04 | Novozymes A/S | Lipase with low malodor generation |
EP4039806A1 (en) | 2021-02-04 | 2022-08-10 | Henkel AG & Co. KGaA | Detergent composition comprising xanthan lyase and endoglucanase variants with im-proved stability |
WO2022167251A1 (en) | 2021-02-04 | 2022-08-11 | Henkel Ag & Co. Kgaa | Detergent composition comprising xanthan lyase and endoglucanase variants with improved stability |
WO2022171780A2 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Alpha-amylase variants |
WO2022171872A1 (en) | 2021-02-12 | 2022-08-18 | Novozymes A/S | Stabilized biological detergents |
WO2022175435A1 (en) | 2021-02-22 | 2022-08-25 | Basf Se | Amylase variants |
EP4047088A1 (en) | 2021-02-22 | 2022-08-24 | Basf Se | Amylase variants |
WO2022189521A1 (en) | 2021-03-12 | 2022-09-15 | Novozymes A/S | Polypeptide variants |
WO2022194673A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Dnase variants |
WO2022194668A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Polypeptide variants |
EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
WO2022199418A1 (en) | 2021-03-26 | 2022-09-29 | Novozymes A/S | Detergent composition with reduced polymer content |
WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
EP4134423A1 (en) | 2021-08-12 | 2023-02-15 | Henkel AG & Co. KGaA | Sprayable laundry pre-treatment composition |
WO2023061928A1 (en) | 2021-10-12 | 2023-04-20 | Novozymes A/S | Endoglucanase with improved stability |
WO2023061827A1 (en) | 2021-10-13 | 2023-04-20 | Basf Se | Compositions comprising polymers, polymers, and their use |
WO2023088777A1 (en) | 2021-11-22 | 2023-05-25 | Basf Se | Compositions comprising polymers, polymers, and their use |
WO2023116569A1 (en) | 2021-12-21 | 2023-06-29 | Novozymes A/S | Composition comprising a lipase and a booster |
WO2023118015A1 (en) | 2021-12-21 | 2023-06-29 | Basf Se | Environmental attributes for care composition ingredients |
EP4206309A1 (en) | 2021-12-30 | 2023-07-05 | Novozymes A/S | Protein particles with improved whiteness |
WO2023126254A1 (en) | 2021-12-30 | 2023-07-06 | Novozymes A/S | Protein particles with improved whiteness |
WO2023148086A1 (en) | 2022-02-04 | 2023-08-10 | Basf Se | Compositions comprising polymers, polymers, and their use |
EP4234664A1 (en) | 2022-02-24 | 2023-08-30 | Evonik Operations GmbH | Composition comprising glucolipids and enzymes |
WO2023165507A1 (en) | 2022-03-02 | 2023-09-07 | Novozymes A/S | Use of xyloglucanase for improvement of sustainability of detergents |
WO2023165950A1 (en) | 2022-03-04 | 2023-09-07 | Novozymes A/S | Dnase variants and compositions |
WO2023194204A1 (en) | 2022-04-08 | 2023-10-12 | Novozymes A/S | Hexosaminidase variants and compositions |
DE102022205594A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | PERFORMANCE-IMPROVED AND STORAGE-STABLE PROTEASE VARIANTS |
WO2023232192A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Detergent and cleaning agent with improved enzyme stability |
DE102022205588A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING AGENTS WITH IMPROVED ENZYME STABILITY |
DE102022205593A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING AGENTS WITH IMPROVED ENZYME STABILITY |
WO2023232194A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents with an improved enzyme stability |
DE102022205591A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | DETERGENT AND CLEANING AGENTS WITH IMPROVED ENZYME STABILITY |
WO2023232193A1 (en) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Detergents and cleaning agents with an improved enzyme stability |
WO2023247664A2 (en) | 2022-06-24 | 2023-12-28 | Novozymes A/S | Lipase variants and compositions comprising such lipase variants |
WO2024033134A1 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Enzyme compositions comprising protease, mannanase, and/or cellulase |
WO2024033136A1 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Amylase variants |
WO2024033135A2 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Amylase variants |
WO2024033133A2 (en) | 2022-08-11 | 2024-02-15 | Basf Se | Enzyme compositions comprising an amylase |
EP4324900A1 (en) | 2022-08-17 | 2024-02-21 | Henkel AG & Co. KGaA | Detergent composition comprising enzymes |
WO2024083589A1 (en) | 2022-10-18 | 2024-04-25 | Basf Se | Detergent compositions, polymers and methods of manufacturing the same |
WO2024083819A1 (en) | 2022-10-20 | 2024-04-25 | Novozymes A/S | Lipid removal in detergents |
WO2024094735A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
WO2024094733A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
WO2024094732A1 (en) | 2022-11-04 | 2024-05-10 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
DE102022131732A1 (en) | 2022-11-30 | 2024-06-06 | Henkel Ag & Co. Kgaa | Improved washing performance through the use of a protease fused with a special adhesion promoter peptide |
WO2024115082A1 (en) | 2022-11-30 | 2024-06-06 | Henkel Ag & Co. Kgaa | Improved washing performance through the use of a protease fused with a special adhesion promoter peptide |
WO2024115754A1 (en) | 2022-12-02 | 2024-06-06 | Basf Se | Aqueous compositions containing polyalkoxylates, polyalkoxylates, and use |
WO2024121070A1 (en) | 2022-12-05 | 2024-06-13 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2024121058A1 (en) | 2022-12-05 | 2024-06-13 | Novozymes A/S | A composition comprising a lipase and a peptide |
WO2024126483A1 (en) | 2022-12-14 | 2024-06-20 | Novozymes A/S | Improved lipase (gcl1) variants |
EP4389864A1 (en) | 2022-12-20 | 2024-06-26 | Basf Se | Cutinases |
WO2024132625A1 (en) | 2022-12-20 | 2024-06-27 | Basf Se | Cutinases |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
WO2024156628A1 (en) | 2023-01-23 | 2024-08-02 | Novozymes A/S | Cleaning compositions and uses thereof |
EP4410938A1 (en) | 2023-02-02 | 2024-08-07 | AMSilk GmbH | Automatic dishwashing composition comprising a structural polypeptide |
WO2024194245A1 (en) | 2023-03-21 | 2024-09-26 | Novozymes A/S | Detergent compositions based on biosurfactants |
WO2024213513A1 (en) | 2023-04-12 | 2024-10-17 | Novozymes A/S | Compositions comprising polypeptides having alkaline phosphatase activity |
Also Published As
Publication number | Publication date |
---|---|
RU2013149861A (en) | 2015-05-20 |
EP2694537A1 (en) | 2014-02-12 |
JP6027092B2 (en) | 2016-11-16 |
JP2014516509A (en) | 2014-07-17 |
BR112013025811A2 (en) | 2016-11-29 |
CA2830579A1 (en) | 2012-10-11 |
MX2013011617A (en) | 2013-11-21 |
AR085845A1 (en) | 2013-10-30 |
AU2012241055A1 (en) | 2013-08-15 |
US20140031272A1 (en) | 2014-01-30 |
KR20140024365A (en) | 2014-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140031272A1 (en) | Compositions | |
CN106164236B (en) | Detergent composition | |
ES2797483T3 (en) | Compositions and Methods Comprising a Lipolytic Enzyme Variant | |
CN110093330B (en) | Compositions and methods comprising lipolytic enzyme variants | |
ES2539006T3 (en) | Lipolytic enzyme, uses thereof in the food industry | |
JP5710866B2 (en) | Polypeptide having lipase activity and polynucleotide encoding the same | |
US20150044736A1 (en) | Fungal cutinase from magnaporthe grisea | |
DK2190296T3 (en) | Procedure | |
US20140187468A1 (en) | Compositions and Methods Comprising a Lipolytic Enzyme Variant | |
KR20150082502A (en) | Compositions and methods comprising thermolysin protease variants | |
EP2794866A1 (en) | Compositions and methods comprising a lipolytic enzyme variant | |
WO2009002480A2 (en) | Acyl transferase having altered substrate specificity | |
CA2761767A1 (en) | Use of amylase and lipolytic enzyme in bread | |
JP2015133976A (en) | Proteins | |
CN103502265A (en) | Composition | |
US9175271B2 (en) | Lipid acyltransferase proteins and methods of making them | |
ZA200610468B (en) | Lipolytic enzyme. Uses thereof in the food industry | |
MX2008008925A (en) | Polypeptides having lipase activity and polynucleotides encoding same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12716642 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012716642 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012716642 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2012241055 Country of ref document: AU Date of ref document: 20120404 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2830579 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2014503258 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/011617 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14110481 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137029372 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013149861 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013025811 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013025811 Country of ref document: BR Kind code of ref document: A2 Effective date: 20131004 |