WO2012133512A1 - Heat incision forceps and heat incision forceps system - Google Patents

Heat incision forceps and heat incision forceps system Download PDF

Info

Publication number
WO2012133512A1
WO2012133512A1 PCT/JP2012/058100 JP2012058100W WO2012133512A1 WO 2012133512 A1 WO2012133512 A1 WO 2012133512A1 JP 2012058100 W JP2012058100 W JP 2012058100W WO 2012133512 A1 WO2012133512 A1 WO 2012133512A1
Authority
WO
WIPO (PCT)
Prior art keywords
forceps
incision
heating element
living tissue
thermal
Prior art date
Application number
PCT/JP2012/058100
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 啓太
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Publication of WO2012133512A1 publication Critical patent/WO2012133512A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • A61B18/085Forceps, scissors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance

Definitions

  • the present invention relates to a thermal incision forceps and a thermal incision forceps system for incising a living tissue using the thermal incision forceps.
  • Patent Literature 1 discloses a thermal incision forceps having a heating element heated by electric energy. According to the thermal incision forceps described in Patent Document 1, the living tissue can be incised by bringing the heated heating element into contact with the living tissue.
  • the thermal incision forceps described in Patent Document 1 do not have means for detecting that a living tissue has been incised. For this reason, the user who operates the heat incising forceps must visually confirm that the living tissue has been incised using, for example, an endoscope, and the procedure may be complicated.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a thermal incision forceps capable of easily incising a living tissue.
  • the present invention proposes the following means.
  • a thermal incision forceps for incising the living tissue by applying thermal energy to the living tissue through the forceps member, provided on the forceps member, By heating by contact with the electric energy, the heating element that cauterizes and incises the living tissue, and when the heating element contacts the living tissue, the living tissue can be contacted on both sides of the heating element A pair of sensing electrodes.
  • the heating element and the pair of detection electrodes are connected to an external control unit, and the control unit is
  • the incision state of the living tissue may be detected by a detection electrode, and the supply of electrical energy to the heating element may be controlled based on the incision state.
  • the detection electrode may be fixed to the forceps member.
  • the forceps member in the first or second aspect, includes a pair of ridges extending in the longitudinal direction and provided on both sides in the width direction of the ridges.
  • the heating element is formed in a linear shape and is fixed to the ridge along the longitudinal direction of the ridge, and the detection electrode is It may be fixed to each of the slopes of the set.
  • control unit detects the incision state by measuring a change in impedance of the living tissue between the pair of detection electrodes. Also good.
  • control unit detects the incision state by measuring a change in the conduction state of the living tissue between the pair of detection electrodes. May be.
  • control unit determines that the biological tissue is incised based on the incision state, and the biological tissue is incised.
  • the supply of the electric energy to the heating element may be stopped.
  • the thermal incision forceps according to the present invention is connected to the forceps member and the biological tissue. You may further provide the 2nd forceps member pressed and hold
  • the second forceps member may have a second forceps surface that is directed toward the heating element and can contact the living tissue. good.
  • a thermal incision forceps system using thermal incision forceps for incising the biological tissue by applying thermal energy to the biological tissue through the forceps member,
  • a heating element that is in contact with the living tissue and generates heat by electrical energy, and on both sides of the heating element when the heating element comes into contact with the living tissue.
  • a pair of detection electrodes that can contact the living tissue, and the incision state of the living tissue is detected by the pair of detection electrodes that are connected to the detection electrode and connected to the heating element, and that are in contact with the living tissue.
  • a control unit that controls supply of the electric energy to the heating element based on the incision state.
  • the control unit detects the incision state of the living tissue using the detection electrode provided on the forceps member, and the supply of electric energy to the heating element is controlled based on the detected incision state. Is done. For this reason, it is possible to save the user from having to check the incision state, and to easily dissect the living tissue.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is a perspective view which shows the treatment part in the heat incision forceps of one Embodiment of this invention. It is a figure for demonstrating the operation
  • FIG. 1 is a schematic diagram of a thermal incision forceps 1.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a perspective view showing the treatment section 3 in the thermal incision forceps 1.
  • the thermal incision forceps 1 according to the present embodiment is a medical treatment tool that applies thermal energy to a living tissue to incise the living tissue. Further, the thermal incision forceps 1 of the present embodiment is inserted through the treatment instrument channel of the endoscope and can be used with the endoscope.
  • the thermal incision forceps 1 includes a long cylindrical insertion portion 2 that can be inserted into a treatment instrument channel of an endoscope, a treatment portion 3 disposed at the distal end of the insertion portion 2, and An operation unit 20 disposed at the proximal end of the insertion unit 2 and a control unit 30 electrically connected to the treatment unit 3 via the operation unit 20 are provided.
  • the treatment section 3 supports a pair of forceps members 4 (first forceps member 4A and second forceps member 4B) that can be opened and closed and the first forceps member 4A so that the first forceps member 4A can be opened and closed. And a heating element 9 attached to the first forceps member 4A and a pair of detection electrodes 10 (first detection electrode 10A, second detection electrode 10B).
  • the first forceps member 4A has a forceps surface 4a on which a ridge portion 5 extending in the longitudinal direction of the first forceps member 4A and a pair of inclined surfaces 6 provided on both sides in the width direction of the ridge portion 5 are formed. Both the ridge 5 and the inclined surface 6 on the forceps surface 4 a come into contact with the living tissue when the living tissue is grasped by the pair of forceps members 4. As shown in FIG. 3, a substantially cylindrical rotating shaft member 7a is connected to the first forceps member 4A. Thereby, 4 A of 1st forceps members are freely rotatable with respect to the support part 7 by the rotating shaft member 7a.
  • the second forceps member 4B presses and holds the living tissue sandwiched between the first forceps member 4A and the heating element 9. Further, the second forceps member 4 ⁇ / b> B is fixed to the support portion 7. On the side of the second forceps member 4B facing the first forceps member 4A, a sawtooth-shaped uneven portion (second forceps surface) 8 is formed.
  • the concavo-convex portion 8 functions as an anti-slip when a living tissue is gripped.
  • the heating element 9 is formed in a linear shape, and is fixed to the ridge 5 along the longitudinal direction of the ridge 5 of the first forceps member 4A.
  • the heating element 9 is a member that generates heat by electric energy.
  • a ceramic heater, a nichrome wire heater, or the like can be employed as a material of the heating element 9.
  • a pair of power lines 33 connected to an output adjustment unit 32 of the control unit 30 described later is fixed to the heating element 9.
  • the first detection electrode 10A and the second detection electrode 10B are fixed to each of a pair of inclined surfaces 6 formed on the first forceps member 4A.
  • the first detection electrode 10A and the second detection electrode 10B are arranged so that the surfaces of the first detection electrode 10A and the second detection electrode 10B and the outer surface of the first forceps member 4A are substantially flush with each other.
  • the first detection electrode 10A and the second detection electrode 10B are electrically connected to a detection unit 31 of the control unit 30 described later by a set of signal lines 34, respectively.
  • the operation unit 20 includes an operation unit main body 21 and a slider 24 that is slidably attached to the operation unit main body 21.
  • the operation portion main body 21 includes a shaft portion 22 on which a rail 22a for guiding the slider 24 is formed, and a ring-shaped finger hook portion 23 on which a user of the thermal incision forceps 1 holds a finger.
  • the slider 24 is connected to the first forceps member 4 ⁇ / b> A by a wire (not shown) inserted through the insertion portion 2.
  • the first forceps member 4A opens and closes around the central axis of the rotating shaft member 7a as shown in FIG.
  • the control unit 30 is disposed in a power supply device PU for supplying electrical energy to the heating element 9 of the treatment unit 3, and includes a detection unit 31 connected to the pair of detection electrodes 10, the detection unit 31, and the heating unit. 9 and an output adjustment unit 32 connected to the control unit 9.
  • the detection unit 31 detects the incision state of the biological tissue by the pair of detection electrodes 10 in contact with the biological tissue.
  • the incision state of the living tissue detected by the detection unit 31 includes two states: a state in which the living tissue is incised and a state in which the living tissue is not incised and is sandwiched between the pair of forceps members 4. State.
