WO2012136705A1 - Composition a base d'oxydes de zirconium, de cerium, d'au moins une terre rare autre que le cerium et de silicium, procedes de preparation et utilisation en catalyse - Google Patents

Composition a base d'oxydes de zirconium, de cerium, d'au moins une terre rare autre que le cerium et de silicium, procedes de preparation et utilisation en catalyse Download PDF

Info

Publication number
WO2012136705A1
WO2012136705A1 PCT/EP2012/056165 EP2012056165W WO2012136705A1 WO 2012136705 A1 WO2012136705 A1 WO 2012136705A1 EP 2012056165 W EP2012056165 W EP 2012056165W WO 2012136705 A1 WO2012136705 A1 WO 2012136705A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
precipitate
zirconium
composition according
compounds
Prior art date
Application number
PCT/EP2012/056165
Other languages
English (en)
Inventor
Simon Ifrah
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations filed Critical Rhodia Operations
Priority to JP2014503132A priority Critical patent/JP2014515698A/ja
Priority to EP12713951.7A priority patent/EP2694204A1/fr
Priority to CN201280020223.3A priority patent/CN103492067A/zh
Priority to RU2013149805/04A priority patent/RU2013149805A/ru
Priority to KR1020137029290A priority patent/KR20140023965A/ko
Priority to US14/110,374 priority patent/US20140044628A1/en
Priority to CA2831173A priority patent/CA2831173A1/fr
Publication of WO2012136705A1 publication Critical patent/WO2012136705A1/fr
Priority to ZA2013/07341A priority patent/ZA201307341B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values

Definitions

  • the present invention relates to a composition based on zirconium oxide, cerium oxide, at least one oxide of a rare earth other than cerium and silicon oxide, its methods of preparation and its use in catalysis.
  • multifunctional catalysts are used for the treatment of the exhaust gases of internal combustion engines (automotive post-combustion catalysis).
  • Multifunctional means catalysts capable of operating not only the oxidation in particular of carbon monoxide and hydrocarbons present in the exhaust gas but also the reduction in particular nitrogen oxides also present in these gases (catalysts "three ways").
  • Zirconium oxide and ceria appear today as two particularly important and interesting components for this type of catalyst.
  • a quality required for these materials is their reducibility.
  • Reducibility means, here and for the remainder of the description, the cerium IV content in these materials may be converted into cerium III under the effect of a reducing atmosphere and at a given temperature. This reducibility can be measured for example by a consumption of hydrogen in a given temperature range. It is due to cerium, which has the property of being reduced or oxidized. This reducibility must, of course, be as high as possible.
  • the object of the invention is to provide a product which has satisfactory reducibility properties in a temperature range which remains rather high.
  • the composition according to the invention is based on zirconium oxide, cerium oxide and at least one oxide of a rare earth other than cerium, in a proportion by mass of zirconium oxide. at least 5% and cerium oxide of at most 90%, and it is characterized in that it further comprises silicon oxide in a mass amount of between 0.1% and 2%.
  • specific surface means the specific surface B.E.T. determined by nitrogen adsorption according to ASTM D 3663-78 established from the BRUNAUER-EMMETT-TELLER method described in the journal "The Journal of the American Chemical Society, 60, 309 (1938)".
  • rare earth is understood to mean the elements of the group consisting of yttrium and the elements of the Periodic Table with an atomic number inclusive of between 57 and 71.
  • calcinations for a given temperature and duration correspond, unless otherwise indicated, to calcinations under air at a temperature level over the time indicated.
  • the cerium oxide is in the form of ceric oxide, the oxides of the other rare earths in Ln 2 03 form, Ln denoting the rare earth, with the exception of praseodymium expressed as Pr 6 On.
  • compositions according to the invention are characterized first of all by the nature of their constituents.
  • compositions of the invention are based on zirconium oxide and cerium oxide and they also comprise at least one oxide of at least one other rare earth which is different from cerium and silicon oxide. (S1O2).
  • compositions comprise at least two rare earth oxides other than cerium.
  • the rare earth (s) other than cerium may be more particularly chosen from yttrium, lanthanum, neodymium, praseodymium or gadolinium. There may be mentioned more particularly the compositions based on oxides of zirconium, cerium, praseodymium and lanthanum or based on oxides of zirconium, cerium, yttrium, neodymium and lanthanum.
  • the amount of silicon oxide in the compositions of the invention is between 0.1% and 2%. Below 0.1%, the presence of silicon no longer plays a role in the properties of the compositions and beyond 2% the specific surface of the compositions may not be sufficiently stable at elevated temperature for uses in the field of catalysis.
  • This amount of silicon oxide may be more particularly between 0.1% and 1% and even more particularly between 0.1% and 0.6%.
  • this amount may be between 0.2% and 0.5%.
  • the cerium oxide content is at most 90% and more particularly at most 60%.
  • the minimum amount of cerium is not critical. Preferably, however, it is at least 0.1% and more preferably at least 1% and even more preferably at least 5%.
  • this content may be between 5% and 20% or between 30% and 60%.
  • the amount of cerium may be at least 70%.
  • the oxide content of the rare earth (s) other than cerium is generally at most 30%, more particularly at most 25% and at least 4%, preferably at least 5%, and especially at least 10%. It can be in particular between 5% and 25% and even more particularly between 5% and 20%.
  • the zirconium oxide content may be more particularly between 15% and 65% or between 60% and 90%.
  • the compositions of the invention consist essentially of zirconium oxide, cerium oxide, silicon oxide and one or more oxides of a rare earth other than cerium in the proportions given above.
  • consists essentially is meant that apart from the usual impurities that can come from its process of preparation, for example raw materials or starting reagents used, the composition does not contain other elements that may have an influence on its specific surface characteristics or reducibility.
  • compositions of the invention have important specific surfaces even after calcination at elevated temperature.
  • compositions of the invention may also have a specific surface area after calcination for 4 hours at 1100 ° C. of at least 10 m 2 / g, this area possibly being even at least 15 m 2 / g. Surface values up to about 21 m 2 / g or 24 m 2 / g can be achieved under these same calcination conditions.
  • compositions of the invention may be in the form of pure solid solutions of the elements zirconium, cerium, rare earth (s) other than cerium and silicon in the cerium oxide or zirconium in function respective contents of these two elements.
  • the X-ray diffraction patterns of these compositions reveal the existence of a single phase corresponding to that of a zirconium oxide (for compositions with a higher zirconium content) or cerium (for compositions with higher cerium content), crystallized in the cubic or quadratic system, thus reflecting the incorporation of elements zirconium, cerium, rare earths other than cerium, and silicon in the crystal lattice of cerium or zirconium oxide, and therefore obtaining a true solid solution.
  • solid solution applies to compositions which have been calcined at a temperature as high as 1100 ° C and for 4 hours. This means that after calcination under these conditions no demixing is observed, that is to say the appearance of other phases.
  • compositions of the invention are oxygen storage capacity (OSC).
  • the OSC values that are given correspond to capacitances measured between 400 ° C. and 500 ° C.
  • compositions of the invention have indeed a high OSC at high temperatures, that is to say up to 1000 ° C which makes these compositions usable in applications in catalysis at least up to this temperature.
  • This capacity depends on the amount of cerium in the compositions.
  • this OSC is at least 0, 20 ml of O 2 / g. It may be more particularly at least 0.25 ml of O2 g. Values up to about 0.4 ml of O 2 g can be obtained.
  • this OSC is at least 0.6 ml O 2 g, more particularly 'at minus 0.7 ml 02 g. Values up to about 0.95 ml of 02 g can be obtained.
  • compositions of the invention exhibit a significant decrease in their OSC and, more generally, their reducibility property at higher temperature, that is to say from 1200 ° C.
  • OSC the ratio in% (OSC after calcination for 4 hours at 1000 ° C. - OSC after calcination at 1200 ° C.) / OSC after calcination for 4 hours at 1000 ° C) of at least 80%, more particularly at least 90%.
  • this OSC is at most 0.1 ml of O 2 / g, more particularly at most 0, 05 of 02 g and even more particularly this value can be null.
  • cerium oxide contents which are between 30% and 40%
  • this OSC is at most 0, 15 ml of O 2 g, more particularly at most 0, 10 O 2 / g.
  • OSC on-board diagnostic systems
  • compositions of the invention are their reducibility. This reducibility is determined by measuring their ability to capture hydrogen as a function of temperature. This measurement also determines a maximum reducibility temperature (Tmax) which corresponds to the temperature at which hydrogen uptake is maximal and in which, in other words, the reduction of cerium IV to cerium III is also maximal.
  • Tmax maximum reducibility temperature
  • compositions of the invention have the characteristic of having a large variation in their Tmax between 1000 ° C. and 1200 ° C. More precisely, these compositions may, after calcination for 4 hours at 1000 ° C. and then calcination for 10 hours at 1200 ° C., a displacement or an increase in their maximum reducibility temperature with an amplitude of at least 150 ° C., more particularly at least 170 ° C and even more preferably at least 200 ° C.
  • the Tmax of the compositions of the invention is between 550 ° C and 580 ° C after calcination at 4 hours 1000 ° C and is between 750 ° C and 850 ° C after calcination at 10 hours 1200 ° C.
  • the methods for preparing the compositions of the invention will now be described.
  • the invention relates to a method which comprises the following steps:
  • the first step (a1) of the process therefore consists in preparing a mixture of the compounds of the constituent elements of the composition that is to be prepared.
  • the mixture is generally in a liquid medium which is water preferably.
  • the compounds are preferably soluble compounds. It can be in particular salts of zirconium, cerium and rare earth. These compounds can be chosen from nitrates, sulphates, acetates, chlorides, ceric nitrate or cerium-ammoniacal nitrate.
  • zirconium sulphate zirconyl nitrate or zirconyl chloride.
  • the zirconyl sulphate can come from the solution of crystallized zirconyl sulphate. It may also have been obtained by dissolving basic zirconium sulphate with sulfuric acid, or else by dissolving zirconium hydroxide with sulfuric acid. In the same way, the zirconyl nitrate can come from the solution solution of crystallized zirconyl nitrate or it may have been obtained by dissolution of basic zirconium carbonate or by dissolution of zirconium hydroxide with nitric acid .
  • zirconium compound in the form of a combination or a mixture of the aforementioned salts.
  • the combination of zirconium nitrate with zirconium sulphate or the combination of zirconium sulphate with sodium chloride may be mentioned.
  • zirconyl zirconyl.
  • the respective proportions of the various salts can vary to a large extent, from 90/10 up to 10/90, for example, these proportions designating the contribution of each of the salts in grams of total zirconium oxide.
  • oxidizing agent for example hydrogen peroxide.
  • This oxidizing agent can be used by being added to the reaction medium during step (a1), during step (b1) or at the beginning of step (c1).
  • sol as starting compound of zirconium or cerium.
  • sol any system consisting of fine solid particles of colloidal dimensions, ie dimensions of between about 1 nm and about 200 nm, based on a compound of zirconium or cerium, this compound being generally an oxide and or a hydrated oxide of zirconium or cerium, in suspension in an aqueous liquid phase.
  • the soils or colloidal dispersions used can be stabilized by the addition of stabilizing ions.
  • colloidal dispersions can be obtained by any means known to those skilled in the art.
  • Partially means that the amount of acid used in the attack reaction of the precursor is less than the amount required for the total dissolution of the precursor.
  • the colloidal dispersions can also be obtained by hydrothermal treatment of solutions of zirconium or cerium precursors.
  • silicon compounds it is possible to use siliconates or else alkali or quaternary ammonium silicates.
  • siliconates mention may be made more particularly of alkylsiliconates of alkalis, such as, for example, potassium methylsiliconate and for alkali silicates and sodium silicate.
  • the quaternary ammonium ion of the silicates which can be used according to the invention has hydrocarbon radicals preferably having 1 to 3 carbon atoms.
  • at least one silicate chosen from: tetramethylammonium silicate, tetraethylammonium silicate, tetrapropylammonium silicate and tetrahydroxyethylammonium silicate (or tetraethanolammonium silicate) is preferably used.
  • tetramethylammonium silicate is described in YUI Smolin "Structure The tetraethanolammonium silicate is especially described in Helmut H. Weldes, K.
  • the mixture of step (a1) may be indifferently obtained either from compounds initially in the solid state that will be introduced later in a water tank for example, or even directly from solutions. or suspensions of these compounds and then mixing, in any order, said solutions or suspensions.
  • the compounds of zirconium, cerium, rare earths other than cerium and silicon are present in the necessary stoichiometric quantities.
  • said mixture is brought into contact with a basic compound to react.
  • Hydroxide products can be used as base or basic compound. Mention may be made of alkali or alkaline earth hydroxides. It is also possible to use secondary, tertiary or quaternary amines. However, amines and ammonia may be preferred in that they reduce the risk of pollution by alkaline or alkaline earth cations. We can also mention urea.
  • the basic compound may more particularly be used in the form of a solution. Finally, it can be used with a stoichiometric excess to ensure optimal precipitation.
  • This placing in presence is generally under agitation. It can be carried out in any manner, for example by the addition of a previously formed mixture of the compounds of the aforementioned elements in the basic compound in the form of a solution. At the end of this step (b1), a precipitate is obtained.
  • the next step (c1) of the process is the step of heating this precipitate in a liquid medium. It may be noted that at the beginning of this step the pH of this medium is basic and that it is generally at least 8.
  • This heating can be carried out directly on the reaction medium obtained at the end of step (b1) or on a suspension obtained after separation of the precipitate from the reaction medium, optional washing and return to water of the precipitate.
  • the temperature at which the medium is heated is at least 100 ° C and even more preferably at least 110 ° C. She may be for example between 100 ° C and 160 ° C.
  • the heating operation can be conducted by introducing the liquid medium into a closed chamber (autoclave type closed reactor). Under the conditions of the temperatures given above, and in aqueous medium, it is thus possible to specify, by way of illustration, that the pressure in the closed reactor can vary between a value greater than 1 bar (10 5 Pa) and 165 bar (1 bar). , 65. 10 7 Pa), preferably between 5 Bar (5 ⁇ 10 5 Pa) and 165 Bar (1, 65. 10 7 Pa). It is also possible to carry out heating in an open reactor for temperatures close to 100 ° C.
  • the heating may be conducted either in air or in an atmosphere of inert gas, preferably nitrogen.
  • the duration of the heating can vary within wide limits, for example between 30 minutes and 48 hours, preferably between 2 and 24 hours.
  • the rise in temperature is carried out at a speed which is not critical, and it is thus possible to reach the reaction temperature set by heating the medium for example between 30 minutes and 4 hours, these values being given for all purposes. indicative fact.
  • the precipitate obtained after the heating step can be resuspended in water and possibly a washing and then another heating of the medium thus obtained. This other heating is done under the same conditions as those described for the first.
  • the next step (d1) of the process consists in adding to the precipitate from the preceding step an additive which is chosen from anionic surfactants, nonionic surfactants, polyethylene glycols and carboxylic acids and their salts and surfactants. ethoxylates of carboxymethylated fatty alcohols.
  • ethoxycarboxylates ethoxylated fatty acids
  • sarcosinates phosphate esters
  • sulphates such as alcohol sulphates, ether alcohol sulphates and sulphated alkanolamide ethoxylates
  • sulphonates such as sulphosuccinates.
  • alkyl benzene or alkyl naphthalene sulfonates are examples of surfactants of the anionic type, of ethoxycarboxylates, ethoxylated fatty acids, sarcosinates, phosphate esters, sulphates such as alcohol sulphates, ether alcohol sulphates and sulphated alkanolamide ethoxylates, sulphonates such as sulphosuccinates.
  • alkyl benzene or alkyl naphthalene sulfonates are examples of surfactants of the anionic type, of ethoxycar
  • nonionic surfactants there may be mentioned acetylenic surfactants, alcohol ethoxylates, alkanolamides, amine oxides, ethoxylated alkanolamides, long chain ethoxylated amines, ethylene oxide / propylene oxide copolymers, derivatives thereof.
  • acetylenic surfactants alcohol ethoxylates, alkanolamides, amine oxides, ethoxylated alkanolamides, long chain ethoxylated amines, ethylene oxide / propylene oxide copolymers, derivatives thereof.
  • sorbiatan ethylene glycol, propylene glycol, glycerol, polyglyceryl esters and their ethoxylated derivatives, alkylamines, alkylimidazolines, ethoxylated oils and alkylphenol ethoxylates.
  • these include in particular the products sold under the trademark IGEPAL ®, DOWANOL ®
  • carboxylic acids it is possible to use, in particular, aliphatic mono- or dicarboxylic acids and, among these, more particularly saturated acids. It is also possible to use fatty acids and more particularly saturated fatty acids. These include formic, acetic, propionic, butyric, isobutyric, valeric, caproic, caprylic, capric, lauric, myristic and palmitic acids.
  • dicarboxylic acids there may be mentioned oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
  • the salts of the carboxylic acids can also be used, especially the ammoniacal salts.
  • lauric acid and ammonium laurate there may be mentioned more particularly lauric acid and ammonium laurate.
  • a surfactant which is chosen from those of the type ethoxylates of carboxymethylated fatty alcohols.
  • carboxymethyl alcohol fatty alcohol ethoxylates product is meant products consisting of ethoxylated or propoxylated fatty alcohols having at the end of the chain a CH 2 -COOH group.
  • R 1 denotes a carbon chain, saturated or unsaturated, the length of which is generally at most 22 carbon atoms, preferably at least 12 carbon atoms;
  • R 2 , R 3, R 4 and R 5 may be identical and represent hydrogen or R 2 may represent a CH 3 group and R 3 , R 4 and R 5 represent hydrogen;
  • n is a non-zero integer of up to 50 and more particularly between 5 and 15, these values being included.
  • a surfactant may consist of a mixture of products of the above formula for which R 1 may be saturated and unsaturated respectively or products comprising both -CH 2 -CH 2 -O groups. and -C (CH 3 ) -CH 2 -O-.
  • the addition of the surfactant can be done in two ways. It can be added directly to the precipitate suspension resulting from the previous heating step (c1). It may also be added to the solid precipitate after separation thereof by any known means from the medium in which the heating took place.
  • the amount of surfactant used expressed as a percentage by mass of additive relative to the weight of the composition calculated as oxide, is generally between 5% and 100%, more particularly between 15% and 60%.
  • the precipitate is washed after having separated it from the medium in which it was in suspension.
  • This washing can be done with water, preferably with water at basic pH, for example ammonia water.
  • the precipitate recovered is then calcined.
  • This calcination makes it possible to develop the crystallinity of the product formed and it can also be adjusted and / or chosen as a function of the temperature of subsequent use reserved for the composition according to the invention, and this taking into account the fact that the specific surface of the product is even lower than the calcination temperature used is higher.
  • Such calcination is generally carried out under air, but a calcination carried out for example under inert gas or under a controlled atmosphere (oxidizing or reducing) is obviously not excluded.
  • the calcination temperature is generally limited to a range of values between 500 and 900 ° C., more particularly between 700 ° C. and 800 ° C.
  • compositions of the invention may be implemented according to a second embodiment.
  • the process comprises the following first three steps: (a2) a mixture is formed comprising compounds of zirconium, cerium and rare earths other than cerium;
  • steps (a2), (b2) and (c2) of this second mode are respectively identical to the steps (a1), (b1) and (c1) described for the first mode.
  • the only difference is that the starting mixture of step (a1) does not comprise a silicon compound, this compound being added later.
  • steps (a1), (b1) and (c1) likewise applies to steps (a2), (b2) and (c2).
  • the method according to the second mode then comprises a step (d2) in which a compound obtained in the preceding step (c2) is added to the precipitate silicon, in the necessary stoichiometric quantities.
  • This silicon compound is of the same type as that described above.
  • the method finally comprises two other steps, a step (e2) in which is added to the product obtained in the preceding step an additive of the same type as that used in step (d1) of the method according to the first embodiment and a step ( f2) in which the product thus obtained is calcined.
  • steps (e2) and (f2) are the same as those given for steps (d1) and (e1) of the first method.
  • compositions of the invention may be prepared by a process which comprises the following steps:
  • step (c3) is added to the precipitate obtained in the preceding step a silicon compound if it was not present in step (a3);
  • additives selected from anionic surfactants, nonionic surfactants, polyethylene glycols, carboxylic acids and their salts and ethoxylates type surfactants of carboxymethylated fatty alcohols;
  • Step (a3) of this third mode is similar to step (a1) described above. It should be noted, however, that the silicon compound may or may not be present in this step.
  • the method according to the third mode does not implement basic compound. It comprises a step (b3) of heating the mixture prepared in the preceding step, this heating being done in a liquid medium, this medium being acidic starting from step (b3) for example at a pH below 4.
  • the temperature at which this heat treatment, also called thermohydrolysis, is conducted is at least 100 ° C. It can thus be between 100 ° C. and the critical temperature of the reaction medium, in particular between 100 and 350 ° C., preferably between 100 and 200 ° C.
  • the heating operation can be carried out by introducing the liquid medium into a closed chamber (closed reactor of the autoclave type), the pressure necessary, resulting only from the mere heating of the reaction medium
  • the pressure in the closed reactor can vary between a value greater than 1 bar (10 5 Pa) and 165 bar (1 bar). , 65. 10 7 Pa), preferably between 5 Bar (5 ⁇ 10 5 Pa) and 165 Bar (1, 65. 10 July
  • the heating may be conducted either in air or in an atmosphere of inert gas, preferably nitrogen.
  • the duration of the treatment is not critical, and can thus vary within wide limits, for example between 30 minutes and 48 hours, preferably between 1 and 5 hours.
  • the rise in temperature is carried out at a speed which is not critical, and it is thus possible to reach the reaction temperature set by heating the medium for example between 30 minutes and 4 hours, these values being given for all purposes. indicative fact.
  • the next step (c3) consists in adding to the precipitate thus obtained the silicon compound in the case where it was not introduced during the step
  • Steps (d3) and (e3) are identical to steps (d1) and (c1) described above.
  • the method according to the latter mode comprises the following steps:
  • step (b4) is brought, with stirring, said mixture with a basic compound;
  • step (c4) the medium obtained in the preceding step is brought into contact, with stirring, with either the rare earth compound (s) other than cerium if this or these compounds were not present in step (a4) the remaining amount required of said one or more compounds, the stirring energy used in step (c4) being less than that used in step (b4), whereby a precipitate is obtained;
  • Steps (a4) and (b4) of this method are quite similar to steps (a1) and (b1) of the first mode, and what has been described about them therefore applies likewise here.
  • the difference lies in the fact that the mixture formed in step (a4) does not comprise, as regards the constituent elements of the composition, that is to say zirconium, cerium, silicon and other (s) earth ( s) rare, that the compounds of zirconium, cerium and silicon in a first variant.
  • the mixture formed in step (a4) comprises, in addition to the compounds of zirconium, cerium and silicon, the compound (s) of the other rare earths other than cerium but in an amount which is less than the total amount stoichiometric required of this or these compounds of other rare earths to obtain the desired composition.
  • This quantity may be more particularly at most equal to half of the total amount.
  • this second variant must be understood as covering the case, for the compositions based on oxides of zirconium, cerium, silicon and at least two other rare earths, where in step (a4) the The total required amount of the compound of at least one of the rare earths is present at this stage and it is only for at least one of the remaining rare earths that the amount of the compound of this other rare earth is less than the amount required. It is also possible that the compound of this other rare earth is absent at this stage (a4).
  • the next step (c4) of the process consists in bringing the medium resulting from the preceding step (b4) into contact with the rare earth compounds other than cerium.
  • the starting mixture formed in step (a4) does not comprise, as As components of the composition, such as zirconium, cerium and silicon compounds, these compounds are therefore introduced for the first time in the process and in the total required stoichiometric amount of these other rare earths.
  • the mixture formed in step (a4) already comprises compounds of the other rare earths other than cerium, it is therefore the necessary remaining quantity of these compounds or, possibly, the quantity required compound of a rare earth compound if this compound was not present in step (a4).
  • This bringing into association may be carried out in any manner, for example by the addition of a previously formed mixture of rare earth compounds other than cerium in the mixture obtained at the end of step (b4). It is also agitated but under conditions such that the stirring energy used during this step (c4) is less than that used in step (b4). More precisely, the energy used during step (c4) is at least 20% less than that of step (b4) and may more particularly be less than 40% and even more particularly less than 50%. of it.
  • step (c4) a precipitate is obtained in suspension in the reaction medium.
  • the method according to the fourth embodiment makes it possible to obtain products whose stability of the specific surface is improved.
  • compositions of the invention as described above or as obtained by the preparation methods described above are in the form of powders but they may optionally be shaped to be in the form of granules, beads, cylinders or nests bee of varying sizes.
  • compositions may be used with any material usually employed in the field of the catalyst system, ie in particular thermally inert materials.
  • This material may be chosen from alumina, titanium oxide, cerium oxide, zirconium oxide, silica, spinels, zeolites, silicates, crystalline silicoaluminium phosphates, phosphates of crystalline aluminum.
  • compositions may also be used in catalytic systems comprising a coating (wash coat) with catalytic properties and based on these compositions with a material of the type mentioned above, the coating being deposited on a substrate of the type for example metal monolith, for example FerCralloy, or ceramic, for example cordierite, silicon carbide, alumina titanate or mullite.
  • a coating wash coat
  • ceramic for example cordierite, silicon carbide, alumina titanate or mullite.
  • This coating is obtained by mixing the composition with the material so as to form a suspension which can then be deposited on the substrate.
  • the catalytic systems and compositions of the invention can finally be used as NOx traps or to promote the reduction of NOx even in an oxidizing medium.
  • the compositions of the invention are used in combination with precious metals, they thus play the role of support for these metals.
  • the nature of these metals and the techniques for incorporating them into the support compositions are well known to those skilled in the art.
  • the metals may be platinum, rhodium, palladium or iridium, they may in particular be incorporated into the compositions by impregnation.
  • the treatment of the exhaust gases of internal combustion engines is a particularly advantageous application insofar as the compositions of the invention exhibit a high CSO at temperatures of at least up to at 1000 ° C.
  • the invention also relates to a method for treating the exhaust gases of internal combustion engines, which is characterized in that a catalytic system as described above or a composition according to the invention is used as catalyst. invention and as previously described. A more particular use of the composition of the invention will be described below.
  • the composition of the invention can act as a control.
  • the invention also relates to an on-board diagnostic system which contains only a composition according to the invention or which is based on such a composition.
  • This system further comprises means, known per se, for measuring the OSC of the composition.
  • the invention also relates to an on-board diagnostic system as described above but which contains, as a first composition, a composition according to the invention and, in addition, a second composition which exhibits a variation of its measured OSC on the one hand after calcination for 4 hours at 1000 ° C. and, on the other hand, 10 hours at 1150 ° C., more particularly at 1200 ° C., significantly less than the OSC variation of a composition according to the invention after calcination in the same conditions.
  • this second composition may have, after calcination for 10 hours at 1150 ° C., more particularly at 1200 ° C., an OSC at least twice greater than that of the composition according to the invention after calcination under the same conditions.
  • compositions are known, and may be mentioned in particular those described in patent applications EP 2288426, EP 2024084, EP 1991354, EP 1660406 or EP 0906244.
  • This measurement is carried out by performing a temperature reduction programmed on an AUTOCHEM II 2920.
  • This apparatus makes it possible to measure the hydrogen consumption of a composition according to the invention as a function of the temperature and to deduce the reduction rate therefrom. cerium or the amount of oxygen labile or stored oxygen because this amount corresponds to half the hydrogen consumption.
  • This measurement is made on samples which have been calcined beforehand for 4 hours at 1000 ° C. or 10 hours at 1200 ° C. as the case may be.
  • the measurement is made using hydrogen diluted to 10% by volume in argon with a flow rate of 30 ml / min.
  • the experimental protocol consists in weighing 200 mg of the sample in a previously tared container. The sample is then introduced into a quartz cell containing in the bottom of the quartz wool. The sample is finally covered with quartz wool and positioned in the oven of the measuring device. A rise in temperature is carried out up to 900 ° C. with a ramp up to 10 ° C./min under H 2 at 10% vol in Ar.
  • the consumption of hydrogen is calculated from the missing surface of the hydrogen signal between 400 ° C and 500 ° C.
  • the measurement is made with the same device and under the same conditions as those given above.
  • Hydrogen capture is calculated from the missing surface of the baseline hydrogen signal at room temperature at baseline at 900 ° C.
  • the maximum temperature of reducibility (temperature at which the capture of hydrogen is maximum and where, in other words, the reduction of cerium IV cerium III is also maximum and which corresponds to maximum lability O2 of the composition) is measured using a thermocouple placed in the center of the sample.
  • This example relates to a composition with 44.875% of zirconium
  • the nitrate solution is introduced into the reactor with constant stirring.
  • the solution obtained is placed in a stainless steel autoclave equipped with a stirrer.
  • the temperature of the medium is brought to 1 15 ° C for 35 minutes with stirring.
  • the suspension is then filtered on Buchner, and then the filtered precipitate is washed with ammonia water.
  • the product obtained is then heated to 700 ° C. for 4 hours in stages.
  • This example relates to a composition containing 44.10% of zirconium, 44.10% of cerium, 4.9% of lanthanum, 4.9% of praseodymium and 2% of silica, these proportions being expressed as a percentage by weight of the ZrO 2 oxides. , CeO 2 , La 2 O 3 , Pr 6 On and SiO 2 .
  • the nitrate solution is introduced into the reactor with constant stirring.
  • This example relates to a composition containing 44.875% of zirconium, 44.875% of cerium, 4.875% of lanthanum, 4.875% of praseodymium and 0.5% of silica, these proportions being expressed as a percentage by weight of the oxides Zr0 2 , CeO 2 , La 2 O 3 , Pr 6 On and Si0 2 .
  • the nitrate solution is introduced into the reactor with constant stirring.
  • This example concerns a composition containing 74.9% of zirconium, 9.9% of cerium, 1.9% of lanthanum, 7.9% of yttrium, 4.9% of neodymium and 0.5% of silica. proportions being expressed as a percentage by weight of ZrO 2 , CeO 2 , La 2 O 3 , Y 2 O 3 , Nd 2 O 3 and SiO 2 oxides
  • the nitrate solution is introduced into the reactor with constant stirring.
  • This example illustrates the preparation of a composition according to the invention by a method according to the fourth embodiment.
  • composition containing 74.9% of zirconium, 9.9% of cerium, 1.9% of lanthanum, 7.9% of yttrium, 4.9% of neodymium and 0.5% of silica, these proportions being expressed as a weight percentage of ZrO 2 , CeO 2 , La 2 O 3 , Y 2 O 3 , Nd 2 O 3 and SiO 2 oxides.
  • Two nitrate solutions are prepared beforehand, one consisting of cerium and zirconium nitrates and the other consisting of nitrates of lanthanum, yttrium and neodymium.
  • the two solutions previously prepared are stirred constantly.
  • the first solution of nitrates of cerium and zirconium is introduced into the stirred reactor at a speed of 500 rpm, the second nitrate solution is then introduced and stirring is set at 250 rpm.
  • the solution obtained is placed in a stainless steel autoclave equipped with a stirrer.
  • This example concerns a composition with a high cerium content.
  • the properties are as follows: 9.95% of zirconium, 79.6% of cerium, 2.985% of lanthanum, 6.965% of praseodymium and 0.5% of silica, these proportions being expressed as a percentage by weight of the ZrO 2 , CeO oxides. 2 , La 2 O 3 , Pr 6 On and SiO 2 .
  • the nitrate solution is introduced into the reactor with constant stirring.
  • This example relates to a composition containing 45% of zirconium, 45% of cerium, 5% of lanthanum and 5% of praseodymium, these proportions being expressed as a percentage by weight of the oxides ZrO 2, CeO 2 , La 2 O 3 and Pr 6 On.
  • the nitrate solution is introduced into the reactor with constant stirring.
  • This example relates to a composition containing 75% zirconium, 10% cerium, 2% lanthanum 8% yttrium, 5% neodymium, these proportions being expressed as a percentage by weight of the oxides ZrO 2 , CeO 2 , La 2 O 3, Y 2 O 3 and Nd 2 O 3 .
  • the nitrate solution is introduced into the reactor with constant stirring.
  • This example relates to a composition containing 10% zirconium, 80% cerium, 3% lanthanum and 7% praseodymium, these proportions being expressed in percentages by weight of the oxides ⁇ 2 , CeO 2 , La 2 O 3 and Pr 6 On.
  • the nitrate solution is introduced into the reactor with constant stirring.
  • the temperatures in columns Tmax and OSC are the temperatures at which the Tmax and OSC values were measured for 4 hours (1000 ° C) or 10 hours (1200 ° C).
  • the variation of OSC is the decrease of OSC measured on products calcined at 1000 ° C or at 1200 ° C.
  • the comparative products see their Tmax vary in an amplitude of about 100 ° C between those calcined at 1000 ° C. and those calcined at 1200 ° C. whereas for the products of the invention this amplitude is at least about 170 ° C and may be greater than 200 ° C.
  • the variation of the OSC is about 60% for the comparative products while it is at least 80% for the products of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La composition selon l'invention est à base d'oxyde de zirconium, d'oxyde de cérium et d'au moins un oxyde d'une terre rare autre que le cérium, dans une proportion en masse en oxyde de zirconium d'au moins 5% et en oxyde de cérium d'au plus 90%, et elle est caractérisée en ce qu'elle comprend en outre de l'oxyde de silicium dans une quantité en masse comprise entre 0,1% et 2%. Cette composition peut être utilisée en catalyse, notamment dans des systèmes de traitement des gaz d'échappement des moteurs à combustion interne.

Description

COMPOSITION A BASE D'OXYDES DE ZIRCONIUM, DE CERIUM, D'AU MOINS UNE TERRE RARE AUTRE QUE LE CERIUM ET DE SILICIUM, PROCEDES DE PREPARATION ET UTILISATION EN CATALYSE
La présente invention concerne une composition à base d'oxyde de zirconium, d'oxyde de cérium, d'au moins un oxyde d'une terre rare autre que le cérium et d'oxyde de silicium, ses procédés de préparation et son utilisation en catalyse.
On utilise à l'heure actuelle pour le traitement des gaz d'échappement des moteurs à combustion interne (catalyse postcombustion automobile) des catalyseurs dits multifonctionnels. Par multifonctionnels, on entend les catalyseurs capables d'opérer non seulement l'oxydation en particulier du monoxyde de carbone et des hydrocarbures présents dans les gaz d'échappement mais également la réduction en particulier des oxydes d'azote également présents dans ces gaz (catalyseurs "trois voies"). L'oxyde de zirconium et l'oxyde de cérium apparaissent aujourd'hui comme deux constituants particulièrement importants et intéressants pour ce type de catalyseurs. Une qualité requise pour ces matériaux est leur réductibilité. On entend par réductibilité, ici et pour le reste de la description, le taux de cérium IV dans ces matériaux susceptible de se transformer en cérium III sous l'effet d'une atmosphère réductrice et à une température donnée. Cette réductibilité peut se mesurer par exemple par une consommation d'hydrogène dans un domaine de température donné. Elle est due au cérium qui a la propriété de se réduire ou de s'oxyder. Cette réductibilité doit, bien sûr, être la plus élevée possible.
En outre, il est important que cette réductibilité conserve une valeur suffisamment haute pour que les produits restent efficaces même après exposition de ceux-ci à des températures élevées.
L'invention a pour objet de proposer un produit qui présente des propriétés de réductibilité satisfaisantes dans une gamme de température qui reste assez élevée.
Dans ce but la composition selon l'invention est à base d'oxyde de zirconium, d'oxyde de cérium et d'au moins un oxyde d'une terre rare autre que le cérium, dans une proportion en masse en oxyde de zirconium d'au moins 5% et en oxyde de cérium d'au plus 90%, et elle est caractérisée en ce qu'elle comprend en outre de l'oxyde de silicium dans une quantité en masse comprise entre 0, 1 % et 2%. D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer.
Pour la suite de la description, on entend par surface spécifique, la surface spécifique B.E.T. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER - EMMETT- TELLER décrite dans le périodique "The Journal of the American Chemical Society, 60, 309 (1938)".
Pour la présente description on entend par terre rare les éléments du groupe constitué par l'yttrium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71.
En outre, les calcinations pour une température et une durée données correspondent, sauf indication contraire, à des calcinations sous air à un palier de température sur la durée indiquée.
Les teneurs sont données en masse d'oxyde sauf indication contraire.
L'oxyde de cérium est sous forme d'oxyde cérique, les oxydes des autres terres rares sous forme Ln203, Ln désignant la terre rare, à l'exception du praséodyme exprimé sous la forme Pr6On .
On précise pour la suite de la description que, sauf indication contraire, dans les fourchettes de valeurs qui sont données, les valeurs aux bornes sont incluses.
Les compositions selon l'invention se caractérisent tout d'abord par la nature de leurs constituants.
Les compositions de l'invention sont à base d'oxyde de zirconium, d'oxyde de cérium et elles comprennent en outre au moins un oxyde d'au moins une autre terre rare qui est différente du cérium ainsi que de l'oxyde de silicium (S1O2).
Selon un mode de réalisation avantageux de l'invention les compositions comprennent au moins deux oxydes de terres rares autres que le cérium.
La ou les terres rares autres que le cérium peuvent être plus particulièrement choisies parmi l'yttrium, le lanthane, le néodyme, le praséodyme ou le gadolinium. On peut citer plus particulièrement les compositions à base d'oxydes de zirconium, de cérium, de praséodyme et de lanthane ou bien à base d'oxydes de zirconium, de cérium, d'yttrium, de néodyme et de lanthane.
Comme indiqué plus haut, la quantité d'oxyde de silicium dans les compositions de l'invention est comprise entre 0, 1 % et 2%. En deçà de 0,1 % la présence de silicium ne joue plus de rôle sur les propriétés des compositions et au-delà de 2% la surface spécifique des compositions peut ne pas être suffisamment stable à température élevée pour des utilisations dans le domaine de la catalyse.
Cette quantité en oxyde de silicium peut être plus particulièrement comprise entre 0, 1 % et 1 % et encore plus particulièrement entre 0, 1 % et 0,6%.
Selon un mode de réalisation préférentiel cette quantité peut être comprise entre 0,2% et 0,5%.
La teneur en oxyde de cérium est d'au plus 90% et plus particulièrement d'au plus 60%. La quantité minimale de cérium n'est pas critique. De préférence toutefois elle est d'au moins 0, 1 % et plus particulièrement d'au moins 1 % et encore plus particulièrement d'au moins 5%.
En fonction des modes de réalisation, cette teneur peut être comprise entre 5% et 20% ou entre 30% et 60%. Dans le cas de compositions à haute teneur en cérium la quantité en cérium peut être d'au moins 70%.
La teneur en oxyde de la ou des terres rares autres que le cérium est généralement d'au plus 30%, plus particulièrement d'au plus 25% et d'au moins 4%, de préférence d'au moins 5% et notamment d'au moins 10%. Elle peut être en particulier comprise entre 5% et 25% en encore plus particulièrement entre 5% et 20%.
Selon les modes de réalisation la teneur en oxyde de zirconium peut être plus particulièrement comprise entre 15% et 65% ou entre 60% et 90%.
Selon un mode de réalisation particulier les compositions de l'invention consistent essentiellement en oxyde de zirconium, en oxyde de cérium, en oxyde de silicium et en un ou plusieurs oxydes d'une terre rare autre que le cérium dans les proportions données plus haut. Par « consiste essentiellement » on entend qu'en dehors des impuretés habituelles pouvant provenir de son procédé de préparation, par exemple des matières premières ou des réactifs de départ utilisés, la composition ne contient pas d'autres éléments susceptibles d'avoir une influence sur ses caractéristiques de surface spécifique ou de réductibilité.
Les compositions de l'invention présentent des surfaces spécifiques importantes même après calcination à température élevée.
Ainsi, elles peuvent présenter une surface spécifique après calcination 4 heures à 1000°C d'au moins 30 m2/g, de préférence d'au moins 35 m2/g et encore plus préférentiellement d'au moins 40 m2/g. Des valeurs de surface allant jusqu'à environ 45 m2/g voire 50 m2/g peuvent être atteintes. Les compositions de l'invention peuvent aussi présenter une surface spécifique après calcination 4 heures à 1 100°C d'au moins 10 m2/g, cette surface pouvant être même d'au moins 15 m2/g. Des valeurs de surface allant jusqu'à environ 21 m2/g voire 24 m2/g peuvent être atteintes dans ces mêmes conditions de calcination.
Les compositions de l'invention peuvent se présenter sous la forme de solutions solides pures des éléments zirconium, cérium, terre(s) rare(s) autre(s) que le cérium et silicium dans l'oxyde de cérium ou de zirconium en fonction des teneurs respectives de ces deux éléments.
Dans ce cas, les diagrammes en diffraction RX de ces compositions révèlent l'existence d'une phase unique et correspondant à celle d'un oxyde de zirconium (pour les compositions à teneur en zirconium plus élevée) ou de cérium (pour les compositions à teneur en cérium plus élevée), cristallisé dans le système cubique ou quadratique, traduisant ainsi l'incorporation des éléments zirconium, cérium, terres rares autres que le cérium, et silicium dans le réseau cristallin de l'oxyde de cérium ou de zirconium, et donc l'obtention d'une solution solide vraie. Ce mode de réalisation, solution solide, s'applique à des compositions qui ont subi une calcination à une température aussi élevée que 1 100°C et pendant 4 heures. Ceci signifie qu'après calcination dans ces conditions on n'observe pas de démixtion, c'est-à-dire l'apparition d'autres phases.
Une autre caractéristique des compositions de l'invention est leur capacité de stockage de l'oxygène (OSC).
Pour l'ensemble de la description les valeurs d'OSC qui sont données correspondent à des capacités mesurées entre 400°C et 500°C.
Les compositions de l'invention présentent en effet une OSC importante à des températures élevées, c'est-à-dire jusqu'à 1000°C ce qui rend ces compositions utilisables dans des applications en catalyse au moins jusqu'à cette température.
Cette capacité dépend de la quantité en cérium des compositions.
Pour des teneurs en oxyde de cérium qui sont comprises entre 5% et 15% ou d'au moins 70% et pour des compositions qui ont subi par ailleurs une calcination à 1000°C 4 heures, cette OSC est d'au moins 0,20 ml d'O2/g. Elle peut être plus particulièrement d'au moins 0,25 ml d'O2 g. Des valeurs jusqu'à environ 0,4 ml d'02 g peuvent être obtenues.
Pour des teneurs en oxyde de cérium qui sont comprises entre 30% et 60% et toujours pour des compositions qui ont subi une calcination à 1000°C 4 heures, cette OSC est d'au moins 0,6 ml 02 g, plus particulièrement d'au moins 0,7 ml 02 g. Des valeurs jusqu'à environ 0,95 ml d'02 g peuvent être obtenues.
Par contre les compositions de l'invention présentent une baisse importante de leur OSC et, plus généralement, de leur propriété de réductibilité à plus haute température, c'est-à-dire à partir de 1200°C. Ainsi, après calcination 10 heures à 1200°C elles présentent une diminution de leur OSC (exprimée par le rapport en % (OSC après calcination 4 heures à 1000°C - OSC après calcination à 1200°C) / OSC après calcination 4 heures à 1000°C) d'au moins 80%, plus particulièrement d'au moins 90%.
Pour des teneurs en oxyde de cérium qui sont comprises entre 5% et
15% ou d'au moins 70% et pour des compositions qui ont subi une calcination 10 heures à 1200°C cette OSC est d'au plus 0, 1 ml d'O2/g, plus particulièrement d'au plus 0,05 d'02 g et encore plus particulièrement cette valeur peut être nulle.
Pour des teneurs en oxyde de cérium qui sont comprises entre 30% et
60% et pour des compositions qui ont subi une calcination dans les mêmes conditions cette OSC est d'au plus 0, 15 ml d'02 g, plus particulièrement d'au plus 0, 10 d'O2/g.
Cette baisse importante de l'OSC permet l'utilisation des compositions de l'invention dans des systèmes de diagnostic embarqués (OBD) qui seront décrits plus loin.
Une autre caractéristique des compositions de l'invention est leur réductibilité. Cette réductibilité est déterminée par la mesure de leur capacité de captage de l'hydrogène en fonction de la température. On détermine aussi par cette mesure une température maximale de réductibilité (Tmax) qui correspond à la température à laquelle le captage de l'hydrogène est maximal et où, en d'autres termes, la réduction du cérium IV en cérium III est aussi maximale.
Les compositions de l'invention ont pour caractéristique de présenter une importante variation de leur Tmax entre 1000°C et 1200°C. Plus précisément, ces compositions peuvent présenter après calcination 4 heures à 1000°C puis calcination 10 heures à 1200°C un déplacement ou une augmentation de leur température maximale de réductibilité d'une amplitude d'au moins 150°C, plus particulièrement d'au moins 170°C et encore plus particulièrement d'au moins 200°C.
Généralement la Tmax des compositions de l'invention est comprise entre 550°C et 580°C après calcination à 4 heures 1000°C et elle est comprise entre 750°C et 850°C après calcination à 10 heures 1200°C. Les procédés de préparation des compositions de l'invention vont maintenant être décrits.
Selon un premier mode de réalisation, l'invention concerne un procédé qui comporte les étapes suivantes :
- (a1 ) on forme un mélange comprenant des composés du zirconium, du cérium, d'au moins une terre rare autre que le cérium et du silicium;
- (b1 ) on met en présence ledit mélange avec un composé basique, ce par quoi on obtient un précipité;
- (c1 ) on chauffe en milieu liquide ledit précipité;
- (d1 ) on ajoute au précipité obtenu à l'étape précédente un additif choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène- glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés;
- (e1 ) on calcine le produit ainsi obtenu.
La première étape (a1 ) du procédé consiste donc à préparer un mélange des composés des éléments constitutifs de la composition que l'on cherche à préparer. Le mélange se fait généralement dans un milieu liquide qui est l'eau de préférence.
Les composés sont de préférence des composés solubles. Ce peut être notamment des sels de zirconium, de cérium et de terre rare. Ces composés peuvent être choisis parmi les nitrates, les sulfates, les acétates, les chlorures le nitrate cérique ou le nitrate céri-ammoniacal.
A titre d'exemples, on peut ainsi citer le sulfate de zirconium, le nitrate de zirconyle ou le chlorure de zirconyle.
Le sulfate de zirconyle peut provenir de la mise en solution de sulfate de zirconyle cristallisé. Il peut aussi avoir été obtenu par dissolution de sulfate basique de zirconium avec de l'acide sulfurique, ou bien encore par dissolution d'hydroxyde de zirconium par de l'acide sulfurique. De la même façon, le nitrate de zirconyle peut provenir de la mise en solution de nitrate de zirconyle cristallisé ou bien il peut avoir été obtenu par dissolution de carbonate basique de zirconium ou encore par dissolution d'hydroxyde de zirconium par de l'acide nitrique.
Il est avantageux d'utiliser des sels de pureté d'au moins 99,5% et plus particulièrement d'au moins 99,9%.
II peut être avantageux d'utiliser un composé de zirconium sous la forme d'une combinaison ou d'un mélange des sels précités. On peut citer par exemple la combinaison de nitrate de zirconium avec du sulfate de zirconium, ou encore la combinaison de sulfate de zirconium avec le chlorure de zirconyle. Les proportions respectives des différents sels peuvent varier dans une large mesure, depuis 90/10 jusqu'à 10/90 par exemple, ces proportions désignant la contribution de chacun des sels en gramme d'oxyde de zirconium total.
On notera que lorsque le mélange de départ contient du cérium sous forme III, il est préférable de faire intervenir dans le cours du procédé un agent oxydant, par exemple de l'eau oxygénée. Cet agent oxydant peut être utilisé en étant ajouté au milieu réactionnel lors de l'étape (a1 ), lors de l'étape (b1 ) ou encore au début de l'étape (c1 ).
II est enfin aussi possible d'utiliser un sol comme composé de départ du zirconium ou du cérium. Par sol on désigne tout système constitué de fines particules solides de dimensions colloïdales, c'est à dire des dimensions comprises entre environ 1 nm et environ 200 nm, à base d'un composé de zirconium ou de cérium ce composé étant généralement un oxyde et/ou un oxyde hydraté de zirconium ou de cérium, en suspension dans une phase liquide aqueuse.
Les sols ou dispersions colloïdales utilisés peuvent être stabilisés par l'ajout d'ions stabilisateurs.
Ces dispersions colloïdales peuvent être obtenues par n'importe quel moyen connu par l'homme du métier. En particulier, on peut citer la dissolution partielle de précurseur de zirconium. Par partielle on entend que la quantité d'acide mise en œuvre dans la réaction d'attaque du précurseur est inférieure à la quantité exigée pour la mise en dissolution totale du précurseur.
Les dispersions colloïdales peuvent également être obtenues par traitement hydrothermal de solutions de précurseurs de zirconium ou de cérium.
Comme composé du silicium, on peut faire appel à des siliconates ou bien encore à des silicates d'alcalin ou d'ammonium quaternaire. Parmi les siliconates, on peut plus particulièrement citer les alkylsiliconates d'alcalins, comme par exemple le méthylsiliconate de potassium et pour les silicates d'alcalin le silicate de sodium.
L'ion ammonium quaternaire des silicates qui peuvent être mis en œuvre selon l'invention présente des radicaux hydrocarbonés ayant de préférence 1 à 3 atomes de carbones. On met ainsi de préférence en œuvre au moins un silicate choisi parmi : le silicate de tétraméthylammonium, le silicate de tétraéthylammonium, le silicate de tétrapropylammonium, le silicate de tétrahydroxyéthylammonium (ou silicate de tétraéthanolammonium). Le silicate de tétraméthylammonium est notamment décrit dans Y.U. I. Smolin "Structure of water soluble silicates with complex cations" dans "Soluble Silicates "Edition 1982. Le silicate de tétraéthanolammonium est notamment décrit dans Helmut H. Weldes, K. Robert Lange "Properties of soluble silicates" dans "Industrial and Engineering Chemistry" vol. 61 , N4, Avril 1969, et dans le brevet US 3 239 521 . Les références citées ci-dessus décrivent également d'autres silicates d'ammonium quaternaires solubles dans l'eau qui peuvent être utilisés selon l'invention.
Le mélange de l'étape (a1 ) peut être indifféremment obtenu soit à partir de composés initialement à l'état solide que l'on introduira par la suite dans un pied de cuve d'eau par exemple, soit encore directement à partir de solutions ou suspensions de ces composés puis mélange, dans un ordre quelconque, desdites solutions ou suspensions. Les composés du zirconium, du cérium, des terres rares autres que le cérium et du silicium sont présents dans les quantités stœchiométriques nécessaires.
Dans la deuxième étape (b1 ) du procédé, on met en présence ledit mélange avec un composé basique pour les faire réagir. On peut utiliser comme base ou composé basique les produits du type hydroxyde. On peut citer les hydroxydes d'alcalins ou d'alcalino-terreux. On peut aussi utiliser les aminés secondaires, tertiaires ou quaternaires. Toutefois, les aminés et l'ammoniaque peuvent être préférés dans la mesure où ils diminuent les risques de pollution par les cations alcalins ou alcalino terreux. On peut aussi mentionner l'urée.
Le composé basique peut être plus particulièrement utilisé sous forme d'une solution. Enfin, il peut être utilisé avec un excès stœchiométrique pour s'assurer d'une précipitation optimale.
Cette mise en présence se fait généralement sous agitation. Elle peut être effectuée de manière quelconque, par exemple par l'addition d'un mélange préalablement formé des composés des éléments précités dans le composé basique sous forme d'une solution. On obtient à l'issue de cette étape (b1 ) un précipité.
L'étape suivant (c1 ) du procédé est l'étape de chauffage de ce précipité en milieu liquide. On peut noter qu'au début de cette étape le pH de ce milieu est basique et qu'il est généralement d'au moins 8.
Ce chauffage peut être réalisé directement sur le milieu réactionnel obtenu à l'issue de l'étape (b1 ) ou sur une suspension obtenue après séparation du précipité du milieu réactionnel, lavage éventuel et remise dans l'eau du précipité. La température à laquelle est chauffé le milieu est d'au moins 100°C et encore plus particulièrement d'au moins 1 10°C. Elle peut être comprise par exemple entre 100°C et 160°C. L'opération de chauffage peut être conduite en introduisant le milieu liquide dans une enceinte close (réacteur fermé du type autoclave). Dans les conditions de températures données ci-dessus, et en milieu aqueux, on peut ainsi préciser, à titre illustratif, que la pression dans le réacteur fermé peut varier entre une valeur supérieure à 1 Bar (105 Pa) et 165 Bar (1 ,65. 107 Pa), de préférence entre 5 Bar (5. 105 Pa) et 165 Bar (1 ,65. 107 Pa). On peut aussi effectuer le chauffage dans un réacteur ouvert pour les températures voisines de 100°C.
Le chauffage peut être conduit soit sous air, soit sous atmosphère de gaz inerte, de préférence l'azote.
La durée du chauffage peut varier dans de larges limites, par exemple entre 30 minutes et 48 heures, de préférence entre 2 et 24 heures. De même, la montée en température s'effectue à une vitesse qui n'est pas critique, et on peut ainsi atteindre la température réactionnelle fixée en chauffant le milieu par exemple entre 30 minutes et 4 heures, ces valeurs étant données à titre tout à fait indicatif.
Il est possible de faire plusieurs chauffages. Ainsi, on peut remettre en suspension dans l'eau le précipité obtenu après l'étape de chauffage et éventuellement un lavage puis effectuer un autre chauffage du milieu ainsi obtenu. Cet autre chauffage se fait dans les mêmes conditions que celles qui ont été décrites pour le premier.
L'étape suivante (d1 ) du procédé consiste à ajouter au précipité issu de l'étape précédente un additif qui est choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols et les acides carboxyliques et leurs sels ainsi que les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés.
En ce qui concerne cet additif on pourra se référer à l'enseignement de la demande WO-98/45212 et utiliser les tensioactifs décrits dans ce document.
On peut mentionner comme tensioactifs du type anionique les éthoxycarboxylates, les acides gras éthoxylés, les sarcosinates, les esters phosphates, les sulfates comme les sulfates d'alcool les sulfates d'éther alcool et les éthoxylates d'alcanolamide sulfatés, les sulfonates comme les sulfosuccinates, les alkyl benzène ou alkyl naphtalène sulfonates.
Comme tensioactifs non ioniques on peut mentionner les tensioactifs acétyléniques, les éthoxylates d'alcool, les alcanolamides, les oxydes d'amine, les alcanolamides éthoxylés, les aminés éthoxylées à longues chaînes, les copolymères oxyde d'éthylène/oxyde de propylène, les dérivés du sorbiatan, l'éthylène glycol, le propylène glycol, le glycérol, les esters polyglyceryle et leurs dérivés éthoxylés, les alkylamines, les alkylimidazolines, les huiles éthoxylées et les éthoxylates d'alkylphénol. On peut citer notamment les produits vendus sous les marques IGEPAL®, DOWANOL®, RHO DAM OX® et ALKAMIDE®
En ce qui concerne les acides carboxyliques, on peut utiliser notamment les acides mono- ou dicarboxyliques aliphatiques et parmi ceux-ci plus particulièrement les acides saturés. On peut utiliser aussi des acides gras et plus particulièrement les acides gras saturés. On peut citer ainsi notamment les acides formique, acétique, proprionique, butyrique, isobutyrique, valérique, caproïque, caprylique, caprique, laurique, myristique, palmitique. Comme acides dicarboxyliques, on peut mentionner les acides oxalique, malonique, succinique, glutarique, adipique, pimélique, subérique, azélaïque et sébacique.
Les sels des acides carboxyliques peuvent aussi être utilisés, notamment les sels ammoniacaux.
A titre d'exemple, on peut citer plus particulièrement l'acide laurique et le laurate d'ammonium.
Enfin, il est possible d'utiliser un tensioactif qui est choisi parmi ceux du type éthoxylats d'alcools gras carboxyméthylés.
Par produit du type éthoxylats d'alcool gras carboxyméthylés on entend les produits constitués d'alcools gras éthoxylés ou propoxylés comportant en bout de chaîne un groupement CH2-COOH.
Ces produits peuvent répondre à la formule :
Ri-O-(CR2R3-CR4R5-O)n-CH2-COOH
dans laquelle Ri désigne une chaîne carbonée, saturée ou insaturée, dont la longueur est généralement d'au plus 22 atomes de carbone, de préférence d'au moins 12 atomes de carbone; R2, R3, R4 et R5 peuvent être identiques et représenter l'hydrogène ou encore R2 peut représenter un groupe CH3 et R3, R4 et R5 représentent l'hydrogène; n est un nombre entier non nul pouvant aller jusqu'à 50 et plus particulièrement compris entre 5 et 15, ces valeurs étant incluses. On notera qu'un tensio-actif peut être constitué d'un mélange de produits de la formule ci-dessus pour lesquels Ri peut être saturé et insaturé respectivement ou encore des produits comportant à la fois des groupements -CH2-CH2-O- et -C(CH3)-CH2-O-.
L'addition du tensio-actif peut se faire de deux manières. Il peut être ajouté directement dans la suspension de précipité issue de l'étape précédente de chauffage (c1 ). Il peut aussi être ajouté au précipité solide après séparation de celui-ci par tout moyen connu du milieu dans lequel a eu lieu le chauffage. La quantité de tensio-actif utilisée, exprimée en pourcentage en masse d'additif par rapport à la masse de la composition calculée en oxyde, est généralement comprise entre 5% et 100% plus particulièrement entre 15% et 60%.
Selon une autre variante avantageuse de l'invention, avant de mettre en œuvre la dernière étape du procédé (étape de calcination), on procède à un lavage du précipité après l'avoir séparé du milieu dans lequel il se trouvait en suspension. Ce lavage peut se faire à l'eau, de préférence avec de l'eau à pH basique, par exemple de l'eau ammoniaquée.
Dans une dernière étape (e1 ) du procédé selon l'invention, le précipité récupéré est ensuite calciné. Cette calcination permet de développer la cristallinité du produit formé et elle peut être également ajustée et/ou choisie en fonction de la température d'utilisation ultérieure réservée à la composition selon l'invention, et ceci en tenant compte du fait que la surface spécifique du produit est d'autant plus faible que la température de calcination mise en œuvre est plus élevée. Une telle calcination est généralement opérée sous air, mais une calcination menée par exemple sous gaz inerte ou sous atmosphère contrôlée (oxydante ou réductrice) n'est bien évidemment pas exclue.
En pratique, on limite généralement la température de calcination à un intervalle de valeurs comprises entre 500 et 900°C plus particulièrement entre 700°C et 800°C.
Le procédé de préparation des compositions de l'invention peut être mis en œuvre selon un second mode de réalisation.
Dans ce cas le procédé comporte les trois premières étapes suivantes : - (a2) on forme un mélange comprenant des composés du zirconium, du cérium et des terres rares autres que le cérium;
- (b2) on met en présence ledit mélange avec un composé basique, ce par quoi on obtient un précipité;
- (c2) on chauffe en milieu liquide ledit précipité;
Les étapes (a2), (b2) et (c2) de ce second mode sont identiques respectivement aux étapes (a1 ), (b1 ) et (c1 ) décrites pour le premier mode. La seule différence est que le mélange de départ de l'étape (a1 ) ne comporte pas de composé du silicium, ce composé étant ajouté ultérieurement. A part cette différence, ce qui a été décrit plus haut pour les étapes (a1 ), (b1 ) et (c1 ) s'applique de même pour les étapes (a2), (b2) et (c2).
Le procédé selon le second mode comporte ensuite une étape (d2) dans laquelle on ajoute au précipité obtenu à l'étape précédente (c2) un composé du silicium, dans les quantités stœchiométrique nécessaires. Ce composé du silicium est du même type que celui qui a été décrit plus haut.
Le procédé comporte enfin deux autres étapes, une étape (e2) dans laquelle on ajoute au produit obtenu à l'étape précédente un additif du même type que celui utilisé dans l'étape (d1 ) du procédé selon le premier mode et une étape (f2) dans laquelle on calcine le produit ainsi obtenu.
Les conditions de mise en œuvre des étapes (e2) et (f2) sont les mêmes que celles données pour les étapes (d1 ) et (e1 ) du premier procédé.
On peut noter ici qu'il est possible de réaliser en même temps les deux étapes (d2) et (e2), c'est-à-dire d'ajouter simultanément le composé du silicium et l'additif au précipité issu de l'étape (c2).
Selon un troisième mode de réalisation les compositions de l'invention peuvent être préparées par un procédé qui comprend les étapes suivantes :
- (a3) on forme un mélange comprenant des composés du zirconium, du cérium, d'au moins une terre rare autre que le cérium et éventuellement un composé du silicium;
- (b3) on chauffe en milieu liquide ledit précipité;
- (c3) on ajoute au précipité obtenu à l'étape précédente un composé du silicium si celui-ci n'était pas présent à l'étape (a3);
- (d3) on ajoute au produit obtenu à l'étape précédente un additif choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène- glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés;
- (e3) on calcine le produit ainsi obtenu.
L'étape (a3) de ce troisième mode est semblable à l'étape (a1 ) décrite plus haut. Il faut noter toutefois que le composé du silicium peut être présent ou non dans cette étape.
Contrairement aux modes de réalisations précédents, le procédé selon le troisième mode ne met pas en œuvre de composé basique. Il comporte une étape (b3) de chauffage du mélange préparé lors de l'étape précédente, ce chauffage se faisant en milieu liquide, ce milieu étant acide au départ de l'étape (b3) par exemple à un pH inférieur à 4.
La température à laquelle est mené ce traitement thermique, aussi appelé thermohydrolyse, est d'au moins 100°C. Elle peut ainsi être comprise entre 100°C et la température critique du milieu réactionnel, en particulier entre 100 et 350°C, de préférence entre 100 et 200°C.
L'opération de chauffage peut être conduite en introduisant le milieu liquide dans une enceinte close (réacteur fermé du type autoclave), la pression nécessaire ne résultant alors que du seul chauffage du milieu réactionnel
(pression autogène). Dans les conditions de températures données ci-dessus, et en milieux aqueux, on peut ainsi préciser, à titre illustratif, que la pression dans le réacteur fermé peut varier entre une valeur supérieure à 1 Bar (105 Pa) et 165 Bar (1 ,65. 107 Pa), de préférence entre 5 Bar (5. 105 Pa) et 165 Bar (1 ,65. 107
Pa). Il est bien entendu également possible d'exercer une pression extérieure qui s'ajoute alors à celle consécutive au chauffage.
On peut aussi effectuer le chauffage dans un réacteur ouvert pour les températures voisines de 100°C.
Le chauffage peut être conduit soit sous air, soit sous atmosphère de gaz inerte, de préférence l'azote.
La durée du traitement n'est pas critique, et peut ainsi varier dans de larges limites, par exemple entre 30 minutes et 48 heures, de préférence entre 1 et 5 heures. De même, la montée en température s'effectue à une vitesse qui n'est pas critique, et on peut ainsi atteindre la température réactionnelle fixée en chauffant le milieu par exemple entre 30 minutes et 4 heures, ces valeurs étant données à titre tout à fait indicatif.
On obtient à l'issue du chauffage un précipité qui est séparé du milieu liquide par tout moyen convenable.
L'étape suivante (c3) consiste à ajouter au précipité ainsi obtenu le composé de silicium dans le cas où celui-ci n'a pas été introduit lors de l'étape
(a3).
Les étapes (d3) et (e3) sont identiques aux étapes (d1 ) et (c1 ) décrites plus haut.
On peut noter que, là aussi, il est possible de réaliser en même temps les deux étapes (c3) et (d3), c'est-à-dire d'ajouter simultanément le composé du silicium et l'additif au précipité issu de l'étape (b3).
Un quatrième mode de réalisation pour le procédé de préparation des compositions de l'invention va être décrit aussi ci-dessous.
Le procédé selon ce dernier mode comprend les étapes suivantes :
- (a4) on forme un mélange comprenant des composés du zirconium, du cérium et du silicium uniquement soit ces composés avec un ou des composés de terres rares autres que le cérium dans une quantité de ce ou de ces derniers composés qui est inférieure à la quantité nécessaire pour obtenir la composition recherchée;
- (b4) on met en présence, sous agitation, ledit mélange avec un composé basique; - (c4) on met en présence, sous agitation, le milieu obtenu à l'étape précédente avec soit le ou les composés de terres rares autres que le cérium si ce ou ces composés n'étaient pas présents à l'étape (a4) soit la quantité restante nécessaire dudit ou desdits composés, l'énergie d'agitation utilisée lors de l'étape (c4) étant inférieure à celle utilisée lors de l'étape (b4), ce par quoi on obtient un précipité;
- (d4) on chauffe en milieu aqueux ledit précipité;
- (e4) on ajoute au précipité obtenu à l'étape précédente un additif choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène- glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés;
- (f4) on calcine le précipité ainsi obtenu.
Les étapes (a4) et (b4) de ce procédé sont tout à fait analogues aux étapes (a1 ) et (b1 ) du premier mode et ce qui a été décrit à leur sujet s'applique donc de même ici. La différence réside dans le fait que le mélange formé à l'étape (a4) ne comprend, pour ce qui concerne les éléments constitutifs de la composition, c'est-à-dire zirconium, cérium, silicium et autre(s) terre(s) rare(s), que les composés du zirconium, du cérium et du silicium dans une première variante.
Selon une seconde variante le mélange formé à l'étape (a4) comprend, outre les composés du zirconium, du cérium et du silicium, le ou les composés des autres terres rares différentes du cérium mais dans une quantité qui est inférieure à la quantité totale stœchiométrique nécessaire de ce ou de ces composés d'autres terres rares pour l'obtention de la composition recherchée. Cette quantité peut être plus particulièrement au plus égale à la moitié de la quantité totale.
On notera que cette seconde variante doit s'entendre comme couvrant le cas, pour les compositions à base d'oxydes de zirconium, de cérium, de silicium et d'au moins deux autres terres rares, où à l'étape (a4) la quantité nécessaire totale de composé d'au moins une des terres rares est présente dès cette étape et où c'est seulement pour au moins une des autres terres rares restantes que la quantité du composé de cette autre terre rare est inférieure à la quantité nécessaire. Il est aussi possible que le composé de cette autre terre rare soit absent à cette étape (a4).
L'étape suivante (c4) du procédé consiste à mettre en présence le milieu issu de l'étape (b4) précédente avec les composés des terres rares autres que le cérium. Dans le cas de la première variante mentionnée plus haut dans laquelle le mélange de départ formé à l'étape (a4) ne comprend, en tant qu'éléments constitutifs de la composition, que les composés du zirconium, du cérium et du silicium, ces composés sont donc introduits pour la première fois dans le procédé et dans la quantité totale stœchiométrique nécessaire de ces autres terres rares. Dans le cas de la seconde variante dans laquelle le mélange formé à l'étape (a4) comprend déjà des composés des autres terres rares différentes du cérium il s'agit donc de la quantité restante nécessaire de ces composés ou, éventuellement, de la quantité nécessaire du composé d'une terre rare si ce composé n'était pas présent à l'étape (a4).
Cette mise en présence peut être effectuée de manière quelconque, par exemple par l'addition d'un mélange préalablement formé des composés des terres rares autres que le cérium dans le mélange obtenu à l'issue de l'étape (b4). Elle se fait aussi sous agitation mais dans des conditions telles que l'énergie d'agitation utilisée lors de cette étape (c4) est inférieure à celle utilisée lors de l'étape (b4). Plus précisément l'énergie mise en œuvre lors de l'étape (c4) est inférieure d'au moins 20% à celle de l'étape (b4) et elle peut être plus particulièrement inférieure à 40% et encore plus particulièrement à 50% de celle-ci.
On obtient à l'issue de l'étape (c4) un précipité en suspension dans le milieu réactionnel.
Les étapes suivantes (d4), (e4) et (f4) sont ensuite identiques aux étapes
(c1 ), (d1 ) et (e1 ) respectivement du procédé selon le premier mode.
Le procédé selon le quatrième mode de réalisation permet d'obtenir des produits dont la stabilité de la surface spécifique est améliorée.
Les compositions de l'invention telles que décrites plus haut ou telles qu'obtenues par les procédés de préparation décrits précédemment se présentent sous forme de poudres mais elles peuvent éventuellement être mises en forme pour se présenter sous forme de granulés, billes, cylindres ou nids d'abeille de dimensions variables.
Ces compositions peuvent être utilisées avec tout matériau employé habituellement dans le domaine de la formulation de catalyseur, c'est à dire notamment des matériaux inertes thermiquement. Ce matériau peut être choisi parmi l'alumine, l'oxyde de titane, l'oxyde de cérium, l'oxyde de zirconium, la silice, les spinelles, les zéolites, les silicates, les phosphates de silicoaluminium cristallins, les phosphates d'aluminium cristallins.
Les compositions peuvent aussi être utilisées dans des systèmes catalytiques comprenant un revêtement (wash coat) à propriétés catalytiques et à base de ces compositions avec un matériau du type de ceux mentionnés plus haut, le revêtement étant déposé sur un substrat du type par exemple monolithe métallique, par exemple FerCralloy, ou en céramique, par exemple en cordiérite, en carbure de silicium, en titanate d'alumine ou en mullite.
Ce revêtement est obtenu par mélange de la composition avec le matériau de manière à former une suspension qui peut être ensuite déposée sur le substrat.
Ces systèmes catalytiques et plus particulièrement les compositions de l'invention peuvent trouver de très nombreuses applications.
Ils sont ainsi particulièrement bien adaptés à, et donc utilisable dans la catalyse de diverses réactions telles que, par exemple, la déshydratation, l'hydrosulfuration, l'hydrodénitrification, la désulfuration, l'hydrodésulfuration, la déshydrohalogénation, le reformage, le reformage à la vapeur, le craquage, l'hydrocraquage, l'hydrogénation, la déshydrogénation, l'isomérisation, la dismutation, l'oxychloration, la déshydrocyclisation d'hydrocarbures ou autres composés organiques, les réactions d'oxydation et/ou de réduction, la réaction de Claus, le traitement des gaz d'échappement des moteurs à combustion interne, la démétallation, la méthanation, la shift conversion, l'oxydation catalytique des suies émises par les moteurs à combustion interne comme les moteurs diesel ou essence fonctionnant en régime pauvre.
Les systèmes catalytiques et les compositions de l'invention peuvent enfin être utilisés comme pièges à NOx ou pour favoriser la réduction des NOx même en milieu oxydant.
Dans le cas de ces utilisations en catalyse, les compositions de l'invention sont employées en combinaison avec des métaux précieux, elles jouent ainsi le rôle de support pour ces métaux. La nature de ces métaux et les techniques d'incorporation de ceux-ci dans les compositions supports sont bien connues de l'homme du métier. Par exemple, les métaux peuvent être le platine, le rhodium, le palladium ou l'iridium, ils peuvent notamment être incorporés aux compositions par imprégnation.
Parmi les utilisations citées, le traitement des gaz d'échappement des moteurs à combustion interne (catalyse post combustion automobile) constitue une application particulièrement intéressante dans la mesure où les compositions de l'invention présentent une OSC importante à des températures allant au moins jusqu'à 1000°C.
De ce fait, l'invention concerne aussi un procédé de traitement des gaz d'échappement des moteurs à combustion interne qui est caractérisé en ce qu'on utilise à titre de catalyseur un système catalytique tel que décrit ci- dessus ou une composition selon l'invention et telle que décrite précédemment. Une utilisation plus particulière de la composition de l'invention va être décrite ci-dessous.
Du fait qu'elle présente une OSC importante à température élevée, c'est- à-dire entre 1000°C et 1 100°C mais aussi une OSC qui diminue nettement après calcination à une température d'au moins 1 100°C, plus particulièrement d'au moins 1200°C sur une durée de 10 heures, la composition de l'invention peut jouer un rôle de témoin. On peut en effet mesurer régulièrement son OSC. Si l'OSC mesurée diminue brutalement, cela signifie alors que le système a subi une température élevée, au moins 1 150° C, pendant un temps assez long, au moins quelques heures.
Dans des systèmes catalytiques qui contiennent des compositions dont l'OSC est susceptible de varier d'une manière beaucoup moins importante lorsqu'elles sont exposées à des températures de l'ordre de 1200°C, la mesure de l'OSC de celles-ci ne permet pas ainsi d'avoir connaissance de ce que le système a pu subir comme contrainte thermique lors de son utilisation. La présence d'une composition selon l'invention dans ces systèmes permet de mettre en évidence le fait que le système a été soumis à des températures élevées ce qui peut avoir entraîné une dégradation de ses propriétés.
De ce fait, l'invention concerne aussi un système de diagnostic embarqué qui contient seulement une composition selon l'invention ou encore qui est à base d'une telle composition. Ce système comprend en outre un moyen, connu en soi, de mesure de l'OSC de la composition.
L'invention concerne aussi un système de diagnostic embarqué tel que décrit ci-dessus mais qui contient, à titre de première composition, une composition selon l'invention et en outre une seconde composition qui présente une variation de son OSC mesurée d'une part après calcination 4 heures à 1000°C et, d'autre part, 10 heures à 1 150°C, plus particulièrement à 1200°C, nettement moins importante que la variation d'OSC d'une composition selon l'invention après calcination dans les mêmes conditions.
Plus particulièrement, cette seconde composition peut présenter après calcination 10 heures à 1 150°C, plus particulièrement à 1200°C, une OSC au moins deux fois supérieure à celle de la composition selon l'invention après calcination dans les mêmes conditions.
De telles compositions sont connues, on peut mentionner notamment celles décrites dans les demandes de brevet EP 2288426, EP 2024084, EP 1991354, EP 1660406 ou EP 0906244.
Des exemples vont maintenant être donnés. On donne ci-dessous pour ces exemples les méthodes de mesure de la capacité de stockage de l'oxygène et de la température maximale de réductibilité.
Mesure de capacité de stockage de l'oxygène
Cette mesure est réalisée en effectuant une réduction en température programmée sur un appareil AUTOCHEM II 2920. Cet appareil permet de mesurer la consommation d'hydrogène d'une composition selon l'invention en fonction de la température et d'en déduire le taux de réduction du cérium ou encore la quantité d'oxygène labile ou d'oxygène stocké car cette quantité correspond à la moitié de la consommation d'hydrogène.
Cette mesure est faite sur des échantillons qui ont été préalablement calcinés 4 heures à 1000°C ou 10 heures à 1200°C suivant les cas.
La mesure est faite en utilisant de l'hydrogène dilué à 10% en volume dans l'argon avec un débit de 30 ml_/mn.
Le protocole expérimental consiste à peser 200 mg de l'échantillon dans un récipient préalablement taré. L'échantillon est ensuite introduit dans une cellule en quartz contenant dans le fond de la laine de quartz. L'échantillon est enfin recouvert de laine de quartz et positionné dans le four de l'appareil de mesure. On effectue une montée en température jusqu'à 900°C avec une rampe de montée à 10°C/mn sous H2 à 10 %vol dans Ar.
La consommation de l'hydrogène est calculée à partir de la surface manquante du signal d'hydrogène entre 400°C à 500°C.
Température maximale de réductibilité
La mesure se fait avec le même appareil et dans les mêmes conditions que celles données ci-dessus.
Le captage de l'hydrogène est calculé à partir de la surface manquante du signal d'hydrogène de la ligne de base à la température ambiante à la ligne de base à 900°C. La température maximale de réductibilité (température à laquelle le captage de l'hydrogène est maximal et où, en d'autres termes, la réduction du cérium IV en cérium III est aussi maximale et qui correspond à une labilité maximale en O2 de la composition) est mesurée à l'aide d'un thermocouple placé au cœur de l'échantillon.
EXEMPLE1
Cet exemple concerne une composition à 44,875% de zirconium,
44,875% de cérium, 4,875% de lanthane 4,875% de praséodyme et 0,5% de silice, ces proportions étant exprimées en pourcentage massique des oxydes ZrO2, CeO2, La2O3, Pr6On et SiO2. Dans un bêcher agité, on introduit la quantité nécessaire de solutions de nitrate de zirconium (267 g/l en ZrO2), de nitrate de cérium (249 g/l), de nitrate de lanthane (469 g/l en La203) et de nitrate de praséodyme (500 g/l en Pr6On) et on introduit 1 , 1 ml de méthylsiliconate de potassium à 453 g/l en SiO2. On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre d'une solution de nitrates.
Dans un réacteur agité, on introduit une solution d'ammoniaque (12 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre et un excès stœchiométrique en ammoniaque de 40% par rapport aux nitrates à précipiter.
La solution de nitrates est introduite dans le réacteur sous agitation constante.
La solution obtenue est placée dans un autoclave en acier inoxydable équipé d'un mobile d'agitation. La température du milieu est portée à 1 15°C pendant 35 minutes sous agitation.
On ajoute à la suspension ainsi obtenue 32 grammes d'acide laurique. La suspension est maintenue sous agitation pendant 1 heure.
La suspension est alors filtrée sur Buchner, puis on lave le précipité filtré à l'eau ammoniaquée.
Le produit obtenu est ensuite porté à 700°C pendant 4 heures en palier.
EXEMPLE 2
Cet exemple concerne une composition à 44, 10% de zirconium, 44, 10% de cérium, 4,9% de lanthane, 4,9% de praséodyme et 2% de silice, ces proportions étant exprimées en pourcentage massique des oxydes ZrO2, CeO2, La2O3, Pr6On et SiO2.
Dans un bêcher agité on introduit la quantité nécessaire des solutions de nitrate de zirconium, de nitrate de cérium, de nitrate de lanthane et de nitrate de praséodyme utilisées pour l'exemple 1 et 4,4 ml de méthylsiliconate de potassium à 453 g/l en SiO2. On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre d'une solution de nitrates.
Dans un réacteur agité, on introduit une solution d'ammoniaque (12 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre et un excès stœchiométrique en ammoniaque de 40% par rapport aux nitrates à précipiter.
La solution de nitrates est introduite dans le réacteur sous agitation constante.
On procède ensuite comme dans l'exemple 1 . EXEMPLE 3
Cet exemple concerne une composition à 44,875% de zirconium, 44,875% de cérium, 4,875% de lanthane 4,875% de praséodyme et 0,5% de silice, ces proportions étant exprimées en pourcentage massique des oxydes Zr02, Ce02, La203, Pr6On et Si02.
Dans un bêcher agité, on introduit la quantité nécessaire des solutions de nitrate de zirconium, de nitrate de cérium, de nitrate de lanthane et de nitrate de praséodyme utilisées pour l'exemple 1 et 3 ml de silicate de sodium à 200 g/l en Si02. On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre d'une solution de nitrates.
Dans un réacteur agité, on introduit une solution d'ammoniaque (12 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre et un excès stœchiométrique en ammoniaque de 40% par rapport aux nitrates à précipiter.
La solution de nitrates est introduite dans le réacteur sous agitation constante.
On procède ensuite comme dans l'exemple 1 . EXEMPLE 4
Cet exemple concerne une composition à 74,9% de zirconium, 9,9% de cérium, 1 ,9% de lanthane, 7,9% d'yttrium, 4,9% de néodyme et 0,5% de silice, ces proportions étant exprimées en pourcentage massique des oxydes ZrO2, CeO2, La2O3, Y2O3, Nd2O3 et SiO2
Dans un bêcher agité, on introduit la quantité nécessaire de solutions de nitrate de zirconium (267 g/l en ZrO2), de nitrate de cérium à 249 g/l, de nitrate de lanthane (469 g/l en La2O3), de nitrate de néodyme (484 g/l en Nd2O3) et denitrate d'yttrium (261 g/l en Y2O3) et on introduit 1 , 1 ml de méthylsiliconate de potassium à 453 g/l en SiO2. On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre d'une solution de nitrates.
Dans un réacteur agité, on introduit une solution d'ammoniaque (12 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre et un excès stœchiométrique en ammoniaque de 40% par rapport aux nitrates à précipiter.
La solution de nitrates est introduite dans le réacteur sous agitation constante.
On procède ensuite comme dans l'exemple 1 . EXEMPLE 5
Cet exemple illustre la préparation d'une composition selon l'invention par un procédé selon le quatrième mode de réalisation.
Il concerne une composition à 74,9% de zirconium, 9,9% de cérium, 1 ,9% de lanthane 7,9% d'yttrium, 4,9% de néodyme et 0,5% de silice, ces proportions étant exprimées en pourcentage massique des oxydes ZrO2, Ce02, La203, Y203, Nd203 et Si02.
On prépare au préalable deux solutions de nitrates l'une constituée de nitrates de cérium et de zirconium et l'autre constituée de nitrates de lanthane, d'yttrium et de néodyme. Dans un premier bêcher sont introduits 0,39 I d'eau avec 0,25 I de nitrate de zirconium ([ZrO2]=288 g/l et d=1 ,433) ainsi que 0,04 I de nitrate de cérium ([CeO2]=246 g/l et d=1 ,43). Dans un second bêcher sont introduits 76,6 ml d'eau, 4, 1 ml de nitrate de lanthane ([La2O3]=471 g/l et d=1 ,69), 29,4 ml de nitrate d'yttrium ([Y2O3]=261 g/l et d=1 ,488) et 9,9 ml de nitrate de néodyme ([Nd203]=484 g/l et d=1 ,743 puis 1 , 1 ml de méthylsiliconate de potassium à 453g/l en SiO2. On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre de solution de nitrates.
Dans un réacteur agité, on introduit une solution d'ammoniaque (12 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre et un excès stœchiométrique en ammoniaque de 40% par rapport aux nitrates à précipiter.
On maintient sous agitation constante les deux solutions préparées précédemment. La première solution de nitrates de cérium et de zirconium est introduite dans le réacteur agité à une vitesse de 500 Tr/min, la seconde solution de nitrates est ensuite introduite et l'agitation est fixée à 250 tr/min.
La solution obtenue est placée dans un autoclave en acier inoxydable équipé d'un mobile d'agitation.
On procède ensuite comme dans l'exemple 1 . EXEMPLE 6
Cet exemple concerne une composition à haute teneur en cérium. Les proprotions sont les suivantes : 9,95% de zirconium, 79,6% de cérium, 2,985% de lanthane, 6,965% de praséodyme et 0,5% de silice, ces proportions étant exprimées en pourcentage massique des oxydes ZrO2, CeO2, La2O3, Pr6On et SiO2.
Dans un bêcher agité, on introduit la quantité nécessaire de nitrate de zirconium (267 g/l en ZrO2), de nitrate de cérium à 249 g/l, de nitrate de lanthane (469 g/l en La2O3) et de nitrate de praséodyme (500 g/l en Pr6On) puis 1 , 1 ml de méthylsiliconate de potassium à 453 g/l en S1O2. On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre d'une solution de nitrates.
Dans un réacteur agité, on introduit une solution d'ammoniaque (12 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre et un excès stœchiométrique en ammoniaque de 40% par rapport aux nitrates à précipiter.
La solution de nitrates est introduite dans le réacteur sous agitation constante.
On procède ensuite comme dans l'exemple 1 .
EXEMPLE 7 COMPARATIF
Cet exemple concerne une composition à 45% de zirconium, 45% de cérium, 5% de lanthane 5% de praséodyme, ces proportions étant exprimées en pourcentage massique des oxydes ZrÛ2, CeÛ2, La2O3 et Pr6On .
Dans un bêcher agité, on introduit la quantité nécessaire des solutions de nitrate de zirconium, de nitrate de cérium, de nitrate de lanthane et de nitrate de praséodyme utilisées pour l'exemple 1 . On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre d'une solution de nitrates.
Dans un réacteur agité, on introduit une solution d'ammoniaque (12 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre et un excès stœchiométrique en ammoniaque de 40% par rapport aux nitrates à précipiter.
La solution de nitrates est introduite dans le réacteur sous agitation constante.
On procède ensuite comme dans l'exemple 1 . EXEMPLE 8 COMPARATIF
Cet exemple concerne une composition à 75% de zirconium, 10% de cérium, 2% de lanthane 8% d'yttrium, 5% de néodyme, ces proportions étant exprimées en pourcentage massique des oxydes ZrÛ2, CeÛ2, La2O3, Y2O3 et Nd2O3.
Dans un bêcher agité, on introduit la quantité nécessaire des solutions de nitrate de zirconium, de nitrate de cérium, de nitrate de lanthane, de nitrate de néodyme et de nitrate d'yttrium utilisées pour l'exemple 4. On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre d'une solution de nitrates.
Dans un réacteur agité, on introduit une solution d'ammoniaque (12 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre et un excès stœchiométrique en ammoniaque de 40% par rapport aux nitrates à précipiter.
La solution de nitrates est introduite dans le réacteur sous agitation constante.
On procède ensuite comme dans l'exemple 1 .
EXEMPLE 9 COMPARATIF
Cet exemple concerne une composition à 10% de zirconium, 80% de cérium, 3% de lanthane 7% de praséodyme, ces proportions étant exprimées en pourcentages massiques des oxydes ΖΓΟ2, CeO2, La2O3 et Pr6On .
Dans un bêcher agité, on introduit la quantité nécessaire de nitrate de zirconium (267 g/l en ZrO2), de nitrate de cérium à 249 g/l, de nitrate de lanthane (469 g/l en La2Û3) et de nitrate de praséodyme (500 g/l en Pr6On). On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre d'une solution de nitrates.
Dans un réacteur agité, on introduit une solution d'ammoniaque (12 mol/l) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre et un excès stœchiométrique en ammoniaque de 40% par rapport aux nitrates à précipiter.
La solution de nitrates est introduite dans le réacteur sous agitation constante.
On procède ensuite comme dans l'exemple 1 .
On donne dans le tableau 1 ci-dessous les surfaces spécifiques des produits des exemples.
Tableau 1
Surface (m2/ç )) après
Exemple calcination 4 h leures à
1000°C 1 100°C
1 41 20
2 45 21
3 43 21
4 38 12
5 45 19
6 33 19
7 comparatif 49 27 8 comparatif 51 23
9 comparatif 30 19
On donne dans le tableau 2 ci-dessous les caractéristiq réductibilité des produits des exemples.
Tableau 2
Figure imgf000025_0001
Les températures qui figurent dans les colonnes Tmax et OSC sont les températures auxquelles ont été calcinés pendant 4 heures (1000°C) ou 10 heures (1200°C) les produits dont on a mesuré les valeurs de Tmax et d'OSC.
La variation de l'OSC est la diminution d'OSC mesurée sur les produits calcinés à 1000°C ou à 1200°C.
On observe que les produits de l'invention présentent des Tmax et des valeurs d'OSC comparables après calcination à 1000°C à celles des produits comparatifs de compositions similaires.
Par contre, les produits comparatifs voient leur Tmax varier dans une amplitude d'environ 100°C entre ceux calcinés à 1000°C et ceux calcinés à 1200°C alors que pour les produits de l'invention cette amplitude est d'au moins environ 170°C et elle peut être supérieure à 200°C. La variation de l'OSC est d'environ 60% pour les produits comparatifs alors qu'elle est d'au moins 80% pour les produits de l'invention.

Claims

REVENDICATIONS
1 - Composition à base d'oxyde de zirconium, d'oxyde de cérium et d'au moins un oxyde d'une terre rare autre que le cérium, dans une proportion en masse en oxyde de zirconium d'au moins 5% et en oxyde de cérium d'au plus 90%, caractérisée en ce qu'elle comprend en outre de l'oxyde de silicium dans une quantité en masse comprise entre 0, 1 % et 2%. 2- Composition selon la revendication 1 , caractérisée en ce qu'elle comprend de l'oxyde de silicium dans une quantité en masse comprise entre 0, 1 % et 1 %.
3- Composition selon la revendication 1 , caractérisée en ce qu'elle comprend de l'oxyde de silicium dans une quantité en masse comprise entre 0, 1 % et 0,6%.
4- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente une teneur en oxyde de cérium comprise entre 30% et 60%. 5- Composition selon l'une des revendications 1 à 3, caractérisée en ce qu'elle présente une teneur en oxyde de cérium comprise entre 5% et 20%.
6- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente une teneur en oxydes des terres rares autres que le cérium comprise entre 5% et 25%.
7- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente après calcination 4 heures à 1000°C puis calcination 10 heures à 1200°C une diminution de sa capacité de stockage de l'oxygène (OSC) d'au moins 80%, plus particulièrement d'au moins 90%.
8- Composition selon l'une des revendications précédentes, caractérisée en ce que pour une teneur en oxyde de cérium comprise entre 30% et 60% elle présente après calcination 4 heures à 1000°C une OSC d'au moins 0,6 ml 02 g et pour une teneur en oxyde de cérium comprise entre 5% et 15% ou d'au moins 70% une OSC d'au moins 0,2 ml 02 g. 9- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente après calcination 4 heures à 1000°C puis calcination 10 heures à 1200°C une augmentation de sa température maximale de réductibilité d'au moins 150°C.
10- Procédé de préparation d'une composition selon l'une des revendications 1 à 9, caractérisé en ce qu'il comprend les étapes suivantes :
- (a1 ) on forme un mélange comprenant des composés du zirconium, du cérium, d'au moins une terre rare autre que le cérium et du silicium;
- (b1 ) on met en présence ledit mélange avec un composé basique, ce par quoi on obtient un précipité;
- (c1 ) on chauffe en milieu liquide ledit précipité;
- (d1 ) on ajoute au précipité obtenu à l'étape précédente un additif choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène- glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés;
- (e1 ) on calcine le produit ainsi obtenu.
1 1 - Procédé de préparation d'une composition selon l'une des revendications 1 à 9, caractérisé en ce qu'il comprend les étapes suivantes :
- (a2) on forme un mélange comprenant des composés du zirconium, du cérium et d'au moins une terre rare autre que le cérium;
- (b2) on met en présence ledit mélange avec un composé basique, ce par quoi on obtient un précipité;
- (c2) on chauffe en milieu liquide ledit précipité;
- (d2) on ajoute au précipité obtenu à l'étape précédente un composé du silicium;
- (e2) on ajoute au produit obtenu à l'étape précédente un additif choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène- glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés, les étapes (d2) et (e2) pouvant éventuellement être réalisées en même temps;
- (f2) on calcine le produit ainsi obtenu. 12- Procédé de préparation d'une composition selon l'une des revendications 1 à 9, caractérisé en ce qu'il comprend les étapes suivantes : - (a3) on forme un mélange comprenant des composés du zirconium, du cérium, d'au moins une terre rare autre que le cérium et éventuellement un composé du silicium;
- (b3) on chauffe en milieu liquide ledit précipité;
- (c3) on ajoute au précipité obtenu à l'étape précédente un composé du silicium si celui-ci n'était pas présent à l'étape (a3);
- (d3) on ajoute au produit obtenu à l'étape précédente un additif choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène- glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés les étapes (d3) et (c3) pouvant éventuellement être réalisées en même temps;
- (e3) on calcine le produit ainsi obtenu.
13- Procédé de préparation d'une composition selon l'une des revendications 1 à 9, caractérisé en ce qu'il comprend les étapes suivantes :
- (a4) on forme un mélange comprenant des composés du zirconium, du cérium et du silicium uniquement soit ces composés avec un ou des composés de terres rares autres que le cérium dans une quantité de ce ou de ces derniers composés qui est inférieure à la quantité nécessaire pour obtenir la composition recherchée;
- (b4) on met en présence, sous agitation, ledit mélange avec un composé basique;
- (c4) on met en présence, sous agitation, le milieu obtenu à l'étape précédente avec soit le ou les composés de terres rares autres que le cérium si ce ou ces composés n'étaient pas présents à l'étape (a4) soit la quantité restante nécessaire dudit ou desdits composés, l'énergie d'agitation utilisée lors de l'étape (c4) étant inférieure à celle utilisée lors de l'étape (b4), ce par quoi on obtient un précipité;
- (d4) on chauffe en milieu aqueux ledit précipité;
- (e4) on ajoute au précipité obtenu à l'étape précédente un additif choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène- glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés;
- (f4) on calcine le précipité ainsi obtenu.
14- Procédé selon l'une des revendications 10 à 13, caractérisé en ce qu'on utilise comme composés du zirconium, du cérium et des autres terres rares un composé choisi parmi les nitrates, les sulfates, les acétates, les chlorures, le nitrate céri-ammoniacal.
15- Procédé selon l'une des revendications 10 à 14, caractérisé en ce qu'on utilise comme composés du silicium un siliconate, un silicate d'alcalin ou un silicate d'ammonium quaternaire.
16- Procédé selon l'une des revendications 10 à 15, caractérisé en ce que le chauffage du précipité de l'étape (c1 ), (c2), (b3) ou (d4) est réalisé à une température d'au moins 100°C.
17- Système catalytique, caractérisé en ce qu'il comprend une composition selon l'une des revendications 1 à 9. 18- Système de diagnostic embarqué caractérisé en ce qu'il comprend une composition selon l'une des revendications 1 à 9.
19- Système selon la revendication 18, caractérisé en ce qu'il comprend en outre une seconde composition qui présente après calcination 10 heures à 1 150°C une OSC au moins deux fois supérieure à celle de la composition selon l'une des revendications 1 à 9 après calcination dans les mêmes conditions.
20- Procédé de traitement des gaz d'échappement des moteurs à combustion interne, caractérisé en ce qu'on utilise à titre de catalyseur un système catalytique selon la revendication 17 ou une composition selon l'une des revendications 1 à 9.
PCT/EP2012/056165 2011-04-08 2012-04-04 Composition a base d'oxydes de zirconium, de cerium, d'au moins une terre rare autre que le cerium et de silicium, procedes de preparation et utilisation en catalyse WO2012136705A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014503132A JP2014515698A (ja) 2011-04-08 2012-04-04 ジルコニウム、セリウム、セリウム以外の少なくとも1種の希土類、及びケイ素の酸化物を基材とする組成物、その製造方法並びに触媒におけるその使用
EP12713951.7A EP2694204A1 (fr) 2011-04-08 2012-04-04 Composition a base d'oxydes de zirconium, de cerium, d'au moins une terre rare autre que le cerium et de silicium, procedes de preparation et utilisation en catalyse
CN201280020223.3A CN103492067A (zh) 2011-04-08 2012-04-04 基于锆的、铈的、至少一种除铈之外的稀土金属的以及硅的氧化物的组合物、制备方法及在催化中的用途
RU2013149805/04A RU2013149805A (ru) 2011-04-08 2012-04-04 Композиция на основе оксидов циркония, церия, по меньшей мере одного редкоземельного металла, отличного от церия, и кремния, способы получения и применение в катализе
KR1020137029290A KR20140023965A (ko) 2011-04-08 2012-04-04 지르코늄 산화물, 세륨 산화물, 세륨 외 적어도 1종의 희토류의 산화물 및 규소 산화물을 기재로 한 조성물, 그 제조 방법 및 촉매작용에서의 그의 용도
US14/110,374 US20140044628A1 (en) 2011-04-08 2012-04-04 Composition based on oxides of zirconium, of cerium, of at least one rare earth other than cerium and of silicon, preparation processes and use in catalysis
CA2831173A CA2831173A1 (fr) 2011-04-08 2012-04-04 Composition based on oxides of zirconium, of cerium, of at least one rare earth other than cerium and of silicon, preparation processes and use in catalysis
ZA2013/07341A ZA201307341B (en) 2011-04-08 2013-10-01 Composition based on oxides of zirconium, of cerium, of at least one rare earth other than cerium and of silicon, preparation processes and use in catalysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11/01092 2011-04-08
FR1101092A FR2973793A1 (fr) 2011-04-08 2011-04-08 Composition a base d'oxydes de zirconium, de cerium, d'au moins une terre rare autre que le cerium et de silicium, procedes de preparation et utilisation en catalyse

Publications (1)

Publication Number Publication Date
WO2012136705A1 true WO2012136705A1 (fr) 2012-10-11

Family

ID=45953120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/056165 WO2012136705A1 (fr) 2011-04-08 2012-04-04 Composition a base d'oxydes de zirconium, de cerium, d'au moins une terre rare autre que le cerium et de silicium, procedes de preparation et utilisation en catalyse

Country Status (10)

Country Link
US (1) US20140044628A1 (fr)
EP (1) EP2694204A1 (fr)
JP (1) JP2014515698A (fr)
KR (1) KR20140023965A (fr)
CN (1) CN103492067A (fr)
CA (1) CA2831173A1 (fr)
FR (1) FR2973793A1 (fr)
RU (1) RU2013149805A (fr)
WO (1) WO2012136705A1 (fr)
ZA (1) ZA201307341B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999560A1 (fr) * 2012-12-18 2014-06-20 Saint Gobain Ct Recherches Poudre de cristallites

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816886B (zh) * 2014-01-27 2017-01-04 江苏几维环境科技有限公司 一种大比表面稀土储氧材料的制备方法
CN105983403B (zh) * 2015-02-09 2019-01-01 有研稀土新材料股份有限公司 一种铈锆复合氧化物、其制备方法及催化剂的应用
WO2017053393A1 (fr) * 2015-09-22 2017-03-30 Basf Corporation Système catalytique tolérant le soufre
JP6802524B2 (ja) * 2017-03-24 2020-12-16 株式会社豊田中央研究所 メタン化触媒担体、それを用いたメタン化触媒及びメタンの製造方法
KR20200104401A (ko) * 2018-01-08 2020-09-03 패서픽 인더스트리얼 디벨럽먼트 코퍼레이션 세리아-지르코니아-산소 저장 물질을 포함하는 촉매 및 그 제조 방법
KR102579184B1 (ko) * 2018-09-13 2023-09-18 스미토모 오사카 세멘토 가부시키가이샤 방오 피막, 유리 세라믹스 제품, 방오 피막 형성용 도료, 유리 세라믹스 제품의 제조 방법
CN109569566A (zh) * 2018-12-04 2019-04-05 华微科技(苏州)有限公司 铈锆铝复合储氧材料及其制备方法
CN111547766B (zh) * 2020-06-19 2022-09-06 山东国瓷功能材料股份有限公司 复合氧化锆材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3239521A (en) 1961-08-15 1966-03-08 Philadelphia Quartz Co Amorphous quaternary ammonium silicates
EP0662461A1 (fr) * 1994-01-11 1995-07-12 Societe Europeenne Des Produits Refractaires Billes en matière céramique fondue
WO1998045212A1 (fr) 1997-04-04 1998-10-15 Rhodia Rare Earths Inc. OXYDES DE CERIUM, OXYDES DE ZIRCONIUM, OXYDES MIXTES Ce/Zr ET SOLUTIONS SOLIDES Ce/Zr PRESENTANT UNE STABILITE THERMIQUE ET UNE CAPACITE DE STOCKAGE D'OXYGENE AMELIOREES
EP0906244A1 (fr) 1996-05-15 1999-04-07 Rhodia Chimie Composition a base d'oxyde de cerium et d'oxyde de zirconium, procede de preparation et utilisation en catalyse
EP1660406A2 (fr) 2003-09-04 2006-05-31 Rhodia Electronics and Catalysis Composition a base d oxyde de cerium et d oxyde de zirconium a conductibilite et surface elevees, procedes de preparation et utilisation comme catalyseur
WO2008046920A1 (fr) * 2006-10-20 2008-04-24 Rhodia Operations Composition a acidite elevee a base d'oxydes de zirconium, de silicium et d'au moins un autre element choisi parmi le titane, l'aluminium, le tungstene, le molybdene, le cerium, le fer, l'etain, le zinc et le manganese
EP1991354A1 (fr) 2006-02-17 2008-11-19 Rhodia Recherches et Technologies Composition a base d'oxydes de zirconium, de cerium, d'yttrium, de lanthane et d'une autre terre rare, procede de preparation et utilisation en catalyse
EP2024084A1 (fr) 2006-05-15 2009-02-18 Rhodia Recherches et Technologies Composition a base d'oxydes de zirconium, de cerium, de lanthane et d'yttrium, de gadolinium ou de samarium, a surface specifique et reductibilite elevees, procede de preparation et utilisation comme catalyseur
FR2925485A1 (fr) * 2007-12-20 2009-06-26 Saint Gobain Ct Recherches Produit en matiere ceramique fondue, procede de fabrication et utilisations.
WO2010044079A2 (fr) * 2008-10-17 2010-04-22 Saint-Gobain Centre De Recherches Et D'etudes Europeen Produit en matière céramique fondue
EP2288426A2 (fr) 2008-04-23 2011-03-02 Rhodia Opérations Compositions catalytiques à base d'oxydes de zirconium, de cerium et d'yttrium et leurs utilisations pour les traitement des gaz d'échappement.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133194A (en) * 1997-04-21 2000-10-17 Rhodia Rare Earths Inc. Cerium oxides, zirconium oxides, Ce/Zr mixed oxides and Ce/Zr solid solutions having improved thermal stability and oxygen storage capacity
FR2852596B1 (fr) * 2003-03-18 2007-02-23 Rhodia Elect & Catalysis Composition a base d'oxydes de cerium et de zirconium a surface specifique stable entre 900 c et 1000 c, son procede de preparation et son utilisation comme catalyseur
FR2852592B1 (fr) * 2003-03-18 2007-02-23 Rhodia Elect & Catalysis Compositions a base d'un oxyde de cerium, d'un oxyde de zirconium et, eventuellement d'un oxyde d'une autre terre rare, a surface specifique elevee a 1100 c, leur procede de preparation et leur utilisation comme catalyseur

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3239521A (en) 1961-08-15 1966-03-08 Philadelphia Quartz Co Amorphous quaternary ammonium silicates
EP0662461A1 (fr) * 1994-01-11 1995-07-12 Societe Europeenne Des Produits Refractaires Billes en matière céramique fondue
EP0906244A1 (fr) 1996-05-15 1999-04-07 Rhodia Chimie Composition a base d'oxyde de cerium et d'oxyde de zirconium, procede de preparation et utilisation en catalyse
WO1998045212A1 (fr) 1997-04-04 1998-10-15 Rhodia Rare Earths Inc. OXYDES DE CERIUM, OXYDES DE ZIRCONIUM, OXYDES MIXTES Ce/Zr ET SOLUTIONS SOLIDES Ce/Zr PRESENTANT UNE STABILITE THERMIQUE ET UNE CAPACITE DE STOCKAGE D'OXYGENE AMELIOREES
EP1660406A2 (fr) 2003-09-04 2006-05-31 Rhodia Electronics and Catalysis Composition a base d oxyde de cerium et d oxyde de zirconium a conductibilite et surface elevees, procedes de preparation et utilisation comme catalyseur
EP1991354A1 (fr) 2006-02-17 2008-11-19 Rhodia Recherches et Technologies Composition a base d'oxydes de zirconium, de cerium, d'yttrium, de lanthane et d'une autre terre rare, procede de preparation et utilisation en catalyse
EP2024084A1 (fr) 2006-05-15 2009-02-18 Rhodia Recherches et Technologies Composition a base d'oxydes de zirconium, de cerium, de lanthane et d'yttrium, de gadolinium ou de samarium, a surface specifique et reductibilite elevees, procede de preparation et utilisation comme catalyseur
WO2008046920A1 (fr) * 2006-10-20 2008-04-24 Rhodia Operations Composition a acidite elevee a base d'oxydes de zirconium, de silicium et d'au moins un autre element choisi parmi le titane, l'aluminium, le tungstene, le molybdene, le cerium, le fer, l'etain, le zinc et le manganese
FR2925485A1 (fr) * 2007-12-20 2009-06-26 Saint Gobain Ct Recherches Produit en matiere ceramique fondue, procede de fabrication et utilisations.
EP2288426A2 (fr) 2008-04-23 2011-03-02 Rhodia Opérations Compositions catalytiques à base d'oxydes de zirconium, de cerium et d'yttrium et leurs utilisations pour les traitement des gaz d'échappement.
WO2010044079A2 (fr) * 2008-10-17 2010-04-22 Saint-Gobain Centre De Recherches Et D'etudes Europeen Produit en matière céramique fondue

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRUNAUER; EMMETT; TELLER, THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, 1938, pages 309
HELMUT H. WELDES; K. ROBERT LANGE, PROPERTIES OF SOLUBLE SILICATES'' DANS ''INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 61, no. 4, April 1969 (1969-04-01)
M STIEBLER ET AL: "Praseodymium Zircon Yellow", PHYSICA STATUS SOLIDI A, 16 August 1992 (1992-08-16), pages 495 - 500, XP055012753, Retrieved from the Internet <URL:http://onlinelibrary.wiley.com/doi/10.1002/pssa.2211320225/abstract;jsessionid=7D9F6E45E0029572F4B9E71A069CB411.d02t01> [retrieved on 20111122], DOI: 10.1002/pssa.2211320225 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999560A1 (fr) * 2012-12-18 2014-06-20 Saint Gobain Ct Recherches Poudre de cristallites
WO2014097185A1 (fr) * 2012-12-18 2014-06-26 Saint-Gobain Centre De Recherches Et D'etudes Europeen Poudre de cristallites

Also Published As

Publication number Publication date
FR2973793A1 (fr) 2012-10-12
RU2013149805A (ru) 2015-05-20
CA2831173A1 (fr) 2012-10-11
EP2694204A1 (fr) 2014-02-12
KR20140023965A (ko) 2014-02-27
CN103492067A (zh) 2014-01-01
US20140044628A1 (en) 2014-02-13
ZA201307341B (en) 2014-07-30
JP2014515698A (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
CA2796007C (fr) Composition a base d&#39;oxydes de zirconium, de cerium et d&#39;au moins une autre terre rare, a porosite specifique, procede de preparation et utilisation en catalyse
CA2652137C (fr) Composition a base d&#39;oxydes de zirconium, de cerium, de lanthane et d&#39;yttrium, de gadolinium ou de samarium, a surface specifique et reductibilite elevees, procede de preparation et utilisation comme catalyseur
EP1729883B1 (fr) Composition a base d&#39;oxydes de zirconium, de praseodyme, de lanthane ou de neodyme, procede de preparation et utilisation dans un systeme catalytique
CA2642237C (fr) Composition a base d&#39;oxydes de zirconium, de cerium, d&#39;yttrium, de lanthane et d&#39;une autre terre rare, procede de preparation et utilisation en catalyse
CA2725431C (fr) Composition a base d&#39;oxydes de zirconium, de cerium et d&#39;yttrium, a reductibilite elevee, procedes de preparation et utilisation en catalyse
WO2012136705A1 (fr) Composition a base d&#39;oxydes de zirconium, de cerium, d&#39;au moins une terre rare autre que le cerium et de silicium, procedes de preparation et utilisation en catalyse
CA2800653C (fr) Composition a base d&#39;oxydes de cerium, de niobium et, eventuellement, de zirconium et son utilisation en catalyse
EP2646370B1 (fr) Composition a base d&#39;oxyde de zirconium et d&#39;au moins un oxyde d&#39;une terre rare autre que le cerium, a porosite specifique, son procede de preparation et son utilisation en catalyse
CA2560183A1 (fr) Composition a base d&#39;oxydes de zirconium et d&#39;yttrium, procede de preparation et utilisation dans un systeme catalytique
CA2519192A1 (fr) Compositions a base d&#39;un oxyde de cerium, d&#39;un oxyde de zirconium et, eventuellement d&#39;un oxyde d&#39;une autre terre rare, a surface specifique elevee a 1100·c, leur procede de preparation et leur utilisation comme catalyseur
WO2005023728A2 (fr) Composition a base d&#39;oxyde de cerium et d&#39;oxyde de zirconium a conductibilite et surface elevees, procedes de preparation et utilisation comme catalyseur
WO2012171947A1 (fr) Composition a base d&#39;oxydes de cerium, de zirconium et d&#39;une autre terre rare a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse
FR2900920A1 (fr) Composition a base d&#39;oxides de zirconium, de cerium, de lanthane et d&#39;yttrium, de gadolinium ou de samarium, a surface specifique stable, procede de preparation et utilisation comme catalyseur
FR2867769A1 (fr) Composition a base d&#39;oxydes de zirconium, de cerium et d&#39;etain, preparation et utilisation comme catalyseur
FR2908761A1 (fr) Composition a base d&#39;oxydes de zirconium,de cerium, d&#39;yttrium, de lanthane et d&#39;une autre terre rare,a haute reductibilite,procede de preparation et utilisation en catalyse
FR2908762A1 (fr) Composition a base d&#39;oxydes de zirconium,de cerium,de lanthane et d&#39;une autre terre rare,a haute reductibilite, procede de preparation et utilisation en catalyse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12713951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2831173

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014503132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012713951

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012713951

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14110374

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137029290

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013149805

Country of ref document: RU

Kind code of ref document: A