US20100099844A1 - Hydrophobin Solution Containing Antifoam - Google Patents
Hydrophobin Solution Containing Antifoam Download PDFInfo
- Publication number
- US20100099844A1 US20100099844A1 US12/578,752 US57875209A US2010099844A1 US 20100099844 A1 US20100099844 A1 US 20100099844A1 US 57875209 A US57875209 A US 57875209A US 2010099844 A1 US2010099844 A1 US 2010099844A1
- Authority
- US
- United States
- Prior art keywords
- antifoam
- hydrophobin
- fermentation
- cloud point
- hydrophobins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/34—Processes using foam culture
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Definitions
- the present invention relates to a hydrophobin solution containing antifoam.
- a hydrophobin solution containing antifoam obtained through a fermentation process.
- Foaming is a common problem in aerobic, submerged fermentations. Foaming is caused by the sparging of gas into the fermentation medium for the purpose of providing oxygen for the growth of the aerobic organism being cultivated (e.g. bacteria, yeasts, fungi, algae, cell cultures). If the fermentation medium contains surface active components such as proteins, polysaccharides or fatty acids, then foam can be formed on the surface of the medium as the sparged gas bubbles disengage from the liquid. Foaming creates a number of problems including the undesirable stripping of product, nutrients, and cells into the foam, and can make process containment difficult.
- a known method for controlling foaming is to use antifoams, of which several types are commonly used: silicone-based (e.g.
- Antifoams replace foam-forming components on bubble surfaces, resulting in destruction of the foam by bubble coalescence. Antifoams are added at the start of and/or during the fermentation.
- the fermentation product When the fermentation product is intended for use in foods, personal products or medicine, it is highly desirable that the product is excreted by the producing organism into the fermentation medium (i.e. extra-cellular, rather than intra-cellular production). This avoids the need to disrupt the cells by physical or chemical means in order to release the product for recovery. By maintaining the cells intact, the cellular material can be easily separated from the product so that it is free of intracellular and genetic material which is usually regarded as an undesirable contaminant. This can be especially important when the producing organism has been genetically modified. However, extra-cellular production of a hydrophobin may intensify the degree of foaming in the fermenter.
- antifoams presents a particular problem in the extra-cellular production of hydrophobin for two reasons: firstly the amount of antifoam required is increased because the hydrophobin itself contributes to foaming in the fermenter. Secondly, the antifoam must be substantially removed since the presence of antifoam together with the hydrophobin will impair the hydrophobin functionality.
- aqueous solution contains at least 0.5 mg/l of antifoam.
- the hydrophobin is a class II hydrophobin, most preferably HFBI or HFBII from Trichoderma reesei.
- the antifoam has a cloud point.
- the aqueous solution is concentrated so that the antifoam/hydrophobin ratio remains below 0.2 but its hydrophobin content is above 1 g/l, preferably 10 g/l even more preferably 100 g/l.
- Hydrophobins can be obtained by culturing filamentous fungi such as hyphomycetes (e.g. Trichoderma), basidiomycetes and ascomycetes. Particularly preferred hosts are food grade organisms, such as Cryphonectria parasitica which secretes a hydrophobin termed cryparin (MacCabe and Van Alfen; 1999, App. Environ. Microbiol 65: 5431-5435). Similarly, surfactin can be obtained from Bacillus subtilis and glycolipids from e.g.
- hydrophobins allow the production of aqueous foams with excellent stability to disproportionation and coalescence. Because hydrophobins are highly effective foaming agents, their presence in the fermentation medium presents a particular challenge for foam control.
- Hydrophobins are a well-defined class of proteins (Wessels, 1997, Adv. Microb. Physio. 38: 1-45; Wosten, 2001, Annu Rev. Microbiol. 55: 625-646) capable of self-assembly at a hydrophobic/hydrophilic interface, and having a conserved sequence:
- hydrophobia has a length of up to 125 amino acids.
- the cysteine residues (C) in the conserved sequence are part of disulphide bridges.
- hydrophobia has a wider meaning to include functionally equivalent proteins still displaying the characteristic of self-assembly at a hydrophobic-hydrophilic interface resulting in a protein film, such as proteins comprising the sequence:
- self-assembly can be detected by adsorbing the protein to Teflon and using Circular Dichroism to establish the presence of a secondary structure (in general, ⁇ -helix) (De Vocht et al., 1998, Biophys. J. 74: 2059-68).
- a film can be established by incubating a Teflon sheet in the protein solution followed by at least three washes with water or buffer (Wosten et al., 1994, Embo. J. 13: 5848-54).
- the protein film can be visualised by any suitable method, such as labeling with a fluorescent marker or by the use of fluorescent antibodies, as is well established in the art.
- m and n typically have values ranging from 0 to 2000, but more usually m and n in total are less than 100 or 200.
- the definition of hydrophobin in the context of the present invention includes fusion proteins of a hydrophobin and another polypeptide as well as conjugates of hydrophobin and other molecules such as polysaccharides.
- Hydrophobins identified to date are generally classed as either class I or class II. Both types have been identified in fungi as secreted proteins that self-assemble at hydrophobilic interfaces into amphipathic films. Assemblages of class I hydrophobins are generally relatively insoluble whereas those of class II hydrophobins readily dissolve in a variety of solvents.
- the hydrophobin is soluble in water, by which is meant that it is at least 0.1% soluble in water, preferably at least 0.5%. By at least 0.1% soluble is meant that no hydrophobin precipitates when 0.1 g of hydrophobin in 99.9 mL of water is subjected to 30,000 g centrifugation for 30 minutes at 20° C.
- Hydrophobin-like proteins have also been identified in filamentous bacteria, such as Actinomycete and Streptomyces sp. (WO01/74864; Talbot, 2003, Curr. Biol, 13: R696-R698). These bacterial proteins by contrast to fungal hydrophobins, may form only up to one disulphide bridge since they may have only two cysteine residues. Such proteins are an example of functional equivalents to hydrophobins having the consensus sequences shown in SEQ ID Nos. 1 and 2, and are within the scope of the present invention.
- hydrophobins More than 34 genes coding for hydrophobins have been cloned, from over 16 fungal species (see for example WO96/41882 which gives the sequence of hydrophobins identified in Agaricus bisporus; and Wosten, 2001, Annu Rev. Microbiol. 55: 625-646).
- hydrophobins possessing at least 80% identity at the amino acid level to a hydrophobin that naturally occurs are also embraced within the term “hydrophobins”.
- antifoam includes both antifoams which are usually added before foaming occurs and also those which are usually added once the foam has formed (sometimes known as defoamers).
- a definition of antifoams used in the present invention is found in “Foam and its mitigation in fermentation systems”—Beth Junker—Biotechnology Progress, 2007, 23, 768-784
- a specific group of antifoams suitable for use in the present invention are those that exhibit a cloud point.
- the cloud point is the temperature at which an aqueous solution of the antifoam becomes visibly turbid as it phase separates (i.e. the antifoam molecules form aggregates which scatter light) as described on p63 of Surfactant Aggregation and Adsorption at Interfaces, J. Eastoe, in Colloid Science: Principles, Methods and Applications, ed. T. Cosgrove, Blackwell Publishing, 2005.
- antifoams which display cloud points include poly(alkylene glycol) (PAG) based compounds such as ethylene oxide/propylene oxide block co-polymers, polyalcohols based on ethylene oxide/propylene oxide block copolymers and polyethers of ethylene and propylene oxides; and fatty acid ester-based compounds.
- PAG poly(alkylene glycol)
- the cloud point depends on the surfactant composition and chemical structure. For example, for polyoxyethylene (PEO) non-ionic surfactants, the cloud point increases as the EO content increases for a given hydrophobic group.
- the cloud point of the antifoam is between 0° C. and 90° C., more preferably between 5° C. and 60° C.
- the antifoam comprises at least one non-ionic surfactant/polymer, such as a polyether, a poly(alkylene glycol), an ethylene/propylene oxide block co-polymer, a polyalcohol based on an ethylene/propylene oxide block co-polymer, a polypropylene glycol-based polyether dispersion, or an alkoxylated fatty acid ester.
- a non-ionic surfactant/polymer such as a polyether, a poly(alkylene glycol), an ethylene/propylene oxide block co-polymer, a polyalcohol based on an ethylene/propylene oxide block co-polymer, a polypropylene glycol-based polyether dispersion, or an alkoxylated fatty acid ester.
- PAG-based antifoams such as Struktol J647 obtainable from Schill and Seilacher
- polyalcohols based on EO/PO block co-polymers such as Struktol J647 obtainable from Schill and Seilacher
- other non-ionic surfactant antifoams are particularly effective at destroying foam, even in the presence of powerful foaming agents such as hydrophobin.
- the cloud point of such a mixture is defined as the highest cloud point of the individual components.
- the concentrations of the antifoam in the filtrates were determined by using the Lange LCK 433 Water Testing Kit for non-ionic surfactants. This uses the principle that non-ionic surfactants (such as J647) form complexes with the indicator TBPE (tetrabromophenolphthalein ethyl ester), which can be extracted in dichloromethane and photometrically measured to determine the concentration. First, a calibration curve was constructed. A 0.3% (w/v) solution of Struktol J647 was prepared by taking an aliquot of 3.00 g Struktol J647 and diluting to 1 L with MilliQ water at 15° C.
- the filtrates were then diluted 1/10 with MilliQ water. 0.2 ml samples were measured in the spectrophometer as before, and the concentration of the antifoam in each filtrate was read off from the calibration graph. The amount (%) of antifoam remaining in the filtrate was calculated as
- Antifoam concentrations down to 0.2 mg/L (2 ⁇ 10 ⁇ 5 % w/v) can be measured by a similar technique, using the Lange LCK 333 Water Testing Kit, and constructing a calibration curve in the appropriate concentration range. In this case a 2 ml aliquot of the sample to be measured is added to the test kit, rather than 0.2 ml.
- the fermentation to produce the foaming agent is carried out by culturing the host cell in a liquid fermentation medium within a bioreactor (e.g. an industrial fermenter).
- a bioreactor e.g. an industrial fermenter.
- the composition of the medium e.g. nutrients, carbon source etc.
- temperature and pH are chosen to provide appropriate conditions for growth of the culture and/or production of the foaming agent.
- Air or oxygen-enriched air is normally sparged into the medium to provide oxygen for respiration of the culture.
- the antifoam may be included in the initial medium composition and/or added as required through the period of the fermentation. Common practice is to employ a foam detection method, such as a conductivity probe, which automatically triggers addition of the antifoam.
- the antifoam is preferably present at a final concentration of from 0.1 to 20 g/L, more preferably from 1 to 10 g/L.
- the fermenter temperature during step i), i.e. during fermentation, may be above or below the cloud point of the antifoam.
- the fermenter temperature is above the cloud point of the antifoam, since the antifoam is most effective at causing bubble coalescence and foam collapse above its cloud point.
- the fermenter temperature is generally chosen to achieve optimum conditions for growth of the host cells and/or production.
- the antifoam must be substantially removed to ensure that the functionality of the foaming agent is not impaired. Removal of the antifoam is achieved by ensuring that the temperature of the fermentation medium is above the cloud point of the antifoam, so that the antifoam phase separates.
- the phase separated antifoam can be removed from the fermentation medium by any suitable method such as:
- More antifoam is removed if the temperature of the fermentation medium is at least 10° C. above the cloud point, preferably at least 20° C. above the cloud point, most preferably at least 30° C. above the cloud point.
- the temperature of the fermentation medium is less than 90° C., more preferably less than 75° C.
- the antifoam has a cloud point in the range 20-30° C. and the temperature of the fermentation medium is in the range 40-60° C.
- a preferred method for separating the antifoam is membrane filtration. It has been generally thought that carrying out membrane filtration of fermentation broths containing an antifoam at temperatures above its cloud point results in fouling of the membrane by the precipitated antifoam, causing a low permeate flux and consequent processing difficulties: see for example Yamagiwa et al., J. Chem. Eng. Japan, 26 (1993) pp 13-18, and WO 01/014521. Thus it has previously been thought that membrane filtration should take place at temperatures below the cloud point. However, acceptable fluxes are obtained when carrying out ultrafiltration and microfiltration operations at a temperature of about 25° C. above the cloud point of the antifoam.
- the cells In order to ensure that the product foaming agent is free from of intracellular and genetic material (which is usually regarded as an undesirable contaminant) the cells must be removed from the fermentation medium.
- the cells are separated from the medium at the same time as the precipitated antifoam is removed, for example in a microfiltration step which takes place at a temperature above the cloud point.
- the cells may be removed from the medium in a separate step prior to the removal of the antifoam—for example by filtration (e.g. dead-end filtration or a filter press), membrane/cross-flow filtration, (e.g. microfiltration or ultrafiltration), or centrifugation—at a temperature below the cloud point.
- a purification and/or concentration step e.g. by ultrafiltration
- the medium is then heated to a temperature above the cloud point so that the antifoam can be removed as already described.
- the product foaming agent may be further purified and concentrated as required, e.g. by ultrafiltration.
- the foaming agent is a hydrophobin
- it can be purified from the fermentation medium by, for example, the procedure described in WO01/57076 which involves adsorbing the hydrophobin to a surface and then contacting the surface with a surfactant, such as Tween 20, to elute the hydrophobin from the surface.
- a surfactant such as Tween 20
- a fed-batch fermentation of a genetically modified strain of Saccharomyces cerevisiae was performed.
- the strain had been modified by incorporating the gene encoding the hydrophobin HFBII from the fungus Trichoderma reesei (a foaming agent) in such a way that extracellular expression of the hydrophobin was achieved during fermentation.
- Fermentation was carried out essentially as described by van de Laar T of al., in Biotechnol Bioeng. 96(3):483-94 (1997), using glucose as a carbon source and scaling the process to a total volume of 150 L in a 300 L fermentation vessel.
- the antifoam Struktol J647 was used to control foaming during the fermentation (instead of Struktol J673 used by van de Laar T et al).
- the fermentation liquor was microfiltered at 15° C. (i.e. below the cloud point of the antifoam J647) to remove the yeast cells.
- Microfiltration was performed on pilot scale plant with Kerasep ceramic membranes having a pore size of 0.1 ⁇ m, using two volumes of diafiltration with deionised water.
- the liquor was then ultrafiltered, again at 15° C., to partially purify the HFBII.
- Ultrafiltration was by 1 kD Synder spiral wound polymeric membranes at a transmembrane pressure of 0.9 bar and four volumes of diafiltration.
- the concentration of the antifoam in the fermentation liquor after the ultrafiltration step was measured to be 0.196 g/L.
- the concentration of HFBII was measured to be 0.320 g/L by high performance liquid chromatography (HPLC), as follows. The sample was diluted with 60% aqueous ethanol to give an approximate concentration of 200 ⁇ g/ml prior to analysis. HPLC separation was performed on a Vydac Protein C4 column (250 ⁇ 4.6 mm) at 30° C. Hydrophobin was measured by UV detection at 214 nm and the concentration was calculated by comparison with samples of known HFBII concentration obtained from VTT Biotechnology (Espoo, Finland).
- the cell-free liquor was then heated to 50° C., held at that temperature for 30 minutes, and filtered (0.2 ⁇ m pore size) to remove the antifoam.
- the remaining amounts of antifoam and HFBII in the filtrate were measured as before and are given in Table 2 (Stage 1).
- the filtrate from this first stage was then re-heated to 50° C., held at this temperature for a further 30 minutes, and filtered as before.
- the HFBII and antifoam concentrations in the resulting filtrate were measured and are also given in Table 2 (Stage 2).
- Stage 1 Stage 2 Amount of HFBII in filtrate (g/L) 0.32 0.30 % of initial HFBII concentration remaining 100% 93.75% Amount of antifoam in filtrate (g/L) 0.05 .028 % of initial antifoam concentration remaining 25.5% 14.3% Mass ratio antifoam:hydrophobin 0.156 0.093
- the resulting hydrophobin solution was found to have satisfactory foaming properties.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
- The present invention relates to a hydrophobin solution containing antifoam. In particular it relates to a hydrophobin solution containing antifoam obtained through a fermentation process.
- Foaming is a common problem in aerobic, submerged fermentations. Foaming is caused by the sparging of gas into the fermentation medium for the purpose of providing oxygen for the growth of the aerobic organism being cultivated (e.g. bacteria, yeasts, fungi, algae, cell cultures). If the fermentation medium contains surface active components such as proteins, polysaccharides or fatty acids, then foam can be formed on the surface of the medium as the sparged gas bubbles disengage from the liquid. Foaming creates a number of problems including the undesirable stripping of product, nutrients, and cells into the foam, and can make process containment difficult. A known method for controlling foaming is to use antifoams, of which several types are commonly used: silicone-based (e.g. polydimethylsiloxanes), polyalkylene glycols (e.g. polypropylene glycol), fatty acids, polyesters and natural oils (e.g. linseed oil, soybean oil). Antifoams replace foam-forming components on bubble surfaces, resulting in destruction of the foam by bubble coalescence. Antifoams are added at the start of and/or during the fermentation.
- When the fermentation product is intended for use in foods, personal products or medicine, it is highly desirable that the product is excreted by the producing organism into the fermentation medium (i.e. extra-cellular, rather than intra-cellular production). This avoids the need to disrupt the cells by physical or chemical means in order to release the product for recovery. By maintaining the cells intact, the cellular material can be easily separated from the product so that it is free of intracellular and genetic material which is usually regarded as an undesirable contaminant. This can be especially important when the producing organism has been genetically modified. However, extra-cellular production of a hydrophobin may intensify the degree of foaming in the fermenter. The use of antifoams presents a particular problem in the extra-cellular production of hydrophobin for two reasons: firstly the amount of antifoam required is increased because the hydrophobin itself contributes to foaming in the fermenter. Secondly, the antifoam must be substantially removed since the presence of antifoam together with the hydrophobin will impair the hydrophobin functionality.
- Bailey et al, Appl. Microbiol. Biotechnol. 58 (2002) pp 721-727 disclose the production of hydrophobins HFB I and HFB II by the fermentation of transformants of Trichoderma reesei. An antifoam (Struktol J633) was used to prevent foaming and the hydrophobin was purified using aqueous two phase extraction.
- It has now been found that a certain level of antifoam can be present in the hydrophobin solution while the hydrophobin retains at least part of its functionality. It is thus possible to have a hydrophobin solution containing antifoam, therefore simplifying its production process and leading to significant savings.
- It is the object of the present invention to provide an aqueous solution containing at least 300 mg/l of hydrophobin and at least 0.3 mg/l of antifoam, wherein the antifoam/hydrophobin weight ratio is below 0.2, preferably below 0.15, more preferably below 0.1.
- Preferably, aqueous solution contains at least 0.5 mg/l of antifoam.
- Preferably also, the hydrophobin is a class II hydrophobin, most preferably HFBI or HFBII from Trichoderma reesei.
- Preferably also, the antifoam has a cloud point.
- Preferably the aqueous solution is concentrated so that the antifoam/hydrophobin ratio remains below 0.2 but its hydrophobin content is above 1 g/l, preferably 10 g/l even more preferably 100 g/l.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art (e.g. in cell culture, molecular genetics, nucleic acid chemistry, hybridisation techniques and biochemistry). Standard techniques used for molecular and biochemical methods can be found in Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed. (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. and Ausubel et al., Short Protocols in Molecular Biology (1999) 4th Ed, John Wiley & Sons, Inc.—and the full version entitled Current Protocols in Molecular Biology.
- Hydrophobins
- Hydrophobins can be obtained by culturing filamentous fungi such as hyphomycetes (e.g. Trichoderma), basidiomycetes and ascomycetes. Particularly preferred hosts are food grade organisms, such as Cryphonectria parasitica which secretes a hydrophobin termed cryparin (MacCabe and Van Alfen; 1999, App. Environ. Microbiol 65: 5431-5435). Similarly, surfactin can be obtained from Bacillus subtilis and glycolipids from e.g. Pseudomonas aeruginosa, Rhodococcus erythropolis, Mycobacterium species and Torulopsis bombicola (Desai and Banat, Microbiology and Molecular Biology Reviews, March 1997, pp 47-64).
- In EP 1 623 631 we have previously found that hydrophobins allow the production of aqueous foams with excellent stability to disproportionation and coalescence. Because hydrophobins are highly effective foaming agents, their presence in the fermentation medium presents a particular challenge for foam control.
- Hydrophobins are a well-defined class of proteins (Wessels, 1997, Adv. Microb. Physio. 38: 1-45; Wosten, 2001, Annu Rev. Microbiol. 55: 625-646) capable of self-assembly at a hydrophobic/hydrophilic interface, and having a conserved sequence:
-
Xn—C—X5-9—C—C—X11-39—C—X8-23—C—X5-9—C—C—X8-18—C—Xm (SEQ ID No. 1) - where X represents any amino acid, and n and m independently represent an integer. Typically, a hydrophobia has a length of up to 125 amino acids. The cysteine residues (C) in the conserved sequence are part of disulphide bridges. In the context of the present invention, the term hydrophobia has a wider meaning to include functionally equivalent proteins still displaying the characteristic of self-assembly at a hydrophobic-hydrophilic interface resulting in a protein film, such as proteins comprising the sequence:
-
Xn—C—X1-50—C—X0-5—C—X1-100—C—X1-100—C—X1-50—C—X0-5—C—X1-50—C—Xm (SEQ ID No. 2) - or parts thereof still displaying the characteristic of self-assembly at a hydrophobic-hydrophilic interface resulting in a protein film. In accordance with the definition of the present invention, self-assembly can be detected by adsorbing the protein to Teflon and using Circular Dichroism to establish the presence of a secondary structure (in general, α-helix) (De Vocht et al., 1998, Biophys. J. 74: 2059-68).
- The formation of a film can be established by incubating a Teflon sheet in the protein solution followed by at least three washes with water or buffer (Wosten et al., 1994, Embo. J. 13: 5848-54). The protein film can be visualised by any suitable method, such as labeling with a fluorescent marker or by the use of fluorescent antibodies, as is well established in the art. m and n typically have values ranging from 0 to 2000, but more usually m and n in total are less than 100 or 200. The definition of hydrophobin in the context of the present invention includes fusion proteins of a hydrophobin and another polypeptide as well as conjugates of hydrophobin and other molecules such as polysaccharides.
- Hydrophobins identified to date are generally classed as either class I or class II. Both types have been identified in fungi as secreted proteins that self-assemble at hydrophobilic interfaces into amphipathic films. Assemblages of class I hydrophobins are generally relatively insoluble whereas those of class II hydrophobins readily dissolve in a variety of solvents. Preferably the hydrophobin is soluble in water, by which is meant that it is at least 0.1% soluble in water, preferably at least 0.5%. By at least 0.1% soluble is meant that no hydrophobin precipitates when 0.1 g of hydrophobin in 99.9 mL of water is subjected to 30,000 g centrifugation for 30 minutes at 20° C.
- Hydrophobin-like proteins (e.g. “chaplins”) have also been identified in filamentous bacteria, such as Actinomycete and Streptomyces sp. (WO01/74864; Talbot, 2003, Curr. Biol, 13: R696-R698). These bacterial proteins by contrast to fungal hydrophobins, may form only up to one disulphide bridge since they may have only two cysteine residues. Such proteins are an example of functional equivalents to hydrophobins having the consensus sequences shown in SEQ ID Nos. 1 and 2, and are within the scope of the present invention.
- More than 34 genes coding for hydrophobins have been cloned, from over 16 fungal species (see for example WO96/41882 which gives the sequence of hydrophobins identified in Agaricus bisporus; and Wosten, 2001, Annu Rev. Microbiol. 55: 625-646). For the purpose of the invention hydrophobins possessing at least 80% identity at the amino acid level to a hydrophobin that naturally occurs are also embraced within the term “hydrophobins”.
- Antifoams
- The term “antifoam” includes both antifoams which are usually added before foaming occurs and also those which are usually added once the foam has formed (sometimes known as defoamers). A definition of antifoams used in the present invention is found in “Foam and its mitigation in fermentation systems”—Beth Junker—Biotechnology Progress, 2007, 23, 768-784
- A specific group of antifoams suitable for use in the present invention are those that exhibit a cloud point. The cloud point is the temperature at which an aqueous solution of the antifoam becomes visibly turbid as it phase separates (i.e. the antifoam molecules form aggregates which scatter light) as described on p63 of Surfactant Aggregation and Adsorption at Interfaces, J. Eastoe, in Colloid Science: Principles, Methods and Applications, ed. T. Cosgrove, Blackwell Publishing, 2005.
- Examples of antifoams which display cloud points include poly(alkylene glycol) (PAG) based compounds such as ethylene oxide/propylene oxide block co-polymers, polyalcohols based on ethylene oxide/propylene oxide block copolymers and polyethers of ethylene and propylene oxides; and fatty acid ester-based compounds.
- The cloud point depends on the surfactant composition and chemical structure. For example, for polyoxyethylene (PEO) non-ionic surfactants, the cloud point increases as the EO content increases for a given hydrophobic group. Preferably the cloud point of the antifoam is between 0° C. and 90° C., more preferably between 5° C. and 60° C.
- Preferably, the antifoam comprises at least one non-ionic surfactant/polymer, such as a polyether, a poly(alkylene glycol), an ethylene/propylene oxide block co-polymer, a polyalcohol based on an ethylene/propylene oxide block co-polymer, a polypropylene glycol-based polyether dispersion, or an alkoxylated fatty acid ester. PAG-based antifoams (such as Struktol J647 obtainable from Schill and Seilacher), polyalcohols based on EO/PO block co-polymers (such as Struktol J647 obtainable from Schill and Seilacher) and other non-ionic surfactant antifoams are particularly effective at destroying foam, even in the presence of powerful foaming agents such as hydrophobin.
- Mixtures of antifoams can be used, in which case, the cloud point of such a mixture is defined as the highest cloud point of the individual components.
- Some common commercially available antifoams that exhibit a cloud point are shown in Table 1.
-
TABLE 1 Antifoam Cloud Point/° C. Poly(alkylene glycol) Struktol J647, Schill & Seilacher 24 Struktol SB2121 ca. 30 UCON LB 65, Dow Chemical Company 25 UCON LB 285 15 UCON LB 625 10 UCON LB 1715 8 KFO673, Lubrizol 25 ST934, Pennwhite Ltd ca. 20 Ethylene/propylene oxide block copolymers Pluronic PE3100, BASF 41 Pluronic PE6100 23 Pluronic PE6200 33 Pluronic PE8100 36 Pluronic PE10100 35 Mazu DF204, BASF 18-21 Polyalcohol based on EO/PO block copolymer Struktol J650, Schill & Seilacher 13 Polypropylene glycol based polyether dispersions Antifoam 204, Sigma 15 Alkoxylated fatty acid ester Struktol J673, Schill & Seilacher 30 - Antifoam Measurement Method
- The concentrations of the antifoam in the filtrates were determined by using the Lange LCK 433 Water Testing Kit for non-ionic surfactants. This uses the principle that non-ionic surfactants (such as J647) form complexes with the indicator TBPE (tetrabromophenolphthalein ethyl ester), which can be extracted in dichloromethane and photometrically measured to determine the concentration. First, a calibration curve was constructed. A 0.3% (w/v) solution of Struktol J647 was prepared by taking an aliquot of 3.00 g Struktol J647 and diluting to 1 L with MilliQ water at 15° C. Aliquots were taken from this and diluted with MilliQ water to give concentrations of: 6, 15, 30, 60, 150 and 300 mg/L. MilliQ water was used as a blank sample. 0.2 ml samples of each concentration were added to the kit test tubes containing TBPE and dichloromethane. The tubes were gently mixed for 2 minutes and allowed to stand for 30 minutes. They were then measured in a Lange DR2800 spectrophotometer in at 605 nm in accordance with the Testing Kit instructions. FIG. 2 shows the resulting calibration graph.
- The filtrates were then diluted 1/10 with MilliQ water. 0.2 ml samples were measured in the spectrophometer as before, and the concentration of the antifoam in each filtrate was read off from the calibration graph. The amount (%) of antifoam remaining in the filtrate was calculated as
-
(measured concentration in filtrate)/(known starting concentration)×100%. - Antifoam concentrations down to 0.2 mg/L (2×10−5% w/v) can be measured by a similar technique, using the Lange LCK 333 Water Testing Kit, and constructing a calibration curve in the appropriate concentration range. In this case a 2 ml aliquot of the sample to be measured is added to the test kit, rather than 0.2 ml.
- Fermentation Process and Removal of the Antifoam
- The fermentation to produce the foaming agent is carried out by culturing the host cell in a liquid fermentation medium within a bioreactor (e.g. an industrial fermenter). The composition of the medium (e.g. nutrients, carbon source etc.), temperature and pH are chosen to provide appropriate conditions for growth of the culture and/or production of the foaming agent. Air or oxygen-enriched air is normally sparged into the medium to provide oxygen for respiration of the culture.
- The antifoam may be included in the initial medium composition and/or added as required through the period of the fermentation. Common practice is to employ a foam detection method, such as a conductivity probe, which automatically triggers addition of the antifoam. In the present invention, the antifoam is preferably present at a final concentration of from 0.1 to 20 g/L, more preferably from 1 to 10 g/L.
- The fermenter temperature during step i), i.e. during fermentation, may be above or below the cloud point of the antifoam. Preferably the fermenter temperature is above the cloud point of the antifoam, since the antifoam is most effective at causing bubble coalescence and foam collapse above its cloud point. The fermenter temperature is generally chosen to achieve optimum conditions for growth of the host cells and/or production.
- At the end of the fermentation, the antifoam must be substantially removed to ensure that the functionality of the foaming agent is not impaired. Removal of the antifoam is achieved by ensuring that the temperature of the fermentation medium is above the cloud point of the antifoam, so that the antifoam phase separates. The phase separated antifoam can be removed from the fermentation medium by any suitable method such as:
-
- filtration, e.g. dead-end filtration or a filter press
- membrane (cross-flow) filtration, e.g. microfiltration or ultrafiltration
- centrifugation
- adsorption, using e.g. activated carbon, silica or diatomaceous earth as an absorbent.
- More antifoam is removed if the temperature of the fermentation medium is at least 10° C. above the cloud point, preferably at least 20° C. above the cloud point, most preferably at least 30° C. above the cloud point. Preferably the temperature of the fermentation medium is less than 90° C., more preferably less than 75° C. In a preferred embodiment, the antifoam has a cloud point in the range 20-30° C. and the temperature of the fermentation medium is in the range 40-60° C.
- A preferred method for separating the antifoam is membrane filtration. It has been generally thought that carrying out membrane filtration of fermentation broths containing an antifoam at temperatures above its cloud point results in fouling of the membrane by the precipitated antifoam, causing a low permeate flux and consequent processing difficulties: see for example Yamagiwa et al., J. Chem. Eng. Japan, 26 (1993) pp 13-18, and WO 01/014521. Thus it has previously been thought that membrane filtration should take place at temperatures below the cloud point. However, acceptable fluxes are obtained when carrying out ultrafiltration and microfiltration operations at a temperature of about 25° C. above the cloud point of the antifoam.
- In order to ensure that the product foaming agent is free from of intracellular and genetic material (which is usually regarded as an undesirable contaminant) the cells must be removed from the fermentation medium. In a preferred embodiment, the cells are separated from the medium at the same time as the precipitated antifoam is removed, for example in a microfiltration step which takes place at a temperature above the cloud point.
- In an alternative embodiment the cells may be removed from the medium in a separate step prior to the removal of the antifoam—for example by filtration (e.g. dead-end filtration or a filter press), membrane/cross-flow filtration, (e.g. microfiltration or ultrafiltration), or centrifugation—at a temperature below the cloud point. In this embodiment, a purification and/or concentration step (e.g. by ultrafiltration) may be carried out (again at a temperature below the cloud point) after cell removal but before antifoam separation. The medium is then heated to a temperature above the cloud point so that the antifoam can be removed as already described.
- Once the antifoam and the cells have been removed from the fermentation medium, the product foaming agent may be further purified and concentrated as required, e.g. by ultrafiltration. If the foaming agent is a hydrophobin, it can be purified from the fermentation medium by, for example, the procedure described in WO01/57076 which involves adsorbing the hydrophobin to a surface and then contacting the surface with a surfactant, such as Tween 20, to elute the hydrophobin from the surface. See also Cohen et al., 2002, Biochim Biophys Acta. 1569: 139-50; Calonje et al., 2002, Can. J. Microbiol. 48: 1030-4; Askolin et al., 2001, Appl Microbiol Biotechnol. 57: 124-30; and De Vries et al., 1999, Eur J Biochem. 262: 377-85.
- The present invention will now be further described with reference to the following examples which are illustrative only and non-limiting.
- A fed-batch fermentation of a genetically modified strain of Saccharomyces cerevisiae was performed. The strain had been modified by incorporating the gene encoding the hydrophobin HFBII from the fungus Trichoderma reesei (a foaming agent) in such a way that extracellular expression of the hydrophobin was achieved during fermentation. Fermentation was carried out essentially as described by van de Laar T of al., in Biotechnol Bioeng. 96(3):483-94 (1997), using glucose as a carbon source and scaling the process to a total volume of 150 L in a 300 L fermentation vessel. The antifoam Struktol J647 was used to control foaming during the fermentation (instead of Struktol J673 used by van de Laar T et al).
- At the end of the fermentation, the fermentation liquor was microfiltered at 15° C. (i.e. below the cloud point of the antifoam J647) to remove the yeast cells. Microfiltration was performed on pilot scale plant with Kerasep ceramic membranes having a pore size of 0.1 μm, using two volumes of diafiltration with deionised water. The liquor was then ultrafiltered, again at 15° C., to partially purify the HFBII. Ultrafiltration was by 1 kD Synder spiral wound polymeric membranes at a transmembrane pressure of 0.9 bar and four volumes of diafiltration.
- The concentration of the antifoam in the fermentation liquor after the ultrafiltration step was measured to be 0.196 g/L. The concentration of HFBII was measured to be 0.320 g/L by high performance liquid chromatography (HPLC), as follows. The sample was diluted with 60% aqueous ethanol to give an approximate concentration of 200 μg/ml prior to analysis. HPLC separation was performed on a Vydac Protein C4 column (250×4.6 mm) at 30° C. Hydrophobin was measured by UV detection at 214 nm and the concentration was calculated by comparison with samples of known HFBII concentration obtained from VTT Biotechnology (Espoo, Finland).
- The cell-free liquor was then heated to 50° C., held at that temperature for 30 minutes, and filtered (0.2 μm pore size) to remove the antifoam. The remaining amounts of antifoam and HFBII in the filtrate were measured as before and are given in Table 2 (Stage 1). The filtrate from this first stage was then re-heated to 50° C., held at this temperature for a further 30 minutes, and filtered as before. The HFBII and antifoam concentrations in the resulting filtrate were measured and are also given in Table 2 (Stage 2).
-
TABLE 2 Stage 1 Stage 2 Amount of HFBII in filtrate (g/L) 0.32 0.30 % of initial HFBII concentration remaining 100% 93.75% Amount of antifoam in filtrate (g/L) 0.05 .028 % of initial antifoam concentration remaining 25.5% 14.3% Mass ratio antifoam:hydrophobin 0.156 0.093 - The resulting hydrophobin solution was found to have satisfactory foaming properties.
- The various features and embodiments of the present invention, referred to in individual sections above apply, as appropriate, to other sections, mutatis mutandis. Consequently features specified in one section may be combined with features specified in other sections, as appropriate.
- All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods of the invention will be apparent to those skilled in the art without departing from the scope of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are apparent to those skilled in the relevant fields are intended to be within the scope of the following claims.
Claims (5)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
WOPCT/EP2008/063929 | 2008-10-16 | ||
EPPCT/EP2008/063929 | 2008-10-16 | ||
EP2008063929 | 2008-10-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100099844A1 true US20100099844A1 (en) | 2010-04-22 |
US9115349B2 US9115349B2 (en) | 2015-08-25 |
Family
ID=41572584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/578,752 Expired - Fee Related US9115349B2 (en) | 2008-10-16 | 2009-10-14 | Hydrophobin solution containing antifoam |
Country Status (10)
Country | Link |
---|---|
US (1) | US9115349B2 (en) |
JP (1) | JP2012505645A (en) |
CN (1) | CN102186967B (en) |
AU (1) | AU2009304092B2 (en) |
BR (1) | BRPI0919788A2 (en) |
CA (1) | CA2740326C (en) |
DK (1) | DK2346987T3 (en) |
MX (1) | MX2011004080A (en) |
WO (1) | WO2010043520A1 (en) |
ZA (1) | ZA201102685B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012137147A1 (en) | 2011-04-08 | 2012-10-11 | Danisco Us, Inc. | Compositions |
WO2014063097A1 (en) | 2012-10-19 | 2014-04-24 | Danisco Us Inc. | Stabilization of biomimetic membranes |
WO2015094527A1 (en) | 2013-12-19 | 2015-06-25 | Danisco Us Inc. | Use of hydrophobins to increase gas transferin aerobic fermentation processes |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2813281A1 (en) * | 2010-10-20 | 2012-04-26 | Unilever Plc | Foaming agents comprising hydrophobin |
DE102010063942B4 (en) * | 2010-12-22 | 2015-03-26 | Technische Universität Dresden | Method and use of hydrophobins for lowering the surface tension in cell cultures |
BR112023003778A2 (en) | 2020-09-04 | 2023-03-28 | Basf Se | METHOD FOR SEPARATING A MOLECULE OF INTEREST FROM AN ANTI-FOAMING AGENT IN A FERMENTATION BROTH, AND PROCESS FOR PURIFIING A MOLECULE OF INTEREST FROM A FERMENTATION BROTH |
Citations (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2844470A (en) * | 1956-07-24 | 1958-07-22 | Best Foods Inc | Pressurized food dressing |
US2937093A (en) * | 1957-09-30 | 1960-05-17 | Nat Dairy Prod Corp | Process for manufacturing whipped fatty emulsion |
US2970917A (en) * | 1957-05-09 | 1961-02-07 | Corn Products Co | Whipped margarine and process for making the same |
US3266214A (en) * | 1960-09-19 | 1966-08-16 | Kramme Sivert | Apparatus for making packaged whipped butter in stick or brick form |
US3346387A (en) * | 1964-03-02 | 1967-10-10 | Glidden Co | Whipping assistant and comestibles utilizing same |
US3946122A (en) * | 1967-12-04 | 1976-03-23 | Lever Brothers Company | Process of preparing margarine products |
US4012533A (en) * | 1974-11-20 | 1977-03-15 | Kraft, Inc. | Multipurpose whipped dessert and method of manufacturing |
US4066794A (en) * | 1976-06-23 | 1978-01-03 | Sylvia Schur | Instant yogurt preparation |
US4146652A (en) * | 1977-01-28 | 1979-03-27 | Rich Products Corporation | Intermediate moisture, ready-to-use frozen whippable foods |
US4244982A (en) * | 1976-08-05 | 1981-01-13 | W. R. Grace & Co. | Process for preparing a food mousse |
US4305964A (en) * | 1978-11-16 | 1981-12-15 | Lever Brothers Company | Food product |
US4325980A (en) * | 1978-12-20 | 1982-04-20 | Lever Brothers Company | Process for producing a margarine having a reduced tendency to spattering |
US4425369A (en) * | 1980-09-01 | 1984-01-10 | Fuji Oil Company, Ltd. | Cheese-containing composition for dessert making and process for producing the same |
US4542035A (en) * | 1984-03-16 | 1985-09-17 | The Pillsbury Company | Stable aerated frozen dessert with multivalent cation electrolyte |
US4629628A (en) * | 1979-07-20 | 1986-12-16 | Ferrero Ohg Mbh | Wafers and processes for their manufacture |
US4668519A (en) * | 1984-03-14 | 1987-05-26 | Nabisco Brands | Reduced calorie baked goods and methods for producing same |
US4855156A (en) * | 1988-01-26 | 1989-08-08 | The Nutrasweet Company | Frozen dessert |
US4869915A (en) * | 1987-02-19 | 1989-09-26 | Fuji Oil Company, Limited | Whipped oily flavor |
US4946625A (en) * | 1989-03-27 | 1990-08-07 | Siltech Inc. | Particulate defoaming compositions |
US4954440A (en) * | 1988-06-16 | 1990-09-04 | The Standard Oil Company | Production of polysaccharides from filamentous fungi |
US4960540A (en) * | 1989-08-24 | 1990-10-02 | Friel Jr Thomas C | Alkoxylated bis-amide defoaming compounds |
US5104674A (en) * | 1983-12-30 | 1992-04-14 | Kraft General Foods, Inc. | Microfragmented ionic polysaccharide/protein complex dispersions |
US5202147A (en) * | 1990-03-16 | 1993-04-13 | Van Den Bergh Foods Co., Division Of Conopco, Inc. | Peanut butter and a method for its production |
US5215777A (en) * | 1991-05-16 | 1993-06-01 | Ault Foods Limited | Process for producing low or non fat ice cream |
US5232027A (en) * | 1990-10-03 | 1993-08-03 | Nissei Co., Ltd. | Apparatus for serving soft ice cream or the like |
US5393549A (en) * | 1991-06-14 | 1995-02-28 | Nestec S.A. | Preparation of aerated fat-containing foods |
US5397592A (en) * | 1991-09-06 | 1995-03-14 | Van Den Bergh Foods Co., Division Of Conopco Inc. | Anti-spattering agent and spreads comprising the same |
US5436021A (en) * | 1992-12-31 | 1995-07-25 | Van Den Bergh Co., Division Of Conopco, Inc. | Pumpable oleaginous compositions |
US5486372A (en) * | 1994-03-08 | 1996-01-23 | Kraft Foods, Inc. | Frozen dairy product containing polyol polyesters |
US5486732A (en) * | 1993-09-16 | 1996-01-23 | Valeo Equipements Electriques Moteur | Slip ring unit for fitting to an alternator, especially for a motor vehicle |
US5536514A (en) * | 1995-05-11 | 1996-07-16 | The Nutrasweet Company | Carbohydrate/protein cream substitutes |
US5624612A (en) * | 1993-08-25 | 1997-04-29 | Fmc Corporation | Nonaggregating hydrocolloid microparticulates, intermediates therefor, and processes for their preparation |
US5738897A (en) * | 1993-11-08 | 1998-04-14 | Quest International B.V. | Suspensions of gelled biopolymers |
US5770248A (en) * | 1994-12-14 | 1998-06-23 | Nabisco Technology Company | Reduced fat shredded wafers and process |
US5780092A (en) * | 1994-09-16 | 1998-07-14 | Kraft Foods, Inc, | Foaming coffee creamer and instant hot cappuccino |
US5809787A (en) * | 1997-07-23 | 1998-09-22 | Zittel; David R. | Method of cooling pouched food product using a cooling conveyor |
US5925394A (en) * | 1995-01-09 | 1999-07-20 | Levinson; Melvin L. | Methods for denaturing and whipping into a foam protein certain denaturable proteins found in milk products, egg products and meat products |
US5980969A (en) * | 1997-09-15 | 1999-11-09 | Lipton, Division Of Conopco, Inc. | Powdered tea concentrate, method for foaming tea concentrate and delivery system for preparing same |
US6063602A (en) * | 1997-12-19 | 2000-05-16 | Enitecnologie S.P.A. | Lipopolysaccharide biosurfactant |
US6096867A (en) * | 1996-07-06 | 2000-08-01 | Good Humor-Breyers Ice Cream, Division Of Conopco, Inc. | Frozen food product |
US6238714B1 (en) * | 1999-05-05 | 2001-05-29 | Degussa-Huls Ag | Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof |
US6245957B1 (en) * | 1999-09-02 | 2001-06-12 | The United States Of America As Represented By The Secretary Of The Army | Universal decontaminating solution for chemical warfare agents |
US6284303B1 (en) * | 1998-12-10 | 2001-09-04 | Bestfoods | Vegetable based creamy food and process therefor |
US20020085987A1 (en) * | 2000-10-30 | 2002-07-04 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Shear gel compositions |
US20020155208A1 (en) * | 2001-01-30 | 2002-10-24 | Unilever Bestfoods North America, Division Of Conopco, Inc. | Food product comprising protein coated gas microbubbles |
US20020165114A1 (en) * | 1998-09-03 | 2002-11-07 | Timothy Fowler | Mutant EGIII cellulase, DNA encoding such EGIII compositions and methods for obtaining same |
US20020182300A1 (en) * | 1999-09-18 | 2002-12-05 | Nestec S.A. | Process for the preparation of a frozen confection |
US20030087017A1 (en) * | 2000-06-19 | 2003-05-08 | William Hanselmann | Shelf-stable moist food foam product and process for its preparation |
US20030099751A1 (en) * | 1998-08-06 | 2003-05-29 | Alex Aldred | Frozen low-fat food emulsions |
US20030190402A1 (en) * | 2002-04-04 | 2003-10-09 | Mcbride Christine | Reduced fat foodstuff with improved flavor |
US6685977B1 (en) * | 1999-12-15 | 2004-02-03 | Fuji Oil Co., Ltd. | Method for production of frozen desserts |
US20040109930A1 (en) * | 2000-12-21 | 2004-06-10 | Lipton, Division Of Conopco, Inc. | Food composition suitable for shallow frying comprising sunflower lecithin |
US20050037110A1 (en) * | 2003-07-07 | 2005-02-17 | Dreyer's Grand Ice Cream, Inc. | Aerated frozen suspension with adjusted creaminess and scoop ability based on stress-controlled generation of superfine microstructures |
US20050037000A1 (en) * | 2003-01-09 | 2005-02-17 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
US20050123668A1 (en) * | 2002-07-12 | 2005-06-09 | Kodali Dharma R. | Trans fat replacement system and method of making a baked good with a trans fat replacement system |
US6914043B1 (en) * | 1995-07-05 | 2005-07-05 | Good Humor - Breyers Ice Cream, A Division Of Conopco, Inc. | Frozen food products comprising anti-freeze protein (AFP) type III HPLC 12 |
US20050220961A1 (en) * | 2004-03-19 | 2005-10-06 | Cox Julie A | Reduced sucrose cookie dough |
US20050272646A1 (en) * | 2004-04-16 | 2005-12-08 | Mcmaster University | Streptogramin antibiotics |
US20070298490A1 (en) * | 2004-08-18 | 2007-12-27 | Sweigard James A | Thermophilic hydrophobin proteins and applications for surface modification |
US7338779B1 (en) * | 1999-08-20 | 2008-03-04 | Valtion Teknillinen Tutkimuskeskus | Method for decreasing the foam formation during cultivation of a microorganism |
US20080187633A1 (en) * | 2006-01-31 | 2008-08-07 | Conopco, Inc. D/B/A Unilever | Aerated product |
US20080305237A1 (en) * | 2003-12-09 | 2008-12-11 | Rob Beltman | Cooking Fat Product With Improved Spattering Behaviour |
US20090136433A1 (en) * | 2005-06-24 | 2009-05-28 | Basf Aktiengesellschaft | Use of Hydrophobin-Polypeptides and Conjugates From Hydrophobin-Polypeptides Having Active and Effect Agents and the Production Thereof and Use Thereof In the Cosmetic Industry |
US20090162344A1 (en) * | 2005-11-28 | 2009-06-25 | Gen-Ichiro Soma | Method for Fermentation and Culture, Fermented Plant Extract, Fermented Plant Extract Composition, Method for Producing Lipopolysaccharide and Lipopolysaccharide |
US20100112179A1 (en) * | 2007-03-26 | 2010-05-06 | Andrew Richard Cox | Aerated food products being warm containing soluble and/or insoluble solids and methods for producing them |
US20100184875A1 (en) * | 2008-12-16 | 2010-07-22 | Gerrit Leendert Bezemer | High-speed stop in fischer-tropsch process |
US20100273983A1 (en) * | 2007-04-05 | 2010-10-28 | The University Of Queensland | Method of purifying peptides by selective precipitation |
US20100303987A1 (en) * | 2009-06-02 | 2010-12-02 | Conopco, Inc., D/B/A Unilever | Baked products |
US20110020402A1 (en) * | 2001-01-26 | 2011-01-27 | Andreas Meinke | Method For Identification, Isolation And Production Of Antigens To A Specific Pathogen |
US8038740B2 (en) * | 2005-10-12 | 2011-10-18 | Basf Se | Use of proteins as an antifoaming constituent in fuels |
US20110287150A1 (en) * | 2008-12-12 | 2011-11-24 | Ian Timothy Norton | Low fat food containing gas bubbles |
US20120064201A1 (en) * | 2010-09-15 | 2012-03-15 | Del Monte Corporation | Galvanic package for fruits and vegetables and preservation method |
US20120070560A1 (en) * | 2009-06-05 | 2012-03-22 | Nestec S.A. | Liquid beverage whitener and method of preparing same |
US20120128858A1 (en) * | 2009-06-18 | 2012-05-24 | Deborah Lynne Aldred | Water-in-oil emulsion with improved spattering behaviour |
US8206770B2 (en) * | 2004-07-27 | 2012-06-26 | Conopco, Inc. | Frozen products |
US8354503B2 (en) * | 2008-12-16 | 2013-01-15 | Conopco, Inc. | Method for extracting hydrophobin from a solution |
US8357420B2 (en) * | 2009-05-29 | 2013-01-22 | Conopco, Inc. | Oil-in-water emulsion |
US8394444B2 (en) * | 2009-05-29 | 2013-03-12 | Conopco, Inc. | Oil-in-water emulsion |
US20130260007A1 (en) * | 2010-12-14 | 2013-10-03 | Deborah Lynne Aldred | Oil-in-water emulsion with improved spattering behaviour |
Family Cites Families (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB459583A (en) | 1935-07-11 | 1937-01-11 | John William Todd | Improved process for manufacturing articles of food or confectionery |
US2604406A (en) | 1949-08-02 | 1952-07-22 | Borden Co | Process for stabilizing foodstuff and stabilizing composition |
US3556813A (en) | 1967-12-08 | 1971-01-19 | Lipton Inc Thomas J | Frozen confection |
GB1456207A (en) | 1972-12-15 | 1976-11-24 | Unilever Ltd | Ice-cream |
JPS5917946B2 (en) | 1981-08-27 | 1984-04-24 | 北新合板株式会社 | Multilayer oriented board and its manufacturing method |
DE3143947A1 (en) | 1981-11-05 | 1983-05-11 | Hoechst Ag, 6230 Frankfurt | "FUNCTIONAL PROTEIN HYDROLYSATE, METHOD FOR THE PRODUCTION THEREOF AND FOOD CONTAINING THIS PROTEIN HYDROLYSATE" |
GB2134117B (en) | 1983-01-21 | 1986-05-29 | British Food Manufacturing Ind | Protein composition |
JPS61219342A (en) | 1985-03-26 | 1986-09-29 | Fuji Oil Co Ltd | Production of frozen and frothed food |
JPH0616676B2 (en) | 1985-06-20 | 1994-03-09 | 新田ゼラチン株式会社 | Multicellular frozen dessert material |
US4931397A (en) | 1985-09-24 | 1990-06-05 | Miles Inc. | Method for removing antifoaming agents during processing of microbial fermentations |
GB8706711D0 (en) | 1987-03-20 | 1987-04-23 | Unilever Plc | Edible plastic product |
CA1327483C (en) | 1987-12-14 | 1994-03-08 | Vijay Arjun Sawant | Confection and method and apparatus for manufacturing it |
JP2648606B2 (en) | 1988-02-26 | 1997-09-03 | 三井東圧化学株式会社 | Magenta color toner composition |
FR2629363B1 (en) | 1988-03-29 | 1991-10-11 | Rubinstein Inc H | GEL EMULSION PARTICLES AND THEIR USE, ESPECIALLY IN COSMETOLOGY |
US4874627A (en) | 1988-06-14 | 1989-10-17 | Nouevelle Ice Cream Corporation | Non-fat dairy compositions |
JP2712032B2 (en) * | 1988-07-25 | 1998-02-10 | 第一工業製薬株式会社 | Method for producing antifoam for fermentation |
WO1990013571A1 (en) | 1989-05-10 | 1990-11-15 | Dna Plant Technology Corporation | Antifreeze polypeptides |
JPH03164156A (en) | 1989-11-22 | 1991-07-16 | Nakano Vinegar Co Ltd | Frozen food and production thereof |
US5084295A (en) | 1990-02-02 | 1992-01-28 | The Procter & Gamble Company | Process for making low calorie fat-containing frozen dessert products having smooth, creamy, nongritty mouthfeel |
ES2067846T3 (en) | 1990-07-30 | 1995-04-01 | Unilever Nv | BREATHABLE CREAM DOES NOT MILK, BASED ON LIQUID OIL. |
AU8455091A (en) | 1990-09-24 | 1992-03-26 | Alf Silkeberg | Edible fats and oils stabilized with sesame oil as a constituent |
AU1907192A (en) | 1991-06-13 | 1993-01-12 | University Of Waterloo | Cold tolerances in plants |
WO1994003617A1 (en) | 1992-07-29 | 1994-02-17 | Unilever N.V. | Process for producing anti-freeze peptides |
ZA935729B (en) | 1992-08-21 | 1995-02-06 | Unilever Plc | Bakery custard |
CN1042190C (en) | 1992-12-02 | 1999-02-24 | 尤尼利弗公司 | Frozen confections |
PT919134E (en) | 1992-12-17 | 2002-04-29 | Mcgill Tech Ltd | DISTRIBUTION MECHANISM |
US5681505A (en) | 1993-07-13 | 1997-10-28 | Cornell Research Foundation, Inc. | Stabilized foamable whey protein composition |
GB9403930D0 (en) | 1994-03-01 | 1994-04-20 | Zeneca Ltd | Production of food |
US5676985A (en) | 1994-10-12 | 1997-10-14 | Hsc Research And Development Limited Partnership | Antifreeze polypeptide-expressing microorganisms useful in fermentation and freezing of foods |
GB9500579D0 (en) | 1995-01-12 | 1995-03-01 | Zeneca Ltd | Texturised foodstuffs |
NL1000541C2 (en) | 1995-06-09 | 1996-12-10 | Ver Coop Melkind | Liquid and pasty foods in aerosol. |
EP0775444B1 (en) | 1995-10-25 | 2001-12-12 | Unilever N.V. | Pourable fat compositions |
DE69623904T2 (en) | 1995-11-02 | 2003-05-15 | Lipidia Holding S.A., Luxemburg/Luxembourg | Stable edible oil composition |
ATE287451T1 (en) | 1996-07-26 | 2005-02-15 | Unilever Nv | FROZEN FOOD PRODUCT CONTAINING HEAT-Stable antifreeze protein |
GB2315661B (en) | 1996-07-26 | 2000-05-03 | Unilever Plc | Frozen food product |
GB9801420D0 (en) | 1998-01-22 | 1998-03-18 | Unilever Plc | Frozen food product |
US5968582A (en) | 1998-02-20 | 1999-10-19 | Nestec S.A. | Molded frozen bar |
US20030148400A1 (en) | 1998-04-17 | 2003-08-07 | Auli Haikara | Method for determining a gushing factor for a beverage |
CA2336872C (en) | 1998-07-07 | 2009-03-17 | Unilever Plc | Method for the preparation of an aerated frozen product |
GB9902856D0 (en) | 1999-02-10 | 1999-03-31 | Dow Corning | Organosiloxane compositions |
US6596333B1 (en) | 1999-07-21 | 2003-07-22 | Nestec S.A. | Process for producing aerated frozen products |
EP1074181A1 (en) | 1999-08-03 | 2001-02-07 | Societe Des Produits Nestle S.A. | Foaming creamer ingredient and powders containing it |
JP3952646B2 (en) | 1999-11-11 | 2007-08-01 | 株式会社カネカ | Foamable water-in-oil food |
UA73327C2 (en) | 1999-11-15 | 2005-07-15 | Water and oil emulsion | |
GB0002661D0 (en) | 2000-02-04 | 2000-03-29 | Biomade B V | Method of stabilizing a hydrophobin-containing solution and a method of coating a surface with a hydrophobin |
GB0007770D0 (en) | 2000-03-30 | 2000-05-17 | Biomade B V | Protein capable of self-assembly at a hydrophobic hydrophillic interface, method of coating a surface, method of stabilizing a dispersion, method of stabilizi |
MXPA02011040A (en) | 2000-05-09 | 2003-03-10 | Unilever Nv | Pourable shortening composition. |
US6693848B1 (en) | 2000-06-09 | 2004-02-17 | Westerngeco, L.L.C. | Apparatus for microchip laser geo-sensors |
JP2002218907A (en) | 2001-01-24 | 2002-08-06 | Knorr Foods Co Ltd | Oil-in-water type emulsified composition |
GB0105767D0 (en) | 2001-03-09 | 2001-04-25 | Unilever Plc | Aerated frozen product |
GB0110954D0 (en) | 2001-05-04 | 2001-06-27 | Marlow Foods Ltd | Edible fungi |
NL1018770C2 (en) | 2001-08-16 | 2003-02-24 | Campina Melkunie Bv | Method for preparing an edible stable foam, foam, and foodstuff comprising the foam. |
AU2001295476B2 (en) | 2001-08-17 | 2008-06-26 | Societe Des Produits Nestle S.A. | Frozen confectionery |
DE60132345T2 (en) | 2001-12-04 | 2009-01-02 | Kerry Group Services International Ltd., Tralee | Process for producing aerated carbohydrate-containing products |
EP1455590B1 (en) | 2001-12-19 | 2008-01-16 | Unilever N.V. | Stable dispersion of particles in edible oil |
DE10163079A1 (en) | 2001-12-20 | 2003-07-03 | Basf Ag | Process for improving plant growth by applying a mixture of sulfur and complexing agent |
EP1402790A3 (en) | 2002-09-27 | 2004-05-06 | Nestec S.A. | Interface stabilisation of a product with 2 or more phases with a protein-polysaccharide complex |
JP2005073612A (en) | 2003-09-01 | 2005-03-24 | Ezaki Glico Co Ltd | Deionized chocolate and method for producing the same |
EP1679975A1 (en) | 2003-10-15 | 2006-07-19 | Uniq Bioresearch Oy | Method for strengthening a protein-containing product and a protein-containing product |
ZA200603670B (en) | 2003-12-09 | 2007-09-26 | Unilever Plc | Water-in-oil emulsion with improved spattering behaviour |
EP1541034A1 (en) | 2003-12-10 | 2005-06-15 | Unilever Plc | Frozen confectionery product |
JP3742089B2 (en) | 2003-12-19 | 2006-02-01 | 花王株式会社 | Bubble-containing water-in-oil emulsified fat composition |
DE102004003448B3 (en) | 2004-01-22 | 2005-11-10 | Nestle S.A. | Deep-temperature extrusion process for microstructuring frozen, aerated masses, such as ice cream, and cryogenic extrusion apparatus for carrying out this process |
GB0404715D0 (en) | 2004-03-03 | 2004-04-07 | Unilever Plc | Frozen aerated product in a container and a valve for dispensing such |
JP2005278484A (en) | 2004-03-29 | 2005-10-13 | Sanei Gen Ffi Inc | Frozen dessert |
WO2005113387A2 (en) | 2004-05-14 | 2005-12-01 | Ezee Whip Ice-Cream Limited | A food container, dispensing apparatus and method |
BRPI0516304B1 (en) | 2004-10-18 | 2016-11-08 | Unilever Nv | low-fat frozen confectionery, uses of an ice-structuring protein, methods for stabilizing, enhancing shape retention or reducing the deleterious effects of stabilizers on texture and / or flavor in a low-fat frozen confectionery fat content |
WO2007008560A2 (en) | 2005-07-08 | 2007-01-18 | Durafizz, Llc | Stabilized edible foams |
US7721463B2 (en) | 2005-07-15 | 2010-05-25 | Ricardo Leon | Oven |
ZA200800988B (en) | 2005-09-23 | 2009-08-26 | Unilever Plc | Aerated products with reduced creaming |
ZA200800987B (en) | 2005-09-23 | 2009-08-26 | Unilever Plc | Low pH aerated products |
JP4466577B2 (en) | 2006-01-31 | 2010-05-26 | 不二製油株式会社 | Oil-in-water emulsion for frozen desserts |
EP1849461A1 (en) | 2006-04-21 | 2007-10-31 | Pfizer Products Inc. | Process for manufacturing films |
JP4664241B2 (en) | 2006-06-22 | 2011-04-06 | 太陽化学株式会社 | Egg white foam stabilizer |
EP1897445A1 (en) | 2006-09-11 | 2008-03-12 | Nestec S.A. | Production of edible wafers by extrusion |
CN101528054B (en) | 2006-10-17 | 2013-03-13 | 荷兰联合利华有限公司 | Food composition comprising gas bubbles and process for preparing it |
US20100086662A1 (en) | 2007-03-26 | 2010-04-08 | Andrew Richard Cox | Aerated food products being warm or having been heated up and methods for producing them |
CN101054407A (en) | 2007-05-25 | 2007-10-17 | 中国科学技术大学 | Method for separating and purifying hydrophobin |
US20110159165A1 (en) | 2007-10-10 | 2011-06-30 | Nairsons Flavourhouse Cc | Method of Producing Acid Stable Protein Products and Products so Produced |
BRPI0816506A2 (en) * | 2007-10-18 | 2014-10-14 | Unilever Nv | "METHOD FOR PRODUCING A FOAMING AGENT" |
CN101215321B (en) | 2008-01-18 | 2010-11-17 | 乔明强 | Method for extracting II type epiphyte hydrophobic protein by ultrafiltration method |
JP5503426B2 (en) | 2009-06-26 | 2014-05-28 | 押尾産業株式会社 | Fruit processing equipment |
-
2009
- 2009-10-07 AU AU2009304092A patent/AU2009304092B2/en not_active Ceased
- 2009-10-07 BR BRPI0919788A patent/BRPI0919788A2/en not_active Application Discontinuation
- 2009-10-07 WO PCT/EP2009/063006 patent/WO2010043520A1/en active Application Filing
- 2009-10-07 DK DK09783803.1T patent/DK2346987T3/en active
- 2009-10-07 CA CA2740326A patent/CA2740326C/en not_active Expired - Fee Related
- 2009-10-07 CN CN200980141223.7A patent/CN102186967B/en not_active Expired - Fee Related
- 2009-10-07 MX MX2011004080A patent/MX2011004080A/en active IP Right Grant
- 2009-10-07 JP JP2011531443A patent/JP2012505645A/en active Pending
- 2009-10-14 US US12/578,752 patent/US9115349B2/en not_active Expired - Fee Related
-
2011
- 2011-04-11 ZA ZA2011/02685A patent/ZA201102685B/en unknown
Patent Citations (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2844470A (en) * | 1956-07-24 | 1958-07-22 | Best Foods Inc | Pressurized food dressing |
US2970917A (en) * | 1957-05-09 | 1961-02-07 | Corn Products Co | Whipped margarine and process for making the same |
US2937093A (en) * | 1957-09-30 | 1960-05-17 | Nat Dairy Prod Corp | Process for manufacturing whipped fatty emulsion |
US3266214A (en) * | 1960-09-19 | 1966-08-16 | Kramme Sivert | Apparatus for making packaged whipped butter in stick or brick form |
US3346387A (en) * | 1964-03-02 | 1967-10-10 | Glidden Co | Whipping assistant and comestibles utilizing same |
US3946122A (en) * | 1967-12-04 | 1976-03-23 | Lever Brothers Company | Process of preparing margarine products |
US4012533A (en) * | 1974-11-20 | 1977-03-15 | Kraft, Inc. | Multipurpose whipped dessert and method of manufacturing |
US4066794A (en) * | 1976-06-23 | 1978-01-03 | Sylvia Schur | Instant yogurt preparation |
US4244982A (en) * | 1976-08-05 | 1981-01-13 | W. R. Grace & Co. | Process for preparing a food mousse |
US4146652A (en) * | 1977-01-28 | 1979-03-27 | Rich Products Corporation | Intermediate moisture, ready-to-use frozen whippable foods |
US4305964A (en) * | 1978-11-16 | 1981-12-15 | Lever Brothers Company | Food product |
US4325980A (en) * | 1978-12-20 | 1982-04-20 | Lever Brothers Company | Process for producing a margarine having a reduced tendency to spattering |
US4629628A (en) * | 1979-07-20 | 1986-12-16 | Ferrero Ohg Mbh | Wafers and processes for their manufacture |
US4425369A (en) * | 1980-09-01 | 1984-01-10 | Fuji Oil Company, Ltd. | Cheese-containing composition for dessert making and process for producing the same |
US5104674A (en) * | 1983-12-30 | 1992-04-14 | Kraft General Foods, Inc. | Microfragmented ionic polysaccharide/protein complex dispersions |
US4668519A (en) * | 1984-03-14 | 1987-05-26 | Nabisco Brands | Reduced calorie baked goods and methods for producing same |
US4542035A (en) * | 1984-03-16 | 1985-09-17 | The Pillsbury Company | Stable aerated frozen dessert with multivalent cation electrolyte |
US4869915A (en) * | 1987-02-19 | 1989-09-26 | Fuji Oil Company, Limited | Whipped oily flavor |
US4855156A (en) * | 1988-01-26 | 1989-08-08 | The Nutrasweet Company | Frozen dessert |
US4954440A (en) * | 1988-06-16 | 1990-09-04 | The Standard Oil Company | Production of polysaccharides from filamentous fungi |
US4946625A (en) * | 1989-03-27 | 1990-08-07 | Siltech Inc. | Particulate defoaming compositions |
US4960540A (en) * | 1989-08-24 | 1990-10-02 | Friel Jr Thomas C | Alkoxylated bis-amide defoaming compounds |
US5202147A (en) * | 1990-03-16 | 1993-04-13 | Van Den Bergh Foods Co., Division Of Conopco, Inc. | Peanut butter and a method for its production |
US5232027A (en) * | 1990-10-03 | 1993-08-03 | Nissei Co., Ltd. | Apparatus for serving soft ice cream or the like |
US5215777A (en) * | 1991-05-16 | 1993-06-01 | Ault Foods Limited | Process for producing low or non fat ice cream |
US5393549A (en) * | 1991-06-14 | 1995-02-28 | Nestec S.A. | Preparation of aerated fat-containing foods |
US5397592A (en) * | 1991-09-06 | 1995-03-14 | Van Den Bergh Foods Co., Division Of Conopco Inc. | Anti-spattering agent and spreads comprising the same |
US5436021A (en) * | 1992-12-31 | 1995-07-25 | Van Den Bergh Co., Division Of Conopco, Inc. | Pumpable oleaginous compositions |
US5624612A (en) * | 1993-08-25 | 1997-04-29 | Fmc Corporation | Nonaggregating hydrocolloid microparticulates, intermediates therefor, and processes for their preparation |
US5486732A (en) * | 1993-09-16 | 1996-01-23 | Valeo Equipements Electriques Moteur | Slip ring unit for fitting to an alternator, especially for a motor vehicle |
US5738897A (en) * | 1993-11-08 | 1998-04-14 | Quest International B.V. | Suspensions of gelled biopolymers |
US5486372A (en) * | 1994-03-08 | 1996-01-23 | Kraft Foods, Inc. | Frozen dairy product containing polyol polyesters |
US5780092A (en) * | 1994-09-16 | 1998-07-14 | Kraft Foods, Inc, | Foaming coffee creamer and instant hot cappuccino |
US5770248A (en) * | 1994-12-14 | 1998-06-23 | Nabisco Technology Company | Reduced fat shredded wafers and process |
US5925394A (en) * | 1995-01-09 | 1999-07-20 | Levinson; Melvin L. | Methods for denaturing and whipping into a foam protein certain denaturable proteins found in milk products, egg products and meat products |
US5536514A (en) * | 1995-05-11 | 1996-07-16 | The Nutrasweet Company | Carbohydrate/protein cream substitutes |
US6914043B1 (en) * | 1995-07-05 | 2005-07-05 | Good Humor - Breyers Ice Cream, A Division Of Conopco, Inc. | Frozen food products comprising anti-freeze protein (AFP) type III HPLC 12 |
US6096867A (en) * | 1996-07-06 | 2000-08-01 | Good Humor-Breyers Ice Cream, Division Of Conopco, Inc. | Frozen food product |
US5809787A (en) * | 1997-07-23 | 1998-09-22 | Zittel; David R. | Method of cooling pouched food product using a cooling conveyor |
US5980969A (en) * | 1997-09-15 | 1999-11-09 | Lipton, Division Of Conopco, Inc. | Powdered tea concentrate, method for foaming tea concentrate and delivery system for preparing same |
US6063602A (en) * | 1997-12-19 | 2000-05-16 | Enitecnologie S.P.A. | Lipopolysaccharide biosurfactant |
US20030099751A1 (en) * | 1998-08-06 | 2003-05-29 | Alex Aldred | Frozen low-fat food emulsions |
US20020165114A1 (en) * | 1998-09-03 | 2002-11-07 | Timothy Fowler | Mutant EGIII cellulase, DNA encoding such EGIII compositions and methods for obtaining same |
US6284303B1 (en) * | 1998-12-10 | 2001-09-04 | Bestfoods | Vegetable based creamy food and process therefor |
US6238714B1 (en) * | 1999-05-05 | 2001-05-29 | Degussa-Huls Ag | Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof |
US7338779B1 (en) * | 1999-08-20 | 2008-03-04 | Valtion Teknillinen Tutkimuskeskus | Method for decreasing the foam formation during cultivation of a microorganism |
US6245957B1 (en) * | 1999-09-02 | 2001-06-12 | The United States Of America As Represented By The Secretary Of The Army | Universal decontaminating solution for chemical warfare agents |
US20020182300A1 (en) * | 1999-09-18 | 2002-12-05 | Nestec S.A. | Process for the preparation of a frozen confection |
US6685977B1 (en) * | 1999-12-15 | 2004-02-03 | Fuji Oil Co., Ltd. | Method for production of frozen desserts |
US20030087017A1 (en) * | 2000-06-19 | 2003-05-08 | William Hanselmann | Shelf-stable moist food foam product and process for its preparation |
US20020085987A1 (en) * | 2000-10-30 | 2002-07-04 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Shear gel compositions |
US20040109930A1 (en) * | 2000-12-21 | 2004-06-10 | Lipton, Division Of Conopco, Inc. | Food composition suitable for shallow frying comprising sunflower lecithin |
US20110020402A1 (en) * | 2001-01-26 | 2011-01-27 | Andreas Meinke | Method For Identification, Isolation And Production Of Antigens To A Specific Pathogen |
US20020155208A1 (en) * | 2001-01-30 | 2002-10-24 | Unilever Bestfoods North America, Division Of Conopco, Inc. | Food product comprising protein coated gas microbubbles |
US20030190402A1 (en) * | 2002-04-04 | 2003-10-09 | Mcbride Christine | Reduced fat foodstuff with improved flavor |
US20050123668A1 (en) * | 2002-07-12 | 2005-06-09 | Kodali Dharma R. | Trans fat replacement system and method of making a baked good with a trans fat replacement system |
US20050037000A1 (en) * | 2003-01-09 | 2005-02-17 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
US20050037110A1 (en) * | 2003-07-07 | 2005-02-17 | Dreyer's Grand Ice Cream, Inc. | Aerated frozen suspension with adjusted creaminess and scoop ability based on stress-controlled generation of superfine microstructures |
US20080305237A1 (en) * | 2003-12-09 | 2008-12-11 | Rob Beltman | Cooking Fat Product With Improved Spattering Behaviour |
US20050220961A1 (en) * | 2004-03-19 | 2005-10-06 | Cox Julie A | Reduced sucrose cookie dough |
US20050272646A1 (en) * | 2004-04-16 | 2005-12-08 | Mcmaster University | Streptogramin antibiotics |
US8216624B2 (en) * | 2004-07-27 | 2012-07-10 | Conopco, Inc. | Aerated food products |
US8206770B2 (en) * | 2004-07-27 | 2012-06-26 | Conopco, Inc. | Frozen products |
US20070298490A1 (en) * | 2004-08-18 | 2007-12-27 | Sweigard James A | Thermophilic hydrophobin proteins and applications for surface modification |
US20090136433A1 (en) * | 2005-06-24 | 2009-05-28 | Basf Aktiengesellschaft | Use of Hydrophobin-Polypeptides and Conjugates From Hydrophobin-Polypeptides Having Active and Effect Agents and the Production Thereof and Use Thereof In the Cosmetic Industry |
US8038740B2 (en) * | 2005-10-12 | 2011-10-18 | Basf Se | Use of proteins as an antifoaming constituent in fuels |
US20090162344A1 (en) * | 2005-11-28 | 2009-06-25 | Gen-Ichiro Soma | Method for Fermentation and Culture, Fermented Plant Extract, Fermented Plant Extract Composition, Method for Producing Lipopolysaccharide and Lipopolysaccharide |
US20080187633A1 (en) * | 2006-01-31 | 2008-08-07 | Conopco, Inc. D/B/A Unilever | Aerated product |
US20100112179A1 (en) * | 2007-03-26 | 2010-05-06 | Andrew Richard Cox | Aerated food products being warm containing soluble and/or insoluble solids and methods for producing them |
US20100273983A1 (en) * | 2007-04-05 | 2010-10-28 | The University Of Queensland | Method of purifying peptides by selective precipitation |
US8647696B2 (en) * | 2008-12-12 | 2014-02-11 | The University Of Birmingham | Low fat food containing gas bubbles |
US20110287150A1 (en) * | 2008-12-12 | 2011-11-24 | Ian Timothy Norton | Low fat food containing gas bubbles |
US8354503B2 (en) * | 2008-12-16 | 2013-01-15 | Conopco, Inc. | Method for extracting hydrophobin from a solution |
US20100184875A1 (en) * | 2008-12-16 | 2010-07-22 | Gerrit Leendert Bezemer | High-speed stop in fischer-tropsch process |
US8357420B2 (en) * | 2009-05-29 | 2013-01-22 | Conopco, Inc. | Oil-in-water emulsion |
US8394444B2 (en) * | 2009-05-29 | 2013-03-12 | Conopco, Inc. | Oil-in-water emulsion |
US20100303987A1 (en) * | 2009-06-02 | 2010-12-02 | Conopco, Inc., D/B/A Unilever | Baked products |
US20120070560A1 (en) * | 2009-06-05 | 2012-03-22 | Nestec S.A. | Liquid beverage whitener and method of preparing same |
US20120128858A1 (en) * | 2009-06-18 | 2012-05-24 | Deborah Lynne Aldred | Water-in-oil emulsion with improved spattering behaviour |
US20120064201A1 (en) * | 2010-09-15 | 2012-03-15 | Del Monte Corporation | Galvanic package for fruits and vegetables and preservation method |
US20130260007A1 (en) * | 2010-12-14 | 2013-10-03 | Deborah Lynne Aldred | Oil-in-water emulsion with improved spattering behaviour |
Non-Patent Citations (1)
Title |
---|
Linder et al. ( FEMS Microbiology, Reviews, vol.29, pp. 877-896, 2005) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012137147A1 (en) | 2011-04-08 | 2012-10-11 | Danisco Us, Inc. | Compositions |
WO2014063097A1 (en) | 2012-10-19 | 2014-04-24 | Danisco Us Inc. | Stabilization of biomimetic membranes |
WO2015094527A1 (en) | 2013-12-19 | 2015-06-25 | Danisco Us Inc. | Use of hydrophobins to increase gas transferin aerobic fermentation processes |
Also Published As
Publication number | Publication date |
---|---|
CA2740326C (en) | 2017-06-13 |
JP2012505645A (en) | 2012-03-08 |
CN102186967A (en) | 2011-09-14 |
AU2009304092A1 (en) | 2010-04-22 |
BRPI0919788A2 (en) | 2016-09-06 |
DK2346987T3 (en) | 2016-04-25 |
CA2740326A1 (en) | 2010-04-22 |
WO2010043520A1 (en) | 2010-04-22 |
US9115349B2 (en) | 2015-08-25 |
ZA201102685B (en) | 2012-06-27 |
MX2011004080A (en) | 2011-07-28 |
AU2009304092B2 (en) | 2013-09-05 |
CN102186967B (en) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2201098B1 (en) | Method for producing a foaming agent | |
US9115349B2 (en) | Hydrophobin solution containing antifoam | |
AU2009328324B2 (en) | Method for extracting hydrophobin from a solution | |
EP2464446B1 (en) | Cross-flow membrane filtration-based process for protein recovery | |
JP2014510796A (en) | Method for purifying hydrophobin | |
Isa et al. | A further study of the recovery and purification of surfactin from fermentation broth by membrane filtration | |
EP2346987B1 (en) | Hydrophobin solution containing antifoam | |
Liu et al. | Cloning and heterologous expression of a hydrophobin gene Ltr. hyd from the tiger milk mushroom Lentinus tuber-regium in yeast-like cells of Tremella fuciformis | |
Reinehr et al. | Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation | |
AU2013266516A1 (en) | Trichoderma hydrophobin production | |
WO2022049228A1 (en) | Method for removing antifoaming agents from a fermentation broth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CONOPCO, INC. D/B/A UNILEVER,NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COX, ANDREW RICHARD;RUSSELL, ANDREW BAXTER;TIER, CHRISTOPHER MARK;REEL/FRAME:023468/0567 Effective date: 20091012 Owner name: CONOPCO, INC. D/B/A UNILEVER, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COX, ANDREW RICHARD;RUSSELL, ANDREW BAXTER;TIER, CHRISTOPHER MARK;REEL/FRAME:023468/0567 Effective date: 20091012 |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230825 |