  • the detection method of the incision state of the biological tissue in the detection unit 31 is to measure a change in impedance of the biological tissue between the pair of detection electrodes 10.
  • the detection unit 31 stores in advance the impedance of the biological tissue in a state where the biological tissue is sandwiched between the pair of forceps members 4 as a set value. When the impedance of the living tissue exceeds the set value, the detection unit 31 determines that the living tissue has been incised.
  • the detection unit 31 outputs a stop signal for stopping the incision of the living tissue to the output adjustment unit 32 when it is determined that the living tissue has been incised.
  • the output adjustment unit 32 supplies electric energy to the heating element 9 based on an input from a switch such as a foot switch (not shown), and supplies electric energy to the heating element 9 based on a stop signal input from the detection unit 31. Stop.
  • FIG. 4 is a view for explaining an operation when the thermal incision forceps 1 is used.
  • the thermal incision forceps 1 is used while observing the treatment portion 3 using an endoscope, for example, with the insertion portion 2 inserted into a treatment instrument channel of an endoscope.
  • a user of the thermal incision forceps 1 guides the treatment section 3 to a living tissue to be incised, and grips the target living tissue with a pair of forceps members 4.
  • the user sets in advance a line L that is a line to be incised with respect to the living tissue to be incised, and adjusts the gripping position so that the heating element 9 is positioned on the line L.
  • the first detection electrode 10A and the second detection electrode 10B are respectively located on both sides of the line L. Contact with living tissue.
  • step S101 shown in FIG. 5 the user starts energization by the power supply device PU using a switch such as a foot switch.
  • the output adjustment unit 32 of the control unit 30 supplies electric energy to the heating element 9.
  • the detection unit 31 of the control unit 30 starts measuring the impedance of the living tissue between the first detection electrode 10A and the second detection electrode 10B (step S102).
  • the heating element 9 When electric energy is supplied to the heating element 9, the heating element 9 generates heat by energizing the heating element 9. Since the heating element 9 is in contact with the line L of the living tissue, when the heating element 9 generates heat, the living tissue is heated along the line L by the heat generated by the heating element 9. Thereby, the living tissue is cauterized and incised by the heating element 9 along the line L.
  • the cut biological tissue is separated into tissue pieces. Since the incised cuts are separated from each other, the shortest distance through the living tissue from the first detection electrode 10A to the second detection electrode 10B is longer than before the incision. For this reason, after the living tissue is incised, the impedance of the living tissue measured by the detection unit 31 becomes higher than that before the incision. Even when the living tissue is separated from the first detection electrode 10A and the second detection electrode 10B due to the incision of the living tissue, the impedance of the living tissue measured by the detection unit 31 is higher than that before the incision.
  • the impedance of the living tissue is measured by the detection unit 31, and it is repeatedly determined whether or not the impedance of the living tissue is equal to or higher than a set value (step S103).
  • the detection unit 31 determines that the impedance of the living tissue has risen above the set value
  • the detection unit 31 outputs a stop signal for stopping the supply of electrical energy to the output adjustment unit 32.
  • the stop signal from the detection unit 31 is input, and energization to the heating element 9 is stopped (step S104).
  • the control unit 30 determines that the living tissue is incised based on the incision state of the living tissue, and stops supplying electric energy to the heating element 9 when it is determined that the living tissue is incised. .
  • the supply of electrical energy to the heating element 9 is stopped by the control unit 30 when the living tissue is incised. It is possible to save the user from having to determine the incision state of the living tissue. For this reason, it is possible to save the user from having to check the incision state, and to easily dissect the living tissue.
  • the incision site may not be sufficiently visible in the visual field of the endoscope. In such a case, it may be difficult for the user to grasp from the endoscopic image that the incision has been properly completed.
  • the supply of electric energy can be stopped when the incision is properly completed. It is possible to reduce the possibility of excessive application or incomplete incision.
  • the pair of detection electrodes 10 is fixed to the first forceps member 4A provided with the heating element 9, the pair of detection electrodes 10 can be attached to both sides of the line L only by grasping the living tissue with the pair of forceps members 4. Can be contacted.
  • the heating element 9 can be suitably pressed against the living tissue. Furthermore, since the pair of detection electrodes 10 are fixed to each of the pair of inclined surfaces 6, it is possible to detect a change in impedance of the living tissue without disturbing the visual field of the endoscope when the living tissue is incised. it can.
  • FIG. 6 is a flowchart showing an operation flow when using the thermal incision forceps 1A of the present modification.
  • the thermal incision forceps 1A (see FIG. 1) of the present modified example has the same external shape as the above-mentioned thermal incision forceps 1, but is different from the above-mentioned thermal incision forceps 1 in that a control unit 30A is provided instead of the control unit 30. The configuration is different.
  • the control unit 30A operates differently from the control unit 30 described above. As shown in FIG. 6, when the impedance of the living tissue is less than the set value, the control unit 30A increases the power supplied to the heating element 9 to further heat the heating element 9 (step S105 shown in FIG. 6). ). When the impedance of the living tissue becomes equal to or higher than the set value, the energization to the heating element 9 is stopped similarly to the control unit 30 (step S104). As described above, in this modification, the control unit 30A detects the incision state of the living tissue using the pair of detection electrodes 10 in contact with the living tissue, and gradually supplies power until the living tissue is completely incised. The control unit 30A controls the supply of electric energy so as to increase. Thereby, a living tissue can be incised in a shorter time than the above-described thermal incision forceps 1.
  • FIG. 7 is a schematic diagram showing the configuration of the thermal incision forceps 1B of the present modification, and is a cross-sectional view taken along the cross-sectional instruction line similar to the AA line of FIG.
  • the thermal incision forceps 1B of the present modification is different from the above-described thermal incision forceps 1 in that a second heating element 9B is provided on the second forceps member 4B.
  • the second heating element 9B is a living tissue in which the magnitude of the supplied current is detected by the pair of detection electrodes 10 in the same manner as the heating element 9 provided in the first forceps member 4A. Is controlled by the control unit 30 based on the impedance.
  • the same effect as the above-described thermal incision forceps 1 can be obtained.
  • the first forceps member 4A is provided with the heating element 9
  • the second forceps member 4B is provided with the second heating element 9B.
  • control unit 30 is disposed in the power supply device PU has been described, but it is not essential that the control unit 30 and the power supply device PU are integrated.
  • the control unit 30 is interposed in a power supply cord that connects the power supply device PU and the operation unit 20, and the power supplied from the power supply device PU is obtained. It can be controlled by the control unit 30. If it is such a structure, the power supply device PU used for the conventional heat incision forceps can be diverted, and it can be set as the heat incision forceps 1 of this invention.
  • the thermal incision forceps of the present invention measures the change in impedance.
  • a control unit that measures a change in the conduction state of the living tissue between the pair of detection electrodes may be provided. In this case, when the living tissue is incised, conduction between the pair of detection electrodes is lost, and the control unit determines that the living tissue has been incised based on the absence of conduction. When the control unit determines that the living tissue has been incised, the control unit stops the supply of electric energy to the heating element.
  • the control unit detects the incision state of the biological tissue using the detection electrode provided on the forceps member, and controls the supply of electric energy to the heating element based on the detected incision state. Is done. For this reason, it is possible to save the user from having to check the incision state, and to easily dissect the living tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

Provided is a heat incision forceps incising a biological tissue by applying heat energy to the biological tissue with a forceps member, which comprises a heating element disposed at the forceps member to carry out cautery incision of the biological tissue by coming into contact with the biological tissue and causing heat generation using electric energy; a pair of detective electrodes capable of coming into contact with the biological tissue at both sides of where the heating element is inserted when the heating element comes into contact with the biological tissue; and a control unit detecting the state of incision of the biological tissue with the pair of electrodes and controlling supply of the electric energy to the heating element based on the state of incision. The control unit is disposed at an outer side of the forceps member; and the heating element and the pair of detective electrodes are connected to the control unit.

Description

熱切開鉗子および熱切開鉗子システムThermotomy forceps and thermotomy forceps system
 本発明は、熱切開鉗子および、前記熱切開鉗子を用いて生体組織を切開する熱切開鉗子システムに関する。
 本願は、2011年03月30日に、日本に出願された特願2011-075736号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a thermal incision forceps and a thermal incision forceps system for incising a living tissue using the thermal incision forceps.
This application claims priority on March 30, 2011 based on Japanese Patent Application No. 2011-075736 filed in Japan, the contents of which are incorporated herein by reference.
 従来、生体組織を切開する医療用処置具の例としては、メスや剪刀など鋭利に形成された刃物や、生体組織を焼灼することにより切開する切開具などが知られている。
 生体組織に対して切開および焼灼をすることができる切開具の例として、特許文献1には、電気エネルギーによって加熱される発熱体を有する熱切開鉗子が開示されている。特許文献1に記載の熱切開鉗子によれば、加熱された発熱体を生体組織に接触させることにより生体組織を切開することができる。
Conventionally, as examples of medical treatment tools for incising living tissue, sharply formed blades such as a scalpel or scissors, an incision tool for incising by cauterizing living tissue, and the like are known.
As an example of an incision tool that can incise and cauterize a living tissue, Patent Literature 1 discloses a thermal incision forceps having a heating element heated by electric energy. According to the thermal incision forceps described in Patent Document 1, the living tissue can be incised by bringing the heated heating element into contact with the living tissue.
特表2006-519653号公報JP 2006-519653 A
 しかしながら、特許文献1に記載の熱切開鉗子には、生体組織が切開されたことを検知する手段がない。このため、熱切開鉗子を操作するユーザが例えば内視鏡などを用いて生体組織が切開されたことを目視で確認しなければならず、手技が煩雑になるという可能性がある。 However, the thermal incision forceps described in Patent Document 1 do not have means for detecting that a living tissue has been incised. For this reason, the user who operates the heat incising forceps must visually confirm that the living tissue has been incised using, for example, an endoscope, and the procedure may be complicated.
 本発明は、上述した事情に鑑みてなされたものであって、生体組織を容易に切開することができる熱切開鉗子の提供を目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a thermal incision forceps capable of easily incising a living tissue.
 上記課題を解決するために、この発明は以下の手段を提案している。
 本発明の第1の態様によれば、鉗子部材を介して生体組織に対し熱エネルギーを与えることで前記生体組織を切開する熱切開鉗子であって、前記鉗子部材に設けられ、前記生体組織に接触して電気エネルギーにより発熱することで、前記生体組織を焼灼切開する発熱体と、前記発熱体が前記生体組織に接触した際に、前記発熱体を挟んだ両側にて前記生体組織に接触可能な一対の検知電極と、を備える。
In order to solve the above problems, the present invention proposes the following means.
According to the first aspect of the present invention, there is provided a thermal incision forceps for incising the living tissue by applying thermal energy to the living tissue through the forceps member, provided on the forceps member, By heating by contact with the electric energy, the heating element that cauterizes and incises the living tissue, and when the heating element contacts the living tissue, the living tissue can be contacted on both sides of the heating element A pair of sensing electrodes.
 また、本発明の第2の態様によれば、上記第1の態様において、記発熱体および前記一対の検知電極は、外部に設けられた制御部に接続され、前記制御部は、前記一対の検知電極により前記生体組織の切開状態を検出して前記切開状態に基づき前記発熱体への電気エネルギーの供給を制御しても良い。 According to a second aspect of the present invention, in the first aspect, the heating element and the pair of detection electrodes are connected to an external control unit, and the control unit is The incision state of the living tissue may be detected by a detection electrode, and the supply of electrical energy to the heating element may be controlled based on the incision state.
 また、本発明の第3の態様によれば、上記第1の態様において、前記検知電極は、前記鉗子部材に固定されていても良い。 Further, according to the third aspect of the present invention, in the first aspect, the detection electrode may be fixed to the forceps member.
 また、本発明の第4の態様によれば、上記第1または第2の態様において、前記鉗子部材は、長手方向に延びる稜部と、前記稜部の幅方向両側に設けられた一組の斜面とが形成された鉗子面を有し、前記発熱体は、線状に形成されているとともに前記稜部の長手方向に沿って前記稜部に固定されており、前記検知電極は、前記一組の斜面の各々に固定されていても良い。 According to a fourth aspect of the present invention, in the first or second aspect, the forceps member includes a pair of ridges extending in the longitudinal direction and provided on both sides in the width direction of the ridges. The heating element is formed in a linear shape and is fixed to the ridge along the longitudinal direction of the ridge, and the detection electrode is It may be fixed to each of the slopes of the set.
 また、本発明の第5の態様によれば、上記第2の態様において、前記制御部は、前記一対の検知電極間における生体組織のインピーダンスの変化を測定することにより前記切開状態を検出しても良い。 According to a fifth aspect of the present invention, in the second aspect, the control unit detects the incision state by measuring a change in impedance of the living tissue between the pair of detection electrodes. Also good.
 また、本発明の第6の態様によれば、上記第2の態様において、前記制御部は、前記一対の検知電極間における生体組織の導通状態の変化を測定することにより前記切開状態を検出しても良い。 According to a sixth aspect of the present invention, in the second aspect, the control unit detects the incision state by measuring a change in the conduction state of the living tissue between the pair of detection electrodes. May be.
 また、本発明の第7の態様によれば、上記第2の態様において、前記制御部は、前記切開状態に基づいて前記生体組織が切開されたことを判定し、前記生体組織が切開されたと判定したときに前記発熱体への前記電気エネルギーの供給を停止しても良い。 According to a seventh aspect of the present invention, in the second aspect, the control unit determines that the biological tissue is incised based on the incision state, and the biological tissue is incised. When the determination is made, the supply of the electric energy to the heating element may be stopped.
 また、本発明の第8の態様によれば、上記第1から上記第6の態様のいずれか1態様において、本発明の熱切開鉗子は、前記鉗子部材に連結されているとともに前記生体組織を前記発熱体に押し付けて保持する第二鉗子部材をさらに備えていても良い。 According to an eighth aspect of the present invention, in any one of the first to sixth aspects, the thermal incision forceps according to the present invention is connected to the forceps member and the biological tissue. You may further provide the 2nd forceps member pressed and hold | maintained to the said heat generating body.
 また、本発明の第9の態様によれば、上記第8の態様において、前記第二鉗子部材は、前記発熱体側に向けられ前記生体組織に接触可能な第二鉗子面を有していても良い。 According to a ninth aspect of the present invention, in the eighth aspect, the second forceps member may have a second forceps surface that is directed toward the heating element and can contact the living tissue. good.
 また、同じく上記課題を解決するために、この発明は以下の手段を提案している。
 本発明の第10の態様によれば、鉗子部材を介して生体組織に対し熱エネルギーを与えることで前記生体組織を切開する熱切開鉗子を用いた熱切開鉗子システムであって、前記鉗子部材に設けられ、前記生体組織に接触して電気エネルギーにより発熱することで、前記生体組織を焼灼切開する発熱体と、前記発熱体が前記生体組織に接触した際に、前記発熱体を挟んだ両側にて前記生体組織に接触可能な一対の検知電極と、前記検知電極に接続されているとともに前記発熱体に接続され、前記生体組織に接触した前記一対の検知電極により前記生体組織の切開状態を検出し、前記切開状態に基づいて前記発熱体への前記電気エネルギーの供給を制御する制御部と、を備える。
In order to solve the above-mentioned problem, the present invention proposes the following means.
According to a tenth aspect of the present invention, there is provided a thermal incision forceps system using thermal incision forceps for incising the biological tissue by applying thermal energy to the biological tissue through the forceps member, A heating element that is in contact with the living tissue and generates heat by electrical energy, and on both sides of the heating element when the heating element comes into contact with the living tissue. A pair of detection electrodes that can contact the living tissue, and the incision state of the living tissue is detected by the pair of detection electrodes that are connected to the detection electrode and connected to the heating element, and that are in contact with the living tissue. And a control unit that controls supply of the electric energy to the heating element based on the incision state.
 上記の熱切開鉗子によれば、鉗子部材に設けられた検知電極を用いて制御部において生体組織の切開状態を検出し、検出された切開状態に基づいて発熱体への電気エネルギーの供給が制御される。このため、ユーザが切開状態を確認する手間を省くことができ、生体組織を容易に切開することができる。 According to the thermal incision forceps described above, the control unit detects the incision state of the living tissue using the detection electrode provided on the forceps member, and the supply of electric energy to the heating element is controlled based on the detected incision state. Is done. For this reason, it is possible to save the user from having to check the incision state, and to easily dissect the living tissue.
本発明の一実施形態の熱切開鉗子を示す模式図である。It is a schematic diagram which shows the heat incision forceps of one Embodiment of this invention. 図1のA-A線における断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 本発明の一実施形態の熱切開鉗子における処置部を示す斜視図である。It is a perspective view which shows the treatment part in the heat incision forceps of one Embodiment of this invention. 本発明の一実施形態の熱切開鉗子の使用時の動作を説明するための図である。It is a figure for demonstrating the operation | movement at the time of use of the thermal incision forceps of one Embodiment of this invention. 本発明の一実施形態の熱切開鉗子の使用時の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement at the time of use of the heat incision forceps of one Embodiment of this invention. 本発明の一実施形態の熱切開鉗子の使用時の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement at the time of use of the heat incision forceps of one Embodiment of this invention. 本発明の一実施形態の熱切開鉗子の変形例の示す模式図である。It is a schematic diagram which shows the modification of the heat incision forceps of one Embodiment of this invention.
 本発明の一実施形態の熱切開鉗子1について説明する。
 図1は、熱切開鉗子1の模式図である。図2は、図1のA-A線における断面図である。図3は熱切開鉗子1における処置部3を示す斜視図である。
 本実施形態の熱切開鉗子1は、生体組織に対して熱エネルギーを与えて生体組織を切開する医療用処置具である。また、本実施形態の熱切開鉗子1は、内視鏡の処置具チャンネルに挿通され、内視鏡とともに使用することができる。
A thermal incision forceps 1 according to an embodiment of the present invention will be described.
FIG. 1 is a schematic diagram of a thermal incision forceps 1. FIG. 2 is a cross-sectional view taken along line AA in FIG. FIG. 3 is a perspective view showing the treatment section 3 in the thermal incision forceps 1.
The thermal incision forceps 1 according to the present embodiment is a medical treatment tool that applies thermal energy to a living tissue to incise the living tissue. Further, the thermal incision forceps 1 of the present embodiment is inserted through the treatment instrument channel of the endoscope and can be used with the endoscope.
 図1に示すように、熱切開鉗子1は、内視鏡の処置具チャンネル内に挿通可能な長尺な筒状の挿入部2と、挿入部2の先端に配置された処置部3と、挿入部2の基端に配置された操作部20と、操作部20を介して処置部3と電気的に接続された制御部30とを備える。 As shown in FIG. 1, the thermal incision forceps 1 includes a long cylindrical insertion portion 2 that can be inserted into a treatment instrument channel of an endoscope, a treatment portion 3 disposed at the distal end of the insertion portion 2, and An operation unit 20 disposed at the proximal end of the insertion unit 2 and a control unit 30 electrically connected to the treatment unit 3 via the operation unit 20 are provided.
 図1および図2に示すように、処置部3は、開閉動作可能な一対の鉗子部材4(第一鉗子部材4A、第二鉗子部材4B)と、第一鉗子部材4Aを開閉動作可能に支持する支持部7と、第一鉗子部材4Aに取り付けられた発熱体9および一対の検知電極10(第一検知電極10A、第二検知電極10B)とを備える。 As shown in FIGS. 1 and 2, the treatment section 3 supports a pair of forceps members 4 (first forceps member 4A and second forceps member 4B) that can be opened and closed and the first forceps member 4A so that the first forceps member 4A can be opened and closed. And a heating element 9 attached to the first forceps member 4A and a pair of detection electrodes 10 (first detection electrode 10A, second detection electrode 10B).
 第一鉗子部材4Aは、第一鉗子部材4Aの長手方向に延びる稜部5と、稜部5の幅方向両側に設けられた一組の斜面6とが形成された鉗子面4aを有する。
 鉗子面4aにおける稜部5および斜面6は、いずれも一対の鉗子部材4によって生体組織を把持したときに生体組織に接触する。
 図3に示すように、第一鉗子部材4Aには略円柱状の回動軸部材7aが連結されている。これにより、第一鉗子部材4Aは、回動軸部材7aによって支持部7に対して回動自在である。
The first forceps member 4A has a forceps surface 4a on which a ridge portion 5 extending in the longitudinal direction of the first forceps member 4A and a pair of inclined surfaces 6 provided on both sides in the width direction of the ridge portion 5 are formed.
Both the ridge 5 and the inclined surface 6 on the forceps surface 4 a come into contact with the living tissue when the living tissue is grasped by the pair of forceps members 4.
As shown in FIG. 3, a substantially cylindrical rotating shaft member 7a is connected to the first forceps member 4A. Thereby, 4 A of 1st forceps members are freely rotatable with respect to the support part 7 by the rotating shaft member 7a.
 第二鉗子部材4Bは、第一鉗子部材4Aとの間に挟んだ生体組織を発熱体9に押し付けて保持する。また、第二鉗子部材4Bは、支持部7に固定されている。第二鉗子部材4Bにおいて第一鉗子部材4Aに向けられた側には、鋸歯状の凹凸部(第二鉗子面)8が形成されている。凹凸部8は、生体組織を把持したときの滑り止めとして機能する。 The second forceps member 4B presses and holds the living tissue sandwiched between the first forceps member 4A and the heating element 9. Further, the second forceps member 4 </ b> B is fixed to the support portion 7. On the side of the second forceps member 4B facing the first forceps member 4A, a sawtooth-shaped uneven portion (second forceps surface) 8 is formed. The concavo-convex portion 8 functions as an anti-slip when a living tissue is gripped.
 発熱体9は、線状に形成されており、第一鉗子部材4Aの稜部5の長手方向に沿って稜部5に固定されている。発熱体9は、電気エネルギーによって発熱する部材である。発熱体9の材料としては、セラミックスヒータやニクロム線ヒータなどを採用することができる。発熱体9には、後述する制御部30の出力調整部32に接続された一対の電力線33が固定されている。 The heating element 9 is formed in a linear shape, and is fixed to the ridge 5 along the longitudinal direction of the ridge 5 of the first forceps member 4A. The heating element 9 is a member that generates heat by electric energy. As a material of the heating element 9, a ceramic heater, a nichrome wire heater, or the like can be employed. A pair of power lines 33 connected to an output adjustment unit 32 of the control unit 30 described later is fixed to the heating element 9.
 図2に示すように、第一検知電極10Aおよび第二検知電極10Bは、第一鉗子部材4Aに形成された一組の斜面6の各々に固定されている。第一検知電極10Aおよび第二検知電極10Bは、第一検知電極10Aおよび第二検知電極10Bの表面と第一鉗子部材4Aの外面とが略同一平面になるように配置されている。第一検知電極10Aおよび第二検知電極10Bは、それぞれ後述する制御部30の検出部31に対して一組の信号線34によって電気的に接続されている。 As shown in FIG. 2, the first detection electrode 10A and the second detection electrode 10B are fixed to each of a pair of inclined surfaces 6 formed on the first forceps member 4A. The first detection electrode 10A and the second detection electrode 10B are arranged so that the surfaces of the first detection electrode 10A and the second detection electrode 10B and the outer surface of the first forceps member 4A are substantially flush with each other. The first detection electrode 10A and the second detection electrode 10B are electrically connected to a detection unit 31 of the control unit 30 described later by a set of signal lines 34, respectively.
 図1に示すように、操作部20は、操作部本体21と、操作部本体21にスライド可能に取り付けられたスライダ24とを備える。
 操作部本体21は、スライダ24を案内するレール22aが形成された軸部22と、熱切開鉗子1の使用者が指を掛けるリング状の指掛け部23とを備える。
 スライダ24は、挿入部2の内部に挿通された図示しないワイヤーによって第一鉗子部材4Aと連結されている。スライダ24をレール22aに沿って進退動作させると、図3に示すように回動軸部材7aの中心軸線回りに第一鉗子部材4Aが開閉動作する。
As shown in FIG. 1, the operation unit 20 includes an operation unit main body 21 and a slider 24 that is slidably attached to the operation unit main body 21.
The operation portion main body 21 includes a shaft portion 22 on which a rail 22a for guiding the slider 24 is formed, and a ring-shaped finger hook portion 23 on which a user of the thermal incision forceps 1 holds a finger.
The slider 24 is connected to the first forceps member 4 </ b> A by a wire (not shown) inserted through the insertion portion 2. When the slider 24 is moved back and forth along the rail 22a, the first forceps member 4A opens and closes around the central axis of the rotating shaft member 7a as shown in FIG.
 制御部30は、処置部3の発熱体9へ電気エネルギーを供給するための電源装置PU内に配置されており、一対の検知電極10に接続された検出部31と、検出部31と発熱体9とに接続された出力調整部32とを備える。 The control unit 30 is disposed in a power supply device PU for supplying electrical energy to the heating element 9 of the treatment unit 3, and includes a detection unit 31 connected to the pair of detection electrodes 10, the detection unit 31, and the heating unit. 9 and an output adjustment unit 32 connected to the control unit 9.
 検出部31は、生体組織に接触した一対の検知電極10により生体組織の切開状態を検出する。本実施形態において、検出部31において検出される生体組織の切開状態とは、生体組織が切開された状態と、生体組織が切開されず一対の鉗子部材4に挟まれている状態との2つの状態である。 The detection unit 31 detects the incision state of the biological tissue by the pair of detection electrodes 10 in contact with the biological tissue. In the present embodiment, the incision state of the living tissue detected by the detection unit 31 includes two states: a state in which the living tissue is incised and a state in which the living tissue is not incised and is sandwiched between the pair of forceps members 4. State.
 検出部31における生体組織の切開状態の検出方法は、一対の検知電極10間における生体組織のインピーダンスの変化を測定することである。検出部31には、生体組織が一対の鉗子部材4によって挟まれている状態における生体組織のインピーダンスが予め設定値として記憶されている。生体組織のインピーダンスが設定値を上回った場合に、検出部31は生体組織が切開されたと判定する。検出部31は、生体組織が切開されたと判定したときに、生体組織の切開を停止させるための停止信号を出力調整部32に対して出力する。 The detection method of the incision state of the biological tissue in the detection unit 31 is to measure a change in impedance of the biological tissue between the pair of detection electrodes 10. The detection unit 31 stores in advance the impedance of the biological tissue in a state where the biological tissue is sandwiched between the pair of forceps members 4 as a set value. When the impedance of the living tissue exceeds the set value, the detection unit 31 determines that the living tissue has been incised. The detection unit 31 outputs a stop signal for stopping the incision of the living tissue to the output adjustment unit 32 when it is determined that the living tissue has been incised.
 出力調整部32は、図示しないフットスイッチなどのスイッチによる入力に基づいて発熱体9へ電気エネルギーを供給し、検出部31が発する停止信号の入力に基づいて発熱体9への電気エネルギーの供給を停止する。 The output adjustment unit 32 supplies electric energy to the heating element 9 based on an input from a switch such as a foot switch (not shown), and supplies electric energy to the heating element 9 based on a stop signal input from the detection unit 31. Stop.
 次に、本実施形態の熱切開鉗子1の作用について、熱切開鉗子1の使用例を示して説明する。図4は、熱切開鉗子1の使用時の動作を説明するための図である。 Next, the operation of the thermal incision forceps 1 of the present embodiment will be described with reference to an example of use of the thermal incision forceps 1. FIG. 4 is a view for explaining an operation when the thermal incision forceps 1 is used.
 熱切開鉗子1は、例えば内視鏡の処置具チャンネル内に挿入部2が挿入され、内視鏡を用いて処置部3を観察しながら使用される。
 熱切開鉗子1のユーザは、切開を行う対象となる生体組織まで処置部3を案内し、対象となる生体組織を一対の鉗子部材4によって把持する。このとき、切開を行う対象となる生体組織に対して、ユーザは切開すべき線であるラインLを予め設定し、このラインL上に発熱体9が位置するように把持位置を調整する。
 図4に示すように、ラインL上に発熱体9が位置している状態で生体組織を把持すると、第一検知電極10Aおよび第二検知電極10Bは、ラインLを間に挟んだ両側においてそれぞれ生体組織と接触する。
The thermal incision forceps 1 is used while observing the treatment portion 3 using an endoscope, for example, with the insertion portion 2 inserted into a treatment instrument channel of an endoscope.
A user of the thermal incision forceps 1 guides the treatment section 3 to a living tissue to be incised, and grips the target living tissue with a pair of forceps members 4. At this time, the user sets in advance a line L that is a line to be incised with respect to the living tissue to be incised, and adjusts the gripping position so that the heating element 9 is positioned on the line L.
As shown in FIG. 4, when the living tissue is grasped with the heating element 9 positioned on the line L, the first detection electrode 10A and the second detection electrode 10B are respectively located on both sides of the line L. Contact with living tissue.
 続いて、ユーザは、フットスイッチなどのスイッチを用いて、電源装置PUによる通電を開始する(図5に示すステップS101)。これにより、制御部30の出力調整部32は、発熱体9に対して電気エネルギーを供給する。また、制御部30の検出部31は、第一検知電極10Aと第二検知電極10Bとの間における生体組織のインピーダンスの測定を開始する(ステップS102)。 Subsequently, the user starts energization by the power supply device PU using a switch such as a foot switch (step S101 shown in FIG. 5). Thereby, the output adjustment unit 32 of the control unit 30 supplies electric energy to the heating element 9. Further, the detection unit 31 of the control unit 30 starts measuring the impedance of the living tissue between the first detection electrode 10A and the second detection electrode 10B (step S102).
 発熱体9に対して電気エネルギーが供給されると、発熱体9に通電することによって発熱体9が発熱する。発熱体9は生体組織のラインL上に接しているので、発熱体9が発熱すると、発熱体9が発する熱によってラインLに沿って生体組織が加熱される。これにより、生体組織は、ラインLに沿って発熱体9により焼灼切開される。 When electric energy is supplied to the heating element 9, the heating element 9 generates heat by energizing the heating element 9. Since the heating element 9 is in contact with the line L of the living tissue, when the heating element 9 generates heat, the living tissue is heated along the line L by the heat generated by the heating element 9. Thereby, the living tissue is cauterized and incised by the heating element 9 along the line L.
 生体組織がラインLに沿って焼灼切開されると、切開された生体組織は組織片に別れる。切開された切れ目が互いに離間していることにより、第一検知電極10Aから第二検知電極10Bへの生体組織を通じた最短距離は切開前よりも長くなる。このため、生体組織が切開されたあとは、検出部31において測定される生体組織のインピーダンスが切開前よりも高くなる。生体組織が切開されることによって第一検知電極10Aおよび第二検知電極10Bから生体組織が離間した場合にも、検出部31において測定される生体組織のインピーダンスは切開前よりも高くなる。 When the living tissue is cauterized and cut along the line L, the cut biological tissue is separated into tissue pieces. Since the incised cuts are separated from each other, the shortest distance through the living tissue from the first detection electrode 10A to the second detection electrode 10B is longer than before the incision. For this reason, after the living tissue is incised, the impedance of the living tissue measured by the detection unit 31 becomes higher than that before the incision. Even when the living tissue is separated from the first detection electrode 10A and the second detection electrode 10B due to the incision of the living tissue, the impedance of the living tissue measured by the detection unit 31 is higher than that before the incision.
 制御部30では、検出部31において生体組織のインピーダンスを測定しており、生体組織のインピーダンスが設定値以上か否かを繰り返し判定している(ステップS103)。
 生体組織のインピーダンスが設定値以上に上がったことが検出部31において判定された後、検出部31は、電気エネルギーの供給を停止させるための停止信号を出力調整部32に対して出力する。出力調整部32では、検出部31からの停止信号が入力され、発熱体9に対する通電を停止する(ステップS104)。
 このように、制御部30は、生体組織の切開状態に基づいて生体組織が切開されたことを判定し、生体組織が切開されたと判定したときに発熱体9への電気エネルギーの供給を停止する。
In the control unit 30, the impedance of the living tissue is measured by the detection unit 31, and it is repeatedly determined whether or not the impedance of the living tissue is equal to or higher than a set value (step S103).
After the detection unit 31 determines that the impedance of the living tissue has risen above the set value, the detection unit 31 outputs a stop signal for stopping the supply of electrical energy to the output adjustment unit 32. In the output adjustment unit 32, the stop signal from the detection unit 31 is input, and energization to the heating element 9 is stopped (step S104).
As described above, the control unit 30 determines that the living tissue is incised based on the incision state of the living tissue, and stops supplying electric energy to the heating element 9 when it is determined that the living tissue is incised. .
 以上説明したように、本実施形態の熱切開鉗子1によれば、生体組織が切開されたときに制御部30によって発熱体9への電気エネルギーの供給が停止されるので、熱切開鉗子1のユーザが生体組織の切開状態を判断する手間を省くことができる。このため、ユーザが切開状態を確認する手間を省くことができ、生体組織を容易に切開することができる。 As described above, according to the thermal incision forceps 1 of the present embodiment, the supply of electrical energy to the heating element 9 is stopped by the control unit 30 when the living tissue is incised. It is possible to save the user from having to determine the incision state of the living tissue. For this reason, it is possible to save the user from having to check the incision state, and to easily dissect the living tissue.
 たとえば、内視鏡を用いて生体組織を切開する場合、内視鏡の視野では切開部位が充分には見えない場合もある。このような場合には、切開が適切に終了したことを内視鏡画像によってユーザが把握するのが困難となる可能性がある。本実施形態では、内視鏡画像では切開状態が十分に把握できない場合であっても、切開が適切に終了したときに電気エネルギーの供給を停止させることができるので、生体組織に対して電気エネルギーをかけすぎたり、切開が不完全となったりする可能性を低減することができる。 For example, when a living tissue is incised using an endoscope, the incision site may not be sufficiently visible in the visual field of the endoscope. In such a case, it may be difficult for the user to grasp from the endoscopic image that the incision has been properly completed. In the present embodiment, even when the incision state cannot be sufficiently grasped by the endoscopic image, the supply of electric energy can be stopped when the incision is properly completed. It is possible to reduce the possibility of excessive application or incomplete incision.
 また、発熱体9が設けられた第一鉗子部材4Aに一対の検知電極10が固定されているので、一対の鉗子部材4によって生体組織を把持するだけで一対の検知電極10をラインLの両側に接触させることができる。 Further, since the pair of detection electrodes 10 is fixed to the first forceps member 4A provided with the heating element 9, the pair of detection electrodes 10 can be attached to both sides of the line L only by grasping the living tissue with the pair of forceps members 4. Can be contacted.
 また、第一鉗子部材4Aが稜部5と一組の斜面6とを有し、稜部5に発熱体9が設けられているので、発熱体9を生体組織に好適に押し付けることができる。
 さらに、一対の検知電極10が一組の斜面6の各々に固定されているので、生体組織を切開する際の内視鏡の視野を妨げることなく、生体組織のインピーダンスの変化を検出することができる。
Moreover, since the first forceps member 4A has the ridge portion 5 and a pair of inclined surfaces 6 and the heating element 9 is provided on the ridge portion 5, the heating element 9 can be suitably pressed against the living tissue.
Furthermore, since the pair of detection electrodes 10 are fixed to each of the pair of inclined surfaces 6, it is possible to detect a change in impedance of the living tissue without disturbing the visual field of the endoscope when the living tissue is incised. it can.
 (変形例1)
 次に、上述の熱切開鉗子1の変形例について説明する。
 図6は、本変形例の熱切開鉗子1Aの使用時の動作の流れを示すフローチャートである。
 本変形例の熱切開鉗子1A(図1参照)は、外観形状は上述の熱切開鉗子1と同様であるが、制御部30に代えて制御部30Aを備える点で上述の熱切開鉗子1と構成が異なる。
(Modification 1)
Next, a modified example of the above-described thermal incision forceps 1 will be described.
FIG. 6 is a flowchart showing an operation flow when using the thermal incision forceps 1A of the present modification.
The thermal incision forceps 1A (see FIG. 1) of the present modified example has the same external shape as the above-mentioned thermal incision forceps 1, but is different from the above-mentioned thermal incision forceps 1 in that a control unit 30A is provided instead of the control unit 30. The configuration is different.
 制御部30Aは、上述の制御部30とは異なる動作をする。図6に示すように、制御部30Aは、生体組織のインピーダンスが設定値未満である場合に、発熱体9への供給電力を増加させ、発熱体9をさらに加熱する(図6に示すステップS105)。
 また、生体組織のインピーダンスが設定値以上となったときには、制御部30と同様に発熱体9への通電を停止させる(ステップS104)。
 このように、本変形例では、生体組織に接触した一対の検知電極10を用いて生体組織の切開状態を制御部30Aが検出し、生体組織が完全に切開されるまでの間に漸次供給電力を増加させるように制御部30Aが電気エネルギーの供給を制御する。これにより、上述の熱切開鉗子1よりも短時間で生体組織を切開することができる。
The control unit 30A operates differently from the control unit 30 described above. As shown in FIG. 6, when the impedance of the living tissue is less than the set value, the control unit 30A increases the power supplied to the heating element 9 to further heat the heating element 9 (step S105 shown in FIG. 6). ).
When the impedance of the living tissue becomes equal to or higher than the set value, the energization to the heating element 9 is stopped similarly to the control unit 30 (step S104).
As described above, in this modification, the control unit 30A detects the incision state of the living tissue using the pair of detection electrodes 10 in contact with the living tissue, and gradually supplies power until the living tissue is completely incised. The control unit 30A controls the supply of electric energy so as to increase. Thereby, a living tissue can be incised in a shorter time than the above-described thermal incision forceps 1.
(変形例2)
 次に、上述の実施形態で説明した熱切開鉗子1の他の変形例について説明する。
 図7は、本変形例の熱切開鉗子1Bの構成を示す模式図で、図1のA-A線と同様の断面指示線における断面図である。
 本変形例の熱切開鉗子1Bは、第二鉗子部材4Bに第二発熱体9Bが設けられている点で、上述の熱切開鉗子1と構成が異なる。また、本変形例では、第二発熱体9Bは、第一鉗子部材4Aに設けられた発熱体9と同様に、供給される電流の大きさが、一対の検知電極10において検知される生体組織のインピーダンスに基づいて制御部30によって制御される。
(Modification 2)
Next, another modified example of the thermal incision forceps 1 described in the above embodiment will be described.
FIG. 7 is a schematic diagram showing the configuration of the thermal incision forceps 1B of the present modification, and is a cross-sectional view taken along the cross-sectional instruction line similar to the AA line of FIG.
The thermal incision forceps 1B of the present modification is different from the above-described thermal incision forceps 1 in that a second heating element 9B is provided on the second forceps member 4B. In the present modification, the second heating element 9B is a living tissue in which the magnitude of the supplied current is detected by the pair of detection electrodes 10 in the same manner as the heating element 9 provided in the first forceps member 4A. Is controlled by the control unit 30 based on the impedance.
 このような構成であっても上述の熱切開鉗子1と同様の効果を奏する。また、本変形例の熱切開鉗子1Bは、第一鉗子部材4Aに発熱体9が設けられ、第二鉗子部材4Bに第二発熱体9Bが設けられているので、一対の鉗子部材4によって生体組織の表裏を挟んだ場合に、生体組織の両面から生体組織の切開を行うことができる。 Even with such a configuration, the same effect as the above-described thermal incision forceps 1 can be obtained. Further, in the thermal incision forceps 1B of this modification, the first forceps member 4A is provided with the heating element 9, and the second forceps member 4B is provided with the second heating element 9B. When the front and back sides of the tissue are sandwiched, the incision of the living tissue can be performed from both sides of the living tissue.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、本実施形態では、制御部30は電源装置PU内に配置されている例を示したが、制御部30と電源装置PUとが一体であることは必須ではない。制御部30と電源装置PUとを別体に構成する例としては、例えば、電源装置PUと操作部20とを接続する給電コードに制御部30を介在させ、電源装置PUから供給される電力を制御部30によって制御することができる。このような構成であれば、従来の熱切開鉗子に使用される電源装置PUを流用して本発明の熱切開鉗子1とすることができる。
As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.
For example, in the present embodiment, the example in which the control unit 30 is disposed in the power supply device PU has been described, but it is not essential that the control unit 30 and the power supply device PU are integrated. As an example of configuring the control unit 30 and the power supply device PU separately, for example, the control unit 30 is interposed in a power supply cord that connects the power supply device PU and the operation unit 20, and the power supplied from the power supply device PU is obtained. It can be controlled by the control unit 30. If it is such a structure, the power supply device PU used for the conventional heat incision forceps can be diverted, and it can be set as the heat incision forceps 1 of this invention.
 また、上述の実施形態では、一対の検知電極10間における生体組織のインピーダンスの変化を制御部30によって測定する例を示したが、本発明の熱切開鉗子は、インピーダンスの変化を測定することに代えて、一対の検知電極間における生体組織の導通状態の変化を測定する制御部を備えていてもよい。この場合、生体組織が切開されたときには一対の検知電極間における導通がなくなり、導通がなくなったことに基づいて生体組織が切開されたと制御部が判定する。生体組織が切開されたと制御部において判定されたら、これにより発熱体への電気エネルギーの供給を制御部が停止する。 In the above-described embodiment, the example in which the change in impedance of the living tissue between the pair of detection electrodes 10 is measured by the control unit 30 has been described. However, the thermal incision forceps of the present invention measures the change in impedance. Instead, a control unit that measures a change in the conduction state of the living tissue between the pair of detection electrodes may be provided. In this case, when the living tissue is incised, conduction between the pair of detection electrodes is lost, and the control unit determines that the living tissue has been incised based on the absence of conduction. When the control unit determines that the living tissue has been incised, the control unit stops the supply of electric energy to the heating element.
 上記の熱切開鉗子によれば、鉗子部材に設けられた検知電極を用いて制御部において生体組織の切開状態を検出し、検出された切開状態に基づいて発熱体への電気エネルギーの供給が制御される。このため、ユーザが切開状態を確認する手間を省くことができ、生体組織を容易に切開することができる。 According to the above-described thermal incision forceps, the control unit detects the incision state of the biological tissue using the detection electrode provided on the forceps member, and controls the supply of electric energy to the heating element based on the detected incision state. Is done. For this reason, it is possible to save the user from having to check the incision state, and to easily dissect the living tissue.
 1、1A、1B 熱切開鉗子
 2 挿入部
 3 処置部
 4 一対の鉗子部材
 4A 第一鉗子部材(鉗子部材)
 4B 第二鉗子部材
 5 稜部
 6 一組の斜面
 8 凹凸部(第二鉗子面)
 9、9B 発熱体
 10 一対の検知電極
 10A 第一検知電極
 10B 第二検知電極
 20 操作部
 30、30A 制御部
DESCRIPTION OF SYMBOLS 1, 1A, 1B Thermal incision forceps 2 Insertion part 3 Treatment part 4 A pair of forceps member 4A 1st forceps member (forceps member)
4B Second forceps member 5 Edge 6 Pair of slopes 8 Concave and convex portions (second forceps surface)
9, 9B Heating element 10 Pair of detection electrodes 10A First detection electrode 10B Second detection electrode 20 Operation unit 30, 30A Control unit

Claims (10)

  1.  鉗子部材を介して生体組織に対し熱エネルギーを与えることで前記生体組織を切開する熱切開鉗子であって、
     前記鉗子部材に設けられ、前記生体組織に接触して電気エネルギーにより発熱することで、前記生体組織を焼灼切開する発熱体と、
     前記発熱体が前記生体組織に接触した際に、前記発熱体を挟んだ両側にて前記生体組織に接触可能な一対の検知電極と、
     を備えることを特徴とする熱切開鉗子。
    A thermal incision forceps for incising the living tissue by applying thermal energy to the living tissue via a forceps member,
    A heating element that is provided on the forceps member and generates heat by electrical energy in contact with the biological tissue;
    When the heating element contacts the living tissue, a pair of detection electrodes that can contact the living tissue on both sides of the heating element;
    A thermal incision forceps comprising:
  2.  前記発熱体および前記一対の検知電極は、外部に設けられた制御部に接続され;
     前記制御部は、前記一対の検知電極により前記生体組織の切開状態を検出して前記切開状態に基づき前記発熱体への電気エネルギーの供給を制御する;
    請求項1に記載の熱切開鉗子。
    The heating element and the pair of detection electrodes are connected to a control unit provided outside;
    The controller detects an incision state of the living tissue by the pair of detection electrodes and controls the supply of electric energy to the heating element based on the incision state;
    The heat incision forceps according to claim 1.
  3.  前記検知電極は、前記鉗子部材に固定されている
    請求項1に記載の熱切開鉗子。
    The thermal incision forceps according to claim 1, wherein the detection electrode is fixed to the forceps member.
  4.  前記鉗子部材は、長手方向に延びる稜部と、前記稜部の幅方向両側に設けられた一組の斜面とが形成された鉗子面を有し、
     前記発熱体は、線状に形成されているとともに前記稜部の長手方向に沿って前記稜部に固定されており、
     前記検知電極は、前記一組の斜面の各々に固定されている、
     請求項1に記載の熱切開鉗子。
    The forceps member has a forceps surface formed with a ridge extending in the longitudinal direction and a pair of inclined surfaces provided on both sides in the width direction of the ridge,
    The heating element is linearly formed and fixed to the ridge along the longitudinal direction of the ridge,
    The sensing electrode is fixed to each of the set of slopes,
    The heat incision forceps according to claim 1.
  5.  前記制御部は、前記一対の検知電極間における生体組織のインピーダンスの変化を測定することにより前記切開状態を検出する
    請求項2に記載の熱切開鉗子。
    The thermal incision forceps according to claim 2, wherein the control unit detects the incision state by measuring a change in impedance of a living tissue between the pair of detection electrodes.
  6.  前記制御部は、前記一対の検知電極間における生体組織の導通状態の変化を測定することにより前記切開状態を検出する
    請求項2に記載の熱切開鉗子。
    The thermal incision forceps according to claim 2, wherein the control unit detects the incision state by measuring a change in a conduction state of a living tissue between the pair of detection electrodes.
  7.  前記制御部は、前記切開状態に基づいて前記生体組織が切開されたことを判定し、前記生体組織が切開されたと判定したときに前記発熱体への前記電気エネルギーの供給を停止する
    請求項2に記載の熱切開鉗子。
    The control unit determines that the living tissue is incised based on the incision state, and stops supplying the electric energy to the heating element when it is determined that the living tissue is incised. The thermal incision forceps as described in.
  8.  前記鉗子部材に連結されているとともに前記生体組織を前記発熱体に押し付けて保持する第二鉗子部材をさらに備える
    請求項1に記載の熱切開鉗子。
    The thermal incision forceps according to claim 1, further comprising a second forceps member that is connected to the forceps member and holds the living tissue against the heating element.
  9.  前記第二鉗子部材は、前記発熱体側に向けられ前記生体組織に接触可能な第二鉗子面を有する
    請求項8に記載の熱切開鉗子。
    9. The thermal incision forceps according to claim 8, wherein the second forceps member has a second forceps surface that is directed toward the heating element and can contact the living tissue.
  10.  鉗子部材を介して生体組織に対し熱エネルギーを与えることで前記生体組織を切開する熱切開鉗子を用いた熱切開鉗子システムであって、
     前記鉗子部材に設けられ、前記生体組織に接触して電気エネルギーにより発熱することで、前記生体組織を焼灼切開する発熱体と、
     前記発熱体が前記生体組織に接触した際に、前記発熱体を挟んだ両側にて前記生体組織に接触可能な一対の検知電極と、
     前記検知電極に接続されているとともに前記発熱体に接続され、前記生体組織に接触した前記一対の検知電極により前記生体組織の切開状態を検出し、前記切開状態に基づいて前記発熱体への前記電気エネルギーの供給を制御する制御部と、
     を備えることを特徴とする熱切開鉗子システム。
    A thermal incision forceps system using thermal incision forceps for incising the biological tissue by applying thermal energy to the biological tissue through a forceps member,
    A heating element that is provided on the forceps member and generates heat by electrical energy in contact with the biological tissue;
    When the heating element contacts the living tissue, a pair of detection electrodes that can contact the living tissue on both sides of the heating element;
    The incision state of the biological tissue is detected by the pair of detection electrodes that are connected to the detection electrode and connected to the heating element and are in contact with the biological tissue, and the heating element is connected to the heating element based on the incision state. A control unit for controlling the supply of electrical energy;
    A thermal incision forceps system comprising:
PCT/JP2012/058100 2011-03-30 2012-03-28 Heat incision forceps and heat incision forceps system WO2012133512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011075736A JP2014121340A (en) 2011-03-30 2011-03-30 Thermally incising forceps, and thermally incising forceps system
JP2011-075736 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133512A1 true WO2012133512A1 (en) 2012-10-04

Family

ID=46931221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058100 WO2012133512A1 (en) 2011-03-30 2012-03-28 Heat incision forceps and heat incision forceps system

Country Status (2)

Country Link
JP (1) JP2014121340A (en)
WO (1) WO2012133512A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093409A1 (en) * 2013-12-20 2015-06-25 オリンパス株式会社 Thermocoagulation incision device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
JP6099818B2 (en) * 2014-09-05 2017-03-22 オリンパス株式会社 Grasping treatment unit, grasping treatment instrument, and grasping treatment system
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10952759B2 (en) * 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139943A (en) * 1998-09-02 2000-05-23 Olympus Optical Co Ltd High-frequency treating instrument
JP2009247893A (en) * 2008-04-01 2009-10-29 Olympus Medical Systems Corp Treatment system for therapy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139943A (en) * 1998-09-02 2000-05-23 Olympus Optical Co Ltd High-frequency treating instrument
JP2009247893A (en) * 2008-04-01 2009-10-29 Olympus Medical Systems Corp Treatment system for therapy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093409A1 (en) * 2013-12-20 2015-06-25 オリンパス株式会社 Thermocoagulation incision device
JP5861009B2 (en) * 2013-12-20 2016-02-16 オリンパス株式会社 Thermocoagulation incision device
US9782218B2 (en) 2013-12-20 2017-10-10 Olympus Corporation Thermocoagulation/cutting device

Also Published As

Publication number Publication date
JP2014121340A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5148092B2 (en) Energy surgical device
US10194972B2 (en) Managing tissue treatment
JP4624697B2 (en) Surgical instrument
WO2012133512A1 (en) Heat incision forceps and heat incision forceps system
JP6189501B2 (en) forceps
EP2868283B1 (en) Therapeutic treatment device with heat transfer units and with means for control based on their temperatures
US10342602B2 (en) Managing tissue treatment
US10321950B2 (en) Managing tissue treatment
JP5625135B2 (en) Treatment tool using energy
JP6109458B1 (en) Energy treatment system, energy control device, and energy treatment tool
JP6553359B2 (en) Blood vessel sealing device
CN107072709B (en) Treatment tool and treatment system
US20150209573A1 (en) Surgical devices having controlled tissue cutting and sealing
JP2009045456A (en) Electric processing system and its treatment method
MX2016006647A (en) Ultrasonic surgical instrument with electrosurgical feature.
JP5861009B2 (en) Thermocoagulation incision device
WO2002071966A1 (en) Electrosurgical device having a tissue reduction sensor
JP5814685B2 (en) Therapeutic treatment device
JP2015515332A (en) Surgical instruments for tissue removal
JP2012161566A (en) Therapeutical treatment device and method for controlling the same
JP5959789B1 (en) Control device for energy treatment device and energy treatment system
JP2005058553A (en) Instrument for medical treatment
US20240122638A1 (en) Computer vision based control of an energy generator
JP4671685B2 (en) Medical treatment device
WO2014148199A1 (en) Therapeutic treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP