WO2012133908A1 - Steel material with rust layer, exhibiting excellent weather resistance even in high-salt environments - Google Patents

Steel material with rust layer, exhibiting excellent weather resistance even in high-salt environments Download PDF

Info

Publication number
WO2012133908A1
WO2012133908A1 PCT/JP2012/059123 JP2012059123W WO2012133908A1 WO 2012133908 A1 WO2012133908 A1 WO 2012133908A1 JP 2012059123 W JP2012059123 W JP 2012059123W WO 2012133908 A1 WO2012133908 A1 WO 2012133908A1
Authority
WO
WIPO (PCT)
Prior art keywords
rust layer
steel material
less
atoms
rust
Prior art date
Application number
PCT/JP2012/059123
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 馬場
正泰 名越
勇 鹿毛
進一 三浦
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280015652.1A priority Critical patent/CN103459670B/en
Priority to KR1020137025937A priority patent/KR101609430B1/en
Publication of WO2012133908A1 publication Critical patent/WO2012133908A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Definitions

  • the present invention relates to a steel material mainly used for steel structures (Steel Structures) used outdoors such as a bridge, and particularly, along a coastal area or in the vicinity of a coastal environment (hereinafter simply referred to as a “coastal area”).
  • Step Structures steel structures
  • coastal area a coastal area or in the vicinity of a coastal environment
  • the rust layer is excellent in paint resistance and corrosion resistance (also referred to as bare corrosion resistance). It relates to the steel material.
  • weathering steel has been used.
  • the weathering steel has a corrosion rate (rust layer) that is covered with a highly protective rust layer enriched with alloy elements such as Cu, P, Cr, Ni, etc. in an atmospheric environment (atmospheric environment). It is a steel material with a significantly reduced corrosion rate. Due to its excellent weather resistance, it is known that bridges made of weathering steel usually withstand use for decades without being painted. However, in a severe corrosive environment where the amount of airborne salt is high, such as in coastal areas, the above highly protective rust layer is unlikely to form on the steel surface and has practical weather resistance. There is a problem that it is difficult to obtain.
  • the amount of incoming salt in this application means the average amount of incoming salt for one year, and the amount of incoming salt every month for one year according to “Measurement of chloride by dry gauze method” described in JIS Z2382 (1998).
  • the salinity is measured and averaged to calculate the annual average incoming salinity.
  • Non-Patent Document 1 conventional weathering steel (JIS G 3114: weathering hot rolled steel for welded structure) has an incoming salt content of 0.05 mg ⁇ NaCl / dm 2 / day (hereinafter, unit display “ “mg ⁇ NaCl / dm 2 / day” may be simply abbreviated as “mdd”.) Only in the following areas, it can be used without painting.
  • Patent Document 1 discloses a highly weather-resistant steel material to which Cu and 1% or more of Ni are added as a weather resistance improving element.
  • Patent Document 2 discloses a steel material excellent in weather resistance to which 1% or more of Ni and Mo are added.
  • Patent Document 3 discloses a steel for welded structures that contains a large amount of Ni and, in addition, contains Mo, Sn, Sb, P, etc. and has excellent weather resistance.
  • Patent Document 4 discloses a steel material with excellent corrosion resistance, characterized in that a rust layer having a fine crystallite size of ⁇ -FeOOH is formed by addition of Ti.
  • Japanese Patent No. 3785271 Japanese Patent Laid-Open No. 11-172370
  • Japanese Patent No. 3846218 Japanese Patent Laid-Open No. 2002-309340
  • Patent Documents 1 and 2 when the content of expensive Ni is increased, there is a problem that the price of the steel material increases due to an increase in alloy cost. Further, as in Patent Document 3, in steel materials that increase the expensive Ni content and additionally contain Mo, Sn, Sb, P, etc., the price of the steel materials increases due to an increase in alloy costs. Furthermore, Patent Document 4 improves the corrosion resistance by refining the rust structure containing ⁇ -FeOOH by adding Ti, but has a problem that it is difficult to exhibit sufficient corrosion resistance in a higher salt environment.
  • An object of the present invention is to provide a steel material with a rust layer that is unpainted and excellent in corrosion resistance even in a severe corrosive environment with a large amount of salinity, particularly in coastal areas.
  • the present inventors have formed a rust layer containing Nb and Sn elements with a certain appropriate content on the surface of the base steel material.
  • the gist of the present invention is as follows. [1] In the steel material with a rust layer formed by forming a rust layer on the surface of the base steel material, the rust layer contains Nb and Sn, and the number of Nb atoms in the rust layer is 100 Fe atoms A steel material with a rust layer excellent in corrosion resistance, wherein the maximum value is 0.01 or more, and the number of Sn atoms in the rust layer is 0.005 or more with respect to 100 Fe atoms. .
  • the base steel material contains, by mass%, Nb: 0.005% to 0.200% and Sn: 0.005% to 0.200%.
  • the base steel material side portion of the rust layer contains ⁇ -iron oxyhydroxide ( ⁇ -FeOOH) containing elements of Nb and Sn.
  • ⁇ -FeOOH ⁇ -iron oxyhydroxide
  • the present invention it is possible to provide a steel material with a rust layer that is low-cost, non-painted, and excellent in corrosion resistance.
  • the steel material with a rust layer of the present invention contains an element effective for improving the corrosion resistance in an appropriate amount and effectively, and is low in cost without containing a large amount of expensive elements such as Ni and has a large amount of incoming salt, severe corrosion Excellent weather resistance can be exhibited even in an environment.
  • the present invention can exert a particularly remarkable effect in a high flying salt environment where the flying salt content exceeds 0.05 mdd.
  • the steel material with a rust layer according to the present invention is a steel material with a rust layer formed by forming a rust layer on the surface of a base steel material, and the number of Nb and Sn atoms in the rust layer is the maximum with respect to the number of Fe atoms of 100.
  • the values are 0.01 or more and 0.005 or more, respectively.
  • the said base steel material is the mass%, Nb: 0.005% or more and 0.200% or less and Sn: 0.005% or more and 0.200%
  • the steel material include a hot rolled steel sheet having a component composition containing the following components.
  • composition means mass%.
  • Nb 0.005% or more and 0.200% or less
  • Nb is one of the most important components in the present invention.
  • the Nb and Sn enriched layers have different positions, and are intended to increase and strengthen the Cl - ion intrusion suppression sites.
  • the anode portion is concentrated near the interface between the rust layer and the base steel material (base iron) to suppress the anode reaction and the cathode reaction.
  • the Nb content is preferably 0.005% or more.
  • the toughness tends to decrease. Therefore, the Nb content is preferably 0.005% or more and 0.200% or less. Preferably, it is 0.010% or more and 0.030% or less.
  • Sn 0.005% or more and 0.200% or less
  • Sn is one of the most important components in the present invention.
  • the weather resistance of the steel material in a high salinity environment is improved. It has the effect of significantly improving.
  • an oxidation film containing Sn is formed on the surface of the steel material, and the rust resistance of the structural steel material is improved by suppressing the anode reaction and cathode reaction of the steel material.
  • the Sn content is preferably 0.005% or more.
  • the Sn content is preferably 0.005% or more and 0.200% or less. More preferably, it is 0.010% or more and 0.100% or less.
  • C 0.020% or more and less than 0.140%
  • Si 0.00. 05% to 2.00%
  • Mn 0.20% to 2.00%
  • P 0.005% to 0.030%
  • S 0.0001% to 0.0200%
  • Al 0.001% or more and 0.100% or less
  • Cu 0.10% or more and 1.00% or less
  • Ni 0.10% or more and less than 0.65%
  • Mo 0.001% to 1.000%, Cr: 0.2% to 1.0%, Co: 0.01% to 1.00%, REM: 0.0001 %: 0.15% or less, Sn: 0.005% or more and 0.200% or less, Ti: 0.005% or more and 0.200% or less, V: 0.005% or more and 0.200% or less, Zr: 0 0.005% or more and 0.200% or less, B: 0.0001% or more and 0.0050% or less, and Mg: 0.0001% or more and 0.0100% or less.
  • C 0.020% or more and less than 0.140%
  • C is an element that improves the strength of the structural steel material, and is preferably contained in an amount of 0.020% or more in order to ensure a predetermined strength.
  • the C content is preferably 0.020% or more and less than 0.140%.
  • it is 0.08% or more from the viewpoint of securing strength, more preferably less than 0.10% from the viewpoint of weldability and toughness.
  • Si 0.05% or more and 2.00% or less Si may be contained in an amount of 0.05% or more as a deoxidizer during steelmaking and as an element for improving the strength of structural steel materials and ensuring a predetermined strength. preferable.
  • the Si content is preferably 0.05% or more and 2.00% or less. Preferably, it is 0.10% or more and 0.80% or less.
  • Mn 0.20% or more and 2.00% or less
  • Mn is an element that improves the strength of the structural steel material, and is preferably contained in an amount of 0.20% or more in order to ensure a predetermined strength.
  • the Mn content is preferably 0.20% or more and 2.00% or less. Preferably, it is 0.20% or more and 1.50% or less.
  • P 0.005% or more and 0.030% or less
  • P is an element that improves the weather resistance of the structural steel material.
  • the P content is preferably 0.005% or more.
  • the P content is preferably 0.005% or more and 0.030% or less. Preferably, it is 0.005% or more and 0.025% or less.
  • the S content is preferably 0.0001% or more and 0.0200% or less. Preferably, it is 0.0003% or more and 0.0050% or less.
  • Al 0.001% or more and 0.100% or less
  • Al is an element necessary for deoxidation during steelmaking. In order to acquire such an effect, it is preferable to contain 0.001% or more as Al content. On the other hand, if the Al content exceeds 0.100%, the weldability tends to be adversely affected. Therefore, the Al content is preferably 0.001% or more and 0.100% or less. Preferably, it is 0.010% or more and 0.050% or less. In addition, Al content measured acid-soluble Al.
  • Cu 0.10% or more and 1.00% or less
  • Cu has an effect of forming a dense rust layer by refining rust grains and improving the weather resistance of the structural steel material. Such an effect is obtained when the Cu content is 0.10% or more.
  • the Cu content is preferably 0.10% or more and 1.00% or less. Preferably, it is 0.20% or more and 0.50% or less.
  • Ni 0.10% or more and less than 0.65%
  • Ni has an effect of forming a dense rust layer by refining rust grains and improving the weather resistance of the structural steel material.
  • the Ni content is preferably set to 0.10% or more.
  • the Ni content is preferably 0.10% or more and less than 0.65%. Preferably, it is 0.15% or more and 0.50 or less.
  • Mo 0.001% or more and 1.000% or less Mo coexists with Nb, thereby improving the weather resistance of the steel material in a high salinity environment, and is added as necessary. Moreover, the formation of molybdate ions in the rust layer prevents chloride ions, which are corrosion-promoting factors, from passing through the rust layer and reaching the base iron. Further, MoO 4 2 ⁇ is eluted with the anode reaction of the steel material, and the compound containing Mo is precipitated on the steel material surface, thereby suppressing the anode reaction of the steel material. In order to obtain these effects sufficiently, it is necessary to contain 0.001% or more. On the other hand, if it exceeds 1.000%, the cost will increase with the increase in Mo consumption. Therefore, the Mo amount is set to a range of 0.001% to 1.000%. Preferably, they are 0.005% or more and 1.000% or less, More preferably, they are 0.10% or more and 0.70% or less.
  • Nb 0.005% or more and 0.200% or less
  • Nb has the effect of improving the weather resistance of a steel material in a high salinity environment by coexisting with Mo, and is added as necessary.
  • Nb has the effect of concentrating in the rust layer near the steel surface and suppressing the anode reaction of the steel. In order to obtain these effects sufficiently, it is preferable to contain 0.005% or more.
  • the Nb content is in the range of 0.005% to 0.200%. Preferably, it is 0.010% or more and 0.030% or less.
  • one or more of Cr, Co, REM, and Sn can be included as a selective element.
  • Cr 0.2% or more and 1.0% or less Cr is effective for forming a dense rust layer by refining rust grains and improving weather resistance. When the effect is exhibited and the content exceeds 1.0%, the weldability is deteriorated. Therefore, when it contains Cr, it is preferable to make the quantity into the range of 0.2% or more and 1.0% or less. More preferably, it is 0.2% or more and 0.7% or less.
  • Co 0.01% or more and 1.00% or less Co is distributed over the entire rust layer, and is effective in improving the weather resistance of structural steel by forming a fine rust layer by refining rust grains. If it is contained in an amount of 0.01% or more, the effect is exhibited, and if it is contained in excess of 1.00%, the cost is increased due to an increase in Co consumption. Therefore, when it contains Co, it is preferable to make the quantity into the range of 0.01% or more and 1.00% or less. More preferably, it is 0.10% or more and 0.50% or less.
  • REM 0.0001% or more and 0.1000% or less REM is distributed over the entire rust layer and is effective in improving the weather resistance of structural steel by forming a dense rust layer by refining rust grains. Yes, when the content is 0.0001% or more, the effect is exhibited, and when the content exceeds 0.1000%, the effect is saturated. Therefore, when it contains REM, it is preferable to make the quantity into the range of 0.0001% or more and 0.1000% or less. More preferably, it is 0.0010% or more and 0.0100% or less.
  • Sn 0.005% or more and 0.200% or less Sn concentrates in the rust lower layer and is effective in suppressing the anode reaction of the steel material, and when 0.005% or more is contained, the effect is exhibited, 0.200% Exceeding this causes deterioration of toughness. Therefore, when it contains Sn, it is preferable to make the quantity into 0.005% or more and 0.200% or less of range. More preferably, it is 0.010% or more and 0.100% or less.
  • one or more of Ti, V, Zr, B, and Mg can be included as a selective element.
  • Ti 0.005% or more and 0.200% or less
  • Ti is an effective element for increasing the strength of the steel material, and when 0.005% or more is contained, the effect is exhibited. It causes deterioration. Therefore, when Ti is contained, the amount is preferably in the range of 0.005% or more and 0.200% or less. More preferably, it is 0.010% or more and 0.100% or less.
  • V 0.005% or more and 0.200% or less
  • V is an effective element for increasing the strength, and when 0.005% or more is contained, the effect is exhibited, and when it exceeds 0.200%, the effect is saturated. . Therefore, when V is contained, the amount is preferably in the range of 0.005% to 0.200%. More preferably, it is 0.010% or more and 0.100% or less.
  • Zr 0.005% or more and 0.200% or less
  • Zr is an effective element for increasing the strength, and when 0.005% or more is contained, the effect is exhibited, and when it exceeds 0.200%, the effect is saturated. . Therefore, when Zr is contained, the amount is preferably in the range of 0.005% to 0.200%. More preferably, it is 0.010% or more and 0.100% or less.
  • B 0.0001% or more and 0.0050% or less B is an element necessary for increasing the strength, but if the amount is less than 0.0001%, the effect cannot be sufficiently obtained. On the other hand, if it exceeds 0.0050%, the toughness is deteriorated. Therefore, when it contains B, it is preferable to make the quantity into 0.0001 to 0.0050% of range. More preferably, it is 0.0005% or more and 0.0040% or less.
  • Mg 0.0001% or more and 0.0100% or less Mg is an element effective for fixing the S in the steel and improving the toughness of the weld heat affected zone, and exhibits the effect of containing 0.0001 or more. If it exceeds 0.0100%, the amount of inclusions in the steel increases, but the toughness deteriorates. Therefore, when it contains Mg, it is preferable to make the quantity into 0.0001% or more and 0.0100% or less of range. More preferably, it is 0.0005% or more and 0.0030% or less.
  • the balance is Fe and inevitable impurities.
  • N 0.010% or less
  • 0 0.010% or less
  • Ca 0.0010% or less are acceptable as inevitable impurities.
  • Ca contained as an unavoidable impurity when present in a large amount in steel, deteriorates the toughness of the weld heat-affected zone and affects the formation of a rust layer, which will be described later. It is preferable.
  • the base steel material according to the present invention is a steel plate obtained by subjecting a steel having the above composition to hot rolling a slab obtained by ordinary continuous casting or slabbing. ), Shaped steel, steel sheet, bar steel, and the like.
  • the heating and rolling conditions may be appropriately determined according to the required material, and a combination of heat treatment such as controlled rolling, accelerated cooling, or reheating is also possible.
  • the rust layer on the surface of the base steel having the above composition will be described.
  • crystalline iron oxyhydroxide such as ⁇ -FeOOH, ⁇ -FeOOH, ⁇ -FeOOH, Fe 3 O 4 , X
  • ⁇ -FeOOH crystalline iron oxyhydroxide
  • ⁇ -FeOOH ⁇ -FeOOH
  • ⁇ -FeOOH ⁇ -FeOOH
  • Fe 3 O 4 X
  • the voids contain chloride ions (Cl ⁇ ) (hereinafter referred to as Cl ⁇ ions). Corrosion proceeds starting from stable ⁇ -FeOOH.
  • the inventors of the present invention have studied to improve the corrosion resistance under an environment having a large amount of salt. As a result, the formation of a rust layer containing only one of Nb and Sn cannot improve the corrosion resistance. It has been found that the corrosion resistance is remarkably improved by forming a rust layer containing an appropriate amount of Sn.
  • the “rust layer” is composed of one or more of ⁇ -FeOOH, ⁇ -FeOOH, ⁇ -FeOOH crystalline iron oxyhydroxide, Fe 3 O 4 , and X-ray amorphous material.
  • a hot rolled steel sheet having a thickness of 6 mm having the above composition was used as a base steel material, and a test piece of size: 35 mm ⁇ 35 mm ⁇ 5 mm was taken from the hot rolled steel sheet, and an arithmetic average roughness (arithmetic- The grinding process was carried out so that Ra was 1.6 ⁇ m or less.
  • the test piece was allowed to stand for 11 hours in a dry atmosphere having a temperature of 40 ° C. and a relative humidity of 40% RH, and after taking a transition time of 1 hour, the temperature was 25 ° C.
  • the rust layer of the present invention is formed when the amount of adhering salt exceeds 0.05 mdd.
  • the amount of adhering salt exceeds 0.30 mdd or less.
  • the test piece on which the rust was formed as described above was subjected to a corrosion test in a high salt environment of 0.2 mdd for another 6 months. After completion of the corrosion test, the test piece was immersed in an aqueous solution of hexamethylenetetramine added to hydrochloric acid and derusted to measure the weight, and the initial weight of the test piece before rust formation and desorption were measured.
  • the average corrosion rate ( ⁇ m / year) per side was determined by calculating the difference from the weight of the test piece after rusting. When this average corrosion rate was 60 ⁇ m / year or less, it was evaluated that the bare corrosion resistance was superior to that of conventional weathering steel.
  • the contents of Nb and Sn in the rust layer can be determined by various methods. As an example, the method is determined by using an electron probe microanalyzer (EPMA). Is shown below.
  • EPMA electron probe microanalyzer
  • the measurement conditions of the electron beam microanalyzer are as follows: acceleration voltage 15 kV, irradiation current 2 ⁇ 10 ⁇ 7 A, beam diameter 2 ⁇ m, scanning area 1.5 mm. ⁇ 0.5 mm.
  • the calculation method of content is demonstrated using the case of Nb.
  • Nb was measured every arbitrary point five points per matrix steel (base material), Fe, obtains the average of the Nb respective X-ray intensity, respectively I FeStnd, and I NbStnd, a reference value obtained by dividing the I NbStnd in I FeStnd did.
  • the number of Nb and Sn atoms with respect to the number of Fe atoms in the base steel (base material) 100 is the addition ratio of each component to Fe when the base steel (base material) is produced, or wet analysis of the base steel (base material). (Wet analysis) (conventionally known). Further, in obtaining the X-ray intensity of each element, correction of the background (back ground) or the like may be appropriately performed.
  • the corrosion resistance is excellent.
  • the rust layer contains Nb and Sn, and the number of Nb atoms in the rust layer is 0.01 or more at maximum with respect to the number of Fe atoms 100, and the rust layer The number of Sn atoms therein is set to 0.005 or more as a maximum value with respect to the number 100 of Fe atoms.
  • the maximum number of Nb and Sn atoms in the rust layer is more than 0.5 with respect to the number of Fe atoms of 100, in addition to problems such as deterioration of ductility and toughness of the base steel (base material) Cost.
  • the maximum number of upper limit atoms of Nb and Sn is preferably 0.5 or less with respect to the maximum number of Fe atoms of 100.
  • the maximum number of Nb and Sn atoms in the rust layer is set to more than 0.5 with respect to the number of Fe atoms 100, it is necessary to increase Nb and Sn in the base steel (base material) component. There is. This leads to an increase in cost in addition to problems such as ductility and toughness deterioration.
  • the number of upper limit atoms of Nb and Sn in the rust layer is preferably 0.5 or less with respect to the number of Fe atoms being 100.
  • a rust specimen produced by focused ion beam processing (FIB) from an arbitrary portion of the rust layer portion of less than 100 ⁇ m from the base steel material is used with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the rust layer was identified at the positions of concentrated Nb and Sn by an electron diffraction pattern (electron diffraction pattern).
  • ⁇ -FeOOH ⁇ -iron oxyhydroxide
  • the base steel material side portion of the rust layer is ⁇ -iron oxyhydroxide containing the elements of Nb and Sn. It was found to contain ( ⁇ -FeOOH).
  • the base steel material side portion of the rust layer preferably contains ⁇ -iron oxyhydroxide ( ⁇ -FeOOH) containing elements of Nb and Sn.
  • ⁇ -FeOOH ⁇ -iron oxyhydroxide
  • the identification of the rust at the position where Nb and Sn exist includes not only an electron diffraction pattern using a TEM but also Raman spectroscopy, and particularly a rust layer at a high position resolution. In the identification, diffraction pattern analysis (diffraction pattern analysis) is recommended.
  • the enriched layer is an Fe atom in which the content of Nb and Sn in the pitting rust portion is determined based on the number of Nb and Sn atoms relative to the number of Fe atoms of the base steel (base material) 100
  • the conditions for measuring the number of concentrated layers were: acceleration voltage: 15 kV, Irradiation current: 2 ⁇ 10 ⁇ 7 A, beam diameter: 2 ⁇ m From the results of line analysis of 5 arbitrarily selected pitting corrosion rust parts, the concentration of Nb and Sn in the pitting corrosion rust part Calculate the average number It was.
  • the average corrosion rate was 54. It was 6 ⁇ m / year, and it was confirmed that the corrosion resistance was excellent.
  • this pitting corrosion rust portion there were 8.1 and 4.2, respectively, where Nb and Sn concentrated layers existed. It can be seen that the more the concentrated layer is present, the more the corrosion resistance is improved by the diffusion-inhibiting action of the corrosion promoting substance into the steel.
  • the Nb content is 5 or more from the viewpoint of improving the corrosion resistance by suppressing the penetration of corrosion promoting substances into the steel.
  • Sn is preferably 3 or more.
  • the Nb and Sn concentrated layers overlap each other, it is possible to increase and strengthen the corrosion-inhibiting sites, and therefore it is more desirable that the respective peak half-value widths overlap. It becomes the configuration.
  • a corrosion test was performed on the test piece on which the rust had been formed in a high salinity environment with an attached salt content of 0.2 mdd for another 6 months. After completion of the corrosion test, the test piece is immersed in an aqueous solution of hexamethylenetetramine in hydrochloric acid and derusted, and then the weight is measured. The initial weight of the test piece before rust formation, the weight of the test piece after derusting, and The average corrosion rate per side ( ⁇ m / year) was determined by determining the difference between the two. If this average corrosion rate was 60 ⁇ m / year or less, the corrosion resistance was evaluated as excellent.
  • the number of Nb and Sn atoms in the rust layer is within the range of Nb: 0.01 or more and Sn: 0.005 or more at the maximum with respect to the number 100 of Fe atoms.
  • Examples 1 to 6 all have an average corrosion rate of 57.2 ⁇ m / year or less, and are excellent in corrosion resistance compared to conventional weathering steel even in a severe corrosive environment where high salinity exists. Furthermore, the average number of concentrated layers in Invention Examples 1 to 6 is 5 or more for Nb and 3 or more for Sn.
  • Comparative Examples 1 to 7 in which the contents of Nb and Sn components are outside the scope of the present invention in the rust layer, the average corrosion rate is over 65 ⁇ m / year, and in a severe corrosive environment where high salinity exists. Corrosion resistance at is poor. Further, in Reference Example 1 in which expensive Ni is contained in a large amount of 1.53% in the steel material, the corrosion resistance is the same level as that of Invention Examples 1 to 6, but the product cost is about as compared with Invention Examples 1 to 6. More than 30% higher.
  • steel sheet test pieces having the component compositions shown in Table 1 were prepared.
  • the test piece is ground so that the arithmetic average roughness Ra is 1.6 ⁇ m or less, the end face and the back face are tape-sealed, and the surface of the test piece is exposed to an area of 25 mm ⁇ 25 mm. Tape sealed.
  • the test piece obtained as described above was left in a dry atmosphere at a temperature of 40 ° C. and a relative humidity of 40% RH for 11 hours, and after taking a transition time of 1 hour, the temperature of 25 ° C. and a relative humidity of 95% RH The sample is left in a humid atmosphere for 11 hours, and then takes a transition time of 1 hour.
  • a total of 24 hours is taken as 1 cycle, and 1 cycle per day is repeated for 1 year (365 days) and adheres to the surface of the test piece.
  • Rust formation was performed by applying an artificial seawater solution in such an amount that the amount of adhered salt was 0.10 to 0.40 mdd once a week to the surface of the test piece during the drying process.
  • the artificial seawater solution was applied to the surface of the test piece in such an amount that 2.1 mg / dm 2 of salt adhered to the surface of the test piece.
  • a corrosion test was performed on the test piece on which the rust had been formed in a high salinity environment with an attached salt content of 0.2 mdd for another 6 months.
  • Example 2 After the corrosion test, the average corrosion rate ( ⁇ m / year) was determined in the same manner as in Example 1. If this average corrosion rate was 60 ⁇ m / year or less, the corrosion resistance was evaluated as excellent. Further, for each test piece, the number (number) of concentrated layers in which the Nb and Sn elements were concentrated was also examined by the same method as in Example 1. When there was no Nb or Sn enriched layer, it was indicated in Table 3 as “x”. Table 3 shows the results of the presence or absence of Nb and Sn in the rust layer, the content of Nb and Sn components (the number of Nb and Sn atoms with respect to the number of Fe atoms of 100), the average number of concentrated layers, and the average corrosion rate. Show.
  • Invention Example 7 in which the number of Nb and Sn atoms in the rust layer is within the range of Nb: 0.01 or more and Sn: 0.005 or more with respect to the number of Fe atoms of 100.
  • Each of Nos. 15 to 15 has an average corrosion rate of 57.3 ⁇ m / year or less, and is excellent in corrosion resistance as compared with conventional weathering steel even in a severe corrosive environment where high salinity exists.
  • the average number of concentrated layers in Invention Examples 7 to 15 is 5 or more for Nb and 3 or more for Sn.
  • the present invention it is possible to provide a steel material with a rust layer that is low-cost, non-painted, and excellent in corrosion resistance.
  • the steel material of the present invention contains an element effective for improving the corrosion resistance in an appropriate amount and effectively, so that it is low-cost without containing a large amount of expensive elements such as Ni, under a severe corrosive environment with a large amount of incoming salt. Even if it exists, it can exhibit excellent weather resistance.
  • the present invention can exert a particularly remarkable effect in a high flying salt environment where the flying salt content exceeds 0.05 mdd.

Abstract

Provided is a steel material with a rust layer, said steel material being highly resistant to corrosion even in a paintless state and even in a severe corrosive environment where a large amount of air-borne salt is present, particularly, in a seaboard region. Specifically, this steel material with a rust layer can be obtained by forming a rust layer on the surface of a base steel material. The rust layer contains Nb and Sn, and the number of Nb atoms in the rust layer in terms of the maximum is 0.01 or more relative to 100 Fe atoms, while the number of Sn atoms therein in terms of the maximum is 0.005 or more relative to 100 Fe atoms.

Description

高塩分環境下で耐候性に優れたさび層付き鋼材Steel with rust layer with excellent weather resistance in high salinity environment
 本発明は、主に橋梁(bridge)などの屋外で用いられる鋼構造物(Steel Structures)に使用される鋼材に関し、特に海岸沿いや海岸近傍(coastal environment)の地域(以下、単に「海岸地域(seaboard region)」いう。)などのように、高塩分が存在する厳しい腐食環境下であっても、無塗装(paintless)で耐食性(裸耐食性(bare corrosion resistance)ともいう。)に優れたさび層付き鋼材に関する。 The present invention relates to a steel material mainly used for steel structures (Steel Structures) used outdoors such as a bridge, and particularly, along a coastal area or in the vicinity of a coastal environment (hereinafter simply referred to as a “coastal area”). As in the case of harsh corrosive environments where high salinity is present, the rust layer is excellent in paint resistance and corrosion resistance (also referred to as bare corrosion resistance). It relates to the steel material.
 従来から、橋梁などの屋外で用いられる鋼構造物においては、耐候性鋼(weathering steel)が用いられている。耐候性鋼は、大気暴露環境(atmospheric environment)において、Cu、P、Cr、Niなどの合金元素が濃化した保護性の高いさび層(rust layer)に表面が覆われることにより、腐食速度(corrosion rate)を著しく低下させた鋼材である。その優れた耐候性により、耐候性鋼を使用した橋梁は、通常、無塗装のまま数十年間の使用に耐えることが知られている。しかしながら、海岸地域などのように、飛来塩分量(amount of air−borne salt)が多い、厳しい腐食環境下では、上記保護性の高いさび層は鋼表面に生成しにくく、実用的な耐候性が得難いという問題がある。なお、本願で言う飛来塩分量とは、1年間の平均飛来塩分量のことを意味し、JIS Z2382(1998)記載の「ドライガーゼ法による塩化物の測定」に準じて1年間にわたり毎月の飛来塩分量を測定し、それを平均して年平均飛来塩分量を算出したものである。 Conventionally, in steel structures used outdoors such as bridges, weathering steel has been used. The weathering steel has a corrosion rate (rust layer) that is covered with a highly protective rust layer enriched with alloy elements such as Cu, P, Cr, Ni, etc. in an atmospheric environment (atmospheric environment). It is a steel material with a significantly reduced corrosion rate. Due to its excellent weather resistance, it is known that bridges made of weathering steel usually withstand use for decades without being painted. However, in a severe corrosive environment where the amount of airborne salt is high, such as in coastal areas, the above highly protective rust layer is unlikely to form on the steel surface and has practical weather resistance. There is a problem that it is difficult to obtain. In addition, the amount of incoming salt in this application means the average amount of incoming salt for one year, and the amount of incoming salt every month for one year according to “Measurement of chloride by dry gauze method” described in JIS Z2382 (1998). The salinity is measured and averaged to calculate the annual average incoming salinity.
 非特許文献1によれば、従来の耐候性鋼(JIS G 3114:溶接構造用耐候性熱間圧延鋼材)は、飛来塩分量が0.05mg・NaCl/dm/day(以降、単位表示「mg・NaCl/dm/day」を、単に「mdd」として簡略表記する場合がある。)以下の地域でのみ、無塗装での使用が可能であるとしている。 According to Non-Patent Document 1, conventional weathering steel (JIS G 3114: weathering hot rolled steel for welded structure) has an incoming salt content of 0.05 mg · NaCl / dm 2 / day (hereinafter, unit display “ “mg · NaCl / dm 2 / day” may be simply abbreviated as “mdd”.) Only in the following areas, it can be used without painting.
 従って、海岸地域などの飛来塩分量が多い、厳しい腐食環境下では、普通鋼材(JIS G 3106:溶接構造用圧延鋼材)の表面に塗装等の防食措置を施して使用するのが一般的である。なお、dmは、デシメータ(decimeter)の意味である。 Therefore, in severe corrosive environments with a large amount of salt in the coastal areas, etc., it is common to use anti-corrosion measures such as painting on the surface of ordinary steel (JIS G 3106: rolled steel for welded structures). . Note that dm means a decimator.
 しかしながら、塗装(coating)は、時間の経過とともに塗膜(coating film)が劣化し、定期的な補修(maintenance and repair)が必要となり、加えて、人件費(labor cost)が高騰するとともに、再塗装(recoating)するのが困難であるという問題がある。このような理由から、現在、飛来塩分量が多い、厳しい腐食環境下においても、無塗装で使用可能な鋼材を開発することが強く求められようになってきた。 However, in coating, the coating film deteriorates over time, and periodic maintenance and repairs are required. In addition, labor costs increase and labor costs (labor costs) increase. There is a problem that it is difficult to recoat. For these reasons, it has been strongly demanded to develop a steel material that can be used without painting even in a severe corrosive environment with a large amount of incoming salt.
 このような現状に対して、近年、海岸地域などの飛来塩分量が多い、厳しい腐食環境下においても無塗装で使用可能な鋼材として、種々の合金元素、特にNiを多量に含有させた鋼材が開発されている。 In contrast to the current situation, in recent years, steel materials containing a large amount of various alloy elements, particularly Ni, have been used as steel materials that can be used without coating even in severe corrosive environments, such as coastal areas where there is a large amount of incoming salt. Has been developed.
 例えば、特許文献1では、耐候性向上元素として、Cuと1%以上のNiを添加した高耐候性鋼材が開示されている。また、特許文献2では、1%以上のNiとMoを添加した耐候性に優れた鋼材が開示されている。さらに、特許文献3では、Niを多量に含有し、加えてMo、Sn、Sb、P等を含有した耐候性に優れた溶接構造用鋼が開示されている。その他、特許文献4では、Ti添加によりβ−FeOOHの結晶子サイズを微細にしたさび層が形成されることを特徴とした耐食性に優れた鋼材が開示されている。 For example, Patent Document 1 discloses a highly weather-resistant steel material to which Cu and 1% or more of Ni are added as a weather resistance improving element. Patent Document 2 discloses a steel material excellent in weather resistance to which 1% or more of Ni and Mo are added. Furthermore, Patent Document 3 discloses a steel for welded structures that contains a large amount of Ni and, in addition, contains Mo, Sn, Sb, P, etc. and has excellent weather resistance. In addition, Patent Document 4 discloses a steel material with excellent corrosion resistance, characterized in that a rust layer having a fine crystallite size of β-FeOOH is formed by addition of Ti.
特許第3785271号公報(特開平11−172370号公報)Japanese Patent No. 3785271 (Japanese Patent Laid-Open No. 11-172370) 特許第3846218号公報(特開平2002−309340号公報)Japanese Patent No. 3846218 (Japanese Patent Laid-Open No. 2002-309340) 特開平10−251797号Japanese Patent Laid-Open No. 10-251797 特開2001−152374号JP 2001-152374 A
 しかしながら、特許文献1、2のように、高価なNiの含有量を増加させた場合、合金コストの上昇により鋼材の価格が上昇してしまうという問題点がある。また、特許文献3のように、高価なNi含有量を増加させ、加えて、Mo、Sn、Sb、P等を含有した鋼材では、合金コストの上昇により鋼材の価格が上昇する。さらに、特許文献4は、Ti添加によるβ−FeOOHを含むさび構造の微細化によって耐食性を向上させているが、より高塩分環境下で十分な耐食性を発揮しにくいという問題点がある。 However, as in Patent Documents 1 and 2, when the content of expensive Ni is increased, there is a problem that the price of the steel material increases due to an increase in alloy cost. Further, as in Patent Document 3, in steel materials that increase the expensive Ni content and additionally contain Mo, Sn, Sb, P, etc., the price of the steel materials increases due to an increase in alloy costs. Furthermore, Patent Document 4 improves the corrosion resistance by refining the rust structure containing β-FeOOH by adding Ti, but has a problem that it is difficult to exhibit sufficient corrosion resistance in a higher salt environment.
 本発明の目的は、特に海岸地域などの飛来塩分量が多い、厳しい腐食環境下であっても、無塗装で耐食性に優れたさび層付き鋼材を提供することにある。 An object of the present invention is to provide a steel material with a rust layer that is unpainted and excellent in corrosion resistance even in a severe corrosive environment with a large amount of salinity, particularly in coastal areas.
 本発明者らは、飛来塩分量が多い、厳しい腐食環境下での耐食性向上について鋭意検討した結果、ある適正含有量の、NbおよびSnの元素を含むさび層を素地鋼材表面に形成することにより、無塗装で耐食性に優れたさび層付き鋼材を開発することに成功した。 As a result of intensive studies on improving corrosion resistance in a severe corrosive environment with a large amount of salinity, the present inventors have formed a rust layer containing Nb and Sn elements with a certain appropriate content on the surface of the base steel material. We succeeded in developing a steel material with a rust layer that is unpainted and has excellent corrosion resistance.
 すなわち、本発明の要旨構成は以下の通りである。
[1]素地鋼材の表面にさび層を形成してなるさび層付き鋼材において、該さび層は、NbおよびSnを含有し、かつ前記さび層中のNb原子数は、Fe原子数100に対し最大値にして0.01以上であり、前記さび層中のSn原子数は、Fe原子数100に対し最大値にして0.005以上であることを特徴とする耐食性に優れたさび層付き鋼材。
That is, the gist of the present invention is as follows.
[1] In the steel material with a rust layer formed by forming a rust layer on the surface of the base steel material, the rust layer contains Nb and Sn, and the number of Nb atoms in the rust layer is 100 Fe atoms A steel material with a rust layer excellent in corrosion resistance, wherein the maximum value is 0.01 or more, and the number of Sn atoms in the rust layer is 0.005 or more with respect to 100 Fe atoms. .
[2]前記[1]において、前記素地鋼材は、質量%で、Nb:0.005%以上0.200%以下およびSn:0.005%以上0.200%以下の成分を含有することを特徴とする耐食性に優れたさび層付き鋼材。 [2] In the above [1], the base steel material contains, by mass%, Nb: 0.005% to 0.200% and Sn: 0.005% to 0.200%. A steel material with a rust layer with excellent corrosion resistance.
[3]前記[1]または[2]において、前記さび層の素地鋼材側部分は、NbおよびSnの元素を含むβ−オキシ水酸化鉄(oxyferric hydroxide)(β−FeOOH)を含有することを特徴とする耐食性に優れたさび層付き鋼材。 [3] In the above [1] or [2], the base steel material side portion of the rust layer contains β-iron oxyhydroxide (β-FeOOH) containing elements of Nb and Sn. A steel material with a rust layer with excellent corrosion resistance.
 本発明によれば、低コストかつ無塗装で耐食性に優れたさび層付き鋼材の提供が可能になる。本発明のさび層付き鋼材は、耐食性向上に有効な元素を適量且つ有効に含有させることで、Niなどの高価な元素を多量に含有させることなく低コストで、飛来塩分量が多い、厳しい腐食環境下であっても優れた耐侯性を発揮することができる。本発明は、飛来塩分量が0.05mdd超えの高飛来塩分環境下において、特に顕著な効果を発揮することができる。 According to the present invention, it is possible to provide a steel material with a rust layer that is low-cost, non-painted, and excellent in corrosion resistance. The steel material with a rust layer of the present invention contains an element effective for improving the corrosion resistance in an appropriate amount and effectively, and is low in cost without containing a large amount of expensive elements such as Ni and has a large amount of incoming salt, severe corrosion Excellent weather resistance can be exhibited even in an environment. The present invention can exert a particularly remarkable effect in a high flying salt environment where the flying salt content exceeds 0.05 mdd.
本発明に従うさび層付き鋼材のさび層中のNbとSnの含有量について、Fe原子数100に対するSn原子数とNb原子数との関係を示した図である。It is the figure which showed the relationship between the number of Sn atoms with respect to the number of Fe atoms of 100, and the number of Nb atoms about content of Nb and Sn in the rust layer of the steel material with a rust layer according to this invention.
 次に、本発明の実施形態について以下で詳細に説明する。
 本発明に従うさび層付き鋼材は、素地鋼材の表面にさび層を形成してなるさび層付き鋼材であって、該さび層のNbおよびSnの原子の数は、Fe原子の数100に対し最大値にして、それぞれ0.01以上および0.005以上である。
Next, embodiments of the present invention will be described in detail below.
The steel material with a rust layer according to the present invention is a steel material with a rust layer formed by forming a rust layer on the surface of a base steel material, and the number of Nb and Sn atoms in the rust layer is the maximum with respect to the number of Fe atoms of 100. The values are 0.01 or more and 0.005 or more, respectively.
 まず、本発明の耐食性に優れたさび層付き鋼材について説明する。なお、以下に示す成分の含有量の単位である「%」は、特に断らない限り「質量%」を意味するものとする。 First, the steel material with a rust layer having excellent corrosion resistance according to the present invention will be described. Note that “%”, which is a unit of content of components shown below, means “% by mass” unless otherwise specified.
 素地鋼材としては、特に限定はしないが、例えば、質量%で、前記素地鋼材は、質量%で、Nb:0.005%以上0.200%以下およびSn:0.005%以上0.200%以下の成分を含有する成分組成を有する熱延鋼板等の鋼材が挙げられる。 Although it does not specifically limit as a base steel material, For example, it is the mass%, the said base steel material is the mass%, Nb: 0.005% or more and 0.200% or less and Sn: 0.005% or more and 0.200% Examples of the steel material include a hot rolled steel sheet having a component composition containing the following components.
 以下に、素地鋼材の好適な組成成分の限定理由を記載する。特に断らない限り、組成の%は、質量%を意味する。 The reasons for limiting suitable compositional components of the base steel are described below. Unless otherwise specified,% of composition means mass%.
 Nb:0.005%以上0.200%以下
Nbは、本発明において最も重要な成分のうちの一つであって、Snとβ−FeOOHに濃化することにより、高塩分環境における鋼材の耐候性を著しく向上させる効果がある。NbとSnの濃化層(enriched layer)は位置が異なっており、Clイオンの侵入抑制サイトの増加・強化を図っている。また、アノード部においてさび層と素地鋼材(地鉄)の界面付近に濃化し、アノード反応やカソード反応を抑制する。これらの効果を充分に得る為には、Nb含有量を0.005%以上含有することが好ましい。一方、0.200%を超えると靭性が低下する傾向がある。したがって、Nb含有量は0.005%以上0.200%以下とすることが好ましい。好ましくは、0.010%以上0.030%以下である。
Nb: 0.005% or more and 0.200% or less Nb is one of the most important components in the present invention. By concentrating to Sn and β-FeOOH, the weather resistance of the steel material in a high salinity environment. Has the effect of significantly improving the performance. The Nb and Sn enriched layers have different positions, and are intended to increase and strengthen the Cl - ion intrusion suppression sites. Further, the anode portion is concentrated near the interface between the rust layer and the base steel material (base iron) to suppress the anode reaction and the cathode reaction. In order to obtain these effects sufficiently, the Nb content is preferably 0.005% or more. On the other hand, if it exceeds 0.200%, the toughness tends to decrease. Therefore, the Nb content is preferably 0.005% or more and 0.200% or less. Preferably, it is 0.010% or more and 0.030% or less.
 Sn:0.005%以上0.200%以下
Snは、本発明において最も重要な成分の一つであって、Nbとβ−FeOOHに濃化することにより、高塩分環境における鋼材の耐候性を著しく向上させる効果がある。また、鋼材表面にSnを含む酸化皮膜を形成し、鋼材のアノード反応やカソード反応を抑制することで構造用鋼材の耐侯性を向上させる。これらの効果を充分に得る為には、Sn含有量を0.005%以上含有することが好ましい。一方、Sn含有量が0.200%を超えると、鋼の延性や靭性の劣化を招く傾向がある。したがって、Sn含有量は0.005%以上0.200%以下とすることが好ましい。より好ましくは、0.010%以上0.100%以下である。
Sn: 0.005% or more and 0.200% or less Sn is one of the most important components in the present invention. By concentrating to Nb and β-FeOOH, the weather resistance of the steel material in a high salinity environment is improved. It has the effect of significantly improving. Further, an oxidation film containing Sn is formed on the surface of the steel material, and the rust resistance of the structural steel material is improved by suppressing the anode reaction and cathode reaction of the steel material. In order to sufficiently obtain these effects, the Sn content is preferably 0.005% or more. On the other hand, if the Sn content exceeds 0.200%, the ductility and toughness of the steel tend to be deteriorated. Therefore, the Sn content is preferably 0.005% or more and 0.200% or less. More preferably, it is 0.010% or more and 0.100% or less.
 以上、本発明の鋼中に含有させる基本成分について説明したが、本発明ではその他の任意含有成分として、例えば、質量%で、C:0.020%以上0.140%未満、Si:0.05%以上2.00%以下、Mn:0.20%以上2.00%以下、P:0.005%以上0.030%以下、S:0.0001%以上0.0200%以下、Al:0.001%以上0.100%以下、Cu:0.10%以上1.00%以下およびNi:0.10%以上0.65%未満を含有することができる。
 さらに必要に応じて、Mo:0.001%以上1.000%以下、Cr:0.2%以上1.0%以下、Co:0.01%以上1.00%以下、REM:0.0001%以上0.1000%以下、Sn:0.005%以上0.200%以下、Ti:0.005%以上0.200%以下、V:0.005%以上0.200%以下、Zr:0.005%以上0.200%以下、B:0.0001%以上0.0050%以下、Mg:0.0001%以上0.0100%以下を含有することができる。
As described above, the basic components contained in the steel of the present invention have been described. In the present invention, as other optional components, for example, by mass, C: 0.020% or more and less than 0.140%, Si: 0.00. 05% to 2.00%, Mn: 0.20% to 2.00%, P: 0.005% to 0.030%, S: 0.0001% to 0.0200%, Al: 0.001% or more and 0.100% or less, Cu: 0.10% or more and 1.00% or less, and Ni: 0.10% or more and less than 0.65% can be contained.
Further, if necessary, Mo: 0.001% to 1.000%, Cr: 0.2% to 1.0%, Co: 0.01% to 1.00%, REM: 0.0001 %: 0.15% or less, Sn: 0.005% or more and 0.200% or less, Ti: 0.005% or more and 0.200% or less, V: 0.005% or more and 0.200% or less, Zr: 0 0.005% or more and 0.200% or less, B: 0.0001% or more and 0.0050% or less, and Mg: 0.0001% or more and 0.0100% or less.
 以下に、素地鋼材の好適な任意含有成分の限定理由を記載する。
 C:0.020%以上0.140%未満
Cは、構造用鋼材の強度を向上させる元素であり、所定の強度を確保する為0.020%以上含有することが好ましい。一方、C含有量が0.140%以上では溶接性および靭性が劣化する傾向がある。したがって、C含有量は0.020%以上0.140%未満とすることが好ましい。好ましくは強度確保の点から0.08%以上、さらに好ましくは溶接性および靱性の点から0.10%未満である。
Below, the reason for limitation of the suitable arbitrary content component of a base steel material is described.
C: 0.020% or more and less than 0.140% C is an element that improves the strength of the structural steel material, and is preferably contained in an amount of 0.020% or more in order to ensure a predetermined strength. On the other hand, when the C content is 0.140% or more, weldability and toughness tend to deteriorate. Therefore, the C content is preferably 0.020% or more and less than 0.140%. Preferably, it is 0.08% or more from the viewpoint of securing strength, more preferably less than 0.10% from the viewpoint of weldability and toughness.
 Si 0.05%以上2.00%以下
Siは、製鋼時の脱酸剤として、また、構造用鋼材の強度を向上させ所定の強度を確保する元素として、0.05%以上含有することが好ましい。一方、Si含有量が2.00%を超えて過剰に含有すると靭性および溶接性が著しく劣化する傾向がある。したがって、Si含有量は0.05%以上2.00%以下とすることが好ましい。好ましくは、0.10%以上0.80%以下である。
Si 0.05% or more and 2.00% or less Si may be contained in an amount of 0.05% or more as a deoxidizer during steelmaking and as an element for improving the strength of structural steel materials and ensuring a predetermined strength. preferable. On the other hand, when the Si content exceeds 2.00% and is contained excessively, the toughness and weldability tend to deteriorate significantly. Therefore, the Si content is preferably 0.05% or more and 2.00% or less. Preferably, it is 0.10% or more and 0.80% or less.
 Mn:0.20%以上2.00%以下
Mnは、構造用鋼材の強度を向上させる元素であり、所定の強度を確保する為に0.20%以上含有することが好ましい。一方、Mn含有量が2.00%を超えて過剰に含有すると靭性および溶接性が劣化する傾向がある。したがって、Mn含有量は0.20%以上2.00%以下とすることが好ましい。好ましくは、0.20%以上1.50%以下である。
Mn: 0.20% or more and 2.00% or less Mn is an element that improves the strength of the structural steel material, and is preferably contained in an amount of 0.20% or more in order to ensure a predetermined strength. On the other hand, when Mn content exceeds 2.00% and it contains excessively, there exists a tendency for toughness and weldability to deteriorate. Therefore, the Mn content is preferably 0.20% or more and 2.00% or less. Preferably, it is 0.20% or more and 1.50% or less.
 P:0.005%以上0.030%以下
Pは、構造用鋼材の耐候性を向上させる元素である。このような効果を得る為にはP含有量を0.005%以上含有することが好ましい。一方、P含有量が0.030%を超えて含有すると溶接性が劣化する傾向がある。したがって、P含有量は0.005%以上0.030%以下とすることが好ましい。好ましくは、0.005%以上0.025%以下である。
P: 0.005% or more and 0.030% or less P is an element that improves the weather resistance of the structural steel material. In order to obtain such an effect, the P content is preferably 0.005% or more. On the other hand, if the P content exceeds 0.030%, the weldability tends to deteriorate. Therefore, the P content is preferably 0.005% or more and 0.030% or less. Preferably, it is 0.005% or more and 0.025% or less.
 S:0.0001%以上0.0200%以下
Sは、0.0200%を超えて含有すると溶接性および靭性が劣化する傾向がある。一方、S含有量を0.0001%未満まで低減することは生産コストの増大を招く。したがって、S含有量は0.0001%以上0.0200%以下とすることが好ましい。好ましくは、0.0003%以上0.0050%以下である。
S: 0.0001% or more and 0.0200% or less When S exceeds 0.0200%, weldability and toughness tend to deteriorate. On the other hand, reducing the S content to less than 0.0001% leads to an increase in production cost. Therefore, the S content is preferably 0.0001% or more and 0.0200% or less. Preferably, it is 0.0003% or more and 0.0050% or less.
 Al:0.001%以上0.100%以下
Alは、製鋼時の脱酸に必要な元素である。このような効果を得る為、Al含有量として0.001%以上含有することが好ましい。一方、Al含有量が0.100%を超えると溶接性に悪影響を及ぼす傾向がある。したがって、Al含有量は0.001%以上0.100%以下とすることが好ましい。好ましくは、0.010%以上0.050%以下である。なお、Al含有量は酸可溶Alを測定した。
Al: 0.001% or more and 0.100% or less Al is an element necessary for deoxidation during steelmaking. In order to acquire such an effect, it is preferable to contain 0.001% or more as Al content. On the other hand, if the Al content exceeds 0.100%, the weldability tends to be adversely affected. Therefore, the Al content is preferably 0.001% or more and 0.100% or less. Preferably, it is 0.010% or more and 0.050% or less. In addition, Al content measured acid-soluble Al.
 Cu:0.10%以上1.00%以下
Cuは、さび粒を微細化することで徽密なさび層を形成し、構造用鋼材の耐候性を向上させる効果を有する。このような効果はCu含有量が0.10%以上で得られる。一方、Cu含有量が1.00%を超えると、Cu消費量増加に伴うコスト上昇を招くだけである。したがって、Cu含有量は0.10%以上1.00%以下とすることが好ましい。好ましくは、0.20%以上0.50%以下である。
Cu: 0.10% or more and 1.00% or less Cu has an effect of forming a dense rust layer by refining rust grains and improving the weather resistance of the structural steel material. Such an effect is obtained when the Cu content is 0.10% or more. On the other hand, if the Cu content exceeds 1.00%, only an increase in cost due to an increase in Cu consumption is caused. Therefore, the Cu content is preferably 0.10% or more and 1.00% or less. Preferably, it is 0.20% or more and 0.50% or less.
 Ni:0.10%以上0.65%未満
Niは、さび粒を微細化することで徽密なさび層を形成し、構造用鋼材の耐候性を向上させる効果を有する。この効果を充分に得る為にはNi含有量を0.10%以上とすることが好ましい。一方、Ni含有量が0.65%以上であるとNi消費量増加に伴うコスト上昇を招くだけである。したがって、Ni含有量は0.10%以上0.65%未満とすることが好ましい。好ましくは、0.15%以上0.50以下である。
Ni: 0.10% or more and less than 0.65% Ni has an effect of forming a dense rust layer by refining rust grains and improving the weather resistance of the structural steel material. In order to sufficiently obtain this effect, the Ni content is preferably set to 0.10% or more. On the other hand, if the Ni content is 0.65% or more, only an increase in cost associated with an increase in Ni consumption is caused. Therefore, the Ni content is preferably 0.10% or more and less than 0.65%. Preferably, it is 0.15% or more and 0.50 or less.
 Mo:0.001%以上1.000%以下
 Moは、Nbと共存することにより、高塩分環境における鋼材の耐候性を向上させる効果があり、必要に応じて添加する。また、錆層中でモリブデン酸イオンを形成することによって、腐食促進因子の塩化物イオンが錆層を透過して地鉄に到達するのを防止する。また、鋼材のアノード反応に伴ってMoO 2−が溶出し、鋼材表面にMoを含む化合物が沈殿することで、鋼材のアノード反応を抑制する。これらの効果を充分に得るためには、0.001%以上含有する必要がある。一方、1.000%を超えるとMo消費量増加に伴うコスト上昇を招く。したがって、Mo量は0.001%以上1.000%以下の範囲とする。好ましくは、0.005%以上1.000%以下、さらに好ましくは、0.10%以上0.70%以下である。
Mo: 0.001% or more and 1.000% or less Mo coexists with Nb, thereby improving the weather resistance of the steel material in a high salinity environment, and is added as necessary. Moreover, the formation of molybdate ions in the rust layer prevents chloride ions, which are corrosion-promoting factors, from passing through the rust layer and reaching the base iron. Further, MoO 4 2− is eluted with the anode reaction of the steel material, and the compound containing Mo is precipitated on the steel material surface, thereby suppressing the anode reaction of the steel material. In order to obtain these effects sufficiently, it is necessary to contain 0.001% or more. On the other hand, if it exceeds 1.000%, the cost will increase with the increase in Mo consumption. Therefore, the Mo amount is set to a range of 0.001% to 1.000%. Preferably, they are 0.005% or more and 1.000% or less, More preferably, they are 0.10% or more and 0.70% or less.
 Nb:0.005%以上0.200%以下
 Nbは、Moと共存することにより、高塩分環境における鋼材の耐候性を向上させる効果があり、必要に応じて添加する。Nbは、鋼材表面近傍の錆層中に濃化し、鋼材のアノード反応を抑制する効果を有する。これらの効果を充分に得るためには、0.005%以上含有するのが好ましい。一方、0.200%を超えると鋼の靱性の劣化を招く。したがって、Nb量は0.005%以上0.200%以下の範囲とする。好ましくは、0.010%以上0.030%以下である。
Nb: 0.005% or more and 0.200% or less Nb has the effect of improving the weather resistance of a steel material in a high salinity environment by coexisting with Mo, and is added as necessary. Nb has the effect of concentrating in the rust layer near the steel surface and suppressing the anode reaction of the steel. In order to obtain these effects sufficiently, it is preferable to contain 0.005% or more. On the other hand, if it exceeds 0.200%, the toughness of the steel is deteriorated. Therefore, the Nb content is in the range of 0.005% to 0.200%. Preferably, it is 0.010% or more and 0.030% or less.
 更に所望の特性を向上させる場合は、Cr、Co、REM、Snの1種または2種以上を選択元素として含むことができる。 In order to further improve desired characteristics, one or more of Cr, Co, REM, and Sn can be included as a selective element.
 Cr:0.2%以上1.0%以下
 Crは、錆粒を微細化することで緻密な錆層を形成し、耐侯性を向上させるのに有効であり、0.2%以上含有するとその効果を発揮し、1.0%を超えると、溶接性の低下を招く。したがって、Crを含有する場合は、その量は0.2%以上1.0%以下の範囲とすることが好ましい。より好ましくは、0.2%以上0.7%以下である。
Cr: 0.2% or more and 1.0% or less Cr is effective for forming a dense rust layer by refining rust grains and improving weather resistance. When the effect is exhibited and the content exceeds 1.0%, the weldability is deteriorated. Therefore, when it contains Cr, it is preferable to make the quantity into the range of 0.2% or more and 1.0% or less. More preferably, it is 0.2% or more and 0.7% or less.
 Co:0.01%以上1.00%以下
 Coは錆層全体に分布し、錆粒を微細化することで緻密な錆層を形成し、構造用鋼材の耐候性を向上させるのに有効であり、0.01%以上含有するとその効果を発揮し、1.00%を超えて含有するとCo消費量増加に伴うコスト上昇を招く。したがって、Coを含有する場合は、その量は0.01%以上1.00%以下の範囲とすることが好ましい。より好ましくは、0.10%以上0.50%以下である。
Co: 0.01% or more and 1.00% or less Co is distributed over the entire rust layer, and is effective in improving the weather resistance of structural steel by forming a fine rust layer by refining rust grains. If it is contained in an amount of 0.01% or more, the effect is exhibited, and if it is contained in excess of 1.00%, the cost is increased due to an increase in Co consumption. Therefore, when it contains Co, it is preferable to make the quantity into the range of 0.01% or more and 1.00% or less. More preferably, it is 0.10% or more and 0.50% or less.
 REM:0.0001%以上0.1000%以下
 REMは錆層全体に分布し、錆粒を微細化することで緻密な錆層を形成し、構造用鋼材の耐候性を向上させるのに有効であり、0.0001%以上含有するとその効果を発揮し、0.1000%を超えるとその効果は飽和する。したがって、REMを含有する場合、その量は0.0001%以上0.1000%以下の範囲とすることが好ましい。より好ましくは、0.0010%以上0.0100%以下である。
REM: 0.0001% or more and 0.1000% or less REM is distributed over the entire rust layer and is effective in improving the weather resistance of structural steel by forming a dense rust layer by refining rust grains. Yes, when the content is 0.0001% or more, the effect is exhibited, and when the content exceeds 0.1000%, the effect is saturated. Therefore, when it contains REM, it is preferable to make the quantity into the range of 0.0001% or more and 0.1000% or less. More preferably, it is 0.0010% or more and 0.0100% or less.
 Sn:0.005%以上0.200%以下
 Snは錆下層に濃化し、鋼材のアノード反応を抑制するのに有効であり、0.005%以上含有するとその効果を発揮し、0.200%を超えると、靱性の劣化を招く。したがって、Snを含有する場合、その量は0.005%以上0.200%以下の範囲とすることが好ましい。より好ましくは、0.010%以上0.100%以下である。
Sn: 0.005% or more and 0.200% or less Sn concentrates in the rust lower layer and is effective in suppressing the anode reaction of the steel material, and when 0.005% or more is contained, the effect is exhibited, 0.200% Exceeding this causes deterioration of toughness. Therefore, when it contains Sn, it is preferable to make the quantity into 0.005% or more and 0.200% or less of range. More preferably, it is 0.010% or more and 0.100% or less.
 更に、本発明では、Ti、V、Zr、B、Mgの1種または2種以上を選択元素として含むことができる。 Furthermore, in the present invention, one or more of Ti, V, Zr, B, and Mg can be included as a selective element.
 Ti:0.005%以上0.200%以下
 Tiは、鋼材の強度を高めるために有効な元素であり、0.005%以上含有するとその効果を発揮し、0.200%を超えると靭性の劣化を招く。したがって、Tiを含有する場合、その量は0.005%以上0.200%以下の範囲とすることが好ましい。より好ましくは、0.010%以上0.100%以下である。
Ti: 0.005% or more and 0.200% or less Ti is an effective element for increasing the strength of the steel material, and when 0.005% or more is contained, the effect is exhibited. It causes deterioration. Therefore, when Ti is contained, the amount is preferably in the range of 0.005% or more and 0.200% or less. More preferably, it is 0.010% or more and 0.100% or less.
 V:0.005%以上0.200%以下
 Vは、強度を高めるために有効な元素であり、0.005%以上含有するとその効果を発揮し、0.200%を超えると効果が飽和する。したがって、Vを含有する場合、その量は0.005%以上0.200%以下の範囲とすることが好ましい。より好ましくは、0.010%以上0.100%以下である。
V: 0.005% or more and 0.200% or less V is an effective element for increasing the strength, and when 0.005% or more is contained, the effect is exhibited, and when it exceeds 0.200%, the effect is saturated. . Therefore, when V is contained, the amount is preferably in the range of 0.005% to 0.200%. More preferably, it is 0.010% or more and 0.100% or less.
 Zr:0.005%以上0.200%以下
 Zrは、強度を高めるために有効な元素であり、0.005%以上含有するとその効果を発揮し、0.200%を超えると効果が飽和する。したがって、Zrを含有する場合は、その量は0.005%以上0.200%以下の範囲とすることが好ましい。より好ましくは、0.010%以上0.100%以下である。
Zr: 0.005% or more and 0.200% or less Zr is an effective element for increasing the strength, and when 0.005% or more is contained, the effect is exhibited, and when it exceeds 0.200%, the effect is saturated. . Therefore, when Zr is contained, the amount is preferably in the range of 0.005% to 0.200%. More preferably, it is 0.010% or more and 0.100% or less.
 B:0.0001%以上0.0050%以下
 Bは、強度を高めるために必要な元素であるが、その量が0.0001%未満であると、その効果は十分に得られない。一方、0.0050%を超えると靭性の劣化を招く。したがって、Bを含有する場合は、その量は0.0001以上0.0050%以下の範囲とすることが好ましい。より好ましくは、0.0005%以上0.0040%以下である。
B: 0.0001% or more and 0.0050% or less B is an element necessary for increasing the strength, but if the amount is less than 0.0001%, the effect cannot be sufficiently obtained. On the other hand, if it exceeds 0.0050%, the toughness is deteriorated. Therefore, when it contains B, it is preferable to make the quantity into 0.0001 to 0.0050% of range. More preferably, it is 0.0005% or more and 0.0040% or less.
 Mg:0.0001%以上0.0100%以下
 Mgは、鋼中のSを固定して溶接熱影響部の靭性向上に有効な元素であり、0.0001以上含有するその効果を発揮し、0.0100%を超えると鋼中の介在物の量が増加しかえって靭性の劣化を招く。したがって、Mgを含有する場合は、その量は0.0001%以上0.0100%以下の範囲とすることが好ましい。より好ましくは、0.0005%以上0.0030%以下である。
Mg: 0.0001% or more and 0.0100% or less Mg is an element effective for fixing the S in the steel and improving the toughness of the weld heat affected zone, and exhibits the effect of containing 0.0001 or more. If it exceeds 0.0100%, the amount of inclusions in the steel increases, but the toughness deteriorates. Therefore, when it contains Mg, it is preferable to make the quantity into 0.0001% or more and 0.0100% or less of range. More preferably, it is 0.0005% or more and 0.0030% or less.
 なお、残部はFeおよび不可避的不純物である。ここで不可避的不純物として、N:0.010%以下、0:0.010%以下、Ca:0.0010%以下が許容できる。特に、不可避的不純物として含有するCaは、鋼中に多量に存在すると溶接熱影響部の靭性を劣化させることに加えて、後述するさび層形成に影響を及ぼす為、0.0010%以下とすることが好ましい。 Note that the balance is Fe and inevitable impurities. Here, N: 0.010% or less, 0: 0.010% or less, and Ca: 0.0010% or less are acceptable as inevitable impurities. In particular, Ca contained as an unavoidable impurity, when present in a large amount in steel, deteriorates the toughness of the weld heat-affected zone and affects the formation of a rust layer, which will be described later. It is preferable.
 本発明における素地鋼材は、上記成分組成を有する鋼を通常の連続鋳造(continuous casting)や分塊法により得られたスラブ(slab)を熱間圧延(hot rolling)することにより厚板(steel plate)や形鋼(shaped steel)、薄鋼板(steel sheet)、棒鋼(bar steel)等の鋼材に製造され、得られる。加熱、圧延条件は、要求される材質に応じて適宜決定すればよく、制御圧延(controlled rolling)、加速冷却(accelerated cooling)、あるいは再加熱(reheating)の熱処理等の組合せも可能である。 The base steel material according to the present invention is a steel plate obtained by subjecting a steel having the above composition to hot rolling a slab obtained by ordinary continuous casting or slabbing. ), Shaped steel, steel sheet, bar steel, and the like. The heating and rolling conditions may be appropriately determined according to the required material, and a combination of heat treatment such as controlled rolling, accelerated cooling, or reheating is also possible.
 本発明では、高塩分環境下で耐食性を向上させるため、上記素地鋼材に、適正化を図ったさび層を形成することが必要となる。 In the present invention, in order to improve the corrosion resistance in a high salinity environment, it is necessary to form a rust layer that is optimized in the base steel material.
 上記成分組成を有する素地鋼材の表面にさび層(rust layer)について説明する。 The rust layer on the surface of the base steel having the above composition will be described.
 一般に素地鋼材表面に形成されるさび層を構成する成分の種類としては、例えば、α−FeOOH、β−FeOOH、γ−FeOOHといった結晶性オキシ水酸化鉄(crystalline oxyferrihydrite)とFe、X線的非晶質物質(X−ray noncrystalline material)がある。高塩分の環境下では、Feが多く、β−FeOOHが共存しており、空隙内に塩化物イオン(chloride ion)(Cl)、(以下、Clイオンと称す)を含む不安定なβ−FeOOHを起点にして、腐食が進行する。また、Clイオンの影響によって、これらさびの結晶化が促進し、欠陥の多いさび層となって緻密性が低下する為、海岸地域等では、多量のClイオンがさび層深くまで侵入し、地鉄界面に濃化してしまう。従って、塩分量の多い過酷な腐食環境下で耐食性を高める為には、β−FeOOHを起点として発生する腐食の進行を如何にして抑えるか、また地鉄界面への腐食促進物質(corrosion accelerating agent)であるClイオンの侵入を防ぐかが重要となる。 As a kind of component which generally comprises the rust layer formed in the base steel material surface, for example, crystalline iron oxyhydroxide such as α-FeOOH, β-FeOOH, γ-FeOOH, Fe 3 O 4 , X There is an X-ray non-crystalline material. In a high salinity environment, Fe 3 O 4 is abundant and β-FeOOH coexists, and the voids contain chloride ions (Cl ) (hereinafter referred to as Cl ions). Corrosion proceeds starting from stable β-FeOOH. In addition, since the crystallization of these rusts is promoted by the influence of Cl ions and the rust layer with many defects is formed and the denseness is lowered, a large amount of Cl ions penetrate into the rust layer deeply in the coastal area. , It will be concentrated at the iron and steel interface. Therefore, in order to enhance the corrosion resistance in a severe corrosive environment with a large amount of salt, how to suppress the progress of corrosion generated from β-FeOOH, or a corrosion promoting agent for the iron-iron interface (corrosion accelerating agent). It is important to prevent intrusion of Cl ions.
 本発明者らは、塩分量の多い環境下の耐食性を向上させるための検討を行ったところ、NbおよびSnのいずれか1種のみを含むさび層の形成では耐食性向上が達成できず、NbおよびSnを適正量含有するさび層を形成することによって、耐食性が格段に向上することを見出した。ここで、「さび層」とは、α−FeOOH、β−FeOOH、γ−FeOOHの結晶性オキシ水酸化鉄、Fe、X線的非晶質物質の何れかもしくは複数種により構成される。 The inventors of the present invention have studied to improve the corrosion resistance under an environment having a large amount of salt. As a result, the formation of a rust layer containing only one of Nb and Sn cannot improve the corrosion resistance. It has been found that the corrosion resistance is remarkably improved by forming a rust layer containing an appropriate amount of Sn. Here, the “rust layer” is composed of one or more of α-FeOOH, β-FeOOH, γ-FeOOH crystalline iron oxyhydroxide, Fe 3 O 4 , and X-ray amorphous material. The
 さらに、NbおよびSnの適正含有量について検討した。上記成分組成を有する、厚さ:6mmの熱延鋼板を素地鋼材として用い、この熱延鋼板からサイズ:35mm×35mm×5mmの試験片を採取し、鋼板表面に、算術平均粗さ(arithmetic−average roughness)Raが1.6μm以下となるよう研削加工(grinding process)を施した。次に、この試験片について、温度40℃、相対湿度(relative humidity)40%RHの乾燥雰囲気(dry atmospherics)内で11時間放置し、その後、1時間の移行時間をとった後、温度25℃、相対湿度95%RHの湿潤雰囲気(wet atmospherics)内で11時間放置し、その後、1時間の移行時間をとる、合計24時間の工程を1サイクル(cycle)として、1日1サイクルを1年間(365日)繰り返すとともに、試験片の表面に付着する塩分が0.2mddとなるような量の人工海水溶液(artificial seawater solution)(1.4mg/dmの塩分が付着するような量の人工海水溶液)を週に一回、乾燥工程中に試験片の表面に塗布することによりさび形成を行った。この時、耐食性に対して有効なさび層形成を促進する望ましい形態は、付着塩分量0.1mdd以上である。なお、付着塩分量が0.05mdd超えの場合に本発明のさび層は形成される。しかしながら、付着塩分量の低い雰囲気の場合すなわち付着塩分量が0.05mdd以下の場合は、本発明のさび層を形成するのに時間がかかることになる。
 一方、付着塩分量が0.30mdd以下でさび層を形成することが必要である。0.30mdd超えでは、さび層中に多量のClが侵入することによって、Nb、Snの濃度の高い緻密なさびがさび層中に生成しにくくなる。その結果、本発明のさび層が形成されなくなり、耐候性の悪いさび層を持った鋼材となってしまう。
Furthermore, the proper content of Nb and Sn was examined. A hot rolled steel sheet having a thickness of 6 mm having the above composition was used as a base steel material, and a test piece of size: 35 mm × 35 mm × 5 mm was taken from the hot rolled steel sheet, and an arithmetic average roughness (arithmetic- The grinding process was carried out so that Ra was 1.6 μm or less. Next, the test piece was allowed to stand for 11 hours in a dry atmosphere having a temperature of 40 ° C. and a relative humidity of 40% RH, and after taking a transition time of 1 hour, the temperature was 25 ° C. , Left in a wet atmosphere with a relative humidity of 95% RH for 11 hours, then take 1 hour of transition time, with a total of 24 hours of the process as 1 cycle, 1 cycle per day for 1 year (365 days) Repeatedly, an artificial seawater solution (artificial seawater solution) such that the salt content attached to the surface of the test piece is 0.2 mdd (artificial amount such that 1.4 mg / dm 2 of salt solution is attached) (Sea water solution) is applied to the surface of the test piece once a week during the drying process. It was Risabi formation. At this time, a desirable form for promoting the formation of a rust layer effective for corrosion resistance is an adhering salt content of 0.1 mdd or more. Note that the rust layer of the present invention is formed when the amount of adhering salt exceeds 0.05 mdd. However, in an atmosphere with a low amount of adhering salt, that is, when the amount of adhering salt is 0.05 mdd or less, it takes time to form the rust layer of the present invention.
On the other hand, it is necessary to form a rust layer with an attached salt content of 0.30 mdd or less. If it exceeds 0.30 mdd, a large amount of Cl penetrates into the rust layer, so that it becomes difficult to form a dense rust with high Nb and Sn concentrations in the rust layer. As a result, the rust layer of the present invention is not formed, and the steel material has a rust layer with poor weather resistance.
 上記によりこのさび形成を行った試験片は、その後さらに6ヶ月間、0.2mddの高塩分環境下で腐食試験を行った。腐食試験終了後、試験片は、塩酸にヘキサメチレンテトラミン(hexamethylenetetramine)を加えた水溶液に浸漬して脱さび(derusting)してから重量を測定し、さび形成前の試験片の初期重量と、脱さび後の試験片重量との差を求めて片面当りの平均腐食速度(μm/年)を求めた。この平均腐食速度が60μm/年以下であれば、従来の耐候性鋼に比べて、裸耐食性に優れているとして評価した。 The test piece on which the rust was formed as described above was subjected to a corrosion test in a high salt environment of 0.2 mdd for another 6 months. After completion of the corrosion test, the test piece was immersed in an aqueous solution of hexamethylenetetramine added to hydrochloric acid and derusted to measure the weight, and the initial weight of the test piece before rust formation and desorption were measured. The average corrosion rate (μm / year) per side was determined by calculating the difference from the weight of the test piece after rusting. When this average corrosion rate was 60 μm / year or less, it was evaluated that the bare corrosion resistance was superior to that of conventional weathering steel.
 次いで、平均腐食速度とさび層中のNb、Snの含有量との関係を調査した。さび層中のNb、Snそれぞれの含有量(Fe原子数100に対する原子の数)は種々の方法で求めることができるが、一例として、電子線マイクロアナライザ(electron probe microanalyzer)(EPMA)により求める方法を以下に示す。
 まず、さび層付き鋼材の断面試料を作成する。さび層付き鋼材の試験片をせん断後、樹脂(regin)へ埋め込み(直径25mm)、次いで、エタノール(ethanol)使用(水不使用)で研磨#4000仕上げを施した。電子線マイクロアナライザ(EPMA)の測定条件は、加速電圧(accelerating voltage)15kV、照射電流(radiation current)2×10−7A、ビーム径(beam diameter)2μm、走査範囲(scanning area)1.5mm×0.5mmである。
ここでは含有量の算出方法をNbの場合を用いて説明する。
素地鋼材(母材)につき任意点5箇所につき測定を行い、Fe、NbそれぞれのX線強度の平均を求め、それぞれIFeStnd、INbStndとし、INbStndをIFeStndで除算したものを基準値とした。さらに、さび層内の任意の場所10万点につき測定し、NbのX線強度(X−ray intensity)が高い方から上位30点につきFe、NbそれぞれのX線強度の平均を求め、それぞれIFeAve,INbAveとし、INbAveをIFeAveで除算したものを濃化指数(enrichment index)とした。得られた濃化指数を基準値で除算したものに素地鋼材(母材)のFe原子数100に対するNb原子数を乗算し、さび層中のNbの濃度(Fe原子数100に対するNb原子数)を算出した。この手順によりSnの含有量も同様に求めることができる。素地鋼材(母材)のFe原子の数100に対するNb、Snの原子の数は素地鋼材(母材)作製の際のFeに対する各成分の添加比、または、素地鋼材(母材)の湿式分析(wet analysis)(従来公知)により求めることができる。また、各元素のX線強度を求めるに当たっては、バックグラウンド(back ground)の補正等を適宜行なってもよい。
Next, the relationship between the average corrosion rate and the contents of Nb and Sn in the rust layer was investigated. The contents of Nb and Sn in the rust layer (the number of atoms with respect to 100 Fe atoms) can be determined by various methods. As an example, the method is determined by using an electron probe microanalyzer (EPMA). Is shown below.
First, a cross-section sample of a steel material with a rust layer is created. A test piece of steel material with a rust layer was sheared, embedded in a resin (diameter 25 mm), and then polished with a # 4000 finish using ethanol (no water). The measurement conditions of the electron beam microanalyzer (EPMA) are as follows: acceleration voltage 15 kV, irradiation current 2 × 10 −7 A, beam diameter 2 μm, scanning area 1.5 mm. × 0.5 mm.
Here, the calculation method of content is demonstrated using the case of Nb.
Was measured every arbitrary point five points per matrix steel (base material), Fe, obtains the average of the Nb respective X-ray intensity, respectively I FeStnd, and I NbStnd, a reference value obtained by dividing the I NbStnd in I FeStnd did. Furthermore, measurement was performed at 100,000 points in the rust layer, and the average of the X-ray intensities of Fe and Nb was determined for the top 30 points from the highest Nb X-ray intensity (X-ray intensity). FeAve, and I NbAve, was thickening index (enrichment index) obtained by dividing the I NbAve in I FeAve. The obtained concentration index divided by the reference value is multiplied by the number of Nb atoms with respect to 100 Fe atoms of the base steel (base material), and the concentration of Nb in the rust layer (the number of Nb atoms with respect to 100 Fe atoms) Was calculated. By this procedure, the Sn content can be obtained in the same manner. The number of Nb and Sn atoms with respect to the number of Fe atoms in the base steel (base material) 100 is the addition ratio of each component to Fe when the base steel (base material) is produced, or wet analysis of the base steel (base material). (Wet analysis) (conventionally known). Further, in obtaining the X-ray intensity of each element, correction of the background (back ground) or the like may be appropriately performed.
 以上により得られた結果を図1に示す。上記の耐食評価方法(corrosion evaluation method)により、耐食性が優れているものを「○」、劣るものを「×」として図中に表記した。 The results obtained as described above are shown in FIG. According to the above corrosion resistance evaluation method (corrosion evaluation method), those having excellent corrosion resistance are indicated as “◯” and those having inferiority as “X” in the figure.
 図1の結果から、さび層中のNb、Snの原子の数が、Fe原子の数100に対して最大値でNb:0.01以上およびSn:0.005以上であるとき、耐食性に優れていることがわかる。
よって、本発明では、さび層は、NbおよびSnを含有し、かつ前記さび層中のNb原子の数は、Fe原子の数100に対し最大値にして0.01以上であり、前記さび層中のSn原子の数は、Fe原子の数100に対し最大値にして0.005以上とする。
 なお、さび層中のNbおよびSn原子の数をFe原子の数100に対し最大値にして0.5超にしようとすると、素地鋼材(母材)の延性や靭性の劣化等の問題に加えてコスト上昇を招く。特にNbは増やそうとすると、析出する炭化ニオブ(NbC)の増加によって固溶ニオブ量(amont of solute niobium)が減少し、耐食性にむしろ影響を与える。そのため、NbおよびSnの上限原子の数はFe原子の数100に対し最大値にして0.5以下が好ましい。
 一方、さび層中のNbおよびSn原子の数をFe原子の数100に対し最大値にしてそれぞれ0.5超にしようとすると、素地鋼材(母材)の成分においてNbやSnを多くする必要がある。これは延性や靭性の劣化等の問題に加えてコスト上昇を招くことになる。特に、素地鋼材(母材)中のNbを増やした場合、析出する炭化ニオブ(NbC)の増加によって固溶ニオブ量(amont of solute niobium)が減少し、耐食性に悪影響を与える。そのため、さび層中のNbおよびSnの上限原子の数はFe原子の数100に対し最大値にして0.5以下が好ましい。
 また、素地鋼材から100μm未満のさび層部分の任意箇所から、集束イオンビーム加工(focused ion beam processing)(FIB)により作製したさび試験片を、透過電子顕微鏡(transmission electron microscope)(TEM)を用いて観察するとともに、電子回折パターン(electron diffraction pattern)により、濃化しているNb、Snの位置においてさび層の同定(identification)を行った。その結果、NbおよびSnの成分は、共にβ−オキシ水酸化鉄(β−FeOOH)に位置しており、さび層の素地鋼材側部分は、NbおよびSnの元素を含むβ−オキシ水酸化鉄(β−FeOOH)を含有していることが分かった。このことが塩分量の多い環境下でもさび安定化(rust stabilization)を図り、耐食性を向上させていると推定される。
 よって、さび層の素地鋼材側部分は、NbおよびSnの元素を含むβ−オキシ水酸化鉄(β−FeOOH)を含有することが好ましい。
 なお、Nb、Snが存在する位置のさびの同定には、TEMを用いた電子回折パターンの他、ラマン分光(raman spectroscopy)等が挙げられ、特に、高い位置分解能(position resolution)でのさび層の同定においては、回折パターン解析(diffraction pattern analysis)が推奨される。
From the results shown in FIG. 1, when the number of Nb and Sn atoms in the rust layer is Nb: 0.01 or more and Sn: 0.005 or more with respect to the number of Fe atoms 100, the corrosion resistance is excellent. You can see that
Therefore, in the present invention, the rust layer contains Nb and Sn, and the number of Nb atoms in the rust layer is 0.01 or more at maximum with respect to the number of Fe atoms 100, and the rust layer The number of Sn atoms therein is set to 0.005 or more as a maximum value with respect to the number 100 of Fe atoms.
If the maximum number of Nb and Sn atoms in the rust layer is more than 0.5 with respect to the number of Fe atoms of 100, in addition to problems such as deterioration of ductility and toughness of the base steel (base material) Cost. In particular, when Nb is increased, the amount of precipitated niobium carbide (NbC) decreases the amount of dissolved niobium (amount of solution niobium), which rather affects the corrosion resistance. Therefore, the maximum number of upper limit atoms of Nb and Sn is preferably 0.5 or less with respect to the maximum number of Fe atoms of 100.
On the other hand, if the maximum number of Nb and Sn atoms in the rust layer is set to more than 0.5 with respect to the number of Fe atoms 100, it is necessary to increase Nb and Sn in the base steel (base material) component. There is. This leads to an increase in cost in addition to problems such as ductility and toughness deterioration. In particular, when Nb in the base steel material (base material) is increased, the amount of niobium carbide (NbC) that is precipitated decreases the amount of solid solution niobium, which adversely affects the corrosion resistance. Therefore, the number of upper limit atoms of Nb and Sn in the rust layer is preferably 0.5 or less with respect to the number of Fe atoms being 100.
In addition, a rust specimen produced by focused ion beam processing (FIB) from an arbitrary portion of the rust layer portion of less than 100 μm from the base steel material is used with a transmission electron microscope (TEM). In addition, the rust layer was identified at the positions of concentrated Nb and Sn by an electron diffraction pattern (electron diffraction pattern). As a result, the components of Nb and Sn are both located in β-iron oxyhydroxide (β-FeOOH), and the base steel material side portion of the rust layer is β-iron oxyhydroxide containing the elements of Nb and Sn. It was found to contain (β-FeOOH). It is presumed that this improves rust stabilization and improves corrosion resistance even in an environment with a large amount of salt.
Therefore, the base steel material side portion of the rust layer preferably contains β-iron oxyhydroxide (β-FeOOH) containing elements of Nb and Sn.
In addition, the identification of the rust at the position where Nb and Sn exist includes not only an electron diffraction pattern using a TEM but also Raman spectroscopy, and particularly a rust layer at a high position resolution. In the identification, diffraction pattern analysis (diffraction pattern analysis) is recommended.
 さらに、電子線マイクロアナライザ(EPMA)の深さ方向に対するライン分析(line analysis)により、さび層中で、腐食の進行(erosion progression)が顕著である部分であると考えられる孔食さび部(pit and rust area)のNbおよびSn元素が濃化している濃化層の個数(個)についても調査した。ここで濃化層とは、孔食さび部中のNbおよびSnの含有量が、素地鋼材(母材)のFe原子の数100に対するNbおよびSnの原子の数を基準にして求めたFe原子の数100に対するNb、Snの原子の数:0.03および0.02よりも高い層であって、濃化層の厚さ(ラインプロファイル(line profile)上のピーク半値幅(peak half−value width)が15μm以下のものを意味する。そして、濃化層の平均個数を求め濃化層の個数(個)とした。濃化層の個数を測定するための条件は、加速電圧:15kV、照射電流:2×10−7A、ビーム径:2μmである。任意に選択した5箇所の孔食さび部について、ライン分析を行った結果から孔食さび部のNbおよびSnの濃化層の平均個数を算出した。 Further, by line analysis with respect to the depth direction of an electron beam microanalyzer (EPMA), a pitting corrosion rust portion (pit) that is considered to be a portion in which erosion progression is remarkable in the rust layer. and the number of the concentrated layers in which the Nb and Sn elements of (and area) are concentrated. Here, the enriched layer is an Fe atom in which the content of Nb and Sn in the pitting rust portion is determined based on the number of Nb and Sn atoms relative to the number of Fe atoms of the base steel (base material) 100 The number of Nb and Sn atoms relative to the number 100: 0.03 and 0.02 higher than the thickness of the concentrated layer (peak half-value on the line profile) (width) means 15 μm or less, and the average number of concentrated layers was determined and used as the number of concentrated layers (pieces) The conditions for measuring the number of concentrated layers were: acceleration voltage: 15 kV, Irradiation current: 2 × 10 −7 A, beam diameter: 2 μm From the results of line analysis of 5 arbitrarily selected pitting corrosion rust parts, the concentration of Nb and Sn in the pitting corrosion rust part Calculate the average number It was.
 一例として、C:0.091%、Si:0.20%、Mn:0.70%、P:0.019%、S:0.0034%、sol.Al:0.031%、N:0.0032%、O:0.0026%、Cu:0.30%、Ni:0.21%、Nb:0.052%およびSn:0.052%を含有する素地鋼材の表面に、前述したさび形成方法によってさび層を形成したさび層付き鋼材(素地鋼材)のさび層の孔食さび部についてライン分析を行った。その結果、Fe原子100に対してさび層中のNbの含有量は0.111であり、Snの含有量は0.060であり、上述した腐食試験を行ったところ、平均腐食速度は54.6μm/年であり、耐食性が優れているのが確かめられた。この孔食さび部における、NbおよびSnの濃化層の存在箇所は、それぞれ8.1個と4.2個であった。濃化層の存在箇所が多い程、鋼への腐食促進物質の侵入抑制作用(diffusion−inhibiting action)により耐食性の向上が図られることがわかる。
 以上の結果より、本発明では、さび層中のNb原子の数およびSn原子の数の規定に加え、鋼への腐食促進物質の侵入抑制作用により耐食性の向上の観点から、Nbが5個以上、Snが3個以上であることが好ましい。また、Nb、Snの各濃化層が重なることで腐食因子の抑制サイト(diffusion−inhibiting sites)の増加・強化できることから、それぞれのピーク半値幅が重なるように存在することは、より望ましい濃化形態(enrichment configuration)となる。
As an example, C: 0.091%, Si: 0.20%, Mn: 0.70%, P: 0.019%, S: 0.0034%, sol. Al: 0.031%, N: 0.0032%, O: 0.0026%, Cu: 0.30%, Ni: 0.21%, Nb: 0.052% and Sn: 0.052% Line analysis was performed on the pitting corrosion rust portion of the rust layer of the steel material with rust layer (base steel material) in which the rust layer was formed on the surface of the base steel material by the rust formation method described above. As a result, the content of Nb in the rust layer with respect to Fe atoms 100 was 0.111 and the content of Sn was 0.060. When the above-described corrosion test was performed, the average corrosion rate was 54. It was 6 μm / year, and it was confirmed that the corrosion resistance was excellent. In this pitting corrosion rust portion, there were 8.1 and 4.2, respectively, where Nb and Sn concentrated layers existed. It can be seen that the more the concentrated layer is present, the more the corrosion resistance is improved by the diffusion-inhibiting action of the corrosion promoting substance into the steel.
From the above results, in the present invention, in addition to the regulation of the number of Nb atoms and the number of Sn atoms in the rust layer, the Nb content is 5 or more from the viewpoint of improving the corrosion resistance by suppressing the penetration of corrosion promoting substances into the steel. , Sn is preferably 3 or more. In addition, since the Nb and Sn concentrated layers overlap each other, it is possible to increase and strengthen the corrosion-inhibiting sites, and therefore it is more desirable that the respective peak half-value widths overlap. It becomes the configuration.
 表1に示す成分組成を有するNo.1~14を溶製し、1150℃に加熱した後、熱間圧延を行い、室温まで空冷して厚さ6mmの熱延鋼板を試作した。次いで、得られた鋼板からサイズ:35mm×35mm×5mmの試験片を採取した。試験片は、表面に、算術平均粗さRaが1.6μm以下となるよう研削加工を施し、端面、裏面をテープシールし、試験片の表面露出部(surface exposed area)の面積が25mm×25mmとなるよう表面もテープ(tape)でシール(sealed)した。
 以上により得られた試験片について、温度40℃、相対湿度40%RHの乾燥雰囲気内で11時間放置し、その後、1時間の移行時間をとった後、温度25℃、相対湿度95%RHの湿潤雰囲気内で11時間放置し、その後、1時間の移行時間をとる、合計24時間の工程を1サイクルとして、1日1サイクルを1年間(365日)繰り返すとともに、試験片の表面に付着する塩分が耐食性に有効なさび層を形成するのに好適な0.2mddとなるような量の人工海水溶液(1.4mg/dmの塩分が付着するような量の人工海水溶液)を週に一回、乾燥工程中に試験片の表面に塗布することによりさび形成を行った。このさび形成を行った試験片に対し、その後さらに6ヶ月間、付着塩分量0.2mddの高塩分環境下で腐食試験を行った。腐食試験終了後、試験片は、塩酸にヘキサメチレンテトラミンを加えた水溶液に浸漬して脱さびしてから重量を測定し、さび形成前の試験片の初期重量と、脱さび後の試験片重量との差を求めて片面当りの平均腐食速度(μm/年)を求めた。この平均腐食速度が60μm/年以下であれば、耐食性が優れているとして評価した。
 また、各試験片について、任意に選択した5箇所の孔食さび部について、上述した電子線マイクロアナライザ(EPMA)の深さ方向に対するライン分析によって、さび層中で、腐食の進行が顕著である部分であると考えられる孔食さび部のNbおよびSn元素が濃化している濃化層の個数(個)についても調査した。NbまたはSnの濃化層が無い場合は、「×」と表2中に表記した。
 表2に、さび層中のNb、Snの含有の有無およびNb、Sn成分の含有量(Fe原子の数100に対するNb、Snの原子の数)、濃化層の平均個数、平均腐食速度の結果を示す。なお、これらの測定方法は、上述の方法と同様である。
No. having the component composition shown in Table 1. 1 to 14 were melted and heated to 1150 ° C., followed by hot rolling, and air-cooled to room temperature to produce a 6 mm thick hot rolled steel sheet. Next, a test piece of size: 35 mm × 35 mm × 5 mm was taken from the obtained steel plate. The test piece is ground so that the arithmetic average roughness Ra is 1.6 μm or less, the end face and the back face are tape-sealed, and the surface exposed area of the test piece has an area of 25 mm × 25 mm. The surface was also sealed with tape.
The test piece obtained as described above was left in a dry atmosphere at a temperature of 40 ° C. and a relative humidity of 40% RH for 11 hours, and after taking a transition time of 1 hour, the temperature of 25 ° C. and a relative humidity of 95% RH was obtained. The sample is left in a humid atmosphere for 11 hours, and then takes a transition time of 1 hour. A total of 24 hours is taken as 1 cycle, and 1 cycle per day is repeated for 1 year (365 days) and adheres to the surface of the test piece. An artificial seawater solution in an amount such that the salinity is 0.2 mdd suitable for forming a rust layer effective for corrosion resistance (an artificial seawater solution in an amount such that 1.4 mg / dm 2 of salinity adheres) per week. Rust formation was performed once by applying to the surface of the test piece during the drying process. A corrosion test was performed on the test piece on which the rust had been formed in a high salinity environment with an attached salt content of 0.2 mdd for another 6 months. After completion of the corrosion test, the test piece is immersed in an aqueous solution of hexamethylenetetramine in hydrochloric acid and derusted, and then the weight is measured. The initial weight of the test piece before rust formation, the weight of the test piece after derusting, and The average corrosion rate per side (μm / year) was determined by determining the difference between the two. If this average corrosion rate was 60 μm / year or less, the corrosion resistance was evaluated as excellent.
Further, for each test piece, the progress of corrosion is remarkable in the rust layer by the line analysis in the depth direction of the electron beam microanalyzer (EPMA) described above for five arbitrarily selected pitting rust portions. The number (number) of concentrated layers in which the Nb and Sn elements of the pitting rust portion considered to be a portion were concentrated was also investigated. When there was no Nb or Sn thickened layer, it was indicated in Table 2 as “x”.
Table 2 shows the presence or absence of Nb and Sn in the rust layer and the content of Nb and Sn components (the number of Nb and Sn atoms with respect to the number of Fe atoms of 100), the average number of concentrated layers, and the average corrosion rate. Results are shown. Note that these measurement methods are the same as those described above.
 表2の結果から、さび層中のNb、Snの原子の数が、Fe原子の数100に対して、最大値でNb:0.01以上およびSn:0.005以上の範囲内である発明例1~6は、いずれも平均腐食速度が57.2μm/年以下であり、高塩分が存在する厳しい腐食環境下であっても、従来の耐候性鋼に比べて耐食性に優れている。さらに、発明例1~6における濃化層の平均個数は、いずれもNbが5個以上、Snが3個以上となっている。
 一方、さび層中に、NbおよびSn成分の含有量が本発明範囲外である比較例1~7は、いずれも平均腐食速度が65μm/年超えであり、高塩分が存在する厳しい腐食環境下での耐食性が劣っている。
 また、鋼材中に高価なNiを1.53%と多量に含有させた参考例1は、耐食性は発明例1~6と同等レベルであるものの、製品コストが発明例1~6に比べて約30%以上高くなった。
From the results of Table 2, the number of Nb and Sn atoms in the rust layer is within the range of Nb: 0.01 or more and Sn: 0.005 or more at the maximum with respect to the number 100 of Fe atoms. Examples 1 to 6 all have an average corrosion rate of 57.2 μm / year or less, and are excellent in corrosion resistance compared to conventional weathering steel even in a severe corrosive environment where high salinity exists. Furthermore, the average number of concentrated layers in Invention Examples 1 to 6 is 5 or more for Nb and 3 or more for Sn.
On the other hand, in Comparative Examples 1 to 7 in which the contents of Nb and Sn components are outside the scope of the present invention in the rust layer, the average corrosion rate is over 65 μm / year, and in a severe corrosive environment where high salinity exists. Corrosion resistance at is poor.
Further, in Reference Example 1 in which expensive Ni is contained in a large amount of 1.53% in the steel material, the corrosion resistance is the same level as that of Invention Examples 1 to 6, but the product cost is about as compared with Invention Examples 1 to 6. More than 30% higher.
 実施例1と同様の方法にて、表1に示す成分組成を有する鋼板の試験片を作製した。試験片は、表面に、算術平均粗さRaが1.6μm以下となるよう研削加工を施し、端面、裏面をテープシールし、試験片の表面露出部の面積が25mm×25mmとなるよう表面もテープシールした。
 以上により得られた試験片について、温度40℃、相対湿度40%RHの乾燥雰囲気内で11時間放置し、その後、1時間の移行時間をとった後、温度25℃、相対湿度95%RHの湿潤雰囲気内で11時間放置し、その後、1時間の移行時間をとる、合計24時間の工程を1サイクルとして、1日1サイクルを1年間(365日)繰り返すとともに、試験片の表面に付着する付着塩分量が0.10~0.40mddとなるような量の人工海水溶液を週に一回、乾燥工程中に試験片の表面に塗布することによりさび形成を行った。人工海水溶液の塗布は、たとえば、0.3mddの場合、2.1mg/dmの塩分が試験片表面に付着する量の人工海水溶液を試験片表面に塗布した。このさび形成を行った試験片に対し、その後さらに6ヶ月間、付着塩分量0.2mddの高塩分環境下で腐食試験を行った。腐食試験終了後、実施例1と同様の方法にて、平均腐食速度(μm/年)を求めた。この平均腐食速度が60μm/年以下であれば、耐食性が優れているとして評価した。
 また、各試験片について、実施例1と同様の方法にて、NbおよびSn元素が濃化している濃化層の個数(個)についても調査した。NbまたはSnの濃化層が無い場合は、「×」と表3中に表記した。
表3に、さび層中のNb、Snの含有の有無およびNb、Sn成分の含有量(Fe原子数100に対するNb、Snの原子数)、濃化層の平均個数、平均腐食速度の結果を示す。なお、これらの測定方法は、上述の方法と同様である。
 表3の結果から、さび層中のNb、Snの原子数が、Fe原子数100に対して、最大値でNb:0.01以上およびSn:0.005以上の範囲内である発明例7~15は、いずれも平均腐食速度が57.3μm/年以下であり、高塩分が存在する厳しい腐食環境下であっても、従来の耐候性鋼に比べて耐食性に優れている。さらに、発明例7~15における濃化層の平均個数は、いずれもNbが5個以上、Snが3個以上となっている。
 一方、さび層中に、NbおよびSn成分の含有量が本発明範囲外である比較例8~17は、いずれも平均腐食速度が63.9μm/年超えであり、高塩分が存在する厳しい腐食環境下での耐食性が劣っている。
In the same manner as in Example 1, steel sheet test pieces having the component compositions shown in Table 1 were prepared. The test piece is ground so that the arithmetic average roughness Ra is 1.6 μm or less, the end face and the back face are tape-sealed, and the surface of the test piece is exposed to an area of 25 mm × 25 mm. Tape sealed.
The test piece obtained as described above was left in a dry atmosphere at a temperature of 40 ° C. and a relative humidity of 40% RH for 11 hours, and after taking a transition time of 1 hour, the temperature of 25 ° C. and a relative humidity of 95% RH The sample is left in a humid atmosphere for 11 hours, and then takes a transition time of 1 hour. A total of 24 hours is taken as 1 cycle, and 1 cycle per day is repeated for 1 year (365 days) and adheres to the surface of the test piece. Rust formation was performed by applying an artificial seawater solution in such an amount that the amount of adhered salt was 0.10 to 0.40 mdd once a week to the surface of the test piece during the drying process. For example, in the case of 0.3 mdd, the artificial seawater solution was applied to the surface of the test piece in such an amount that 2.1 mg / dm 2 of salt adhered to the surface of the test piece. A corrosion test was performed on the test piece on which the rust had been formed in a high salinity environment with an attached salt content of 0.2 mdd for another 6 months. After the corrosion test, the average corrosion rate (μm / year) was determined in the same manner as in Example 1. If this average corrosion rate was 60 μm / year or less, the corrosion resistance was evaluated as excellent.
Further, for each test piece, the number (number) of concentrated layers in which the Nb and Sn elements were concentrated was also examined by the same method as in Example 1. When there was no Nb or Sn enriched layer, it was indicated in Table 3 as “x”.
Table 3 shows the results of the presence or absence of Nb and Sn in the rust layer, the content of Nb and Sn components (the number of Nb and Sn atoms with respect to the number of Fe atoms of 100), the average number of concentrated layers, and the average corrosion rate. Show. Note that these measurement methods are the same as those described above.
From the results of Table 3, Invention Example 7 in which the number of Nb and Sn atoms in the rust layer is within the range of Nb: 0.01 or more and Sn: 0.005 or more with respect to the number of Fe atoms of 100. Each of Nos. 15 to 15 has an average corrosion rate of 57.3 μm / year or less, and is excellent in corrosion resistance as compared with conventional weathering steel even in a severe corrosive environment where high salinity exists. Furthermore, the average number of concentrated layers in Invention Examples 7 to 15 is 5 or more for Nb and 3 or more for Sn.
On the other hand, in Comparative Examples 8 to 17 in which the contents of the Nb and Sn components are outside the range of the present invention in the rust layer, the average corrosion rate exceeds 63.9 μm / year, and severe corrosion in which high salinity exists is present. Corrosion resistance in the environment is poor.
 本発明によれば、低コストかつ無塗装で耐食性に優れたさび層付き鋼材の提供が可能になった。本発明の鋼材は、耐食性向上に有効な元素を適量且つ有効に含有させることで、Niなどの高価な元素を多量に含有させることなく低コストで、飛来塩分量が多い、厳しい腐食環境下であっても優れた耐侯性を発揮することができる。本発明は、飛来塩分量が0.05mdd超えの高飛来塩分環境下において、特に顕著な効果を発揮することができる。 According to the present invention, it is possible to provide a steel material with a rust layer that is low-cost, non-painted, and excellent in corrosion resistance. The steel material of the present invention contains an element effective for improving the corrosion resistance in an appropriate amount and effectively, so that it is low-cost without containing a large amount of expensive elements such as Ni, under a severe corrosive environment with a large amount of incoming salt. Even if it exists, it can exhibit excellent weather resistance. The present invention can exert a particularly remarkable effect in a high flying salt environment where the flying salt content exceeds 0.05 mdd.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (3)

  1.  素地鋼材の表面にさび層を形成してなるさび層付き鋼材において、
    該さび層は、NbおよびSnを含有し、かつ前記さび層中のNb原子の数は、Fe原子数100に対し最大値にして0.01以上であり、前記さび層中のSn原子の数は、Fe原子の数100に対し最大値にして0.005以上であるさび層付き鋼材。
    In the steel material with a rust layer formed by forming a rust layer on the surface of the base steel material,
    The rust layer contains Nb and Sn, and the number of Nb atoms in the rust layer is 0.01 or more with respect to 100 Fe atoms, and the number of Sn atoms in the rust layer Is a steel material with a rust layer having a maximum value of 0.005 or more with respect to hundreds of Fe atoms.
  2.  前記素地鋼材は、質量%で、Nb:0.005%以上0.200%以下およびSn:0.005%以上0.200%以下の成分を含有する請求項1に記載のさび層付き鋼材。 2. The steel material with a rust layer according to claim 1, wherein the base steel material contains components of Nb: 0.005% to 0.200% and Sn: 0.005% to 0.200% in mass%.
  3.  前記さび層の素地鋼材側部分は、NbおよびSnの元素を含むβ−オキシ水酸化鉄(β−FeOOH)を含有する請求項1または2に記載のさび層付き鋼材。 3. The steel material with a rust layer according to claim 1, wherein the base steel material side portion of the rust layer contains β-iron oxyhydroxide (β-FeOOH) containing elements of Nb and Sn.
PCT/JP2012/059123 2011-03-29 2012-03-28 Steel material with rust layer, exhibiting excellent weather resistance even in high-salt environments WO2012133908A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280015652.1A CN103459670B (en) 2011-03-29 2012-03-28 The steel of the band rusty scale had excellent weather resistance under high salinity environment
KR1020137025937A KR101609430B1 (en) 2011-03-29 2012-03-28 Steel with rust layer excellent in weathering resistance in highly salty environment

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-071474 2011-03-29
JP2011071474 2011-03-29
JP2011-280803 2011-12-22
JP2011280803 2011-12-22
JP2012070932A JP5891892B2 (en) 2011-03-29 2012-03-27 Steel with rust layer with excellent weather resistance in high salinity environment
JP2012-070932 2012-03-27

Publications (1)

Publication Number Publication Date
WO2012133908A1 true WO2012133908A1 (en) 2012-10-04

Family

ID=46931593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059123 WO2012133908A1 (en) 2011-03-29 2012-03-28 Steel material with rust layer, exhibiting excellent weather resistance even in high-salt environments

Country Status (4)

Country Link
JP (1) JP5891892B2 (en)
KR (1) KR101609430B1 (en)
CN (1) CN103459670B (en)
WO (1) WO2012133908A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218022A (en) * 2015-05-26 2016-12-22 国立研究開発法人物質・材料研究機構 Corrosion resistance evaluation method of oxide
KR101750320B1 (en) * 2013-05-09 2017-06-23 제이에프이 스틸 가부시키가이샤 Steel material having excellent weatherability
KR101943240B1 (en) * 2014-12-09 2019-01-28 제이에프이 스틸 가부시키가이샤 Structural steel material having excellent atmospheric corrosion resistance

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601259B2 (en) * 2016-02-22 2019-11-06 日本製鉄株式会社 Weatherproof coated steel material and anticorrosion method for weatherable steel material
JP7043823B2 (en) * 2017-12-15 2022-03-30 日本製鉄株式会社 Corrosion test method
WO2021059345A1 (en) * 2019-09-24 2021-04-01 長瀬産業株式会社 Method for producing coated steel material, and coated steel material
CN113621873B (en) * 2021-08-19 2022-04-08 宝武集团鄂城钢铁有限公司 Weather-resistant structural steel with stabilized rust layer and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179882A (en) * 2009-05-11 2009-08-13 Sumitomo Metal Ind Ltd Steel having excellent seaside weather resistance and structure
JP2010163643A (en) * 2009-01-14 2010-07-29 Jfe Steel Corp Structural steel material having excellent weatherability
JP2010248567A (en) * 2009-04-15 2010-11-04 Sumitomo Metal Ind Ltd Surface-treated steel material excellent in corrosion resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101437974B (en) * 2006-05-09 2011-07-13 新日铁住金不锈钢株式会社 Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in resistance to crevice corrosion and formability, and ferritic stainless steel excellent inresistance to crevice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163643A (en) * 2009-01-14 2010-07-29 Jfe Steel Corp Structural steel material having excellent weatherability
JP2010248567A (en) * 2009-04-15 2010-11-04 Sumitomo Metal Ind Ltd Surface-treated steel material excellent in corrosion resistance
JP2009179882A (en) * 2009-05-11 2009-08-13 Sumitomo Metal Ind Ltd Steel having excellent seaside weather resistance and structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101750320B1 (en) * 2013-05-09 2017-06-23 제이에프이 스틸 가부시키가이샤 Steel material having excellent weatherability
KR101943240B1 (en) * 2014-12-09 2019-01-28 제이에프이 스틸 가부시키가이샤 Structural steel material having excellent atmospheric corrosion resistance
JP2016218022A (en) * 2015-05-26 2016-12-22 国立研究開発法人物質・材料研究機構 Corrosion resistance evaluation method of oxide

Also Published As

Publication number Publication date
CN103459670B (en) 2016-01-20
JP2013147729A (en) 2013-08-01
JP5891892B2 (en) 2016-03-23
KR20130126729A (en) 2013-11-20
CN103459670A (en) 2013-12-18
KR101609430B1 (en) 2016-04-05

Similar Documents

Publication Publication Date Title
JP5891892B2 (en) Steel with rust layer with excellent weather resistance in high salinity environment
JP5691350B2 (en) Structural steels and steel structures with excellent weather resistance
JP5120510B2 (en) Steel material with excellent weather resistance
JP6556163B2 (en) Structural steel with excellent weather resistance
JP5120472B2 (en) Structural steel with excellent weather resistance
JP5950037B2 (en) Steel material with excellent weather resistance
JP2012214871A (en) Steel material with rust layer excellent in corrosion resistance
JP5796403B2 (en) Steel material for welded structures with excellent weather resistance
CN107849664B (en) Structural steel material excellent in weather resistance
JP5600986B2 (en) Structural steel with excellent weather resistance
JP6500848B2 (en) Steel for bolts
JP5797877B2 (en) Weatherproof steel with excellent corrosion resistance in high humidity environments
JP6094669B2 (en) Welded structural steel
JP6988858B2 (en) Steel for bolts
JP2017150006A (en) Coating corrosion resistant steel material and corrosion prevention method of corrosion resistant steel material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137025937

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12765540

Country of ref document: EP

Kind code of ref document: A1