EP3483246A1 - Cleaning composition comprising hydrophobins - Google Patents
Cleaning composition comprising hydrophobins Download PDFInfo
- Publication number
- EP3483246A1 EP3483246A1 EP18178698.9A EP18178698A EP3483246A1 EP 3483246 A1 EP3483246 A1 EP 3483246A1 EP 18178698 A EP18178698 A EP 18178698A EP 3483246 A1 EP3483246 A1 EP 3483246A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- seq
- composition
- eas
- hydrophobins
- surfactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 257
- 238000004140 cleaning Methods 0.000 title claims abstract description 82
- 239000004094 surface-active agent Substances 0.000 claims abstract description 63
- 238000000034 method Methods 0.000 claims abstract description 33
- 239000003945 anionic surfactant Substances 0.000 claims abstract description 26
- 239000002888 zwitterionic surfactant Substances 0.000 claims abstract description 9
- 239000002280 amphoteric surfactant Substances 0.000 claims abstract description 8
- -1 alkyl alkoxy sulfates Chemical class 0.000 claims description 43
- 108090000623 proteins and genes Proteins 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- 102000004169 proteins and genes Human genes 0.000 claims description 35
- 150000001413 amino acids Chemical class 0.000 claims description 29
- 238000005406 washing Methods 0.000 claims description 29
- 150000001412 amines Chemical group 0.000 claims description 21
- 102000004190 Enzymes Human genes 0.000 claims description 14
- 108090000790 Enzymes Proteins 0.000 claims description 14
- 229940088598 enzyme Drugs 0.000 claims description 14
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 11
- 238000004851 dishwashing Methods 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 10
- 150000008051 alkyl sulfates Chemical class 0.000 claims description 6
- 238000010936 aqueous wash Methods 0.000 claims description 6
- 150000001720 carbohydrates Chemical class 0.000 claims description 6
- 235000014633 carbohydrates Nutrition 0.000 claims description 6
- 239000013522 chelant Substances 0.000 claims description 5
- VCVKIIDXVWEWSZ-YFKPBYRVSA-N (2s)-2-[bis(carboxymethyl)amino]pentanedioic acid Chemical compound OC(=O)CC[C@@H](C(O)=O)N(CC(O)=O)CC(O)=O VCVKIIDXVWEWSZ-YFKPBYRVSA-N 0.000 claims description 4
- 238000007046 ethoxylation reaction Methods 0.000 claims description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 claims description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 3
- 150000003871 sulfonates Chemical class 0.000 claims description 3
- 102000013142 Amylases Human genes 0.000 claims description 2
- 108010065511 Amylases Proteins 0.000 claims description 2
- 102000004882 Lipase Human genes 0.000 claims description 2
- 108090001060 Lipase Proteins 0.000 claims description 2
- 239000004367 Lipase Substances 0.000 claims description 2
- 102000003820 Lipoxygenases Human genes 0.000 claims description 2
- 108090000128 Lipoxygenases Proteins 0.000 claims description 2
- 108091005804 Peptidases Proteins 0.000 claims description 2
- 102000035195 Peptidases Human genes 0.000 claims description 2
- 239000004365 Protease Substances 0.000 claims description 2
- 150000004996 alkyl benzenes Chemical class 0.000 claims description 2
- 235000019418 amylase Nutrition 0.000 claims description 2
- 229940025131 amylases Drugs 0.000 claims description 2
- 229960003237 betaine Drugs 0.000 claims description 2
- 150000007942 carboxylates Chemical class 0.000 claims description 2
- 150000002009 diols Chemical class 0.000 claims description 2
- 235000019421 lipase Nutrition 0.000 claims description 2
- 239000012188 paraffin wax Substances 0.000 claims description 2
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 claims description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N protonated dimethyl amine Natural products CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 2
- 108010059892 Cellulase Proteins 0.000 claims 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical group C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 claims 1
- 229940106157 cellulase Drugs 0.000 claims 1
- 239000003599 detergent Substances 0.000 description 42
- 235000018102 proteins Nutrition 0.000 description 31
- 239000000243 solution Substances 0.000 description 29
- 101710091977 Hydrophobin Proteins 0.000 description 26
- 229920002873 Polyethylenimine Polymers 0.000 description 24
- 125000000217 alkyl group Chemical group 0.000 description 23
- 239000002689 soil Substances 0.000 description 23
- 235000002639 sodium chloride Nutrition 0.000 description 21
- 235000001014 amino acid Nutrition 0.000 description 19
- 229940024606 amino acid Drugs 0.000 description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- 241000221961 Neurospora crassa Species 0.000 description 16
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 15
- 150000003839 salts Chemical class 0.000 description 15
- 125000003545 alkoxy group Chemical group 0.000 description 14
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 108090000765 processed proteins & peptides Proteins 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 150000001298 alcohols Chemical class 0.000 description 10
- 125000004433 nitrogen atom Chemical group N* 0.000 description 10
- 239000004006 olive oil Substances 0.000 description 9
- 235000008390 olive oil Nutrition 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 8
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 8
- 238000010998 test method Methods 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- 150000002431 hydrogen Chemical group 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 239000002736 nonionic surfactant Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000003752 hydrotrope Substances 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 238000005956 quaternization reaction Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 5
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 5
- 150000001735 carboxylic acids Chemical class 0.000 description 5
- 239000002738 chelating agent Substances 0.000 description 5
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000008233 hard water Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical class [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000002334 glycols Chemical class 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 235000011056 potassium acetate Nutrition 0.000 description 4
- 239000001103 potassium chloride Substances 0.000 description 4
- 235000011164 potassium chloride Nutrition 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000012460 protein solution Substances 0.000 description 4
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920002498 Beta-glucan Polymers 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 3
- 239000001527 calcium lactate Substances 0.000 description 3
- 235000011086 calcium lactate Nutrition 0.000 description 3
- 229960002401 calcium lactate Drugs 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 239000012470 diluted sample Substances 0.000 description 3
- 238000004945 emulsification Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 239000004519 grease Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- WFIZEGIEIOHZCP-UHFFFAOYSA-M potassium formate Chemical compound [K+].[O-]C=O WFIZEGIEIOHZCP-UHFFFAOYSA-M 0.000 description 3
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 3
- 229910052939 potassium sulfate Inorganic materials 0.000 description 3
- 235000011151 potassium sulphates Nutrition 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012085 test solution Substances 0.000 description 3
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 2
- 229920000310 Alpha glucan Polymers 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical class [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 102000005720 Glutathione transferase Human genes 0.000 description 2
- 108010070675 Glutathione transferase Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical group [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 101000639942 Schizophyllum commune Fruiting body protein SC3 Proteins 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000004280 Sodium formate Substances 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 108010076818 TEV protease Proteins 0.000 description 2
- 102100036407 Thioredoxin Human genes 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 102000044159 Ubiquitin Human genes 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- INJRKJPEYSAMPD-UHFFFAOYSA-N aluminum;silicic acid;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O INJRKJPEYSAMPD-UHFFFAOYSA-N 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 229940047662 ammonium xylenesulfonate Drugs 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- IHRIVUSMZMVANI-UHFFFAOYSA-N azane;2-methylbenzenesulfonic acid Chemical compound [NH4+].CC1=CC=CC=C1S([O-])(=O)=O IHRIVUSMZMVANI-UHFFFAOYSA-N 0.000 description 2
- LUAVFCBYZUMYCE-UHFFFAOYSA-N azanium;2-propan-2-ylbenzenesulfonate Chemical compound [NH4+].CC(C)C1=CC=CC=C1S([O-])(=O)=O LUAVFCBYZUMYCE-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 229960005069 calcium Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 235000011148 calcium chloride Nutrition 0.000 description 2
- 239000004281 calcium formate Substances 0.000 description 2
- 235000019255 calcium formate Nutrition 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Chemical class 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 230000003116 impacting effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 230000005923 long-lasting effect Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- HESSGHHCXGBPAJ-UHFFFAOYSA-N n-[3,5,6-trihydroxy-1-oxo-4-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexan-2-yl]acetamide Chemical compound CC(=O)NC(C=O)C(O)C(C(O)CO)OC1OC(CO)C(O)C(O)C1O HESSGHHCXGBPAJ-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical class OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 235000019254 sodium formate Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 2
- 229940117986 sulfobetaine Drugs 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 108060008226 thioredoxin Proteins 0.000 description 2
- DBTMGCOVALSLOR-DEVYUCJPSA-N (2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](CO)O[C@H](O)[C@@H]2O)O)O[C@H](CO)[C@H]1O DBTMGCOVALSLOR-DEVYUCJPSA-N 0.000 description 1
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 1
- VXWBQOJISHAKKM-UHFFFAOYSA-N (4-formylphenyl)boronic acid Chemical compound OB(O)C1=CC=C(C=O)C=C1 VXWBQOJISHAKKM-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- OSCJHTSDLYVCQC-UHFFFAOYSA-N 2-ethylhexyl 4-[[4-[4-(tert-butylcarbamoyl)anilino]-6-[4-(2-ethylhexoxycarbonyl)anilino]-1,3,5-triazin-2-yl]amino]benzoate Chemical compound C1=CC(C(=O)OCC(CC)CCCC)=CC=C1NC1=NC(NC=2C=CC(=CC=2)C(=O)NC(C)(C)C)=NC(NC=2C=CC(=CC=2)C(=O)OCC(CC)CCCC)=N1 OSCJHTSDLYVCQC-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- SLRMQYXOBQWXCR-UHFFFAOYSA-N 2154-56-5 Chemical compound [CH2]C1=CC=CC=C1 SLRMQYXOBQWXCR-UHFFFAOYSA-N 0.000 description 1
- WGLQHUKCXBXUDV-UHFFFAOYSA-N 3-aminophthalic acid Chemical compound NC1=CC=CC(C(O)=O)=C1C(O)=O WGLQHUKCXBXUDV-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- ZHJGWYRLJUCMRT-UHFFFAOYSA-N 5-[6-[(4-methylpiperazin-1-yl)methyl]benzimidazol-1-yl]-3-[1-[2-(trifluoromethyl)phenyl]ethoxy]thiophene-2-carboxamide Chemical compound C=1C=CC=C(C(F)(F)F)C=1C(C)OC(=C(S1)C(N)=O)C=C1N(C1=C2)C=NC1=CC=C2CN1CCN(C)CC1 ZHJGWYRLJUCMRT-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical group CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 229920000887 Chrysolaminarin Polymers 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920002558 Curdlan Polymers 0.000 description 1
- 239000001879 Curdlan Substances 0.000 description 1
- WQZGKKKJIJFFOK-CBPJZXOFSA-N D-Gulose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-CBPJZXOFSA-N 0.000 description 1
- WQZGKKKJIJFFOK-WHZQZERISA-N D-aldose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-WHZQZERISA-N 0.000 description 1
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 1
- LKDRXBCSQODPBY-JDJSBBGDSA-N D-allulose Chemical compound OCC1(O)OC[C@@H](O)[C@@H](O)[C@H]1O LKDRXBCSQODPBY-JDJSBBGDSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-NQXXGFSBSA-N D-ribulose Chemical compound OC[C@@H](O)[C@@H](O)C(=O)CO ZAQJHHRNXZUBTE-NQXXGFSBSA-N 0.000 description 1
- LKDRXBCSQODPBY-OEXCPVAWSA-N D-tagatose Chemical compound OCC1(O)OC[C@@H](O)[C@H](O)[C@@H]1O LKDRXBCSQODPBY-OEXCPVAWSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-UHFFFAOYSA-N D-threo-2-Pentulose Natural products OCC(O)C(O)C(=O)CO ZAQJHHRNXZUBTE-UHFFFAOYSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- 206010012186 Delayed delivery Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 101000605014 Homo sapiens Putative L-type amino acid transporter 1-like protein MLAS Proteins 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- HQMLIDZJXVVKCW-REOHCLBHSA-N L-alaninamide Chemical class C[C@H](N)C(N)=O HQMLIDZJXVVKCW-REOHCLBHSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229920001543 Laminarin Polymers 0.000 description 1
- 239000005717 Laminarin Substances 0.000 description 1
- 229920001491 Lentinan Polymers 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 229920002097 Lichenin Polymers 0.000 description 1
- NSTPXGARCQOSAU-VIFPVBQESA-N N-formyl-L-phenylalanine Chemical compound O=CN[C@H](C(=O)O)CC1=CC=CC=C1 NSTPXGARCQOSAU-VIFPVBQESA-N 0.000 description 1
- BCXBKOQDEOJNRH-UHFFFAOYSA-N NOP(O)=O Chemical class NOP(O)=O BCXBKOQDEOJNRH-UHFFFAOYSA-N 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 241000221963 Neurospora africana Species 0.000 description 1
- 241001149548 Neurospora discreta Species 0.000 description 1
- 241000134100 Neurospora dodgei Species 0.000 description 1
- 241000221962 Neurospora intermedia Species 0.000 description 1
- 241000018637 Neurospora lineolata Species 0.000 description 1
- 244000070804 Neurospora sitophila Species 0.000 description 1
- 235000000376 Neurospora sitophila Nutrition 0.000 description 1
- 241000121264 Neurospora tetrasperma Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229920001106 Pleuran Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 102100038206 Putative L-type amino acid transporter 1-like protein MLAS Human genes 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000222481 Schizophyllum commune Species 0.000 description 1
- 101100309574 Schizophyllum commune SC3 gene Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 241000221950 Sordaria macrospora Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical class [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229920000392 Zymosan Polymers 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000005055 alkyl alkoxy group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- SRBFZHDQGSBBOR-STGXQOJASA-N alpha-D-lyxopyranose Chemical compound O[C@@H]1CO[C@H](O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-STGXQOJASA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- QHFQAJHNDKBRBO-UHFFFAOYSA-L calcium chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Ca+2] QHFQAJHNDKBRBO-UHFFFAOYSA-L 0.000 description 1
- 229940044172 calcium formate Drugs 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 150000004697 chelate complex Chemical class 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 229920013750 conditioning polymer Polymers 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000019316 curdlan Nutrition 0.000 description 1
- 229940078035 curdlan Drugs 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- GSPKZYJPUDYKPI-UHFFFAOYSA-N diethoxy sulfate Chemical compound CCOOS(=O)(=O)OOCC GSPKZYJPUDYKPI-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 238000005108 dry cleaning Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000010462 extra virgin olive oil Substances 0.000 description 1
- 235000021010 extra-virgin olive oil Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000003311 flocculating effect Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000005826 halohydrocarbons Chemical class 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 238000002169 hydrotherapy Methods 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002951 idosyl group Chemical class C1([C@@H](O)[C@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 150000003893 lactate salts Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229940115286 lentinan Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000002366 lipolytic effect Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- ZUHZZVMEUAUWHY-UHFFFAOYSA-N n,n-dimethylpropan-1-amine Chemical compound CCCN(C)C ZUHZZVMEUAUWHY-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- HLERILKGMXJNBU-UHFFFAOYSA-N norvaline betaine Chemical compound CCCC(C([O-])=O)[N+](C)(C)C HLERILKGMXJNBU-UHFFFAOYSA-N 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000003901 oxalic acid esters Chemical class 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000001907 polarising light microscopy Methods 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- PHZLMBHDXVLRIX-UHFFFAOYSA-M potassium lactate Chemical compound [K+].CC(O)C([O-])=O PHZLMBHDXVLRIX-UHFFFAOYSA-M 0.000 description 1
- 239000001521 potassium lactate Substances 0.000 description 1
- 235000011085 potassium lactate Nutrition 0.000 description 1
- 229960001304 potassium lactate Drugs 0.000 description 1
- BWILYWWHXDGKQA-UHFFFAOYSA-M potassium propanoate Chemical compound [K+].CCC([O-])=O BWILYWWHXDGKQA-UHFFFAOYSA-M 0.000 description 1
- 239000004331 potassium propionate Substances 0.000 description 1
- 235000010332 potassium propionate Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 230000003716 rejuvenation Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000011182 sodium carbonates Nutrition 0.000 description 1
- 229940079842 sodium cumenesulfonate Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- QEKATQBVVAZOAY-UHFFFAOYSA-M sodium;4-propan-2-ylbenzenesulfonate Chemical compound [Na+].CC(C)C1=CC=C(S([O-])(=O)=O)C=C1 QEKATQBVVAZOAY-UHFFFAOYSA-M 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 150000003899 tartaric acid esters Chemical class 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 229910052725 zinc Chemical class 0.000 description 1
- 239000011701 zinc Chemical class 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D9/00—Compositions of detergents based essentially on soap
- C11D9/04—Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
- C11D9/22—Organic compounds, e.g. vitamins
- C11D9/40—Proteins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/37—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/88—Ampholytes; Electroneutral compounds
- C11D1/94—Mixtures with anionic, cationic or non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/75—Amino oxides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/88—Ampholytes; Electroneutral compounds
- C11D1/90—Betaines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/12—Soft surfaces, e.g. textile
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
Definitions
- the present invention relates to a cleaning composition
- a cleaning composition comprising a specific surfactant system and one or more subclass EAS hydrophobins.
- the composition provides one or more benefits, including good cleaning, long lasting suds especially in presence of greasy soils and surface modification that can contribute to second time cleaning benefits, improved drying, improved shine in the case of dishware.
- Cleaning compositions should have a good suds profile in particular a long lasting suds profile while providing good soil cleaning. Users usually see suds as an indicator of the performance of the cleaning composition. Moreover, the user of a cleaning composition may also use the suds profile and the appearance of the suds (e.g. density, whiteness) as an indicator that the wash solution still contains active cleaning ingredients. This is particularly the case for manual washing, also referred to herein as hand-washing, where the user usually doses the cleaning composition depending on the suds remaining and renews the wash solution when the suds subside or when the suds does not look thick enough. Thus, a cleaning composition, particularly a manual wash cleaning composition that generates little or low density suds would tend to be replaced by the user more frequently than is necessary. Accordingly, it is desirable for a cleaning composition to provide "good sudsing profile", which includes good suds height and/or density as well as good suds duration during the initial mixing of the composition with water and during the entire washing operation.
- Hydrophobins are a class of surface active proteins.
- detergent compositions containing hydrophobins are known in the art.
- US 2009/0101167 describes the use of hydrophobins, particularly fusion hydrophobins, for washing textiles and washing compositions containing them.
- US 2014/0031272 describes a cleaning composition comprising a hydrophobin and a lipolytic enzyme for removing lipid-based stains from surfaces.
- the amount of sudsing generated by such surface active proteins in cleaning formulations is limited.
- the need remains for an improved cleaning composition comprising surface active proteins which has a further improved sudsing profile, particularly at low proteins concentrations in the cleaning compositions.
- the composition when used in a manual-washing process, the composition preferably also provides a pleasant washing experience, i.e, good feel on the user's hands during the wash.
- the cleaning compositions are also easy to rinse.
- the composition provides a good finish to the washed items.
- the Applicant discovered that some or all of the above-mentioned needs can be at least partially fulfilled through the improved cleaning composition as described herein below.
- the present invention meets one or more of these needs based on the surprising discovery that by formulating a cleaning composition comprising a specific surfactant system and one or more subclass EAS hydrophobins, such a composition exhibits good sudsing profile, particularly desirable suds volume and/or sustained suds stabilization, especially in the presence of greasy soils. It also provides good emulsification benefits and can also provide surface modifications facilitating next time cleaning benefit.
- the present invention is directed to a cleaning composition
- a cleaning composition comprising from 1 wt% to 60 wt%, preferably from 5 wt% to 50 wt% by weight of said composition of a surfactant system and from 0.001 wt% to 5 wt%, preferably from 0.1 wt% to 1 wt%, by weight of said composition, based on active protein, of one or more subclass EAS hydrophobins according to claim 1.
- the specific surfactant system comprises one or more anionic surfactants and one or more co-surfactants selected from the group consisting of amphoteric surfactant, zwitterionic surfactant, and mixtures thereof.
- the cleaning composition is a manual-washing cleaning composition.
- the cleaning composition is for manual dishwashing.
- Preferred compositions are in the form of a liquid.
- the present invention is directed to a method comprising contacting a cleaning composition of the invention with a surface.
- the present invention is directed to a method of manually washing dishware comprising the steps of delivering a detergent composition of the invention into a volume of water to form a wash solution and immersing the dishware in the solution.
- the present invention is directed to a method of manually washing soiled items comprising contacting a cleaning composition of the invention, wherein said composition modifies the hydrophobicity of said surface as a result of said contacting step.
- the present invention is directed to a method of improving suds longevity in a washing process for washing soiled articles, preferably dishware.
- the method comprises the steps of: a) delivering a cleaning composition of the invention to a volume of water to form a wash liquor; and b) immersing the soiled articles into said wash liquor.
- the present invention relates to a method of manually washing dishware comprising: i) delivering a composition as described herein above onto the dishware or a cleaning implement; ii) cleaning the dishware with the composition in the presence of water; and iii) optionally, rinsing the dishware.
- the composition of the present invention is used in neat form (i.e., direct application) when the composition is directly applied on the soiled surface or on a cleaning implement, such as a sponge, to be used to clean the soiled surface.
- the present invention is directed to use of one or more subclass EAS hydrophobins of the invention to improve suds longevity in an aqueous wash liquor during a washing process.
- composition of the present invention it is an object of the composition of the present invention to exhibit good sudsing profile, preferably high suds volume and sustained suds aesthetics (i.e., whiteness, consistency).
- composition of the present invention it is an object of the composition of the present invention to exhibit good sudsing profile, preferably stable suds during a substantial portion of or for the entire manual dishwashing process.
- Figure 1 is a sequence similarity network of hydrophobins identifying the two major classes (class I and class II) and several subclasses including subclass EAS.
- the network was generated using EFI - Enzyme Similarity Tool Ver 2.0 ( http: // efi.igb.illinois.edu / efi-est /) .
- amino acid identity means the identity between two or more amino acid sequences and is expressed in terms of the identity or similarity between the sequences. Sequence identity can be measured in terms of percentage identity; the higher the percentage, the more identical the sequences are. The percentage identity is calculated over the length of comparison. For example, the amino acid identity is typically calculated over the entire length of a sequence aligned against the entire length of the reference sequence (e.g., SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11).
- cleaning composition refers to a composition or formulation designed for cleaning soiled surfaces.
- Such compositions include but are not limited to, dishwashing compositions, laundry detergent compositions, fabric softening compositions, fabric enhancing compositions, fabric freshening compositions, laundry pre-wash, laundry pretreat, laundry additives, spray products, dry cleaning agent or composition, laundry rinse additive, wash additive, post-rinse fabric treatment, ironing aid, hard surface cleaning compositions, unit dose formulation, delayed delivery formulation, detergent contained on or in a porous substrate or nonwoven sheet, and other suitable forms that may be apparent to one skilled in the art in view of the teachings herein.
- compositions may be used as a pre-cleaning treatment, a post-cleaning treatment, or may be added during the rinse or wash cycle of the cleaning process.
- the cleaning compositions may have a form selected from liquid, powder, single-phase or multi-phase unit dose or pouch form, tablet, gel, paste, bar, or flake.
- the composition is for manual-washing.
- the cleaning composition of the present invention is a dishwashing detergent.
- the composition is in the form of a liquid.
- fragment means an amino acid sequence of at least 30, 60, 100, 150 contiguous amino acids of the reference sequences or any integer there between.
- the term “improving suds longevity” means an increase in the duration of visible suds in a washing process cleaning soiled articles using the composition comprising one or more subclass EAS hydrophobins, compared with the suds longevity provided by the same composition and process in the absence of the subclass EAS hydrophobins.
- next time cleaning benefit means the surface to be cleaned could be treated with a composition which would assist in easier removal of soil and/or stains during subsequent cleaning.
- soiled surfaces refers non-specifically to any type of flexible material consisting of a network of natural or artificial fibers, including natural, artificial, and synthetic fibers, such as, but not limited to, cotton, linen, wool, polyester, nylon, silk, acrylic, and the like, as well as various blends and combinations.
- Soiled surfaces may further refer to any type of hard surface, including natural, artificial, or synthetic surfaces, such as, but not limited to, tile, granite, grout, glass, composite, vinyl, hardwood, metal, cooking surfaces, plastic, and the like, as well as blends and combinations, as well as dishware. Key targeted soiled surfaces by this application are soiled dishware.
- the term "variant" of the subclass EAS hydrophobins means an amino acid sequence when the subclass EAS hydrophobin is modified by, or at, one or more amino acids (for example 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 or more amino acid modifications) selected from substitutions, insertions, deletions and combinations thereof.
- the variant may have "conservative" substitutions, wherein a substituted amino acid has similar structural or chemical properties to the amino acid that replaces it, for example, replacement of leucine with isoleucine.
- a variant may have "non-conservative" changes, for example, replacement of a glycine with a tryptophan.
- Variants may also include sequences with amino acid deletions or insertions, or both.
- Variants may also include truncated forms derived from a wild-type subclass EAS hydrophobin, such as for example, a protein with a truncated N-terminus. Variants may also include forms derived by adding an extra amino acid sequence to a wild-type protein, such as for example, an N-terminal tag, a C-terminal tag or an insertion in the middle of the protein sequence.
- water hardness or “hardness” means uncomplexed cation ions (i.e., Ca 2+ or Mg 2+ ) present in water that have the potential to precipitate with anionic surfactants or other anionic actives in the cleaning composition under alkaline conditions, and thereby diminishing the surfactancy and cleaning capacity of surfactants.
- high water hardness and “elevated water hardness” can be used interchangeably and are relative terms for the purposes of the present invention, and are intended to include, but not limited to, a hardness level containing at least 12 grams of calcium ion per gallon water (gpg, "American grain hardness” units).
- the present invention envisages a cleaning composition, preferably a hand dishwashing cleaning composition, comprising a specific surfactant system and one or more subclass EAS hydrophobins.
- the composition of the invention provides very good suds duration especially in presence of fatty and/or oily soils.
- the invention also envisages a method of hand dishwashing and use of the composition for prolonging suds duration.
- a preferred cleaning composition is a manual dishwashing composition, preferably in liquid form. It typically contains from 30% to 95%, preferably from 40% to 90%, more preferably from 50% to 85% by weight of the composition of a liquid carrier in which the other essential and optional components are dissolved, dispersed or suspended.
- a liquid carrier in which the other essential and optional components are dissolved, dispersed or suspended.
- One preferred component of the liquid carrier is water.
- the pH of the cleaning composition of the invention measured as a 10% product concentration in demineralized water at 20°C, is adjusted to between 3 and 14, more preferably between 4 and 13, more preferably between 6 and 12 and most preferably between 8 and 10.
- the pH of the cleaning composition can be adjusted using pH modifying ingredients known in the art.
- the cleaning composition in accordance with the present invention comprises one or more subclass EAS hydrophobins.
- Hydrophobins are proteins of fungal origin that play multiple roles in the growth and development of filamentous fungi ( see Wosten, H. A. B. (2001), Annu. Rev. Microbiol., 55: 625-646 ). For example, they are involved in the formation of aerial structures and in the attachment of hyphae to hydrophobic surfaces. The mechanisms by which hydrophobins perform their function are based on their property of self-assembling at hydrophobic-hydrophilic interfaces into an amphipathic film.
- hydrophobins are polypeptides capable of self-assembly at a hydrophilic / hydrophobic interface, and comprise the following sequence: (Y 1 ) n -B 1 -(X 1 ) a -B 2 -(X 2 ) b -B 3 -(X 3 ) c -B 4 -(X 4 ) d -B 5 -(X 5 ) e -B 6 -(X 6 ) f -B 7 -(X 7 ) g -B 8 -(Y 2 ) m wherein: m and n are independently 0 to 2000; B 1 , B 2 , B 3 , B 4 , B 5 , B 6 , B 7 and B 8 are each independently amino acids selected from Cys, Leu, Ala, Pro, Ser, Thr, Met or Gly, at least 6 of the residues B 1 through B 8 being Cys; X 1 , X 2 , X
- hydrophobins have been classified into class I or class II based on structural and physical parameters including solubility. As described herein, hydrophobins self-assemble at an interface (especially a water/air interface) into amphipathic interfacial films.
- the assembled amphipathic films of class I hydrophobins are generally re-solubilized only in strong acids (typically those having a pKa of lower than 4, such as formic acid or trifluoroacetic acid), whereas those of class II are soluble in a wider range of solvents.
- Hydrophobins of classes I and II may also be distinguished by the hydrophobicity/hydrophilicity of a number of regions of the hydrophobin proteins.
- the relative hydrophobicity/hydrophilicity of the various regions of the hydrophobin proteins can be established by comparing the hydropathy pattern of the hydrophobin using the method set out in Kyte and Doolittle, J. Mol. Biol., 1982, 157, 105-132 .
- the region between the residues B 3 and B 4 i.e., the moiety (X 3 ) c , is predominantly hydrophobic.
- the region between the residues B 3 and B 4 i.e., the group (X 3 ) c
- the region between the residues B 7 and B 8 i.e., the moiety (X 7 ) g
- a sequence similarity network of hydrophobins was generated using EFI - Enzyme Similarity Tool Ver 2.0 ( http: // efi.igb.illinois.edu / efi-est /) , allowing the identification of not only the two major traditional classes of hydrophobins (class I and class II), but also several subclasses including a group comprising EAS (SEQ ID NO: 1, obtainable from the fungus Neurospora crassa ) and wild-type variants with high homology to EAS, referred herein as subclass EAS (see Figure 1 ).
- compositions of the current invention comprise one or more subclass EAS hydrophobins, whereas other hydrophobins are not part of the invention.
- subclass EAS hydrophobins refer to any hydrophobins with at least 45% amino acid sequence identity compared to Neurospora crassa EAS (SEQ ID NO: 1).
- subclass EAS hydrophobins comprises hydrophobins produced by Neurospora tetrasperma (e.g., SEQ ID NO: 2, SEQ ID NO: 4), Neurospora discreta ( e.g., SEQ ID NO: 3), Neurospora sitophila ( e.g., SEQ ID NO: 5), Neurospora terr ⁇ cola ( e.g., SEQ ID NO: 6), Neurospora lineolata ( e.g., SEQ ID NO: 7), Neurospora intermedia, Neurospora africana, Neurospora dodgei, and Sordaria macrospora ( e.g., SEQ ID NO: 8), ( see Winefield, R. D., et al. (2007)., Fungal Genet. Biol. 44(4): 250-257 ).
- subclass EAS hydrophobins are able to increase sudsing in the presence of a specific surfactant system.
- the Applicants believe that the increased sudsing benefits are due to the specific amino acid sequences and/or protein structures enhancing the adsorption at the interface between two phases (oil/water or air/water). Similar benefits are not observed when the cleaning compositions comprise class I hydrophobins different to subclass EAS hydrophobins.
- compositions containing subclass EAS hydrophobins have good grease cleaning and emulsification profile without negatively impacting sudsing.
- a cleaning composition of the present invention comprises: a) from 1 wt% to 60 wt%, preferably from 5 wt% to 50 wt%, by weight of the composition of a surfactant system comprising one or more anionic surfactants and one or more co-surfactants selected from the group consisting of amphoteric surfactant, zwitterionic surfactant, and mixtures thereof; and b) from 0.001 wt% to 5 wt%, preferably from 0.1 wt% to 1 wt%, by weight of the composition, based on active protein, of one or more subclass EAS hydrophobins.
- the subclass EAS hydrophobins have at least 50%, preferably at least 60%, preferably at least 70%, preferably at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 98% or even 100% amino acid identity as calculated over the entire length of the sequence aligned against the entire length of at least one or more reference sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 11, preferably to SEQ ID NO: 9.
- subclass EAS hydrophobins variants include a sequence resulting when a wild-type protein is modified by, or at, one or more amino acids (for example 1, 2, 5 or 10 amino acids).
- the invention also includes subclass EAS hydrophobins variants in the form of truncated forms derived from a wild-type subclass EAS hydrophobin, such as a wild-type subclass EAS hydrophobin with a truncated N-terminus or a truncated C-terminus.
- subclass EAS hydrophobins are predicted to include an N-terminal signal peptide that is likely removed upon secretion by the native organisms.
- the subclass EAS hydrophobin variants of the present invention are without the N-terminal signal peptide.
- SEQ ID NO: 9 is a variant of the full length wild-type Neurospora crassa EAS (SEQ ID NO: 1) without the N-terminal signal peptide.
- Bioinformatic tools such as SignalP version 4.1 ( Petersen TN., Brunak S., von Heijne G. and Nielsen H. (2011), Nature Methods, 8:785-786 ), can be used to predict the existence and length of such signal peptides.
- the invention also includes variants derived by adding an extra amino acid sequence to a wild-type protein, such as for example, an N-terminal tag, a C-terminal tag or an insertion in the middle of the protein sequence.
- tags are maltose binding protein (MBP) tag, glutathione S-transferase (GST) tag, thioredoxin (Trx) tag, His-tag, ubiquitin-tag, and any other tags known by those skilled in art.
- Tags can be used to improve solubility and expression levels during fermentation or as a handle for enzyme purification.
- His-Ubi-EAS is a variant of EAS (SEQ ID NO: 9) including an N-terminal His tag, an ubiquitin tag, and a TEV protease cleavage site.
- variants of subclass EAS hydrophobins retain or preferably improve the ability of the wild-type proteins to adsorb at an interface and to stabilize that interface.
- Some performance drop in a given property of subclass EAS hydrophobins variants may of course be tolerated, but the subclass EAS hydrophobins variants should retain or preferably improve suitable properties for the relevant application for which they are intended. For instance, screening of variants of one of the wild-types can be used to identify whether they retain or improve appropriate properties.
- Suitable examples of subclass EAS hydrophobins variants include one conservative substitution in the peptide, such as a conservative substitution in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11.
- subclass EAS hydrophobins variants include 10 or fewer conservative substitutions are included in the peptide, such as five or fewer.
- the subclass EAS hydrophobins of the present invention may therefore include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more conservative substitutions.
- the subclass EAS hydrophobins can be produced to contain one or more conservative substitutions by manipulating the nucleotide sequence that encodes that peptide using, for example, standard procedures such as site-directed mutagenesis or PCR.
- the subclass EAS hydrophobins can be produced to contain one or more conservative substitutions by using peptide synthesis methods, for example, as known in the art.
- amino acids which may be substituted for an original amino acid in a subclass EAS hydrophobin and which are regarded as conservative substitutions include: Ser for Ala; Lys for Arg; Gln or His for Asn; Glu for Asp; Asn for Gln; Asp for Glu; Pro for Gly; Asn or Gln for His; Leu or Val for Ile; Ile or Val for Leu; Arg or Gln for Lys; Leu or Ile for Met; Met, Leu or Tyr for Phe; Thr for Ser; Ser for Thr; Tyr for Trp; Trp or Phe for Tyr; and Ile or Leu for Val.
- subclass EAS hydrophobins of the invention may comprise variants of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11, wherein one or more cysteine residues are substituted by another amino acid.
- the subclass EAS hydrophobins of the present invention may comprise variants of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11, wherein a short amino acid sequence containing two cysteine residues is added at the C-terminus or at least two residues are modified to cysteines.
- cysteine residues can allow the subclass EAS hydrophobins to form multimers (i.e., dimers, tetramers, hexamers and potentially higher order oligomers) in solution due to the formation of disulfide bonds between the cysteine residues of adjacent subclass EAS hydrophobins variants.
- the subclass EAS hydrophobins of the present invention may also cover fragments of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11.
- the subclass EAS hydrophobins fragments can adsorb to an interface and stabilize that interface.
- the subclass EAS hydrophobins can be modified by a variety of chemical techniques to produce derivatives having essentially the same or even improved activity as the unmodified peptides, and optionally having other desirable properties.
- carboxylic acid groups of the protein may be provided in the form of a salt of a pharmaceutically-acceptable cation or esterified, for example to form a C 1 -C 6 alkyl ester, or converted to an amide, for example of formula CONR 1 R 2 wherein R 1 and R 2 are each independently H or C 1 -C 6 alkyl, or combined to form a heterocyclic ring, such as a 5- or 6-membered ring.
- Amino groups of the peptide may be in the form of a pharmaceutically-acceptable acid addition salt, such as the HCI, HBr, acetic, benzoic, toluene sulfonic, maleic, tartaric and other organic salts, or may be modified to C 1 -C 6 alkyl or dialkyl amino or further converted to an amide.
- Hydroxyl groups of the peptide side chains may be converted to alkoxy or ester groups, for example C 1 -C 6 alkoxy or C 1 -C 6 alkyl ester, using well-recognized techniques.
- Phenyl and phenolic rings of the peptide side chains may be substituted with one or more halogen atoms, such as F, CI, Br or I, or with C1-C6 alkyl, C1-C6 alkoxy, carboxylic acids and esters thereof, or amides of such carboxylic acids.
- Methylene groups of the peptide side chains can be extended to homologous C2-C4 alkylenes.
- Thiols can be protected with any one of a number of well-recognized protecting groups, such as acetamide groups.
- a given sequence is typically compared against the full-length sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11 to obtain a score.
- the cleaning composition preferably comprises from 0.001 wt% to 5 wt%, preferably from 0.1 wt% to 1 wt%, by weight of said composition, based on active protein, of one or more subclass EAS hydrophobins.
- the subclass EAS hydrophobin has at least 50%, preferably at least 60%, preferably at least 70%, preferably at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 98% or even 100% amino acid identity as calculated over the entire length of the sequence aligned against the entire length of at least one or more reference sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11.
- the subclass EAS hydrophobin has at least 50%, preferably at least 60%, preferably at least 70%, preferably at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 98% or even 100% amino acid identity as calculated over the entire length of the sequence aligned against the entire length of Neurospora crassa EAS (SEQ ID NO: 9).
- the detergent composition of the invention comprises from 1% to 60%, preferably from 5% to 50%, more preferably from 8% to 40%, by weight of the total composition of a specific surfactant system.
- the surfactant system of the composition of the present invention comprises an anionic surfactant.
- the surfactant system for the cleaning composition of the present invention comprises from 1% to 40%, preferably 6% to 35%, more preferably 8% to 30% by weight of the total composition of an anionic surfactant.
- the anionic surfactant can be any anionic cleaning surfactant, preferably selected from sulfate and/or sulfonate anionic surfactants. HLAS (linear alkylbenzene sulfonate) would be the most preferred sulfonate anionic surfactant.
- Especially preferred anionic surfactant is selected from the group consisting of alkyl sulfate, alkyl alkoxy sufate and mixtures thereof, and preferably wherein the alkyl alkoxy sulfate is an alkyl ethoxy sulfate.
- Preferred anionic surfactant is a combination of alkyl sulfates and alkyl ethoxy sulfates with a combined mol average ethoxylation degree of less than 5, preferably less than 3, more preferably less than 2 and more than 0.5 and an average level of branching of from 5% to 40%, more preferably from 10% to 35%, and even more preferably from 20% to 30%.
- the average alkoxylation degree is the mol average alkoxylation degree of all the components of the mixture (i.e., mol average alkoxylation degree) of the anionic surfactant.
- the weight of sulfate anionic surfactant components not having alkoxylate groups should also be included.
- Mol average alkoxylation degree x 1 * alkoxylation degree of surfactant 1 + x 2 * alkoxylation degree of surfactant 2 + .... / x 1 + x 2 + .... wherein x1, x2, ... are the number of moles of each sulfate anionic surfactant of the mixture and alkoxylation degree is the number of alkoxy groups in each sulfate anionic surfactant.
- Suitable examples of commercially available sulfates include, those based on Neodol alcohols ex the Shell company, Lial - Isalchem and Safol ex the Sasol company, natural alcohols ex The Procter & Gamble Chemicals company.
- Suitable sulfonate surfactants for use herein include water-soluble salts of C8-C18 alkyl or hydroxyalkyl sulfonates; C11-C18 alkyl benzene sulfonates (LAS), modified alkylbenzene sulfonate (MLAS); methyl ester sulfonate (MES); and alpha-olefin sulfonate (AOS).
- paraffin sulfonates may be monosulfonates and/or disulfonates, obtained by sulfonating paraffins of 10 to 20 carbon atoms.
- the sulfonate surfactant also include the alkyl glyceryl sulfonate surfactants.
- the surfactant system of the composition of the present invention further comprises a primary co-surfactant system, wherein the primary co-surfactant system is selected from the group consisting of amphoteric surfactant, zwitterionic surfactant and mixtures thereof.
- the surfactant system for the cleaning composition of the present invention comprises from 0.5% to 15%, preferably from 1% to 12%, more preferably from 2% to 10%, by weight of the total composition of a primary co-surfactant system.
- the primary co-surfactant system is an amphoteric surfactant.
- the primary co-surfactant system is an amine oxide surfactant, and wherein the composition comprises anionic surfactant and amine oxide surfactant in a ratio of less than 9:1, more preferably from 5:1 to 1:1, more preferably from 4:1 to 2:1, preferably from 3:1 to 2.5:1.
- Preferred amine oxides are alkyl dimethyl amine oxide or alkyl amido propyl dimethyl amine oxide, more preferably alkyl dimethyl amine oxide and especially coco dimethyl amino oxide.
- Amine oxide may have a linear or branched alkyl moiety.
- the amine oxide surfactant is a mixture of amine oxides comprising a low-cut amine oxide and a mid-cut amine oxide.
- the amine oxide of the composition of the invention then comprises:
- R3 is n-decyl.
- R1 and R2 are both methyl.
- R1 and R2 are both methyl and R3 is n-decyl.
- the amine oxide comprises less than 5%, more preferably less than 3%, by weight of the amine oxide of an amine oxide of formula R7R8R9AO wherein R7 and R8 are selected from hydrogen, C1-C4 alkyls and mixtures thereof and wherein R9 is selected from C8 alkyls and mixtures thereof.
- Compositions comprising R7R8R9AO tend to be unstable and do not provide very suds mileage.
- the primary co-surfactant system is a zwitterionic surfactant.
- zwitterionic surfactants include betaines, such as alkyl betaines, alkylamidobetaine, amidazoliniumbetaine, sulfobetaine (INCI Sultaines) as well as the Phosphobetaine and preferably meets formula (I): Rl-[CO-X (CH2)n]x-N+(R2)(R3)-(CH2)m-[CH(OH)-CH2]y-Y- (I) wherein
- Preferred betaines are the alkyl betaines of the formula (Ia), the alkyl amido propyl betaine of the formula (Ib), the Sulfo betaines of the formula (Ic), and the Amido sulfobetaine of the formula (Id); R1-N+(CH3)2-CH2COO- (Ia) R1-CO-NH(CH2)3-N+(CH3)2-CH2COO- (Ib) R1-N+(CH3)2-CH2CH(OH)CH2SO3- (Ic) R1-CO-NH-(CH2)3-N+(CH3)2-CH2CH(OH)CH2SO3- (Id) in which R1 has the same meaning as in formula (I).
- a preferred betaine is, for example, Cocoamidopropylbetaine.
- the surfactant system of the composition of the present invention further comprises from 0.1% to 10% by weight of the total composition of a secondary co-surfactant system preferably comprising a non-ionic surfactant.
- Suitable non-ionic surfactants include the condensation products of aliphatic alcohols with from 1 to 25 moles of ethylene oxide.
- the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 8 to 22 carbon atoms.
- Particularly preferred are the condensation products of alcohols having an alkyl group containing from 10 to 18 carbon atoms, preferably from 10 to 15 carbon atoms with from 2 to 18 moles, preferably 2 to 15, more preferably 5-12 of ethylene oxide per mole of alcohol.
- non-ionic surfactants are the condensation products of guerbet alcohols with from 2 to 18 moles, preferably 2 to 15, more preferably 5-12 of ethylene oxide per mole of alcohol.
- the non-ionic surfactants are an alkyl ethoxylated surfactants, preferably comprising from 9 to 15 carbon atoms in its alkyl chain and from 5 to 12 units of ethylene oxide per mole of alcohol.
- suitable non-ionic surfactants for use herein include fatty alcohol polyglycol ethers, alkylpolyglucosides and fatty acid glucamides, preferably alkylpolyglucosides.
- the alkyl polyglucoside surfactant is a C8-C16 alkyl polyglucoside surfactant, preferably a C8-C14 alkyl polyglucoside surfactant, preferably with an average degree of polymerization of between 0.1 and 3, more preferably between 0.5 and 2.5, even more preferably between 1 and 2.
- the alkyl polyglucoside surfactant has an average alkyl carbon chain length between 10 and 16, preferably between 10 and 14, most preferably between 12 and 14, with an average degree of polymerization of between 0.5 and 2.5 preferably between 1 and 2, most preferably between 1.2 and 1.6.
- C8-C16 alkyl polyglucosides are commercially available from several suppliers (e.g ., Simusol® surfactants from Seppic Corporation; and Glucopon® 600 CSUP, Glucopon® 650 EC, Glucopon® 600 CSUP/MB, and Glucopon® 650 EC/MB, from BASF Corporation).
- the composition comprises the anionic surfactant and the non-ionic surfactant in a ratio of from 2:1 to 50:1, preferably 2:1 to 10:1.
- compositions of the invention may comprise one or more enzymes selected from the group consisting of amylases, lipases, proteases, cellulases, lipoxygenases, diol synthases, and mixtures thereof.
- the aforementioned enzymes may be present at levels from 0.00001 wt% to 2 wt%, from 0.0001 wt% to 1 wt% or from 0.001 wt% to 0.5 wt% by weight of the composition, based on active protein.
- the composition of the invention comprises an enzyme stabilizer.
- Suitable enzyme stabilizers may be selected from the group consisting of (a) univalent, bivalent and/or trivalent cations preferably selected from the group of inorganic or organic salts of alkaline earth metals, alkali metals, aluminum, iron, copper and zinc, preferably alkali metals and alkaline earth metals, preferably alkali metal and alkaline earth metal salts with halides, sulfates, sulfites, carbonates, hydrogencarbonates, nitrates, nitrites, phosphates, formates, acetates, propionates, citrates, maleates, tartrates, succinates, oxalates, lactates, and mixtures thereof.
- the salt is selected from the group consisting of sodium chloride, calcium chloride, potassium chloride, sodium sulfate, potassium sulfate, sodium acetate, potassium acetate, sodium formate, potassium formate, calcium lactate, calcium nitrate and mixtures thereof.
- salts selected from the group consisting of calcium chloride, potassium chloride, potassium sulfate, sodium acetate, potassium acetate, sodium formate, potassium formate, calcium lactate, calcium nitrate, and mixtures thereof, and in particular potassium salts selected from the group of potassium chloride, potassium sulfate, potassium acetate, potassium formate, potassium propionate, potassium lactate and mixtures thereof.
- potassium acetate and potassium chloride are preferred.
- Preferred calcium salts are calcium formate, calcium lactate and calcium nitrate including calcium nitrate tetrahydrate.
- Calcium and sodium formate salts may be preferred. These cations are present at at least 0.01 wt%, preferably at least 0.03 wt%, more preferably at least 0.05 wt%, most preferably at least 0.25 wt% up to 2 wt% or even up to 1 wt% by weight of the total composition.
- These salts are formulated from 0.1 to 5 wt%, preferably from 0.2 to 4 wt%, more preferably from 0.3 to 3 wt%, most preferably from 0.5 to 2 wt% relative to the total weight of the composition.
- Further enzyme stabilizers can be selected from the group (b) carbohydrates selected from the group consisting of oligosaccharides, polysaccharides and mixtures thereof, such as a monosaccharide glycerate as described in WO201219844 ; (c) mass efficient reversible protease inhibitors selected from the group consisting of phenyl boronic acid and derivatives thereof, preferably 4-formyl phenylboronic acid; (d) alcohols such as 1,2-propane diol, propylene glycol; (e) peptide aldehyde stabilizers such as tripeptide aldehydes such as Cbz-Gly-Ala-Tyr-H, or disubstituted alaninamide; (f) carboxylic acids such as phenyl alkyl dicarboxylic acid as described in WO2012/19849 or multiply substituted benzyl carboxylic acid comprising a carboxyl group on at least two carbon atoms of the benzy
- composition of the present invention may optionally comprise from 0.01% to 3%, preferably from 0.05% to 2%, more preferably from 0.2% to 1.5%, or most preferably 0.5% to 1%, by weight of the total composition of a salt, preferably a monovalent, divalent inorganic salt or a mixture thereof, preferably sodium chloride.
- a salt preferably a monovalent, divalent inorganic salt or a mixture thereof, preferably sodium chloride.
- the composition alternatively or further comprises a multivalent metal cation in the amount of from 0.01 wt% to 3 wt%, preferably from 0.05% to 2%, more preferably from 0.2% to 1.5%, or most preferably 0.5% to 1% by weight of said composition, preferably said multivalent metal cation is magnesium, aluminium, copper, calcium or iron, more preferably magnesium, most preferably said multivalent salt is magnesium chloride.
- a multivalent cation helps with the formation of protein/ protein, surfactant/ surfactant or hybrid protein/ surfactant network at the oil water and air water interface that is strengthening the suds.
- the composition of the present invention comprises one or more carbohydrates selected from the group comprising O-glycan, N-glycan, and mixtures thereof.
- the cleaning composition further comprises one or more carbohydrates selected from the group comprising derivatives of glucose, mannose, lactose, galactose, allose, altrose, gulose, idose, talose, fucose, fructose, sorbose, tagatose, psicose, arabinose, ribose, xylose, lyxose, ribulose, and xylulose. More preferably the cleaning composition comprises one or more carbohydrates selected from the group of ⁇ -glucans and ⁇ -glucans.
- Glucans are polysaccharides of D-glucose monomers, linked by glycosidic bonds.
- Non-limiting examples of ⁇ -glucans are dextran, starch, floridean starch, glycogen, pullulan, and their derivatives.
- Non-limiting examples of ⁇ -glucans are cellulose, chrysolaminarin, curdlan, laminarin, lentinan, lichenin, oat beta-glucan, pleuran, zymosan, and their derivatives.
- composition of the present invention may optionally comprise from 1% to 10%, or preferably from 0.5% to 10%, more preferably from 1% to 6%, or most preferably from 0.1% to 3%, or combinations thereof, by weight of the total composition of a hydrotrope, preferably sodium cumene sulfonate.
- a hydrotrope preferably sodium cumene sulfonate.
- suitable hydrotropes for use herein include anionic-type hydrotropes, particularly sodium, potassium, and ammonium xylene sulfonate, sodium, potassium and ammonium toluene sulfonate, sodium potassium and ammonium cumene sulfonate, and mixtures thereof, as disclosed in U.S. Patent 3,915,903 .
- the composition of the present invention is isotropic.
- An isotropic composition is distinguished from oil-in-water emulsions and lamellar phase compositions. Polarized light microscopy can assess whether the composition is isotropic. See e.g., The Aqueous Phase Behaviour of Surfactants, Robert Laughlin, Academic Press, 1994, pp. 538-542 .
- an isotropic composition is provided.
- the composition comprises 0.1% to 3% by weight of the total composition of a hydrotrope, preferably wherein the hydrotrope is selected from sodium, potassium, and ammonium xylene sulfonate, sodium, potassium and ammonium toluene sulfonate, sodium potassium and ammonium cumene sulfonate, and mixtures thereof.
- composition of the present invention may optionally comprise an organic solvent.
- organic solvents include C4-14 ethers and diethers, polyols, glycols, alkoxylated glycols, C6-C16 glycol ethers, alkoxylated aromatic alcohols, aromatic alcohols, aliphatic linear or branched alcohols, alkoxylated aliphatic linear or branched alcohols, alkoxylated C1-C5 alcohols, C8-C14 alkyl and cycloalkyl hydrocarbons and halohydrocarbons, and mixtures thereof.
- the organic solvents include alcohols, glycols, and glycol ethers, alternatively alcohols and glycols.
- the composition comprises from 0% to less than 50%, preferably from 0.01% to 25%, more preferably from 0.1% to 10%, or most preferably from 0.5% to 5%, by weight of the total composition of an organic solvent, preferably an alcohol, more preferably an ethanol, a polyalkyleneglycol, more preferably polypropyleneglycol, and mixtures thereof.
- an organic solvent preferably an alcohol, more preferably an ethanol, a polyalkyleneglycol, more preferably polypropyleneglycol, and mixtures thereof.
- composition of the present invention may further comprise from 0.01% to 5%, preferably from 0.05% to 2%, more preferably from 0.07% to 1% by weight of the total composition of an amphiphilic polymer selected from the groups consisting of amphiphilic alkoxylated polyalkyleneimine and mixtures thereof, preferably an amphiphilic alkoxylated polyalkyleneimine.
- the amphiphilic alkoxylated polyalkyleneimine is an alkoxylated polyethyleneimine polymer comprising a polyethyleneimine backbone having average molecular weight range from 100 to 5,000, preferably from 400 to 2,000, more preferably from 400 to 1,000 Daltons and the alkoxylated polyethyleneimine polymer further comprising:
- Preferred amphiphilic alkoxylated polyethyleneimine polymers comprise EO and PO groups within their alkoxylation chains, the PO groups preferably being in terminal position of the alkoxy chains, and the alkoxylation chains preferably being hydrogen capped.
- Hydrophilic alkoxylated polyethyleneimine polymers solely comprising ethoxy (EO) units within the alkoxylation chain could also optionally be formulated within the scope of this invention.
- R represents an ethylene spacer and E represents a C 1 -C 4 alkyl moiety and X- represents a suitable water soluble counterion.
- the alkoxylation modification of the polyethyleneimine backbone consists of the replacement of a hydrogen atom by a polyalkoxylene chain having an average of 1 to 50 alkoxy moieties, preferably from 20 to 45 alkoxy moieties, most preferably from 30 to 45 alkoxy moieties.
- the alkoxy moieties are selected from ethoxy (EO), propoxy (PO),butoxy (BO), and mixtures thereof.
- Alkoxy moieties solely comprising ethoxy units are outside the scope of the invention though.
- the polyalkoxylene chain is selected from ethoxy/propoxy block moieties.
- the polyalkoxylene chain is ethoxy/propoxy block moieties having an average degree of ethoxylation from 3 to 30 and an average degree of propoxylation from 1 to 20, more preferably ethoxy/propoxy block moieties having an average degree of ethoxylation from 20 to 30 and an average degree of propoxylation from 10 to 20.
- the ethoxy/propoxy block moieties have a relative ethoxy to propoxy unit ratio between 3 to 1 and 1 to 1, preferably between 2 to 1 and 1 to 1.
- the polyalkoxylene chain is the ethoxy/propoxy block moieties wherein the propoxy moiety block is the terminal alkoxy moiety block.
- the modification may result in permanent quaternization of the polyethyleneimine backbone nitrogen atoms.
- the degree of permanent quaternization may be from 0% to 30% of the polyethyleneimine backbone nitrogen atoms. It is preferred to have less than 30% of the polyethyleneimine backbone nitrogen atoms permanently quaternized. Most preferably the degree of quaternization is 0%.
- a preferred polyethyleneimine has the general structure of Formula (II): wherein the polyethyleneimine backbone has a weight average molecular weight of 600, n of formula (II) has an average of 10, m of formula (II) has an average of 7 and R of formula (II) is selected from hydrogen, a C 1 -C 4 alkyl and mixtures thereof, preferably hydrogen.
- the degree of permanent quaternization of formula (II) may be from 0% to 22% of the polyethyleneimine backbone nitrogen atoms.
- the molecular weight of this polyethyleneimine preferably is between 10,000 and 15,000.
- An alternative polyethyleneimine has the general structure of Formula (II) but wherein the polyethyleneimine backbone has a weight average molecular weight of 600, n of Formula (II) has an average of 24, m of Formula (II) has an average of 16 and R of Formula (II) is selected from hydrogen, a C 1 -C 4 alkyl and mixtures thereof, preferably hydrogen.
- the degree of permanent quaternization of Formula (II) may be from 0% to 22% of the polyethyleneimine backbone nitrogen atoms.
- the molecular weight of this polyethyleneimine preferably is between 25,000 and 30,000.
- polyethyleneimine has the general structure of Formula (II) wherein the polyethyleneimine backbone has a weight average molecular weight of 600, n of Formula (II) has an average of 24, m of Formula (II) has an average of 16 and R of Formula (II) is hydrogen.
- the degree of permanent quaternization of Formula (II) is 0% of the polyethyleneimine backbone nitrogen atoms.
- the molecular weight of this polyethyleneimine preferably is from 25,000 to 30,000, most preferably 28,000.
- polyethyleneimines can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, and the like, as described in more detail in PCT Publication No. WO 2007/135645 .
- a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, and the like, as described in more detail in PCT Publication No. WO 2007/135645 .
- the detergent composition herein can comprise a chelant at a level of from 0.1% to 20%, preferably from 0.2% to 5%, more preferably from 0.2% to 3% by weight of total composition.
- chelation means the binding or complexation of a bi- or multidentate ligand.
- ligands which are often organic compounds, are called chelants, chelators, chelating agents, and/or sequestering agent.
- Chelating agents form multiple bonds with a single metal ion.
- Chelants are chemicals that form soluble, complex molecules with certain metal ions, inactivating the ions so that they cannot normally react with other elements or ions to produce precipitates or scale, or forming encrustations on soils turning them harder to be removed.
- the ligand forms a chelate complex with the substrate. The term is reserved for complexes in which the metal ion is bound to two or more atoms of the chelant.
- the composition of the present invention comprises one or more chelant, preferably selected from the group comprising carboxylate chelants, amino carboxylate chelants, amino phosphonate chelants such as MGDA (methylglycine-N,N-diacetic acid), GLDA (glutamic-N,N- diacetic acid), and mixtures thereof.
- MGDA methylglycine-N,N-diacetic acid
- GLDA glutmic-N,N- diacetic acid
- Suitable chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polycarboxylate chelating agents and mixtures thereof.
- chelants include homopolymers and copolymers of polycarboxylic acids and their partially or completely neutralized salts, monomeric polycarboxylic acids and hydroxycarboxylic acids and their salts.
- Suitable polycarboxylic acids are acyclic, alicyclic, heterocyclic and aromatic carboxylic acids, in which case they contain at least two carboxyl groups which are in each case separated from one another by, preferably, no more than two carbon atoms.
- a suitable hydroxycarboxylic acid is, for example, citric acid.
- Another suitable polycarboxylic acid is the homopolymer of acrylic acid. Preferred are the polycarboxylates end capped with sulfonates.
- the cleaning composition herein may optionally comprise a number of other adjunct ingredients such as builders (e.g ., preferably citrate), cleaning solvents, cleaning amines, conditioning polymers, cleaning polymers, surface modifying polymers, soil flocculating polymers, structurants, emollients, humectants, skin rejuvenating actives, enzymes, carboxylic acids, scrubbing particles, bleach and bleach activators, perfumes, malodor control agents, pigments, dyes, opacifiers, beads, pearlescent particles, microcapsules, inorganic cations such as alkaline earth metals such as Ca/Mg-ions, antibacterial agents, preservatives, viscosity adjusters (e.g., salt such as NaCl, and other mono-, di- and trivalent salts) and pH adjusters and buffering means (e.g ., carboxylic acids such as citric acid, HCl, NaOH, KOH, alkanolamines, phosphoric and sulf
- the composition of the present invention is directed to a method of washing dishware with the composition of the present invention.
- the method comprises contacting a cleaning composition with a surface; wherein said cleaning composition comprises a surfactant system and one or more subclass EAS hydrophobins according to the present invention.
- the composition herein will be applied in its diluted form to the dishware.
- Soiled surfaces e.g . dishes are contacted with an effective amount, typically from 0.5 mL to 20 mL (per 25 dishes being treated), preferably from 3mL to 10 mL, of the detergent composition of the present invention, preferably in liquid form, diluted in water.
- the actual amount of detergent composition used will be based on the judgment of the user, and will typically depend upon factors such as the particular product formulation of the composition, including the concentration of active ingredients in the composition, the number of soiled dishes to be cleaned, the degree of soiling on the dishes, and the like.
- from 0.01 mL to 150 mL, preferably from 3 mL to 40 mL of a liquid detergent composition of the invention is combined with from 2,000 mL to 20,000 mL, more typically from 5,000 mL to 15,000 mL of water in a sink having a volumetric capacity in the range of from 1,000 mL to 20,000 mL, more typically from 5,000 mL to 15,000 mL.
- the soiled dishes are immersed in the sink containing the diluted compositions then obtained, where contacting the soiled surface of the dish with a cloth, sponge, or similar article cleans them.
- the cloth, sponge, or similar article may be immersed in the detergent composition and water mixture prior to being contacted with the dish surface, and is typically contacted with the dish surface for a period of time ranged from 1 to 10 seconds, although the actual time will vary with each application and user.
- the contacting of cloth, sponge, or similar article to the surface is preferably accompanied by a concurrent scrubbing of the surface.
- the invention is directed to a method of manually washing soiled articles comprising contacting a cleaning composition with a surface, wherein the composition comprises a surfactant system and one or more subclass EAS hydrophobin according to the present invention, and wherein the composition modifies the hydrophobicity of the surface as a result of the contacting step.
- Another aspect of the present invention is directed to a method of improving suds longevity in a washing process for washing soiled articles, preferably dishware.
- the method comprises the steps of: a) delivering a cleaning composition comprising a surfactant system and one or more subclass EAS hydrophobins according to the present invention and a surfactant system to a volume of water to form a wash liquor; and b) immersing the soiled articles into said wash liquor.
- the subclass EAS hydrophobins are present at a concentration of 0.005 ppm to 60 ppm, preferably at a concentration of 0.02 ppm to 12 ppm, in an aqueous wash liquor during the washing process
- the invention is directed use of one or more subclass EAS hydrophobins to provide increased suds longevity in an aqueous wash liquor during a washing process.
- Test Method 1 Glass Vial Suds Mileage Method
- the objective of the glass vial suds mileage test method is to measure the evolution of suds volume over time generated by a certain solution of detergent composition in the presence of a greasy soil, e.g., olive oil.
- the steps of the method are as follows:
- the evolution of the suds volume generated by a solution of a detergent composition can be determined while adding soil loads periodically as follows.
- a stream of hard water (15 dH) fills a sink (cylinder dimensions: 300 mm D x 288 mm H) to 4 L with a constant pressure of 4 bar.
- an aliquot of the detergent composition (final concentration 0.12 w%) is dispensed through a pipette with a flow rate of 0.67 mL/sec at a height of 37 cm above the bottom of the sink surface.
- An initial suds volume is generated in the sink due to the pressure of the water.
- the temperature of the solution is maintained at 46 °C during the test.
- the suds mileage index is then calculated as: (average number of soil additions for test detergent composition) / (average number of soil additions for reference detergent composition) x 100.
- a codon optimized gene (SEQ ID NO: 10) encoding for a variant of Neurospora crassa EAS, including an N-terminal His tag, ubiquitin tag, and TEV protease cleavage site (SEQ ID NO: 11), is designed and synthesized. After synthesis, the gene is subcloned into a pET30a vector for heterologous expression. The protein is expressed and purified by Genscript (Piscataway, NJ). In brief, Escherichia coli BL21 (DE3) cells are transformed with the recombinant plasmid and a single colony is inoculated into TB medium containing kanamycin.
- IPTG isopropyl ⁇ -D-1-thiogalactopyranoside
- the culture is then incubated at 15 °C for 16 h at 200 rpm.
- Cells are harvested by centrifugation and the pellets are lysed by sonication. After centrifugation, the supernatant is collected and the protein is purified by one-step purification using a nickel affinity column and standard protocols known in the art.
- the protein is stored in a buffer containing 50 mM Tris-HCl, 150 mM NaCl, and 10% Glycerol at pH 8.0. The final protein concentration is 0.50 mg/ mL as determined by Bradford protein assay with BSA as a standard (ThermoFisher, catalog # 23236).
- Inventive Composition A is an example of a cleaning composition according to the present invention, made with: a) detergent solution DG-LS (prepared as described in Example 1b), and b) diluted samples of a purified variant of Neurospora crassa EAS Hydrophobin (SEQ ID NO: 11) (prepared as described in Example 1a).
- Comparative Composition B contains the same detergent solution DG-LS in the absence of the enzyme.
- Comparative Composition C contains diluted samples of a purified variant of Neurospora crassa EAS Hydrophobin in the absence of the detergent solution DG-LS (replaced with hard water - 15 dH).
- the glass vial suds mileage test is performed on the compositions using olive oil as described in the test methods section (Test Method 1).
- the initial (H1) and final (H2) measurements are recorded in Table 2.
- Inventive Composition A detergent solution comprising a variant of Neurospora crassa EAS Hydrophobin according to the invention (SEQ ID NO: 11) has a superior suds profile compared to Comparative Composition B solution without the Neurospora crassa EAS Hydrophobin protein, both in view of absolute suds height build-up as in view of sustaining the suds height in presence of greasy soil.
- Comparative Composition C comprising a variant of Neurospora crassa EAS Hydrophobin according to the invention (SEQ ID NO: 11) without the specific surfactant system produced no suds. As such a synergistic suds boost in the presence of an oily soil (e.g., olive oil) between the protein and the specific surfactant system according to the invention is illustrated.
- an oily soil e.g., olive oil
- Comparative Composition D is an example of a cleaning composition outside of the scope of the present invention, made with: a) detergent solution DG-LS according to the invention (prepared as described in Example 1b), and b) diluted samples of class I hydrophobin SC3 (Sigma Aldrich, catalog # 68795) from Schizophyllum commune (SEQ ID NO: 13) outside the scope of the invention.
- Comparative Composition E contains the same detergent solution DG-LS in the absence of the protein.
- the glass vial suds mileage test is performed using olive oil as described in the test methods section (Test Method 1).
- the initial (H1) and final (H2) measurements are recorded in Table 2.
- the % suds height drops are calculated for the compositions and are shown in Table 3.
- Comparative Composition D detergent solution comprising Schizophyllum commune hydrophobin SC3 (SEQ ID NO: 13), a class I hydrophobin outside the scope of the present invention, does not have a superior suds profile when compared to Comparative Composition E detergent solution without the class I hydrophobin protein outside the scope of the present invention, both in view of absolute suds height build-up as in view of sustaining the suds height in presence of greasy soil (e.g., olive oil).
- Table 4 exemplifies a manual dish-washing detergent composition
- a manual dish-washing detergent composition comprising Neurospora crassa EAS Hydrophobin (SEQ ID NO: 9) or its variants His-Ubi-EAS (SEQ ID NO: 11) according to the invention.
- Table 4 Detergent Composition Ingredient Wt% Sodium alkyl ethoxy sulfate (C1213EO0.6S) 22.91% n-C12-14 Di Methyl Amine Oxide 7.64% Lutensol XP80 (non-ionic surfactant supplied by BASF) 0.45% Sodium Chloride 1.2% Poly Propylene Glycol (MW 2000) 1% Ethanol 2% Sodium Hydroxide 0.24% Neurospora crassa EAS Hydrophobin (SEQ ID NO: 9) or Neurospora crassa His-Ubi-EAS Hydrophobin (SEQ ID NO: 11) 0.5% Minors (perfume, preservative, dye) + water To 100 % pH (@ 10% solution) 9
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Description
- This application contains Sequence Listings in computer readable form. The computer readable form is incorporated herein by reference.
- The present invention relates to a cleaning composition comprising a specific surfactant system and one or more subclass EAS hydrophobins. The composition provides one or more benefits, including good cleaning, long lasting suds especially in presence of greasy soils and surface modification that can contribute to second time cleaning benefits, improved drying, improved shine in the case of dishware.
- Cleaning compositions should have a good suds profile in particular a long lasting suds profile while providing good soil cleaning. Users usually see suds as an indicator of the performance of the cleaning composition. Moreover, the user of a cleaning composition may also use the suds profile and the appearance of the suds (e.g. density, whiteness) as an indicator that the wash solution still contains active cleaning ingredients. This is particularly the case for manual washing, also referred to herein as hand-washing, where the user usually doses the cleaning composition depending on the suds remaining and renews the wash solution when the suds subside or when the suds does not look thick enough. Thus, a cleaning composition, particularly a manual wash cleaning composition that generates little or low density suds would tend to be replaced by the user more frequently than is necessary. Accordingly, it is desirable for a cleaning composition to provide "good sudsing profile", which includes good suds height and/or density as well as good suds duration during the initial mixing of the composition with water and during the entire washing operation.
- Several families of natural surface active proteins are able to produce suds in aqueous solutions (see Cooper, A., et al. (2017), Colloids Surf., A: Physiochemical and Engineering Aspects ; Schor, M., et al. (2016), Trends Biochem. Sci. 41(7): 610-620). Hydrophobins are a class of surface active proteins. Furthermore, detergent compositions containing hydrophobins are known in the art. For example,
US 2009/0101167 describes the use of hydrophobins, particularly fusion hydrophobins, for washing textiles and washing compositions containing them.US 2014/0031272 describes a cleaning composition comprising a hydrophobin and a lipolytic enzyme for removing lipid-based stains from surfaces. However, the amount of sudsing generated by such surface active proteins in cleaning formulations is limited. - Accordingly, the need remains for an improved cleaning composition comprising surface active proteins which has a further improved sudsing profile, particularly at low proteins concentrations in the cleaning compositions. The need also exists for an improved cleaning composition, when used in a manual-washing process, the composition preferably also provides a pleasant washing experience, i.e, good feel on the user's hands during the wash. Preferably the cleaning compositions are also easy to rinse. Preferably in addition, the composition provides a good finish to the washed items. There is also the desire to reduce the amount of surfactants without negatively impacting sudsing nor grease cleaning and emulsification profile. Thus, there is the need to find new compositions that improve suds longevity in hand washing conditions. The Applicant discovered that some or all of the above-mentioned needs can be at least partially fulfilled through the improved cleaning composition as described herein below.
- The present invention meets one or more of these needs based on the surprising discovery that by formulating a cleaning composition comprising a specific surfactant system and one or more subclass EAS hydrophobins, such a composition exhibits good sudsing profile, particularly desirable suds volume and/or sustained suds stabilization, especially in the presence of greasy soils. It also provides good emulsification benefits and can also provide surface modifications facilitating next time cleaning benefit.
- According to a first aspect, the present invention is directed to a cleaning composition comprising from 1 wt% to 60 wt%, preferably from 5 wt% to 50 wt% by weight of said composition of a surfactant system and from 0.001 wt% to 5 wt%, preferably from 0.1 wt% to 1 wt%, by weight of said composition, based on active protein, of one or more subclass EAS hydrophobins according to claim 1. The specific surfactant system comprises one or more anionic surfactants and one or more co-surfactants selected from the group consisting of amphoteric surfactant, zwitterionic surfactant, and mixtures thereof.
- Preferably the cleaning composition is a manual-washing cleaning composition. Preferably the cleaning composition is for manual dishwashing. Preferred compositions are in the form of a liquid.
- In another aspect, the present invention is directed to a method comprising contacting a cleaning composition of the invention with a surface.
- In another aspect, the present invention is directed to a method of manually washing dishware comprising the steps of delivering a detergent composition of the invention into a volume of water to form a wash solution and immersing the dishware in the solution.
- In yet another aspect, the present invention is directed to a method of manually washing soiled items comprising contacting a cleaning composition of the invention, wherein said composition modifies the hydrophobicity of said surface as a result of said contacting step.
- In yet another aspect, the present invention is directed to a method of improving suds longevity in a washing process for washing soiled articles, preferably dishware. The method comprises the steps of: a) delivering a cleaning composition of the invention to a volume of water to form a wash liquor; and b) immersing the soiled articles into said wash liquor.
- In yet another aspect, the present invention relates to a method of manually washing dishware comprising: i) delivering a composition as described herein above onto the dishware or a cleaning implement; ii) cleaning the dishware with the composition in the presence of water; and iii) optionally, rinsing the dishware. Preferably, the composition of the present invention is used in neat form (i.e., direct application) when the composition is directly applied on the soiled surface or on a cleaning implement, such as a sponge, to be used to clean the soiled surface.
- In yet another aspect, the present invention is directed to use of one or more subclass EAS hydrophobins of the invention to improve suds longevity in an aqueous wash liquor during a washing process.
- It is an object of the composition of the present invention to exhibit good sudsing profile, preferably high suds volume and sustained suds aesthetics (i.e., whiteness, consistency).
- It is an object of the composition of the present invention to exhibit good sudsing profile, preferably stable suds during a substantial portion of or for the entire manual dishwashing process.
- The elements of the composition of the invention described in relation to the first aspect of the invention apply mutatis mutandis to the other aspects of the invention.
- These and other features, aspects and advantages of the present invention will become evident to those skilled in the art from the detailed description which follows.
- While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the invention will be better understood from the following description of the accompanying figures:
Figure 1 is a sequence similarity network of hydrophobins identifying the two major classes (class I and class II) and several subclasses including subclass EAS. The network was generated using EFI - Enzyme Similarity Tool Ver 2.0 (http://efi.igb.illinois.edu/efi-est/). - As used herein, the articles "a" and "an" when used in a claim, are understood to mean one or more of what is claimed or described.
- As used herein, the term "amino acid identity" means the identity between two or more amino acid sequences and is expressed in terms of the identity or similarity between the sequences. Sequence identity can be measured in terms of percentage identity; the higher the percentage, the more identical the sequences are. The percentage identity is calculated over the length of comparison. For example, the amino acid identity is typically calculated over the entire length of a sequence aligned against the entire length of the reference sequence (e.g., SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11). Methods of alignment of sequences for comparison are well known in the art and identity can be calculated by many known methods. Various programs and alignment algorithms are described in the art. It should be noted that the terms 'sequence identity' and 'sequence similarity' can be used interchangeably.
- As used herein, the term "cleaning composition" refers to a composition or formulation designed for cleaning soiled surfaces. Such compositions include but are not limited to, dishwashing compositions, laundry detergent compositions, fabric softening compositions, fabric enhancing compositions, fabric freshening compositions, laundry pre-wash, laundry pretreat, laundry additives, spray products, dry cleaning agent or composition, laundry rinse additive, wash additive, post-rinse fabric treatment, ironing aid, hard surface cleaning compositions, unit dose formulation, delayed delivery formulation, detergent contained on or in a porous substrate or nonwoven sheet, and other suitable forms that may be apparent to one skilled in the art in view of the teachings herein. Such compositions may be used as a pre-cleaning treatment, a post-cleaning treatment, or may be added during the rinse or wash cycle of the cleaning process. The cleaning compositions may have a form selected from liquid, powder, single-phase or multi-phase unit dose or pouch form, tablet, gel, paste, bar, or flake. Preferably the composition is for manual-washing. Preferably, the cleaning composition of the present invention is a dishwashing detergent. Preferably the composition is in the form of a liquid.
- As used herein the term "fragment" means an amino acid sequence of at least 30, 60, 100, 150 contiguous amino acids of the reference sequences or any integer there between.
- As used herein the term "improving suds longevity" means an increase in the duration of visible suds in a washing process cleaning soiled articles using the composition comprising one or more subclass EAS hydrophobins, compared with the suds longevity provided by the same composition and process in the absence of the subclass EAS hydrophobins.
- As used herein, the term "next time cleaning benefit" means the surface to be cleaned could be treated with a composition which would assist in easier removal of soil and/or stains during subsequent cleaning.
- As used herein, the term "soiled surfaces" refers non-specifically to any type of flexible material consisting of a network of natural or artificial fibers, including natural, artificial, and synthetic fibers, such as, but not limited to, cotton, linen, wool, polyester, nylon, silk, acrylic, and the like, as well as various blends and combinations. Soiled surfaces may further refer to any type of hard surface, including natural, artificial, or synthetic surfaces, such as, but not limited to, tile, granite, grout, glass, composite, vinyl, hardwood, metal, cooking surfaces, plastic, and the like, as well as blends and combinations, as well as dishware. Key targeted soiled surfaces by this application are soiled dishware.
- As used herein, the term "variant" of the subclass EAS hydrophobins means an amino acid sequence when the subclass EAS hydrophobin is modified by, or at, one or more amino acids (for example 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 or more amino acid modifications) selected from substitutions, insertions, deletions and combinations thereof. The variant may have "conservative" substitutions, wherein a substituted amino acid has similar structural or chemical properties to the amino acid that replaces it, for example, replacement of leucine with isoleucine. A variant may have "non-conservative" changes, for example, replacement of a glycine with a tryptophan. Variants may also include sequences with amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing the activity of the protein may be found using computer programs well known in the art. Variants may also include truncated forms derived from a wild-type subclass EAS hydrophobin, such as for example, a protein with a truncated N-terminus. Variants may also include forms derived by adding an extra amino acid sequence to a wild-type protein, such as for example, an N-terminal tag, a C-terminal tag or an insertion in the middle of the protein sequence.
- As used herein, the term "water hardness" or "hardness" means uncomplexed cation ions (i.e., Ca2+ or Mg2+) present in water that have the potential to precipitate with anionic surfactants or other anionic actives in the cleaning composition under alkaline conditions, and thereby diminishing the surfactancy and cleaning capacity of surfactants. Further, the terms "high water hardness" and "elevated water hardness" can be used interchangeably and are relative terms for the purposes of the present invention, and are intended to include, but not limited to, a hardness level containing at least 12 grams of calcium ion per gallon water (gpg, "American grain hardness" units).
- The present invention envisages a cleaning composition, preferably a hand dishwashing cleaning composition, comprising a specific surfactant system and one or more subclass EAS hydrophobins. The composition of the invention provides very good suds duration especially in presence of fatty and/or oily soils. The invention also envisages a method of hand dishwashing and use of the composition for prolonging suds duration.
- A preferred cleaning composition is a manual dishwashing composition, preferably in liquid form. It typically contains from 30% to 95%, preferably from 40% to 90%, more preferably from 50% to 85% by weight of the composition of a liquid carrier in which the other essential and optional components are dissolved, dispersed or suspended. One preferred component of the liquid carrier is water.
- Preferably the pH of the cleaning composition of the invention, measured as a 10% product concentration in demineralized water at 20°C, is adjusted to between 3 and 14, more preferably between 4 and 13, more preferably between 6 and 12 and most preferably between 8 and 10. The pH of the cleaning composition can be adjusted using pH modifying ingredients known in the art.
- The cleaning composition in accordance with the present invention comprises one or more subclass EAS hydrophobins. Hydrophobins are proteins of fungal origin that play multiple roles in the growth and development of filamentous fungi (see Wosten, H. A. B. (2001), Annu. Rev. Microbiol., 55: 625-646). For example, they are involved in the formation of aerial structures and in the attachment of hyphae to hydrophobic surfaces. The mechanisms by which hydrophobins perform their function are based on their property of self-assembling at hydrophobic-hydrophilic interfaces into an amphipathic film.
- In this specification, "hydrophobins" are polypeptides capable of self-assembly at a hydrophilic / hydrophobic interface, and comprise the following sequence:
(Y1)n-B1-(X1)a-B2-(X2)b-B3-(X3)c-B4-(X4)d-B5-(X5)e-B6-(X6)f-B7-(X7)g-B8-(Y2)m
wherein: m and n are independently 0 to 2000; B1, B2, B3, B4, B5, B6, B7 and B8 are each independently amino acids selected from Cys, Leu, Ala, Pro, Ser, Thr, Met or Gly, at least 6 of the residues B1through B8 being Cys; X1, X2, X3, X4, X5, X6, X7,Y1 and Y2 independently represent any amino acid; a is 1 to 50; b is 0 to 5; c is 1 to 100; d is 1 to 100; e is 1 to 50; f is 0 to 5; g is 1 to 100; m is 0 to 100; and n is 0 to 100. - Traditionally, hydrophobins have been classified into class I or class II based on structural and physical parameters including solubility. As described herein, hydrophobins self-assemble at an interface (especially a water/air interface) into amphipathic interfacial films. The assembled amphipathic films of class I hydrophobins are generally re-solubilized only in strong acids (typically those having a pKa of lower than 4, such as formic acid or trifluoroacetic acid), whereas those of class II are soluble in a wider range of solvents.
- Hydrophobins of classes I and II may also be distinguished by the hydrophobicity/hydrophilicity of a number of regions of the hydrophobin proteins. The relative hydrophobicity/hydrophilicity of the various regions of the hydrophobin proteins can be established by comparing the hydropathy pattern of the hydrophobin using the method set out in Kyte and Doolittle, J. Mol. Biol., 1982, 157, 105-132. For class II hydrophobins, the region between the residues B3 and B4, i.e., the moiety (X3)c, is predominantly hydrophobic. In contrast, for class I hydrophobins, the region between the residues B3 and B4, i.e., the group (X3)c, is predominantly hydrophilic. Alternatively the region between the residues B7 and B8, i.e., the moiety (X7)g, is predominantly hydrophobic for class II hydrophobins, while being predominantly hydrophilic for class I hydrophobins.
- As part of the current invention, a sequence similarity network of hydrophobins was generated using EFI - Enzyme Similarity Tool Ver 2.0 (http://efi.igb.illinois.edu/efi-est/), allowing the identification of not only the two major traditional classes of hydrophobins (class I and class II), but also several subclasses including a group comprising EAS (SEQ ID NO: 1, obtainable from the fungus Neurospora crassa) and wild-type variants with high homology to EAS, referred herein as subclass EAS (see
Figure 1 ). - The compositions of the current invention comprise one or more subclass EAS hydrophobins, whereas other hydrophobins are not part of the invention. As used herein, "subclass EAS hydrophobins" refer to any hydrophobins with at least 45% amino acid sequence identity compared to Neurospora crassa EAS (SEQ ID NO: 1). Besides Neurospora crassa EAS, subclass EAS hydrophobins comprises hydrophobins produced by Neurospora tetrasperma (e.g., SEQ ID NO: 2, SEQ ID NO: 4), Neurospora discreta (e.g., SEQ ID NO: 3), Neurospora sitophila (e.g., SEQ ID NO: 5), Neurospora terrícola (e.g., SEQ ID NO: 6), Neurospora lineolata (e.g., SEQ ID NO: 7), Neurospora intermedia, Neurospora africana, Neurospora dodgei, and Sordaria macrospora (e.g., SEQ ID NO: 8), (see Winefield, R. D., et al. (2007)., Fungal Genet. Biol. 44(4): 250-257).
- Unexpectedly, the Applicants found that subclass EAS hydrophobins are able to increase sudsing in the presence of a specific surfactant system. Not wishing to be bound by theory, the Applicants believe that the increased sudsing benefits are due to the specific amino acid sequences and/or protein structures enhancing the adsorption at the interface between two phases (oil/water or air/water). Similar benefits are not observed when the cleaning compositions comprise class I hydrophobins different to subclass EAS hydrophobins. Furthermore, the Applicants have discovered that compositions containing subclass EAS hydrophobins have good grease cleaning and emulsification profile without negatively impacting sudsing.
- Accordingly, a cleaning composition of the present invention comprises: a) from 1 wt% to 60 wt%, preferably from 5 wt% to 50 wt%, by weight of the composition of a surfactant system comprising one or more anionic surfactants and one or more co-surfactants selected from the group consisting of amphoteric surfactant, zwitterionic surfactant, and mixtures thereof; and b) from 0.001 wt% to 5 wt%, preferably from 0.1 wt% to 1 wt%, by weight of the composition, based on active protein, of one or more subclass EAS hydrophobins.
- Preferably the subclass EAS hydrophobins have at least 50%, preferably at least 60%, preferably at least 70%, preferably at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 98% or even 100% amino acid identity as calculated over the entire length of the sequence aligned against the entire length of at least one or more reference sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 11, preferably to SEQ ID NO: 9.
- The invention also includes subclass EAS hydrophobins variants. For example, subclass EAS hydrophobins variants, as used herein, include a sequence resulting when a wild-type protein is modified by, or at, one or more amino acids (for example 1, 2, 5 or 10 amino acids). The invention also includes subclass EAS hydrophobins variants in the form of truncated forms derived from a wild-type subclass EAS hydrophobin, such as a wild-type subclass EAS hydrophobin with a truncated N-terminus or a truncated C-terminus.
- The majority of subclass EAS hydrophobins are predicted to include an N-terminal signal peptide that is likely removed upon secretion by the native organisms. Preferably the subclass EAS hydrophobin variants of the present invention are without the N-terminal signal peptide. For example, SEQ ID NO: 9 is a variant of the full length wild-type Neurospora crassa EAS (SEQ ID NO: 1) without the N-terminal signal peptide. Bioinformatic tools, such as SignalP version 4.1 (Petersen TN., Brunak S., von Heijne G. and Nielsen H. (2011), Nature Methods, 8:785-786), can be used to predict the existence and length of such signal peptides.
- The invention also includes variants derived by adding an extra amino acid sequence to a wild-type protein, such as for example, an N-terminal tag, a C-terminal tag or an insertion in the middle of the protein sequence. Non-limiting examples of tags are maltose binding protein (MBP) tag, glutathione S-transferase (GST) tag, thioredoxin (Trx) tag, His-tag, ubiquitin-tag, and any other tags known by those skilled in art. Tags can be used to improve solubility and expression levels during fermentation or as a handle for enzyme purification. For example, His-Ubi-EAS (SEQ ID NO: 11) is a variant of EAS (SEQ ID NO: 9) including an N-terminal His tag, an ubiquitin tag, and a TEV protease cleavage site.
- It is important that variants of subclass EAS hydrophobins retain or preferably improve the ability of the wild-type proteins to adsorb at an interface and to stabilize that interface. Some performance drop in a given property of subclass EAS hydrophobins variants may of course be tolerated, but the subclass EAS hydrophobins variants should retain or preferably improve suitable properties for the relevant application for which they are intended. For instance, screening of variants of one of the wild-types can be used to identify whether they retain or improve appropriate properties.
- Suitable examples of subclass EAS hydrophobins variants include one conservative substitution in the peptide, such as a conservative substitution in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11.
- Other suitable examples of subclass EAS hydrophobins variants include 10 or fewer conservative substitutions are included in the peptide, such as five or fewer. The subclass EAS hydrophobins of the present invention may therefore include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more conservative substitutions. The subclass EAS hydrophobins can be produced to contain one or more conservative substitutions by manipulating the nucleotide sequence that encodes that peptide using, for example, standard procedures such as site-directed mutagenesis or PCR. Alternatively, the subclass EAS hydrophobins can be produced to contain one or more conservative substitutions by using peptide synthesis methods, for example, as known in the art.
- Examples of amino acids which may be substituted for an original amino acid in a subclass EAS hydrophobin and which are regarded as conservative substitutions include: Ser for Ala; Lys for Arg; Gln or His for Asn; Glu for Asp; Asn for Gln; Asp for Glu; Pro for Gly; Asn or Gln for His; Leu or Val for Ile; Ile or Val for Leu; Arg or Gln for Lys; Leu or Ile for Met; Met, Leu or Tyr for Phe; Thr for Ser; Ser for Thr; Tyr for Trp; Trp or Phe for Tyr; and Ile or Leu for Val.
- Preferably the subclass EAS hydrophobins of the invention may comprise variants of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11, wherein one or more cysteine residues are substituted by another amino acid.
- Preferably the subclass EAS hydrophobins of the present invention may comprise variants of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11, wherein a short amino acid sequence containing two cysteine residues is added at the C-terminus or at least two residues are modified to cysteines. These cysteine residues can allow the subclass EAS hydrophobins to form multimers (i.e., dimers, tetramers, hexamers and potentially higher order oligomers) in solution due to the formation of disulfide bonds between the cysteine residues of adjacent subclass EAS hydrophobins variants.
- The subclass EAS hydrophobins of the present invention may also cover fragments of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11. Preferably the subclass EAS hydrophobins fragments can adsorb to an interface and stabilize that interface.
- The subclass EAS hydrophobins can be modified by a variety of chemical techniques to produce derivatives having essentially the same or even improved activity as the unmodified peptides, and optionally having other desirable properties. For example, carboxylic acid groups of the protein, whether carboxyl-terminal or side chain, may be provided in the form of a salt of a pharmaceutically-acceptable cation or esterified, for example to form a C1-C6 alkyl ester, or converted to an amide, for example of formula CONR1R2 wherein R1 and R2 are each independently H or C1-C6 alkyl, or combined to form a heterocyclic ring, such as a 5- or 6-membered ring. Amino groups of the peptide, whether amino-terminal or side chain, may be in the form of a pharmaceutically-acceptable acid addition salt, such as the HCI, HBr, acetic, benzoic, toluene sulfonic, maleic, tartaric and other organic salts, or may be modified to C1-C6 alkyl or dialkyl amino or further converted to an amide. Hydroxyl groups of the peptide side chains may be converted to alkoxy or ester groups, for example C1-C6 alkoxy or C1-C6 alkyl ester, using well-recognized techniques. Phenyl and phenolic rings of the peptide side chains may be substituted with one or more halogen atoms, such as F, CI, Br or I, or with C1-C6 alkyl, C1-C6 alkoxy, carboxylic acids and esters thereof, or amides of such carboxylic acids. Methylene groups of the peptide side chains can be extended to homologous C2-C4 alkylenes. Thiols can be protected with any one of a number of well-recognized protecting groups, such as acetamide groups. Those skilled in the art will also recognize methods for introducing cyclic structures into the subclass EAS hydrophobins of the present invention to select and provide conformational constraints to the structure that result in enhanced stability.
- Identity, or homology, percentages as mentioned herein in respect of the present invention are those that can be calculated with the GAP program, obtainable from GCG (Genetics Computer Group Inc., Madison, W1, USA). Alternatively, a manual alignment can be performed.
- For polypeptide sequence comparison the following settings can be used: Alignment algorithm: Needleman and Wunsch, J. Mol. Biol. 1970, 48: 443-453. As a comparison matrix for amino acid similarity the Blosum62 matrix is used (Henikoff S. and Henikoff J.G., P.N.A.S. USA 1992, 89: 10915-10919). The following gap scoring parameters are used: Gap penalty: 12, gap length penalty: 2, no penalty for end gaps.
- A given sequence is typically compared against the full-length sequence of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11 to obtain a score.
- The cleaning composition preferably comprises from 0.001 wt% to 5 wt%, preferably from 0.1 wt% to 1 wt%, by weight of said composition, based on active protein, of one or more subclass EAS hydrophobins. Preferably the subclass EAS hydrophobin has at least 50%, preferably at least 60%, preferably at least 70%, preferably at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 98% or even 100% amino acid identity as calculated over the entire length of the sequence aligned against the entire length of at least one or more reference sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, or SEQ ID NO: 11. More preferably the subclass EAS hydrophobin has at least 50%, preferably at least 60%, preferably at least 70%, preferably at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 98% or even 100% amino acid identity as calculated over the entire length of the sequence aligned against the entire length of Neurospora crassa EAS (SEQ ID NO: 9).
- The detergent composition of the invention comprises from 1% to 60%, preferably from 5% to 50%, more preferably from 8% to 40%, by weight of the total composition of a specific surfactant system.
- The surfactant system of the composition of the present invention comprises an anionic surfactant. Preferably, the surfactant system for the cleaning composition of the present invention comprises from 1% to 40%, preferably 6% to 35%, more preferably 8% to 30% by weight of the total composition of an anionic surfactant. The anionic surfactant can be any anionic cleaning surfactant, preferably selected from sulfate and/or sulfonate anionic surfactants. HLAS (linear alkylbenzene sulfonate) would be the most preferred sulfonate anionic surfactant. Especially preferred anionic surfactant is selected from the group consisting of alkyl sulfate, alkyl alkoxy sufate and mixtures thereof, and preferably wherein the alkyl alkoxy sulfate is an alkyl ethoxy sulfate. Preferred anionic surfactant is a combination of alkyl sulfates and alkyl ethoxy sulfates with a combined mol average ethoxylation degree of less than 5, preferably less than 3, more preferably less than 2 and more than 0.5 and an average level of branching of from 5% to 40%, more preferably from 10% to 35%, and even more preferably from 20% to 30%.
- The average alkoxylation degree is the mol average alkoxylation degree of all the components of the mixture (i.e., mol average alkoxylation degree) of the anionic surfactant. In the mol average alkoxylation degree calculation the weight of sulfate anionic surfactant components not having alkoxylate groups should also be included.
- The average level of branching is the weight average % of branching and it is defined according to the following formula:
- Suitable examples of commercially available sulfates include, those based on Neodol alcohols ex the Shell company, Lial - Isalchem and Safol ex the Sasol company, natural alcohols ex The Procter & Gamble Chemicals company. Suitable sulfonate surfactants for use herein include water-soluble salts of C8-C18 alkyl or hydroxyalkyl sulfonates; C11-C18 alkyl benzene sulfonates (LAS), modified alkylbenzene sulfonate (MLAS); methyl ester sulfonate (MES); and alpha-olefin sulfonate (AOS). Those also include the paraffin sulfonates may be monosulfonates and/or disulfonates, obtained by sulfonating paraffins of 10 to 20 carbon atoms. The sulfonate surfactant also include the alkyl glyceryl sulfonate surfactants.
- The surfactant system of the composition of the present invention further comprises a primary co-surfactant system, wherein the primary co-surfactant system is selected from the group consisting of amphoteric surfactant, zwitterionic surfactant and mixtures thereof. Preferably, the surfactant system for the cleaning composition of the present invention comprises from 0.5% to 15%, preferably from 1% to 12%, more preferably from 2% to 10%, by weight of the total composition of a primary co-surfactant system.
- Preferably the primary co-surfactant system is an amphoteric surfactant. Preferably, the primary co-surfactant system is an amine oxide surfactant, and wherein the composition comprises anionic surfactant and amine oxide surfactant in a ratio of less than 9:1, more preferably from 5:1 to 1:1, more preferably from 4:1 to 2:1, preferably from 3:1 to 2.5:1. Preferred amine oxides are alkyl dimethyl amine oxide or alkyl amido propyl dimethyl amine oxide, more preferably alkyl dimethyl amine oxide and especially coco dimethyl amino oxide. Amine oxide may have a linear or branched alkyl moiety.
- Preferably the amine oxide surfactant is a mixture of amine oxides comprising a low-cut amine oxide and a mid-cut amine oxide. The amine oxide of the composition of the invention then comprises:
- a) from 10% to 45% by weight of the amine oxide of low-cut amine oxide of formula R1R2R3AO wherein R1 and R2 are independently selected from hydrogen, C1-C4 alkyls or mixtures thereof, and R3 is selected from C10 alkyls or mixtures thereof; and
- b) from 55% to 90% by weight of the amine oxide of mid-cut amine oxide of formula R4R5R6AO wherein R4 and R5 are independently selected from hydrogen, C1-C4 alkyls or mixtures thereof, and R6 is selected from C12-C16 alkyls or mixtures thereof
- In a preferred low-cut amine oxide for use herein R3 is n-decyl. In another preferred low-cut amine oxide for use herein R1 and R2 are both methyl. In an especially preferred low-cut amine oxide for use herein R1 and R2 are both methyl and R3 is n-decyl.
- Preferably, the amine oxide comprises less than 5%, more preferably less than 3%, by weight of the amine oxide of an amine oxide of formula R7R8R9AO wherein R7 and R8 are selected from hydrogen, C1-C4 alkyls and mixtures thereof and wherein R9 is selected from C8 alkyls and mixtures thereof. Compositions comprising R7R8R9AO tend to be unstable and do not provide very suds mileage.
- Preferably the primary co-surfactant system is a zwitterionic surfactant. Suitable examples of zwitterionic surfactants include betaines, such as alkyl betaines, alkylamidobetaine, amidazoliniumbetaine, sulfobetaine (INCI Sultaines) as well as the Phosphobetaine and preferably meets formula (I):
Rl-[CO-X (CH2)n]x-N+(R2)(R3)-(CH2)m-[CH(OH)-CH2]y-Y- (I)
wherein - R1 is a saturated or unsaturated C6-22 alkyl residue, preferably C8-18 alkyl residue, in particular a saturated C10-16 alkyl residue, for example a saturated C12-14 alkyl residue;
- X is NH, NR4 with C1-4 Alkyl residue R4, O or S;
- n is a number from 1 to 10, preferably 2 to 5, in particular 3;
- x is 0 or 1, preferably 1;
- R2 and R3 are independently a C1-4 alkyl residue, potentially hydroxy substituted such as a hydroxyethyl, preferably a methyl;
- m is a number from 1 to 4, in particular 1, 2 or 3;
- y is 0 or 1; and
- Y is COO, SO3, OPO(OR5)O or P(O)(OR5)O, whereby R5 is a hydrogen atom H or a C1-4 alkyl residue.
- Preferred betaines are the alkyl betaines of the formula (Ia), the alkyl amido propyl betaine of the formula (Ib), the Sulfo betaines of the formula (Ic), and the Amido sulfobetaine of the formula (Id);
R1-N+(CH3)2-CH2COO- (Ia)
R1-CO-NH(CH2)3-N+(CH3)2-CH2COO- (Ib)
R1-N+(CH3)2-CH2CH(OH)CH2SO3- (Ic)
R1-CO-NH-(CH2)3-N+(CH3)2-CH2CH(OH)CH2SO3- (Id)
in which R1 has the same meaning as in formula (I). Particularly preferred betaines are the Carbobetaine [wherein Y-=COO-], in particular the Carbobetaine of the formula (Ia) and (Ib), more preferred are the Alkylamidobetaine of the formula (Ib). A preferred betaine is, for example, Cocoamidopropylbetaine. - Preferably the surfactant system of the composition of the present invention further comprises from 0.1% to 10% by weight of the total composition of a secondary co-surfactant system preferably comprising a non-ionic surfactant. Suitable non-ionic surfactants include the condensation products of aliphatic alcohols with from 1 to 25 moles of ethylene oxide. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 8 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 10 to 18 carbon atoms, preferably from 10 to 15 carbon atoms with from 2 to 18 moles, preferably 2 to 15, more preferably 5-12 of ethylene oxide per mole of alcohol. Highly preferred non-ionic surfactants are the condensation products of guerbet alcohols with from 2 to 18 moles, preferably 2 to 15, more preferably 5-12 of ethylene oxide per mole of alcohol. Preferably, the non-ionic surfactants are an alkyl ethoxylated surfactants, preferably comprising from 9 to 15 carbon atoms in its alkyl chain and from 5 to 12 units of ethylene oxide per mole of alcohol. Other suitable non-ionic surfactants for use herein include fatty alcohol polyglycol ethers, alkylpolyglucosides and fatty acid glucamides, preferably alkylpolyglucosides. Preferably the alkyl polyglucoside surfactant is a C8-C16 alkyl polyglucoside surfactant, preferably a C8-C14 alkyl polyglucoside surfactant, preferably with an average degree of polymerization of between 0.1 and 3, more preferably between 0.5 and 2.5, even more preferably between 1 and 2. Most preferably the alkyl polyglucoside surfactant has an average alkyl carbon chain length between 10 and 16, preferably between 10 and 14, most preferably between 12 and 14, with an average degree of polymerization of between 0.5 and 2.5 preferably between 1 and 2, most preferably between 1.2 and 1.6. C8-C16 alkyl polyglucosides are commercially available from several suppliers (e.g., Simusol® surfactants from Seppic Corporation; and Glucopon® 600 CSUP, Glucopon® 650 EC, Glucopon® 600 CSUP/MB, and Glucopon® 650 EC/MB, from BASF Corporation). Preferably, the composition comprises the anionic surfactant and the non-ionic surfactant in a ratio of from 2:1 to 50:1, preferably 2:1 to 10:1.
- Preferred compositions of the invention may comprise one or more enzymes selected from the group consisting of amylases, lipases, proteases, cellulases, lipoxygenases, diol synthases, and mixtures thereof. When present in a composition, the aforementioned enzymes may be present at levels from 0.00001 wt% to 2 wt%, from 0.0001 wt% to 1 wt% or from 0.001 wt% to 0.5 wt% by weight of the composition, based on active protein.
- Preferably the composition of the invention comprises an enzyme stabilizer. Suitable enzyme stabilizers may be selected from the group consisting of (a) univalent, bivalent and/or trivalent cations preferably selected from the group of inorganic or organic salts of alkaline earth metals, alkali metals, aluminum, iron, copper and zinc, preferably alkali metals and alkaline earth metals, preferably alkali metal and alkaline earth metal salts with halides, sulfates, sulfites, carbonates, hydrogencarbonates, nitrates, nitrites, phosphates, formates, acetates, propionates, citrates, maleates, tartrates, succinates, oxalates, lactates, and mixtures thereof. Preferably the salt is selected from the group consisting of sodium chloride, calcium chloride, potassium chloride, sodium sulfate, potassium sulfate, sodium acetate, potassium acetate, sodium formate, potassium formate, calcium lactate, calcium nitrate and mixtures thereof. Most preferred are salts selected from the group consisting of calcium chloride, potassium chloride, potassium sulfate, sodium acetate, potassium acetate, sodium formate, potassium formate, calcium lactate, calcium nitrate, and mixtures thereof, and in particular potassium salts selected from the group of potassium chloride, potassium sulfate, potassium acetate, potassium formate, potassium propionate, potassium lactate and mixtures thereof. Most preferred are potassium acetate and potassium chloride. Preferred calcium salts are calcium formate, calcium lactate and calcium nitrate including calcium nitrate tetrahydrate. Calcium and sodium formate salts may be preferred. These cations are present at at least 0.01 wt%, preferably at least 0.03 wt%, more preferably at least 0.05 wt%, most preferably at least 0.25 wt% up to 2 wt% or even up to 1 wt% by weight of the total composition. These salts are formulated from 0.1 to 5 wt%, preferably from 0.2 to 4 wt%, more preferably from 0.3 to 3 wt%, most preferably from 0.5 to 2 wt% relative to the total weight of the composition. Further enzyme stabilizers can be selected from the group (b) carbohydrates selected from the group consisting of oligosaccharides, polysaccharides and mixtures thereof, such as a monosaccharide glycerate as described in
WO201219844 WO2012/19849 WO2012/19848 - The composition of the present invention may optionally comprise from 0.01% to 3%, preferably from 0.05% to 2%, more preferably from 0.2% to 1.5%, or most preferably 0.5% to 1%, by weight of the total composition of a salt, preferably a monovalent, divalent inorganic salt or a mixture thereof, preferably sodium chloride. Most preferably the composition alternatively or further comprises a multivalent metal cation in the amount of from 0.01 wt% to 3 wt%, preferably from 0.05% to 2%, more preferably from 0.2% to 1.5%, or most preferably 0.5% to 1% by weight of said composition, preferably said multivalent metal cation is magnesium, aluminium, copper, calcium or iron, more preferably magnesium, most preferably said multivalent salt is magnesium chloride. Without wishing to be bound by theory, it is believed that use of a multivalent cation helps with the formation of protein/ protein, surfactant/ surfactant or hybrid protein/ surfactant network at the oil water and air water interface that is strengthening the suds.
- Preferably the composition of the present invention comprises one or more carbohydrates selected from the group comprising O-glycan, N-glycan, and mixtures thereof. Preferably the cleaning composition further comprises one or more carbohydrates selected from the group comprising derivatives of glucose, mannose, lactose, galactose, allose, altrose, gulose, idose, talose, fucose, fructose, sorbose, tagatose, psicose, arabinose, ribose, xylose, lyxose, ribulose, and xylulose. More preferably the cleaning composition comprises one or more carbohydrates selected from the group of α-glucans and β-glucans. Glucans are polysaccharides of D-glucose monomers, linked by glycosidic bonds. Non-limiting examples of α-glucans are dextran, starch, floridean starch, glycogen, pullulan, and their derivatives. Non-limiting examples of β-glucans are cellulose, chrysolaminarin, curdlan, laminarin, lentinan, lichenin, oat beta-glucan, pleuran, zymosan, and their derivatives.
- The composition of the present invention may optionally comprise from 1% to 10%, or preferably from 0.5% to 10%, more preferably from 1% to 6%, or most preferably from 0.1% to 3%, or combinations thereof, by weight of the total composition of a hydrotrope, preferably sodium cumene sulfonate. Other suitable hydrotropes for use herein include anionic-type hydrotropes, particularly sodium, potassium, and ammonium xylene sulfonate, sodium, potassium and ammonium toluene sulfonate, sodium potassium and ammonium cumene sulfonate, and mixtures thereof, as disclosed in
U.S. Patent 3,915,903 . Preferably the composition of the present invention is isotropic. An isotropic composition is distinguished from oil-in-water emulsions and lamellar phase compositions. Polarized light microscopy can assess whether the composition is isotropic. See e.g., The Aqueous Phase Behaviour of Surfactants, Robert Laughlin, Academic Press, 1994, pp. 538-542. Preferably an isotropic composition is provided. Preferably the composition comprises 0.1% to 3% by weight of the total composition of a hydrotrope, preferably wherein the hydrotrope is selected from sodium, potassium, and ammonium xylene sulfonate, sodium, potassium and ammonium toluene sulfonate, sodium potassium and ammonium cumene sulfonate, and mixtures thereof. - The composition of the present invention may optionally comprise an organic solvent. Suitable organic solvents include C4-14 ethers and diethers, polyols, glycols, alkoxylated glycols, C6-C16 glycol ethers, alkoxylated aromatic alcohols, aromatic alcohols, aliphatic linear or branched alcohols, alkoxylated aliphatic linear or branched alcohols, alkoxylated C1-C5 alcohols, C8-C14 alkyl and cycloalkyl hydrocarbons and halohydrocarbons, and mixtures thereof. Preferably the organic solvents include alcohols, glycols, and glycol ethers, alternatively alcohols and glycols. The composition comprises from 0% to less than 50%, preferably from 0.01% to 25%, more preferably from 0.1% to 10%, or most preferably from 0.5% to 5%, by weight of the total composition of an organic solvent, preferably an alcohol, more preferably an ethanol, a polyalkyleneglycol, more preferably polypropyleneglycol, and mixtures thereof.
- The composition of the present invention may further comprise from 0.01% to 5%, preferably from 0.05% to 2%, more preferably from 0.07% to 1% by weight of the total composition of an amphiphilic polymer selected from the groups consisting of amphiphilic alkoxylated polyalkyleneimine and mixtures thereof, preferably an amphiphilic alkoxylated polyalkyleneimine.
- Preferably, the amphiphilic alkoxylated polyalkyleneimine is an alkoxylated polyethyleneimine polymer comprising a polyethyleneimine backbone having average molecular weight range from 100 to 5,000, preferably from 400 to 2,000, more preferably from 400 to 1,000 Daltons and the alkoxylated polyethyleneimine polymer further comprising:
- (i) one or two alkoxylation modifications per nitrogen atom by a polyalkoxylene chain having an average of 1 to 50 alkoxy moieties per modification, wherein the terminal alkoxy moiety of the alkoxylation modification is capped with hydrogen, a C1-C4 alkyl or mixtures thereof;
- (ii) an addition of one C1-C4 alkyl moiety and one or two alkoxylation modifications per nitrogen atom by a polyalkoxylene chain having an average of 1 to 50 alkoxy moieties per modification wherein the terminal alkoxy moiety is capped with hydrogen, a C1-C4 alkyl or mixtures thereof; or
- (iii) a combination thereof; and
- Preferred amphiphilic alkoxylated polyethyleneimine polymers comprise EO and PO groups within their alkoxylation chains, the PO groups preferably being in terminal position of the alkoxy chains, and the alkoxylation chains preferably being hydrogen capped. Hydrophilic alkoxylated polyethyleneimine polymers solely comprising ethoxy (EO) units within the alkoxylation chain could also optionally be formulated within the scope of this invention.
-
-
- The alkoxylation modification of the polyethyleneimine backbone consists of the replacement of a hydrogen atom by a polyalkoxylene chain having an average of 1 to 50 alkoxy moieties, preferably from 20 to 45 alkoxy moieties, most preferably from 30 to 45 alkoxy moieties. The alkoxy moieties are selected from ethoxy (EO), propoxy (PO),butoxy (BO), and mixtures thereof. Alkoxy moieties solely comprising ethoxy units are outside the scope of the invention though. Preferably, the polyalkoxylene chain is selected from ethoxy/propoxy block moieties. More preferably, the polyalkoxylene chain is ethoxy/propoxy block moieties having an average degree of ethoxylation from 3 to 30 and an average degree of propoxylation from 1 to 20, more preferably ethoxy/propoxy block moieties having an average degree of ethoxylation from 20 to 30 and an average degree of propoxylation from 10 to 20.
- More preferably the ethoxy/propoxy block moieties have a relative ethoxy to propoxy unit ratio between 3 to 1 and 1 to 1, preferably between 2 to 1 and 1 to 1. Most preferably the polyalkoxylene chain is the ethoxy/propoxy block moieties wherein the propoxy moiety block is the terminal alkoxy moiety block.
- The modification may result in permanent quaternization of the polyethyleneimine backbone nitrogen atoms. The degree of permanent quaternization may be from 0% to 30% of the polyethyleneimine backbone nitrogen atoms. It is preferred to have less than 30% of the polyethyleneimine backbone nitrogen atoms permanently quaternized. Most preferably the degree of quaternization is 0%.
- A preferred polyethyleneimine has the general structure of Formula (II):
- An alternative polyethyleneimine has the general structure of Formula (II) but wherein the polyethyleneimine backbone has a weight average molecular weight of 600, n of Formula (II) has an average of 24, m of Formula (II) has an average of 16 and R of Formula (II) is selected from hydrogen, a C1-C4 alkyl and mixtures thereof, preferably hydrogen. The degree of permanent quaternization of Formula (II) may be from 0% to 22% of the polyethyleneimine backbone nitrogen atoms. The molecular weight of this polyethyleneimine preferably is between 25,000 and 30,000.
- Most preferred polyethyleneimine has the general structure of Formula (II) wherein the polyethyleneimine backbone has a weight average molecular weight of 600, n of Formula (II) has an average of 24, m of Formula (II) has an average of 16 and R of Formula (II) is hydrogen. The degree of permanent quaternization of Formula (II) is 0% of the polyethyleneimine backbone nitrogen atoms. The molecular weight of this polyethyleneimine preferably is from 25,000 to 30,000, most preferably 28,000.
These polyethyleneimines can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, and the like, as described in more detail inPCT Publication No. WO 2007/135645 . - The detergent composition herein can comprise a chelant at a level of from 0.1% to 20%, preferably from 0.2% to 5%, more preferably from 0.2% to 3% by weight of total composition.
- As commonly understood in the detergent field, chelation herein means the binding or complexation of a bi- or multidentate ligand. These ligands, which are often organic compounds, are called chelants, chelators, chelating agents, and/or sequestering agent. Chelating agents form multiple bonds with a single metal ion. Chelants, are chemicals that form soluble, complex molecules with certain metal ions, inactivating the ions so that they cannot normally react with other elements or ions to produce precipitates or scale, or forming encrustations on soils turning them harder to be removed. The ligand forms a chelate complex with the substrate. The term is reserved for complexes in which the metal ion is bound to two or more atoms of the chelant.
- Preferably, the composition of the present invention comprises one or more chelant, preferably selected from the group comprising carboxylate chelants, amino carboxylate chelants, amino phosphonate chelants such as MGDA (methylglycine-N,N-diacetic acid), GLDA (glutamic-N,N- diacetic acid), and mixtures thereof.
- Suitable chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polycarboxylate chelating agents and mixtures thereof.
- Other chelants include homopolymers and copolymers of polycarboxylic acids and their partially or completely neutralized salts, monomeric polycarboxylic acids and hydroxycarboxylic acids and their salts. Suitable polycarboxylic acids are acyclic, alicyclic, heterocyclic and aromatic carboxylic acids, in which case they contain at least two carboxyl groups which are in each case separated from one another by, preferably, no more than two carbon atoms. A suitable hydroxycarboxylic acid is, for example, citric acid. Another suitable polycarboxylic acid is the homopolymer of acrylic acid. Preferred are the polycarboxylates end capped with sulfonates.
- The cleaning composition herein may optionally comprise a number of other adjunct ingredients such as builders (e.g., preferably citrate), cleaning solvents, cleaning amines, conditioning polymers, cleaning polymers, surface modifying polymers, soil flocculating polymers, structurants, emollients, humectants, skin rejuvenating actives, enzymes, carboxylic acids, scrubbing particles, bleach and bleach activators, perfumes, malodor control agents, pigments, dyes, opacifiers, beads, pearlescent particles, microcapsules, inorganic cations such as alkaline earth metals such as Ca/Mg-ions, antibacterial agents, preservatives, viscosity adjusters (e.g., salt such as NaCl, and other mono-, di- and trivalent salts) and pH adjusters and buffering means (e.g., carboxylic acids such as citric acid, HCl, NaOH, KOH, alkanolamines, phosphoric and sulfonic acids, carbonates such as sodium carbonates, bicarbonates, sesquicarbonates, borates, silicates, phosphates, imidazole and alike).
- In another aspect of the invention is directed to a method of washing dishware with the composition of the present invention. The method comprises contacting a cleaning composition with a surface; wherein said cleaning composition comprises a surfactant system and one or more subclass EAS hydrophobins according to the present invention. As such, the composition herein will be applied in its diluted form to the dishware. Soiled surfaces e.g. dishes are contacted with an effective amount, typically from 0.5 mL to 20 mL (per 25 dishes being treated), preferably from 3mL to 10 mL, of the detergent composition of the present invention, preferably in liquid form, diluted in water. The actual amount of detergent composition used will be based on the judgment of the user, and will typically depend upon factors such as the particular product formulation of the composition, including the concentration of active ingredients in the composition, the number of soiled dishes to be cleaned, the degree of soiling on the dishes, and the like. Generally, from 0.01 mL to 150 mL, preferably from 3 mL to 40 mL of a liquid detergent composition of the invention is combined with from 2,000 mL to 20,000 mL, more typically from 5,000 mL to 15,000 mL of water in a sink having a volumetric capacity in the range of from 1,000 mL to 20,000 mL, more typically from 5,000 mL to 15,000 mL. The soiled dishes are immersed in the sink containing the diluted compositions then obtained, where contacting the soiled surface of the dish with a cloth, sponge, or similar article cleans them. The cloth, sponge, or similar article may be immersed in the detergent composition and water mixture prior to being contacted with the dish surface, and is typically contacted with the dish surface for a period of time ranged from 1 to 10 seconds, although the actual time will vary with each application and user. The contacting of cloth, sponge, or similar article to the surface is preferably accompanied by a concurrent scrubbing of the surface.
- In another aspect, the invention is directed to a method of manually washing soiled articles comprising contacting a cleaning composition with a surface, wherein the composition comprises a surfactant system and one or more subclass EAS hydrophobin according to the present invention, and wherein the composition modifies the hydrophobicity of the surface as a result of the contacting step.
- Another aspect of the present invention is directed to a method of improving suds longevity in a washing process for washing soiled articles, preferably dishware. The method comprises the steps of: a) delivering a cleaning composition comprising a surfactant system and one or more subclass EAS hydrophobins according to the present invention and a surfactant system to a volume of water to form a wash liquor; and b) immersing the soiled articles into said wash liquor. Preferably the subclass EAS hydrophobins are present at a concentration of 0.005 ppm to 60 ppm, preferably at a concentration of 0.02 ppm to 12 ppm, in an aqueous wash liquor during the washing process
- In another aspect, the invention is directed use of one or more subclass EAS hydrophobins to provide increased suds longevity in an aqueous wash liquor during a washing process.
- The following assays set forth must be used in order that the invention described and claimed herein may be more fully understood.
- The objective of the glass vial suds mileage test method is to measure the evolution of suds volume over time generated by a certain solution of detergent composition in the presence of a greasy soil, e.g., olive oil. The steps of the method are as follows:
- 1. Test solutions are prepared by subsequently adding aliquots at room temperature of: a) 10 g of an aqueous detergent solution at specified detergent concentration and water hardness, b) 1.0 g of an aqueous protein solution at specified concentration and water hardness, and c) 0.11 g of olive oil (Bertolli®, Extra Virgin Olive Oil), into a 40 mL glass vial (dimensions: 95 mm H x 27.5 mm D). For the reference samples, the protein solutions are substituted with 1.0 mL of demineralized water. For the nil detergent samples, the 10g of aqueous detergent solution is replaced by 10 g of water at specified water hardness.
- 2. The test solutions are mixed in the closed test vials by stirring at room temperature for 2 minutes on a magnetic stirring plate (IKA, model # RTC B S001; VWR magnetic stirrer, catalog # 58949-012; 500 RPM), followed by manually shaking for 20 seconds with an upwards downwards movement (about 2 up and down cycles per second, +/- 30 cm up and 30 cm down).
- 3. Following the shaking, the test solutions in the closed vials are further stirred on a magnetic stirring plate (IKA, model # RTC B S001; VWR magnetic stirrer, catalog # 58949-012; 500 RPM) for 60 minutes inside a water bath at 46 °C to maintain a constant temperature. The samples are then shaken manually for another 20 seconds as described above and the initial suds heights (H1) are recorded with a ruler.
- 4. The samples are incubated for an additional 30 minutes inside the water bath at 46 °C while stirring (IKA, model # RTC B S001; VWR magnetic stirrer, catalog # 58949-012; 500 RPM), followed by manual shaking for another 20 seconds as described above. The final suds heights (H2) are recorded.
- 5. Protein solutions that produce larger suds heights (HI and H2), preferably combined with lower drops in suds height between H1 and H2, are more desirable.
- The evolution of the suds volume generated by a solution of a detergent composition can be determined while adding soil loads periodically as follows. A stream of hard water (15 dH) fills a sink (cylinder dimensions: 300 mm D x 288 mm H) to 4 L with a constant pressure of 4 bar. Simultaneously, an aliquot of the detergent composition (final concentration 0.12 w%) is dispensed through a pipette with a flow rate of 0.67 mL/sec at a height of 37 cm above the bottom of the sink surface. An initial suds volume is generated in the sink due to the pressure of the water. The temperature of the solution is maintained at 46 °C during the test.
- After recording the initial suds volume (average suds height x sink surface area), a fixed amount of greasy soil (Composition : see Table 1,6 mL) is injected in the middle of the sink, while a paddle (dimensions: 10 cm x 5 cm, positioned in the middle of the sink at the air liquid interface at an angle of 45 degrees) rotates 20 times into the solution at 85 RPM. This step is followed immediately by another measurement of the total suds volume. The soil injecting, paddling, and measuring steps are repeated until the measured suds volume reaches a minimum level, which is set at 400 cm3. The amount of soil additions needed to get to that level is recorded. The complete process is repeated a number of times and the average of the number of additions for all the replicates is calculated for each detergent composition
- Finally, the suds mileage index is then calculated as: (average number of soil additions for test detergent composition) / (average number of soil additions for reference detergent composition) x 100.
- Pending on the test purpose the skilled person could choose to select an alternative water hardness, solution temperature, product concentration or soil type.
Table 1 - Greasy Soil Composition Ingredient Weight % Crisco oil 12.730 Crisco shortening 27.752 Lard 7.638 Refined Rendered Edible Beef Tallow 51.684 Oleic Acid, 90% (Techn) 0.139 Palmitic Acid, 99+% 0.036 Stearic Acid, 99+% 0.021 - The following examples are provided to further illustrate the present invention and are not to be construed as limitations of the present invention, as many variations of the present invention are possible without departing from its spirit or scope.
- A codon optimized gene (SEQ ID NO: 10) encoding for a variant of Neurospora crassa EAS, including an N-terminal His tag, ubiquitin tag, and TEV protease cleavage site (SEQ ID NO: 11), is designed and synthesized. After synthesis, the gene is subcloned into a pET30a vector for heterologous expression. The protein is expressed and purified by Genscript (Piscataway, NJ). In brief, Escherichia coli BL21 (DE3) cells are transformed with the recombinant plasmid and a single colony is inoculated into TB medium containing kanamycin. Cultures are incubated at 37 °C until OD600 reaches 1.2, followed by addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) (final concentration 1 mM) to induce protein expression. The culture is then incubated at 15 °C for 16 h at 200 rpm. Cells are harvested by centrifugation and the pellets are lysed by sonication. After centrifugation, the supernatant is collected and the protein is purified by one-step purification using a nickel affinity column and standard protocols known in the art. The protein is stored in a buffer containing 50 mM Tris-HCl, 150 mM NaCl, and 10% Glycerol at pH 8.0. The final protein concentration is 0.50 mg/ mL as determined by Bradford protein assay with BSA as a standard (ThermoFisher, catalog # 23236).
- The evolution of suds volume generated by a certain solution of detergent composition in presence of a soil, i.e., olive oil or greasy soil, is followed over time under specific conditions (e.g., water hardness, solution temperature, detergent concentrations, etc.). The following solutions are prepared:
- A. Hard water (15 dH): 0.75 g MgCl2.6H2O(Sigma-Aldrich, catalog # M9272), 2.10 g CaCl2.6H2O (Sigma-Aldrich, catalog # 21108), and 0.689 g NaHCO3 (Sigma-Aldrich, catalog # 31437) are dissolved in 5 L of demineralized water.
- B. Detergent solution of a high surfactant content detergent composition ("solution DG-HS") is prepared using Fairy Dark Green, as commercially available in the UK in Feb 2017, diluted in hard water (15 dH) prepared as above, at targeted detergent concentration of 0.12%.
- C. Detergent solution of a low surfactant content detergent composition ("solution DG-LS") is prepared using Fairy Dark Green, as commercially available in the UK in Feb 2017, diluted in hard water (15 dH) prepared as above, at targeted detergent concentration of 0.06%.
- D. Protein solutions: Proteins are diluted in demineralized water to the required concentration before proceeding with the suds mileage method.
- E. Greasy soil: A grease soil is prepared according to the composition described in Table 1.
- Inventive Composition A is an example of a cleaning composition according to the present invention, made with: a) detergent solution DG-LS (prepared as described in Example 1b), and b) diluted samples of a purified variant of Neurospora crassa EAS Hydrophobin (SEQ ID NO: 11) (prepared as described in Example 1a). Comparative Composition B contains the same detergent solution DG-LS in the absence of the enzyme. Comparative Composition C contains diluted samples of a purified variant of Neurospora crassa EAS Hydrophobin in the absence of the detergent solution DG-LS (replaced with hard water - 15 dH). The glass vial suds mileage test is performed on the compositions using olive oil as described in the test methods section (Test Method 1).
-
- The % sud height drops are calculated for the compositions and shown in Table 2.
Table 2: Suds Mileage Compositions EAS Hydrophobin Concentration in Composition [ppm] H1 [mm] H2 [mm] % suds height drop H2 vs H1 Inventive Composition A 12 14 14 0% Comparative Composition B 0 13 9 31% Comparative Composition C 12 0 0 not applicable (no suds) - The results confirm that Inventive Composition A detergent solution comprising a variant of Neurospora crassa EAS Hydrophobin according to the invention (SEQ ID NO: 11) has a superior suds profile compared to Comparative Composition B solution without the Neurospora crassa EAS Hydrophobin protein, both in view of absolute suds height build-up as in view of sustaining the suds height in presence of greasy soil. Comparative Composition C comprising a variant of Neurospora crassa EAS Hydrophobin according to the invention (SEQ ID NO: 11) without the specific surfactant system produced no suds. As such a synergistic suds boost in the presence of an oily soil (e.g., olive oil) between the protein and the specific surfactant system according to the invention is illustrated.
- Comparative Composition D is an example of a cleaning composition outside of the scope of the present invention, made with: a) detergent solution DG-LS according to the invention (prepared as described in Example 1b), and b) diluted samples of class I hydrophobin SC3 (Sigma Aldrich, catalog # 68795) from Schizophyllum commune (SEQ ID NO: 13) outside the scope of the invention. Comparative Composition E contains the same detergent solution DG-LS in the absence of the protein. The glass vial suds mileage test is performed using olive oil as described in the test methods section (Test Method 1). The initial (H1) and final (H2) measurements are recorded in Table 2. The % suds height drops are calculated for the compositions and are shown in Table 3.
Table 3: Suds Mileage Compositions SC3 Hydrophobin Concentration in Composition [ppm] H1 [mm] H2 [mm] % suds height drop H2 vs H1 Comparative Composition D 12 11 10 9% Comparative Composition E 0 11 10 9% - The results confirm that Comparative Composition D detergent solution comprising Schizophyllum commune hydrophobin SC3 (SEQ ID NO: 13), a class I hydrophobin outside the scope of the present invention, does not have a superior suds profile when compared to Comparative Composition E detergent solution without the class I hydrophobin protein outside the scope of the present invention, both in view of absolute suds height build-up as in view of sustaining the suds height in presence of greasy soil (e.g., olive oil).
- Table 4 exemplifies a manual dish-washing detergent composition comprising Neurospora crassa EAS Hydrophobin (SEQ ID NO: 9) or its variants His-Ubi-EAS (SEQ ID NO: 11) according to the invention.
Table 4: Detergent Composition Ingredient Wt% Sodium alkyl ethoxy sulfate (C1213EO0.6S) 22.91% n-C12-14 Di Methyl Amine Oxide 7.64% Lutensol XP80 (non-ionic surfactant supplied by BASF) 0.45% Sodium Chloride 1.2% Poly Propylene Glycol (MW 2000) 1% Ethanol 2% Sodium Hydroxide 0.24% Neurospora crassa EAS Hydrophobin (SEQ ID NO: 9) or Neurospora crassa His-Ubi-EAS Hydrophobin (SEQ ID NO: 11) 0.5% Minors (perfume, preservative, dye) + water To 100 % pH (@ 10% solution) 9 - All percentages and ratios given for proteins are based on active protein. All percentages and ratios herein are calculated by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise indicated.
- It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
- The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm."
Claims (15)
- A cleaning composition comprising:a) from 1 wt% to 60 wt%, preferably from 5 wt% to 50 wt%, by weight of the cleaning composition of a surfactant system comprising one or more anionic surfactants and one or more co-surfactants selected from the group consisting of amphoteric surfactant, zwitterionic surfactant, and mixtures thereof; andb) from 0.001 wt% to 5 wt%, preferably from 0.1 wt% to 1 wt%, by weight of the cleaning composition, based on active protein, of one or more subclass EAS hydrophobins having at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 98% or even 100% amino acid identity as calculated over the entire length of the sequence aligned against the entire length of at least one or more reference sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 11, preferably SEQ ID NO: 9;preferably wherein the cleaning composition is a liquid manual dishwashing cleaning composition.
- The composition according to claim 1, further comprising one or more carbohydrates selected from the group comprising O-glycan, N-glycan, and mixtures thereof.
- The composition according to any preceding claims, wherein the weight ratio of the anionic surfactants to the co-surfactants is less than 9:1, more preferably from 5:1 to 1:1, more preferably from 4:1 to 2:1.
- The composition according to any preceding claims, wherein the amphoteric surfactant is amine oxide surfactant and the zwitterionic surfactant is betaine surfactant.
- The composition according to any preceding claims, wherein the anionic surfactants are selected from the group consisting of: alkyl sulfates, alkyl alkoxy sulfates, alkyl benzene sulfonates, paraffin sulfonates, and mixtures thereof, preferably a mixture of alkyl sulfates and alkyl ethoxy sulfates.
- The composition according to any preceding claims, wherein the anionic surfactants are a mixture of alkyl sulfates and alkyl alkoxy sulfates, wherein the co-surfactants are alkyl dimethyl amine oxides, and wherein the weight ratio of the anionic surfactants to the co-surfactants is from 4:1 to 2:1.
- The composition according to claim 6 wherein the anionic surfactant is a mixture of alkyl sulfate and alkyl ethoxy sulfate, wherein the mixture has a combined mol average ethoxylation degree of less than 5, preferably less than 3, more preferably less than 2 and more than 0.5 and preferably an average level of branching of from 5% to 40%, more preferably from 10% to 35%, and even more preferably from 20% to 30%.
- The composition according to any preceding claims, further comprising a chelant, preferably selected from the group comprising carboxylate chelants, amino carboxylate chelants, amino phosphonate chelants, and mixtures thereof, preferably selected from the group of MGDA (methylglycine-N,N-diacetic acid), GLDA (glutamic-N,N- diacetic acid), and mixtures thereof.
- The composition according to any preceding claims, further comprising one or more enzymes selected from the group consisting of amylases, lipases, proteases, cellulase, lipoxygenases, diol synthases, and mixtures thereof.
- A method of contacting a cleaning composition according to any preceding claims with a surface.
- A method of manually washing soiled items, preferably dishware, comprising contacting a cleaning composition according to claims 1 to 9 with a surface, preferably dishware, wherein said composition modifies the hydrophobicity of said surface as a result of said contacting step.
- A method of improving suds longevity in a washing process for washing soiled articles, preferably dishware, comprising the steps of:a) delivering a cleaning composition according to claims 1 to 9 to a volume of water to form a wash liquor; andb) immersing the soiled articles into said wash liquor.
- The method according to claim 12, wherein the subclass EAS hydrophobins are present at a concentration of from 0.005 ppm to 60 ppm, preferably from 0.02 ppm to 12 ppm, based on active protein, in an aqueous wash liquor during said washing process.
- Use of one or more subclass EAS hydrophobins to improve suds longevity in an aqueous wash liquor during a washing process, wherein the subclass EAS hydrophobins have at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 98% or even 100% amino acid identity as calculated over the entire length of the sequence aligned against the entire length of at least one or more reference sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 11, preferably SEQ ID NO: 9.
- Use according to claim 14 wherein the aqueous wash liquor further comprises a surfactant system comprising one or more anionic surfactants and one or more co-surfactants selected from the group consisting of amphoteric surfactant, zwitterionic surfactant, and mixtures thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/188,778 US20190144801A1 (en) | 2017-11-13 | 2018-11-13 | Cleaning composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17201334 | 2017-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3483246A1 true EP3483246A1 (en) | 2019-05-15 |
Family
ID=60301991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18178698.9A Withdrawn EP3483246A1 (en) | 2017-11-13 | 2018-06-20 | Cleaning composition comprising hydrophobins |
Country Status (2)
Country | Link |
---|---|
US (1) | US20190144801A1 (en) |
EP (1) | EP3483246A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200057721A (en) * | 2017-09-21 | 2020-05-26 | 힐티 악티엔게젤샤프트 | Fastener |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3915903A (en) | 1972-07-03 | 1975-10-28 | Procter & Gamble | Sulfated alkyl ethoxylate-containing detergent composition |
WO2007135645A2 (en) | 2006-05-22 | 2007-11-29 | The Procter & Gamble Company | Liquid detergent composition for improved grease cleaning |
US20090101167A1 (en) | 2005-08-01 | 2009-04-23 | Basf Aktiengesellschaft | Use of Surface-Active Non-Enzymatic Proteins for Washing Textiles |
WO2012019848A2 (en) | 2010-07-27 | 2012-02-16 | Henkel Ag & Co. Kgaa | Stabilized liquid tenside preparation comprising enzymes |
WO2012019849A2 (en) | 2010-07-27 | 2012-02-16 | Henkel Ag & Co. Kgaa | Stabilized liquid tenside preparation comprising enzymes |
WO2012019844A2 (en) | 2010-07-27 | 2012-02-16 | Henkel Ag & Co. Kgaa | Stabilized liquid enzyme-containing surfactant preparation |
WO2012137147A1 (en) * | 2011-04-08 | 2012-10-11 | Danisco Us, Inc. | Compositions |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2412707T5 (en) * | 2009-06-19 | 2023-06-12 | Procter & Gamble | Liquid detergent composition for hand dishwashing |
-
2018
- 2018-06-20 EP EP18178698.9A patent/EP3483246A1/en not_active Withdrawn
- 2018-11-13 US US16/188,778 patent/US20190144801A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3915903A (en) | 1972-07-03 | 1975-10-28 | Procter & Gamble | Sulfated alkyl ethoxylate-containing detergent composition |
US20090101167A1 (en) | 2005-08-01 | 2009-04-23 | Basf Aktiengesellschaft | Use of Surface-Active Non-Enzymatic Proteins for Washing Textiles |
WO2007135645A2 (en) | 2006-05-22 | 2007-11-29 | The Procter & Gamble Company | Liquid detergent composition for improved grease cleaning |
WO2012019848A2 (en) | 2010-07-27 | 2012-02-16 | Henkel Ag & Co. Kgaa | Stabilized liquid tenside preparation comprising enzymes |
WO2012019849A2 (en) | 2010-07-27 | 2012-02-16 | Henkel Ag & Co. Kgaa | Stabilized liquid tenside preparation comprising enzymes |
WO2012019844A2 (en) | 2010-07-27 | 2012-02-16 | Henkel Ag & Co. Kgaa | Stabilized liquid enzyme-containing surfactant preparation |
WO2012137147A1 (en) * | 2011-04-08 | 2012-10-11 | Danisco Us, Inc. | Compositions |
US20140031272A1 (en) | 2011-04-08 | 2014-01-30 | Danisco Us Inc. | Compositions |
Non-Patent Citations (10)
Title |
---|
"The Aqueous Phase Behaviour of Surfactants", 1994, ACADEMIC PRESS, pages: 538 - 542 |
ANONYMOUS: "Laundrypedia -Ingredients | Innovation | Ariel", LAUNDRYPEDIA, 19 April 2018 (2018-04-19), pages 1 - 3, XP055468874, Retrieved from the Internet <URL:https://www.ariel.co.uk/en-gb/about-ariel/ingredients/laundrypedia-ingredients> [retrieved on 20180419] * |
COOPER, A. ET AL., COLLOIDS SURF., A: PHYSIOCHEMICAL AND ENGINEERING ASPECTS, 2017 |
HENIKOFF S.; HENIKOFF J.G., P.N.A.S. USA, vol. 89, 1992, pages 10915 - 10919 |
KYTE; DOOLITTLE, J. MOL. BIOL., vol. 157, 1982, pages 105 - 132 |
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453 |
PETERSEN TN.; BRUNAK S.; HEIJNE G.; NIELSEN H., NATURE METHODS, vol. 8, 2011, pages 785 - 786 |
SCHOR, M. ET AL., TRENDS BIOCHEM. SCI., vol. 41, no. 7, 2016, pages 610 - 620 |
WINEFIELD, R. D. ET AL., FUNGAL GENET. BIOL., vol. 44, no. 4, 2007, pages 250 - 257 |
WOSTEN, H. A. B., ANNU. REV. MICROBIOL., vol. 55, 2001, pages 625 - 646 |
Also Published As
Publication number | Publication date |
---|---|
US20190144801A1 (en) | 2019-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3483251B1 (en) | Detergent composition comprising fatty acid processing enzymes | |
JP2019199617A (en) | Liquid detergent compositions | |
US10526568B2 (en) | Cleaning composition | |
US20190078038A1 (en) | Cleaning composition | |
EP3483248B1 (en) | Cleaning composition | |
US20190284508A1 (en) | Hand dishwashing detergent composition | |
JP6810118B2 (en) | Detergent composition | |
US20210087498A1 (en) | Detergent composition | |
EP3483246A1 (en) | Cleaning composition comprising hydrophobins | |
JP6672476B2 (en) | Cleaning composition | |
EP3483247A1 (en) | Cleaning composition comprising chaplin proteins | |
WO2018035193A1 (en) | Cleaning composition | |
EP3483240A1 (en) | Detergent composition comprising modified proteins | |
US20190284509A1 (en) | Hand dishwashing detergent composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191113 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200813 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220519 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20220930 |