WO2012132811A1 - Ranging method and laser ranging device - Google Patents

Ranging method and laser ranging device Download PDF

Info

Publication number
WO2012132811A1
WO2012132811A1 PCT/JP2012/055901 JP2012055901W WO2012132811A1 WO 2012132811 A1 WO2012132811 A1 WO 2012132811A1 JP 2012055901 W JP2012055901 W JP 2012055901W WO 2012132811 A1 WO2012132811 A1 WO 2012132811A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
laser
data
measurement point
Prior art date
Application number
PCT/JP2012/055901
Other languages
French (fr)
Japanese (ja)
Inventor
直行 古山
Original Assignee
Koyama Naoyuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyama Naoyuki filed Critical Koyama Naoyuki
Priority to JP2012532389A priority Critical patent/JP5414083B2/en
Publication of WO2012132811A1 publication Critical patent/WO2012132811A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02032Interferometers characterised by the beam path configuration generating a spatial carrier frequency, e.g. by creating lateral or angular offset between reference and object beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0675Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver

Definitions

  • the present invention relates to a distance measuring method and a laser distance measuring apparatus that measure the distance or thickness in the thickness direction of an object to be measured with high accuracy using interference of laser light.
  • the laser light is divided into reference light and measurement light, and the optical path difference between the reference light and measurement light reflected by the object to be measured is obtained. Measure the distance to the object to be measured.
  • the distance measurement accuracy is far from the wavelength level of the laser light, that is, the order of nm (nanometer).
  • Patent Document 1 the inventor of the present application uses a plurality of laser beams having different wavelengths, and further changes the optical path difference so as to utilize the coherence characteristic of the laser beams.
  • inventions related to a laser distance measuring method and a laser distance measuring apparatus for performing the laser distance measuring method have been made.
  • the invention disclosed in [Patent Document 1] makes it possible to measure the distance to the object to be measured with high accuracy.
  • the optical path difference is changed by mechanical means such as a motor. Therefore, high-precision ranging requires expensive mechanical means with high positional accuracy, and there is a problem that the cost increases.
  • mechanical means with high positional accuracy may cause errors due to backlash (reverse operation) or the like, and further improvement is desired in this respect.
  • the present invention has been made in view of the above circumstances, and while utilizing the coherence characteristic of laser light, the distance to the object to be measured or the distance in the thickness direction without using mechanical means in the optical system or It is an object of the present invention to provide a distance measuring method and a laser distance measuring device for measuring a thickness with high accuracy.
  • the first laser light and the second laser light having different wavelengths are divided into reference light and measurement light by the dividing unit 12, and reflected by the reference light reflected by the reflecting unit 14 and the measurement point of the object 6 to be measured.
  • the light receiving unit 18 receives the measured light and measures the distance L in the thickness direction of the DUT 6 based on light and dark data obtained by the interference between the reference light and the measurement light.
  • a method A calculation light / dark data creating step for calculating calculated light / dark data based on the wavelengths of the first laser light and the second laser light and the light intensity of the reference light and measurement light received by the light receiving unit 18;
  • the reference light of each of the first laser light and the second laser light is reflected by the reflecting portion 14 whose reflecting surface is inclined, and each measurement light of the first laser light and the second laser light is reflected on the first object 6 to be measured.
  • the light receiving unit 18 receives the measured light and measures the distance L in the thickness direction of the DUT 6 based on light and dark data obtained by the interference between the reference light and the measurement light.
  • a method A calculation light / dark data creating step for calculating calculated light / dark data based on the wavelengths of the first laser light and the second laser light and the light intensity of the reference light and measurement light received by the light receiving unit 18;
  • the first laser beam and the second laser beam are each divided into two reference beams and a measuring beam, and one of the first laser beam and the second laser beam (first reference beam) is inclined on the reflection surface.
  • the light is reflected by the first reflection region 14a of the reflection unit 14, and one measurement light (first measurement light) of the first laser light and the second laser light is reflected by the first measurement point S1 of the object 6 to be measured.
  • the reference light reflected by the one reflection region 14a and the measurement light reflected by the first measurement point S1 are received by the first light receiving region 18a of the light receiving unit 18 including a plurality of light receivers 22,
  • the other reference light (second reference light) of the first laser light and the second laser light is reflected by the second reflection region 14b of the reflecting portion 14 whose reflection surface is inclined, and the first laser light and the second laser light.
  • the second measurement light (second measurement light) is reflected at the second measurement point S2 of the object 6 to be measured, and a plurality of reference lights reflected at the second reflection region 14b and measurement light reflected at the second measurement point S2 are used.
  • a second light / dark data creation step for creating measurement light / dark data of the second measurement point S2 based on the light intensity data of each light receiver 22 in the second light receiving region 18b;
  • First laser irradiation means 10a and second laser irradiation means 10b for emitting two first laser beams and second laser beams having different wavelengths, and the first laser beam and the second laser beam as reference light.
  • a dividing unit 12 that divides each measurement light into a measurement light, a reflection unit 14 that reflects each reference light at a predetermined reflection angle, and a reference light that is composed of a plurality of light receivers 22 and reflected by the reflection unit 14 and the device under test 6
  • a light receiving unit 18 that receives the measurement light reflected by the light receiving unit 22 and outputs the light intensity data of each light receiver 22, and a calculation unit 20 that receives the light intensity data from the light receiving unit 18.
  • the comparison step, the second distance data acquisition step, and the distance measurement step are performed to measure the distance L in the thickness direction between the first measurement point S1 and the second measurement point S2 of the object 6 to be measured.
  • First laser irradiation means 10a and second laser irradiation means 10b for emitting two first laser beams and second laser beams having different wavelengths, and two references each of the first laser beam and the second laser beam
  • a laser beam splitting unit that splits the light into a measurement beam, and a first reference beam that reflects one reference beam (first reference beam) of the first laser beam and the second laser beam split by the laser beam splitting unit at a predetermined reflection angle.
  • the second measurement light (second measurement light) is emitted
  • the exit port 16b It is composed of a plurality of light receivers 22, receives the reference light reflected by the first reflection region 14 a and the measurement light reflected by the first measurement point S 1 of the device under test 6, and outputs the light intensity data of each light receiver 22.
  • a first light receiving region 18a to be It is composed of a plurality of light receivers 22, receives the reference light reflected by the second reflection region 14 b and the measurement light reflected by the second measurement point S 2 of the device under test 6, and outputs the light intensity data of each light receiver 22.
  • a second light receiving region 18b that A calculation unit 20 for inputting light intensity data from the first light receiving region 18a and the second light receiving region 18b, The calculated brightness / darkness data creation step, the irradiation step, the first brightness / darkness data creation step, the second brightness / darkness data creation step, the first comparison step, the second comparison step, the first distance data acquisition step, and the second distance data described in (2) above.
  • Laser distance measuring device 50b characterized in that the distance L in the thickness direction between first measurement point S1 and second measurement point S2 of object 6 is measured by performing an acquisition step and a distance measurement step.
  • the first output port 16a and the second output port 16b are installed so as to face each other, and the device under test 6 is disposed between the first output port 16a and the second output port 16b.
  • the above-mentioned problem is solved by providing the laser distance measuring device 50c according to the above (5), which measures the thickness t of 6.
  • the distance or thickness in the thickness direction of the object to be measured can be measured with high accuracy without using mechanical means in the optical system.
  • FIG. 1 the basic principle of the distance measuring method and the laser distance measuring device according to the present invention will be described with reference to the laser distance measuring device 50a of the first embodiment of FIG. 1 and FIGS. 2, 3, and 4.
  • FIG. 2 the laser distance measuring device 50a of the first embodiment of FIG. 1 and FIGS. 2, 3, and 4.
  • the laser distance measuring device 50a includes a first laser irradiation unit 10a and a second laser irradiation unit 10b that respectively emit two laser beams having different wavelengths (first laser beam and second laser beam). ing.
  • the first laser irradiation unit 10a and the second laser irradiation unit 10b it is preferable to use a helium neon laser, a semiconductor excitation solid laser, a semiconductor DFB laser, or the like having a relatively long coherence length.
  • a semiconductor laser or the like having a short coherence length may be used.
  • the first laser light emitted from the first laser irradiation means 10a is reflected by the mirror 4a provided on the optical path of the first laser light and travels toward the dividing unit 12.
  • the second laser light emitted from the second laser irradiation means 10b is reflected by the half mirror 4b provided on the optical path of the second laser light, passes through the same optical path as the first laser light, and travels to the dividing unit 12.
  • a half mirror, a beam splitter, or the like is used as the splitting unit 12, and the first laser light and the second laser light that have reached the splitting unit 12 are split into two by the splitting unit 12 into reference light and measurement light.
  • a flat beam splitter is used as the dividing unit 12
  • the correction plate 11 need not be provided.
  • the reference light of the first laser beam and the second laser beam divided by the dividing unit 12 is reflected by the reflecting unit 14.
  • the reflection surface of the reflection portion 14 is not perpendicular to the incident direction of the reference light but is inclined by a predetermined angle ⁇ . Therefore, the reference light is reflected at a predetermined reflection angle (2 ⁇ as viewed from the incident direction) as shown in FIG.
  • the reference light reflected by the reflecting section 14 passes through the correction plate 11 and the beam splitter (dividing section 12) and reaches the light receiving section 18 at an angle inclined by 2 ⁇ .
  • the measurement light of the first laser beam and the second laser beam divided by the dividing unit 12 is reflected at a measurement point (for example, the first measurement point S1) of the object 6 to be measured and received through the dividing unit 12. Part 18 is reached.
  • the inclination angle ⁇ of the reflecting surface of the reflecting portion 14 is about 0.23 °, the reference light reflected by the reflecting portion 14 and the measuring light reflected by the object 6 are partially received by the light receiving portion 18. It interferes with this part.
  • the light receiving unit 18 is composed of a plurality of light receivers 22 such as a CCD and a CMOS, and one that can output light intensity data for each light receiver 22 is used.
  • the reflecting surface of the reflecting portion 14 is inclined by a predetermined angle ⁇ .
  • the optical path length of the reference light between the points aa ′ in FIG. 2 is Lra
  • the optical path length of the reference light between the points bb ′ is Lrb
  • the optical path difference between the measuring light and the reference light increases from the point a ′ on the light receiving unit 18 toward the point b ′. For this reason, periodic interference fringes are generated in the interference light between the measurement light and the reference light as the optical path difference changes.
  • FIG. 3A shows a case where the number of irradiated laser beams is one. Further, the dark part of the interference fringes is indicated as B.
  • the light intensity data of an arbitrary row n and row n ⁇ 1 of the light receiver 22 are connected from the column a ′ to the column b ′, the light / dark data of the interference light is obtained as shown in FIG. can get.
  • the light intensity data of a large number of rows of light receivers 22 can be used to create light and dark data. It becomes possible, and more detailed light and dark data can be created.
  • one laser beam is irradiated.
  • the brightness data is the reference beam of the first laser beam.
  • the interference light that interferes with the measurement light, the reference light of the second laser light, and the interference light that interferes with the measurement light are combined.
  • the use area in the light receiving unit 18 and the order of arrangement of the light intensity data at the time of creating the brightness / darkness data are acquired in advance before the laser ranging devices 50a to 50c are shipped, and the memories in the laser ranging devices 50a to 50c are obtained. It is preferable to memorize in the above.
  • the length of the light / dark data obtained by the above method is basically the number of data (number of light receivers 22) used to create the light / dark data, which is different from the actual length (Lrb-Lra). Yes.
  • the length based on the number of the light receivers 22 is hereinafter referred to as a pixel length.
  • the above conversion formula is used.
  • the actual length can be calculated from the pixel length.
  • the conversion from the pixel length to the actual length may be performed at the time of the light / dark data, but the intermediate calculation is performed with the pixel length, and the pixel length is changed to the actual length at the final stage of the distance measurement step. Conversion is preferable from the viewpoint of error reduction. In this example, a description will be given of an example in which an intermediate calculation is performed with the pixel length and converted to the actual length at the final stage of the distance measuring step.
  • light and dark data (hereinafter referred to as “light intensity data”) generated based on light intensity data output from the light receiving unit 18 or first light receiving area 18a and second light receiving area 18b described later.
  • the measured light / dark data) is compared with the light / dark data (hereinafter referred to as the calculated light / dark data) created by the calculation of the computer of the laser distance measuring device.
  • the period of the interference fringes of the interference light of the laser light is determined by the wavelength (frequency) of the laser light used as described above. Since the frequencies of the first laser light and the second laser light are known, the period of the interference fringes of the interference light of the first laser light and the period of the interference fringes of the interference light of the second laser light can be calculated.
  • the light intensity of the reference light of the first laser light, the measurement light of the first laser light, the reference light of the second laser light, and the measurement light of the second laser light received by the light receiving unit 18 may be individually acquired in advance. For example, the amplitude of each interference light of the first laser light and the second laser light can also be calculated.
  • the light intensity of the measurement light received by the light receiving unit 18 varies depending on the state of reflection of the object 6 to be measured. Therefore, the measurement of the light intensity of the measurement light is preferably performed every time the measurement object 6 changes greatly.
  • the bright part is taken at the point where the optical path difference between the reference light and the measuring light is zero in any interference light of the laser light of any transmission wavelength. Therefore, the position of the arbitrary bright portion of the interference light of the first laser light created by the calculation and the position of the arbitrary bright portion of the interference light of the second laser light are overlapped and added together, thereby adding the first laser. Computed light / dark data in which the interference fringes of the interference light of the light and the interference fringes of the interference light of the second laser light are combined can be created. It should be noted that the position where the bright portions are overlapped takes the maximum light intensity on the calculated light / dark data, and the waveform of the calculated light / dark data is symmetrical before and after this.
  • this point is preferably used as a reference point for the calculated light / dark data.
  • the above is the method for creating the calculated brightness / darkness data, and it is preferable that the calculation brightness / darkness data is created in advance before the distance measurement of the object 6 to be measured.
  • calculated brightness / darkness data is created by the above-described method (calculated brightness / darkness data creation step in the first distance measuring method).
  • the DUT 6 is installed so that the measurement light is irradiated to the first measurement point S1.
  • the first laser irradiation unit 10a and the second laser irradiation unit 10b are operated to irradiate the first laser beam and the second laser beam simultaneously.
  • the irradiated first laser light and second laser light are divided into two by the dividing unit 12 into reference light and measurement light.
  • the reference light of the first laser beam and the second laser beam divided by the dividing unit 12 is reflected by the reflecting unit 14 whose reflecting surface is inclined at a predetermined angle ⁇ , passes through the dividing unit 12, and receives the light receiving unit 18. To reach. Further, the measurement light of the first laser beam and the second laser beam divided by the dividing unit 12 is emitted from the emission port 16, reflected at the first measurement point S ⁇ b> 1 of the object 6 to be measured, and then reflected by the dividing unit 12. And reaches the light receiving unit 18. The light receiving unit 18 receives the reference light of the first laser beam and the second laser beam reflected by the reflecting unit 14 and the measurement light of the first laser beam and the second laser beam reflected by the first measurement point S1 of the object 6 to be measured.
  • the optical path length of the measurement light and the optical path length of the reference light are substantially equal so that the optical path difference between the reference light and the measurement light is within the range of the coherence length during distance measurement.
  • the light receiving unit 18 outputs the light intensity data of each light receiver 22 to the calculation unit 20.
  • the calculation unit 20 arranges the light intensity data of the respective light receivers 22 in a predetermined order, and creates measurement brightness / darkness data of the first measurement point S1 (first measurement brightness / darkness data creation step in the first distance measuring method).
  • the light and dark periodically change the interference light between the reference light of the first laser light and the measurement light of the first laser light. Interference fringes are formed.
  • the interference light between the reference light of the second laser light and the measurement light of the second laser light also forms interference fringes whose brightness changes periodically.
  • the first laser beam and the second laser beam have different wavelengths, the period of interference fringes is different. Incidentally, the interference light between the first laser beam and the second laser beam becomes “beat”, and takes a constant value when time averaged.
  • the measurement brightness / darkness data at the first measurement point S1 is basically the interference light between the measurement light of the first laser light reflected at the first measurement point S1 and the reference light of the first laser light, and at the first measurement point S1.
  • the reflected measurement light of the second laser light and the interference light of the reference light of the second laser light are combined.
  • the calculation unit 20 compares the acquired measurement brightness / darkness data of the first measurement point S1 with previously calculated brightness / darkness data, and determines the position of the measurement brightness / darkness data of the first measurement point S1 in the calculation brightness / darkness data. Identify. (First comparison step in the first distance measuring method).
  • the calculated brightness / darkness data is obtained by calculating the brightness / darkness data obtained by combining the above two interference lights, and the measured brightness / darkness data is obtained by actual measurement. Therefore, the calculated brightness data and the measured brightness data are basically the same, although the acquisition ranges are different.
  • FIG. 4 schematically shows the relationship between the calculated brightness data and the measured brightness data.
  • the thin line in FIG. 4 shows calculation brightness data
  • a thick line shows measurement brightness data.
  • the calculation unit 20 calculates the first distance data La ′ from the base point (point P in FIG. 4) of the measured light / dark data at the first measurement point S1 to the reference point (point O in FIG. 4) on the calculated light / dark data.
  • (Pixel length) is calculated (first distance data acquisition step in the first distance measuring method).
  • the base point of the measured light / dark data can be an arbitrary position of the measured light / dark data (light intensity data of any light receiver 22).
  • the laser distance measuring device 50a or the object to be measured 6 is translated, and the object to be measured 6 is positioned so that the measurement light is irradiated to the second measurement point S2, as shown in FIG.
  • the first laser irradiation unit 10a and the second laser irradiation unit 10b are operated to irradiate the first laser beam and the second laser beam simultaneously.
  • the light receiving unit 18 measures the first laser light and the second laser light reflected by the reflecting unit 14 and the first laser light and the second laser light reflected by the second measurement point S2 of the object 6 to be measured.
  • Receiving light (second irradiation step in the first distance measuring method).
  • the light receiving unit 18 outputs the light intensity data of each light receiver 22 to the calculation unit 20.
  • the computing unit 20 arranges the light intensity data of the respective light receivers 22 in a predetermined order, and creates measurement brightness / darkness data of the second measurement point S2 (second measurement brightness / darkness data creation step in the first distance measuring method).
  • the measured brightness / darkness data at the second measurement point S2 is basically the interference light between the measurement light of the first laser light reflected at the second measurement point S2 and the reference light of the first laser light, and the second measurement point S2.
  • the reflected measurement light of the second laser light and the interference light of the reference light of the second laser light are combined.
  • the calculation unit 20 compares the acquired measurement brightness / darkness data of the second measurement point S2 with previously calculated brightness / darkness data, and determines the position of the measurement brightness / darkness data of the second measurement point S2 in the calculation brightness / darkness data. Identify. (Second comparison step in the first distance measuring method).
  • the calculated brightness / darkness data and the measured brightness / darkness data are basically the same although the acquisition ranges are different. Therefore, if the creation range of the calculated brightness / darkness data is optimized, the second measurement point S2 in FIG.
  • the measured light / dark data B also matches any part of the calculated light / dark data.
  • the difference in the positions of the measured light / dark data A at the first measurement point S1 and the measured light / dark data B at the second measurement point S2 in the calculated light / dark data is the difference between the measured light / dark data A at the first measurement point S1 and the second measurement point S2. This is due to a difference in optical path difference from the measured light / dark data B.
  • the computing unit 20 obtains the second distance data Lb ′ (pixel length) from the base point (point P ′ in FIG. 4) of the measured brightness / darkness data at the second measurement point S2 to the reference point O on the calculated brightness / darkness data.
  • calculate second distance data acquisition step in the first distance measuring method.
  • the base point at this time must be the same position in the measured light / dark data as in the first distance data acquisition step.
  • the difference in position between the measured light / dark data A at the first measurement point S1 and the measured light / dark data B at the second measurement point S2 when the base points are the same is the optical path difference on the measured object 6 side, that is, the first measurement. This corresponds to the distance L in the thickness direction between the point S1 and the second measurement point S2.
  • the calculation unit 20 subtracts the first distance data La ′ obtained in the first distance data acquisition step from the second distance data Lb ′ obtained in the second distance data acquisition step, and then divides by two.
  • the distance L ′ pixel length
  • the distance L ′ is calculated.
  • the distance L ′ is negative, it indicates that the second measurement point S2 is located closer to the laser distance measuring device 50a than the first measurement point S1.
  • the distance L ′ in the thickness direction between the first measurement point S1 and the second measurement point S2 is calculated by converting the pixel length of the distance L ′ into an actual length (first distance measurement method). Ranging step).
  • the above is the operation of the first distance measuring method and the laser distance measuring device 50a of the first embodiment according to the present invention.
  • the laser distance measuring device 50 b has a laser beam splitting unit 28 that splits the first laser beam and the second laser beam into two before the splitting unit 12.
  • the laser beam splitting unit 28 and the splitting unit 12 constitute a laser beam splitting unit that splits the first laser beam and the second laser beam into two reference beams and measurement beams, respectively.
  • the laser beam splitting unit 28 may be configured to divide the first laser beam and the second laser beam into two orthogonally polarized beams using a Savart plate. As described above, the laser beam splitting unit 28 splits the first laser beam and the second laser beam into two.
  • One of the first laser light and the second laser light divided by the laser light dividing unit 28 is further divided into two by the dividing unit 12 into reference light and measurement light. Then, one reference light (hereinafter referred to as first reference light) of the first laser beam and the second laser beam divided by the dividing unit 12 is reflected by the first reflection region 14 a of the reflecting unit 14 and is divided by the dividing unit 12. , And reaches the first light receiving region 18a of the light receiving unit 18 constituted by a plurality of light receivers 22.
  • One measurement light of the first laser light and the second laser light (hereinafter referred to as first measurement light) divided by the dividing unit 12 is a first measurement point of the DUT 6 from the first emission port 16a. The light is emitted toward S1, reflected by the first measurement point S1 and the dividing unit 12, and reaches the first light receiving region 18a of the light receiving unit 18.
  • the other first laser light and second laser light divided by the laser light dividing unit 28 are reflected by the mirror 4c, and further divided into two by the dividing unit 12 into reference light and measurement light.
  • the other reference light hereinafter referred to as second reference light
  • the other measurement light of the first laser beam and the second laser beam (hereinafter referred to as second measurement beam) divided by the dividing unit 12 is sent from the second emission port 16b to the second measurement point of the object 6 to be measured.
  • the light is emitted toward S2, reflected by the second measurement point S2 and the dividing unit 12, and reaches the second light receiving region 18b of the light receiving unit 18.
  • a step may be provided between the first reflection region 14a and the second reflection region 14b in the reflection portion 14, or the step may be eliminated to be a straight line.
  • the step between the first reflection region 14a and the second reflection region 14b may be large as shown in FIG. 6A or small as shown in FIG. 6B.
  • the positions of the first reflection region 14a and the second reflection region 14b may be positioned on the near side when the first reflection region 14a is viewed from the light receiving unit 18, as shown in FIG. 6C.
  • the inclination of the reflection surfaces of the first reflection region 14a and the second reflection region 14b may be opposite to each other as shown in FIG.
  • the direction in which the first reflection area 14a and the second reflection area 14b are arranged differs from the inclination direction of the reflection surfaces (in FIGS. 9 and 10). 90 °).
  • the operation of the second distance measuring method according to the present invention and the laser distance measuring apparatus 50b of the second embodiment will be described.
  • the first reference distance data Las ′ pixel length of the first measurement light system
  • the second reference distance data Lbs ′ pixel length of the second measurement light system.
  • An example of a method for obtaining the first reference distance data Las 'and the second reference distance data Lbs' will be described later.
  • calculation light / dark data is created by the same method as the first distance measuring method (calculated light / dark data creation step in the second distance measuring method).
  • the first reference distance data Las 'and the second reference distance data Lbs' are obtained by a predetermined method.
  • the first measurement light of the first laser light and the second laser light is placed at the first measurement point S ⁇ b> 1 at the first laser light and the second laser light.
  • the second measurement light is installed so as to irradiate the second measurement point S2 vertically.
  • the first laser irradiation unit 10a and the second laser irradiation unit 10b are operated to irradiate the first laser beam and the second laser beam simultaneously.
  • the first measurement light of the first laser light and the second laser light is reflected at the first measurement point S1 of the object 6 to be measured and reaches the first light receiving region 18a as described above.
  • the second measurement light of the first laser light and the second laser light is reflected at the second measurement point S2 of the object 6 to be measured and reaches the second light receiving region 18b.
  • the first reference light of the first laser light and the second laser light is reflected by the first reflection region 14a of the reflecting portion 14 and reaches the first light receiving region 18a.
  • the second reference light of the first laser light and the second laser light is reflected by the second reflection region 14b of the reflecting portion 14 and reaches the second light receiving region 18b (irradiation step in the second distance measuring method).
  • the reflection surfaces of the first reflection region 14a and the second reflection region 14b are inclined at a predetermined angle ⁇ , and the reference light reflected by the first reflection region 14a and the second reflection region 14b has an optical path length depending on the positions of the reflection surfaces. Is different. Therefore, the interference light between the first measurement light of the first laser light received by the first light receiving region 18a and the first reference light of the first laser light, the first measurement light of the second laser light, and the second laser light Together with the interference light with the first reference light, an interference fringe is formed.
  • the light receiving unit 18 outputs the light intensity data of each light receiver 22 in the first light receiving region 18a and the second light receiving region 18b to the arithmetic unit 20.
  • the first light receiving region 18a and the second light receiving region 18b may be provided in one light receiving unit 18, or the first light receiving region 18a and the second light receiving region 18b may be configured by individual light receiving units 18. Also good.
  • the calculation unit 20 arranges the light intensity data of the respective light receivers 22 in the first light receiving region 18a in a predetermined order, and creates measurement light / dark data of the first measurement point S1 (the first measurement light / dark in the second distance measuring method). Data creation step).
  • the measurement light / dark data at the first measurement point S1 basically includes the interference light between the first measurement light of the first laser light reflected at the first measurement point S1 and the first reference light of the first laser light, Interference light of the first measurement light of the second laser light reflected at the measurement point S1 and the first reference light of the second laser light is combined.
  • the calculation unit 20 arranges the light intensity data of the respective light receivers 22 in the second light receiving region 18b in a predetermined order, and creates the measurement light / dark data of the second measurement point S2 (second in the second distance measuring method). Measurement light / dark data creation step).
  • the measured brightness / darkness data at the second measurement point S2 basically includes interference light between the second measurement light of the first laser light reflected at the second measurement point S2 and the second reference light of the first laser light, Interference light of the second measurement light reflected by the measurement point S2 and the second reference light of the second laser light is combined.
  • the calculation unit 20 compares the acquired measurement brightness / darkness data of the first measurement point S1 with previously calculated brightness / darkness data, and determines the position of the measurement brightness / darkness data of the first measurement point S1 in the calculation brightness / darkness data. Identify. (First comparison step in the second distance measuring method).
  • the calculation unit 20 compares the acquired measurement brightness / darkness data of the second measurement point S2 with previously calculated brightness / darkness data, and specifies the position of the measurement brightness / darkness data of the second measurement point S2 in the calculation brightness / darkness data. To do. (Second comparison step in the second distance measuring method).
  • the calculation unit 20 calculates first distance data La ′ (pixel length) from the base point of the measured light / dark data at the first measurement point S1 to the reference point on the calculated light / dark data (in the second distance measuring method). First distance data acquisition step).
  • the calculation unit 20 calculates second distance data Lb ′ (pixel length) from the base point of the measured brightness / darkness data at the second measurement point S2 to the reference point on the calculated brightness / darkness data (the second distance measurement method uses the second distance measurement method). 2 distance data acquisition step). Note that the measurement light / dark data of the first measurement point S1 and the base points of the measurement light / dark data of the second measurement point S2 are the measurement light / dark data set when the first reference distance data Las ′ and the second reference distance data Lbs ′ described later are acquired. It is the same as the position inside.
  • the following acquisition method is suitable for the laser distance measuring device 50b according to the present invention, but this method is not necessarily used.
  • the acquisition of the first reference distance data Las 'and the second reference distance data Lbs' is not necessarily performed for each measurement, and may be performed at the time of shipment of the laser distance measuring device and recorded in a memory or the like.
  • the first exit port 16a and the second exit port 16b are closed with a flat plate 5 having a smooth surface.
  • the distance from the first exit 16a to the flat plate 5 is equal to the distance from the second exit 16b to the flat plate 5.
  • the first laser irradiation unit 10a and the second laser irradiation unit 10b are operated to irradiate the first laser beam and the second laser beam simultaneously.
  • the first measurement light of the first laser light and the second laser light is reflected at the first measurement point S ⁇ b> 1 ′ of the flat plate 5.
  • the second measurement light of the first laser light and the second laser light is reflected at the second measurement point S2 'of the flat plate 5 (irradiation step).
  • the base point of the measured light / dark data in the first distance data acquisition step and the second distance data acquisition step can be basically set at an arbitrary position. However, the base point set here cannot be changed when the object 6 is measured.
  • the first distance data La ′ obtained in the first distance data acquisition step becomes the first reference distance data Las ′
  • the second distance data Lb ′ obtained in the second distance data acquisition step becomes the second reference distance data Lbs ′. It becomes.
  • the first reference distance data Las ' corresponds to the optical path difference between the first measurement light and the first reference light reflected at the first measurement point S1' of the flat plate 5.
  • the second reference distance data Lbs ′ corresponds to the optical path difference between the second measurement light and the second reference light reflected at the second measurement point S ⁇ b> 2 ′ of the flat plate 5.
  • the difference between the first reference distance data Las 'and the second reference distance data Lbs' substantially corresponds to the position difference between the first reflection area 14a and the second reflection area 14b.
  • the above is the method for obtaining the first reference distance data Las 'and the second reference distance data Lbs' suitable for the distance measuring device 50b.
  • the calculation unit 20 obtains the first distance data La ′ obtained in the first distance data obtaining step, the second distance data Lb ′ obtained in the second distance data obtaining step, the first reference distance data Las ′, and the first distance data La ′.
  • a distance L ′ pixel length in the thickness direction between the first measurement point S1 and the second measurement point S2 is calculated by, for example, the following formula (second measurement). Ranging step in the distance method).
  • L ′ ((La′ ⁇ Las ′) ⁇ (Lb′ ⁇ Lbs ′)) / 2
  • the distance L is calculated by converting the pixel length of the distance L ′ into an actual length.
  • the second distance measuring method can be performed by the laser distance measuring device 50a of the first embodiment.
  • the device under test 6 is arranged so that the measurement light is simultaneously irradiated onto the first measurement point S1 and the second measurement point S2 of the device under test 6. And a part of measurement light irradiated to 1st measurement point S1 turns into one 1st measurement light.
  • the first measurement light is reflected at the first measurement point S ⁇ b> 1 and reaches the first light receiving region 18 a which is a part of the light receiving unit 18 via the dividing unit 12. Further, a part of the measurement light irradiated to the second measurement point S2 becomes the other second measurement light.
  • the second measurement light is reflected at the second measurement point S2, and reaches the second light receiving region 18b which is a part of the light receiving unit 18 via the dividing unit 12. Further, a part of the reference light corresponding to the first measurement light becomes one first reference light.
  • the first reference light is reflected by the first reflection region 14 a that is a part of the reflection unit 14, and reaches the first light reception region 18 a that is a part of the light reception unit 18 via the dividing unit 12. Further, a part of the reference light corresponding to the second measurement light becomes the other second reference light.
  • the second reference light is reflected by the second reflection region 14 b that is a part of the reflection unit 14, and reaches the second light reception region 18 b that is a part of the light reception unit 18 via the dividing unit 12.
  • the distance L in the thickness direction between the first measurement point S1 and the second measurement point S2 is calculated in the same manner as in the second distance measurement method described above.
  • the discrimination between the first light receiving area 18a and the second light receiving area 18b may be made from the discontinuity of the acquired measurement light / dark data, or a blank area between the first light receiving area 18a and the second light receiving area 18b.
  • the DUT 6 may be arranged so that the boundary portion (step) between the first measurement point S1 and the second measurement point S2 is in a range corresponding to the blank area.
  • the laser range finder 50c of the third embodiment is between the first measurement point S1 located on the one surface side of the object 6 to be measured and the second measurement point S2 located on the back surface of the first measurement point S1.
  • the distance t in the thickness direction is measured by measuring the distance in the thickness direction. Therefore, the configuration is basically the same as that of the laser distance measuring device 50b of the second embodiment except that the optical paths of the first measurement light and the second measurement light are different.
  • the first measurement light of the first laser light and the second laser light is reflected by the mirror 8a, the mirror 8b, and the mirror 8c provided on the optical path and is transmitted from the first emission port 16a.
  • the light is emitted toward the second emission port 16b.
  • the first exit port 16a and the second exit port 16b are provided at positions facing each other.
  • the DUT 6 includes the first exit port 16a and the second exit port 16b. It is arranged between.
  • the first measurement light of the first laser beam and the second laser beam emitted from the first emission port 16a is reflected at the first measurement point S1 of the object 6 to be measured, and the mirror 8c, the mirror 8b, the mirror 8a, and the dividing unit. 12 to reach the first light receiving region 18 a of the light receiving unit 18.
  • the first measurement light S1 and the second measurement light of the second laser light are reflected by the mirror 8d, the mirror 8e, and the mirror 8f provided on the optical path, and the first measurement point S1 of the DUT 6 from the second emission port 16b.
  • the light is emitted toward the second measurement point S2 located on the back surface of.
  • the light is reflected at the second measurement point S2 of the DUT 6 and reaches the second light receiving region 18b of the light receiving unit 18 via the mirror 8f, the mirror 8e, the mirror 8d, and the dividing unit 12.
  • the optical path length of the first measurement light and the optical path length of the second measurement light be as equal as possible.
  • the acquisition of the first reference distance data Las 'and the second reference distance data Lbs' in the third distance measuring method and the third laser distance measuring apparatus 50c according to the present invention is performed as follows, for example.
  • a block gauge 7 having a known thickness ta is installed at an intermediate position between the first emission port 16a and the second emission port 16b. At this time, the distance from the first exit port 16a to the block gauge 7 and the distance from the second exit port 16b to the block gauge 7 are arranged substantially equal.
  • the thickness ta of the block gauge 7 is preferably thinner than the thickness t of the object 6 to be measured.
  • the first laser irradiation unit 10a and the second laser irradiation unit 10b are operated to irradiate the first laser beam and the second laser beam simultaneously.
  • the first measurement light of the first laser light and the second laser light is reflected at the first measurement point S ⁇ b> 1 ′ of the block gauge 7.
  • the second measurement light of the first laser light and the second laser light is reflected at the second measurement point S2 'located on the back surface of the first measurement point S1' (irradiation step).
  • steps equivalent to the first light / dark data creation step to the second distance data acquisition step in the second distance measuring method are performed.
  • the base point of the measured light / dark data in the first distance data acquisition step and the second distance data acquisition step can be basically set at an arbitrary position. However, the base point set here cannot be changed when the object 6 is measured. Then, the first distance data La ′ obtained in the first distance data acquisition step becomes the first reference distance data Las ′, and the second distance data Lb ′ obtained in the second distance data acquisition step becomes the second reference distance data Lbs ′. It becomes.
  • the first reference distance data Las ' corresponds to the optical path difference between the first measurement light and the first reference light reflected at the first measurement point S1' of the block gauge 7.
  • the second reference distance data Lbs ′ corresponds to the optical path difference between the second measurement light and the second reference light reflected at the second measurement point S ⁇ b> 2 ′ of the block gauge 7.
  • the above is the method for obtaining the first reference distance data Las 'and the second reference distance data Lbs' suitable for the distance measuring device 50c.
  • the calculated brightness data is created by performing the same steps as the calculated brightness data creation step in the second distance measuring method.
  • the DUT 6 is disposed between the first exit port 16a and the second exit port 16b.
  • the irradiation step to the second distance data acquisition step in the second distance measuring method are performed.
  • the first distance data La ′ acquired in the first distance data acquisition step here corresponds to the optical path difference between the first measurement light and the first reference light reflected at the first measurement point S1 of the object 6 to be measured.
  • the second distance data Lb ′ acquired in the second distance data acquisition step corresponds to the optical path difference between the second measurement light and the second reference light reflected at the second measurement point S2 of the object 6 to be measured.
  • the computing unit 20 includes the first distance data La ′ obtained in the first distance data obtaining step, the second distance data Lb ′ obtained in the second distance data obtaining step, and the first reference distance data Las ′.
  • the distance L in the thickness direction between the first measurement point S1 and the second measurement point S2 that is, the thickness t of the object 6 to be measured is as follows: (A ranging step in the third ranging method) is calculated as follows.
  • the distance L ′ is calculated from the first distance data La ′, the second distance data Lb ′, the first reference distance data Las ′, and the second reference distance data Lbs ′ by the following formula.
  • the distance L ′ corresponds to the pixel length obtained by subtracting the thickness ta of the block gauge 7 from the thickness t of the object 6 to be measured.
  • L ′ ((La′ ⁇ Las ′) + (Lb′ ⁇ Lbs ′)) / 2
  • the distance L ′ is calculated by converting the pixel length of the distance L ′ into an actual length.
  • the thickness t of the object to be measured 6 is calculated by adding the thickness ta of the block gauge 7 to the obtained distance L.
  • the optical path length of the reference light is continuously changed in the optical path by installing the reflecting portion 14 at a predetermined angle ⁇ . Can be made. Thereby, interference fringes are formed in the measurement light received by the light receiving unit 18 and the interference light by the reference light, and measurement light / dark data can be created based on the light intensity data of each light receiver 22 of the light receiving unit 18. . Then, distance measurement is performed by comparing the measured brightness / darkness data with the calculated brightness / darkness data calculated in advance. Thus, the distance or thickness in the thickness direction of the object to be measured can be measured with high accuracy without using mechanical means in the optical system.
  • the laser beam division direction may be an arbitrary angle between the direction parallel to the paper surface and the direction perpendicular to the paper surface, and the optical path of each laser beam may take any three-dimensional optical path.
  • the configuration of each part of the other laser distance measuring devices 50a to 50c can be changed and implemented without departing from the gist of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

[Problem] To provide a ranging method and laser ranging device for measuring the distance to an object with high precision by making use of coherence that is characteristic of laser light, rather than using a mechanical means in an optical system. [Solution] In this ranging method and laser ranging device, by arranging a reflecting part (14) so as to be inclined at a predetermined angle θ, the optical path length of a reference light can be continuously varied within an optical path. An interference fringe is thereby formed in the interference light of the measurement light and the reference light received by a light-receiving part (18), and measurement contrast data can be created on the basis of light intensity data from each photodetector (22) of the light-receiving part (18). Distance is then measured on the basis of the measurement contrast data. The thickness or a distance in the thickness direction of an object can thereby be measured with high precision without the use of a mechanical means in an optical system.

Description

測距方法及びレーザ測距装置Ranging method and laser ranging device
 本発明は、レーザ光の干渉を用いて被測定物の厚み方向の距離もしくは厚みを高精度に測定する測距方法及びレーザ測距装置に関するものである。 The present invention relates to a distance measuring method and a laser distance measuring apparatus that measure the distance or thickness in the thickness direction of an object to be measured with high accuracy using interference of laser light.
 従来のレーザ光を用いたレーザ測距方法は、例えばレーザ光を参照光と測定光とに分割し、その参照光と被測定物で反射された測定光との時間差から両者の光路差を求めることで被測定物までの距離を測定する。このような参照光と測定光との時間差から測距を行う従来のレーザ測距方法では、その測距精度はレーザ光の波長レベル、即ちnm(ナノメートル)オーダーには遠く及ばない。 In a conventional laser distance measuring method using laser light, for example, the laser light is divided into reference light and measurement light, and the optical path difference between the reference light and measurement light reflected by the object to be measured is obtained. Measure the distance to the object to be measured. In the conventional laser distance measuring method that performs distance measurement based on the time difference between the reference light and the measurement light, the distance measurement accuracy is far from the wavelength level of the laser light, that is, the order of nm (nanometer).
 そこで本願発明者は下記[特許文献1]に示すように、波長の異なる複数のレーザ光を用い、さらにその光路差を変化させることでレーザ光の特徴である可干渉性を利用した高精度のレーザ測距方法及びそのレーザ測距方法を行うレーザ測距装置に関する発明を行った。 Therefore, as shown in [Patent Document 1] below, the inventor of the present application uses a plurality of laser beams having different wavelengths, and further changes the optical path difference so as to utilize the coherence characteristic of the laser beams. Inventions related to a laser distance measuring method and a laser distance measuring apparatus for performing the laser distance measuring method have been made.
国際公報第2008/099788号パンフレットInternational Publication No. 2008/099788 Pamphlet
 [特許文献1]に開示された発明により被測定物までの距離を高精度に測距することが可能となった。しかしながら、[特許文献1]の発明では光路差の変化をモータ等の機械的手段により行っている。よって、高精度の測距には位置精度の高い高価な機械的手段が必要となり、コストが増大するという問題点がある。また、いかに位置精度の高い機械的手段であってもバックラッシュ(逆動作)などにより誤差が生じる可能性があり、この点で更なる改善が望まれる。 The invention disclosed in [Patent Document 1] makes it possible to measure the distance to the object to be measured with high accuracy. However, in the invention of [Patent Document 1], the optical path difference is changed by mechanical means such as a motor. Therefore, high-precision ranging requires expensive mechanical means with high positional accuracy, and there is a problem that the cost increases. In addition, even mechanical means with high positional accuracy may cause errors due to backlash (reverse operation) or the like, and further improvement is desired in this respect.
 本発明は上記事情に鑑みてなされたものであり、レーザ光の特徴である可干渉性を利用しながら、光学系に機械的手段を用いずに被測定物までの距離もしくは厚み方向の距離もしくは厚みを高精度に測距する測距方法及びレーザ測距装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and while utilizing the coherence characteristic of laser light, the distance to the object to be measured or the distance in the thickness direction without using mechanical means in the optical system or It is an object of the present invention to provide a distance measuring method and a laser distance measuring device for measuring a thickness with high accuracy.
(1)波長の異なる第1レーザ光と第2レーザ光とを分割部12で参照光と測定光とにそれぞれ分割し、反射部14で反射した参照光と被測定物6の測定点で反射した測定光とを受光部18が受光して、当該参照光と測定光とがそれぞれ干渉することで得られる明暗のデータに基づいて被測定物6の厚み方向の距離Lを測距する測距方法であって、
第1レーザ光及び第2レーザ光の波長と前記受光部18が受光する参照光及び測定光の光強度とに基づいて演算明暗データを算出する演算明暗データ作成ステップと、
第1レーザ光及び第2レーザ光のそれぞれの参照光を反射面が傾斜した反射部14で反射させるとともに、第1レーザ光及び第2レーザ光のそれぞれの測定光を被測定物6の第1測定点S1で反射させ、前記反射部14で反射した参照光と第1測定点S1で反射した測定光とを複数の受光器22で構成された前記受光部18に受光させる第1照射ステップと、
前記受光部18の各受光器22の光強度データに基づいて第1測定点S1の測定明暗データを作成する第1明暗データ作成ステップと、
第1測定点S1の測定明暗データと前記演算明暗データとを比較して、演算明暗データにおける第1測定点S1の測定明暗データの位置を特定する第1比較ステップと、
第1測定点S1の測定明暗データの基点から演算明暗データの基準点までの第1距離データを取得する第1距離データ取得ステップと、
第1レーザ光及び第2レーザ光のそれぞれの参照光を前記反射部14で反射させるとともに、第1レーザ光及び第2レーザ光のそれぞれの測定光を被測定物6の第2測定点S2で反射させ、前記反射部14で反射した参照光と第2測定点S2で反射した測定光とを前記受光部18で受光させる第2照射ステップと、
前記受光部18の各受光器22の光強度データに基づいて第2測定点S2の測定明暗データを作成する第2明暗データ作成ステップと、
第2測定点S2の測定明暗データと前記演算明暗データとを比較して、演算明暗データにおける第2測定点S2の測定明暗データの位置を特定する第2比較ステップと、
第2測定点S2の測定明暗データの基点から演算明暗データの基準点までの第2距離データを取得する第2距離データ取得ステップと、
第1距離データと第2距離データとに基づいて第1測定点S1と第2測定点S2との間の厚み方向の距離Lを測距する測距ステップと、
を有することを特徴とする測距方法を提供することにより、上記課題を解決する。
(2)波長の異なる第1レーザ光と第2レーザ光とを分割部12で参照光と測定光とにそれぞれ分割し、反射部14で反射した参照光と被測定物6の測定点で反射した測定光とを受光部18が受光して、当該参照光と測定光とがそれぞれ干渉することで得られる明暗のデータに基づいて被測定物6の厚み方向の距離Lを測距する測距方法であって、
第1レーザ光及び第2レーザ光の波長と前記受光部18が受光する参照光及び測定光の光強度とに基づいて演算明暗データを算出する演算明暗データ作成ステップと、
第1レーザ光及び第2レーザ光をそれぞれ2つの参照光と測定光とに分割し、第1レーザ光及び第2レーザ光の一方の参照光(第1参照光)を反射面が傾斜した前記反射部14の第1反射領域14aで反射させるとともに、第1レーザ光及び第2レーザ光の一方の測定光(第1測定光)を被測定物6の第1測定点S1で反射させ、第1反射領域14aで反射した参照光と第1測定点S1で反射した測定光とを複数の受光器22で構成された前記受光部18の第1受光領域18aに受光させ、
第1レーザ光及び第2レーザ光の他方の参照光(第2参照光)を反射面が傾斜した前記反射部14の第2反射領域14bで反射させるとともに、第1レーザ光及び第2レーザ光の他方の測定光(第2測定光)を被測定物6の第2測定点S2で反射させ、第2反射領域14bで反射した参照光と第2測定点S2で反射した測定光とを複数の受光器22で構成された前記受光部18の第2受光領域18bに受光させる照射ステップと、
前記第1受光領域18aの各受光器22の光強度データに基づいて第1測定点S1の測定明暗データを作成する第1明暗データ作成ステップと、
前記第2受光領域18bの各受光器22の光強度データに基づいて第2測定点S2の測定明暗データを作成する第2明暗データ作成ステップと、
第1測定点S1の測定明暗データと前記演算明暗データとを比較して、演算明暗データにおける第1測定点S1の測定明暗データの位置を特定する第1比較ステップと、
第2測定点の測定明暗データと前記演算明暗データとを比較して、演算明暗データにおける第2測定点S2の測定明暗データの位置を特定する第2比較ステップと、
第1測定点S1の測定明暗データの基点から演算明暗データの基準点までの第1距離データを取得する第1距離データ取得ステップと、
第2測定点S2の測定明暗データの基点から演算明暗データの基準点までの第2距離データを取得する第2距離データ取得ステップと、
第1距離データと第2距離データとに基づいて第1測定点と第2測定点との間の厚み方向の距離Lを測距する測距ステップと、
を有することを特徴とする測距方法を提供することにより、上記課題を解決する。
(3)第2測定点S2が第1測定点S1の裏面に位置し、
第2測定光が第2測定点S2で反射することで、
測距ステップが被測定物6の厚みtを測距することを特徴とする上記(2)記載の測距方法を提供することにより、上記課題を解決する。
(4)波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段10aと第2レーザ照射手段10bと、第1レーザ光と第2レーザ光とを参照光と測定光とにそれぞれ分割する分割部12と、それぞれの参照光を所定の反射角で反射する反射部14と、複数の受光器22で構成され反射部14で反射した参照光と被測定物6で反射した測定光とを受光して各受光器22の光強度データを出力する受光部18と、受光部18からの光強度データが入力する演算部20と、を有し、
上記(1)記載の演算明暗データ作成ステップと第1照射ステップと第1明暗データ作成ステップと第1比較ステップと第1距離データ取得ステップと第2照射ステップと第2明暗データ作成ステップと第2比較ステップと第2距離データ取得ステップと測距ステップとを行って、被測定物6の第1測定点S1と第2測定点S2との間の厚み方向の距離Lを測距することを特徴とするレーザ測距装置50aを提供することにより、上記課題を解決する。
(5)波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段10aと第2レーザ照射手段10bと、第1レーザ光及び第2レーザ光をそれぞれ2つの参照光と測定光に分割するレーザ光分割手段と、レーザ光分割手段で分割した第1レーザ光及び第2レーザ光の一方の参照光(第1参照光)を所定の反射角で反射する第1反射領域14aと、レーザ光分割手段で分割した第1レーザ光及び第2レーザ光の他方の参照光(第2参照光)を所定の反射角で反射する第2反射領域14bと、レーザ光分割手段で分割した第1レーザ光及び第2レーザ光の一方の測定光(第1測定光)を出射する第1出射口16aと、レーザ光分割手段で分割した第1レーザ光及び第2レーザ光の他方の測定光(第2測定光)を出射する第2出射口16bと、
複数の受光器22で構成され、第1反射領域14aで反射した参照光と被測定物6の第1測定点S1で反射した測定光とを受光して各受光器22の光強度データを出力する第1受光領域18aと、
複数の受光器22で構成され、第2反射領域14bで反射した参照光と被測定物6の第2測定点S2で反射した測定光とを受光して各受光器22の光強度データを出力する第2受光領域18bと、
第1受光領域18aと第2受光領域18bからの光強度データが入力する演算部20と、を有し、
上記(2)記載の演算明暗データ作成ステップと照射ステップと第1明暗データ作成ステップと第2明暗データ作成ステップと第1比較ステップと第2比較ステップと第1距離データ取得ステップと第2距離データ取得ステップと測距ステップとを行って、被測定物6の第1測定点S1と第2測定点S2との間の厚み方向の距離Lを測距することを特徴とするレーザ測距装置50bを提供することにより、上記課題を解決する。
(6)第1出射口16aと第2出射口16bとが対向するように設置され、被測定物6を第1出射口16aと第2出射口16bとの間に配置することで被測定物6の厚みtを測距することを特徴とする上記(5)記載のレーザ測距装置50cを提供することにより、上記課題を解決する。
(1) The first laser light and the second laser light having different wavelengths are divided into reference light and measurement light by the dividing unit 12, and reflected by the reference light reflected by the reflecting unit 14 and the measurement point of the object 6 to be measured. The light receiving unit 18 receives the measured light and measures the distance L in the thickness direction of the DUT 6 based on light and dark data obtained by the interference between the reference light and the measurement light. A method,
A calculation light / dark data creating step for calculating calculated light / dark data based on the wavelengths of the first laser light and the second laser light and the light intensity of the reference light and measurement light received by the light receiving unit 18;
The reference light of each of the first laser light and the second laser light is reflected by the reflecting portion 14 whose reflecting surface is inclined, and each measurement light of the first laser light and the second laser light is reflected on the first object 6 to be measured. A first irradiating step in which the reference light reflected by the measurement point S1 and reflected by the reflection unit 14 and the measurement light reflected by the first measurement point S1 are received by the light receiving unit 18 including a plurality of light receivers 22; ,
A first brightness / darkness data creation step for creating measurement brightness / darkness data of the first measurement point S1 based on the light intensity data of each light receiver 22 of the light receiving section 18;
A first comparison step of comparing the measured light / dark data of the first measurement point S1 with the calculated light / dark data to identify the position of the measured light / dark data of the first measurement point S1 in the calculated light / dark data;
A first distance data acquisition step of acquiring first distance data from the base point of the measured light / dark data of the first measurement point S1 to the reference point of the calculated light / dark data;
The reference light of each of the first laser light and the second laser light is reflected by the reflecting portion 14, and each measurement light of the first laser light and the second laser light is reflected at the second measurement point S <b> 2 of the object to be measured 6. A second irradiating step in which the reference light reflected by the reflection part 14 and the measurement light reflected by the second measurement point S2 are received by the light receiving part 18;
A second light / dark data creating step for creating measured light / dark data of the second measurement point S2 based on the light intensity data of each light receiver 22 of the light receiving unit 18;
A second comparison step of comparing the measured light / dark data of the second measurement point S2 with the calculated light / dark data to identify the position of the measured light / dark data of the second measurement point S2 in the calculated light / dark data;
A second distance data acquisition step of acquiring second distance data from the base point of the measured light / dark data of the second measurement point S2 to the reference point of the calculated light / dark data;
A distance measuring step for measuring the distance L in the thickness direction between the first measurement point S1 and the second measurement point S2 based on the first distance data and the second distance data;
The above-described problem is solved by providing a distance measuring method characterized by comprising:
(2) The first laser beam and the second laser beam having different wavelengths are divided into the reference beam and the measurement beam by the dividing unit 12 and reflected by the reference beam reflected by the reflecting unit 14 and the measurement point of the object 6 to be measured. The light receiving unit 18 receives the measured light and measures the distance L in the thickness direction of the DUT 6 based on light and dark data obtained by the interference between the reference light and the measurement light. A method,
A calculation light / dark data creating step for calculating calculated light / dark data based on the wavelengths of the first laser light and the second laser light and the light intensity of the reference light and measurement light received by the light receiving unit 18;
The first laser beam and the second laser beam are each divided into two reference beams and a measuring beam, and one of the first laser beam and the second laser beam (first reference beam) is inclined on the reflection surface. The light is reflected by the first reflection region 14a of the reflection unit 14, and one measurement light (first measurement light) of the first laser light and the second laser light is reflected by the first measurement point S1 of the object 6 to be measured. The reference light reflected by the one reflection region 14a and the measurement light reflected by the first measurement point S1 are received by the first light receiving region 18a of the light receiving unit 18 including a plurality of light receivers 22,
The other reference light (second reference light) of the first laser light and the second laser light is reflected by the second reflection region 14b of the reflecting portion 14 whose reflection surface is inclined, and the first laser light and the second laser light. The second measurement light (second measurement light) is reflected at the second measurement point S2 of the object 6 to be measured, and a plurality of reference lights reflected at the second reflection region 14b and measurement light reflected at the second measurement point S2 are used. An irradiating step for receiving light in the second light receiving region 18b of the light receiving unit 18 constituted by the light receiver 22;
A first light / dark data creating step for creating measured light / dark data of the first measurement point S1 based on the light intensity data of each light receiver 22 in the first light receiving region 18a;
A second light / dark data creation step for creating measurement light / dark data of the second measurement point S2 based on the light intensity data of each light receiver 22 in the second light receiving region 18b;
A first comparison step of comparing the measured light / dark data of the first measurement point S1 with the calculated light / dark data to identify the position of the measured light / dark data of the first measurement point S1 in the calculated light / dark data;
A second comparison step of comparing the measured light / dark data of the second measurement point with the calculated light / dark data to identify the position of the measured light / dark data of the second measurement point S2 in the calculated light / dark data;
A first distance data acquisition step of acquiring first distance data from the base point of the measured light / dark data of the first measurement point S1 to the reference point of the calculated light / dark data;
A second distance data acquisition step of acquiring second distance data from the base point of the measured light / dark data of the second measurement point S2 to the reference point of the calculated light / dark data;
A distance measuring step for measuring the distance L in the thickness direction between the first measurement point and the second measurement point based on the first distance data and the second distance data;
The above-described problem is solved by providing a distance measuring method characterized by comprising:
(3) The second measurement point S2 is located on the back surface of the first measurement point S1,
By reflecting the second measurement light at the second measurement point S2,
The distance measurement step measures the thickness t of the DUT 6 and provides the distance measurement method according to the above (2), thereby solving the above problem.
(4) First laser irradiation means 10a and second laser irradiation means 10b for emitting two first laser beams and second laser beams having different wavelengths, and the first laser beam and the second laser beam as reference light. A dividing unit 12 that divides each measurement light into a measurement light, a reflection unit 14 that reflects each reference light at a predetermined reflection angle, and a reference light that is composed of a plurality of light receivers 22 and reflected by the reflection unit 14 and the device under test 6 A light receiving unit 18 that receives the measurement light reflected by the light receiving unit 22 and outputs the light intensity data of each light receiver 22, and a calculation unit 20 that receives the light intensity data from the light receiving unit 18.
The calculated brightness / darkness data creation step, the first irradiation step, the first brightness / darkness data creation step, the first comparison step, the first distance data acquisition step, the second irradiation step, the second brightness / darkness data creation step and the second described in (1) above. The comparison step, the second distance data acquisition step, and the distance measurement step are performed to measure the distance L in the thickness direction between the first measurement point S1 and the second measurement point S2 of the object 6 to be measured. The above-described problem is solved by providing the laser distance measuring device 50a.
(5) First laser irradiation means 10a and second laser irradiation means 10b for emitting two first laser beams and second laser beams having different wavelengths, and two references each of the first laser beam and the second laser beam A laser beam splitting unit that splits the light into a measurement beam, and a first reference beam that reflects one reference beam (first reference beam) of the first laser beam and the second laser beam split by the laser beam splitting unit at a predetermined reflection angle. A reflection area 14a, a second reflection area 14b that reflects the other reference light (second reference light) of the first laser light and the second laser light divided by the laser light dividing means at a predetermined reflection angle, and laser light division A first emission port 16a that emits one measurement light (first measurement light) of the first laser light and the second laser light divided by the means, and the first laser light and the second laser light divided by the laser light division means The second measurement light (second measurement light) is emitted And the exit port 16b,
It is composed of a plurality of light receivers 22, receives the reference light reflected by the first reflection region 14 a and the measurement light reflected by the first measurement point S 1 of the device under test 6, and outputs the light intensity data of each light receiver 22. A first light receiving region 18a to be
It is composed of a plurality of light receivers 22, receives the reference light reflected by the second reflection region 14 b and the measurement light reflected by the second measurement point S 2 of the device under test 6, and outputs the light intensity data of each light receiver 22. A second light receiving region 18b that
A calculation unit 20 for inputting light intensity data from the first light receiving region 18a and the second light receiving region 18b,
The calculated brightness / darkness data creation step, the irradiation step, the first brightness / darkness data creation step, the second brightness / darkness data creation step, the first comparison step, the second comparison step, the first distance data acquisition step, and the second distance data described in (2) above. Laser distance measuring device 50b characterized in that the distance L in the thickness direction between first measurement point S1 and second measurement point S2 of object 6 is measured by performing an acquisition step and a distance measurement step. By providing the above, the above-described problems are solved.
(6) The first output port 16a and the second output port 16b are installed so as to face each other, and the device under test 6 is disposed between the first output port 16a and the second output port 16b. The above-mentioned problem is solved by providing the laser distance measuring device 50c according to the above (5), which measures the thickness t of 6.
 本発明に係る測距方法及びレーザ測距装置によれば、光学系に機械的手段を用いずに被測定物の厚み方向の距離もしくは厚みを高精度に測定することができる。 According to the distance measuring method and the laser distance measuring apparatus according to the present invention, the distance or thickness in the thickness direction of the object to be measured can be measured with high accuracy without using mechanical means in the optical system.
本発明に係る第1の形態のレーザ測距装置の概略構成を示す図である。It is a figure which shows schematic structure of the laser ranging apparatus of the 1st form which concerns on this invention. 本発明の参照光と測定光の光路差を説明する図である。It is a figure explaining the optical path difference of the reference light of this invention, and measurement light. 本発明の受光部と測定明暗データの作成を説明する図である。It is a figure explaining preparation of the light-receiving part of this invention, and measurement brightness / darkness data. 本発明に係る演算明暗データと測定明暗データを説明する図である。It is a figure explaining the calculation brightness data and measurement brightness data which concern on this invention. 本発明に係る第2の形態のレーザ測距装置の概略構成を示す図である。It is a figure which shows schematic structure of the laser ranging apparatus of the 2nd form which concerns on this invention. 本発明に係る反射部の変形例を示す図である。It is a figure which shows the modification of the reflection part which concerns on this invention. 本発明に係る第2の測距方法を第1の形態のレーザ測距装置に適用した例を示す図である。It is a figure which shows the example which applied the 2nd ranging method which concerns on this invention to the laser ranging apparatus of a 1st form. 本発明に係る第3の形態のレーザ測距装置の概略構成を示す図である。It is a figure which shows schematic structure of the laser ranging apparatus of the 3rd form which concerns on this invention. 本発明に係る第2の形態のレーザ測距装置の変形例を示す図である。It is a figure which shows the modification of the laser rangefinder of the 2nd form which concerns on this invention. 本発明に係る第3の形態のレーザ測距装置の変形例を示す図である。It is a figure which shows the modification of the laser rangefinder of the 3rd form which concerns on this invention.
 本発明に係る測距方法及びレーザ測距装置の実施の形態について図面に基づいて説明する。尚、図中の破線はレーザ光を示す。 Embodiments of a distance measuring method and a laser distance measuring device according to the present invention will be described with reference to the drawings. In addition, the broken line in a figure shows a laser beam.
 先ず、本発明に係る測距方法及びレーザ測距装置の基本原理を図1の第1の形態のレーザ測距装置50a及び図2、図3、図4を用いて説明する。 First, the basic principle of the distance measuring method and the laser distance measuring device according to the present invention will be described with reference to the laser distance measuring device 50a of the first embodiment of FIG. 1 and FIGS. 2, 3, and 4. FIG.
 本発明に係るレーザ測距装置50aは、波長の異なる2つのレーザ光(第1レーザ光、第2レーザ光)をそれぞれ出射する第1レーザ照射手段10aと第2レーザ照射手段10bとを有している。第1レーザ照射手段10a、第2レーザ照射手段10bとしてはコヒーレンス長の比較的長い、ヘリウムネオンレーザや半導体励起固体レーザ、半導体DFBレーザ等を用いることが好ましい。ただし、測定光の光路長と参照光の光路長とがほぼ等しい場合にはコヒーレンス長の短い半導体レーザ等を用いても良い。 The laser distance measuring device 50a according to the present invention includes a first laser irradiation unit 10a and a second laser irradiation unit 10b that respectively emit two laser beams having different wavelengths (first laser beam and second laser beam). ing. As the first laser irradiation unit 10a and the second laser irradiation unit 10b, it is preferable to use a helium neon laser, a semiconductor excitation solid laser, a semiconductor DFB laser, or the like having a relatively long coherence length. However, when the optical path length of the measurement light and the optical path length of the reference light are substantially equal, a semiconductor laser or the like having a short coherence length may be used.
 そして、第1レーザ照射手段10aから出射した第1レーザ光は、第1レーザ光の光路上に設けられたミラー4aで反射され分割部12に向う。また、第2レーザ照射手段10bから出射した第2レーザ光は、第2レーザ光の光路上に設けられたハーフミラー4bで反射され第1レーザ光と同一光路上を通り分割部12に向う。 Then, the first laser light emitted from the first laser irradiation means 10a is reflected by the mirror 4a provided on the optical path of the first laser light and travels toward the dividing unit 12. The second laser light emitted from the second laser irradiation means 10b is reflected by the half mirror 4b provided on the optical path of the second laser light, passes through the same optical path as the first laser light, and travels to the dividing unit 12.
 分割部12としてはハーフミラーやビームスプリッタ等が用いられ、分割部12に到達した第1レーザ光及び第2レーザ光は分割部12で参照光と測定光とに2分割される。尚、分割部12に平板のビームスプリッタを用いる場合には分割部12と反射部14との間に補正板11を設ける必要がある。ただし、分割部12にキューブ型のビームスプリッタを用いる場合には、補正板11は設ける必要はない。 A half mirror, a beam splitter, or the like is used as the splitting unit 12, and the first laser light and the second laser light that have reached the splitting unit 12 are split into two by the splitting unit 12 into reference light and measurement light. In the case where a flat beam splitter is used as the dividing unit 12, it is necessary to provide the correction plate 11 between the dividing unit 12 and the reflecting unit 14. However, when a cube-type beam splitter is used for the dividing unit 12, the correction plate 11 need not be provided.
 分割部12で分割された第1レーザ光及び第2レーザ光の参照光は反射部14にて反射される。このとき、反射部14の反射面は参照光の入射方向に垂直ではなく所定の角度θだけ傾斜している。このため参照光は、図2に示すように所定の反射角(入射方向から見て2θ)で反射する。そして、反射部14で反射した参照光は補正板11及びビームスプリッタ(分割部12)を通過して2θ傾いた角度で受光部18に到達する。尚、レーザ光の分散を考慮して補正板11及びビームスプリッタ(分割部12)は薄くすることが望ましい。 The reference light of the first laser beam and the second laser beam divided by the dividing unit 12 is reflected by the reflecting unit 14. At this time, the reflection surface of the reflection portion 14 is not perpendicular to the incident direction of the reference light but is inclined by a predetermined angle θ. Therefore, the reference light is reflected at a predetermined reflection angle (2θ as viewed from the incident direction) as shown in FIG. Then, the reference light reflected by the reflecting section 14 passes through the correction plate 11 and the beam splitter (dividing section 12) and reaches the light receiving section 18 at an angle inclined by 2θ. In consideration of dispersion of the laser light, it is desirable that the correction plate 11 and the beam splitter (dividing unit 12) be thin.
 また、分割部12で分割された第1レーザ光及び第2レーザ光の測定光は被測定物6の測定点(例えば、第1測定点S1)で反射され、分割部12を経由して受光部18に到達する。尚、反射部14の反射面の傾斜角度θは0.23°前後の角度であるため、反射部14で反射した参照光と被測定物6で反射した測定光とは受光部18で部分的に重なりこの部分で干渉する。 In addition, the measurement light of the first laser beam and the second laser beam divided by the dividing unit 12 is reflected at a measurement point (for example, the first measurement point S1) of the object 6 to be measured and received through the dividing unit 12. Part 18 is reached. In addition, since the inclination angle θ of the reflecting surface of the reflecting portion 14 is about 0.23 °, the reference light reflected by the reflecting portion 14 and the measuring light reflected by the object 6 are partially received by the light receiving portion 18. It interferes with this part.
 受光部18は例えばCCDやCMOSのように複数の受光器22で構成され、受光器22毎に光強度データを出力可能なものが用いられる。 The light receiving unit 18 is composed of a plurality of light receivers 22 such as a CCD and a CMOS, and one that can output light intensity data for each light receiver 22 is used.
 ここで、本願の測距方法で用いる明暗データに関して説明する。前述のように反射部14の反射面は所定の角度θだけ傾斜している。このとき、図2の点a-a’間の参照光の光路長をLraとし、点b-b’間の参照光の光路長をLrbとし、受光部18上の点a’-b’間の距離をD’とした場合に、光路長Lraと光路長Lrbとの光路差(Lrb-Lra)は、
(Lrb-Lra)=D’sin2θ となる。
つまり、参照光の光路長は反射面の位置によって連続的に変化する。これに対し測定光の光路長は一定であるから、図2の例では受光部18上の点a’から点b’に向うに伴い測定光と参照光との光路差は大きくなる。このため、測定光と参照光との干渉光には光路差の変化に伴う周期的な干渉縞が生じる。
Here, the light and dark data used in the distance measuring method of the present application will be described. As described above, the reflecting surface of the reflecting portion 14 is inclined by a predetermined angle θ. At this time, the optical path length of the reference light between the points aa ′ in FIG. 2 is Lra, the optical path length of the reference light between the points bb ′ is Lrb, and between the points a ′ and b ′ on the light receiving unit 18. Where D ′ is the optical path length Lra and the optical path length Lrb, the optical path difference (Lrb−Lra) is
(Lrb−Lra) = D′ sin2θ
That is, the optical path length of the reference light continuously changes depending on the position of the reflecting surface. On the other hand, since the optical path length of the measuring light is constant, in the example of FIG. 2, the optical path difference between the measuring light and the reference light increases from the point a ′ on the light receiving unit 18 toward the point b ′. For this reason, periodic interference fringes are generated in the interference light between the measurement light and the reference light as the optical path difference changes.
 ここで仮に、図3(a)に示すように、受光部18を構成する複数の受光器22の縦の列が干渉縞に沿うように受光部18を設置した場合を考える。尚、図3においては説明の都合上、照射するレーザ光が1つの場合を示している。また、干渉縞の暗部をBとして示している。この場合、例えば受光器22の任意の横列n及び横列n-1の光強度データを縦列a’から縦列b’に向けて結ぶと、図3(b)に示すように干渉光の明暗データが得られる。 Here, suppose that, as shown in FIG. 3A, the light receiving unit 18 is installed so that the vertical rows of the plurality of light receiving units 22 constituting the light receiving unit 18 are along the interference fringes. For convenience of explanation, FIG. 3 shows a case where the number of irradiated laser beams is one. Further, the dark part of the interference fringes is indicated as B. In this case, for example, when the light intensity data of an arbitrary row n and row n−1 of the light receiver 22 are connected from the column a ′ to the column b ′, the light / dark data of the interference light is obtained as shown in FIG. can get.
 また、受光器22の設置角度を最適化すれば、図3(c)、図3(d)に示すように、多数の横列の受光器22の光強度データを明暗データの作成に用いることが可能となり、より詳細な明暗データを作成することができる。尚、図3では照射するレーザ光を1つとしているが、実際には2つのレーザ光(第1レーザ光及び第2レーザ光)を照射するため、明暗データは第1レーザ光の参照光と測定光とが干渉した干渉光と第2レーザ光の参照光と測定光とが干渉した干渉光とが合わさった複雑なものとなる。このような場合でも、受光器22の設置角度を最適化し、より多くの光強度データで明暗データを作成することで本願の測距方法を行うに十分な明暗データを得ることができる。尚、明暗データには受光部18を構成する全ての受光器22の光強度データを使用する必要はなく、明暗データの作成に十分な領域の受光器22の光強度データを用いれば良い。ただし、全ての受光器22の光強度データを使用することで、測定光の照射面内の凹凸を知ることができより好ましいといえる。これらのことは、後述の第1受光領域18a、第2受光領域18bにおいても同様である。また、受光部18における使用領域及び明暗データ作成時の光強度データの配列順等は、レーザ測距装置50a~50cの出荷前に予め取得しておき、レーザ測距装置50a~50c内のメモリ等に記憶しておくことが好ましい。 If the installation angle of the light receiver 22 is optimized, as shown in FIGS. 3C and 3D, the light intensity data of a large number of rows of light receivers 22 can be used to create light and dark data. It becomes possible, and more detailed light and dark data can be created. In FIG. 3, one laser beam is irradiated. However, since two laser beams (first laser beam and second laser beam) are actually irradiated, the brightness data is the reference beam of the first laser beam. The interference light that interferes with the measurement light, the reference light of the second laser light, and the interference light that interferes with the measurement light are combined. Even in such a case, it is possible to obtain sufficient brightness / darkness data for performing the distance measuring method of the present application by optimizing the installation angle of the light receiver 22 and creating brightness / darkness data with more light intensity data. In addition, it is not necessary to use the light intensity data of all the light receivers 22 constituting the light receiving unit 18 for the light / dark data, and the light intensity data of the light receivers 22 in an area sufficient for creating the light / dark data may be used. However, it can be said that it is more preferable to use the light intensity data of all the light receivers 22 because the unevenness in the irradiation surface of the measurement light can be known. The same applies to a first light receiving region 18a and a second light receiving region 18b described later. Further, the use area in the light receiving unit 18 and the order of arrangement of the light intensity data at the time of creating the brightness / darkness data are acquired in advance before the laser ranging devices 50a to 50c are shipped, and the memories in the laser ranging devices 50a to 50c are obtained. It is preferable to memorize in the above.
 尚、上記の手法により得られる明暗データの長さは、基本的に明暗データの作成に用いたデータ数(受光器22の数)であり、実際の長さ(Lrb-Lra)とは異なっている。この受光器22の数に基づく長さを、以後ピクセル長さと記述する。ここで、距離L’
(ピクセル長さ)と実際の距離Lとの間には、使用するレーザ光の波長をλとし、このレーザ光の干渉光の干渉縞の波長(周期)のピクセル長さをλ’としたときに、
L=L’λ/(2×λ’) の関係が成立する。
よって、使用するレーザ光(第1レーザ光もしくは第2レーザ光)の波長λと、ピクセル長さでの干渉縞の波長(周期)λ’とを予め取得しておけば、上記の換算式によりピクセル長さから実際の長さを算出することができる。尚、ピクセル長さから実際の長さへの換算は明暗データの時点で行っても良いが、途中の演算をピクセル長さで行い測距ステップの最終段階においてピクセル長さから実際の長さに換算することが誤差低減の観点から好ましい。尚、本例では途中の演算をピクセル長さで行い測距ステップの最終段階において実際の長さに換算する例を説明する。
Note that the length of the light / dark data obtained by the above method is basically the number of data (number of light receivers 22) used to create the light / dark data, which is different from the actual length (Lrb-Lra). Yes. The length based on the number of the light receivers 22 is hereinafter referred to as a pixel length. Where the distance L ′
Between the (pixel length) and the actual distance L, when the wavelength of the laser beam to be used is λ, and the pixel length of the interference fringe wavelength (period) of this laser beam is λ ′ In addition,
The relationship L = L′ λ / (2 × λ ′) is established.
Therefore, if the wavelength λ of the laser beam to be used (the first laser beam or the second laser beam) and the wavelength (period) λ ′ of the interference fringe at the pixel length are acquired in advance, the above conversion formula is used. The actual length can be calculated from the pixel length. The conversion from the pixel length to the actual length may be performed at the time of the light / dark data, but the intermediate calculation is performed with the pixel length, and the pixel length is changed to the actual length at the final stage of the distance measurement step. Conversion is preferable from the viewpoint of error reduction. In this example, a description will be given of an example in which an intermediate calculation is performed with the pixel length and converted to the actual length at the final stage of the distance measuring step.
 また、本発明に係る測距方法及びレーザ測距装置では、受光部18もしくは後述の第1受光領域18a、第2受光領域18bから出力される光強度データに基づいて作成される明暗データ(以後、測定明暗データとする)と、レーザ測距装置のコンピュータの演算によって作成される明暗データ(以後、演算明暗データとする)とを比較して測距を行う。 Further, in the distance measuring method and laser distance measuring device according to the present invention, light and dark data (hereinafter referred to as “light intensity data”) generated based on light intensity data output from the light receiving unit 18 or first light receiving area 18a and second light receiving area 18b described later. The measured light / dark data) is compared with the light / dark data (hereinafter referred to as the calculated light / dark data) created by the calculation of the computer of the laser distance measuring device.
 ここで、演算明暗データの作成方法を説明する。前述のように用いるレーザ光の波長(周波数)によって、そのレーザ光の干渉光の干渉縞の周期は決定する。第1レーザ光と第2レーザ光の周波数は既知であるから、第1レーザ光の干渉光の干渉縞の周期と、第2レーザ光の干渉光の干渉縞の周期は算出が可能である。また、受光部18が受光する第1レーザ光の参照光、第1レーザ光の測定光、第2レーザ光の参照光、第2レーザ光の測定光の光強度を予め個別に取得しておけば、第1レーザ光及び第2レーザ光のそれぞれの干渉光の振幅も算出が可能である。これにより、第1レーザ光による干渉光の周期、振幅と、第2レーザ光による干渉光の周期、振幅とが判明する。尚、受光部18が受光する測定光の光強度は被測定物6の反射の状態により変化する。よって、測定光の光強度の測定は被測定物6が大きく変わる毎に行うことが好ましい。 Here, the method for creating the calculated light / dark data will be described. The period of the interference fringes of the interference light of the laser light is determined by the wavelength (frequency) of the laser light used as described above. Since the frequencies of the first laser light and the second laser light are known, the period of the interference fringes of the interference light of the first laser light and the period of the interference fringes of the interference light of the second laser light can be calculated. In addition, the light intensity of the reference light of the first laser light, the measurement light of the first laser light, the reference light of the second laser light, and the measurement light of the second laser light received by the light receiving unit 18 may be individually acquired in advance. For example, the amplitude of each interference light of the first laser light and the second laser light can also be calculated. Thereby, the period and amplitude of the interference light by the first laser light and the period and amplitude of the interference light by the second laser light are found. The light intensity of the measurement light received by the light receiving unit 18 varies depending on the state of reflection of the object 6 to be measured. Therefore, the measurement of the light intensity of the measurement light is preferably performed every time the measurement object 6 changes greatly.
 ここで、どのような発信波長のレーザ光の干渉光でも参照光と測定光との光路差がゼロの点では明部をとる。よって、演算により作成された第1レーザ光の干渉光の任意の明部の位置と第2レーザ光の干渉光の任意の明部の位置とを重ねて両者を合算することで、第1レーザ光の干渉光の干渉縞と第2レーザ光の干渉光の干渉縞とが合わさった演算明暗データを作成することができる。尚、この明部を重ねた位置は演算明暗データ上で光強度が最大の値をとり、且つこの前後で演算明暗データの波形が対称となる。よって、この点を演算明暗データの基準点とすることが好ましい。以上が演算明暗データの作成方法であり、この演算明暗データの作成は被測定物6の測距前に予め行っておくことが好ましい。 Here, the bright part is taken at the point where the optical path difference between the reference light and the measuring light is zero in any interference light of the laser light of any transmission wavelength. Therefore, the position of the arbitrary bright portion of the interference light of the first laser light created by the calculation and the position of the arbitrary bright portion of the interference light of the second laser light are overlapped and added together, thereby adding the first laser. Computed light / dark data in which the interference fringes of the interference light of the light and the interference fringes of the interference light of the second laser light are combined can be created. It should be noted that the position where the bright portions are overlapped takes the maximum light intensity on the calculated light / dark data, and the waveform of the calculated light / dark data is symmetrical before and after this. Therefore, this point is preferably used as a reference point for the calculated light / dark data. The above is the method for creating the calculated brightness / darkness data, and it is preferable that the calculation brightness / darkness data is created in advance before the distance measurement of the object 6 to be measured.
 次に、本発明に係る第1の測距方法及び第1の形態のレーザ測距装置50aの動作を説明する。先ず、前述の手法により演算明暗データを作成する(第1の測距方法における演算明暗データ作成ステップ)。 Next, the operation of the first distance measuring method according to the present invention and the laser distance measuring apparatus 50a of the first embodiment will be described. First, calculated brightness / darkness data is created by the above-described method (calculated brightness / darkness data creation step in the first distance measuring method).
 次に、図1(a)に示すように、測定光が第1測定点S1に照射されるよう被測定物6を設置する。次に、第1レーザ照射手段10a、第2レーザ照射手段10bを動作させ第1レーザ光及び第2レーザ光を同時に照射する。照射された第1レーザ光及び第2レーザ光は分割部12で参照光と測定光とに2分割される。 Next, as shown in FIG. 1 (a), the DUT 6 is installed so that the measurement light is irradiated to the first measurement point S1. Next, the first laser irradiation unit 10a and the second laser irradiation unit 10b are operated to irradiate the first laser beam and the second laser beam simultaneously. The irradiated first laser light and second laser light are divided into two by the dividing unit 12 into reference light and measurement light.
 分割部12で分割された第1レーザ光及び第2レーザ光の参照光は反射面が所定の角度θで傾斜している反射部14にて反射され、分割部12を通過して受光部18に到達する。また、分割部12で分割された第1レーザ光及び第2レーザ光の測定光は出射口16から出射し、被測定物6の第1測定点S1で反射した後、分割部12で反射して受光部18に到達する。受光部18は反射部14で反射した第1レーザ光及び第2レーザ光の参照光と被測定物6の第1測定点S1で反射した第1レーザ光及び第2レーザ光の測定光とを受光する(第1の測距方法における第1照射ステップ)。尚、測距時に参照光と測定光との光路差がコヒーレンス長の範囲内となるように、測定光の光路長と参照光の光路長とは略同等とすることが好ましい。 The reference light of the first laser beam and the second laser beam divided by the dividing unit 12 is reflected by the reflecting unit 14 whose reflecting surface is inclined at a predetermined angle θ, passes through the dividing unit 12, and receives the light receiving unit 18. To reach. Further, the measurement light of the first laser beam and the second laser beam divided by the dividing unit 12 is emitted from the emission port 16, reflected at the first measurement point S <b> 1 of the object 6 to be measured, and then reflected by the dividing unit 12. And reaches the light receiving unit 18. The light receiving unit 18 receives the reference light of the first laser beam and the second laser beam reflected by the reflecting unit 14 and the measurement light of the first laser beam and the second laser beam reflected by the first measurement point S1 of the object 6 to be measured. Light is received (first irradiation step in the first distance measuring method). In addition, it is preferable that the optical path length of the measurement light and the optical path length of the reference light are substantially equal so that the optical path difference between the reference light and the measurement light is within the range of the coherence length during distance measurement.
 そして、受光部18は各受光器22の光強度データを演算部20に出力する。演算部20は各受光器22の光強度データを所定の順序で配列し、第1測定点S1の測定明暗データを作成する(第1の測距方法における第1測定明暗データ作成ステップ)。 Then, the light receiving unit 18 outputs the light intensity data of each light receiver 22 to the calculation unit 20. The calculation unit 20 arranges the light intensity data of the respective light receivers 22 in a predetermined order, and creates measurement brightness / darkness data of the first measurement point S1 (first measurement brightness / darkness data creation step in the first distance measuring method).
 ここで、反射部14で反射した参照光はその反射面の位置によって光路長が異なるから、第1レーザ光の参照光と第1レーザ光の測定光との干渉光は明暗が周期的に変化する干渉縞を形成する。また、第2レーザ光の参照光と第2レーザ光の測定光との干渉光も明暗が周期的に変化する干渉縞を形成する。ただし、第1レーザ光と第2レーザ光とは波長が異なっているため干渉縞の周期は異なる。尚、第1レーザ光と第2レーザ光の干渉光は“うなり”となり、時間平均すると一定値となる。よって、第1測定点S1の測定明暗データは基本的に第1測定点S1で反射した第1レーザ光の測定光と第1レーザ光の参照光との干渉光と、第1測定点S1で反射した第2レーザ光の測定光と第2レーザ光の参照光との干渉光とが合わさったものとなる。 Here, since the optical path length of the reference light reflected by the reflecting portion 14 differs depending on the position of the reflection surface, the light and dark periodically change the interference light between the reference light of the first laser light and the measurement light of the first laser light. Interference fringes are formed. The interference light between the reference light of the second laser light and the measurement light of the second laser light also forms interference fringes whose brightness changes periodically. However, since the first laser beam and the second laser beam have different wavelengths, the period of interference fringes is different. Incidentally, the interference light between the first laser beam and the second laser beam becomes “beat”, and takes a constant value when time averaged. Therefore, the measurement brightness / darkness data at the first measurement point S1 is basically the interference light between the measurement light of the first laser light reflected at the first measurement point S1 and the reference light of the first laser light, and at the first measurement point S1. The reflected measurement light of the second laser light and the interference light of the reference light of the second laser light are combined.
 次に、演算部20は取得された第1測定点S1の測定明暗データと予め作成されている演算明暗データとを比較して、演算明暗データにおける第1測定点S1の測定明暗データの位置を特定する。(第1の測距方法における第1比較ステップ)。 Next, the calculation unit 20 compares the acquired measurement brightness / darkness data of the first measurement point S1 with previously calculated brightness / darkness data, and determines the position of the measurement brightness / darkness data of the first measurement point S1 in the calculation brightness / darkness data. Identify. (First comparison step in the first distance measuring method).
 尚、演算明暗データは上記の2つの干渉光が合わさった明暗データを演算により算出するものであり、測定明暗データは実測により取得するものである。よって、演算明暗データと測定明暗データとは取得範囲が異なるものの基本的に同じものとなる。ここで、図4に演算明暗データと測定明暗データとの関係を模式的に表す。尚、図4中の細線が演算明暗データを示し、太線が測定明暗データを示す。前述のように、演算明暗データは演算により作成するものであるから、その作成範囲(参照光と測定光との光路差の範囲)は任意に設定することができる。よって、演算明暗データを測定明暗データが取り得る範囲を網羅する十分な範囲で作成すれば、第1測定点S1の測定明暗データAは演算明暗データのいずれかの部位と一致する。 Note that the calculated brightness / darkness data is obtained by calculating the brightness / darkness data obtained by combining the above two interference lights, and the measured brightness / darkness data is obtained by actual measurement. Therefore, the calculated brightness data and the measured brightness data are basically the same, although the acquisition ranges are different. Here, FIG. 4 schematically shows the relationship between the calculated brightness data and the measured brightness data. In addition, the thin line in FIG. 4 shows calculation brightness data, and a thick line shows measurement brightness data. As described above, since the calculated brightness / darkness data is created by computation, the creation range (the range of the optical path difference between the reference light and the measurement light) can be arbitrarily set. Therefore, if the calculated light / dark data is created within a sufficient range that can be taken by the measured light / dark data, the measured light / dark data A at the first measurement point S1 coincides with any part of the calculated light / dark data.
 次に、演算部20は第1測定点S1の測定明暗データの基点(図4中の点P)から演算明暗データ上の基準点(図4中の点O)までの第1距離データLa’(ピクセル長さ)を算出する(第1の測距方法における第1距離データ取得ステップ)。尚、測定明暗データの基点は測定明暗データの任意の位置(任意の受光器22の光強度データ)とすることができる。 Next, the calculation unit 20 calculates the first distance data La ′ from the base point (point P in FIG. 4) of the measured light / dark data at the first measurement point S1 to the reference point (point O in FIG. 4) on the calculated light / dark data. (Pixel length) is calculated (first distance data acquisition step in the first distance measuring method). The base point of the measured light / dark data can be an arbitrary position of the measured light / dark data (light intensity data of any light receiver 22).
 次に、レーザ測距装置50aもしくは被測定物6を平行移動させ、図1(b)に示すように、測定光が第2測定点S2に照射されるよう被測定物6を位置させる。 Next, the laser distance measuring device 50a or the object to be measured 6 is translated, and the object to be measured 6 is positioned so that the measurement light is irradiated to the second measurement point S2, as shown in FIG.
 次に、第1レーザ照射手段10a、第2レーザ照射手段10bを動作させ第1レーザ光及び第2レーザ光を同時に照射する。これにより、受光部18は反射部14で反射した第1レーザ光及び第2レーザ光の参照光と被測定物6の第2測定点S2で反射した第1レーザ光及び第2レーザ光の測定光とを受光する(第1の測距方法における第2照射ステップ)。 Next, the first laser irradiation unit 10a and the second laser irradiation unit 10b are operated to irradiate the first laser beam and the second laser beam simultaneously. Thus, the light receiving unit 18 measures the first laser light and the second laser light reflected by the reflecting unit 14 and the first laser light and the second laser light reflected by the second measurement point S2 of the object 6 to be measured. Receiving light (second irradiation step in the first distance measuring method).
 そして、受光部18は各受光器22の光強度データを演算部20に出力する。演算部20は各受光器22の光強度データを所定の順序で配列し、第2測定点S2の測定明暗データを作成する(第1の測距方法における第2測定明暗データ作成ステップ)。尚、第2測定点S2の測定明暗データは基本的に第2測定点S2で反射した第1レーザ光の測定光と第1レーザ光の参照光との干渉光と、第2測定点S2で反射した第2レーザ光の測定光と第2レーザ光の参照光との干渉光とが合わさったものとなる。 Then, the light receiving unit 18 outputs the light intensity data of each light receiver 22 to the calculation unit 20. The computing unit 20 arranges the light intensity data of the respective light receivers 22 in a predetermined order, and creates measurement brightness / darkness data of the second measurement point S2 (second measurement brightness / darkness data creation step in the first distance measuring method). Note that the measured brightness / darkness data at the second measurement point S2 is basically the interference light between the measurement light of the first laser light reflected at the second measurement point S2 and the reference light of the first laser light, and the second measurement point S2. The reflected measurement light of the second laser light and the interference light of the reference light of the second laser light are combined.
 次に、演算部20は取得された第2測定点S2の測定明暗データと予め作成されている演算明暗データとを比較して、演算明暗データにおける第2測定点S2の測定明暗データの位置を特定する。(第1の測距方法における第2比較ステップ)。 Next, the calculation unit 20 compares the acquired measurement brightness / darkness data of the second measurement point S2 with previously calculated brightness / darkness data, and determines the position of the measurement brightness / darkness data of the second measurement point S2 in the calculation brightness / darkness data. Identify. (Second comparison step in the first distance measuring method).
 前述のように、演算明暗データと測定明暗データとは取得範囲が異なるものの基本的には同じものであるため、演算明暗データの作成範囲を最適化すれば図4中の第2測定点S2の測定明暗データBも演算明暗データのいずれかの部位と一致する。そして、演算明暗データにおける第1測定点S1の測定明暗データAと第2測定点S2の測定明暗データBの位置の差は、第1測定点S1の測定明暗データAと第2測定点S2の測定明暗データBとの光路差の違いに起因する。 As described above, the calculated brightness / darkness data and the measured brightness / darkness data are basically the same although the acquisition ranges are different. Therefore, if the creation range of the calculated brightness / darkness data is optimized, the second measurement point S2 in FIG. The measured light / dark data B also matches any part of the calculated light / dark data. The difference in the positions of the measured light / dark data A at the first measurement point S1 and the measured light / dark data B at the second measurement point S2 in the calculated light / dark data is the difference between the measured light / dark data A at the first measurement point S1 and the second measurement point S2. This is due to a difference in optical path difference from the measured light / dark data B.
 次に、演算部20は第2測定点S2の測定明暗データの基点(図4中の点P’)から演算明暗データ上の基準点Oまでの第2距離データLb’(ピクセル長さ)を算出する(第1の測距方法における第2距離データ取得ステップ)。尚、このときの基点は測定明暗データ内において第1距離データ取得ステップのときと同一の位置としなければならない。そして、基点を同一としたときの第1測定点S1の測定明暗データAと第2測定点S2の測定明暗データBとの位置の差は被測定物6側の光路差、即ち、第1測定点S1と第2測定点S2との厚み方向の距離Lに対応する。 Next, the computing unit 20 obtains the second distance data Lb ′ (pixel length) from the base point (point P ′ in FIG. 4) of the measured brightness / darkness data at the second measurement point S2 to the reference point O on the calculated brightness / darkness data. Calculate (second distance data acquisition step in the first distance measuring method). Note that the base point at this time must be the same position in the measured light / dark data as in the first distance data acquisition step. The difference in position between the measured light / dark data A at the first measurement point S1 and the measured light / dark data B at the second measurement point S2 when the base points are the same is the optical path difference on the measured object 6 side, that is, the first measurement. This corresponds to the distance L in the thickness direction between the point S1 and the second measurement point S2.
 よって、演算部20は、第2距離データ取得ステップで得られた第2距離データLb’から、第1距離データ取得ステップで得られた第1距離データLa’を減算した上で2で割ることで、第1測定点S1と第2測定点S2との間の厚み方向の距離L’(ピクセル長さ)を算出する。尚、距離L’が負の場合には、第2測定点S2のほうが第1測定点S1よりもレーザ測距装置50a側に位置していることを示している。そして、距離L’のピクセル長さを実際の長さに換算することで、第1測定点S1と第2測定点S2との間の厚み方向の距離Lを算出する(第1の測距方法における測距ステップ)。以上が本発明に係る第1の測距方法及び第1の形態のレーザ測距装置50aの動作である。 Therefore, the calculation unit 20 subtracts the first distance data La ′ obtained in the first distance data acquisition step from the second distance data Lb ′ obtained in the second distance data acquisition step, and then divides by two. Thus, the distance L ′ (pixel length) in the thickness direction between the first measurement point S1 and the second measurement point S2 is calculated. When the distance L ′ is negative, it indicates that the second measurement point S2 is located closer to the laser distance measuring device 50a than the first measurement point S1. Then, the distance L ′ in the thickness direction between the first measurement point S1 and the second measurement point S2 is calculated by converting the pixel length of the distance L ′ into an actual length (first distance measurement method). Ranging step). The above is the operation of the first distance measuring method and the laser distance measuring device 50a of the first embodiment according to the present invention.
 次に、本発明に係る第2の測距方法及び第2の形態のレーザ測距装置50bの動作を図5を用いて説明する。レーザ測距装置50bは、分割部12の前段に第1レーザ光及び第2レーザ光を2分割するレーザ光分割部28を有している。そして、このレーザ光分割部28と分割部12とが第1レーザ光及び第2レーザ光をそれぞれ2つの参照光と測定光に分割するレーザ光分割手段を構成する。尚、レーザ光分割部28としてはハーフミラーやビームスプリッタの他に、サバール板を用いて第1レーザ光及び第2レーザ光を直交する2つの直線偏光に分ける構成としても良い。そして前述のように、レーザ光分割部28は第1レーザ光及び第2レーザ光を2分割する。レーザ光分割部28にて分割された一方の第1レーザ光及び第2レーザ光は分割部12でさらに参照光と測定光とに2分割される。そして、分割部12で分割された第1レーザ光及び第2レーザ光の一方の参照光(以後、第1参照光とする)は、反射部14の第1反射領域14aで反射され分割部12を透過して、複数の受光器22で構成された受光部18の第1受光領域18aに到達する。また、分割部12で分割された第1レーザ光及び第2レーザ光の一方の測定光(以後、第1測定光とする)は、第1出射口16aから被測定物6の第1測定点S1に向けて出射し、第1測定点S1及び分割部12で反射され受光部18の第1受光領域18aに到達する。 Next, the operation of the second distance measuring method according to the present invention and the laser distance measuring device 50b of the second embodiment will be described with reference to FIG. The laser distance measuring device 50 b has a laser beam splitting unit 28 that splits the first laser beam and the second laser beam into two before the splitting unit 12. The laser beam splitting unit 28 and the splitting unit 12 constitute a laser beam splitting unit that splits the first laser beam and the second laser beam into two reference beams and measurement beams, respectively. In addition to the half mirror and beam splitter, the laser beam splitting unit 28 may be configured to divide the first laser beam and the second laser beam into two orthogonally polarized beams using a Savart plate. As described above, the laser beam splitting unit 28 splits the first laser beam and the second laser beam into two. One of the first laser light and the second laser light divided by the laser light dividing unit 28 is further divided into two by the dividing unit 12 into reference light and measurement light. Then, one reference light (hereinafter referred to as first reference light) of the first laser beam and the second laser beam divided by the dividing unit 12 is reflected by the first reflection region 14 a of the reflecting unit 14 and is divided by the dividing unit 12. , And reaches the first light receiving region 18a of the light receiving unit 18 constituted by a plurality of light receivers 22. One measurement light of the first laser light and the second laser light (hereinafter referred to as first measurement light) divided by the dividing unit 12 is a first measurement point of the DUT 6 from the first emission port 16a. The light is emitted toward S1, reflected by the first measurement point S1 and the dividing unit 12, and reaches the first light receiving region 18a of the light receiving unit 18.
 また、レーザ光分割部28にて分割された他方の第1レーザ光及び第2レーザ光はミラー4cで反射された後、分割部12でさらに参照光と測定光とに2分割される。そして、分割部12で分割された第1レーザ光及び第2レーザ光の他方の参照光(以後、第2参照光とする)は、反射部14の第2反射領域14bで反射され分割部12を透過して、複数の受光器22で構成された受光部18の第2受光領域18bに到達する。また、分割部12で分割された第1レーザ光及び第2レーザ光の他方の測定光(以後、第2測定光とする)は、第2出射口16bから被測定物6の第2測定点S2に向けて出射し、第2測定点S2及び分割部12で反射され受光部18の第2受光領域18bに到達する。 Further, the other first laser light and second laser light divided by the laser light dividing unit 28 are reflected by the mirror 4c, and further divided into two by the dividing unit 12 into reference light and measurement light. Then, the other reference light (hereinafter referred to as second reference light) of the first laser light and the second laser light divided by the dividing unit 12 is reflected by the second reflection region 14b of the reflecting unit 14 and is divided. , And reaches the second light receiving region 18b of the light receiving unit 18 composed of a plurality of light receivers 22. The other measurement light of the first laser beam and the second laser beam (hereinafter referred to as second measurement beam) divided by the dividing unit 12 is sent from the second emission port 16b to the second measurement point of the object 6 to be measured. The light is emitted toward S2, reflected by the second measurement point S2 and the dividing unit 12, and reaches the second light receiving region 18b of the light receiving unit 18.
 尚、反射部14における第1反射領域14aと第2反射領域14bとの間には段差を設けても良いし、段差を無くし一直線状としても良い。また、第1反射領域14aと第2反射領域14bとの間の段差は、図6(a)に示すように大きくとも、図6(b)に示すように小さくとも良い。さらに、第1反射領域14aと第2反射領域14bの位置は、図6(c)に示すように第1反射領域14aを受光部18から見て手前側に位置させても良い。さらにまた、第1反射領域14aと第2反射領域14bの反射面の傾斜は、図6(d)に示すように逆側としても良い。さらに、後述の図9、図10の反射部14のように、第1反射領域14aと第2反射領域14bの配置方向とそれらの反射面の傾斜方向とを異なる方向(図9、図10では90°)としても良い。 It should be noted that a step may be provided between the first reflection region 14a and the second reflection region 14b in the reflection portion 14, or the step may be eliminated to be a straight line. Further, the step between the first reflection region 14a and the second reflection region 14b may be large as shown in FIG. 6A or small as shown in FIG. 6B. Furthermore, the positions of the first reflection region 14a and the second reflection region 14b may be positioned on the near side when the first reflection region 14a is viewed from the light receiving unit 18, as shown in FIG. 6C. Furthermore, the inclination of the reflection surfaces of the first reflection region 14a and the second reflection region 14b may be opposite to each other as shown in FIG. Further, as in a reflection portion 14 in FIGS. 9 and 10 to be described later, the direction in which the first reflection area 14a and the second reflection area 14b are arranged differs from the inclination direction of the reflection surfaces (in FIGS. 9 and 10). 90 °).
 次に、本発明に係る第2の測距方法及び第2の形態のレーザ測距装置50bの動作を説明する。第2の測距方法では演算明暗データに加えて、第1測定光系の第1基準距離データLas’(ピクセル長さ)と第2測定光系の第2基準距離データLbs’(ピクセル長さ)とを取得する必要がある。第1基準距離データLas’及び第2基準距離データLbs’の取得方法の例は後述する。 Next, the operation of the second distance measuring method according to the present invention and the laser distance measuring apparatus 50b of the second embodiment will be described. In the second distance measuring method, in addition to the calculated light / dark data, the first reference distance data Las ′ (pixel length) of the first measurement light system and the second reference distance data Lbs ′ (pixel length) of the second measurement light system. ) And need to get. An example of a method for obtaining the first reference distance data Las 'and the second reference distance data Lbs' will be described later.
 先ず、第1の測距方法と同様の手法で演算明暗データの作成を行う(第2の測距方法における演算明暗データ作成ステップ)。次に、所定の方法により第1基準距離データLas’及び第2基準距離データLbs’を取得する。 First, calculation light / dark data is created by the same method as the first distance measuring method (calculated light / dark data creation step in the second distance measuring method). Next, the first reference distance data Las 'and the second reference distance data Lbs' are obtained by a predetermined method.
 次に、被測定物6を図5(a)に示すように、第1レーザ光及び第2レーザ光の第1測定光が第1測定点S1に、第1レーザ光及び第2レーザ光の第2測定光が第2測定点S2にそれぞれ垂直に照射するよう設置する。次に、第1レーザ照射手段10a、第2レーザ照射手段10bを動作させ第1レーザ光及び第2レーザ光を同時に照射する。 Next, as shown in FIG. 5A, the first measurement light of the first laser light and the second laser light is placed at the first measurement point S <b> 1 at the first laser light and the second laser light. The second measurement light is installed so as to irradiate the second measurement point S2 vertically. Next, the first laser irradiation unit 10a and the second laser irradiation unit 10b are operated to irradiate the first laser beam and the second laser beam simultaneously.
 これにより、第1レーザ光及び第2レーザ光の第1測定光は、前述のように被測定物6の第1測定点S1で反射され第1受光領域18aに到達する。また、第1レーザ光及び第2レーザ光の第2測定光は被測定物6の第2測定点S2で反射され第2受光領域18bに到達する。また、第1レーザ光及び第2レーザ光の第1参照光は反射部14の第1反射領域14aで反射され第1受光領域18aに到達する。また、第1レーザ光及び第2レーザ光の第2参照光は反射部14の第2反射領域14bで反射され第2受光領域18bに到達する(第2の測距方法における照射ステップ)。 Thereby, the first measurement light of the first laser light and the second laser light is reflected at the first measurement point S1 of the object 6 to be measured and reaches the first light receiving region 18a as described above. The second measurement light of the first laser light and the second laser light is reflected at the second measurement point S2 of the object 6 to be measured and reaches the second light receiving region 18b. Further, the first reference light of the first laser light and the second laser light is reflected by the first reflection region 14a of the reflecting portion 14 and reaches the first light receiving region 18a. Further, the second reference light of the first laser light and the second laser light is reflected by the second reflection region 14b of the reflecting portion 14 and reaches the second light receiving region 18b (irradiation step in the second distance measuring method).
 第1反射領域14aと第2反射領域14bの反射面は所定の角度θで傾斜しており、第1反射領域14a及び第2反射領域14bで反射した参照光はその反射面の位置によって光路長が異なる。よって、第1受光領域18aで受光する第1レーザ光の第1測定光と第1レーザ光の第1参照光との干渉光と、第2レーザ光の第1測定光と第2レーザ光の第1参照光との干渉光とは共に干渉縞を形成する。また、第2受光領域18bで受光する第1レーザ光の第2測定光と第1レーザ光の第2参照光との干渉光と、第2レーザ光の第2測定光と第2レーザ光の第2参照光との干渉光とは共に干渉縞を形成する。そして、受光部18は第1受光領域18aと第2受光領域18bの各受光器22の光強度データを演算部20に出力する。尚、第1受光領域18aと第2受光領域18bとは1つの受光部18内に設けても良いし、第1受光領域18aと第2受光領域18bとを個別の受光部18で構成しても良い。 The reflection surfaces of the first reflection region 14a and the second reflection region 14b are inclined at a predetermined angle θ, and the reference light reflected by the first reflection region 14a and the second reflection region 14b has an optical path length depending on the positions of the reflection surfaces. Is different. Therefore, the interference light between the first measurement light of the first laser light received by the first light receiving region 18a and the first reference light of the first laser light, the first measurement light of the second laser light, and the second laser light Together with the interference light with the first reference light, an interference fringe is formed. Further, interference light between the second measurement light of the first laser light received by the second light receiving region 18b and the second reference light of the first laser light, the second measurement light of the second laser light, and the second laser light Together with the interference light with the second reference light, an interference fringe is formed. Then, the light receiving unit 18 outputs the light intensity data of each light receiver 22 in the first light receiving region 18a and the second light receiving region 18b to the arithmetic unit 20. The first light receiving region 18a and the second light receiving region 18b may be provided in one light receiving unit 18, or the first light receiving region 18a and the second light receiving region 18b may be configured by individual light receiving units 18. Also good.
 演算部20は第1受光領域18aの各受光器22の光強度データを所定の順序で配列し、第1測定点S1の測定明暗データを作成する(第2の測距方法における第1測定明暗データ作成ステップ)。尚、第1測定点S1の測定明暗データは基本的に第1測定点S1で反射した第1レーザ光の第1測定光と第1レーザ光の第1参照光との干渉光と、第1測定点S1で反射した第2レーザ光の第1測定光と第2レーザ光の第1参照光との干渉光が合わさったものとなる。 The calculation unit 20 arranges the light intensity data of the respective light receivers 22 in the first light receiving region 18a in a predetermined order, and creates measurement light / dark data of the first measurement point S1 (the first measurement light / dark in the second distance measuring method). Data creation step). Note that the measurement light / dark data at the first measurement point S1 basically includes the interference light between the first measurement light of the first laser light reflected at the first measurement point S1 and the first reference light of the first laser light, Interference light of the first measurement light of the second laser light reflected at the measurement point S1 and the first reference light of the second laser light is combined.
 また、演算部20は第2受光領域18bの各受光器22の光強度データを所定の順序で配列し、第2測定点S2の測定明暗データを作成する(第2の測距方法における第2測定明暗データ作成ステップ)。尚、第2測定点S2の測定明暗データは基本的に第2測定点S2で反射した第1レーザ光の第2測定光と第1レーザ光の第2参照光との干渉光と、第2測定点S2で反射した第2レーザ光の第2測定光と第2レーザ光の第2参照光との干渉光が合わさったものとなる。 In addition, the calculation unit 20 arranges the light intensity data of the respective light receivers 22 in the second light receiving region 18b in a predetermined order, and creates the measurement light / dark data of the second measurement point S2 (second in the second distance measuring method). Measurement light / dark data creation step). Note that the measured brightness / darkness data at the second measurement point S2 basically includes interference light between the second measurement light of the first laser light reflected at the second measurement point S2 and the second reference light of the first laser light, Interference light of the second measurement light reflected by the measurement point S2 and the second reference light of the second laser light is combined.
 次に、演算部20は取得された第1測定点S1の測定明暗データと予め作成されている演算明暗データとを比較して、演算明暗データにおける第1測定点S1の測定明暗データの位置を特定する。(第2の測距方法における第1比較ステップ)。 Next, the calculation unit 20 compares the acquired measurement brightness / darkness data of the first measurement point S1 with previously calculated brightness / darkness data, and determines the position of the measurement brightness / darkness data of the first measurement point S1 in the calculation brightness / darkness data. Identify. (First comparison step in the second distance measuring method).
 また、演算部20は取得された第2測定点S2の測定明暗データと予め作成されている演算明暗データとを比較して、演算明暗データにおける第2測定点S2の測定明暗データの位置を特定する。(第2の測距方法における第2比較ステップ)。 In addition, the calculation unit 20 compares the acquired measurement brightness / darkness data of the second measurement point S2 with previously calculated brightness / darkness data, and specifies the position of the measurement brightness / darkness data of the second measurement point S2 in the calculation brightness / darkness data. To do. (Second comparison step in the second distance measuring method).
 次に、演算部20は第1測定点S1の測定明暗データの基点から演算明暗データ上の基準点までの第1距離データLa’(ピクセル長さ)を算出する(第2の測距方法における第1距離データ取得ステップ)。 Next, the calculation unit 20 calculates first distance data La ′ (pixel length) from the base point of the measured light / dark data at the first measurement point S1 to the reference point on the calculated light / dark data (in the second distance measuring method). First distance data acquisition step).
 また、演算部20は第2測定点S2の測定明暗データの基点から演算明暗データ上の基準点までの第2距離データLb’(ピクセル長さ)を算出する(第2の測距方法における第2距離データ取得ステップ)。尚、第1測定点S1の測定明暗データ及び第2測定点S2の測定明暗データの基点は、後述の第1基準距離データLas’及び第2基準距離データLbs’の取得時に設定した測定明暗データ内における位置と同一とする。 In addition, the calculation unit 20 calculates second distance data Lb ′ (pixel length) from the base point of the measured brightness / darkness data at the second measurement point S2 to the reference point on the calculated brightness / darkness data (the second distance measurement method uses the second distance measurement method). 2 distance data acquisition step). Note that the measurement light / dark data of the first measurement point S1 and the base points of the measurement light / dark data of the second measurement point S2 are the measurement light / dark data set when the first reference distance data Las ′ and the second reference distance data Lbs ′ described later are acquired. It is the same as the position inside.
 ここで、第1基準距離データLas’及び第2基準距離データLbs’の取得方法の一例を示す。尚、以下に示す取得方法は本発明に係るレーザ測距装置50bに好適なものであるが、必ずしもこの方法を用いる必要は無い。また、第1基準距離データLas’及び第2基準距離データLbs’の取得は測定毎に行う必要は無く、レーザ測距装置の出荷時等に行ってメモリ等に記録しておいても良い。 Here, an example of a method for obtaining the first reference distance data Las 'and the second reference distance data Lbs' will be described. The following acquisition method is suitable for the laser distance measuring device 50b according to the present invention, but this method is not necessarily used. The acquisition of the first reference distance data Las 'and the second reference distance data Lbs' is not necessarily performed for each measurement, and may be performed at the time of shipment of the laser distance measuring device and recorded in a memory or the like.
 先ず、図5(b)に示すように、第1出射口16aと第2出射口16bとを表面が平滑な平板5で塞ぐ。このとき、第1出射口16aから平板5までの距離と第2出射口16bから平板5までの距離とは等しい。次に、第1レーザ照射手段10a、第2レーザ照射手段10bを動作させ第1レーザ光及び第2レーザ光を同時に照射する。これにより、第1レーザ光及び第2レーザ光の第1測定光は平板5の第1測定点S1’で反射する。また、第1レーザ光及び第2レーザ光の第2測定光は平板5の第2測定点S2’で反射する(照射ステップ)。そして、この状態で第2の測距方法における第1明暗データ作成ステップ~第2距離データ取得ステップを行う。尚、第1距離データ取得ステップ、第2距離データ取得ステップにおける測定明暗データの基点は基本的に任意の位置とすることができる。ただし、ここで設定した基点は被測定物6の測距時に変化させることはできない。 First, as shown in FIG. 5B, the first exit port 16a and the second exit port 16b are closed with a flat plate 5 having a smooth surface. At this time, the distance from the first exit 16a to the flat plate 5 is equal to the distance from the second exit 16b to the flat plate 5. Next, the first laser irradiation unit 10a and the second laser irradiation unit 10b are operated to irradiate the first laser beam and the second laser beam simultaneously. Thereby, the first measurement light of the first laser light and the second laser light is reflected at the first measurement point S <b> 1 ′ of the flat plate 5. Further, the second measurement light of the first laser light and the second laser light is reflected at the second measurement point S2 'of the flat plate 5 (irradiation step). Then, in this state, the first light / dark data creation step to the second distance data acquisition step in the second distance measuring method are performed. The base point of the measured light / dark data in the first distance data acquisition step and the second distance data acquisition step can be basically set at an arbitrary position. However, the base point set here cannot be changed when the object 6 is measured.
 そして、第1距離データ取得ステップで得られる第1距離データLa’が第1基準距離データLas’となり、第2距離データ取得ステップで得られる第2距離データLb’が第2基準距離データLbs’となる。この第1基準距離データLas’は平板5の第1測定点S1’で反射した第1測定光と第1参照光の光路差に対応する。また、第2基準距離データLbs’は平板5の第2測定点S2’で反射した第2測定光と第2参照光の光路差に対応する。よって、第1基準距離データLas’と第2基準距離データLbs’との差は、実質的に第1反射領域14aと第2反射領域14bとの位置の差に対応する。以上が測距装置50bに好適な第1基準距離データLas’及び第2基準距離データLbs’の取得方法である。 Then, the first distance data La ′ obtained in the first distance data acquisition step becomes the first reference distance data Las ′, and the second distance data Lb ′ obtained in the second distance data acquisition step becomes the second reference distance data Lbs ′. It becomes. The first reference distance data Las 'corresponds to the optical path difference between the first measurement light and the first reference light reflected at the first measurement point S1' of the flat plate 5. The second reference distance data Lbs ′ corresponds to the optical path difference between the second measurement light and the second reference light reflected at the second measurement point S <b> 2 ′ of the flat plate 5. Therefore, the difference between the first reference distance data Las 'and the second reference distance data Lbs' substantially corresponds to the position difference between the first reflection area 14a and the second reflection area 14b. The above is the method for obtaining the first reference distance data Las 'and the second reference distance data Lbs' suitable for the distance measuring device 50b.
 次に、演算部20は第1距離データ取得ステップで得られた第1距離データLa’と第2距離データ取得ステップで得られた第2距離データLb’と第1基準距離データLas’と第2基準距離データLbs’とに基づいて、第1測定点S1と第2測定点S2との間の厚み方向の距離L’(ピクセル長さ)を例えば以下の式で算出する(第2の測距方法における測距ステップ)。
L’=((La’-Las’)-(Lb’-Lbs’))/2
尚、距離L’が負の場合には、第2測定点S2のほうが第1測定点S1よりもレーザ測距装置50a側に位置していることを示している。そして、距離L’のピクセル長さを実際の長さに換算することで距離Lを算出する。以上が本発明に係る第2の測距方法及び第2の形態のレーザ測距装置50bの動作である。
Next, the calculation unit 20 obtains the first distance data La ′ obtained in the first distance data obtaining step, the second distance data Lb ′ obtained in the second distance data obtaining step, the first reference distance data Las ′, and the first distance data La ′. Based on the two reference distance data Lbs ′, a distance L ′ (pixel length) in the thickness direction between the first measurement point S1 and the second measurement point S2 is calculated by, for example, the following formula (second measurement). Ranging step in the distance method).
L ′ = ((La′−Las ′) − (Lb′−Lbs ′)) / 2
When the distance L ′ is negative, it indicates that the second measurement point S2 is located closer to the laser distance measuring device 50a than the first measurement point S1. Then, the distance L is calculated by converting the pixel length of the distance L ′ into an actual length. The above is the operation of the second distance measuring method and the laser distance measuring apparatus 50b of the second embodiment according to the present invention.
 尚、第1の形態のレーザ測距装置50aにより第2の測距方法を行うことも可能である。この場合、図7に示すように、測定光が被測定物6の第1測定点S1と第2測定点S2とに同時に照射されるように被測定物6を配置する。そして、第1測定点S1に照射される一部の測定光が一方の第1測定光となる。この第1測定光は第1測定点S1で反射され、分割部12を経由して受光部18の一部である第1受光領域18aに到達する。また、第2測定点S2に照射される一部の測定光が他方の第2測定光となる。この第2測定光は第2測定点S2で反射され、分割部12を経由して受光部18の一部である第2受光領域18bに到達する。また、第1測定光と対応する一部の参照光が一方の第1参照光となる。この第1参照光は反射部14の一部である第1反射領域14aで反射され、分割部12を経由して受光部18の一部である第1受光領域18aに到達する。また、第2測定光と対応する一部の参照光が他方の第2参照光となる。この第2参照光は反射部14の一部である第2反射領域14bで反射され、分割部12を経由して受光部18の一部である第2受光領域18bに到達する。以後は前述の第2の測距方法と同様にして第1測定点S1と第2測定点S2との間の厚み方向の距離Lを算出する。第1受光領域18aと第2受光領域18bとの判別は取得される測定明暗データの不連続性から判断しても良いし、第1受光領域18aと第2受光領域18bとの間にブランク領域を設け、このブランク領域と対応する範囲に第1測定点S1と第2測定点S2との境界部分(段差)がくるように被測定物6を配置するようにしても良い。 It should be noted that the second distance measuring method can be performed by the laser distance measuring device 50a of the first embodiment. In this case, as shown in FIG. 7, the device under test 6 is arranged so that the measurement light is simultaneously irradiated onto the first measurement point S1 and the second measurement point S2 of the device under test 6. And a part of measurement light irradiated to 1st measurement point S1 turns into one 1st measurement light. The first measurement light is reflected at the first measurement point S <b> 1 and reaches the first light receiving region 18 a which is a part of the light receiving unit 18 via the dividing unit 12. Further, a part of the measurement light irradiated to the second measurement point S2 becomes the other second measurement light. The second measurement light is reflected at the second measurement point S2, and reaches the second light receiving region 18b which is a part of the light receiving unit 18 via the dividing unit 12. Further, a part of the reference light corresponding to the first measurement light becomes one first reference light. The first reference light is reflected by the first reflection region 14 a that is a part of the reflection unit 14, and reaches the first light reception region 18 a that is a part of the light reception unit 18 via the dividing unit 12. Further, a part of the reference light corresponding to the second measurement light becomes the other second reference light. The second reference light is reflected by the second reflection region 14 b that is a part of the reflection unit 14, and reaches the second light reception region 18 b that is a part of the light reception unit 18 via the dividing unit 12. Thereafter, the distance L in the thickness direction between the first measurement point S1 and the second measurement point S2 is calculated in the same manner as in the second distance measurement method described above. The discrimination between the first light receiving area 18a and the second light receiving area 18b may be made from the discontinuity of the acquired measurement light / dark data, or a blank area between the first light receiving area 18a and the second light receiving area 18b. And the DUT 6 may be arranged so that the boundary portion (step) between the first measurement point S1 and the second measurement point S2 is in a range corresponding to the blank area.
 次に、本発明に係る第3の測距方法及び第3の形態のレーザ測距装置50cの動作を図8を用いて説明する。尚、第3の形態のレーザ測距装置50cは被測定物6の一面側に位置する第1測定点S1と、当該第1測定点S1の裏面に位置する第2測定点S2との間の厚み方向の距離を測距することで、被測定物6の厚みtを測距するものである。従って、その構成は第1測定光と第2測定光との光学経路が異なる以外、第2の形態のレーザ測距装置50bと基本的に同等である。 Next, the third distance measuring method according to the present invention and the operation of the laser distance measuring device 50c according to the third embodiment will be described with reference to FIG. Note that the laser range finder 50c of the third embodiment is between the first measurement point S1 located on the one surface side of the object 6 to be measured and the second measurement point S2 located on the back surface of the first measurement point S1. The distance t in the thickness direction is measured by measuring the distance in the thickness direction. Therefore, the configuration is basically the same as that of the laser distance measuring device 50b of the second embodiment except that the optical paths of the first measurement light and the second measurement light are different.
 第3の形態のレーザ測距装置50cでは、第1レーザ光及び第2レーザ光の第1測定光は光路上に設けられたミラー8a、ミラー8b、ミラー8cで反射され第1出射口16aから第2出射口16bに向けて出射する。第1出射口16aと第2出射口16bとは対向する位置に設けられ、被測定物6は、図8(a)に示されるように、この第1出射口16aと第2出射口16bとの間に配置される。よって、第1出射口16aから出射した第1レーザ光及び第2レーザ光の第1測定光は被測定物6の第1測定点S1で反射され、ミラー8c、ミラー8b、ミラー8a、分割部12を経由して受光部18の第1受光領域18aに到達する。また、第1レーザ光及び第2レーザ光の第2測定光は光路上に設けられたミラー8d、ミラー8e、ミラー8fで反射され第2出射口16bから被測定物6の第1測定点S1の裏面に位置する第2測定点S2に向けて出射する。そして、被測定物6の第2測定点S2で反射され、ミラー8f、ミラー8e、ミラー8d、分割部12を経由して受光部18の第2受光領域18bに到達する。尚、第1測定光の光路長と第2測定光の光路長とはできる限り同等とすることが好ましい。また、測距時に各参照光と各測定光との光路差がコヒーレンス長の範囲内となるように各参照光の光路長と各測定光の光路長とを最適化することが好ましい。 In the laser range finder 50c of the third embodiment, the first measurement light of the first laser light and the second laser light is reflected by the mirror 8a, the mirror 8b, and the mirror 8c provided on the optical path and is transmitted from the first emission port 16a. The light is emitted toward the second emission port 16b. The first exit port 16a and the second exit port 16b are provided at positions facing each other. As shown in FIG. 8A, the DUT 6 includes the first exit port 16a and the second exit port 16b. It is arranged between. Therefore, the first measurement light of the first laser beam and the second laser beam emitted from the first emission port 16a is reflected at the first measurement point S1 of the object 6 to be measured, and the mirror 8c, the mirror 8b, the mirror 8a, and the dividing unit. 12 to reach the first light receiving region 18 a of the light receiving unit 18. The first measurement light S1 and the second measurement light of the second laser light are reflected by the mirror 8d, the mirror 8e, and the mirror 8f provided on the optical path, and the first measurement point S1 of the DUT 6 from the second emission port 16b. The light is emitted toward the second measurement point S2 located on the back surface of. Then, the light is reflected at the second measurement point S2 of the DUT 6 and reaches the second light receiving region 18b of the light receiving unit 18 via the mirror 8f, the mirror 8e, the mirror 8d, and the dividing unit 12. It is preferable that the optical path length of the first measurement light and the optical path length of the second measurement light be as equal as possible. Moreover, it is preferable to optimize the optical path length of each reference light and the optical path length of each measurement light so that the optical path difference between each reference light and each measurement light is within the range of the coherence length during distance measurement.
 また、本発明に係る第3の測距方法及び第3のレーザ測距装置50cにおける第1基準距離データLas’及び第2基準距離データLbs’の取得は例えば以下のようにして行う。 The acquisition of the first reference distance data Las 'and the second reference distance data Lbs' in the third distance measuring method and the third laser distance measuring apparatus 50c according to the present invention is performed as follows, for example.
 先ず、図8(b)に示すように、第1出射口16aと第2出射口16bとの中間位置に厚みtaが既知のブロックゲージ7を設置する。このとき、第1出射口16aからブロックゲージ7までの距離と第2出射口16bからブロックゲージ7までの距離とをほぼ等しく配置する。尚、ブロックゲージ7の厚みtaは被測定物6の厚みtよりも薄いことが好ましい。 First, as shown in FIG. 8B, a block gauge 7 having a known thickness ta is installed at an intermediate position between the first emission port 16a and the second emission port 16b. At this time, the distance from the first exit port 16a to the block gauge 7 and the distance from the second exit port 16b to the block gauge 7 are arranged substantially equal. The thickness ta of the block gauge 7 is preferably thinner than the thickness t of the object 6 to be measured.
 次に、第1レーザ照射手段10a、第2レーザ照射手段10bを動作させ第1レーザ光及び第2レーザ光を同時に照射する。これにより、第1レーザ光及び第2レーザ光の第1測定光はブロックゲージ7の第1測定点S1’で反射する。また、第1レーザ光及び第2レーザ光の第2測定光は第1測定点S1’の裏面に位置する第2測定点S2’で反射する(照射ステップ)。そして、この状態で第2の測距方法における第1明暗データ作成ステップ~第2距離データ取得ステップと同等のステップを行う。尚、第1距離データ取得ステップ、第2距離データ取得ステップにおける測定明暗データの基点は基本的に任意の位置とすることができる。ただし、ここで設定した基点は被測定物6の測距時に変化させることはできない。そして、第1距離データ取得ステップで得られる第1距離データLa’が第1基準距離データLas’となり、第2距離データ取得ステップで得られる第2距離データLb’が第2基準距離データLbs’となる。この第1基準距離データLas’はブロックゲージ7の第1測定点S1’で反射した第1測定光と第1参照光の光路差に対応する。また、第2基準距離データLbs’はブロックゲージ7の第2測定点S2’で反射した第2測定光と第2参照光の光路差に対応する。以上が測距装置50cに好適な第1基準距離データLas’及び第2基準距離データLbs’の取得方法である。 Next, the first laser irradiation unit 10a and the second laser irradiation unit 10b are operated to irradiate the first laser beam and the second laser beam simultaneously. As a result, the first measurement light of the first laser light and the second laser light is reflected at the first measurement point S <b> 1 ′ of the block gauge 7. The second measurement light of the first laser light and the second laser light is reflected at the second measurement point S2 'located on the back surface of the first measurement point S1' (irradiation step). Then, in this state, steps equivalent to the first light / dark data creation step to the second distance data acquisition step in the second distance measuring method are performed. The base point of the measured light / dark data in the first distance data acquisition step and the second distance data acquisition step can be basically set at an arbitrary position. However, the base point set here cannot be changed when the object 6 is measured. Then, the first distance data La ′ obtained in the first distance data acquisition step becomes the first reference distance data Las ′, and the second distance data Lb ′ obtained in the second distance data acquisition step becomes the second reference distance data Lbs ′. It becomes. The first reference distance data Las 'corresponds to the optical path difference between the first measurement light and the first reference light reflected at the first measurement point S1' of the block gauge 7. The second reference distance data Lbs ′ corresponds to the optical path difference between the second measurement light and the second reference light reflected at the second measurement point S <b> 2 ′ of the block gauge 7. The above is the method for obtaining the first reference distance data Las 'and the second reference distance data Lbs' suitable for the distance measuring device 50c.
 次に、第2の測距方法における演算明暗データ作成ステップと同様のステップを行い演算明暗データを作成する。次に、第1出射口16aと第2出射口16bとの間に被測定物6を配置する。そして、この状態で第2の測距方法における照射ステップ~第2距離データ取得ステップを行う。ここでの第1距離データ取得ステップで取得される第1距離データLa’は被測定物6の第1測定点S1で反射した第1測定光と第1参照光の光路差に対応する。また、第2距離データ取得ステップで取得される第2距離データLb’は被測定物6の第2測定点S2で反射した第2測定光と第2参照光の光路差に対応する。 Next, the calculated brightness data is created by performing the same steps as the calculated brightness data creation step in the second distance measuring method. Next, the DUT 6 is disposed between the first exit port 16a and the second exit port 16b. In this state, the irradiation step to the second distance data acquisition step in the second distance measuring method are performed. The first distance data La ′ acquired in the first distance data acquisition step here corresponds to the optical path difference between the first measurement light and the first reference light reflected at the first measurement point S1 of the object 6 to be measured. The second distance data Lb ′ acquired in the second distance data acquisition step corresponds to the optical path difference between the second measurement light and the second reference light reflected at the second measurement point S2 of the object 6 to be measured.
 次に、演算部20は、第1距離データ取得ステップで得られた第1距離データLa’と第2距離データ取得ステップで得られた第2距離データLb’と第1基準距離データLas’と第2基準距離データLbs’とブロックゲージ7の厚みtaに基づいて、第1測定点S1と第2測定点S2との間の厚み方向の距離L、即ち被測定物6の厚みtを例えば以下のようにして算出する(第3の測距方法における測距ステップ)。 Next, the computing unit 20 includes the first distance data La ′ obtained in the first distance data obtaining step, the second distance data Lb ′ obtained in the second distance data obtaining step, and the first reference distance data Las ′. Based on the second reference distance data Lbs ′ and the thickness ta of the block gauge 7, for example, the distance L in the thickness direction between the first measurement point S1 and the second measurement point S2, that is, the thickness t of the object 6 to be measured is as follows: (A ranging step in the third ranging method) is calculated as follows.
 先ず、第1距離データLa’と第2距離データLb’と第1基準距離データLas’と第2基準距離データLbs’とから、以下の式により距離L’を算出する。尚、距離L’は被測定物6の厚みtからブロックゲージ7の厚みtaを引いたもののピクセル長さに相当する。
L’=((La’-Las’)+(Lb’-Lbs’))/2
次に、距離L’のピクセル長さを実際の長さに換算することで距離Lを算出する。そして、得られた距離Lにブロックゲージ7の厚みtaを加算することで、被測定物6の厚みtを算出する。以上が本発明に係る第3の測距方法及び第3の形態のレーザ測距装置50cの動作である。
First, the distance L ′ is calculated from the first distance data La ′, the second distance data Lb ′, the first reference distance data Las ′, and the second reference distance data Lbs ′ by the following formula. The distance L ′ corresponds to the pixel length obtained by subtracting the thickness ta of the block gauge 7 from the thickness t of the object 6 to be measured.
L ′ = ((La′−Las ′) + (Lb′−Lbs ′)) / 2
Next, the distance L ′ is calculated by converting the pixel length of the distance L ′ into an actual length. Then, the thickness t of the object to be measured 6 is calculated by adding the thickness ta of the block gauge 7 to the obtained distance L. The above is the operation of the third distance measuring method according to the present invention and the laser distance measuring apparatus 50c of the third embodiment.
 以上のように、本発明に係る測距方法及びレーザ測距装置によれば、反射部14を所定の角度θだけ傾けて設置することで、参照光の光路長を光路内で連続的に変化させることができる。これにより、受光部18が受光する測定光と参照光による干渉光には干渉縞が形成され、この受光部18の各受光器22の光強度データに基づいて測定明暗データを作成することができる。そして、この測定明暗データと予め演算により算出された演算明暗データとを比較することで測距を行う。これにより、光学系に機械的手段を用いずに被測定物の厚み方向の距離もしくは厚みを高精度に測距することができる。 As described above, according to the distance measuring method and the laser distance measuring device according to the present invention, the optical path length of the reference light is continuously changed in the optical path by installing the reflecting portion 14 at a predetermined angle θ. Can be made. Thereby, interference fringes are formed in the measurement light received by the light receiving unit 18 and the interference light by the reference light, and measurement light / dark data can be created based on the light intensity data of each light receiver 22 of the light receiving unit 18. . Then, distance measurement is performed by comparing the measured brightness / darkness data with the calculated brightness / darkness data calculated in advance. Thus, the distance or thickness in the thickness direction of the object to be measured can be measured with high accuracy without using mechanical means in the optical system.
 尚、上記のレーザ測距装置50a~50cの構成は一例であるから、図1、図5~図8に限定されるものではない。また、図5、図8のレーザ測距装置50b、50cでは、レーザ光分割部28、分割部12で分割したレーザ光(参照光、測定光)の光路が全て紙面と平行となっている例を示したが、特にこれに限定されるわけではなく、例えば図9に示す第2の形態のレーザ測距装置50bの変形例のようにレーザ光分割部28が紙面と垂直な方向にレーザ光を分割するようにしても良いし、図10に示す第3の形態のレーザ測距装置50cの変形例のように分割部12が紙面と垂直な方向にレーザ光を分割するようにしても良い。また、レーザ光の分割方向を紙面に平行な方向と垂直な方向の間の任意の角度としても良い他、各レーザ光の光路は立体的な如何なる光路を取っても良い。さらに、その他のレーザ測距装置50a~50cの各部の構成等も、本発明の要旨を逸脱しない範囲で変更して実施することが可能である。 The configuration of the laser distance measuring devices 50a to 50c is an example, and is not limited to FIGS. 1 and 5 to 8. Further, in the laser distance measuring devices 50b and 50c of FIGS. 5 and 8, the optical paths of the laser light (reference light and measurement light) divided by the laser light dividing unit 28 and the dividing unit 12 are all parallel to the paper surface. However, the present invention is not particularly limited to this. For example, as in a modification of the laser distance measuring device 50b of the second embodiment shown in FIG. May be divided, or the dividing unit 12 may divide the laser beam in a direction perpendicular to the paper surface as in a modification of the laser distance measuring device 50c of the third embodiment shown in FIG. . Further, the laser beam division direction may be an arbitrary angle between the direction parallel to the paper surface and the direction perpendicular to the paper surface, and the optical path of each laser beam may take any three-dimensional optical path. Furthermore, the configuration of each part of the other laser distance measuring devices 50a to 50c can be changed and implemented without departing from the gist of the present invention.
      6   被測定物
      10a 第1レーザ照射手段
      10b 第2レーザ照射手段
      12  分割部
      14  反射部
      14a 第1反射領域
      14b 第2反射領域
      16a 第1出射口
      16b 第2出射口
      18  受光部
      18a 第1受光領域
      18b 第2受光領域
      20  演算部
      22  受光器
      50a~50c  レーザ測距装置
      S1  第1測定点
      S2  第2測定点
      L   (被測定物の厚み方向の)距離
      t   (被測定物の)厚み
6 DUT 10a First laser irradiation means 10b Second laser irradiation means 12 Dividing part 14 Reflecting part 14a First reflecting area 14b Second reflecting area 16a First emitting port 16b Second emitting port 18 Light receiving unit 18a First light receiving region 18b Second light receiving area 20 Calculation unit 22 Light receiver 50a to 50c Laser ranging device S1 First measurement point S2 Second measurement point L Distance (in the thickness direction of the measurement object) Thickness (of the measurement object)

Claims (6)

  1. 波長の異なる第1レーザ光と第2レーザ光とを分割部で参照光と測定光とにそれぞれ分割し、反射部で反射した参照光と被測定物の測定点で反射した測定光とを受光部が受光して、当該参照光と測定光とがそれぞれ干渉することで得られる明暗のデータに基づいて被測定物の厚み方向の距離を測距する測距方法であって、
    第1レーザ光及び第2レーザ光の波長と前記受光部が受光する参照光及び測定光の光強度とに基づいて演算明暗データを算出する演算明暗データ作成ステップと、
    第1レーザ光及び第2レーザ光のそれぞれの参照光を反射面が傾斜した反射部で反射させるとともに、第1レーザ光及び第2レーザ光のそれぞれの測定光を被測定物の第1測定点で反射させ、前記反射部で反射した参照光と第1測定点で反射した測定光とを複数の受光器で構成された前記受光部に受光させる第1照射ステップと、
    前記受光部の各受光器の光強度データに基づいて第1測定点の測定明暗データを作成する第1明暗データ作成ステップと、
    第1測定点の測定明暗データと前記演算明暗データとを比較して、演算明暗データにおける第1測定点の測定明暗データの位置を特定する第1比較ステップと、
    第1測定点の測定明暗データの基点から演算明暗データの基準点までの第1距離データを取得する第1距離データ取得ステップと、
    第1レーザ光及び第2レーザ光のそれぞれの参照光を前記反射部で反射させるとともに、第1レーザ光及び第2レーザ光のそれぞれの測定光を被測定物の第2測定点で反射させ、前記反射部で反射した参照光と第2測定点で反射した測定光とを前記受光部で受光させる第2照射ステップと、
    前記受光部の各受光器の光強度データに基づいて第2測定点の測定明暗データを作成する第2明暗データ作成ステップと、
    第2測定点の測定明暗データと前記演算明暗データとを比較して、演算明暗データにおける第2測定点の測定明暗データの位置を特定する第2比較ステップと、
    第2測定点の測定明暗データの基点から演算明暗データの基準点までの第2距離データを取得する第2距離データ取得ステップと、
    第1距離データと第2距離データとに基づいて第1測定点と第2測定点との間の厚み方向の距離を測距する測距ステップと、
    を有することを特徴とする測距方法。
    The first laser beam and the second laser beam having different wavelengths are divided into reference light and measurement light by the dividing unit, respectively, and the reference light reflected by the reflecting unit and the measurement light reflected by the measurement point of the object to be measured are received. A distance measuring method for measuring the distance in the thickness direction of the object to be measured based on light and dark data obtained by the light received by the unit and the reference light and measurement light interfering with each other,
    A calculation light / dark data creating step for calculating calculated light / dark data based on the wavelengths of the first laser light and the second laser light and the light intensity of the reference light and measurement light received by the light receiving unit;
    The reference light of each of the first laser light and the second laser light is reflected by the reflecting portion whose reflection surface is inclined, and each measurement light of the first laser light and the second laser light is reflected at the first measurement point of the object to be measured. A first irradiating step in which the reference light reflected by the reflective portion and the measurement light reflected by the first measurement point are received by the light receiving portion configured by a plurality of light receivers;
    A first light / dark data creating step for creating measurement light / dark data of the first measurement point based on the light intensity data of each light receiver of the light receiving unit;
    A first comparison step of comparing the measured light / dark data of the first measurement point with the calculated light / dark data to identify the position of the measured light / dark data of the first measurement point in the calculated light / dark data;
    A first distance data acquisition step of acquiring first distance data from a base point of the measured light / dark data of the first measurement point to a reference point of the calculated light / dark data;
    Reflecting each reference beam of the first laser beam and the second laser beam by the reflection unit, reflecting each measurement beam of the first laser beam and the second laser beam at the second measurement point of the object to be measured, A second irradiation step of causing the light receiving unit to receive the reference light reflected by the reflection unit and the measurement light reflected by the second measurement point;
    A second light / dark data creating step for creating measurement light / dark data of the second measurement point based on the light intensity data of each light receiver of the light receiving unit;
    A second comparison step of comparing the measured light / dark data of the second measurement point with the calculated light / dark data and specifying the position of the measured light / dark data of the second measurement point in the calculated light / dark data;
    A second distance data acquisition step of acquiring second distance data from the base point of the measured light / dark data of the second measurement point to the reference point of the calculated light / dark data;
    A distance measuring step for measuring the distance in the thickness direction between the first measurement point and the second measurement point based on the first distance data and the second distance data;
    A ranging method characterized by comprising:
  2. 波長の異なる第1レーザ光と第2レーザ光とを分割部で参照光と測定光とにそれぞれ分割し、反射部で反射した参照光と被測定物の測定点で反射した測定光とを受光部が受光して、当該参照光と測定光とがそれぞれ干渉することで得られる明暗のデータに基づいて被測定物の厚み方向の距離を測距する測距方法であって、
    第1レーザ光及び第2レーザ光の波長と前記受光部が受光する参照光及び測定光の光強度とに基づいて演算明暗データを算出する演算明暗データ作成ステップと、
    第1レーザ光及び第2レーザ光をそれぞれ2つの参照光と測定光とに分割し、第1レーザ光及び第2レーザ光の一方の参照光を反射面が傾斜した前記反射部の第1反射領域で反射させるとともに、第1レーザ光及び第2レーザ光の一方の測定光を被測定物の第1測定点で反射させ、第1反射領域で反射した参照光と第1測定点で反射した測定光とを複数の受光器で構成された前記受光部の第1受光領域に受光させ、
    第1レーザ光及び第2レーザ光の他方の参照光を反射面が傾斜した前記反射部の第2反射領域で反射させるとともに、第1レーザ光及び第2レーザ光の他方の測定光を被測定物の第2測定点で反射させ、第2反射領域で反射した参照光と第2測定点で反射した測定光とを複数の受光器で構成された前記受光部の第2受光領域に受光させる照射ステップと、
    前記第1受光領域の各受光器の光強度データに基づいて第1測定点の測定明暗データを作成する第1明暗データ作成ステップと、
    前記第2受光領域の各受光器の光強度データに基づいて第2測定点の測定明暗データを作成する第2明暗データ作成ステップと、
    第1測定点の測定明暗データと前記演算明暗データとを比較して、演算明暗データにおける第1測定点の測定明暗データの位置を特定する第1比較ステップと、
    第2測定点の測定明暗データと前記演算明暗データとを比較して、演算明暗データにおける第2測定点の測定明暗データの位置を特定する第2比較ステップと、
    第1測定点の測定明暗データの基点から演算明暗データの基準点までの第1距離データを取得する第1距離データ取得ステップと、
    第2測定点の測定明暗データの基点から演算明暗データの基準点までの第2距離データを取得する第2距離データ取得ステップと、
    第1距離データと第2距離データとに基づいて第1測定点と第2測定点との間の厚み方向の距離を測距する測距ステップと、
    を有することを特徴とする測距方法。
    The first laser beam and the second laser beam having different wavelengths are divided into reference light and measurement light by the dividing unit, respectively, and the reference light reflected by the reflecting unit and the measurement light reflected by the measurement point of the object to be measured are received. A distance measuring method for measuring the distance in the thickness direction of the object to be measured based on light and dark data obtained by the light received by the unit and the reference light and measurement light interfering with each other,
    A calculation light / dark data creating step for calculating calculated light / dark data based on the wavelengths of the first laser light and the second laser light and the light intensity of the reference light and measurement light received by the light receiving unit;
    The first laser beam and the second laser beam are each divided into two reference beams and a measurement beam, and one of the first laser beam and the second laser beam is reflected by a first reflecting surface of the reflecting portion. The reflected light is reflected by the region, and one measurement light of the first laser light and the second laser light is reflected by the first measurement point of the object to be measured, and is reflected by the reference light reflected by the first reflection region and the first measurement point. The measurement light is received by the first light receiving region of the light receiving unit configured by a plurality of light receivers,
    The other reference light of the first laser light and the second laser light is reflected by the second reflection region of the reflection portion whose reflection surface is inclined, and the other measurement light of the first laser light and the second laser light is measured. The reference light reflected by the second measurement point of the object and the measurement light reflected by the second measurement point and the measurement light reflected by the second measurement point are received by the second light receiving region of the light receiving unit including a plurality of light receivers. An irradiation step;
    A first light / dark data creating step for creating measurement light / dark data of the first measurement point based on the light intensity data of each light receiver in the first light receiving region;
    A second light / dark data creation step for creating measurement light / dark data of the second measurement point based on the light intensity data of each light receiver in the second light receiving region;
    A first comparison step of comparing the measured light / dark data of the first measurement point with the calculated light / dark data to identify the position of the measured light / dark data of the first measurement point in the calculated light / dark data;
    A second comparison step of comparing the measured light / dark data of the second measurement point with the calculated light / dark data and specifying the position of the measured light / dark data of the second measurement point in the calculated light / dark data;
    A first distance data acquisition step of acquiring first distance data from a base point of the measured light / dark data of the first measurement point to a reference point of the calculated light / dark data;
    A second distance data acquisition step of acquiring second distance data from the base point of the measured light / dark data of the second measurement point to the reference point of the calculated light / dark data;
    A distance measuring step for measuring the distance in the thickness direction between the first measurement point and the second measurement point based on the first distance data and the second distance data;
    A ranging method characterized by comprising:
  3. 第2測定点が第1測定点の裏面に位置し、
    第2測定光が第2測定点で反射することで、
    測距ステップが被測定物の厚みを測距することを特徴とする請求項2記載の測距方法。
    The second measurement point is located on the back surface of the first measurement point,
    By reflecting the second measurement light at the second measurement point,
    The distance measuring method according to claim 2, wherein the distance measuring step measures the thickness of the object to be measured.
  4. 波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段と第2レーザ照射手段と、
    第1レーザ光と第2レーザ光とを参照光と測定光とにそれぞれ分割する分割部と、
    それぞれの参照光を所定の反射角で反射する反射部と、
    複数の受光器で構成され反射部で反射した参照光と被測定物で反射した測定光とを受光して各受光器の光強度データを出力する受光部と、
    受光部からの光強度データが入力する演算部と、を有し、
    請求項1記載の演算明暗データ作成ステップと第1照射ステップと第1明暗データ作成ステップと第1比較ステップと第1距離データ取得ステップと第2照射ステップと第2明暗データ作成ステップと第2比較ステップと第2距離データ取得ステップと測距ステップとを行って、被測定物の第1測定点と第2測定点との間の厚み方向の距離を測距することを特徴とするレーザ測距装置。
    A first laser irradiating means and a second laser irradiating means for emitting two first and second laser beams having different wavelengths;
    A dividing unit for dividing the first laser beam and the second laser beam into reference light and measurement light, respectively;
    A reflection part for reflecting each reference light at a predetermined reflection angle;
    A light receiving unit configured to receive a reference light reflected by the reflection unit and a measurement light reflected by the object to be measured, and output light intensity data of each light receiver;
    A calculation unit for inputting light intensity data from the light receiving unit, and
    The calculated light / dark data creation step, the first irradiation step, the first light / dark data creation step, the first comparison step, the first distance data acquisition step, the second irradiation step, the second light / dark data creation step and the second comparison according to claim 1. Laser ranging, wherein a distance in the thickness direction between the first measurement point and the second measurement point of the object to be measured is measured by performing a step, a second distance data acquisition step, and a distance measurement step apparatus.
  5. 波長の異なる2つの第1レーザ光と第2レーザ光とを出射する第1レーザ照射手段と第2レーザ照射手段と、
    第1レーザ光及び第2レーザ光をそれぞれ2つの参照光と測定光に分割するレーザ光分割手段と、
    レーザ光分割手段で分割した第1レーザ光及び第2レーザ光の一方の参照光を所定の反射角で反射する第1反射領域と、
    レーザ光分割手段で分割した第1レーザ光及び第2レーザ光の他方の参照光を所定の反射角で反射する第2反射領域と、
    レーザ光分割手段で分割した第1レーザ光及び第2レーザ光の一方の測定光を出射する第1出射口と、
    レーザ光分割手段で分割した第1レーザ光及び第2レーザ光の他方の測定光を出射する第2出射口と、
    複数の受光器で構成され、第1反射領域で反射した参照光と被測定物の第1測定点で反射した測定光とを受光して各受光器の光強度データを出力する第1受光領域と、
    複数の受光器で構成され、第2反射領域で反射した参照光と被測定物の第2測定点で反射した測定光とを受光して各受光器の光強度データを出力する第2受光領域と、
    第1受光領域と第2受光領域からの光強度データが入力する演算部と、を有し、
    請求項2記載の演算明暗データ作成ステップと照射ステップと第1明暗データ作成ステップと第2明暗データ作成ステップと第1比較ステップと第2比較ステップと第1距離データ取得ステップと第2距離データ取得ステップと測距ステップとを行って、被測定物の第1測定点と第2測定点との間の厚み方向の距離を測距することを特徴とするレーザ測距装置。
    A first laser irradiating means and a second laser irradiating means for emitting two first and second laser beams having different wavelengths;
    Laser beam splitting means for splitting the first laser beam and the second laser beam into two reference beams and measurement beams, respectively;
    A first reflection region that reflects one reference light of the first laser light and the second laser light divided by the laser light dividing means at a predetermined reflection angle;
    A second reflection region that reflects the other reference light of the first laser light and the second laser light divided by the laser light dividing means at a predetermined reflection angle;
    A first emission port for emitting one measurement light of the first laser light and the second laser light divided by the laser light dividing means;
    A second emission port for emitting the other measurement light of the first laser light and the second laser light divided by the laser light dividing means;
    A first light receiving region that is composed of a plurality of light receivers and receives the reference light reflected by the first reflection region and the measurement light reflected by the first measurement point of the object to be measured and outputs light intensity data of each light receiver. When,
    A second light receiving region that is composed of a plurality of light receivers and receives the reference light reflected by the second reflection region and the measurement light reflected by the second measurement point of the object to be measured and outputs light intensity data of each light receiver When,
    An arithmetic unit for inputting light intensity data from the first light receiving region and the second light receiving region;
    The calculated brightness / darkness data creation step, the irradiation step, the first brightness / darkness data creation step, the second brightness / darkness data creation step, the first comparison step, the second comparison step, the first distance data acquisition step, and the second distance data acquisition according to claim 2. A laser distance measuring device characterized by performing a step and a distance measuring step to measure a distance in a thickness direction between a first measurement point and a second measurement point of an object to be measured.
  6. 第1出射口と第2出射口とが対向するように設置され、被測定物を第1出射口と第2出射口との間に配置することで被測定物の厚みを測距することを特徴とする請求項5記載のレーザ測距装置。 The first outlet and the second outlet are installed so as to face each other, and the object to be measured is disposed between the first outlet and the second outlet to measure the thickness of the object to be measured. 6. The laser range finder according to claim 5, wherein:
PCT/JP2012/055901 2011-03-29 2012-03-08 Ranging method and laser ranging device WO2012132811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012532389A JP5414083B2 (en) 2011-03-29 2012-03-08 Ranging method and laser ranging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-071301 2011-03-29
JP2011071301 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012132811A1 true WO2012132811A1 (en) 2012-10-04

Family

ID=46930555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055901 WO2012132811A1 (en) 2011-03-29 2012-03-08 Ranging method and laser ranging device

Country Status (2)

Country Link
JP (1) JP5414083B2 (en)
WO (1) WO2012132811A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567692A (en) * 2015-01-07 2015-04-29 中国船舶重工集团公司第七一〇研究所 Automatic monitoring system for underwater dragging operation width
EP3531118A4 (en) * 2016-10-20 2019-11-20 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Chip defect detection device and detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071817A (en) * 2005-09-09 2007-03-22 Tottori Univ Two-light flux interferometer and method for measuring shape of object to be measured using interferometer
WO2008099788A1 (en) * 2007-02-13 2008-08-21 Naoyuki Koyama Distance measuring method and laser distance measuring device
JP2010014426A (en) * 2008-07-01 2010-01-21 Topcon Corp Measuring device
WO2010016126A1 (en) * 2008-08-07 2010-02-11 Koyama Naoyuki Distance measuring method and laser telemeter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071817A (en) * 2005-09-09 2007-03-22 Tottori Univ Two-light flux interferometer and method for measuring shape of object to be measured using interferometer
WO2008099788A1 (en) * 2007-02-13 2008-08-21 Naoyuki Koyama Distance measuring method and laser distance measuring device
JP2010014426A (en) * 2008-07-01 2010-01-21 Topcon Corp Measuring device
WO2010016126A1 (en) * 2008-08-07 2010-02-11 Koyama Naoyuki Distance measuring method and laser telemeter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567692A (en) * 2015-01-07 2015-04-29 中国船舶重工集团公司第七一〇研究所 Automatic monitoring system for underwater dragging operation width
CN104567692B (en) * 2015-01-07 2017-05-03 中国船舶重工集团公司第七一〇研究所 Automatic monitoring system for underwater dragging operation width
EP3531118A4 (en) * 2016-10-20 2019-11-20 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Chip defect detection device and detection method
US10942129B2 (en) 2016-10-20 2021-03-09 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Chip defect detection device and detection method

Also Published As

Publication number Publication date
JP5414083B2 (en) 2014-02-12
JPWO2012132811A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
KR102069904B1 (en) Apparatus for detecting a 3d structure of an object
US7791731B2 (en) Partial coherence interferometer with measurement ambiguity resolution
JP2008525801A (en) Overlapping common optical path interferometer for two-plane measurement
JP6181978B2 (en) Interferometric distance measuring device
JP5305732B2 (en) Interferometer
CN109324333B (en) Device for interferometric distance measurement
JP6063166B2 (en) Mechanism for measuring the distance by interferometer method
JP2013152191A (en) Multi-wavelength interferometer
US10222197B2 (en) Interferometric distance measuring arrangement for measuring surfaces and corresponding method with at least two parallel measurement channels and wavelength ramp
JP5414083B2 (en) Ranging method and laser ranging device
KR20130035464A (en) Three dimensional shape and depth measuring device using polarized light
JP5786270B2 (en) Two-color interference measuring device
JP5704150B2 (en) White interference device and position and displacement measuring method of white interference device
US20120307255A1 (en) Optical interferometer system with damped vibration and noise effect property
JP6503618B2 (en) Distance measuring device and method thereof
CN105043265A (en) Novel multi-light-source multi-wavelength laser interference absolute range finder
JP2012078269A (en) Ranging method and laser ranging device
JP5376284B2 (en) Interferometry method and interferometer
JP2012247324A (en) Range finding method and laser range finding apparatus
US20220206145A1 (en) Optical distance measurement device and machining device
JP2003329414A (en) Shape measuring device
TWI414756B (en) Dual grating signal measurement system
US20230288185A1 (en) Optical interference range sensor
JP2008309638A (en) Dimension measuring device and dimension measuring method
JP2008309652A (en) Dimension measuring device and dimension measuring method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012532389

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763037

Country of ref document: EP

Kind code of ref document: A1