WO2012136148A1 - 一种便携式3d播放终端 - Google Patents

一种便携式3d播放终端 Download PDF

Info

Publication number
WO2012136148A1
WO2012136148A1 PCT/CN2012/073590 CN2012073590W WO2012136148A1 WO 2012136148 A1 WO2012136148 A1 WO 2012136148A1 CN 2012073590 W CN2012073590 W CN 2012073590W WO 2012136148 A1 WO2012136148 A1 WO 2012136148A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
video
glasses
audio
signal
Prior art date
Application number
PCT/CN2012/073590
Other languages
English (en)
French (fr)
Inventor
顾国璋
季冬夏
Original Assignee
云南北方奥雷德光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云南北方奥雷德光电科技股份有限公司 filed Critical 云南北方奥雷德光电科技股份有限公司
Publication of WO2012136148A1 publication Critical patent/WO2012136148A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays

Definitions

  • the present invention relates to 3D image/video playback and viewing technologies, and more particularly to a portable 3D playback terminal. Background technique
  • 3D image/video playback and viewing is typically achieved by display screens and 3D stereo glasses.
  • the switch type is commonly used for 3D image/video playback and viewing of TVs and computers; the polarization mode is often used for playback and viewing of 3D stereoscopic movies.
  • the switch type uses active 3D glasses
  • the polarization type uses passive optical glasses.
  • the prior art computer that implements switch-type 3D playback includes an active 3D glasses 140 in addition to the basic computer host 100, display 110, keyboard 120, and mouse 130.
  • the display 110 is connected to the computer host 100.
  • the graphics card of the computer host 100 (not shown in Fig. 1), after performing calculation processing on the 3D data files for display on the two displays, displays the two-eye signals through the display 110 in a time-sharing manner. For example: In odd frames, the right eye signal is displayed, and in even frames, the left eye signal is displayed.
  • the computer host 100 transmits a synchronization signal to the active 3D glasses 140 through the infrared emitter while the image signal is being displayed. Among them, the processing of 3D data files is very large, and a higher performance graphics card is needed.
  • the active 3D glasses 140 receive the synchronization signal and detect the synchronization signal to determine the number of frames of the displayed image. When an odd frame is detected, the left eye lens is turned off, and when an even frame is detected, the right eye lens is turned off. Thus, when the user wears the active 3D glasses 140 to look at the display 110, the instantaneous signal seen is only the left eye signal or the right eye signal, thereby producing a stereoscopic effect.
  • the circuit structure of the active 3D glasses 140 is as shown in FIG. 2, and includes: an infrared receiver 201, a synchronization signal detection circuit 202, a control circuit 203, and a liquid crystal.
  • liquid crystal (LCD) drive circuit 204 and liquid crystal lens (left) 205 and liquid crystal lens (right) 206.
  • the infrared receiver 201, the synchronization signal detecting circuit 202, the control circuit 203, and the liquid crystal (LCD) driving circuit 204 are disposed on a circuit board which is placed in the eyeglass frame, such as a beam or a temple of the glasses.
  • the infrared receiver 201 receives the synchronization signal and sends it to the synchronization signal detection circuit 202.
  • the sync signal detecting circuit 202 detects the sync signal, and determines the number of frames of the displayed image to be sent to the control circuit 203.
  • the control circuit 203 turns off the liquid crystal lens (left) 205 in the odd frame by the liquid crystal (LCD) driving circuit 204 according to the frame number, and turns off the right eye signal liquid crystal lens (right) 206 when the even frame is detected.
  • Polarization is a large screen for movies, where vertical and horizontal polarizations are added to the image parity frames, and passively polarized glasses are used for viewing.
  • an object of the present invention is to provide a portable 3D playback terminal capable of implementing 3D images and user follow-up.
  • the present invention provides a portable 3D playback terminal comprising: an active 3D glasses and a handheld lower position machine, the active 3D glasses comprising a circuit board disposed in the eyeglass frame, disposed at the eyeglass position Two microdisplays and two corresponding optical amplification modules.
  • the circuitry on the active 3D glasses circuit board includes: a storage module that stores firmware programs, applications, and 3D video files.
  • the control module is respectively connected to the two microdisplays and the storage module, and the 3D video file is read from the storage module for video decoding.
  • the left eye video signal is output to the first micro display display, and the right eye video signal is output to the second micro display display.
  • the two optical amplifying modules are respectively disposed between the two microdisplays and the eyes of the user.
  • the handheld lower position machine includes: a power module connected to the active 3D glasses to supply power to all components of the active 3D glasses.
  • the microdisplay is: a digital miniature 0 LED display or an analog micro 0 LED display.
  • the digital miniature 0 LED display is a digital micro 0 LED display of the type SVGA050V2
  • the analog miniature 0 LED display is an analog micro 0 LED display of the type SVGA-3D.
  • the circuit of the active 3D glasses further comprises an audio decoding chip and an audio output module, the storage module further storing the 3D multimedia file.
  • the control module further reads the 3D multimedia file from the storage module, distinguishes the audio data and the video data, and outputs the audio data to the audio decoding chip; and performs video decoding on the video file, and outputs the left-eye video signal to the first micro
  • the display shows that the right eye video signal is output to the second micro display.
  • the audio decoding chip is respectively connected to the control module and the audio output module, and decodes the received audio data, and outputs the decoded audio signal to the audio output module, and the audio output module plays the audio signal to the user.
  • the handheld lower position machine further comprises: an instruction input module, wherein the instruction input module is connected to the control module in the active 3D glasses, and sends an instruction input by the user to the control module.
  • the control module reads the 3D video file or the 3D multimedia file from the storage module according to the received instruction, and the power module is further connected to the command input module to supply power thereto.
  • the circuit of the active 3D glasses further comprises a video decoding chip;
  • the handheld lower computer further comprises: an audio input interface and a video input interface, wherein the audio input interface is respectively connected to the audio decoding chip and an external audio signal source Receiving
  • the externally input audio data is sent to the audio decoding chip
  • the video input interface is respectively connected to the video decoding chip and the external video signal source, and receives externally input video data and sends the video data to the video decoding chip, where the control module And further sending, according to the received instruction, an open instruction to the video decoding chip, where the video decoding chip is respectively connected to the control module and the video input interface, and according to the open command sent by the control module, the external video received from the video input interface
  • the data is decoded, the left-eye video signal is output to the first micro-display, and the right-eye video signal is output to the second micro-display, and the power module is further connected to the video decoding chip, the audio input interface and the video input interface respectively. Power it.
  • the video decoding chip is connected to the first micro display through at least a control line and a data line for transmitting the first switch control signal and the field sync signal, and the control line and the at least the second switch control signal and the field sync signal are transmitted.
  • the data line is connected to the second microdisplay.
  • the audio output module is an earphone, or comprises an audio output interface and an external earphone.
  • the audio decoding chip is an audio decoding chip of model 8960
  • the video decoding chip is a video decoding chip of model ADV7180.
  • the instruction input module comprises: a single chip microcomputer, a mouse module and a keyboard, wherein the single chip is connected to the control module and the mouse module respectively, and the user command received by the mouse module is converted and sent to the control module, the keyboard and the control The modules are connected, and the commands input by the user are sent to the control module.
  • the circuit of the active 3D glasses further includes a WiFi module; the handheld lower computer further includes: a 3G module; the WiFi module and the 3G module are respectively connected to the control module; and the control module further inputs the module according to the instruction
  • the input command controls the WiFi module or/and the 3G module to implement the Internet access function; the power module is further connected to the WiFi module and the 3G module respectively to supply power thereto.
  • the control module is implemented by a CPU; the CPU is connected to the first microdisplay by controlling at least a control line and a data line for transmitting the first switch control signal and the field sync signal, by transmitting at least the second switch control signal and the field Control line and number of sync signals
  • the data line is connected to the second micro display; the CPU performs video decoding on the 3D video file read from the storage module, and when the lower edge of the field synchronization signal is detected, controls the first switch control signal to be turned on or off, and correspondingly Controlling the second switch control signal to be turned off or on, transmitting the decoded left eye video signal to the first micro display through the data line, or transmitting the decoded right eye video signal to the second micro display through the data line
  • the storage module comprises: an SD card, a FLASH memory; the SD card stores a 3D video file; and the FLASH memory stores a firmware program, an application program and/or a 3D video file.
  • the optical amplifying module comprises a plurality of magnifying lenses.
  • the handheld lower position machine further comprises a casing; the circuit of the handheld lower position machine is disposed on the circuit board, and the circuit board is placed in the casing.
  • the portable 3D playing terminal including the active 3D glasses and the handheld lower position machine of the present invention replaces the prior art liquid crystal lens with two micro displays, so that it is not required to be displayed for two displays.
  • the 3D data file is calculated and processed, so that the structure of the 3D playback circuit is simplified, the main part is placed in the glasses frame, and the auxiliary function circuit is placed in the handheld lower position machine.
  • the portable 3D playback terminal of the present invention does not require connection to a television set or display. Users only need to carry the handheld lower position machine and wear active 3D glasses, so that they can watch 3D images/videos anytime, anywhere, and realize the 3D images and the user's follow-up.
  • FIG. 1 is a schematic structural diagram of a computer for implementing switch-type 3D playback in the prior art
  • FIG. 2 is a schematic diagram of a circuit structure of a prior art active 3D glasses
  • FIG. 3 is a schematic diagram showing the circuit structure of a portable 3D playback terminal according to a first preferred embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a circuit of a portable 3D playback terminal according to a second preferred embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a circuit of a portable 3D playback terminal according to a third preferred embodiment of the present invention.
  • the portable 3D playback terminal of the present invention comprising active 3D glasses and a handheld lower position machine, simplifies the structure of the 3D playback circuit, the main part of which is placed in the eyeglass frame, and the auxiliary function circuit is placed in the handheld lower position machine. Users only need to carry the handheld computer and wear active 3D glasses to watch 3D images/videos anytime, anywhere, and realize 3D images and user follow-up.
  • the microdisplays used in the active 3D glasses in the following three embodiments can use the prior art digital micro OLED display, for example: a digital micro OLED display of the type SVGA050V2; or an analog miniature OLED display, for example : Analog mini OLED display with model SVGA-3D.
  • the portable 3D playback terminal of the embodiment includes active 3D glasses 300 and a handheld lower position machine 310.
  • the main part of the 3D playback circuit is placed in the eyeglass frame of the active 3D glasses 300, and the auxiliary function circuit is placed. Handheld in the lower machine 310.
  • the active 3D glasses 300 in this embodiment replaces the prior art liquid crystal lens with two miniature OLED displays, and the circuit structure and the optical path structure are improved.
  • the following is the active 3D glasses 300 and the handheld lower position machine.
  • the circuit structure of 310 is explained.
  • the circuit of the active 3D glasses 300 of the first preferred embodiment of the present invention includes: a CPU 301, a memory module 302 including an SD card 3021 and a FLASH memory 3022, and two miniature OLED displays: 0 LED (left) 303 And 0 LED (right) 304, audio decoding chip 305, and audio output module 306.
  • the circuit of the handheld lower computer 310 includes: a power module 311 and an instruction input module 312, and the instruction input module 312 includes: a single chip computer 3121, a mouse module 3122, and a keyboard 3123.
  • the SD card 3021 is connected to the CPU 301 and stores 3D video and/or multimedia files.
  • the FLASH memory 3022 is connected to the CPU 301, and stores a firmware program and an upper layer application, and can also store 3D video and/or multimedia files.
  • the CPU 301 is a main control module, and the storage module 302, the 0LED (left) 303 and the OLED (right) 304, the audio decoding chip 305, and the power module 311 of the handheld lower computer 310, the single chip computer 3121 and the keyboard 3123 of the command input module 312, respectively. Connected.
  • the power module 311 is connected to the CPU 301, the memory module 302, the 0LED (left) 303 and the OLED (right) 304, the audio decoding chip 305, and the audio output module 306 in the single chip microcomputer 3121, the mouse module 3122, the keyboard 3123, and the active 3D glasses 300, respectively. These components are powered (to simplify the connection to the CPU 301 in FIG. 3), and a power switch is provided thereon for booting the entire terminal.
  • the working principle of the portable 3D playback terminal of this embodiment is as follows:
  • the firmware program stored in the FLASH memory 3022 and the upper application are stored in the memory (not shown in FIG. 3) to initialize the system.
  • the SD card 3021 reads the video or multimedia file temporarily stored in the memory.
  • the file type is judged. If it is only a video file, the CPU 301 directly decodes the video file in the memory, and outputs the left eye control signal and the left eye video signal to the 0LED (left) 303, and the right eye control signal. And the right eye video signal is output to the 0LED (right) 304.
  • the CPU 301 distinguishes the audio data and the video data of the multimedia file in the memory, outputs the audio data to the audio decoding chip 305, and decodes the video data, and the left eye control signal and The left eye video signal is output to the 0 LED (left) 303, and the right eye control signal and the right eye video signal are output to the 0 LED (right) 304.
  • 0 LED (left) 303 and 0 LED (right) 304 are the same miniature OLED display that receives the control signal and video signal transmitted by the CPU 301 to display the left eye video signal and the right eye video signal, respectively.
  • the CPU 301 is respectively connected to the OLED (left) 303 and the OLED (right) 304 through control lines and data lines, wherein the control lines are used to transmit control signals, and the data lines are used to transmit video signals.
  • control signals sent by the CPU 301 to the 0 LED may include: a switch control signal, a field sync signal, a line sync signal, and a clock signal. Only the switch control signal k1 controlling the 0LED (left) 303, the switch control signal k2 controlling the 0LED (right) 304, and the field sync signal cl output to the 0LED (left) 303 and the 0LED (right) 304, respectively, are shown in FIG. Other control signals and video signals are not shown.
  • the field sync signal cl is detected.
  • the field sync signal cl is a pulse signal.
  • the switch control signal k2 of the control 0 LED (right) 304 is turned on, and the control 0 LED (left)
  • the switch control signal k1 of 303 is off, and the right eye video signal is output to the 0 LED (right) 304 through the data line.
  • the switch control signal k1 of the control 0LED (left) 303 is turned on, the switch control signal k2 of the control 0 LED (right) 304 is turned off, and the left eye video signal is output through the data line.
  • the switch control signal k1 of the control 0LED (left) 303 is turned on, the switch control signal k2 of the control 0 LED (right) 304 is turned off, and the left eye video signal is output through the data line.
  • 0 LED (left) 303 and 0 LED (right) 304 receive the corresponding video signal in accordance with the switch control signals k1 and k2.
  • the current 3D video file has a format in which the left and right eye video signals are separated, and the upper and lower video signals are separated.
  • the format of the left and right eye video signals is separated.
  • the format of the upper and lower video signals is the same. Narration.
  • the audio decoding chip 305 is connected to the CPU 301 and the audio output module 306, respectively, and decodes the received audio data, and outputs the decoded audio signal to the audio output module 306.
  • the audio output module 306 can be only one earphone, or an external audio input interface can be used to play an audio signal to the user.
  • the active 3D glasses may not have an audio decoding chip and an audio output module. If only the 3D video file in the storage module 302 is played in a fixed order, When the function selection is required, the command input module 213 in the handheld lower position machine 310 can also be omitted.
  • the single chip microcomputer 3121 in the command output module 312 is connected to the CPU 301 and the mouse module 3122, respectively, and the keyboard 3123 is directly connected to the CPU 301.
  • the instruction output module 312 sends instructions to the CPU 301 in two ways:
  • the first type is input through the mouse module 3122.
  • the CPU 301 displays a function selection interface through the 0 LED (left) 303 and the 0 LED (right) 304, which is mainly used to select a play file, a configuration parameter, etc.
  • the mouse 3122 receives the user's instruction and sends it to the single chip microcomputer 3121, and the single chip microcomputer 3121
  • the command conversion is transmitted to the CPU 301 in a format recognizable by the CPU 301.
  • the CPU 301 displays the function selection interface through the 0 LED (left) 303 and the 0 LED (right) 304, which is mainly used to select a play file, configuration parameters, etc., and the keyboard 3122 receives the user's instruction and sends it to the CPU 301.
  • the active 3D glasses in this embodiment are provided with an optical amplifying module between the two miniature OLED displays and the user's eyes, which may be specifically according to the displayed image.
  • the amplification requirement is achieved by a combination of multiple magnifying lenses. In this way, the user can clearly see the images displayed by the two miniature 0 LED displays through the optical amplification module.
  • this embodiment adds a function of playing an external input signal based on the first preferred embodiment.
  • the active 3D glasses 400 also replace the prior art liquid crystal lens with two miniature OLED displays.
  • the improvement of the optical path structure is exactly the same as that of the first preferred embodiment, and is not repeated here.
  • the circuit structure is described in detail.
  • the circuit of the active 3D glasses of this embodiment is in addition to the CPU 401 of the first preferred embodiment, the memory module 402 including the SD card 4021 and the FLASH memory 4022, and two miniature OLED displays: 0 LED (left) 403 and 0 LED (right) 404, audio decoding chip 405 and audio output module 406, also includes a video Decoding chip 407.
  • the handheld lower computer 410 in this embodiment adds an audio input interface 413 and a video input interface 414 in addition to the power module 411 and the command output module 412 in the first preferred embodiment.
  • the audio input interface 413 of the handheld lower computer 410 is respectively connected to the audio decoding chip 405 and the external audio signal source in the active 3D glasses 400 for receiving externally input audio data and outputting to the audio decoding chip 405.
  • the video input interface 414 is connected to the video decoding chip 407 and the external video signal source in the active 3D glasses 400 for receiving externally input video data and outputting it to the video decoding chip 407.
  • the power module 411 in this embodiment is further connected to the video decoding chip 407, the audio input interface 413, and the video input interface 414, respectively, to supply power (not shown in FIG. 4).
  • the working principle of the portable 3D playback terminal of this embodiment is as follows:
  • the firmware program stored in the FLASH memory 4022 and the upper application are stored in the memory (not shown in FIG. 3) to initialize the system. Then, according to the instruction input by the instruction module 412 of the handheld lower computer 410, if the instruction is to play the internal file of the glasses, the CPU 401 controls to play the video or multimedia file on the SD card 402, and the working principle is exactly the same as that of the first preferred embodiment. It is not repeated here.
  • the CPU 401 sends an open command to the video decoding chip 407, and controls the video decoding chip 407 to receive external video data through the video input interface 414, or simultaneously controls the video decoding chip 407 and the audio decoding chip 405 through the video input interface.
  • 407 and audio input interface 413 receive external video data and audio data.
  • the video decoding chip 407 decodes the video data according to the open command sent by the CPU 401, outputs the left eye control signal and the left eye video signal to the 0 LED (left) 403 for display, and outputs the right eye control signal and the right eye video signal to the 0 LED. (Right) 404 Display. As shown in FIG. 4, the connection relationship between the video decoding chip 407 and the OLEDs (left) 403 and OLEDs (right) 404 is exactly the same as that of the CPU 401 and the OLEDs (left) 403 and OLEDs (right) 404, and will not be repeated here.
  • the audio decoding chip 405 decodes the external audio data received from the audio input interface 413 and plays it to the user via the audio output module 406.
  • the user inputs the user command by using the mouse module 1122 and the keyboard 4123 through the function selection interface displayed on the 0LED (left) 403 and the 0LED (right) 404, and the function of this embodiment.
  • the selection interface adds a selection item of whether to play an external file than the first preferred embodiment.
  • this embodiment adds the functionality of the uplink to the second preferred embodiment.
  • the active 3D glasses 500 are similar to the prior art liquid crystal lenses by using two miniature OLED displays.
  • the improvement of the optical path structure is exactly the same as that of the first preferred embodiment, and is not repeated here.
  • the circuit structure is described in detail.
  • a WiFi module 508 including a WiFi chip and an antenna chip is added to the active 3D glasses 500, and a 3G module 515 is added to the handheld lower computer 510 for Realize the Internet function.
  • the power module 511 in this embodiment is further connected to the WiFi module 508 and the 3G module 515, respectively, to supply power (not shown in FIG. 5).
  • the firmware program stored in the FLASH memory 5022 and the upper application are stored in the memory (not shown in FIG. 3) to initialize the system. Then, according to the instruction input by the instruction module 512 of the handheld lower computer 510, if the instruction is to play the internal file of the glasses or play the external file, the working principle is exactly the same as that of the second preferred embodiment, and will not be repeated here. If it is an Internet command, it calls a common Internet program to control the WiFi module 508 or / and 3G module 515 to implement the Internet function.
  • This embodiment is the same as the second preferred embodiment.
  • the user uses the mouse module 5122 and the function selection interface displayed on the 0LED (left) 503 and the 0 LED (right) 504.
  • the keyboard 5123 is used to input a user command, and the function selection interface of the embodiment increases the selection item of whether or not to access the Internet than the second preferred embodiment.
  • the WiFi module can be added to the active 3D glasses in the first preferred embodiment, or / and the 3G module can be added to the handheld lower computer.
  • the portable 3D playback terminal of the present invention can be placed in the active 3D glasses according to the actual situation, and the auxiliary functions are placed in the handheld lower position machine.
  • the audio input interface, the video input interface, and the 3G module can be placed in the active 3D glasses, and the audio decoding chip, the audio input module, and the WiFi module can be placed in the handheld lower computer.
  • the present invention can be implemented as long as all the circuits are included, and the positions at which the respective circuit portions are placed can be freely combined.
  • the audio decoding chip in the above three embodiments adopts an audio decoding chip of the model 8960, and the video decoding chip adopts a video decoding chip of the model ADV7180.
  • the circuits of the active 3D glasses in the above three embodiments are disposed on a circuit board as in the prior art, and the circuit board is placed in a frame of glasses such as a beam or a temple of glasses.
  • the hand held lower position machine of the above three embodiments may further include a casing, and the circuit of the hand held lower position machine is disposed on a circuit board, and the circuit board is placed in the casing.
  • the portable 3D playing terminal of the present invention only needs to wear active 3D glasses and carry the handheld lower position machine at any time, so that the 3D image/video can be viewed anytime and anywhere, and the 3D image and the user are realized.
  • the portable 3D playback terminal of the present invention because the display is disposed in the active 3D glasses, is close to the viewer's eyes, making the field of view wide and the stereoscopic effect realistic. Therefore, it has a broad application prospect, in addition to 3D image/video playback, it can also be applied to computer games and environmental simulation, such as pilot, astronaut simulation training and other technical fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

一种便携式 3D播放终端
技术领域
本发明涉及 3D图像 /视频播放和观看技术, 特别涉及一种便携 式 3D播放终端。 背景技术
目前, 3D图像 /视频播放和观看通常由显示屏幕和 3D立体眼镜 来实现。 具体有两种实现方式: 一种是开关式, 另一种是偏振式。 其中, 开关式常用于电视机、 电脑的 3D图像 /视频播放和观看; 偏 振式常用于 3D立体电影的播放和观看。
具体的, 开关式采用的是有源 3D 眼镜, 偏振式采用的是无源 光学眼镜, 以下具体介绍现有技术开关式实现方式。
如图 1 所示, 现有技术实现开关式 3D播放的电脑除了基本的 电脑主机 100、 显示器 110、 键盘 120和鼠标 130夕卜, 还包括一个 有源 3D眼镜 140。 其中, 显示器 110与电脑主机 100相连。 电脑主 机 100的显卡 (图 1 中未示出) 对用于两个显示器显示的 3D数据 文件进行计算处理后, 通过显示器 110分时显示两眼信号。 例如: 在奇数帧时, 显示右眼信号, 在偶数帧时, 显示左眼信号。 电脑主 机 100在显示图像信号时, 通过红外发射器向有源 3D眼镜 140发 射同步信号。 其中, 对 3D 数据文件的处理运算量很大, 需要有较 高性能的显卡来实现。
有源 3D眼镜 140接收同步信号, 并对同步信号进行检测, 确 定显示的图像的帧数, 当检测到奇数帧时, 关闭左眼镜片, 当检测 到偶数帧时, 关闭右眼镜片。 这样, 用户戴着有源 3D眼镜 140看 显示器 110 时, 看到的瞬时信号仅有左眼信号或右眼信号, 从而产 生立体效果。 具体的, 有源 3D眼镜 140的电路结构如图 2所示, 包括: 红 外接收器 201、 同步信号检测电路 202、 控制电路 203、 液晶
(LCD ) 驱动电路 204、 以及液晶镜片 (左) 205和液晶镜片 (右) 206。 其中, 红外接收器 201、 同步信号检测电路 202、 控制电路 203和液晶 (LCD) 驱动电路 204设置在一块电路板上, 该电路板置 于眼镜框架中, 例如眼镜的横梁或眼镜腿中。
其工作原理为: 红外接收器 201接收同步信号发送给同步信号 检测电路 202。 同步信号检测电路 202对同步信号进行检测, 确定 显示的图像的帧数发送给控制电路 203。 控制电路 203按照帧号, 通过液晶 (LCD ) 驱动电路 204 控制在奇数帧时, 关闭液晶镜片 (左) 205, 当检测到偶数帧时, 关闭右眼信号液晶镜片 (右) 206。
偏振式是针对电影的大屏幕, 在放映时对图像奇偶帧分别加垂 直和水平偏振, 采用无源偏振眼镜来观看。
可见, 现有技术 3D图像 /视频的播放和观看都必须在固定的场 所, 使用者必须在电视机、 电脑显示器前或电影屏幕前, 才能观看 到 3D效果, 无法实现随时随地的观看。 发明内容
有鉴于此, 本发明的目的在于提供一种便携式 3D 播放终端, 该播放终端能够实现 3D图像与使用者的随动。
为达到上述目的, 本发明提供了一种便携式 3D 播放终端, 其 包括: 包括有源 3D眼镜和手持下位机, 所述有源 3D眼镜包括设置 在眼镜框架中的电路板、 设置在眼镜片位置的两个微型显示器和对 应的两个光学放大模块。
所述有源 3D 眼镜电路板上的电路包括: 存储模块, 存储固件 程序、 应用程序及 3D 视频文件。 控制模块, 与两个微型显示器和 存储模块分别相连, 从存储模块读取 3D 视频文件进行视频解码, 将左眼视频信号输出给第一微型显示器显示, 将右眼视频信号输出 给第二微型显示器显示。
所述两个光学放大模块分别设置在两个微型显示器与使用者眼 睛之间。
所述手持下位机包括: 电源模块, 与有源 3D 眼镜相连, 为有 源 3D眼镜的所有元件供电。
较佳地, 所述微型显示器为: 数字微型 0LED 显示器或模拟微 型 0LED显示器。
较佳地, 数字微型 0LED显示器是型号为 SVGA050V2 的数字微 型 0LED显示器, 模拟微型 0LED显示器是型号为 SVGA-3D的模拟微 型 0LED显示器。
较佳地, 所述有源 3D 眼镜的电路进一步包括音频解码芯片和 音频输出模块, 所述存储模块进一步存储 3D多媒体文件。
所述控制模块进一步从存储模块读取 3D 多媒体文件, 对音频 数据和视频数据进行区分, 将音频数据输出给音频解码芯片; 并对 视频文件进行视频解码, 将左眼视频信号输出给第一微型显示器显 示, 将右眼视频信号输出给第二微型显示器显示。
所述音频解码芯片与控制模块以及音频输出模块分别相连, 对 接收的音频数据进行解码, 将解码后产生的音频信号输出给音频输 出模块, 音频输出模块将音频信号播放给使用者。
较佳地, 所述手持下位机进一步包括: 指令输入模块, 所述指 令输入模块和有源 3D 眼镜中的控制模块相连, 将用户输入的指令 发送给控制模块。
所述控制模块按照接收的指令, 从存储模块读取 3D 视频文件 或 3D 多媒体文件, 所述电源模块进一步与指令输入模块相连, 为 其供电。
较佳地, 有源 3D 眼镜的电路进一步包括视频解码芯片; 所述 手持下位机进一步包括: 音频输入接口和视频输入接口, 所述音频 输入接口与所述音频解码芯片以及外部音频信号源分别相连, 接收 外部输入的音频数据发送给所述音频解码芯片, 所述视频输入接口 与所述视频解码芯片以及外部视频信号源分别相连, 接收外部输入 的视频数据发送给所述视频解码芯片, 所述控制模块进一步按照接 收的指令, 向所述视频解码芯片发送开启指令, 所述视频解码芯片 与所述控制模块以及视频输入接口分别相连, 按照控制模块发送的 开启指令, 对从视频输入接口接收的外部视频数据进行解码, 将左 眼视频信号输出给第一微型显示器显示, 将右眼视频信号输出给第 二微型显示器显示, 所述电源模块进一步与视频解码芯片、 音频输 入接口和视频输入接口分别相连, 为其供电。
较佳地, 所述视频解码芯片通过至少传输第一开关控制信号和 场同步信号的控制线和数据线与第一微型显示器相连, 通过至少传 输第二开关控制信号和场同步信号的控制线和数据线与第二微型显 示器相连。
较佳地, 所述的音频输出模块为耳机, 或者包括音频输出接口 和外接耳机。
较佳地, 所述音频解码芯片是型号为 丽 8960 的音频解码芯 片, 所述视频解码芯片是型号为 ADV7180的视频解码芯片。
较佳地, 所述指令输入模块包括: 单片机、 鼠标模块和键盘, 所述单片机与控制模块以及鼠标模块分别相连, 其将鼠标模块接收 的用户指令转换后发送给控制模块, 所述键盘与控制模块相连, 将 用户输入的指令发送给控制模块。
较佳地, 所述有源 3D眼镜的电路进一步包括 WiFi模块; 所述 手持下位机进一步包括: 3G模块; 所述 WiFi模块和 3G模块分别与 控制模块相连; 所述控制模块进一步按照指令输入模块输入的指 令, 控制 WiFi 模块或 /和 3G模块实现上网功能; 所述电源模块进 一步与 WiFi模块和 3G模块分别相连, 为其供电。
较佳地, 所述控制模块由 CPU实现; 所述 CPU通过至少传输第 一开关控制信号和场同步信号的控制线和数据线与第一微型显示器 相连, 通过至少传输第二开关控制信号和场同步信号的控制线和数 据线与第二微型显示器相连; 所述 CPU对从存储模块读取的 3D视 频文件进行视频解码, 当检测到场同步信号的下跳沿时, 控制第一 开关控制信号打开或关闭, 并相应地控制第二开关控制信号关闭或 打开, 将解码后的左眼视频信号通过数据线传输给第一微型显示 器, 或将解码后的右眼视频信号通过数据线传输给第二微型显示
TII o
较佳地, 所述存储模块包含: SD 卡、 FLASH存储器; 所述 SD 卡存储 3D视频文件; 所述 FLASH存储器存储固件程序、 应用程序 和 /或 3D视频文件。
较佳地, 所述光学放大模块包含多个放大透镜。
较佳地, 所述手持下位机进一步包括一壳体; 所述手持下位机 的电路设置在电路板上, 该电路板置于所述壳体内。
由上述的技术方案可见, 本发明的这种包括有源 3D 眼镜和手 持下位机的便携式 3D 播放终端, 用两个微型显示器替换现有技术 的液晶镜片, 因此不需要对用于两个显示器显示的 3D 数据文件进 行计算处理, 使得 3D 播放电路结构得以简化, 其主要部分置于眼 镜框架中, 辅助功能电路置于手持下位机中。 这样, 本发明的这种 便携式 3D 播放终端不需要连接电视机、 显示器。 使用者只需随身 携带手持下位机并佩戴有源 3D眼镜, 即可随时随地观看 3D 图像 / 视频, 实现了 3D图像与使用者的随动。 附图说明
图 1为现有技术实现开关式 3D播放的电脑结构示意图; 图 2为现有技术有源 3D眼镜的电路结构示意图;
图 3 为本发明第一较佳实施例的便携式 3D播放终端的电路结 构示意图;
图 4为本发明第二较佳实施例的便携式 3D播放终端的电路结 构示意图; 图 5 为本发明第三较佳实施例的便携式 3D播放终端的电路结 构示意图。 具体实施方式
本发明的这种便携式 3D播放终端, 包括有源 3D眼镜和手持下 位机, 对 3D播放电路结构进行了简化, 其主要部分置于眼镜框架 中, 辅助功能电路置于手持下位机中。 使用者只需随身携带手持下 位机并佩戴有源 3D眼镜, 即可随时随地观看 3D 图像 /视频, 实现 了 3D图像与使用者的随动。
以下举三个具体实施例, 对本发明进行详细说明。
首先说明的是, 以下三个实施例中有源 3D 眼镜使用的微型显 示器可以采用现有技术的数字微型 0LED 显示器, 例如: 型号为 SVGA050V2的数字微型 0LED显示器; 也可以采用模拟微型 0LED显 示器, 例如: 型号为 SVGA-3D的模拟微型 0LED显示器。
第一较佳实施例:
参见图 3, 本实施例的便携式 3D播放终端, 包括有源 3D眼镜 300和手持下位机 310, 其中, 3D播放电路的主要部分置于有源 3D 眼镜 300的眼镜框架中, 辅助功能电路置于手持下位机 310中。
本实施例中的有源 3D眼镜 300, 采用两个微型 0LED显示器替 换现有技术的液晶镜片, 其在电路结构和光路结构上都进行了改 进, 以下先对有源 3D眼镜 300和手持下位机 310的电路结构进行 说明。
如图 3所示, 本发明第一较佳实施例的有源 3D眼镜 300 的电 路包括: CPU301、 包含 SD卡 3021和 FLASH存储器 3022的存储模 块 302 和两个微型 0LED 显示器: 0LED (左) 303 和 0LED (右) 304、 音频解码芯片 305和音频输出模块 306。 手持下位机 310的电 路包括: 电源模块 311 和指令输入模块 312, 且指令输入模块 312 包括: 单片机 3121、 鼠标模块 3122和键盘 3123。 其中, SD卡 3021与 CPU301相连, 存储有 3D视频和 /或多媒体 文件。 FLASH存储器 3022与 CPU301相连, 存储有固件程序和上层 应用程序, 还可以存储 3D视频和 /或多媒体文件。
CPU301是主控模块, 与存储模块 302、 0LED (左) 303和 0LED (右) 304、 音频解码芯片 305 以及手持下位机 310 中的电源模块 311、 指令输入模块 312中的单片机 3121、 键盘 3123分别相连。
电源模块 311与单片机 3121、 鼠标模块 3122、 键盘 3123以及 有源 3D眼镜 300 中的 CPU301、 存储模块 302、 0LED (左) 303和 0LED (右) 304、 音频解码芯片 305 和音频输出模块 306 分别相 连, 为这些元件供电 (为简化图 3 中仅示出与 CPU301 的连接) , 其上设置有电源开关, 用于整个终端的开机。
本实施例的便携式 3D播放终端工作原理如下:
有源 3D眼镜中的 CPU301在开机后, 先读取 FLASH存储器 3022 存储的固件程序和上层应用程序存到内存 (图 3 中未示出) 中, 对 系统进行初始化。 然后, 按照手持下位机 310的指令模块 312输入 的指令, 到 SD 卡 3021 读取视频或多媒体文件暂存到内存中。 接 着, 对文件类型进行判断, 如果仅是视频文件, 则 CPU301 直接对 内存中的视频文件进行视频解码, 将左眼控制信号和左眼视频信号 输出给 0LED (左) 303, 将右眼控制信号和右眼视频信号输出给 0LED (右) 304。 如果是包含音频和视频数据的多媒体文件, 则 CUP301对内存中多媒体文件的音频数据和视频数据进行区分, 将音 频数据输出给音频解码芯片 305, 并对视频数据进行解码, 将左眼 控制信号和左眼视频信号输出给 0LED (左) 303, 将右眼控制信号 和右眼视频信号输出给 0LED (右) 304。
0LED (左) 303和 0LED (右) 304为相同的微型 0LED显示器, 其接收 CPU301 发送的控制信号和视频信号, 分别显示左眼视频信 号和右眼视频信号。 本实施例中, CPU301通过控制线和数据线与 OLED (左) 303和 0LED (右) 304 分别相连, 其中控制线用于传输控制信号, 数据线 用于传输视频信号。
具体的, CPU301 发送给 0LED 的控制信号可以包括: 开关控制 信号、 场同步信号、 行同步信号和时钟信号。 图 3 中仅示出控制 0LED (左) 303的开关控制信号 kl、 控制 0LED (右) 304的开关控制信 号 k2 及分别输出给 0LED (左) 303 和 0LED (右) 304 的场同步信号 cl, 其他控制信号及视频信号未示出。
当 CPU301开始播放 3D视频文件时, 检测所述场同步信号 cl。 通常场同步信号 c l 是脉冲信号, 当检测到脉冲信号的下跳沿时, 如果当前解码出的是右眼视频信号, 则控制 0LED (右) 304 的开关控 制信号 k2为打开, 控制 0LED (左) 303的开关控制信号 kl为关闭, 并将右眼视频信号通过数据线输出给 0LED (右) 304。 如果当前解码 出的是左眼视频信号, 则控制 0LED (左) 303 的开关控制信号 kl 为 打开, 控制 0LED (右) 304 的开关控制信号 k2 为关闭, 并将左眼视 频信号通过数据线输出给 0LED (左) 303 。 0LED (左) 303 和 0LED (右) 304按照开关控制信号 kl和 k2接收对应的视频信号。
目前的 3D 视频文件有左右眼视频信号分开的格式, 也有上下 视频信号分开的格式, 本实施例以左右眼视频信号分开的格式为 例, 上下视频信号分开的格式处理方式原理相同, 这里不再赘述。
音频解码芯片 305与 CPU301和音频输出模块 306分别相连, 对接收的音频数据进行解码, 将解码后产生的音频信号输出给音频 输出模块 306。
音频输出模块 306可以仅是一个耳机, 也可以通过一个音频输 出接口外接一个耳机, 将音频信号播放给使用者。
具体应用中, 如果仅需要播放 3D 视频文件, 不需要播放多媒 体文件, 则该有源 3D 眼镜可以不设置音频解码芯片和音频输出模 块。 如果仅实现固定顺序播放存储模块 302 中的 3D视频文件, 不 需要进行功能选择时, 手持下位机 310中的指令输入模块 213也可 以省略。
本实施例中, 指令输出模块 312中的单片机 3121与 CPU301和 鼠标模块 3122分别相连, 键盘 3123直接与 CPU301相连。
指令输出模块 312向 CPU301发送指令有两种方式:
第一种, 通过鼠标模块 3122输入。 具体的, 开机后 CPU301通 过 0LED (左) 303和 0LED (右) 304显示功能选择界面, 主要用来选择 播放文件、 配置参数等, 鼠标 3122 接收使用者的指令, 发给单片 机 3121, 单片机 3121将指令转换为 CPU301能够识别的格式发送给 CPU301。
第二种, 通过键盘 3122 输入。 同样的, 开机后 CPU301 通过 0LED (左) 303和 0LED (右) 304显示功能选择界面, 主要用来选择播 放文件、 配置参数等, 键盘 3122 接收使用者的指令, 发送给 CPU301。
在光路结构上, 由于微型 0LED 显示器显示的图像很小, 因 此, 本实施例中的有源 3D眼镜在两个微型 0LED显示器与使用者眼 睛之间设置了光学放大模块, 具体可以根据显示图像的放大要求, 由多个放大透镜组合来实现。 这样, 使用者能够通过光学放大模块 清晰地观看到两个微型 0LED显示器显示的图像。
第二较佳实施例:
参见图 4, 本实施例是在第一较佳实施例的基础上, 增加了一 个播放外接输入信号的功能。 其中的有源 3D眼镜 400, 同样采用两 个微型 0LED 显示器替换现有技术的液晶镜片, 其在光路结构上的 改进, 与第一较佳实施例完全相同, 这里不再重复, 以下对本实施 例的电路结构进行详细说明。
如图 4所示, 本实施例的有源 3D 眼镜的电路除了第一较佳实 施例包括的 CPU401、 包含 SD卡 4021和 FLASH存储器 4022的存储 模块 402、 两个微型 0LED显示器: 0LED (左) 403 和 0LED (右) 404、 音频解码芯片 405和音频输出模块 406夕卜, 还包括一个视频 解码芯片 407。 本实施例中的手持下位机 410 除了第一较佳实施例 中的电源模块 411和指令输出模块 412夕卜, 另外增加了一个音频输 入接口 413和一个视频输入接口 414。
其中, 手持下位机 410中的音频输入接口 413与有源 3D眼镜 400 中的音频解码芯片 405和外部音频信号源分别相连, 用于接收 外部输入的音频数据, 输出到音频解码芯片 405。 视频输入接口 414与有源 3D眼镜 400中的视频解码芯片 407和外部视频信号源分 别相连, 用于接收外部输入的视频数据, 输出到视频解码芯片 407。
本实施例中的电源模块 411进一步与视频解码芯片 407、 音频 输入接口 413和视频输入接口 414分别相连, 为它们供电 (图 4中 未示出) 。
本实施例的便携式 3D播放终端工作原理如下:
有源 3D眼镜中的 CPU401在开机后, 先读取 FLASH存储器 4022 存储的固件程序和上层应用程序存到内存 (图 3 中未示出) 中, 对 系统进行初始化。 然后, 按照手持下位机 410的指令模块 412输入 的指令, 如果指令为播放眼镜内部文件, 则 CPU401控制播放 SD卡 402 上的视频或多媒体文件, 其工作原理与第一较佳实施例完全相 同, 这里不再重复。
如果指令为播放外部文件, 则 CPU401 向视频解码芯片 407发 送开启指令, 控制视频解码芯片 407通过视频输入接口 414接收外 部视频数据, 或者, 同时控制视频解码芯片 407 和音频解码芯片 405通过视频输入接口 407和音频输入接口 413接收外部视频数据 和音频数据。
视频解码芯片 407按照 CPU401 发送的开启指令, 对视频数据 进行解码, 将左眼控制信号和左眼视频信号输出给 0LED (左) 403 进行显示, 将右眼控制信号和右眼视频信号输出给 0LED (右) 404 进行显示。 如图 4 所示, 视频解码芯片 407 与 0LED (左) 403 及 0LED (右) 404的连接关系与 CPU401与 0LED (左) 403及 0LED (右) 404的连接关系完全相同, 这里不再重复。
音频解码芯片 405对从音频输入接口 413接收的外部音频数据 进行解码, 通过音频输出模块 406播放给使用者。
本实施例与第一较佳实施例一样, 使用者通过显示在 0LED (左) 403及 0LED (右) 404的功能选择界面, 用鼠标模块 1122和 键盘 4123 来输入用户指令, 本实施例的功能选择界面比第一较佳 实施例增加了是否播放外部文件的选择项目。
第三较佳实施例:
参见图 5, 本实施例是在第二较佳实施例的基础上, 增加了上 网的功能。 其中的有源 3D眼镜 500, 同样采用两个微型 0LED显示 器替换现有技术的液晶镜片, 其在光路结构上的改进, 与第一较佳 实施例完全相同, 这里不再重复, 以下对本实施例的电路结构进行 详细说明。
本实施例在第二较佳实施例的基础上, 在有源 3D眼镜 500 中 增加了一个包括 WiFi芯片和天线芯片的 WiFi模块 508, 在手持下 位机 510中增加了一个 3G模块 515, 用于实现上网功能。
本实施例中的电源模块 511进一步与 WiFi模块 508和 3G模块 515分别相连, 为它们供电 (图 5中未示出) 。
有源 3D眼镜中的 CPU501在开机后, 先读取 FLASH存储器 5022 存储的固件程序和上层应用程序存到内存 (图 3 中未示出) 中, 对 系统进行初始化。 然后, 按照手持下位机 510的指令模块 512输入 的指令, 如果指令为播放眼镜内部文件或播放播放外部文件, 其工 作原理与第二较佳实施例完全相同, 这里不再重复。 如果是上网指 令, 则调用常用的上网程序, 控制 WiFi模块 508或 /和 3G模块 515 实现上网功能。
本实施例与第二较佳实施例一样, 使用者通过显示在 0LED (左) 503及 0LED (右) 504的功能选择界面, 用鼠标模块 5122和 键盘 5123 来输入用户指令, 本实施例的功能选择界面比第二较佳 实施例增加了是否上网的选择项目。
实际上, 本领域技术人员都能理解, 在第一较佳实施例中的有 源 3D眼镜中也可以增加 WiFi模块, 或 /和在手持下位机中增加 3G 模块。
由上述的三个实施例可见, 本发明的这种便携式 3D 播放终 端, 其电路可以根据实际情况, 将主要的播放电路放置到有源 3D 眼镜中, 辅助功能放置到手持下位机中。 除了上述三种实现方式 夕卜, 还可以将音频输入接口、 视频输入接口及 3G模块都放置到有 源 3D眼镜, 也可以将音频解码芯片、 音频输入模块及 WiFi模块放 置到手持下位机中。 总之, 只要包含所有电路, 其各电路部分放置 的位置可以自由组合, 都能够实现本发明。
上述三个实施例中的音频解码芯片采用的是型号为 丽 8960 的 音频解码芯片, 视频解码芯片采用的是型号为 ADV7180 的视频解码 芯片。
另外, 在实际应用中, 上述三个实施例中的有源 3D 眼镜的电 路与现有技术一样设置在一块电路板上, 该电路板置于眼镜框架 中, 例如眼镜的横梁或眼镜腿中。 上述三个实施例中的手持下位机 还可以包括一个壳体, 手持下位机的电路设置在一块电路板上, 该 电路板置于所述壳体内。
由上述的实施例可见, 本发明的这种便携式 3D 播放终端, 使 用者只需佩戴有源 3D 眼镜并随时携带手持下位机, 即可随时随地 观看 3D 图像 /视频, 实现了 3D 图像与使用者的随动。 本发明的这 种便携式 3D播放终端, 由于显示器设置在有源 3D眼镜中, 离观看 者眼睛很近, 使得视野开阔、 立体效果逼真。 因此, 具有广阔的应 用前景, 除了 3D图像 /视频播放外, 还可以应用到计算机游戏及环 境仿真, 例如飞行员、 宇航员仿真训练等技术领域。

Claims

权利要求
1、 一种便携式 3D播放终端, 其特征在于: 包括有源 3D 眼镜 和手持下位机, 所述有源 3D 眼镜包括设置在眼镜框架中的电路 板、 设置在眼镜片位置的两个微型显示器和对应的两个光学放大模 块;
所述有源 3D眼镜电路板上的电路包括:
存储模块, 存储固件程序、 应用程序及 3D视频文件; 控制模块, 与两个微型显示器和存储模块分别相连, 从存储模 块读取 3D 视频文件进行视频解码, 将左眼视频信号输出给第一微 型显示器显示, 将右眼视频信号输出给第二微型显示器显示;
所述两个光学放大模块分别设置在两个微型显示器与使用者眼 睛之间;
所述手持下位机包括: 电源模块, 与有源 3D 眼镜相连, 为有 源 3D眼镜的所有元件供电。
2、 如权利要求 1所述的便携式 3D播放终端, 其特征在于: 所 述微型显示器为数字微型 0LED显示器或模拟微型 0LED显示器。
3、 如权利要求 2所述的便携式 3D播放终端, 其特征在于: 数 字微型 0LED显示器是型号为 SVGA050V2的数字微型 0LED显示器; 模拟微型 0LED显示器是型号为 SVGA-3D的模拟微型 0LED显示
TII o
4、 如权利要求 1所述的便携式 3D播放终端, 其特征在于: 所 述有源 3D眼镜的电路进一步包括音频解码芯片和音频输出模块; 所述存储模块进一步存储 3D多媒体文件;
所述控制模块进一步从存储模块读取 3D 多媒体文件, 对音频 数据和视频数据进行区分, 将音频数据输出给音频解码芯片; 并对 视频文件进行视频解码, 将左眼视频信号输出给第一微型显示器显 示, 将右眼视频信号输出给第二微型显示器显示; 所述音频解码芯片与控制模块以及音频输出模块分别相连, 对 接收的音频数据进行解码, 将解码后产生的音频信号输出给音频输 出模块;
音频输出模块将音频信号播放给使用者。
5、 如权利要求 4所述的便携式 3D播放终端, 其特征在于: 所 述手持下位机进一步包括: 指令输入模块;
所述指令输入模块和有源 3D眼镜中的控制模块相连, 将用户输入的指令发送给控制模块;
所述控制模块按照接收的指令, 从存储模块读取 3D 视频文件 或 3D多媒体文件;
所述电源模块进一步与指令输入模块相连, 为其供电。
6、 如权利要求 5所述的便携式 3D播放终端, 其特征在于: 有 源 3D 眼镜的电路进一步包括视频解码芯片; 所述手持下位机进一 步包括: 音频输入接口和视频输入接口;
所述音频输入接口与所述音频解码芯片以及外部音频信号源分 别相连, 接收外部输入的音频数据发送给所述音频解码芯片;
所述视频输入接口与所述视频解码芯片以及外部视频信号源分 别相连, 接收外部输入的视频数据发送给所述视频解码芯片;
所述控制模块进一步按照接收的指令, 向所述视频解码芯片发 送开启指令;
所述视频解码芯片与所述控制模块以及视频输入接口分别相 连, 按照控制模块发送的开启指令, 对从视频输入接口接收的外部 视频数据进行解码, 将左眼视频信号输出给第一微型显示器显示, 将右眼视频信号输出给第二微型显示器显示;
所述电源模块进一步与视频解码芯片、 音频输入接口和视频输 入接口分别相连, 为其供电。
7、 如权利要求 6所述的便携式 3D播放终端, 其特征在于: 所 述视频解码芯片通过至少传输第一开关控制信号和场同步信号的控 制线和数据线与第一微型显示器相连, 通过至少传输第二开关控制 信号和场同步信号的控制线和数据线与第二微型显示器相连。
8、 如权利要求 4-7中任意一项所述的有源 3D眼镜, 其特征在 于: 所述的音频输出模块为耳机, 或者包括音频输出接口和外接耳
9、 如权利要求 6或 Ί所述的便携式 3D播放终端, 其特征在 所述音频解码芯片是型号为丽 8960的音频解码芯片;
所述视频解码芯片是型号为 ADV7180的视频解码芯片。
10、 如权利要求 5、 6或 7所述的便携式 3D播放终端, 其特征 在于: 所述指令输入模块包括: 单片机、 鼠标模块和键盘;
所述单片机与控制模块以及鼠标模块分别相连, 其将鼠标模块 接收的用户指令转换后发送给控制模块;
所述键盘与控制模块相连, 将用户输入的指令发送给控制模 块。
11、 如权利要求 5、 6或 7所述的便携式 3D播放终端, 其特征 在于: 有源 3D眼镜的电路进一步包括 WiFi模块; 所述手持下位机 进一步包括 3G模块;
所述 WiFi模块和 3G模块分别与控制模块相连;
所述控制模块进一步按照指令输入模块输入的指令, 控制 WiFi 模块或 /和 3G模块实现上网功能;
所述电源模块进一步与 WiFi模块和 3G模块分别相连, 为其供 电。
12、 如权利要求 1-7 中任意一项所述的便携式 3D播放终端, 其特征在于: 所述控制模块由 CPU实现;
所述 CPU通过至少传输第一开关控制信号和场同步信号的控制 线和数据线与第一微型显示器相连, 通过至少传输第二开关控制信 号和场同步信号的控制线和数据线与第二微型显示器相连; 所述 CPU对从存储模块读取的 3D视频文件进行视频解码, 当 检测到场同步信号的下跳沿时, 控制第一开关控制信号打开或关 闭, 并相应地控制第二开关控制信号关闭或打开, 将解码后的左眼 视频信号通过数据线传输给第一微型显示器, 或将解码后的右眼视 频信号通过数据线传输给第二微型显示器。
13、 如权利要求 1-7 中任意一项所述的便携式 3D播放终端, 其特征在于: 所述存储模块包含: SD卡、 FLASH存储器;
所述 SD卡存储 3D视频文件;
所述 FLASH 存储器存储固件程序、 应用程序和 /或 3D 视频文 件。
14、 如权利要求 1-7 中任意一项所述的便携式 3D播放终端, 其特征在于: 所述光学放大模块包含多个放大透镜。
15、 如权利要求 1-7 中任意一项所述的便携式 3D播放终端, 其特征在于: 所述手持下位机进一步包括一壳体;
所述手持下位机的电路设置在电路板上, 该电路板置于所述壳 体内。
PCT/CN2012/073590 2011-04-06 2012-04-06 一种便携式3d播放终端 WO2012136148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100875334A CN102740088A (zh) 2011-04-06 2011-04-06 一种便携式3d播放终端
CN201110087533.4 2011-04-06

Publications (1)

Publication Number Publication Date
WO2012136148A1 true WO2012136148A1 (zh) 2012-10-11

Family

ID=46968614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073590 WO2012136148A1 (zh) 2011-04-06 2012-04-06 一种便携式3d播放终端

Country Status (2)

Country Link
CN (1) CN102740088A (zh)
WO (1) WO2012136148A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105120253B (zh) * 2015-09-10 2018-01-30 京东方科技集团股份有限公司 3d播放系统
CN107807774A (zh) * 2017-01-05 2018-03-16 北京行云时空科技有限公司 一种分体式智能眼镜的操控方法和分体式眼镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212698A (zh) * 2006-12-27 2008-07-02 许丰 立体视频眼镜
CN201145775Y (zh) * 2008-01-23 2008-11-05 胡超 外置控制的眼罩式立体视频多媒体装置
CN201967062U (zh) * 2011-04-06 2011-09-07 云南北方奥雷德光电科技股份有限公司 一种便携式3d播放终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006266A (ja) * 2003-06-09 2005-01-06 Masao Aichi 3dビデオカメラ、3dビデオカメラ付き携帯電話及び3d再生グラス
JP2008051877A (ja) * 2006-08-22 2008-03-06 Matsushita Electric Ind Co Ltd マイクロレンズ、撮像装置及び携帯端末装置
CN101404738A (zh) * 2008-11-06 2009-04-08 西安交通大学 一种支持移动电视接收功能的立体眼镜电视装置
CN201623818U (zh) * 2010-03-08 2010-11-03 深圳市奥拓电子股份有限公司 一种3d显示系统及眼镜
CN101990035A (zh) * 2010-10-09 2011-03-23 辜进荣 获取三维图像的宽带网络手机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212698A (zh) * 2006-12-27 2008-07-02 许丰 立体视频眼镜
CN201145775Y (zh) * 2008-01-23 2008-11-05 胡超 外置控制的眼罩式立体视频多媒体装置
CN201967062U (zh) * 2011-04-06 2011-09-07 云南北方奥雷德光电科技股份有限公司 一种便携式3d播放终端

Also Published As

Publication number Publication date
CN102740088A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
US9191662B2 (en) Display apparatus and associated glasses
JP5673172B2 (ja) 電子機器、電子機器における立体画像情報送信方法、および電子機器における立体画像情報受信方法
WO2017075947A1 (zh) 一种头戴式虚拟现实设备
US20150195604A1 (en) Living Room Computer
US20140085183A1 (en) Head-mounted display apparatus and control method thereof
JP2011223558A (ja) 映像信号処理装置およびアクティブシャッターメガネ
TWI423654B (zh) 控制立體眼鏡所接收之環境亮度的方法、立體眼鏡以及視訊顯示裝置
KR101530788B1 (ko) 스마트 폰을 이용한 3d hmd 시스템
US20110157325A1 (en) Video display apparatus
WO2016063617A1 (ja) 画像生成装置、画像抽出装置、画像生成方法、および画像抽出方法
CN201967062U (zh) 一种便携式3d播放终端
JP2014135725A (ja) ディスプレイ装置、メガネ装置、ディスプレイ方法及びメガネ装置の動作方法
US20100283711A1 (en) An integrated computation and communication system, a framed interface therefor and a method of operating thereof
US9648315B2 (en) Image processing apparatus, image processing method, and computer program for user feedback based selective three dimensional display of focused objects
JP6613429B2 (ja) 映像音響再生装置
JP2014107870A (ja) マルチビューディスプレイを行うディスプレイ装置および方法
WO2017041455A1 (zh) 3d播放系统
WO2012136146A1 (zh) 一种有源3d眼镜
US8957950B2 (en) Electronic apparatus and image output method
WO2012136148A1 (zh) 一种便携式3d播放终端
US20120019616A1 (en) 3D image capturing and playing device
KR20150009252A (ko) 멀티 콘텐츠 뷰 디스플레이 장치 및 멀티 콘텐츠 뷰 디스플레이 방법
WO2019149191A1 (zh) 基于移动端的vr显示系统
CN201974585U (zh) 一种有源3d眼镜
US20150077530A1 (en) Display apparatus and method and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767622

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12767622

Country of ref document: EP

Kind code of ref document: A1