WO2012132354A1 - リスク管理装置 - Google Patents
リスク管理装置 Download PDFInfo
- Publication number
- WO2012132354A1 WO2012132354A1 PCT/JP2012/002005 JP2012002005W WO2012132354A1 WO 2012132354 A1 WO2012132354 A1 WO 2012132354A1 JP 2012002005 W JP2012002005 W JP 2012002005W WO 2012132354 A1 WO2012132354 A1 WO 2012132354A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- risk
- amount
- data
- loss
- scenario data
- Prior art date
Links
- 238000005259 measurement Methods 0.000 claims abstract description 62
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000008569 process Effects 0.000 claims abstract description 26
- 230000008859 change Effects 0.000 claims abstract description 12
- 238000012360 testing method Methods 0.000 claims description 110
- 238000005303 weighing Methods 0.000 claims description 84
- 238000007726 management method Methods 0.000 claims description 59
- 238000004891 communication Methods 0.000 claims description 47
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 238000005315 distribution function Methods 0.000 claims description 6
- 238000013479 data entry Methods 0.000 abstract 3
- 230000006870 function Effects 0.000 description 38
- 238000012545 processing Methods 0.000 description 19
- 238000004364 calculation method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000009662 stress testing Methods 0.000 description 3
- 238000000342 Monte Carlo simulation Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000012502 risk assessment Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0635—Risk analysis of enterprise or organisation activities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/083—Shipping
- G06Q10/0833—Tracking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/06—Asset management; Financial planning or analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q40/00—Finance; Insurance; Tax strategies; Processing of corporate or income taxes
- G06Q40/08—Insurance
Definitions
- the present invention relates to a risk management apparatus, and more particularly to a risk management apparatus having a reverse stress test function for analyzing a factor that increases a risk amount.
- risks such as earthquakes, system failures, clerical errors, and fraud. For this reason, it is required to measure the amount of risk using a risk weighing device and take measures against the risk.
- the risk weighing device inputs fragmentary information about an unknown risk profile in a company, and measures the characteristic value (for example, 99.9% value at risk (VaR)) of the risk profile of the company from this input data.
- the input data of the risk weighing device generally includes internal loss data and scenario data.
- Internal loss data is data related to loss events that actually occurred in the company.
- the internal loss data indicates how much loss has occurred for what kind of event.
- General risk weighing devices measure VaR using a technique called loss distribution technique (see, for example, Patent Document 1 and Non-Patent Document 1). Specifically, first, a loss frequency distribution is generated from the number of cases of internal loss data, and a loss scale distribution is generated from internal loss data and scenario data. Next, tens of thousands of processes to calculate the amount of loss per holding period by taking out the amount of loss for the number of losses generated using the above loss frequency distribution from the above loss size distribution by Monte Carlo simulation and adding them up. Generate a distribution of losses, repeated hundreds of thousands of times. Then, VaR of a predetermined confidence interval is calculated from the generated loss distribution.
- a loss frequency distribution is generated from the number of cases of internal loss data
- a loss scale distribution is generated from internal loss data and scenario data.
- tens of thousands of processes to calculate the amount of loss per holding period by taking out the amount of loss for the number of losses generated using the above loss frequency distribution from the above loss size distribution by Monte Carlo simulation and adding them up. Generate a distribution of
- a reverse stress test is a specific stress test result (for example, below the regulatory minimum capital ratio, liquidity depletion, insolvency), and what events occur The question is whether to fall into.
- An object of the present invention is to provide a risk management apparatus that solves the above-described problem, that is, the problem that the execution of the reverse stress test places a heavy burden on the risk analyst.
- the risk management device is: Data for risk measurement including a plurality of scenario data composed of combinations of loss event contents, loss occurrence frequency and loss amount, and the above-mentioned risk measurement device that measures the risk amount based on the risk measurement data
- a memory for storing a threshold risk amount set to a value larger than the risk amount
- a communication interface for communicating with the risk weighing device
- a processor connected to the memory and the communication interface;
- the processor Risk data calculated after changing the risk occurrence frequency or the amount of loss of one specific scenario data out of the risk measurement data, transmitted to the risk measurement device, and received from the risk measurement device
- the amount of risk measured by the risk measuring device reaches the threshold risk amount by repeating the process of comparing the amount with the threshold risk amount while changing the loss occurrence frequency or the amount of change of the loss amount. It is configured to be programmed to calculate the loss occurrence frequency or loss increase rate of specific scenario data.
- the risk management method includes: Data for risk measurement including a plurality of scenario data composed of combinations of loss event contents, loss occurrence frequency and loss amount, and the above-mentioned risk measurement device that measures the risk amount based on the risk measurement data
- a memory for storing a threshold risk amount set to a value larger than the risk amount; a communication interface for communicating with the risk weighing device; and a processor connected to the memory and the communication interface.
- the risk amount measured by the risk weighing device reaches the threshold risk amount by repeating the process of comparing the risk amount received from the threshold risk amount while changing the loss occurrence frequency or the change amount of the loss amount.
- a configuration is adopted in which the frequency of loss occurrence or the rate of increase of the loss amount of the specific scenario data to be calculated is calculated.
- the present invention has the above-described configuration, the burden on the risk analyst when performing the reverse stress test can be greatly reduced.
- the risk management apparatus 1 has a function of automatically performing a reverse stress test. Moreover, the risk management apparatus 1 is connected to the risk weighing apparatus 6 through the communication line 5 as shown in FIG.
- the communication line 5 includes a communication cable, a local area network, a wide area network, the Internet, and the like.
- the risk management device 1 includes a communication interface unit (hereinafter referred to as a communication I / F unit) 11, an operation input unit 12, a screen display unit 13, a storage unit 14, and a processor 15 as main functional units.
- a communication interface unit hereinafter referred to as a communication I / F unit
- an operation input unit 12 a screen display unit 13
- a storage unit 14 a storage unit 14
- a processor 15 main functional units.
- the communication I / F unit 11 includes a dedicated data communication circuit, and has a function of performing data communication with the risk weighing device 6 and other various devices (not shown) connected via the communication line 5. .
- the operation input unit 12 includes an operation input device such as a keyboard and a mouse, and has a function of detecting an operator operation and outputting it to the processor 15.
- the screen display unit 13 includes a screen display device such as an LCD or a PDP, and has a function of displaying various information such as an operation menu and a calculation result on the screen in response to an instruction from the processor 15.
- the storage unit 14 includes a storage device such as a hard disk or a semiconductor memory, and has a function of storing processing information and a program 14P necessary for various processes in the processor 15.
- the program 14P is a program that realizes various processing units by being read and executed by the processor 15, and is read by an external device (not shown) or a computer via a data input / output function such as the communication I / F unit 11. It is read in advance from a possible storage medium (not shown) and stored in the storage unit 14.
- Main processing information stored in the storage unit 14 includes risk weighing data 14A, a threshold risk amount 14B, target scenario information 14C, and intermediate information 14D.
- the risk weighing data 14A is data to be input to the risk weighing device 6.
- the risk weighing data 14A includes a plurality of internal loss data and a plurality of scenario data.
- FIG. 3 is a configuration example of the risk weighing data 14A.
- the risk weighing data 14A in this example is composed of a total of n scenario data 14A1 to 14An and a plurality of internal loss data 14Am.
- Each scenario data has an identifier (scenario ID) for uniquely identifying the scenario data, a loss amount, and a loss occurrence frequency.
- scenario data 14A1 has ID1 as an ID, b1 as a loss amount, and ⁇ 1 as a loss occurrence frequency. Since the internal loss data 14Am is used as it is without being changed in the reverse stress test, the description of the structure of each data is omitted.
- the threshold risk amount 14B is a risk amount obtained by adding a preset loss amount to the risk amount (for example, 99.9% VaR) weighed by the risk weighing device 6 based on the risk weighing data 14A. For example, if the risk amount weighed by the risk weighing device 6 based on the risk measurement data 14A is 300 billion yen, the amount obtained by adding an amount of 5 billion yen or 10 billion yen to the risk amount 14B is the threshold risk amount 14B.
- the target scenario information 14C is information for specifying one or more scenario data to be subjected to the reverse stress test. For example, if all of the n scenario data 14A1 to 14An in total included in the risk weighing data 14A are targeted for changing the loss amount, the target scenario information 14C includes the ID of the scenario data 14A1 to 14An. Is described. If only a part is targeted, the target scenario information 14C describes the IDs of some scenario data whose loss amount is to be changed.
- the intermediate information 14D is intermediate or final data generated in the calculation process of the processor 15.
- FIG. 4 is a configuration example of the intermediate information 14D.
- the intermediate information 14D in this example includes reverse stress test results 14D2, 14D4, and 14D5 that correspond one-to-one with the scenario ID described in the target scenario information 14C.
- the reverse stress test result 14Di includes the IDi of the corresponding scenario data 14Ai and the loss increase rate.
- the processor 15 has a microprocessor such as a CPU and its peripheral circuits, and reads and executes the program 14P from the storage unit 14, thereby causing the hardware and the program 14P to cooperate to implement various processing units. have.
- main processing units realized by the processor 15 there are an input storage unit 15A, a reverse stress test execution unit 15B, and an output unit 15C.
- the input storage unit 15A has a function of inputting the risk measurement data 14A, the threshold risk amount 14B, and the target scenario information 14C from the communication I / F unit 11 or the operation input unit 12, and storing them in the storage unit 14.
- the reverse stress test execution unit 15B has a function of determining one specific scenario data to be tested from the scenario data described in the target scenario information 14C, and the specific scenario data 14Ai out of the risk measurement data 14A.
- the risk weighing device 6 has a function of receiving the risk amount measured by the communication data through the communication I / F unit 11, and a function of comparing the received risk amount with the threshold risk amount 14B.
- the reverse stress test execution unit 15B repeats the processing of each function described above while changing the amount of change in the loss amount in the specific scenario data, so that the risk amount measured by the risk measuring device 6 becomes the threshold value. It has a function of calculating an increase rate of the loss amount of the specific scenario data that almost reaches the risk amount 14B, and storing it in the storage unit 14C as a reverse stress test result regarding the specific scenario data. Further, the reverse stress test execution unit 15B has a function of repeating the same processing as the specific scenario data for the remaining scenario data described in the target scenario information 14C.
- the output unit 15C has a function of reading the test result of the reverse stress test execution unit 15B from the storage unit 14 and outputting it to the screen display unit 13 or outputting it to the outside through the communication I / F unit 11.
- the input storage unit 15A inputs the risk measurement data 14A, the threshold risk amount 14B, and the target scenario information 14C from the communication I / F unit 11 or the operation input unit 12, and stores them in the storage unit 14 (step S1). ).
- the reverse stress test execution unit 15B acquires one of scenario data described in the target scenario information 14C as specific scenario data (step S2).
- the reverse stress test execution unit 15B calculates the increase rate of the loss amount of the specific scenario data that causes the risk amount measured by the risk weighing device 6 to reach the threshold risk amount 14B.
- the reverse stress test result including the calculated increase rate is stored in the storage unit 14 (step S3).
- the reverse stress test execution unit 15B determines whether or not scenario data that has not yet been tested remains in the target scenario information 14C (step S4). If unprocessed scenario data remains, the reverse stress test execution unit 15B returns to step S2 to acquire one scenario data as specific scenario data from the unprocessed scenario data, and the first specific scenario The same processing as that performed on the data is repeated. On the other hand, if there is no unprocessed scenario data, the reverse stress test execution unit 15B passes control to the output unit 15C.
- the output unit 15C reads the test result from the reverse stress test execution unit 15B from the storage unit 14 and outputs it to the screen display unit 13 or outputs it to the outside through the communication I / F unit 11 (step S5).
- FIG. 6 is a flowchart showing an example of the process in step S3 of FIG. Hereinafter, an example of the process of step S3 will be described with reference to FIG.
- the reverse stress test execution unit 15B initializes a variable ⁇ that determines an increase rate to 1 (step S11). Next, the reverse stress test execution unit 15B adds the variable ⁇ by a predetermined unit amount (for example, 0.1) (step S12).
- a predetermined unit amount for example, 0.1
- the reverse stress test execution unit 15B reads the risk measurement data 14A from the storage unit 14, and the changed risk measurement data obtained by multiplying the loss amount of the specific scenario data in the risk measurement data 14A by ⁇ . Generate (step S13). Next, the reverse stress test execution unit 15B transmits the generated risk measurement data after change to the risk measurement device 6 through the communication I / F unit 11 (step S14).
- the risk weighing device 6 generates a loss frequency distribution and a loss scale distribution using the changed risk weighing data sent from the risk management device 1 as input data, generates a loss amount distribution by Monte Carlo simulation, and generates a predetermined amount. Is calculated as a risk amount. Then, the calculated risk amount is transmitted to the risk management device 1 through the communication line 5.
- the reverse stress test execution unit 15B compares the received risk amount with the threshold risk amount 14B (step S16). If the risk amount measured by the risk weighing device 6 is less than the threshold risk amount 14B, the reverse stress test execution unit 15B returns to step S12. As a result, the variable ⁇ for determining the increasing rate is further added by the unit amount, and the processes of steps S13 to S16 are repeated.
- the reverse stress test execution unit 15B detects that the risk amount measured by the risk weighing device 6 is equal to or greater than the threshold risk amount 14B, the reverse stress test execution unit 15B includes the value of the variable ⁇ at that time as an increase rate. A test result is generated and stored in the storage unit 14 (step S17).
- the solution is searched while increasing the variable ⁇ that determines the increase rate by unit amount, but the search algorithm is not limited to this.
- the unit amount to be increased may be initially increased, and the unit amount to be increased may be decreased when the risk amount approaches the threshold risk amount.
- the variable ⁇ may be reduced according to the excess amount so that the risk amount converges to the threshold risk amount.
- the solution may be searched while increasing the increment by a unit amount.
- the risk management device 1 of the present embodiment has a function of automatically performing the reverse stress test using the risk weighing device 6, and therefore, the risk analyst when performing the reverse stress test.
- the burden can be greatly reduced.
- the risk management device 2 automatically transmits a reverse stress test result to a related delivery destination in addition to a function of automatically performing a reverse stress test. It has a function to distribute with.
- the risk management device 2 includes a communication I / F unit 21, an operation input unit 22, a screen display unit 23, a storage unit 24, and a processor 25 as main functional units.
- the communication I / F unit 21, operation input unit 22, and screen display unit 23 have the same functions as the communication I / F unit 11, operation input unit 12, and screen display unit 13 of FIG. 1 in the first embodiment. is doing.
- the storage unit 24 includes a storage device such as a hard disk or a semiconductor memory, and has a function of storing processing information and programs 24P necessary for various processes in the processor 25.
- the program 24P is a program that realizes various processing units by being read and executed by the processor 25, and can be read by an external device (not shown) or a computer via a data input / output function such as the communication I / F unit 21. It is read in advance from a possible storage medium (not shown) and stored in the storage unit 24.
- Main processing information stored in the storage unit 24 includes risk measurement data 24A, threshold risk amount 24B, target scenario information 24C, intermediate information 24D, distribution destination data 24E, and distribution conditions 24F.
- Data for risk measurement 24A, threshold risk amount 24B, target scenario information 24C, and intermediate information 24D are the risk measurement data 14A, threshold risk amount 14B, target scenario information 14C, and intermediate information of FIG. 1 in the first embodiment. Same as 14D.
- the delivery destination data 24E is information relating to the delivery destination that delivers the reverse stress test result.
- FIG. 8 is a configuration example of the delivery destination data 24E.
- the distribution destination data 24E in this example is composed of a set of scenario ID and distribution destination information.
- the number of distribution destination information corresponding to one scenario ID is not limited to one and may be plural. In the example of FIG. 8, one, two, three, or all four of the four locations of the creation department, the loss occurrence department, the similar possession department, and the risk management department can be designated as the delivery destination.
- the distribution destination data in the first line includes the test result of scenario ID1, the department A as the creation department, the department A as the loss occurrence department, the department B as the similar holding department that holds a scenario similar to this scenario, This indicates that it should be distributed to Risk Management Department Z.
- the delivery destination data such as A described in the delivery destination item includes, for example, information for specifying a zip code and a recipient if the test result is delivered by mail, an email address if the test result is delivered by e-mail, WEB In the case of distribution, it is composed of a URL, a browser ID, or information for acquiring these from another location.
- the delivery condition 24F is a condition related to delivery such as where to deliver when the reverse stress test result satisfies what condition.
- FIG. 9 is a configuration example of the distribution condition 24F.
- the distribution condition 24F in this example is composed of a total of four distribution conditions of numbers 1 to 4.
- the distribution condition of number 1 designates a condition that all test results are distributed to the creating department.
- the distribution condition of No. 2 designates a condition that a test result having an increase rate of 5 times or less is distributed to the loss occurrence department.
- the distribution conditions shown in FIG. 9 are specified using the distribution destination department and the rate of increase, but may be specified using other items such as the type of event in the scenario.
- the processor 25 includes a microprocessor such as a CPU and its peripheral circuits, and reads and executes the program 24P from the storage unit 24, thereby realizing the various processing units in cooperation with the hardware and the program 24P. have.
- main processing units realized by the processor 25 there are an input storage unit 25A, a reverse stress test execution unit 25B, and an output unit 25C.
- the input storage unit 25A inputs the risk measurement data 24A, the threshold risk amount 24B, the target scenario information 24C, the distribution destination data 24E, and the distribution condition 24F from the communication I / F unit 21 or the operation input unit 22, and stores them.
- the function of storing in the unit 24 is provided.
- the reverse stress test execution unit 25B has the same function as the reverse stress test execution unit 15B in the first embodiment.
- the output unit 25C reads the reverse stress test result from the reverse stress test execution unit 25B, the delivery destination data 24E, and the delivery condition 24F from the storage unit 24, determines the delivery destination of the test result, and determines the delivery destination thus determined. It has a function to deliver reverse stress test results.
- the input storage unit 25A inputs risk measurement data 24A, threshold risk amount 24B, target scenario information 24C, distribution destination data 24E, and distribution conditions 24F from the communication I / F unit 21 or the operation input unit 22,
- the data is stored in the storage unit 24 (step S21).
- the reverse stress test execution unit 25B acquires one of scenario data described in the target scenario information 24C as specific scenario data (step S22).
- the reverse stress test execution unit 25B calculates an increase rate of the loss amount of the specific scenario data in which the risk amount measured by the risk weighing device 6 almost reaches the threshold risk amount 24B,
- the reverse stress test result including the calculated increase rate is stored in the storage unit 24 (step S23).
- the reverse stress test execution unit 25B determines whether or not scenario data that has not been tested yet remains in the target scenario information 24C (step S24). If unprocessed scenario data remains, the reverse stress test execution unit 25B returns to step S22 to acquire one scenario data as specific scenario data from the unprocessed scenario data, and the first specific scenario The same processing as that performed on the data is repeated. On the other hand, if there is no unprocessed scenario data, the reverse stress test execution unit 25B passes control to the output unit 25C.
- the output unit 25C reads the test result from the reverse stress test execution unit 25B, the delivery destination data 24E, and the delivery condition 24F from the storage unit 24, analyzes the contents thereof, and determines which reverse stress test result. To which distribution destination is to be distributed (step S25). Next, the output unit 25C distributes the reverse stress test result to the distribution destination through the communication I / F unit 21 based on the determined content (step S26).
- the output unit 25C may arrange and shape information distributed for each distribution destination. For example, for each department that is the delivery destination, multiple reverse stress test results delivered to that department have been sent in any of the following categories: creation department, loss occurrence department, similar holding department, and risk management department The test results may be sorted according to whether they are the ones, or the test results may be sorted according to the magnitude of the increase rate in each category.
- the event contents for example, Tokai earthquake, system down, etc.
- the event contents are extracted from the scenario data corresponding to the test result scenario ID, It may be added to the test result as auxiliary information. For example, when the reverse stress test result as shown in FIG.
- the distribution information may be processed and distributed in a format as shown in FIG.
- the risk management device 2 of the present embodiment has a function of automatically performing the reverse stress test using the risk weighing device 6, and a function of automatically distributing the test result to the related distribution destination. Therefore, the burden on the risk analyst when performing the reverse stress test can be further reduced.
- the risk management device 3 has a function of automatically determining a scenario to be subjected to the reverse stress test and performing the reverse stress test. is doing.
- the risk management device 3 includes a communication I / F unit 31, an operation input unit 32, a screen display unit 33, a storage unit 34, and a processor 35 as main functional units.
- the communication I / F unit 31, operation input unit 32, and screen display unit 33 have the same functions as the communication I / F unit 11, operation input unit 12, and screen display unit 13 of FIG. 1 in the first embodiment. is doing.
- the storage unit 34 includes a storage device such as a hard disk or a semiconductor memory, and has a function of storing processing information and programs 34P necessary for various processes in the processor 35.
- the program 34P is a program that realizes various processing units by being read and executed by the processor 35.
- the program 34P can be read by an external device (not shown) or a computer via a data input / output function such as the communication I / F unit 31. It is read in advance from a possible storage medium (not shown) and stored in the storage unit 34.
- Main processing information stored in the storage unit 34 includes risk measurement data 34A, threshold risk amount 34B, intermediate information 34D, and coefficient table 34G.
- the risk measurement data 34A and the threshold risk amount 34B are the same as the risk measurement data 14A and the threshold risk amount 14B of FIG. 1 in the first embodiment.
- the coefficient table 34G is a table used for approximating the VaR amount of a predetermined confidence interval ⁇ for each scenario data.
- the total loss amount per holding period based on one specific scenario data is referred to as individual data VaR amount of the scenario data.
- 99.9% is used as the confidence interval.
- the individual data VaR amount is calculated for each scenario data included in the risk measurement data 34A, and scenario data having an individual data VaR amount that is equal to or larger than a predetermined reference amount is reversed as an important scenario. ⁇ Subject to stress test.
- the coefficient table 34G holds a coefficient that corresponds to the loss occurrence frequency and is equal to the value of the occurrence number that is the lower ⁇ % point in the cumulative distribution function of the probability distribution using the loss occurrence frequency as a parameter.
- the probability distribution is the same as the probability distribution used for predicting the frequency distribution in a general risk weighing device. For example, if a Poisson distribution is used in a general risk weighing device, the probability distribution is a Poisson distribution. Since the cumulative distribution function of the Poisson distribution is discontinuous, the cumulative distribution function of the Poisson distribution is smoothed, for example, by extending the factorial of integers to the factorial of real numbers using the gamma function. It is desirable to obtain a coefficient equal to the value of the number of occurrences that becomes the side ⁇ % point.
- FIG. 13 shows a configuration example of the coefficient table 14B.
- the coefficient table in this example shows the frequency of loss occurrence in two forms: how often it occurs once a year and how many times it occurs per year. If the frequency of occurrence is unified, only one of them can be used, and the other can be omitted.
- the coefficient corresponding to the loss occurrence frequency is described in two forms, that is, both smoothing and not, only one of them may be used. For example, if smoothing-free coefficients are not used, only the coefficients corresponding to smoothing need be tabulated.
- the intermediate information 34D is intermediate or final data generated in the calculation process of the processor 35.
- FIG. 14 is a configuration example of the intermediate information 34D.
- the intermediate information 34D in this example includes target scenario information 34D1 that is a list of scenario data IDs to be subjected to the reverse stress test, and a reverse one-to-one correspondence with the scenario ID described in the target scenario information 34D1. Stress test results 34D22, 34D24, and 34D25.
- the reverse stress test result 34D2i includes the IDi of the corresponding scenario data 34Ai and the loss increase rate.
- the processor 35 has a microprocessor such as a CPU and its peripheral circuits, and reads and executes the program 34P from the storage unit 34, thereby causing the hardware and the program 34P to cooperate to implement various processing units. have.
- main processing units realized by the processor 35 there are an input storage unit 35A, a reverse stress test execution unit 35B, an output unit 35C, and a target scenario calculation unit 35D.
- the input storage unit 35A has a function of inputting the risk measurement data 34A, the threshold risk amount 34B, and the coefficient table 34G from the communication I / F unit 31 or the operation input unit 32 and storing them in the storage unit 34.
- the target scenario calculation unit 35D reads the risk measurement data 34A and the coefficient table 34G from the storage unit 34, and for each scenario data included in the risk measurement data 34A, a coefficient corresponding to the loss occurrence frequency included in the scenario data.
- the multiplication value of the coefficient held in the table 34G and the loss amount included in the scenario data is calculated as the individual data VaR amount, and the scenario data in which the calculated individual data VaR amount is equal to or larger than the reference value is subjected to the reverse stress test. It has a function to decide as a target.
- the target scenario calculation unit 35D also has a function of creating a list of scenario data IDs determined as reverse stress test targets as target scenario information 34D1 and storing the list in the storage unit 34.
- the reverse stress test execution unit 35B and the output unit 35C have the same functions as the reverse stress test execution unit 15B and the output unit 15C in the first embodiment.
- the input storage unit 35A inputs the risk measurement data 34A, the threshold risk amount 34B, and the coefficient table 34G from the communication I / F unit 31 or the operation input unit 32, and stores them in the storage unit 34 (step S31). .
- the target scenario calculation unit 35D converts the coefficient held in the coefficient table 34G and the scenario data corresponding to the loss occurrence frequency included in the scenario data.
- the multiplication value of the included loss amount is calculated as individual data VaR amount, scenario data whose calculated individual data VaR amount is equal to or greater than the reference value is determined as a reverse stress test target, and the scenario data ID is the target scenario Information 34D1 is described (step S32).
- the risk management apparatus 3 has a function of automatically determining a scenario to be subjected to the reverse stress test and performing the reverse stress test, and therefore performs the reverse stress test. The burden on the risk analyst when doing this can be greatly reduced.
- scenario data whose individual data VaR amount is equal to or greater than the reference value is subject to reverse stress test
- the increase rate of the loss amount to exceed the threshold risk amount 34B is tens or hundreds of times. It is possible to eliminate the waste of performing the reverse stress test so that the possibility of actual occurrence is almost zero.
- the required amount of calculation is compared with the case where the amount corresponding to the individual data VaR amount is calculated using a general risk weighing device. Calculation time can be greatly reduced.
- scenario data whose individual data VaR amount is equal to or greater than the reference value is the target of the reverse stress test.
- the method is not limited.
- scenario data is sorted in descending order of individual data VaR amount, and the top n scenario data and all internal loss data are given as input data to the risk weighing device, the risk amount of the risk weighing device is all
- the minimum value of n that exceeds a predetermined ratio (for example, 80%) of the risk amount based on the scenario data and all the internal loss data may be obtained, and these n pieces may be set as test targets.
- a scenario in which the VaR amount is increased by a predetermined amount (for example, 10 billion yen), but an increase rate equal to or less than a predetermined magnification (for example, 10 times) may be used as a test target.
- the present invention has been described with reference to some embodiments, the present invention is not limited to the above embodiments, and various other additions and modifications are possible.
- the loss amount of the scenario data is changed, and the loss occurrence frequency is not changed.
- the present invention is not limited to this, and a test for changing the loss occurrence frequency of the scenario data and not changing the loss occurrence amount or a test for changing both the loss occurrence frequency and the loss occurrence amount may be performed.
- the present invention can also be applied to risks other than operational risk, such as credit risk associated with credit transactions such as lending operations and market risk associated with foreign exchange and interest rate transactions.
- the present invention can be used for a reverse stress test for analyzing factors that increase the amount of risk.
- Risk weighing data including a plurality of scenario data composed of combinations of loss event contents, loss occurrence frequency and loss amount, and the risk weighing device weighing the risk amount based on the risk weighing data
- Storage means for storing a threshold risk amount set to a larger value than the risk amount
- Communication means for communicating with the risk weighing device;
- the risk risk data that has been changed by changing only the loss occurrence frequency or the loss amount of one specific scenario data out of the risk measurement data, is transmitted to the risk measurement device, and is received from the risk measurement device
- the amount of risk measured by the risk weighing device reaches the threshold risk amount by repeating the process of comparing the amount with the threshold risk amount while changing the loss occurrence frequency or the amount of loss change.
- a risk management device comprising reverse stress test execution means for calculating a loss occurrence frequency or loss increase rate of specific scenario data.
- the reverse stress test execution means is: The risk management apparatus according to appendix 1, wherein the specific one scenario data is changed to other scenario data, and the process of calculating the increase rate is repeated.
- the storage means stores information relating to a delivery destination, Supplementary note 1 or 2 further comprising an output means for notifying a delivery destination specified by information on the delivery destination of a reverse stress test result including the increase rate calculated for the specific scenario data.
- the storage means stores information on a delivery destination and delivery conditions, Based on the information on the delivery destination and the delivery condition, a delivery destination of a reverse stress test result including the increase rate calculated for the specific scenario data is determined, and the reverse delivery is determined to the determined delivery destination.
- the risk management apparatus according to appendix 1 or 2, further comprising output means for notifying a stress test result.
- the storage means stores target scenario information indicating one or more scenario data for which the loss occurrence frequency or the loss amount is to be changed, The risk management apparatus according to any one of appendices 1 to 4, wherein the reverse stress test execution unit selects the specific scenario data from the scenario data specified by the target scenario information.
- the storage means corresponds to the loss occurrence frequency to a value of the occurrence number that is the lower ⁇ % point ( ⁇ is a predetermined constant) in the cumulative distribution function of the probability distribution using the loss occurrence frequency as a parameter.
- target scenario calculation means for calculating as data VaR amount, and creating information indicating all or part of scenario data whose calculated individual data VaR amount is equal to or greater than a reference value as the target scenario information and storing it in the memory.
- a risk management device characterized by that.
- Risk weighing data including a plurality of scenario data composed of combinations of loss event contents, loss occurrence frequency and loss amount, and the risk weighing device weighing the risk amount based on the risk weighing data
- Storage means for storing a threshold risk amount set to a value larger than the risk amount, a communication interface for communicating with the risk weighing device, and a reverse stress connected to the memory and the communication interface
- a risk management method executed by a risk management device comprising test execution means,
- the reverse stress test execution means calculates changed risk measurement data by changing only the loss occurrence frequency or the loss amount of one specific scenario data out of the risk measurement data, and transmits it to the risk measurement device Then, by repeating the process of comparing the risk amount received from the risk weighing device with the threshold risk amount while changing the loss occurrence frequency or the amount of loss change, the risk amount to be measured by the risk weighing device is reduced.
- a risk management method comprising: calculating a loss occurrence frequency or an increase rate of the loss amount of the specific scenario data that reaches the threshold risk amount.
- Risk weighing data including a plurality of scenario data composed of combinations of loss event contents, loss occurrence frequency and loss amount, and the risk weighing device weighing the risk amount based on the risk weighing data
- a memory for storing a threshold risk amount set to a value larger than the risk amount, and a computer having a communication interface for communicating with the risk weighing device;
- the risk risk data that has been changed by changing only the loss occurrence frequency or the loss amount of one specific scenario data out of the risk measurement data, is transmitted to the risk measurement device, and is received from the risk measurement device
- the amount of risk measured by the risk weighing device reaches the threshold risk amount by repeating the process of comparing the amount with the threshold risk amount while changing the loss occurrence frequency or the amount of loss change.
- a program for functioning as a reverse stress test execution means for calculating the frequency of loss occurrence or the rate of increase in the
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Technology Law (AREA)
- Educational Administration (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
損失事象の内容と損失発生頻度と損失額との組合せから構成される複数のシナリオデータを含むリスク計量用データと、上記リスク計量用データに基づいてリスク量を計量するリスク計量装置が計量した上記リスク量に比べて大きな値に設定された閾値リスク量とを記憶するメモリと、
上記リスク計量装置との間で通信を行う通信インターフェースと、
上記メモリおよび上記通信インターフェースに接続されたプロセッサとを備え、
上記プロセッサは、
上記リスク計量用データのうち特定の1つのシナリオデータの損失発生頻度または損失額だけを変更した変更後リスク計量用データを算出して上記リスク計量装置へ送信し、上記リスク計量装置から受信したリスク量を上記閾値リスク量と比較する処理を、上記損失発生頻度または損失額の変更幅を変えて繰り返すことにより、上記リスク計量装置で計量されるリスク量が上記閾値リスク量に達することになる上記特定のシナリオデータの損失発生頻度または損失額の増加率を算出する
ようにプログラムされている、といった構成を採る。
損失事象の内容と損失発生頻度と損失額との組合せから構成される複数のシナリオデータを含むリスク計量用データと、上記リスク計量用データに基づいてリスク量を計量するリスク計量装置が計量した上記リスク量に比べて大きな値に設定された閾値リスク量とを記憶するメモリと、上記リスク計量装置との間で通信を行う通信インターフェースと、上記メモリおよび上記通信インターフェースに接続されたプロセッサとを備えたリスク管理装置が実行するリスク管理方法であって、
上記プロセッサが、上記リスク計量用データのうち特定の1つのシナリオデータの損失発生頻度または損失額だけを変更した変更後リスク計量用データを算出して上記リスク計量装置へ送信し、上記リスク計量装置から受信したリスク量を上記閾値リスク量と比較する処理を、上記損失発生頻度または損失額の変更幅を変えて繰り返すことにより、上記リスク計量装置で計量されるリスク量が上記閾値リスク量に達することになる上記特定のシナリオデータの損失発生頻度または損失額の増加率を算出する
といった構成を採る。
[第1の実施形態]
図1を参照すると、本発明の第1の実施形態にかかるリスク管理装置1は、リバース・ストレス・テストを自動で実施する機能を有している。また、リスク管理装置1は、図2に示されるように、通信回線5を通じてリスク計量装置6に接続されている。通信回線5は、通信ケーブル、ローカルエリアネットワーク、ワイドエリアネットワーク、インターネットなどで構成される。
図7を参照すると、本発明の第2の実施形態にかかるリスク管理装置2は、リバース・ストレス・テストを自動で実施する機能に加えて、リバース・ストレス・テスト結果を関連する配信先に自動で配信する機能を有している。
図12を参照すると、本発明の第3の実施形態にかかるリスク管理装置3は、リバース・ストレス・テストの対象とするシナリオを自動的に決定してリバース・ストレス・テストを実施する機能を有している。
[付記1]
損失事象の内容と損失発生頻度と損失額との組合せから構成される複数のシナリオデータを含むリスク計量用データと、前記リスク計量用データに基づいてリスク量を計量するリスク計量装置が計量した前記リスク量に比べて大きな値に設定された閾値リスク量とを記憶する記憶手段と、
前記リスク計量装置との間で通信を行う通信手段と、
前記リスク計量用データのうち特定の1つのシナリオデータの損失発生頻度または損失額だけを変更した変更後リスク計量用データを算出して前記リスク計量装置へ送信し、前記リスク計量装置から受信したリスク量を前記閾値リスク量と比較する処理を、前記損失発生頻度または損失額の変更幅を変えて繰り返すことにより、前記リスク計量装置で計量されるリスク量が前記閾値リスク量に達することになる前記特定のシナリオデータの損失発生頻度または損失額の増加率を算出するリバース・ストレス・テスト実行手段と
を備えることを特徴とするリスク管理装置。
[付記2]
前記リバース・ストレス・テスト実行手段は、
前記特定の1つのシナリオデータを他のシナリオデータに変更して、前記増加率の算出の処理を繰り返す
ことを特徴とする付記1に記載のリスク管理装置。
[付記3]
前記記憶手段は、配信先に関する情報を記憶し、
前記特定のシナリオデータについて算出された前記増加率を含むリバース・ストレス・テスト結果を、前記配信先に関する情報で特定される配信先に通知する出力手段
を備えることを特徴とする付記1または2に記載のリスク管理装置。
[付記4]
前記記憶手段は、配信先に関する情報と配信条件とを記憶し、
前記配信先に関する情報と前記配信条件とに基づいて、前記特定のシナリオデータについて算出された前記増加率を含むリバース・ストレス・テスト結果の配信先を決定し、該決定した配信先に前記リバース・ストレス・テスト結果を通知する出力手段
を備えることを特徴とする付記1または2に記載のリスク管理装置。
[付記5]
前記記憶手段は、前記損失発生頻度または前記損失額を変更する対象となる1以上のシナリオデータを示す対象シナリオ情報を記憶し、
前記リバース・ストレス・テスト実行手段は、前記対象シナリオ情報で指定されたシナリオデータから前記特定のシナリオデータを選択する
ことを特徴とする付記1乃至4の何れかに記載のリスク管理装置。
[付記6]
前記記憶手段は、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルを記憶し、
前記リスク計量用データに含まれるシナリオデータ毎に、そのシナリオデータに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数とそのシナリオデータに含まれる損失額との乗算値を個別データVaR額として算出し、該算出した個別データVaR額が基準値以上のシナリオデータの全部または一部を示す情報を、前記対象シナリオ情報として作成して前記メモリに記憶する対象シナリオ算出手段
を備えることを特徴とするリスク管理装置。
[付記7]
損失事象の内容と損失発生頻度と損失額との組合せから構成される複数のシナリオデータを含むリスク計量用データと、前記リスク計量用データに基づいてリスク量を計量するリスク計量装置が計量した前記リスク量に比べて大きな値に設定された閾値リスク量とを記憶する記憶手段と、前記リスク計量装置との間で通信を行う通信インターフェースと、前記メモリおよび前記通信インターフェースに接続されたリバース・ストレス・テスト実行手段とを備えたリスク管理装置が実行するリスク管理方法であって、
前記リバース・ストレス・テスト実行手段が、前記リスク計量用データのうち特定の1つのシナリオデータの損失発生頻度または損失額だけを変更した変更後リスク計量用データを算出して前記リスク計量装置へ送信し、前記リスク計量装置から受信したリスク量を前記閾値リスク量と比較する処理を、前記損失発生頻度または損失額の変更幅を変えて繰り返すことにより、前記リスク計量装置で計量されるリスク量が前記閾値リスク量に達することになる前記特定のシナリオデータの損失発生頻度または損失額の増加率を算出する
ことを特徴とするリスク管理方法。
[付記8]
損失事象の内容と損失発生頻度と損失額との組合せから構成される複数のシナリオデータを含むリスク計量用データと、前記リスク計量用データに基づいてリスク量を計量するリスク計量装置が計量した前記リスク量に比べて大きな値に設定された閾値リスク量とを記憶するメモリ、および前記リスク計量装置との間で通信を行う通信インターフェースを有するコンピュータを、
前記リスク計量用データのうち特定の1つのシナリオデータの損失発生頻度または損失額だけを変更した変更後リスク計量用データを算出して前記リスク計量装置へ送信し、前記リスク計量装置から受信したリスク量を前記閾値リスク量と比較する処理を、前記損失発生頻度または損失額の変更幅を変えて繰り返すことにより、前記リスク計量装置で計量されるリスク量が前記閾値リスク量に達することになる前記特定のシナリオデータの損失発生頻度または損失額の増加率を算出するリバース・ストレス・テスト実行手段
として機能させるためのプログラム。
11、21、31…通信I/F部
12、22、32…操作入力部
13、23、33…画面表示部
14、24、34…記憶部
15、25、35…プロセッサ
Claims (13)
- 損失事象の内容と損失発生頻度と損失額との組合せから構成される複数のシナリオデータを含むリスク計量用データと、前記リスク計量用データに基づいてリスク量を計量するリスク計量装置が計量した前記リスク量に比べて大きな値に設定された閾値リスク量とを記憶するメモリと、
前記リスク計量装置との間で通信を行う通信インターフェースと、
前記メモリおよび前記通信インターフェースに接続されたプロセッサとを備え、
前記プロセッサは、
前記リスク計量用データのうち特定の1つのシナリオデータの損失発生頻度または損失額だけを変更した変更後リスク計量用データを算出して前記リスク計量装置へ送信し、前記リスク計量装置から受信したリスク量を前記閾値リスク量と比較する処理を、前記損失発生頻度または損失額の変更幅を変えて繰り返すことにより、前記リスク計量装置で計量されるリスク量が前記閾値リスク量に達することになる前記特定のシナリオデータの損失発生頻度または損失額の増加率を算出する
ようにプログラムされていることを特徴とするリスク管理装置。 - 前記プロセッサは、さらに、
前記特定の1つのシナリオデータを他のシナリオデータに変更して、前記増加率の算出の処理を繰り返す
ようにプログラムされていることを特徴とする請求項1に記載のリスク管理装置。 - 前記メモリは、さらに、配信先に関する情報を記憶し、
前記プロセッサは、さらに、
前記特定のシナリオデータについて算出された前記増加率を含むリバース・ストレス・テスト結果を、前記配信先に関する情報で特定される配信先に通知する
ようにプログラムされていることを特徴とする請求項1または2に記載のリスク管理装置。 - 前記メモリは、さらに、配信先に関する情報と配信条件とを記憶し、
前記プロセッサは、さらに、
前記配信先に関する情報と前記配信条件とに基づいて、前記特定のシナリオデータについて算出された前記増加率を含むリバース・ストレス・テスト結果の配信先を決定し、該決定した配信先に前記リバース・ストレス・テスト結果を通知する
ようにプログラムされていることを特徴とする請求項1または2に記載のリスク管理装置。 - 前記メモリは、さらに、前記損失発生頻度または前記損失額を変更する対象となる1以上のシナリオデータを示す対象シナリオ情報を記憶し、
前記プロセッサは、さらに、
前記対象シナリオ情報で指定されたシナリオデータから前記特定のシナリオデータを選択する
ようにプログラムされていることを特徴とする請求項1乃至4の何れかに記載のリスク管理装置。 - 前記メモリは、さらに、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルを記憶し、
前記プロセッサは、さらに、
前記リスク計量用データに含まれるシナリオデータ毎に、そのシナリオデータに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数とそのシナリオデータに含まれる損失額との乗算値を個別データVaR額として算出し、該算出した個別データVaR額が基準値以上のシナリオデータの全部または一部を示す情報を、前記対象シナリオ情報として作成して前記メモリに記憶する
ようにプログラムされていることを特徴とする請求項1乃至5の何れかに記載のリスク管理装置。 - 損失事象の内容と損失発生頻度と損失額との組合せから構成される複数のシナリオデータを含むリスク計量用データと、前記リスク計量用データに基づいてリスク量を計量するリスク計量装置が計量した前記リスク量に比べて大きな値に設定された閾値リスク量とを記憶するメモリと、前記リスク計量装置との間で通信を行う通信インターフェースと、前記メモリおよび前記通信インターフェースに接続されたプロセッサとを備えたリスク管理装置が実行するリスク管理方法であって、
前記プロセッサが、前記リスク計量用データのうち特定の1つのシナリオデータの損失発生頻度または損失額だけを変更した変更後リスク計量用データを算出して前記リスク計量装置へ送信し、前記リスク計量装置から受信したリスク量を前記閾値リスク量と比較する処理を、前記損失発生頻度または損失額の変更幅を変えて繰り返すことにより、前記リスク計量装置で計量されるリスク量が前記閾値リスク量に達することになる前記特定のシナリオデータの損失発生頻度または損失額の増加率を算出する
ことを特徴とするリスク管理方法。 - 前記プロセッサが、さらに、
前記特定の1つのシナリオデータを他のシナリオデータに変更して、前記増加率の算出の処理を繰り返す
ことを特徴とする請求項7に記載のリスク管理方法。 - 前記メモリは、さらに、配信先に関する情報を記憶し、
前記プロセッサが、さらに、
前記特定のシナリオデータについて算出された前記増加率を含むリバース・ストレス・テスト結果を、前記配信先に関する情報で特定される配信先に通知する
ことを特徴とする請求項7または8に記載のリスク管理方法。 - 前記メモリは、さらに、配信先に関する情報と配信条件とを記憶し、
前記プロセッサが、さらに、
前記配信先に関する情報と前記配信条件とに基づいて、前記特定のシナリオデータについて算出された前記増加率を含むリバース・ストレス・テスト結果の配信先を決定し、該決定した配信先に前記リバース・ストレス・テスト結果を通知する
ことを特徴とする請求項7または8に記載のリスク管理方法。 - 前記メモリは、さらに、前記損失発生頻度または前記損失額を変更する対象となる1以上のシナリオデータを示す対象シナリオ情報を記憶し、
前記プロセッサが、さらに、
前記対象シナリオ情報で指定されたシナリオデータから前記特定のシナリオデータを選択する
ことを特徴とする請求項7乃至10の何れかに記載のリスク管理方法。 - 前記メモリは、さらに、前記損失発生頻度に対応して、前記損失発生頻度をパラメータとする確率分布の累積分布関数における下側α%点(αは予め定められた定数)となる発生数の値に等しい係数を保持する係数テーブルを記憶し、
前記プロセッサが、さらに、
前記リスク計量用データに含まれるシナリオデータ毎に、そのシナリオデータに含まれる損失発生頻度に対応して前記係数テーブルに保持されている係数とそのシナリオデータに含まれる損失額との乗算値を個別データVaR額として算出し、該算出した個別データVaR額が基準値以上のシナリオデータの全部または一部を示す情報を、前記対象シナリオ情報として作成して前記メモリに記憶する
ことを特徴とする請求項7乃至11の何れかに記載のリスク管理方法。 - 損失事象の内容と損失発生頻度と損失額との組合せから構成される複数のシナリオデータを含むリスク計量用データと、前記リスク計量用データに基づいてリスク量を計量するリスク計量装置が計量した前記リスク量に比べて大きな値に設定された閾値リスク量とを記憶するメモリ、および前記リスク計量装置との間で通信を行う通信インターフェースに接続されたプロセッサに、
前記リスク計量用データのうち特定の1つのシナリオデータの損失発生頻度または損失額だけを変更した変更後リスク計量用データを算出して前記リスク計量装置へ送信し、前記リスク計量装置から受信したリスク量を前記閾値リスク量と比較する処理を、前記損失発生頻度または損失額の変更幅を変えて繰り返すことにより、前記リスク計量装置で計量されるリスク量が前記閾値リスク量に達することになる前記特定のシナリオデータの損失発生頻度または損失額の増加率を算出するステップ
を実行させるためのプログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12764896.2A EP2660757A4 (en) | 2011-03-29 | 2012-03-23 | RISK MANAGEMENT DEVICE |
US13/977,321 US20140297359A1 (en) | 2011-03-29 | 2012-03-23 | Risk management device |
KR1020147005126A KR20140047721A (ko) | 2011-03-29 | 2012-03-23 | 리스크 관리 장치 |
KR1020137017769A KR101471797B1 (ko) | 2011-03-29 | 2012-03-23 | 리스크 관리 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011072745A JP5725547B2 (ja) | 2011-03-29 | 2011-03-29 | リスク管理装置 |
JP2011-072745 | 2011-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012132354A1 true WO2012132354A1 (ja) | 2012-10-04 |
Family
ID=46930135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/002005 WO2012132354A1 (ja) | 2011-03-29 | 2012-03-23 | リスク管理装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140297359A1 (ja) |
EP (1) | EP2660757A4 (ja) |
JP (1) | JP5725547B2 (ja) |
KR (2) | KR20140047721A (ja) |
WO (1) | WO2012132354A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6192432B2 (ja) * | 2013-08-22 | 2017-09-06 | 株式会社日立ソリューションズ西日本 | リスク計量システム |
CN103729746B (zh) * | 2014-01-17 | 2017-06-16 | 深圳供电局有限公司 | 一种线损异常定位的方法及系统 |
US20170004226A1 (en) * | 2015-07-05 | 2017-01-05 | Sas Institute Inc. | Stress testing by avoiding simulations |
US11074532B1 (en) | 2017-11-06 | 2021-07-27 | Wells Fargo Bank, N.A. | Monitoring and analyzing risk data and risk dispositions |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0981640A (ja) * | 1995-09-19 | 1997-03-28 | Hitachi Ltd | 金融資産のリスク分析におけるシナリオ検索処理方法 |
JP2003036346A (ja) * | 2001-07-23 | 2003-02-07 | Mitsubishi Trust & Banking Corp | オペレーショナル・リスク評価方法及びそのシステム |
JP2003058693A (ja) * | 2001-08-09 | 2003-02-28 | Toshiba Corp | 取引管理方法及びシステム |
JP2004252893A (ja) * | 2003-02-21 | 2004-09-09 | Fujitsu Ltd | オペレーショナルリスク計量装置およびオペレーショナルリスク計量方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100223211A1 (en) * | 2000-10-11 | 2010-09-02 | Johnson Gregory A | Decision service method and system |
US7937313B2 (en) * | 2001-06-29 | 2011-05-03 | Goldman Sachs & Co. | Method and system for stress testing simulations of the behavior of financial instruments |
EP1479024A4 (en) * | 2002-01-31 | 2007-01-03 | Seabury Analytic Llc | BUSINESS RISK MODEL AND PROCEDURE |
AU2003303250A1 (en) * | 2002-12-20 | 2004-07-14 | Accenture Global Services Gmbh | Quantification of operational risks |
JP2006155427A (ja) * | 2004-11-30 | 2006-06-15 | Toshiba Corp | オペレーショナルリスクの計量化装置、方法、およびプログラム |
US20060195391A1 (en) * | 2005-02-28 | 2006-08-31 | Stanelle Evan J | Modeling loss in a term structured financial portfolio |
TW201017571A (en) * | 2008-10-31 | 2010-05-01 | G5 Capital Man Ltd | Systematic risk managing method, system and computer program product thereof |
FR2948209A1 (fr) * | 2009-07-15 | 2011-01-21 | Raphael Douady | Simulation d'un agregat evolutif du monde reel, notamment pour gestion de risque |
EP2467819A4 (en) * | 2009-08-20 | 2013-04-03 | Stamford Risk Analytics Llc | RISK DETERMINATION / MEASURING SYSTEM AND RISK-BASED DECISION-ANALYSIS TOOL |
US8190503B2 (en) * | 2009-12-18 | 2012-05-29 | International Derivatives Clearing Group, Llc | Systems and methods for swap contracts management with a discount curve feedback loop |
-
2011
- 2011-03-29 JP JP2011072745A patent/JP5725547B2/ja active Active
-
2012
- 2012-03-23 WO PCT/JP2012/002005 patent/WO2012132354A1/ja active Application Filing
- 2012-03-23 US US13/977,321 patent/US20140297359A1/en not_active Abandoned
- 2012-03-23 KR KR1020147005126A patent/KR20140047721A/ko not_active Application Discontinuation
- 2012-03-23 EP EP12764896.2A patent/EP2660757A4/en not_active Ceased
- 2012-03-23 KR KR1020137017769A patent/KR101471797B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0981640A (ja) * | 1995-09-19 | 1997-03-28 | Hitachi Ltd | 金融資産のリスク分析におけるシナリオ検索処理方法 |
JP2003036346A (ja) * | 2001-07-23 | 2003-02-07 | Mitsubishi Trust & Banking Corp | オペレーショナル・リスク評価方法及びそのシステム |
JP2003058693A (ja) * | 2001-08-09 | 2003-02-28 | Toshiba Corp | 取引管理方法及びシステム |
JP2004252893A (ja) * | 2003-02-21 | 2004-09-09 | Fujitsu Ltd | オペレーショナルリスク計量装置およびオペレーショナルリスク計量方法 |
JP4241083B2 (ja) | 2003-02-21 | 2009-03-18 | 富士通株式会社 | オペレーショナルリスク計量プログラム、オペレーショナルリスク計量方法およびオペレーショナルリスク計量装置 |
Non-Patent Citations (3)
Title |
---|
KOBAYASHI; SHIMIZU; NISHIGUCHI; MORINAGA: "Operational Risk Management", 24 April 2009, KINZAI INSTITUTE FOR FINANCIAL AFFAIRS, INC., pages: 107 - 144 |
See also references of EP2660757A4 |
YASUYUKI FUCHITA: "Systemic Risk to Kin'yu Kisei . Kantoku", NOMURA SHIHON SHIJO QUARTERLY 2010 NEN THE SUMMER, vol. 14, no. L, 1 August 2010 (2010-08-01), pages 47 - 75, XP008170356 * |
Also Published As
Publication number | Publication date |
---|---|
EP2660757A1 (en) | 2013-11-06 |
KR20140047721A (ko) | 2014-04-22 |
KR20130085062A (ko) | 2013-07-26 |
EP2660757A4 (en) | 2014-06-11 |
JP2012208643A (ja) | 2012-10-25 |
KR101471797B1 (ko) | 2014-12-10 |
US20140297359A1 (en) | 2014-10-02 |
JP5725547B2 (ja) | 2015-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jeong et al. | The impact of information sharing on bullwhip effect reduction in a supply chain | |
Sawik | Selection of a dynamic supply portfolio in make-to-order environment withrisks | |
US20040148209A1 (en) | System and method for producing an infrastructure project estimate for information technology | |
US20100332439A1 (en) | Apparatus and method for supporting cause analysis | |
Wagle et al. | An evaluation model for selecting cloud services from commercially available cloud providers | |
JP5725547B2 (ja) | リスク管理装置 | |
US20120010925A1 (en) | Consolidation Potential Score Model | |
JP2020119491A (ja) | 納期予測装置、納期予測方法及びプログラム | |
US20110178948A1 (en) | Method and system for business process oriented risk identification and qualification | |
US8407430B2 (en) | Analysis technique of computer system | |
US10643161B2 (en) | Regulating application task development | |
KR101566601B1 (ko) | 리스크 관리 장치 | |
Cassettari et al. | An healthcare process reengineering using discrete event simulation | |
Wagle | Cloud service optimization method for multi-cloud brokering | |
John et al. | Optimization of software development life cycle process to minimize the delivered defect density | |
JP5650290B1 (ja) | オペレーショナルリスクの計量方法及び装置 | |
Zhang et al. | SYSTEM DYNAMICS ANALYSIS FOR IMPACT OF CLOUD-BASED INFORMATION-SHARING ON SUPPLY CHAIN PERFORMANCE | |
JP5758783B2 (ja) | 分析装置、分析方法およびコンピュータプログラム | |
JP6680500B2 (ja) | 資金管理支援装置及び資金管理の支援方法 | |
JP5804492B2 (ja) | リスク管理装置 | |
WO2024219000A1 (ja) | 生産計画支援装置、生産計画支援方法およびプログラム | |
Al Maoiad et al. | Measuring Prefered Services from Cloud Computing Providers Using Linear Algebra. | |
Tuh | Optimal Designs of Synthetic and Double Sampling np Charts Based on Median Run Length and Expected Median Run Length | |
Kaur | Modeling Allocation Problem for Software with Varied Levels of Fault Severity | |
Johri et al. | A genetic algorithm approach for optimal allocation of software testing effort |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12764896 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137017769 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012764896 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012764896 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13977321 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |