WO2012132832A1 - シール装置 - Google Patents

シール装置 Download PDF

Info

Publication number
WO2012132832A1
WO2012132832A1 PCT/JP2012/056060 JP2012056060W WO2012132832A1 WO 2012132832 A1 WO2012132832 A1 WO 2012132832A1 JP 2012056060 W JP2012056060 W JP 2012056060W WO 2012132832 A1 WO2012132832 A1 WO 2012132832A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating ring
inner peripheral
dynamic pressure
pressure generating
peripheral surface
Prior art date
Application number
PCT/JP2012/056060
Other languages
English (en)
French (fr)
Inventor
井上 秀行
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to EP12765861.5A priority Critical patent/EP2636931B1/en
Priority to US14/007,883 priority patent/US9709174B2/en
Priority to CN201280012352.8A priority patent/CN103429939B/zh
Priority to JP2013507335A priority patent/JP5871287B2/ja
Publication of WO2012132832A1 publication Critical patent/WO2012132832A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/441Free-space packings with floating ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/106Shaft sealings especially adapted for liquid pumps

Definitions

  • the present invention relates to a sealing device used for a rotating shaft, and particularly to a sealing device provided with a floating ring used for a rotating shaft such as a pump.
  • a sealing device provided with a floating ring for example, the one shown in FIG. 7 is known (hereinafter referred to as “Prior Art 1”, for example, see Patent Document 1).
  • a radially outwardly connecting portion 36 is provided on the outer periphery of a floating ring 35 formed in an annular shape, and a pair of connecting portions 36 are provided at an interval of 180 degrees in the circumferential direction.
  • the floating ring 35 is inserted into the groove portion 38 of the casing 37 to support the floating ring 35 concentrically with the rotating shaft 39.
  • FIG. 8 As a sealing device provided with a floating ring, the one shown in FIG. 8 is known (hereinafter referred to as “Prior Art 2”, for example, see Patent Document 2).
  • This prior art 2 includes a rotary shaft 40, a cylindrical casing 42 attached to the pump main body 41, a sealing liquid supply port 43 provided so as to penetrate the pump main body 41 and the cylindrical casing 42, and an inner side of the cylindrical casing 42.
  • An inner peripheral surface of the floating ring 45 includes a retainer 44 provided, an annular floating ring 45 disposed inside the retainer 44, and a rotation prevention pin 46 provided between the floating ring 45 and the retainer 44.
  • the floating ring 45 avoids contact with the rotating shaft 40 by the water film formed in the gap a between the outer periphery of the rotating shaft 40 and the floating ring 45. It comes to mind.
  • the floating ring is temporarily formed by the water film formed in the gap a between the inner peripheral surface of the floating ring 45 and the outer peripheral surface of the rotating shaft 40.
  • the floating ring is automatically aligned.
  • the gap a formed between the inner peripheral surface of 45 and the rotary shaft 31 is not uniform, and is operated in an eccentric state.
  • JP 2003-97730 A Japanese Patent Laid-Open No. 11-94096
  • the gap between the floating ring and the rotating shaft is set large in advance in order to prevent contact between the floating ring and the rotating shaft.
  • the amount of leakage of the sealed fluid increases in proportion to the cube of the gap.
  • the amount of leakage of the sealed fluid is provided by providing a reverse dynamic pressure generating groove on the inner peripheral surface of the floating ring that acts to push the sealed fluid back to the upstream side.
  • Another object of the present invention is to provide a seal device that can make the center of a floating ring and a rotation shaft coincide with each other by using the dynamic pressure generated by the dynamic pressure generating groove.
  • a sealing device is, firstly, in a sealing device provided with a floating ring between the outer periphery of a rotating shaft and the inner periphery of a casing, to be sealed to be leaked to the inner peripheral surface of the floating ring.
  • a plurality of reverse dynamic pressure generating grooves acting to push the fluid back to the upstream side are provided in the circumferential direction.
  • the barrier fluid supply for supplying the barrier fluid toward the inner peripheral surface of the floating ring
  • a plurality of reverse dynamic pressure generating grooves that act to push back the sealed fluid to be leaked to the inner peripheral surface of the floating ring to the upstream side are provided in the circumferential direction.
  • a plurality of barrier fluid supply holes are provided in a circumferential direction, and the inner surface of the floating ring is connected to connect the plurality of barrier fluid supply holes.
  • An inner peripheral groove is provided, and a dynamic pressure generating groove is provided in connection with the inner peripheral groove.
  • the sealing device of the present invention is characterized in that, in the third feature, the dynamic pressure generating groove is provided on the sealed fluid side from the inner peripheral groove.
  • the seal device of the present invention is fifthly characterized in that, in the third feature, the dynamic pressure generating groove is provided on the atmosphere side from the inner peripheral groove.
  • the sealing device of the present invention is sixthly characterized in that, in the third feature, the dynamic pressure generating grooves are provided on the sealed fluid side and the atmosphere side of the inner circumferential groove.
  • the present invention has the following excellent effects.
  • (1) In a sealing device provided with a floating ring, the amount of leakage of the sealed fluid is reduced by providing a reverse dynamic pressure generating groove on the inner peripheral surface of the floating ring that acts to push the sealed fluid back to the upstream side. It is possible to make the center of the floating ring and the rotating shaft coincide with each other by using the dynamic pressure generated by the dynamic pressure generating groove. Moreover, the dynamic stability at the time of starting can be made favorable.
  • the center of the floating ring and the rotating shaft can be matched during rotation of the rotating shaft, the gap between the inner peripheral surface of the floating ring and the outer peripheral surface of the rotating shaft can be set small. The sealing performance can be improved.
  • the fluid film thickness can be increased to an average, the risk of contact between the inner peripheral surface of the floating ring and the outer peripheral surface of the rotating shaft can be reduced.
  • the barrier fluid acts synergistically with the dynamic pressure generating groove in the reverse direction. Since the sealed fluid to be leaked is pushed back more efficiently to the upstream side, the leakage amount of the sealed fluid can be further reduced.
  • FIG. 4 is a diagram showing an example of a dynamic pressure generating groove provided on the inner peripheral surface of the floating ring according to Embodiment 1.
  • FIG. 2 is front sectional drawing which showed typically the sealing device which concerns on Embodiment 2 of this invention, Comprising: It is in the state which the floating ring was lifted upwards by rotation of the rotating shaft.
  • FIG. 6 is a diagram showing an example of a dynamic pressure generating groove provided on the inner peripheral surface of a floating ring in Embodiment 2.
  • FIG. The coaxiality of a rotating shaft and a floating ring is shown, (a) is the movement history of the radial direction of the floating ring which provided the dynamic pressure generating groove of the reverse direction which concerns on this invention, (b) is the dynamic pressure of this invention. It shows the movement history in the radial direction of the floating ring provided with a forward dynamic pressure generating groove opposite to the generating groove.
  • It is front sectional drawing which shows the prior art 1.
  • FIG. It is side surface sectional drawing which shows the prior art 2.
  • FIG. 1 is a front sectional view schematically showing a sealing device according to Embodiment 1 of the present invention, in which a floating ring is lifted upward by rotation of a rotating shaft.
  • a rotary shaft 3 such as a pump is disposed so as to penetrate through the hole 2 of the casing 1
  • the right side is the sealed fluid side (high pressure side)
  • the left side is the atmosphere side (low pressure side).
  • a radial gap ⁇ is provided between the inner peripheral surface of the casing 1 and the outer peripheral surface of the rotary shaft 3.
  • a hollow cylindrical shape surrounding the outer periphery of the rotary shaft 3 is provided.
  • a floating ring 5 is provided.
  • a cylindrical space 4 for accommodating the floating ring 5 is provided in the casing 1, and the diameter and width of the space 4 are larger than the outer diameter and width of the floating ring 5.
  • the inner diameter of the floating ring 5 is set to be slightly larger than the outer diameter of the rotating shaft 3, so that the floating ring 5 can move in a certain range in the radial direction.
  • a reverse direction dynamic pressure generating groove 8 is provided which acts to push the sealed fluid back to the upstream side.
  • FIG. 2 is a side view schematically showing the sealing device according to Embodiment 1 of the present invention, and shows a state in which the rotating shaft starts to rotate.
  • a locking pin 6 is provided on the left side surface of the outer peripheral surface of the floating ring 5 so as to protrude radially outward.
  • the locking pin 6 extends in the radial direction from the cylindrical space 4 of the casing 1. It is loosely fitted in a groove 7 provided on the outer side so as to prevent the floating ring 5 from rotating.
  • One stop pin 6 is provided in the circumferential direction of the floating ring 5.
  • the rotation pin 6 is positioned in the second and third quadrants in the XY coordinate system with the center O of the rotation shaft 3 as the origin when the rotation direction of the rotation shaft 3 is counterclockwise.
  • the position is not particularly limited to the position shown in FIG.
  • the rotation preventing means is not limited to the pin, and the essential point is that it can be locked to the casing 1 and has a function of preventing the floating ring 5 from rotating.
  • the present invention provides the inner circumferential surface of the floating ring 5 with the dynamic pressure generating groove 8 in the reverse direction that acts to push the sealed fluid back to the upstream side when the rotating shaft 3 rotates. 9, the amount of leakage of the sealed fluid can be reduced, and the center of the floating ring 5 and the rotary shaft 3 can be matched by using the dynamic pressure generated by the dynamic pressure generating groove 8. It is a thing.
  • FIG. 3 is a diagram showing an example of a dynamic pressure generating groove provided on the inner peripheral surface 9 of the floating ring 5 according to the first embodiment.
  • the right side of the floating ring 5 is the sealed fluid side (high pressure side)
  • the left side is the atmosphere side (low pressure side)
  • the rotating shaft 3 rotates in the direction of the arrow.
  • the sealed fluid to be leaked to the atmosphere side (low pressure side) is pushed back to the upstream side to about half of the sealed fluid side (high pressure side) of the inner peripheral surface 9 of the floating ring 5.
  • a plurality of acting dynamic pressure generating grooves 8 (hereinafter referred to as “reverse direction dynamic pressure generating grooves”, and the opposite case are referred to as “forward direction dynamic pressure generating grooves”) are provided over the entire circumference in the circumferential direction. It has been. Further, in FIG. 3B, reverse dynamic pressure generation that acts to push back the sealed fluid to leak to the atmosphere side (low pressure side) over the entire width of the inner peripheral surface 9 of the floating ring 5.
  • a plurality of grooves 8 are provided on the entire circumference in the circumferential direction.
  • the dynamic pressure generating grooves 8 in the reverse direction have a shape inclined at about 45 ° from the atmosphere side toward the sealed fluid side along the rotation direction of the rotary shaft 3, and are equally distributed on the circumference. Is provided.
  • the dynamic pressure generating grooves 7 may be non-uniformly arranged in the circumferential direction, and the angle, number, width, and depth may be set as appropriate.
  • the sealed fluid which is about to leak to the atmosphere side flows into the dynamic pressure generating groove 8 in the reverse direction, and is pushed to the upstream side in accordance with the inclination of the dynamic pressure generating groove 8 so that a part of the fluid is indicated by an arrow. Therefore, the amount of leakage to the atmosphere side is reduced.
  • the dynamic pressure generated by the dynamic pressure generating groove 8 in the reverse direction acts so that the floating ring 5 is concentric with the center of the rotating shaft 3. That is, the dynamic pressure generated between the inner peripheral surface 9 of the floating ring 5 and the outer peripheral surface of the rotary shaft 3 is high in a portion where the gap is small and low in a portion where the gap is large.
  • the center of the floating ring 5 is concentric with the axis of the rotary shaft 3.
  • the weight of the floating ring 5 is W
  • the lifting force of the floating ring 5 due to the wedge effect of the gap S between the rotating shaft 3 and the floating ring 5 is F1
  • the dynamic pressure generated in the dynamic pressure generating groove 8 in the reverse direction is W
  • the weight of the floating ring 5 is large, and the moment W ⁇ L1 is generated in the moment F1 ⁇ L2 and the dynamic pressure generating groove 8 due to the lifting force of the floating ring 5 due to the wedge effect of the gap S between the rotating shaft 3 and the floating ring 5.
  • the first quadrant of the inner peripheral surface 9 of the floating ring 5 may be deepened or densely formed so that F2 is directed upward.
  • FIG. 4 is a front sectional view schematically showing the sealing device according to Embodiment 2 of the present invention, in which the floating ring is lifted upward by the rotation of the rotating shaft.
  • a cylindrical casing 12 is disposed between the pump main body 10 and the rotary shaft 11, and the cylindrical casing 12 is fixed between the pump main body 10 and the bolt 14 via an O-ring 13.
  • a gap ⁇ is provided between the inner peripheral surface of the cylindrical casing 12 and the outer peripheral surface of the rotating shaft 11.
  • a hollow cylindrical space 15 is formed on the inner peripheral surface side of the cylindrical casing 12 and is located at the center of the space 15 in the axial direction from the outer side in the radial direction of the casing 12 to the inner side.
  • Barrier fluid supply holes 16 for supplying the barrier fluid A are provided.
  • Retainer rings 17 and 17 are provided on both sides of the hollow cylindrical space 15, and a floating ring 18 is disposed therebetween.
  • the right side is the sealed fluid side and the left side is the atmospheric side, and the pressure relationship is such that the pressure of the barrier fluid A> the pressure of the sealed fluid> the atmospheric pressure.
  • a plurality of barrier fluid supply holes 20 are provided in the floating ring 18 in the circumferential direction from the outer side to the inner side in the radial direction, and connected to an inner peripheral groove 21 provided in the inner peripheral surface 19 of the floating ring 18.
  • a reverse direction dynamic pressure generating groove 8 is provided on the inner peripheral surface 19 of the floating ring 18 so as to push the sealed fluid more efficiently back to the upstream side.
  • the floating ring 18 may be divided into two parts in the circumferential direction and fixed integrally with a bolt (not shown).
  • the floating ring 18 is provided with a turning pin as in the case of the first embodiment, and the turning pin is loosely fitted in the groove of the casing 12 to prevent the floating ring 18 from rotating. Yes.
  • the embodiment is that when the rotating shaft 3 is rotating, a force for lifting the floating ring 18 is generated due to the wedge effect in the gap S of the sealed fluid interposed between the rotating shaft 3 and the floating ring 18.
  • the reverse dynamic pressure generating groove 8 acting to push back the sealed fluid to be leaked back to the upstream side is provided with the floating ring 18.
  • FIG. 5 is a diagram showing an example of a reverse direction dynamic pressure generating groove provided on the inner peripheral surface of the floating ring according to the second embodiment.
  • 5 (a), 5 (b) and 5 (c) show the dynamic pressure in the reverse direction so as to be continuous with the inner peripheral groove 21 on the sealed fluid side from the inner peripheral groove 21 provided on the inner peripheral surface 19 of the floating ring 18.
  • An example in which the generation groove 8 is provided is shown.
  • the dynamic pressure generating grooves 8 in the reverse direction are provided equally in the circumferential direction, and the barrier fluid supply holes 20 are provided in the vicinity of the dynamic pressure generating grooves 8.
  • FIG. 1 shows an example of a reverse direction dynamic pressure generating groove provided on the inner peripheral surface of the floating ring according to the second embodiment.
  • 5 (a), 5 (b) and 5 (c) show the dynamic pressure in the reverse direction so as to be continuous with the inner peripheral groove 21 on the sealed fluid side from the inner peripheral groove 21 provided on the inner peripheral surface 19 of the floating ring 18.
  • the dynamic pressure generating groove 8 in the reverse direction has a parallelogram shape inclined from the atmosphere side toward the sealed fluid side so as to follow the rotation direction of the rotary shaft 3, and on the circumference. It is evenly distributed.
  • the dynamic pressure generating groove 8 in the reverse direction of FIG. 5B is different from FIG. 5A in that it has a tapered triangular shape from the inner peripheral groove 21 side toward the tip. Are the same.
  • the dynamic pressure generating groove 8 in the reverse direction of FIG. 5C is inclined from the atmosphere side toward the sealed fluid side so as to follow the rotational direction of the rotary shaft 3 from the inner peripheral groove 21 side to the middle of the tip end side.
  • the tip side has a shape parallel to the rotation direction of the rotary shaft 3.
  • the high-pressure barrier fluid A flows from the inner circumferential groove 21 to both sides thereof, but in this case, the reverse direction
  • the barrier fluid A flowing into the dynamic pressure generating groove 8 is flowed toward the sealed fluid side and pushes back the sealed fluid to be leaked in the direction of the arrow.
  • the sealed fluid that flows into the dynamic pressure generating groove 8 in the opposite direction to leak out is also pushed back in the direction of the arrow.
  • the dynamic pressure generated by the dynamic pressure generating groove 8 in the reverse direction acts so that the floating ring 18 is concentric with the center of the rotary shaft 3.
  • FIG. 5D shows an example in which the dynamic pressure generating groove 8 in the reverse direction is provided so as to be continuous with the inner peripheral groove 21 on the atmosphere side from the inner peripheral groove 21 provided on the inner peripheral surface of the floating ring 18.
  • the dynamic pressure generating grooves 8 in the reverse direction are provided equally in the circumferential direction, and the barrier fluid supply holes 20 are provided in the vicinity of the dynamic pressure generating grooves 8.
  • the reverse direction dynamic pressure generating grooves 8 have a parallelogram shape inclined from the atmosphere side toward the sealed fluid side along the rotation direction of the rotary shaft 3 and are provided at equal intervals on the circumference. .
  • the rotating shaft 3 rotates in the direction of the arrow and the barrier fluid A is supplied from the barrier fluid supply hole 20
  • the high-pressure barrier fluid A flows from the inner circumferential groove 21 to both sides thereof.
  • the barrier fluid A flowing into the dynamic pressure generating groove 8 in the reverse direction is caused to flow toward the sealed fluid side, and pushes back the sealed fluid to be leaked in the direction of the arrow.
  • the sealed fluid flowing into the dynamic pressure generating groove 8 in the opposite direction to leak out is also pushed back in the direction of the arrow.
  • FIG. 5 (e) shows an example in which the dynamic pressure generating grooves 8 in the opposite direction are provided on both sides of the inner peripheral groove 21 provided on the inner peripheral surface of the floating ring 18 so as to be continuous with the inner peripheral groove 21.
  • the dynamic pressure generating groove 8 in the reverse direction has a parallelogram shape inclined from the atmosphere side toward the sealed fluid side along the rotation direction of the rotating shaft 3, and the inner peripheral groove 21 is sealed.
  • the fluid-side and atmospheric-side dynamic pressure generating grooves 8 are provided equally on the circumference in such a manner that the phases are shifted in the circumferential direction, and the barrier fluid supply holes 20 are provided between the left and right dynamic pressure generating grooves 8. Is located.
  • the high-pressure barrier fluid A flows from the inner peripheral groove 21 to both sides.
  • the barrier fluid A flowing into the dynamic pressure generating grooves 8 in opposite directions on both sides is flowed toward the sealed fluid side, and pushes back the sealed fluid to be leaked in the direction of the arrow.
  • the sealed fluid flowing into the dynamic pressure generating groove 8 in the opposite direction to leak out is also pushed back in the direction of the arrow.
  • FIG. 6 shows the concentricity of the rotating shaft and the floating ring.
  • FIG. 6A shows the movement history in the radial direction of the floating ring provided with the reverse dynamic pressure generating groove according to the present invention
  • FIG. It shows the movement history in the radial direction of a floating ring provided with a forward dynamic pressure generating groove opposite to the dynamic pressure generating groove of the invention.
  • the solid line indicates the amount of movement in the X direction
  • the broken line indicates the amount of movement in the Y direction.
  • the constant eccentricity is as large as 5.1 when expressed in dimensionless numbers.
  • the reverse direction dynamic pressure generating groove according to the present invention of FIG. 6A when the reverse direction dynamic pressure generating groove according to the present invention of FIG. 6A is provided, the floating ring slightly moves in the X and Y directions at the time of start-up, but after that, it is almost at the center. It can be seen that it is located in the vicinity of.
  • the constant eccentricity was 2.1 when expressed in dimensionless numbers. From the above results, when the forward direction dynamic pressure generating groove is provided, the eccentricity is large and there is a problem, whereas when the reverse direction dynamic pressure generating groove according to the present invention is provided, when starting, It can be seen that the dynamic stability is good, the eccentricity is small, and the coaxiality between the rotating shaft and the floating ring is good.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Mechanical Sealing (AREA)

Abstract

【課題】本発明は、本発明は、被密封流体の漏れ量を減少させるとともに、フローティングリングと回転軸との中心を一致させることを目的とする。 【解決手段】回転軸外周とケーシング内周との間にフローティングリングを備えたシール装置において、フローティングリングの内周面に漏出しようとする被密封流体を上流側に押し戻すように作用する逆方向の動圧発生溝を円周方向に複数設けることを特徴としている。

Description

シール装置
 本発明は、回転軸に使用されるシール装置に関し、特に、ポンプ等の回転軸に使用されるフローティングリングを備えたシール装置に関する。 
 従来、フローティングリングを備えたシール装置として、例えば、図7に示すものが知られている(以下、「従来技術1」という。例えば、特許文献1参照。)。この従来技術1は、環状に形成されたフローティングリング35の外周に、半径方向外方へ向かう連結部36が設けられ、この連結部36は、円周方向に180度の間隔をおいて一対設けられ、ケーシング37の溝部38に挿入されてフローティングリング35を回転軸39と同心状に支持するものである。 
 また、フローティングリングを備えたシール装置として、図8に示すものが知られている(以下、「従来技術2」という。例えば、特許文献2参照。)。この従来技術2は、回転軸40、ポンプ本体41に取り付けられる筒状ケーシング42、ポンプ本体41及び筒状ケーシング42を貫通するように設けられた封液供給口43、筒状ケーシング42の内側に設けられたリテーナ44、このリテーナ44の内側に配設された円環状のフローティングリング45、このフローティングリング45とリテーナ44の間に設けられる回転阻止用ピン46を備え、フローティングリング45の内周面と回転軸40の外周面との隙間aに形成される水膜によってフローティングリング45は回転軸40との接触を回避し、更に、フローティングリング45を軸直角方向に浮動可能に保持して自動調心するようになっている。 
 しかしながら、図7に示す従来技術1のフローティングリングを備えたシール装置においては、円周方向に180度の間隔をおいて一対設けられた連結部36が、ケーシング37の溝部38に挿入されているため、フローティングリング35が回転されることはないが、回転軸39と同心にフローティングリング35を組立てることが現実的には困難であるため、回転軸39に対してフローティングリング35が偏心状態で組立てられるという問題があった。さらに、回転軸39の撓み等による回転軸39の偏心に対してフローティングリング35が柔軟に追従できないという問題もあった。 
 また、図8に示す従来技術2のフローティングリングを備えたシール装置においては、フローティングリング45の内周面と回転軸40の外周面との隙間aに形成される水膜によって、一応、フローティングリング45を自動調心するようになっているが、フローティングリング45の重量よりもフローティングリング45の内周面と回転軸40との間の隙間の小さい部分に発生する動圧が小さい場合、フローティングリング45の内周面と回転軸31との間に形成される隙間aは均一にはならず、偏心した状態で運転されることになる。 
特開2003-97730号公報 特開平11-94096号公報
 上記の従来技術1及び従来技術2のように、フローティングリングと回転軸との中心とを一致させることができない場合、フローティングリングと回転軸との接触を防ぐためには両者の隙間を予め大きく設定する必要がある。その結果、隙間の3乗に比例して被密封流体の漏れ量が多くなるという問題があった。 
 本発明は、フローティングリングを備えたシール装置において、被密封流体を上流側に押し戻すように作用する逆方向の動圧発生溝をフローティングリングの内周面に設けることにより、被密封流体の漏れ量を減少させるとともに、該動圧発生溝の発生する動圧を利用して、フローティングリングと回転軸との中心を一致させることができるようにしたシール装置を提供することを目的とする。 
 上記目的を達成するため本発明のシール装置は、第1に、回転軸外周とケーシング内周との間にフローティングリングを備えたシール装置において、フローティングリングの内周面に漏出しようとする被密封流体を上流側に押し戻すように作用する逆方向の動圧発生溝を円周方向に複数設けることを特徴としている。 
 また、本発明のシール装置は、第2に、回転軸外周とケーシング内周との間にフローティングリングを備えたシール装置において、フローティングリングの内周面に向けてバリア流体を供給するバリア流体供給孔を設けるとともに、フローティングリングの内周面に漏出しようとする被密封流体を上流側に押し戻すように作用する逆方向の動圧発生溝を円周方向に複数設けることを特徴としている。 
 また、本発明のシール装置は、第3に、第2の特徴において、バリア流体供給孔を円周方向に複数設け、該複数のバリア流体供給孔を接続するようにフローティングリングの内周面に内周溝を設け、該内周溝に接続して動圧発生溝が配設されることを特徴としている。 
 また、本発明のシール装置は、第4に、第3の特徴において、動圧発生溝が内周溝より被密封流体側に設けられることを特徴としている。 
 また、本発明のシール装置は、第5に、第3の特徴において、動圧発生溝が内周溝より大気側に設けられることを特徴としている。 
  また、本発明のシール装置は、第6に、第3の特徴において、動圧発生溝が内周溝の被密封流体側及び大気側に設けられることを特徴としている。 
 本発明は、以下のような優れた効果を奏する。 
(1)フローティングリングを備えたシール装置において、被密封流体を上流側に押し戻すように作用する逆方向の動圧発生溝をフローティングリングの内周面に設けることにより、被密封流体の漏れ量を減少させるとともに、動圧発生溝の発生する動圧を利用して、フローティングリングと回転軸との中心を一致させることができる。 
 また、起動時の動的安定性を良好にすることができる。 
(2)回転軸の回転中においてフローティングリングと回転軸の中心を一致させることができるため、フローティングリングの内周面と回転軸の外周面との隙間を小さく設定することができ、シール装置のシール性の向上を図ることができる。また、流体膜厚さを平均に増加させることができるため、フローティングリングの内周面と回転軸の外周面との接触の危険性を低減することができる。 
(3)上記(1)に加えて、フローティングリングの内周面に向けてバリア流体を供給するバリア流体供給孔を設けることにより、バリア流体が逆方向の動圧発生溝と相乗的に作用し、漏出しようとする被密封流体をより効率よく上流側に押し戻すため、被密封流体の漏れ量を一層減少させることができる。 
本発明の実施の形態1に係るシール装置を模式的に示した正面断面図であって、回転軸の回転によりフローティングリングが上方に持ち上げられた状態にある。 本発明の実施の形態1に係るシール装置を模式的に示した側面図であって、回転軸が回転を始めた状態を示している。 実施の形態1に係るフローティングリングの内周面に設けられた動圧発生溝の例を示した図である。 本発明の実施の形態2に係るシール装置を模式的に示した正面断面図であって、回転軸の回転によりフローティングリングが上方に持ち上げられた状態にある。 実施の形態2におけるフローティングリングの内周面に設けられた動圧発生溝の例を示した図である。 回転軸とフローティングリングの同軸度を示したもので、(a)は本発明に係る逆方向の動圧発生溝を設けたフローティングリングの半径方向の移動履歴、(b)は本発明の動圧発生溝とは反対方向の順方向の動圧発生溝を設けたフローティングリングの半径方向の移動履歴を示すものである。 従来技術1を示す正面断面図である。 従来技術2を示す側面断面図である。
 本発明に係るシール装置を実施するための形態を図面を参照しながら詳細に説明するが、本発明はこれに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加えうるものである。  
〔実施の形態1〕 
図1は、本発明の実施の形態1に係るシール装置を模式的に示した正面断面図であって、回転軸の回転によりフローティングリングが上方に持ち上げられた状態にある。 
 図1において、ケーシング1の孔2内を貫通するようにしてポンプ等の回転軸3が配設されており、右側が被密封流体側(高圧側)、左側が大気側(低圧側)である。ケーシング1の内周面と回転軸3の外周面との間には半径方向の隙間δが設けられており、この隙間δをシールするため、回転軸3の外周を囲むように中空円筒状のフローティングリング5が設けられる。また、ケーシング1内には、前記フローティングリング5を収容する円筒状の空間4が設けられており、この空間4の径及び幅は、フローティングリング5の外径及び幅よりも大きい。さらに、フローティングリング5の内径は回転軸3の外径よりもわずかに大きく設定されており、フローティングリング5が半径方向に一定の範囲で移動可能となっている。フローティングリング5の内周面9には、後述するように、被密封流体を上流側に押し戻すように作用する逆方向の動圧発生溝8が設けられている。 
 図2は、本発明の実施の形態1に係るシール装置を模式的に示した側面図であって、回転軸が回転を始めた状態を示している。 
 図2において、フローティングリング5の外周面の左側面には回止ピン6が半径方向外方に突出するように設けられ、該回止ピン6は、ケーシング1の円筒状の空間4から半径方向外方に設けられた溝7内に遊嵌され、フローティングリング5の回転を防止するようになっている。回止ピン6はフローティングリング5の円周方向において1個所設けられる。回止ピン6の位置は、回転軸3の回転方向を反時計方向にあるとき、回転軸3の中心Oを原点とするX-Y座標系において、第2及び第3象限に位置しておればよく、特に図2の位置に限定されるものではない。また、回り止め手段としてはピンに限らず、要は、ケーシング1に係止されてフローティングリング5の回転を防止する機能を有するものであればよい。 
 図2に示すように、回転軸3が反時計方向に回転している状態にあるとき、回転軸3とフローティングリング5との間に介在する被密封流体の隙間Sにおけるくさび効果によりフローティングリング5を持ち上げる力が発生する。このとき、フローティングリングの重量>回転軸3とフローティングリング5とのくさび効果によりフローティングリング5を持ち上げる力、の関係にある場合、フローティングリング5の中心は回転軸3の中心より下方にある。 
 逆に、フローティングリングの重量<回転軸とフローティングリングとのくさび効果でフローティングリングを持ち上げる力、の関係にある場合には、フローティングリング5の中心は回転軸3の中心より上方にある。 
 このような状態においては、回転軸外周とフローティングリング内周との間に介在する流体膜が局所的に薄くなるため、回転軸3の異常振動など不安定な挙動を起こしたときにフローティングリング5の内周面と回転軸3の外周面とが接触する危険がある。このような危険を避けるためには、フローティングリング5の内周面と回転軸3の外周面との隙間を予め大きく設定する必要がある。しかし、この隙間を大きくすると、この隙間からの被密封流体の漏れ量が隙間の3乗に比例して多くなるという問題がある。 
 本発明は、図1及び図2に示すように、回転軸3の回転時において、被密封流体を上流側に押し戻すように作用する逆方向の動圧発生溝8をフローティングリング5の内周面9に設けることにより、被密封流体の漏れ量を減少させるとともに、該動圧発生溝8の発生する動圧を利用して、フローティングリング5と回転軸3との中心を一致させることができるようにしたものである。 
 図3は、実施の形態1に係るフローティングリング5の内周面9に設けられた動圧発生溝の例を示した図である。 
 図3(a)(b)において、フローティングリング5の右側が被密封流体側(高圧側)、左側が大気側(低圧側)であり、回転軸3は矢印の方向に回転する。 
 図3(a)では、フローティングリング5の内周面9の被密封流体側(高圧側)の約半分に、大気側(低圧側)に漏出しようとする被密封流体を上流側に押し戻すように作用する動圧発生溝8(以下、「逆方向の動圧発生溝」といい、これと逆の場合を「順方向の動圧発生溝」という。)が円周方向の全周にわたって複数設けられている。 
 また、図3(b)では、フローティングリング5の内周面9の全幅にわたって、大気側(低圧側)に漏出しようとする被密封流体を上流側に押し戻すように作用する逆方向の動圧発生溝8が円周方向の全周に複数設けられている。 
 本例では、逆方向の動圧発生溝8は、回転軸3の回転方向に沿うように大気側から被密封流体側に向かって約45°で傾斜した形状をなし、円周上に等配で設けられている。 
 なお、動圧発生溝7は、円周方向に非等配でもよく、その角度、数、幅及び深さも適宜設定されればよい。 
 大気側に漏出しようとする被密封流体は、逆方向の動圧発生溝8に流入し、該動圧発生溝8の傾斜にしたがい上流側に押し出されるようにして一部の流体が矢印のように戻されるため、大気側に漏出する量は減少する。その際、逆方向の動圧発生溝8により発生される動圧がフローティングリング5を回転軸3の中心と同心になるように作用する。すなわち、フローティングリング5の内周面9と回転軸3の外周面との間に発生する動圧は、隙間の小さい部分において高く、隙間の大きい部分では低いため、隙間を均一にするように作用し、その結果、フローティングリング5の中心を回転軸3の軸心と同心にするものである。 
 今、フローティングリング5の重量をW、回転軸3とフローティングリング5との隙間Sのくさび効果によりフローティングリング5を持ち上げる力をF1、及び、逆方向の動圧発生溝8で発生する動圧によりフローティングリング5を移動させる力をF2とし、それぞれの作用点における回止ピン6からのX方向の距離をL1、L2、L3とした場合、 
W・L1=F1・L2+F2・L3 
となるように逆方向の動圧発生溝8で発生する動圧による力F2を設定すれば、フローティングリング5の中心と回転軸3の中心とは一致する。したがって、フローティングリング5の内周面と回転軸3の外周面との隙間を小さく設定することができ、シール装置のシール性を向上させることができる。また、流体膜厚さを平均に増加させることができるため、フローティングリング5の内周面と回転軸3の外周面との接触の危険性を低減することができる。 
 例えば、フローティングリング5の重量が大きくそのモーメントW・L1が、回転軸3とフローティングリング5との隙間Sのくさび効果によりフローティングリング5を持ち上げる力によるモーメントF1・L2及び動圧発生溝8で発生する動圧によりフローティングリング5を移動させる力によるモーメントF2・L3を上回る場合は、回転軸3の中心Oを原点とするX-Y座標系において、フローティングリング5の内周面9の第1象限、または、第1及び第2象限に位置する動圧発生溝8を深くしたり、密にしたりしてF2を上方に向けて生じるようにすればよい。 
 逆に、回転軸3とフローティングリング5との隙間Sのくさび効果によりフローティングリング5を持ち上げる力によるモーメントF1・L2及び動圧発生溝8で発生する動圧によりフローティングリング5を移動させる力によるモーメントF2・L3がフローティングリング5の重量によるモーメントW・L1を上回る場合は、フローティングリング5の内周面9の第4象限、または、第3及び第4象限に位置する動圧発生溝8を深くしたり、密にしたりしてF2を下向きに作用するようにすればよい。 
〔実施の形態2〕  
 図4は、本発明の実施の形態2に係るシール装置を模式的に示した正面断面図であって、回転軸の回転によりフローティングリングが上方に持ち上げられた状態にある。 
 図4において、ポンプ本体10と回転軸11との間には円筒状のケーシング12が配設され、円筒状のケーシング12はポンプ本体10との間にOリング13を介してボルト14により固定されている。円筒状のケーシング12の内周面と回転軸11の外周面との間に隙間δが設けられる。円筒状のケーシング12の内周面側には、中空円筒状の空間15が形成されており、該空間15の軸方向の中心に位置してケーシング12の半径方向の外方から内方に向かってバリア流体Aを供給するバリア流体供給孔16が設けられている。
 中空円筒状の空間15内の両側にはリテーナリング17、17が設けられ、その間に位置してフローティングリング18が配設されている。 
  図4において、右側が被密封流体側、左側が大気側であり、圧力関係は、バリア流体Aの圧力>被密封流体の圧力>大気の圧力、という関係にある。 
 フローティングリング18にはバリア流体供給孔20が半径方向の外方から内方に向かって円周方向に複数設けられ、フローティングリング18の内周面19に設けられた内周溝21に接続されている。また、フローティングリング18の内周面19には、後述するように、被密封流体をより効率よく上流側に押し戻すように作用する逆方向の動圧発生溝8が設けられている。 
 フローティングリング18は、例えば、円周方向に二つ割りに構成し、図示しないボルトにより一体的に固定するようにしてもよい。また、フローティングリング18には、実施の形態1の場合と同様に、回止めピンが設けられ、回止めピンがケーシング12の溝に遊嵌してフローティングリング18の回転を防止するようになっている。 
 回転軸3が回転している状態にあるとき、回転軸3とフローティングリング18との間に介在する被密封流体の隙間Sにおけるくさび効果によりフローティングリング18を持ち上げる力が発生する点は実施の形態1と同じであり、本実施の形態2においても、回転軸3の回転時において、漏出しようとする被密封流体を上流側に押し戻すように作用する逆方向の動圧発生溝8をフローティングリング18の内周面19に設けることにより、被密封流体の漏れ量を減少させるとともに、該逆方向の動圧発生溝8の発生する動圧を利用して、フローティングリング18と回転軸3との中心を一致させることができるようにしている。 
 図5は、実施の形態2に係るフローティングリングの内周面に設けられた逆方向の動圧発生溝の例を示した図である。 
 図5(a)(b)(c)は、フローティングリング18の内周面19に設けられた内周溝21より被密封流体側に内周溝21に連続するようにして逆方向の動圧発生溝8が設けられた例を示している。本例では、逆方向の動圧発生溝8は円周方向に等配に設けられ、バリア流体供給孔20は動圧発生溝8の近傍に設けられている。 
 図5(a)では、逆方向の動圧発生溝8は回転軸3の回転方向に沿うように大気側から被密封流体側に向かって傾斜した平行四辺形の形状をなし、円周上に等配で設けられている。 
 図5(b)の逆方向の動圧発生溝8は、内周溝21側から先端に向けて先細の三角形の形状している点で図5(a)と相違しているがその他の点は同じである。 
  図5(c)の逆方向の動圧発生溝8は、内周溝21側から先端側の途中まで回転軸3の回転方向に沿うように大気側から被密封流体側に向かって傾斜し、先端側は回転軸3の回転方向に並行な形状となっている。 
 今、回転軸3が矢印の方向に回転し、バリア流体供給孔20からバリア流体Aが供給されると、高圧のバリア流体Aは内周溝21からその両側に流れるが、その際、逆方向の動圧発生溝8に流入するバリア流体Aは被密封流体側に向かって流され、漏出しようとする被密封流体を矢印の方向に押し戻す。同時に、漏出しようとして逆方向の動圧発生溝8に流入する被密封流体も矢印の方向に押し戻される。その際、逆方向の動圧発生溝8により発生される動圧がフローティングリング18を回転軸3の中心と同心となるように作用する。 
 図5(d)は、フローティングリング18の内周面に設けられた内周溝21より大気側に内周溝21に連続するようにして逆方向の動圧発生溝8が設けられた例を示している。本例では、逆方向の動圧発生溝8は円周方向に等配に設けられ、バリア流体供給孔20は動圧発生溝8の近傍に設けられている。逆方向の動圧発生溝8は回転軸3の回転方向に沿うように大気側から被密封流体側に向かって傾斜した平行四辺形の形状をなし、円周上に等配で設けられている。 
 本例の場合も、回転軸3が矢印の方向に回転し、バリア流体供給孔20からバリア流体Aが供給されると、高圧のバリア流体Aは内周溝21からその両側に流れるが、その際、逆方向の動圧発生溝8に流入するバリア流体Aは被密封流体側に向かって流され、漏出しようとする被密封流体を矢印の方向に押し戻す。同時に、漏出しようとして逆方向の動圧発生溝8に流入する被密封流体も矢印の方向に押し戻される。 
 図5(e)は、フローティングリング18の内周面に設けられた内周溝21の両側に内周溝21に連続するようにして逆方向の動圧発生溝8が設けられた例を示している。本例では、逆方向の動圧発生溝8は回転軸3の回転方向に沿うように大気側から被密封流体側に向かって傾斜した平行四辺形の形状をなし、内周溝21の被密封流体側及び大気側の動圧発生溝8は円周方向に位相をずらすようにして、それぞれ円周上に等配で設けられ、バリア流体供給孔20は左右の動圧発生溝8の間に位置して設けられている。 
 本例の場合、回転軸3が矢印の方向に回転し、バリア流体供給孔20からバリア流体Aが供給されると、高圧のバリア流体Aは内周溝21からその両側に流れるが、その際、両側の逆方向の動圧発生溝8に流入するバリア流体Aは被密封流体側に向かって流され、漏出しようとする被密封流体を矢印の方向に押し戻す。同時に、漏出しようとして逆方向の動圧発生溝8に流入する被密封流体も矢印の方向に押し戻される。 
 図6は、回転軸とフローティングリングの同軸度を示したもので、(a)は本発明に係る逆方向の動圧発生溝を設けたフローティングリングの半径方向の移動履歴、(b)は本発明の動圧発生溝とは反対方向の順方向の動圧発生溝を設けたフローティングリングの半径方向の移動履歴を示すものである。
 図6において、実線はX方向の移動量を、破線はY方向の移動量を示す。
 図6(b)の順方向の動圧発生溝を設けた場合、フローティングリングは、起動時においてY方向に大きく移動し、その後もY方向にやや大きく偏心したままの状態でいるのがわかる。定常時の偏心率は無次元数で表した場合5.1と大きい。
 これに比べて、図6(a)の本発明に係る逆方向の動圧発生溝を設けた場合、フローティングリングは、起動時においてX及びY方向にわずかに移動するが、その後は、ほぼ中心の近傍に位置しているのがわかる。定常時の偏心率は無次元数で表した場合2.1であった。
 以上の結果から、順方向の動圧発生溝を設けた場合には、偏心率が大きく、問題があるのに対し、本発明に係る逆方向の動圧発生溝を設けた場合、起動時の動的安定性がよく、偏心率も小さく、回転軸とフローティングリングの同軸度が良好であることがわかる。 
  1  ケーシング 
  2  孔 
  3  回転軸 
  4  円筒状の空間 
  5  フローティングリング 
  6  回止ピン 
  7  溝 
  8  逆方向の動圧発生溝 
  9  フローティングリングの内周面 
  10 ポンプ本体 
  11 回転軸 
  12 円筒状のケーシング 
  13 Oリング 
  14 ボルト 
  15 中空円筒状の空間 
  16 ケーシングに設けられたバリア流体供給孔 
  17 リテーナリング 
  18 フローティングリング 
  19 フローティングリングの内周面 
  20 フローティングリングに設けられたバリア流体供給孔 
  21 内周溝 
  δ  ケーシングと回転軸との隙間 
  S  回転軸とフローティングリングとの隙間 
  M  回転モーメント 

Claims (6)

  1.  回転軸外周とケーシング内周との間にフローティングリングを備えたシール装置において、フローティングリングの内周面に漏出しようとする被密封流体を上流側に押し戻すように作用する逆方向の動圧発生溝を円周方向に複数設けることを特徴とするシール装置。 
  2.  回転軸外周とケーシング内周との間にフローティングリングを備えたシール装置において、フローティングリングの内周面に向けてバリア流体を供給するバリア流体供給孔を設けるとともに、フローティングリングの内周面に漏出しようとする被密封流体を上流側に押し戻すように作用する逆方向の動圧発生溝を円周方向に複数設けることを特徴とするシール装置。 
  3.  バリア流体供給孔を円周方向に複数設け、該複数のバリア流体供給孔を接続するようにフローティングリングの内周面に内周溝を設け、該内周溝に接続して動圧発生溝が配設されることを特徴とする請求項2記載のシール装置。 
  4.  動圧発生溝が内周溝より被密封流体側のフローティングリング内周面に設けられることを特徴とする請求項3記載のシール装置。 
  5.  動圧発生溝が内周溝より大気側のフローティングリング内周面に設けられることを特徴とする請求項3記載のシール装置。 
  6.  動圧発生溝が内周溝の被密封流体側及び大気側のフローティングリング内周面に設けられることを特徴とする請求項3記載のシール装置。 
PCT/JP2012/056060 2011-03-30 2012-03-09 シール装置 WO2012132832A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12765861.5A EP2636931B1 (en) 2011-03-30 2012-03-09 Seal device
US14/007,883 US9709174B2 (en) 2011-03-30 2012-03-09 Sealing device
CN201280012352.8A CN103429939B (zh) 2011-03-30 2012-03-09 密封装置
JP2013507335A JP5871287B2 (ja) 2011-03-30 2012-03-09 シール装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011074361 2011-03-30
JP2011-074361 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012132832A1 true WO2012132832A1 (ja) 2012-10-04

Family

ID=46930571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056060 WO2012132832A1 (ja) 2011-03-30 2012-03-09 シール装置

Country Status (5)

Country Link
US (1) US9709174B2 (ja)
EP (1) EP2636931B1 (ja)
JP (1) JP5871287B2 (ja)
CN (1) CN103429939B (ja)
WO (1) WO2012132832A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586510A (zh) * 2021-08-28 2021-11-02 扬州根源精机工业有限公司 一种给水泵磨损环的组合密封结构
WO2022044956A1 (ja) * 2020-08-28 2022-03-03 イーグル工業株式会社 密封装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014362551B2 (en) * 2013-12-09 2017-06-01 Eagle Industry Co., Ltd. Sliding component
WO2015087799A1 (ja) * 2013-12-09 2015-06-18 イーグル工業株式会社 摺動部品
JP2017160861A (ja) * 2016-03-10 2017-09-14 株式会社日立製作所 ターボ機械
CN106050248A (zh) * 2016-07-20 2016-10-26 江苏腾旋科技股份有限公司 一种盾构机用土仓密封装置
DE102016218239A1 (de) * 2016-09-22 2018-03-22 MTU Aero Engines AG Dichtungsanordnung für ein Turbinenzwischengehäuse einer Gasturbine
CN108679231A (zh) * 2018-07-27 2018-10-19 中国大唐集团科学技术研究院有限公司华中分公司 汽轮发电机组氢气密封装置及密封方法
CN110285220A (zh) * 2019-06-28 2019-09-27 中国航空工业集团公司北京长城计量测试技术研究所 一种气帘式浮环密封装置
CN113931840A (zh) * 2021-09-15 2022-01-14 荣盛石化股份有限公司 一种釜底熔体出料齿轮泵组合浮动填料密封结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147394U (ja) * 1985-03-05 1986-09-11
JP2006046496A (ja) * 2004-08-04 2006-02-16 Nippon Pillar Packing Co Ltd 軸流型非接触シール

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL136709C (ja) * 1969-02-28
US3785660A (en) * 1970-10-15 1974-01-15 Republic Ind Corp Seal
US3726531A (en) * 1970-12-07 1973-04-10 American Metal Bearing Co Stern tube seal
DD107968A1 (ja) * 1972-05-23 1974-08-20
US3874677A (en) * 1973-07-19 1975-04-01 Nasa High speed, self-acting shaft seal
US4275891A (en) * 1979-08-14 1981-06-30 Westinghouse Electric Corp. Face type shaft seal for liquid metal pumps
JPS56101459A (en) * 1980-01-17 1981-08-14 Mitsubishi Electric Corp Seal-ring type shaft sealing device
US4337956A (en) * 1980-12-30 1982-07-06 American Sterilizer Company Double lip seal with pressure compensation
US4534569A (en) * 1983-09-27 1985-08-13 Mitsubishi Jukogyo Kabushiki Kaisha Stern tube seal device providing a seal about a rotatable shaft
DE3734888A1 (de) * 1986-04-16 1989-04-27 Mtu Muenchen Gmbh Dichtung zwischen rotierenden maschinenteilen
DE3869387D1 (de) * 1988-02-17 1992-04-23 Freudenberg Carl Fa Dichtung.
US5006043A (en) * 1989-11-20 1991-04-09 Sundstrand Corporation Floating annular seal with thermal compensation
US5403019A (en) * 1993-05-03 1995-04-04 Dresser-Rand Company Balanced floating labyrinth seal
JPH1030730A (ja) * 1996-07-15 1998-02-03 Ebara Corp 非接触軸封装置
JP3887907B2 (ja) 1997-09-18 2007-02-28 株式会社日立プラントテクノロジー フローティングリングシール
US6352265B1 (en) * 1999-05-26 2002-03-05 Brooks Automation, Inc. Seal ring using gas curtain
JP2003097730A (ja) 2001-09-26 2003-04-03 Mitsubishi Heavy Ind Ltd 軸シール構造
CN2534428Y (zh) 2001-12-27 2003-02-05 中国石油天然气股份有限公司 单列交错流体动压槽上游泵送机械密封
US20080157479A1 (en) * 2006-06-21 2008-07-03 Thurai Manik Vasagar Low and reverse pressure application hydrodynamic pressurizing seals
US8215645B1 (en) * 2010-05-17 2012-07-10 Florida Turbine Technologies, Inc. Floating air seal for a turbo machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147394U (ja) * 1985-03-05 1986-09-11
JP2006046496A (ja) * 2004-08-04 2006-02-16 Nippon Pillar Packing Co Ltd 軸流型非接触シール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2636931A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044956A1 (ja) * 2020-08-28 2022-03-03 イーグル工業株式会社 密封装置
CN113586510A (zh) * 2021-08-28 2021-11-02 扬州根源精机工业有限公司 一种给水泵磨损环的组合密封结构

Also Published As

Publication number Publication date
US20140008873A1 (en) 2014-01-09
CN103429939A (zh) 2013-12-04
EP2636931A4 (en) 2015-06-10
US9709174B2 (en) 2017-07-18
EP2636931A1 (en) 2013-09-11
EP2636931B1 (en) 2019-08-07
CN103429939B (zh) 2016-07-27
JP5871287B2 (ja) 2016-03-01
JPWO2012132832A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5871287B2 (ja) シール装置
JP6773649B2 (ja) ハイドロパッド面プロファイルを有するメカニカルシール
JP6616932B2 (ja) 摺動部品
WO2014024742A1 (ja) 摺動部品
US8905407B2 (en) Segmented seal with axial load control feature
WO2018088350A1 (ja) しゅう動部品
WO2012128062A1 (ja) シール装置
JP2010216587A (ja) シール装置
CA2453877A1 (en) Fluid coolant union
JP6941479B2 (ja) シール構造及びメカニカルシール
US9695944B2 (en) Electrical corrosion resistant mechanical seal
US10036474B2 (en) Vented lift off seal assemblies
JP2010084802A (ja) ロータリーシール
US11391377B2 (en) Hydraulic seal
JP2014025501A (ja) 回転軸シール
CN108252754B (zh) 自由动力涡轮
US10415565B2 (en) Vane cell machine
WO2017016788A1 (en) High pressure fuel pumps
JP2009052420A (ja) ポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507335

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012765861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14007883

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE