WO2012132107A1 - Method for producing and method for isolating/purifying niobium - Google Patents

Method for producing and method for isolating/purifying niobium Download PDF

Info

Publication number
WO2012132107A1
WO2012132107A1 PCT/JP2011/077009 JP2011077009W WO2012132107A1 WO 2012132107 A1 WO2012132107 A1 WO 2012132107A1 JP 2011077009 W JP2011077009 W JP 2011077009W WO 2012132107 A1 WO2012132107 A1 WO 2012132107A1
Authority
WO
WIPO (PCT)
Prior art keywords
niobium
organic solvent
raw material
sulfuric acid
solution
Prior art date
Application number
PCT/JP2011/077009
Other languages
French (fr)
Japanese (ja)
Other versions
WO2012132107A9 (en
Inventor
龍太郎 黒田
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2012132107A1 publication Critical patent/WO2012132107A1/en
Publication of WO2012132107A9 publication Critical patent/WO2012132107A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a separation and purification method and a production method for obtaining niobium, and in particular, to a separation and purification technique of niobium that can reduce boron.
  • Niobium (hereinafter referred to as Nb in some cases) is frequently used as a steel additive because it has the effect of stabilizing carbon in steel and preventing intergranular corrosion.
  • Niobium oxide is also used for single crystals containing niobium such as optical, electronic ceramic, and lithium niobate (LN).
  • a niobium alloy is used as a conductive tube of a lamp light emitting part in a high-pressure sodium lamp, and is also used as an additive element such as a superconducting material or a superalloy.
  • niobium is usually obtained from raw materials such as ore and scrap.
  • raw materials such as ore and scrap.
  • a hydrofluoric acid dissolution-solvent extraction method is generally known (see Patent Documents 1 and 2).
  • MIBK methyl isobutyl ketone
  • MIBK containing niobium is washed with dilute sulfuric acid and further back-extracted with water to obtain a pure niobium aqueous solution.
  • Ammonia water is added to the niobium aqueous solution thus obtained to precipitate a hydroxide precipitate, the precipitate is filtered and dried, and finally calcined to obtain niobium oxide.
  • niobium is a rare product, has many uses, and the demand has increased significantly, and the supply of niobium cannot keep up with the demand. For this reason, niobium is reused by using waste such as glass scrap as a raw material.
  • JP-A-5-2614 Japanese Patent No. 3634747
  • the present invention provides a technology capable of separating and purifying high-purity niobium from which raw materials containing a large amount of boron, such as boron-based glass scrap, are reliably separated and removed, and other impurities are removed. Objective.
  • the present invention provides a phosphoryl-based extractant having the following general formula in a raw material aqueous solution containing niobium and containing hydrofluoric acid and sulfuric acid; (Wherein R is hydrogen, or an alkyl group or aryl group having 1 to 20 carbon atoms) is brought into contact with an organic solvent diluted with a petroleum hydrocarbon diluent to convert niobium A first step of extraction into an organic solvent; A second step of further reducing impurities remaining in the organic solvent by washing the organic solvent after the extraction with water or sulfuric acid, and back-extracting niobium contained in the organic solvent in which the impurities are reduced with an aqueous solvent A niobium separation and purification method comprising a third step of obtaining a niobium purification solution, wherein the concentration of free hydrofluoric acid in the raw material aqueous solution in the first step is 2 to 10 mol / L; The boron content of liquid impurities is 10 ppm
  • a raw material aqueous solution containing niobium and containing hydrofluoric acid and sulfuric acid is used.
  • the raw material aqueous solution is not particularly limited as long as it is an aqueous solution containing niobium.
  • raw material ore containing niobium eg, tantalite, columbite, pyrochlore, etc.
  • hydrofluoric acid or fluoride is hydrofluoric acid or fluoride. It can be obtained by dissolving with a mixed acid of hydrogen acid and sulfuric acid, filtering if necessary, and adjusting the concentration with hydrofluoric acid, sulfuric acid and / or water as appropriate. Therefore, such a raw material aqueous solution contains hydrofluoric acid and sulfuric acid.
  • raw materials that can be used include niobium compounds with low solubility in liquids, such as waste silos and scraps containing fluorosilicates, fluorotantalates, and fluoroniobates, niobium ferroalloys, niobium Examples thereof include metal scrap and LiNbO 3 (LN) scrap. More specifically, potassium fluoride tantalate, flux cleaning water when producing niobium powder from potassium fluoride niobate, and neutralization waste generated from surface treatment liquid, waste liquid discharged from target material manufacturers, etc. And waste such as low-grade niobium products that cannot be used for the production of niobium powder.
  • a method for removing impurities from the raw material in advance may be performed in accordance with a known method, and can be preferably performed by, for example, the following alkali decontamination treatment. That is, the raw material is stirred and mixed with a strong alkali solution (for example, sodium hydroxide solution) while being appropriately heated to obtain a sparse slurry, which is then filtered. Next, the residue obtained by filtration is washed with a mineral acid other than hydrofluoric acid (for example, sulfuric acid), and the mineral acid is filtered off.
  • a strong alkali solution for example, sodium hydroxide solution
  • the cake with reduced impurities obtained by this filtration separation is dissolved with hydrofluoric acid or the like in the same manner as the above-mentioned ordinary raw materials.
  • fluoroniobate K 2 NbF 7 and the like
  • oxyfluoroniobate K 3 Nb 2 F 11 O and the like
  • niobium oxide is not alkaline decontaminated below 100 ° C., it will not be necessary to perform alkaline decontamination on the raw material ore of the oxide.
  • ferroalloys it is effective to perform alkaline lysis because impurities mainly composed of iron are reduced.
  • the raw material prior to the above-mentioned dissection or hydrofluoric acid dissolution, can be appropriately pulverized with a ball mill or the like according to the form of the raw material. Thereby, resolving or hydrofluoric acid dissolution can be performed efficiently.
  • the raw material is not a powder but a lump, it is more preferable to coarsely pulverize with a jaw crusher or the like and further finely pulverize with a ball mill or the like.
  • the following pretreatment is preferably performed when the raw material aqueous solution used in the first step is used.
  • the free hydrofluoric acid concentration and sulfuric acid concentration of the raw material solution are adjusted as appropriate, and then the organic solvent (phosphoryl-based extractant and carbonization) used in the present invention is used.
  • the organic solvent (phosphoryl-based extractant and carbonization) used in the present invention is used.
  • 4-diethyl-2-pentanone methyl isobutyl ketone / MIBK
  • the concentration of free hydrofluoric acid in the raw material solution when removing Ta is preferably 0.1 mol / L or more and less than 2.0 mol / L, and more preferably 0.2 mol / L to 1.8 mol / L. .
  • the sulfuric acid concentration is preferably 0.2 mol / L to 3.0 mol / L, and more preferably 0.5 mol / L to 2.0 mol / L. If the free hydrofluoric acid concentration and the sulfuric acid concentration are too low, extraction of Ta into the organic solvent becomes insufficient, and if it is too high, Nb is easily extracted into the organic solvent together with Ta, resulting in loss of Nb.
  • the concentration of niobium in the raw material aqueous solution is not particularly limited, but the higher the concentration, the more advantageous the amount of drainage.
  • the concentration of the aqueous raw material solution varies depending on the composition of Nb in the ore (raw material) before separation, and is therefore in a wide range of 30 to 300 g / L.
  • Nb in the raw material aqueous solution is present in the aqueous solution in the form of a fluoride such as H 2 NbF 7 , NbF 5 ⁇ 2HF or H 2 NbOF 5 , and in addition to this, the surplus that exists free Hydrofluoric acid is present.
  • the surplus hydrofluoric acid present free is referred to as “free hydrofluoric acid”.
  • the raw material aqueous solution containing niobium and containing hydrofluoric acid and sulfuric acid is contacted with a solvent obtained by diluting a phosphoryl-based extractant with a petroleum-based hydrocarbon diluent. Perform one step.
  • This phosphoryl-based extractant is diluted with a diluent.
  • the phosphoryl-type extractant and petroleum-type hydrocarbon diluent used in the present invention may each be one kind or a mixture of two or more kinds, and are not particularly limited.
  • Examples of the phosphoryl-based extractant used in the present invention include the following general formula: (However, R is hydrogen, or an alkyl group or aryl group having 1 to 20 carbon atoms).
  • Preferred examples of such phosphoryl-based extractants include tri-n-butyl phosphate, triisobutyl phosphate, tri-n-octyl phosphate, tris (2-ethylhexyl) phosphate, tri-n-butylphosphine oxide, tri-n. -Ethylhexylphosphine oxide, tri-n-octylphosphine oxide, tri-n-decylphosphine oxide and the like.
  • Tri-n-octylphosphine oxide hereinafter also referred to as TOPO
  • TBP tri-n-butyl phosphate
  • the petroleum hydrocarbon diluent is not particularly limited, and various organic solvents can be used.
  • Examples of the petroleum hydrocarbon diluent include toluene, xylene, cyclohexane, benzene, kerosene, diethylbenzene, Shellzol A (manufactured by Shell Chemical Japan Co., Ltd.), and Ipsol (manufactured by Idemitsu Kosan Co., Ltd.). Benzene and toluene are not preferred because of environmental problems, but can be used.
  • the mixing ratio of the extractant is smaller than 5:95, the extraction ability of niobium tends to be lowered, and when the ratio of the extractant is larger than 95: 5, the adverse effect when the diluent is not used. Will be insufficient.
  • the concentration of free hydrofluoric acid in the aqueous raw material solution in the first step of the niobium separation and purification method of the present invention is 2 to 10 mol / L.
  • the free hydrofluoric acid concentration is more preferably 4 to 8 mol / L, and further preferably 5 to 7 mol / L.
  • concentration of free hydrofluoric acid in the raw material aqueous solution is less than 2 mol / L, the phosphoryl-based extractant becomes difficult to extract niobium in the first step, and a lot of niobium tends to remain in the extraction residual liquid. If it exceeds 10 mol / L, not only niobium but also boron will be extracted in the first step, and the boron content in the niobium refined solution will increase rapidly.
  • the organic solvent after extraction in the first step is washed with water or sulfuric acid to perform a second step of further reducing impurities remaining in the organic solvent.
  • the sulfuric acid concentration is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, and 1.0 mol / L. The above is more preferable.
  • the O / A ratio in the second step is preferably 1 to 50, more preferably 1.5 to 40, and further preferably 2 to 30.
  • the value (O / A ratio ⁇ sulfuric acid concentration) obtained by multiplying the O / A ratio by the sulfuric acid concentration (g / L) is preferably 100 (g / L) or less, more preferably 80 or less, and even more preferably 60 or less. . If the value obtained by multiplying the O / A ratio by the sulfuric acid concentration exceeds 100, the reduction of impurities tends to be insufficient.
  • the third step of obtaining a niobium purified solution by back-extracting niobium contained in the organic solvent in which impurities are reduced in the second step with an aqueous solvent is performed.
  • niobium contained in the organic solvent with reduced impurities in the second step is back-extracted with an aqueous solvent.
  • the purified niobium solution obtained by this back extraction contains niobium with high purity.
  • the aqueous solvent used in the third step of the present invention is not particularly limited, but pure water or an aqueous solution containing ammonia and / or ammonium ions can be used, and these aqueous solvents can sufficiently extract back niobium. Is preferable. Among these, pure water, particularly highly pure water is most preferable because it does not contain impurities and niobium is not easily back-extracted. Examples of the aqueous solution containing ammonia and / or ammonium ions include dilute aqueous ammonia, aqueous ammonium fluoride solution, aqueous ammonium hydrogen fluoride solution, and the like.
  • the flow ratio (O / A ratio) of the organic solvent to the aqueous solvent is 0.5 to 16. It is preferable. If the O / A ratio is less than 0.5, the concentration of the resulting niobium liquid will be low, resulting in poor production efficiency and an increased amount of waste water. On the other hand, when the O / A ratio exceeds 16, the amount of niobium remaining in the organic solvent increases, and the amount to be newly extracted decreases with repeated use.
  • the niobium purification solution obtained by the niobium separation and purification method of the present invention has an impurity boron content of 10 ppm or less with respect to niobium oxide.
  • the sulfuric acid concentration in the raw material aqueous solution in the first step is 8 mol / L or less, and is 0.1 to 1.25 with respect to the hydrofluoric acid concentration in the raw material aqueous solution. It is preferable to be doubled.
  • the ratio of sulfuric acid concentration to hydrofluoric acid concentration in the raw material aqueous solution is less than 0.1 times, the amount of niobium that is not extracted into the organic solvent in the first step tends to increase.
  • the ratio of niobium to be extracted into an organic solvent increases, and the separation of niobium and boron tends to be insufficient.
  • the flow rate (volume) ratio of the organic solvent to the aqueous solvent (herein, the aqueous solvent includes the raw material aqueous solution and the solvent in sulfuric acid).
  • the (O / A ratio) is preferably 0.05 to 3. If the O / A ratio is less than 0.05, niobium extraction tends to be insufficient, the amount of organic solvent extracted per unit volume increases (high load concentration), and the phase separation from the aqueous phase is reduced. Deteriorate. On the other hand, when the O / A ratio exceeds 3, the possibility of causing an emulsion increases, which is not preferable.
  • the method for separating and purifying niobium according to the present invention includes a step of circulating part or all of the organic solvent after back extraction in the third step as part or all of the organic solvent in the first step. Is preferred. If it does in this way, it will become possible to reduce the usage-amount of an organic solvent.
  • niobium oxide by adding ammonia to the niobium purification solution obtained by the niobium separation and purification method of the present invention to precipitate niobium hydroxide, filtering the precipitate, and calcining it. Since the niobium purification solution obtained by the niobium separation and purification method of the present invention is reliably separated and removed of boron and other impurities are also removed, high-purity niobium oxide can be obtained.
  • Ammonia can be added in the form of a gas, but is preferably added in the form of an aqueous ammonia solution (NH 4 OH). The concentration of the aqueous ammonia solution and the amount added thereof can be appropriately determined according to the amount of niobium in the niobium purified solution.
  • the niobium recovery rate is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, and particularly preferably 80% or more.
  • the niobium recovery rate is the amount of niobium calculated by multiplying the niobium concentration of the purified niobium solution obtained in the third step by the volume of the purified niobium solution obtained in the third step. The ratio to the niobium amount calculated by multiplying the niobium concentration by the volume of the raw material aqueous solution used in the first step. If the recovery rate of niobium is low, industrial implementation becomes difficult. Therefore, a niobium recovery rate of 50% or more is preferable.
  • the niobium oxide obtained by the niobium production method of the present invention has a content of 10 ppm or less in boron, silicon, potassium, tin, antimony, copper, and zinc as impurities, and further, iron as impurities, Each content in titanium and phosphorus is 1 ppm or less.
  • Such high-purity niobium oxide can greatly improve these characteristics when applied to electronic materials and optical materials.
  • the raw material aqueous solution used in this embodiment will be described.
  • 2000 kg of Nb glass scrap was roughly pulverized with a jaw crusher and then finely pulverized with a wet ball mill (2000 L of industrial water) to obtain an Nb glass scrap slurry (1000 g / L).
  • This Nb glass scrap slurry was put into a reaction vessel, and 3100 kg of 48 mass% sodium hydroxide was added over 12 hours. After completion of the addition of sodium hydroxide, stirring was continued for 15 hours while maintaining the liquid temperature at 75 ° C. Thereafter, the entire amount was filtered and separated with a filter press, and washed with water with a filter press to obtain a lysed and washed cake.
  • the obtained lyophilized washed cake was slurried with 3000 L of industrial water, sulfuric acid was added, and the slurry pH was adjusted to pH 2.0. After the sulfuric acid treatment, the slurry was separated by filtration with a filter press to obtain a sulfuric acid-treated cake. And this sulfuric acid treatment cake was melt
  • a raw material aqueous solution used in the first step was prepared from the obtained raw material solution as follows. After adding predetermined amounts of 80 wt% hydrofluoric acid and 98 wt% sulfuric acid to 150 L of raw material solution, industrial water is added to bring the total volume to 450 L, so that the desired hydrofluoric acid concentration and sulfuric acid concentration A raw material aqueous solution was prepared. The sulfuric acid concentration was calculated from the 98 wt% sulfuric acid addition amount and the total liquid amount of 450 L, and for confirmation, the sulfur concentration was measured by ICP emission analysis and converted into the sulfuric acid concentration for comparison.
  • This aqueous raw material solution is Nb 2 O 5 100 g / L, and is the hydrofluoric acid concentration and sulfuric acid concentration of each of Examples and Comparative Examples described below.
  • the composition of the raw solution (each element / Nb 2 O 5) is selected from boron (B / Nb 2 O 5) 3000 mass ppm, silicon (Si / Nb 2 O 5 ) 10000 mass ppm, potassium (K / Nb 2 O 5 ) 300 mass ppm, tin (Sn / Nb 2 O 5 ) 10000 mass ppm, zinc (Zn / Nb 2 O 5 ) 20000 mass ppm, iron ( Fe / Nb 2 O 5 ) 4000 mass ppm, titanium (Ti / Nb 2 O 5 ) 50000 mass ppm, copper (Cu / Nb 2 O 5 ) 100 mass ppm, phosphorus (P / Nb 2 O 5 ) 800 mass
  • Sulfur is measured by ICP emission spectroscopy and converted to sulfuric acid concentration-Free hydrofluoric acid: ion exchange separation, fluorine ion electrode method (standard addition) -K, Na: Atomic absorption photometry-Others: ICP emission spectroscopy
  • Niobium was separated and extracted as follows using the prepared raw material aqueous solution and a countercurrent multistage mixer settler.
  • Table 1 shows operating conditions in each of the first to third steps, and FIG. 1 shows a specific apparatus configuration.
  • a countercurrent multi-stage system is adopted as a method for mixing and contacting the liquid in each process. Specifically, mixing contact is performed by supplying an organic solvent to the first stage and an aqueous solvent to the final stage. It was.
  • the free hydrofluoric acid concentration is fixed at 6 mol / L, and the sulfuric acid concentration has a coefficient (ratio of sulfuric acid concentration to free hydrofluoric acid concentration in the raw aqueous solution) of 0.05 to 1.5.
  • Table 2 Comparative Example 1, Examples 1 to 6, and Comparative Example 6.
  • 3 mol / L dilute sulfuric acid (aqueous phase) is added to the organic solvent obtained in the first step and mixed under the conditions shown in Table 1. Made contact. This transferred niobium and other impurities to dilute sulfuric acid, leaving pure niobium in the organic solvent.
  • a third step (FIG. 1, B: Nb purification stage)
  • niobium was extracted and mixed to obtain a purified niobium solution.
  • niobium oxide Nb 2 O 5 .
  • Table 2 shows the impurity concentration and the niobium recovery rate for the niobium oxide obtained under each condition.
  • Each impurity concentration (impurity weight concentration with respect to niobium oxide weight) and niobium recovery shown in Table 2 were measured as follows.
  • -Si ion exchange separation / molybdenum blue absorptiometry
  • -K ion exchange separation
  • atomic absorptiometry ion exchange separation
  • the conditions for separation and purification of niobium are basically the same as those described in Tables 1 and 2 and FIG. 1, with the coefficient fixed at 0.5 and the free hydrofluoric acid concentration of 1.5 to The amount was changed to 12 mol / L (Table 3, Comparative Example 3, Examples 7 to 11 and Comparative Example 4).
  • the niobium oxide production conditions, impurity concentrations, and niobium recovery rate were the same as described above.
  • Table 3 shows the results when the free hydrofluoric acid concentration was changed.
  • the extractant in the first step is changed.
  • the extractant include tri-n-butyl phosphate (TBP: manufactured by Daihachi Chemical Industry Co., Ltd .: Example 12) and tris (2-ethylhexyl) phosphate (TOP: manufactured by Daihachi Chemical Industry Co., Ltd .: Example 13).
  • TBP tri-n-butyl phosphate
  • TOP tris (2-ethylhexyl) phosphate
  • MIBK 4-methyl-2-pentanone
  • the niobium separation and purification conditions are basically the same as those in Example 1 described in Tables 1 and 2 and FIG.
  • the mixing ratio of the extractant to the diluent was determined in Examples 12 and 13 in a volume ratio of 35:65, and Comparative Example 5 was 100% extractant without using a diluent.
  • Niobium oxide production conditions, impurity concentrations, and niobium recovery were the same as above.
  • Table 4 shows the results when the extractant is changed. In Table 4, the results of Example 4 are also shown for reference.
  • TBP tri-n-butyl phosphate
  • TOP tri-n-octyl phosphate
  • TOPO tri-n-octyl phosphine oxide
  • MIBK 4-methyl-2-pentanone
  • high-purity niobium can be easily and efficiently obtained from glass scrap containing a large amount of boron, and niobium raw materials suitable for electronic materials and optical materials can be provided to the market.

Abstract

Provided is a processing method for recovering a highly pure niobium starting material from glass scraps containing niobium and boron. The method for isolating/purifying niobium has: a first step for extracting niobium into an organic solvent by contacting the organic solvent, which dilutes a phosphoryl-based extraction agent using a petroleum hydrocarbon diluting agent, to a starting material aqueous solution containing niobium, hydrofluoric acid, and sulfuric acid; a second step for further decreasing the impurities present in the organic solvent by cleaning the post-extraction organic solvent using water or sulfuric acid; and a third step for obtaining a purified niobium liquid by using an aqueous solvent to back extract the niobium contained in the organic solvent from which the impurities have been decreased. The method for isolating/purifying niobium is characterized by the free hydrofluoric acid concentration in the starting material aqueous solution in the first step being 2-10 mol/L, and the amount of contained boron, an impurity, in the purified niobium liquid being no greater than 10 ppm with respect to niobium oxide obtained from the purified niobium liquid.

Description

ニオブの分離精製方法及び製造方法Niobium separation and purification method and production method
 本発明は、ニオブを得るための分離精製方法及び製造方法に関し、特に、ホウ素を低減することができるニオブの分離精製技術に関する。 The present invention relates to a separation and purification method and a production method for obtaining niobium, and in particular, to a separation and purification technique of niobium that can reduce boron.
 ニオブ(以下、場合によりNbと記載する)は、鋼中の炭素を安定化し、粒間腐食を防ぐ効果があるので鉄鋼添加材として多用されている。また、酸化ニオブは、光学用、電子セラミック用、ニオブ酸リチウム(LN)のようなニオブを含有する単結晶にも用いられる。そして、高圧ナトリウムランプにおけるランプ発光部の導電管としてニオブ合金が利用されており、さらに、超伝導材料や超合金などの添加元素としても利用されている。 Niobium (hereinafter referred to as Nb in some cases) is frequently used as a steel additive because it has the effect of stabilizing carbon in steel and preventing intergranular corrosion. Niobium oxide is also used for single crystals containing niobium such as optical, electronic ceramic, and lithium niobate (LN). A niobium alloy is used as a conductive tube of a lamp light emitting part in a high-pressure sodium lamp, and is also used as an additive element such as a superconducting material or a superalloy.
 ところで、ニオブは、通常、鉱石やスクラップなどの原料から得られるものであるが、このような原料には不純物が多く含まれるため、分離精製することが必要となる。この分離精製方法としては、例えば、フッ化水素酸溶解-溶媒抽出法が一般的に知られている(特許文献1、特許文献2参照)。この分離精製方法では、鉱石やスクラップなどの原料を粉砕してフッ化水素酸で溶解した後、硫酸を加えてその溶液濃度を調整する。そして、この調整液をフィルタープレスでろ過し、清浄な溶液にしてMIBK(メチルイソブチルケトン)による溶媒抽出により、ニオブがMIBKに抽出される。この時、原料中に含まれる不純物の鉄(Fe)、マンガン(Mn)、ケイ素(Si)等が抽残液に残ることにより、これらの不純物が除去される。 By the way, niobium is usually obtained from raw materials such as ore and scrap. However, since such raw materials contain a lot of impurities, it is necessary to separate and purify them. As this separation and purification method, for example, a hydrofluoric acid dissolution-solvent extraction method is generally known (see Patent Documents 1 and 2). In this separation and purification method, raw materials such as ore and scrap are pulverized and dissolved with hydrofluoric acid, and then sulfuric acid is added to adjust the solution concentration. Then, the adjustment liquid is filtered with a filter press to obtain a clean solution, and niobium is extracted into MIBK by solvent extraction with MIBK (methyl isobutyl ketone). At this time, impurities such as iron (Fe), manganese (Mn), silicon (Si), etc. contained in the raw material remain in the extraction residual liquid, thereby removing these impurities.
 そして、ニオブを含むMIBKを希硫酸で洗浄し、さらに水で逆抽出して純粋なニオブ水溶液を得る。このようにして得られたニオブ水溶液にアンモニア水を加えて水酸化物の沈殿を析出させ、この沈殿物をろ過、乾燥し、最後に仮焼して酸化ニオブが得られる。 Then, MIBK containing niobium is washed with dilute sulfuric acid and further back-extracted with water to obtain a pure niobium aqueous solution. Ammonia water is added to the niobium aqueous solution thus obtained to precipitate a hydroxide precipitate, the precipitate is filtered and dried, and finally calcined to obtain niobium oxide.
 近年、ニオブは希少品であり、その用途が多く、需要は著しく増加しており、ニオブの供給が需要に追いつかない状況下にある。そのため、ガラススクラップなどの廃棄物を原料としてニオブを再利用することが行われている。 In recent years, niobium is a rare product, has many uses, and the demand has increased significantly, and the supply of niobium cannot keep up with the demand. For this reason, niobium is reused by using waste such as glass scrap as a raw material.
 原料中の不純物としてホウ素が存在し、このホウ素に関してはこれまでは注目されていなかった。本願発明者らが検討したところ、原料としてホウ素系のガラススクラップを用いる場合、上記した先行技術のように一般的に使用されているMIBKを用いた溶媒抽出による分離では、ホウ素系のガラススクラップ原料から高純度のニオブを得ることが困難であることを、突き止めたのである。 Boron exists as an impurity in the raw material, and this boron has not been noticed so far. As a result of the study by the present inventors, when boron-based glass scrap is used as a raw material, boron-based glass scrap raw material is separated by solvent extraction using MIBK that is generally used as described above. From this, it was found that it was difficult to obtain high-purity niobium.
特開平5-2614号公報JP-A-5-2614 特許3634747号明細書Japanese Patent No. 3634747
 本発明は、ホウ素系のガラススクラップのような、ホウ素を多量に含む原料から、ホウ素を確実に分離除去し、その他の不純物も除去された高純度のニオブを分離精製できる技術を提供することを目的とする。 The present invention provides a technology capable of separating and purifying high-purity niobium from which raw materials containing a large amount of boron, such as boron-based glass scrap, are reliably separated and removed, and other impurities are removed. Objective.
 本発明は、ニオブを含み、フッ化水素酸及び硫酸を含有する原料水溶液に、下記一般式を有するホスホリル系抽出剤;
Figure JPOXMLDOC01-appb-C000002
(ただし、Rは、水素であるか、または炭素数1~20のアルキル基もしくはアリール基である。)を、石油系炭化水素希釈剤を用いて希釈した有機溶媒を接触させて、ニオブを該有機溶媒に抽出する第一工程と、
該抽出後の有機溶媒を水または硫酸で洗浄して該有機溶媒中に残存する不純物をさらに低減する第二工程と、該不純物が低減された有機溶媒中に含まれるニオブを水系溶媒により逆抽出することによってニオブ精製液を得る第三工程と、を有するニオブ分離精製方法であって、前記第一工程における原料水溶液中のフリーのフッ化水素酸濃度が2~10mol/Lであり、ニオブ精製液の不純物のホウ素含有量が、当該ニオブ精製液から得られる酸化ニオブに対して10ppm以下であることを特徴とする。
The present invention provides a phosphoryl-based extractant having the following general formula in a raw material aqueous solution containing niobium and containing hydrofluoric acid and sulfuric acid;
Figure JPOXMLDOC01-appb-C000002
(Wherein R is hydrogen, or an alkyl group or aryl group having 1 to 20 carbon atoms) is brought into contact with an organic solvent diluted with a petroleum hydrocarbon diluent to convert niobium A first step of extraction into an organic solvent;
A second step of further reducing impurities remaining in the organic solvent by washing the organic solvent after the extraction with water or sulfuric acid, and back-extracting niobium contained in the organic solvent in which the impurities are reduced with an aqueous solvent A niobium separation and purification method comprising a third step of obtaining a niobium purification solution, wherein the concentration of free hydrofluoric acid in the raw material aqueous solution in the first step is 2 to 10 mol / L; The boron content of liquid impurities is 10 ppm or less with respect to niobium oxide obtained from the niobium refined liquid.
 本発明におけるニオブの分離精製方法では、ニオブを含み、フッ化水素酸及び硫酸を含有する原料水溶液を用いる。この原料水溶液は、ニオブを含有する水溶液であれば特に限定されるものではないが、例えば、ニオブを含有する原料鉱石(例えば、タンタライト、コロンバイト、パイロクロア等)をフッ化水素酸またはフッ化水素酸及び硫酸の混酸で溶解させ、必要に応じて濾過し、適宜フッ化水素酸、硫酸および/または水で濃度調整することにより得ることができる。したがって、このような原料水溶液は、フッ化水素酸および硫酸を含有している。 In the method for separating and purifying niobium in the present invention, a raw material aqueous solution containing niobium and containing hydrofluoric acid and sulfuric acid is used. The raw material aqueous solution is not particularly limited as long as it is an aqueous solution containing niobium. For example, raw material ore containing niobium (eg, tantalite, columbite, pyrochlore, etc.) is hydrofluoric acid or fluoride. It can be obtained by dissolving with a mixed acid of hydrogen acid and sulfuric acid, filtering if necessary, and adjusting the concentration with hydrofluoric acid, sulfuric acid and / or water as appropriate. Therefore, such a raw material aqueous solution contains hydrofluoric acid and sulfuric acid.
 また、原料鉱石以外に使用可能な原料としては、液中で溶解度の低いニオブ化合物、例えばフルオロケイ酸塩、フルオロタンタル酸塩、フルオロニオブ酸塩を含む廃さいおよびスクラップ、ニオブのフェロ合金、ニオブ金属のスクラップ、LiNbO(LN)の屑等が挙げられる。より具体的には、フッ化タンタル酸カリウム、フッ化ニオブ酸カリウムからニオブ粉末を製造する際のフラックス洗浄水、および表面処理液等から生じる中和廃さい、ターゲット材メーカー等から排出される廃液を中和した廃さい、ニオブ粉末製造に供し得ない程度の低グレードのニオブ製品等の廃棄物が挙げられる。 In addition to raw ores, raw materials that can be used include niobium compounds with low solubility in liquids, such as waste silos and scraps containing fluorosilicates, fluorotantalates, and fluoroniobates, niobium ferroalloys, niobium Examples thereof include metal scrap and LiNbO 3 (LN) scrap. More specifically, potassium fluoride tantalate, flux cleaning water when producing niobium powder from potassium fluoride niobate, and neutralization waste generated from surface treatment liquid, waste liquid discharged from target material manufacturers, etc. And waste such as low-grade niobium products that cannot be used for the production of niobium powder.
 本発明において、原料水溶液の調製に先立ち、原料に含まれる不純物を低減しておくことも可能である。予め、原料からの不純物除去の方法は、公知の方法に従って行えばよいが、例えば次のアルカリ疎解処理により好ましく行うことができる。すなわち、原料に対して強アルカリ溶液(例えば水酸化ナトリウム溶液)を用いて適宜加熱しながら攪拌混合して疎解スラリーを得た後、この疎解スラリーを濾過する。次に、濾過により得られた残留物をフッ化水素酸以外の鉱酸(例えば硫酸)により洗浄して、鉱酸を濾別する。この濾別により得られた、不純物が低減されたケーキを、上記通常の原料と同様にフッ化水素酸等で溶解する。特に、このアルカリ疎解処理は、フルオロニオブ酸塩(KNbF等)、オキシフルオロニオブ酸塩(KNb11O等)は、そのままではフッ化水素酸への溶解度が低いため、アルカリ疎解処理を行うのが有効である。また、酸化ニオブは100℃未満ではアルカリ疎解されないので、酸化物の原料鉱石ではアルカリ疎解を行う必要はないであろう。なお、フェロ合金では、鉄を主体とする不純物が低減されるためアルカリ疎解を行うのが有効である。 In the present invention, it is possible to reduce impurities contained in the raw material prior to the preparation of the aqueous raw material solution. A method for removing impurities from the raw material in advance may be performed in accordance with a known method, and can be preferably performed by, for example, the following alkali decontamination treatment. That is, the raw material is stirred and mixed with a strong alkali solution (for example, sodium hydroxide solution) while being appropriately heated to obtain a sparse slurry, which is then filtered. Next, the residue obtained by filtration is washed with a mineral acid other than hydrofluoric acid (for example, sulfuric acid), and the mineral acid is filtered off. The cake with reduced impurities obtained by this filtration separation is dissolved with hydrofluoric acid or the like in the same manner as the above-mentioned ordinary raw materials. In particular, in this alkali disaggregation treatment, fluoroniobate (K 2 NbF 7 and the like) and oxyfluoroniobate (K 3 Nb 2 F 11 O and the like) have low solubility in hydrofluoric acid as they are. It is effective to carry out alkali lysis treatment. In addition, since niobium oxide is not alkaline decontaminated below 100 ° C., it will not be necessary to perform alkaline decontamination on the raw material ore of the oxide. In the case of ferroalloys, it is effective to perform alkaline lysis because impurities mainly composed of iron are reduced.
 本発明において、上記疎解あるいはフッ化水素酸溶解に先立って、原料の形態に応じて、適宜原料をボールミル等で粉砕しておくことができる。これにより、疎解あるいはフッ化水素酸溶解を効率的に行うことができる。特に原料が粉末状ではなく塊状の場合にあっては、ジョークラッシャ等で粗砕し、さらにボールミル等で微粉砕するのがより好ましい。 In the present invention, prior to the above-mentioned dissection or hydrofluoric acid dissolution, the raw material can be appropriately pulverized with a ball mill or the like according to the form of the raw material. Thereby, resolving or hydrofluoric acid dissolution can be performed efficiently. In particular, when the raw material is not a powder but a lump, it is more preferable to coarsely pulverize with a jaw crusher or the like and further finely pulverize with a ball mill or the like.
 本発明において、原料にタンタル(Ta)が含まれている場合、第一工程に用いる原料水溶液とする際には、次のような前処理を行うことが好ましい。原料を溶解した原料溶解液にTaが含有している場合、原料溶解液のフリーのフッ化水素酸濃度と硫酸濃度とを適宜調整後、本発明において使用する有機溶媒(ホスホリル系抽出剤と炭化水素系希釈剤との混合溶媒)、または4-メチル-2-ペンタノン(メチルイソブチルケトン/MIBK)と接触させてTaを抽出除去し、その後フリーのフッ化水素酸濃度と硫酸濃度とを調整して本発明の第一工程に供する原料水溶液とすることができる。Taを除去する場合の原料溶解液におけるフリーのフッ化水素酸濃度は0.1mol/L以上2.0mol/L未満が好ましく、0.2mol/L~1.8mol/Lであることがさらに好ましい。また、硫酸濃度としては、0.2mol/L~3.0mol/Lが好ましく、0.5mol/L~2.0mol/Lであることがさらに好ましい。フリーのフッ化水素酸濃度と硫酸濃度とが低すぎると、Taの有機溶媒への抽出が不十分となり、高すぎるとTaとともにNbも有機溶媒に多く抽出されやすくなり、Nbの損失となる。 In the present invention, when tantalum (Ta) is contained in the raw material, the following pretreatment is preferably performed when the raw material aqueous solution used in the first step is used. When Ta is contained in the raw material solution in which the raw material is dissolved, the free hydrofluoric acid concentration and sulfuric acid concentration of the raw material solution are adjusted as appropriate, and then the organic solvent (phosphoryl-based extractant and carbonization) used in the present invention is used. Contact with 4-diethyl-2-pentanone (methyl isobutyl ketone / MIBK) to extract and remove Ta, and then adjust the free hydrofluoric acid concentration and sulfuric acid concentration. Thus, a raw material aqueous solution used in the first step of the present invention can be obtained. The concentration of free hydrofluoric acid in the raw material solution when removing Ta is preferably 0.1 mol / L or more and less than 2.0 mol / L, and more preferably 0.2 mol / L to 1.8 mol / L. . The sulfuric acid concentration is preferably 0.2 mol / L to 3.0 mol / L, and more preferably 0.5 mol / L to 2.0 mol / L. If the free hydrofluoric acid concentration and the sulfuric acid concentration are too low, extraction of Ta into the organic solvent becomes insufficient, and if it is too high, Nb is easily extracted into the organic solvent together with Ta, resulting in loss of Nb.
 本発明において原料水溶液のニオブの濃度は特に限定されないが、濃度が高い程、排水量が減るので有利である。一般的に原料水溶液濃度は、分離前の鉱石(原料)中のNbの組成によって変動するため、30~300g/Lと広範囲である。通常、原料水溶液中のNbは、HNbF、NbF・2HFまたはHNbOFのようなフッ化物の形状で水溶液中に存在しており、これ以外にもフリーで存在する余剰分のフッ化水素酸が存在する。本明細書において、このフリーで存在する余剰分のフッ化水素酸を「フリーのフッ化水素酸」としている。 In the present invention, the concentration of niobium in the raw material aqueous solution is not particularly limited, but the higher the concentration, the more advantageous the amount of drainage. In general, the concentration of the aqueous raw material solution varies depending on the composition of Nb in the ore (raw material) before separation, and is therefore in a wide range of 30 to 300 g / L. Usually, Nb in the raw material aqueous solution is present in the aqueous solution in the form of a fluoride such as H 2 NbF 7 , NbF 5 · 2HF or H 2 NbOF 5 , and in addition to this, the surplus that exists free Hydrofluoric acid is present. In the present specification, the surplus hydrofluoric acid present free is referred to as “free hydrofluoric acid”.
 本発明に係るニオブの分離精製方法では、ニオブを含み、フッ化水素酸及び硫酸を含有する原料水溶液に、ホスホリル系抽出剤を石油系炭化水素希釈剤で希釈させて得た溶媒に接触させる第一工程を行う。このホスホリル系抽出剤を希釈剤で希釈するのは、該抽出剤を単独で使用すると、特に抽出剤に金属を多量に抽出させる場合に、水相との比重差が非常に小さくなってしまい、分相しにくくなるという不都合があるためである。また、抽出剤の種類によっては常温で固体のものもあり、抽出剤が溶解する希釈剤を使用する必要がある。この場合でも、石油系炭化水素希釈剤が好適である。なお、本発明において用いるホスホリル系抽出剤および石油系炭化水素希釈剤は、それぞれ、1種類であってもよいし、2種以上を混合して使用してもよく、特に限定されない。 In the method for separating and purifying niobium according to the present invention, the raw material aqueous solution containing niobium and containing hydrofluoric acid and sulfuric acid is contacted with a solvent obtained by diluting a phosphoryl-based extractant with a petroleum-based hydrocarbon diluent. Perform one step. This phosphoryl-based extractant is diluted with a diluent. When the extractant is used alone, particularly when a large amount of metal is extracted in the extractant, the specific gravity difference with the aqueous phase becomes very small. This is because there is an inconvenience that phase separation is difficult. Some extractants are solid at room temperature, and it is necessary to use a diluent that dissolves the extractant. Even in this case, petroleum hydrocarbon diluent is preferred. In addition, the phosphoryl-type extractant and petroleum-type hydrocarbon diluent used in the present invention may each be one kind or a mixture of two or more kinds, and are not particularly limited.
本発明に用いるホスホリル系抽出剤としては、下記一般式;
Figure JPOXMLDOC01-appb-C000003
(ただし、Rは、水素であるか、または炭素数1~20のアルキル基もしくはアリール基である。)を有するものであれば特に限定されない。このようなホスホリル系抽出剤の好ましい例としては、トリ-n-ブチルホスフェート、トリイソブチルホスフェート、トリ-n-オクチルホスフェート、トリス(2-エチルヘキシル)ホスフェート、トリ-n-ブチルホスフィンオキシド、トリ-n-エチルヘキシルホスフィンオキシド、トリ-n-オクチルホスフィンオキシド、トリ-n-デシルホスフィンオキシド等が挙げられる。これらの中で最も好ましいものは、
トリ-n-オクチルホスフィンオキシド(以下、TOPOともいう)またはトリ-n-ブチルホスフェート(以下、TBPともいう)である。TOPOは、ニオブとホウ素とを分離する能力が高く、TBPは、ニオブとホウ素とを分離する能力はTOPOに若干劣るが、比較的安価であるからである。
Examples of the phosphoryl-based extractant used in the present invention include the following general formula:
Figure JPOXMLDOC01-appb-C000003
(However, R is hydrogen, or an alkyl group or aryl group having 1 to 20 carbon atoms). Preferred examples of such phosphoryl-based extractants include tri-n-butyl phosphate, triisobutyl phosphate, tri-n-octyl phosphate, tris (2-ethylhexyl) phosphate, tri-n-butylphosphine oxide, tri-n. -Ethylhexylphosphine oxide, tri-n-octylphosphine oxide, tri-n-decylphosphine oxide and the like. The most preferred of these are
Tri-n-octylphosphine oxide (hereinafter also referred to as TOPO) or tri-n-butyl phosphate (hereinafter also referred to as TBP). This is because TOPO has a high ability to separate niobium and boron, and TBP has a slightly lower ability to separate niobium and boron than TOPO, but is relatively inexpensive.
 また、石油系炭化水素希釈剤としては、特に限定されず種々の有機溶媒が使用可能である。この石油系炭化水素希釈剤の例としては、トルエン、キシレン、シクロヘキサン、ベンゼン、ケロシン、ジエチルベンゼン、シェルゾールA(シェルケミカルジャパン(株)製)、イプゾール(出光興産(株)製)が挙げられる。なお、ベンゼンおよびトルエンは環境上の問題があるため好ましいとは言えないが、使用可能である。 The petroleum hydrocarbon diluent is not particularly limited, and various organic solvents can be used. Examples of the petroleum hydrocarbon diluent include toluene, xylene, cyclohexane, benzene, kerosene, diethylbenzene, Shellzol A (manufactured by Shell Chemical Japan Co., Ltd.), and Ipsol (manufactured by Idemitsu Kosan Co., Ltd.). Benzene and toluene are not preferred because of environmental problems, but can be used.
 本発明において、ホスホリル系抽出剤と石油系炭化水素希釈剤との混合比としては、抽出剤が液体の場合には容量により、抽出剤が固体の場合には質量により、抽出剤:希釈剤=5:95~95:5であることが好ましく、抽出剤:希釈剤=10:90~90:10がより好ましい。抽出剤の混合比が5:95よりもその割合が小さくなるとニオブの抽出能力が低くなる傾向となり、抽出剤の混合比が95:5よりもその割合が大きくなると希釈剤を使用しない場合の悪影響の解消が不十分となる。 In the present invention, the mixing ratio of the phosphoryl-based extractant and the petroleum-based hydrocarbon diluent is determined by volume when the extractant is liquid, by mass when the extractant is solid, and extractant: diluent = It is preferably 5:95 to 95: 5, and more preferably extractant: diluent = 10: 90 to 90:10. When the mixing ratio of the extractant is smaller than 5:95, the extraction ability of niobium tends to be lowered, and when the ratio of the extractant is larger than 95: 5, the adverse effect when the diluent is not used. Will be insufficient.
 そして、本発明のニオブの分離精製方法の第一工程における原料水溶液中のフリーのフッ化水素酸濃度は2~10mol/Lとする。このフリーのフッ化水素酸濃度は、より好ましくは4~8mol/Lであり、5~7mol/Lが更に好ましい。この原料水溶液中のフリーのフッ化水素酸濃度が2mol/L未満であると、第一工程でホスホリル系抽出剤がニオブを抽出しにくくなって、抽残液中にニオブが多く残る傾向となり、10mol/Lを超えると、第一工程においてニオブのみならずホウ素も抽出されることになり、ニオブ精製液中のホウ素含有量が急激に高くなる。 The concentration of free hydrofluoric acid in the aqueous raw material solution in the first step of the niobium separation and purification method of the present invention is 2 to 10 mol / L. The free hydrofluoric acid concentration is more preferably 4 to 8 mol / L, and further preferably 5 to 7 mol / L. When the concentration of free hydrofluoric acid in the raw material aqueous solution is less than 2 mol / L, the phosphoryl-based extractant becomes difficult to extract niobium in the first step, and a lot of niobium tends to remain in the extraction residual liquid. If it exceeds 10 mol / L, not only niobium but also boron will be extracted in the first step, and the boron content in the niobium refined solution will increase rapidly.
 続いて、本発明のニオブの分離精製方法では、第一工程での抽出後の有機溶媒を、水または硫酸で洗浄して該有機溶媒中に残存する不純物をさらに低減する第二工程を行う。この第二工程における不純物除去では、硫酸で洗浄する場合、10mol/L以下が好ましく、7.5mol/L以下がより好ましく、5mol/L以下が更に好ましい。10mol/Lを超えると、不純物の低減が不十分となる。水による洗浄も可能であるが、希硫酸溶液で洗浄する方が効率よく、この場合の硫酸濃度は0.5mol/L以上が好ましく、0.7mol/L以上がより好ましく、1.0mol/L以上が更に好ましい。 Subsequently, in the niobium separation and purification method of the present invention, the organic solvent after extraction in the first step is washed with water or sulfuric acid to perform a second step of further reducing impurities remaining in the organic solvent. In removing impurities in the second step, when washing with sulfuric acid, 10 mol / L or less is preferable, 7.5 mol / L or less is more preferable, and 5 mol / L or less is more preferable. When it exceeds 10 mol / L, reduction of impurities becomes insufficient. Although washing with water is possible, washing with a dilute sulfuric acid solution is more efficient. In this case, the sulfuric acid concentration is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, and 1.0 mol / L. The above is more preferable.
 水または硫酸濃度が低い状態で洗浄する場合、ニオブと不純物とを洗浄する効果が大きくなるため、ニオブが損失してしまう傾向がある。そのため、第二工程における、有機溶媒の流量(O)と、水または硫酸の流量(A)の比率(O/A比)を大きくする必要がある。この場合、わずかに流量が変化しても洗浄過剰或いは洗浄不足になりやすいので注意を要する。第二工程におけるO/A比は、1~50とすることが好ましく、1.5~40がより好ましく、2~30がさらに好ましい。O/A比が1未満であると、ニオブの損失が多くなる傾向となり、50を超えると、不純物の低減が不十分となる傾向になる。加えて、O/A比に硫酸濃度(g/L)を乗じた値(O/A比×硫酸濃度)は100(g/L)以下が好ましく、80以下がより好ましく、60以下がさらに好ましい。O/A比に硫酸濃度を乗じた値が100を超えると不純物の低減が不十分になる傾向となる。 When washing is performed in a state where the concentration of water or sulfuric acid is low, the effect of washing niobium and impurities increases, so that niobium tends to be lost. Therefore, it is necessary to increase the ratio (O / A ratio) between the flow rate (O) of the organic solvent and the flow rate (A) of water or sulfuric acid in the second step. In this case, care should be taken because even if the flow rate changes slightly, it tends to be over-cleaned or under-cleaned. The O / A ratio in the second step is preferably 1 to 50, more preferably 1.5 to 40, and further preferably 2 to 30. When the O / A ratio is less than 1, the loss of niobium tends to increase, and when it exceeds 50, the reduction of impurities tends to be insufficient. In addition, the value (O / A ratio × sulfuric acid concentration) obtained by multiplying the O / A ratio by the sulfuric acid concentration (g / L) is preferably 100 (g / L) or less, more preferably 80 or less, and even more preferably 60 or less. . If the value obtained by multiplying the O / A ratio by the sulfuric acid concentration exceeds 100, the reduction of impurities tends to be insufficient.
 さらに、本発明のニオブの分離精製方法では、第二工程において不純物が低減された有機溶媒中に含まれるニオブを、水系溶媒により逆抽出することによってニオブ精製液を得る第三工程を行う。この第三工程では、第二工程における不純物が低減された有機溶媒中に含まれるニオブを水系溶媒により逆抽出する。この逆抽出により得たニオブ精製液はニオブを高い純度で含有する。本発明の第三工程において用いる水系溶媒は、特に限定されないが、純水、あるいはアンモニアおよび/またはアンモニウムイオンを含む水溶液を用いることができ、これらの水系溶媒はニオブを十分逆抽出可能である点で好ましい。これらの中でも、純水、特に極めて純度の高い純水が、不純物を含まない点、およびニオブが逆抽出されにくい点で最も好ましい。アンモニアおよび/またはアンモニウムイオンを含む水溶液の例としては、希アンモニア水、フッ化アンモニウム水溶液、フッ化水素アンモニウム水溶液等が挙げられる。 Furthermore, in the niobium separation and purification method of the present invention, the third step of obtaining a niobium purified solution by back-extracting niobium contained in the organic solvent in which impurities are reduced in the second step with an aqueous solvent is performed. In this third step, niobium contained in the organic solvent with reduced impurities in the second step is back-extracted with an aqueous solvent. The purified niobium solution obtained by this back extraction contains niobium with high purity. The aqueous solvent used in the third step of the present invention is not particularly limited, but pure water or an aqueous solution containing ammonia and / or ammonium ions can be used, and these aqueous solvents can sufficiently extract back niobium. Is preferable. Among these, pure water, particularly highly pure water is most preferable because it does not contain impurities and niobium is not easily back-extracted. Examples of the aqueous solution containing ammonia and / or ammonium ions include dilute aqueous ammonia, aqueous ammonium fluoride solution, aqueous ammonium hydrogen fluoride solution, and the like.
 本発明の第三工程における、有機溶媒の水系溶媒(水系溶媒には、原料水溶液および硫酸中の溶媒も含めるものとする)に対する流量比(O/A比)が、0.5~16であることが好ましい。O/A比が0.5未満であると、得られるニオブ液の濃度が低くなるため、生産効率が悪くなり、排水量も増える。一方、O/A比が16を超えると、有機溶媒中に残留するニオブの量が多くなり、繰り返し使用すると新たに抽出する量が減少する。 In the third step of the present invention, the flow ratio (O / A ratio) of the organic solvent to the aqueous solvent (the aqueous solvent includes the raw material aqueous solution and the solvent in sulfuric acid) is 0.5 to 16. It is preferable. If the O / A ratio is less than 0.5, the concentration of the resulting niobium liquid will be low, resulting in poor production efficiency and an increased amount of waste water. On the other hand, when the O / A ratio exceeds 16, the amount of niobium remaining in the organic solvent increases, and the amount to be newly extracted decreases with repeated use.
 本発明のニオブの分離精製方法により得られたニオブ精製液は不純物のホウ素含有量が、酸化ニオブに対して10ppm以下のものとなる。 The niobium purification solution obtained by the niobium separation and purification method of the present invention has an impurity boron content of 10 ppm or less with respect to niobium oxide.
 本発明に係るニオブの分離精製方法においては、第一工程における原料水溶液中の硫酸濃度は8mol/L以下とし、かつ、原料水溶液中のフッ化水素酸濃度に対して0.1~1.25倍となるようにすることが好ましい。原料水溶液中のフッ化水素酸濃度に対する硫酸濃度の比率が0.1倍未満になると、第一工程において有機溶媒に抽出されないニオブの量が増加する傾向となり、1.25倍を超えると、ホウ素がニオブともに有機溶媒に抽出される割合が多くなり、ニオブとホウ素との分離が不十分となる傾向になる。 In the niobium separation and purification method according to the present invention, the sulfuric acid concentration in the raw material aqueous solution in the first step is 8 mol / L or less, and is 0.1 to 1.25 with respect to the hydrofluoric acid concentration in the raw material aqueous solution. It is preferable to be doubled. When the ratio of sulfuric acid concentration to hydrofluoric acid concentration in the raw material aqueous solution is less than 0.1 times, the amount of niobium that is not extracted into the organic solvent in the first step tends to increase. However, the ratio of niobium to be extracted into an organic solvent increases, and the separation of niobium and boron tends to be insufficient.
 本発明に係るニオブの分離精製方法では、第一工程における、有機溶媒の水系溶媒(ここで、該水系溶媒には、原料水溶液および硫酸中の溶媒も含めるものとする)に対する流量(容積)比(O/A比)を0.05~3とすることが好ましい。O/A比が0.05未満であると、ニオブの抽出が不十分になりやすく、また、有機溶媒の単位容積当たりの抽出量が多くなり(高負荷濃度)、水相との分相が悪くなる。一方、O/A比が3を超えると、エマルジョンを起こす可能性が高くなり好ましいものでない。 In the niobium separation and purification method according to the present invention, in the first step, the flow rate (volume) ratio of the organic solvent to the aqueous solvent (herein, the aqueous solvent includes the raw material aqueous solution and the solvent in sulfuric acid). The (O / A ratio) is preferably 0.05 to 3. If the O / A ratio is less than 0.05, niobium extraction tends to be insufficient, the amount of organic solvent extracted per unit volume increases (high load concentration), and the phase separation from the aqueous phase is reduced. Deteriorate. On the other hand, when the O / A ratio exceeds 3, the possibility of causing an emulsion increases, which is not preferable.
 本発明に係るニオブの分離精製方法において、第三工程における逆抽出後の有機溶媒の一部または全部を、前記第一工程の有機溶媒の一部または全部として循環させる工程を含むようにすることが好ましい。このようにすると、有機溶媒の使用量を削減することが可能となる。 The method for separating and purifying niobium according to the present invention includes a step of circulating part or all of the organic solvent after back extraction in the third step as part or all of the organic solvent in the first step. Is preferred. If it does in this way, it will become possible to reduce the usage-amount of an organic solvent.
 本発明のニオブの分離精製方法により得られたニオブ精製液に、アンモニアを添加して水酸化ニオブを沈殿させ、該沈殿物をろ過し、仮焼して、酸化ニオブを製造することが好ましい。本発明のニオブの分離精製方法により得られたニオブ精製液は、ホウ素を確実に分離除去されており、その他の不純物も除去されているため、高純度の酸化ニオブを得ることができる。アンモニアは、ガス状で添加することもできるが、アンモニア水溶液(NHOH)の形で添加することが好ましい。アンモニア水溶液の濃度やその添加量は、ニオブ精製液中のニオブ量に応じて適宜決定することができる。 It is preferable to produce niobium oxide by adding ammonia to the niobium purification solution obtained by the niobium separation and purification method of the present invention to precipitate niobium hydroxide, filtering the precipitate, and calcining it. Since the niobium purification solution obtained by the niobium separation and purification method of the present invention is reliably separated and removed of boron and other impurities are also removed, high-purity niobium oxide can be obtained. Ammonia can be added in the form of a gas, but is preferably added in the form of an aqueous ammonia solution (NH 4 OH). The concentration of the aqueous ammonia solution and the amount added thereof can be appropriately determined according to the amount of niobium in the niobium purified solution.
 本発明において、ニオブの回収率は、50%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましく、80%以上が特に好ましい。このニオブの回収率とは、第三工程で得られたニオブ精製液のニオブ濃度に第三工程で得られたニオブ精製液の容量を乗じて算出されるニオブ量の、第一工程の原料水溶液のニオブ濃度に第一工程で供用した原料水溶液の容量を乗じて算出されるニオブ量に対する割合をいう。このニオブの回収率が低いと、工業的な実施が困難となるので、50%以上のニオブ回収率であることが好ましい。 In the present invention, the niobium recovery rate is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, and particularly preferably 80% or more. The niobium recovery rate is the amount of niobium calculated by multiplying the niobium concentration of the purified niobium solution obtained in the third step by the volume of the purified niobium solution obtained in the third step. The ratio to the niobium amount calculated by multiplying the niobium concentration by the volume of the raw material aqueous solution used in the first step. If the recovery rate of niobium is low, industrial implementation becomes difficult. Therefore, a niobium recovery rate of 50% or more is preferable.
 本発明のニオブの製造方法により得られた酸化ニオブは、不純物としてのホウ素、ケイ素、カリウム、錫、アンチモン、銅、亜鉛における、それぞれの含有量が10ppm以下であり、さらに、不純物としての鉄、チタン、リンにおける、それぞれの含有量が1ppm以下のものとなる。
このような高純度の酸化ニオブは、電子材料や光学材料に応用した際に、これらの特性を大きく向上させることができる。
The niobium oxide obtained by the niobium production method of the present invention has a content of 10 ppm or less in boron, silicon, potassium, tin, antimony, copper, and zinc as impurities, and further, iron as impurities, Each content in titanium and phosphorus is 1 ppm or less.
Such high-purity niobium oxide can greatly improve these characteristics when applied to electronic materials and optical materials.
 本発明によれば、多量のホウ素を含むガラススクラップを原料としても、ホウ素を確実に分離除去し、その他の不純物も低減された高純度のニオブを得ることが可能となる。 According to the present invention, even when glass scrap containing a large amount of boron is used as a raw material, it is possible to obtain high-purity niobium that reliably separates and removes boron and reduces other impurities.
ニオブの分離精製に関する装置概略図。Schematic diagram of apparatus related to separation and purification of niobium.
 以下、本発明における実施形態について、実施例及び比較例を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to examples and comparative examples.
 まず、本実施形態で使用した原料水溶液について説明する。原料として、Nbガラススクラップ 2000kgをジョークラッシャーで粗粉砕した後、湿式ボールミル(工業用水2000L)で微粉砕して、Nbガラススクラップスラリー(1000g/L)を得た。このNbガラススクラップスラリーを反応槽に入れ、濃度48質量%水酸化ナトリウム3100kgを12時間かけて添加した。水酸化ナトリウムの添加が終了後、液温を75℃に保持しながら、15時間、攪拌を継続した。その後、全量をフィルタープレスで濾過分離し、フィルタープレスで水洗して疎解水洗ケーキを得た。得られた疎解水洗ケーキを3000Lの工業用水を用いてスラリー化し、硫酸を添加し、スラリーpHをpH2.0に調整した。この硫酸処理後スラリーをフィルタープレスで濾過分離し、硫酸処理ケーキを得た。そして、この硫酸処理ケーキを80重量%フッ化水素酸で溶解した。この溶解液をフィルタープレスにて濾過し、原料溶解液3030L(Nb 300g/L、フリーのフッ化水素酸 1mol/L)を得た。 First, the raw material aqueous solution used in this embodiment will be described. As a raw material, 2000 kg of Nb glass scrap was roughly pulverized with a jaw crusher and then finely pulverized with a wet ball mill (2000 L of industrial water) to obtain an Nb glass scrap slurry (1000 g / L). This Nb glass scrap slurry was put into a reaction vessel, and 3100 kg of 48 mass% sodium hydroxide was added over 12 hours. After completion of the addition of sodium hydroxide, stirring was continued for 15 hours while maintaining the liquid temperature at 75 ° C. Thereafter, the entire amount was filtered and separated with a filter press, and washed with water with a filter press to obtain a lysed and washed cake. The obtained lyophilized washed cake was slurried with 3000 L of industrial water, sulfuric acid was added, and the slurry pH was adjusted to pH 2.0. After the sulfuric acid treatment, the slurry was separated by filtration with a filter press to obtain a sulfuric acid-treated cake. And this sulfuric acid treatment cake was melt | dissolved with 80 weight% hydrofluoric acid. This solution was filtered with a filter press to obtain a raw material solution 3030L (Nb 2 O 5 300 g / L, free hydrofluoric acid 1 mol / L).
 次に、得られた原料溶解液から第一工程に供用した原料水溶液を次のように調整して作製した。原料溶解液150Lに、80重量%フッ化水素酸および98重量%硫酸を所定量添加した後、工業用水を加えて全液量を450Lとすることにより、目的のフッ化水素酸濃度と硫酸濃度とした原料水溶液を調整した。尚、硫酸濃度については、98重量%硫酸添加量と全液量450Lとから算出し、確認のためICP発光分析法にて硫黄濃度を測定して硫酸濃度に換算して比較を行った。この原料水溶液は、Nb 100g/Lであり、以下で説明する各実施例、各比較例のフッ化水素酸濃度と硫酸濃度とされたものである。また、原料水溶液の他の組成を以下のようにして測定した結果、原料水溶液の組成(各元素/Nb)は、ホウ素(B/Nb) 3000質量ppm、ケイ素(Si/Nb) 10000質量ppm、カリウム(K/Nb) 300質量ppm、スズ(Sn/Nb) 10000質量ppm、亜鉛(Zn/Nb) 20000質量ppm、鉄(Fe/Nb) 4000質量ppm、チタン(Ti/Nb) 50000質量ppm、銅(Cu/Nb) 100質量ppm、リン(P/Nb) 800質量ppmであった(これらの組成は各実施例、各比較例の原料水溶液において共通)。
-硫酸:ICP発光分光法にて硫黄を測定して硫酸濃度に換算
-フリーのフッ化水素酸:イオン交換分離、フッ素イオン電極法(標準添加)
-K、Na:原子吸光光度法
-その他:ICP発光分光法
Next, a raw material aqueous solution used in the first step was prepared from the obtained raw material solution as follows. After adding predetermined amounts of 80 wt% hydrofluoric acid and 98 wt% sulfuric acid to 150 L of raw material solution, industrial water is added to bring the total volume to 450 L, so that the desired hydrofluoric acid concentration and sulfuric acid concentration A raw material aqueous solution was prepared. The sulfuric acid concentration was calculated from the 98 wt% sulfuric acid addition amount and the total liquid amount of 450 L, and for confirmation, the sulfur concentration was measured by ICP emission analysis and converted into the sulfuric acid concentration for comparison. This aqueous raw material solution is Nb 2 O 5 100 g / L, and is the hydrofluoric acid concentration and sulfuric acid concentration of each of Examples and Comparative Examples described below. As a result of measuring other composition of the raw solution as follows, the composition of the raw solution (each element / Nb 2 O 5) is selected from boron (B / Nb 2 O 5) 3000 mass ppm, silicon (Si / Nb 2 O 5 ) 10000 mass ppm, potassium (K / Nb 2 O 5 ) 300 mass ppm, tin (Sn / Nb 2 O 5 ) 10000 mass ppm, zinc (Zn / Nb 2 O 5 ) 20000 mass ppm, iron ( Fe / Nb 2 O 5 ) 4000 mass ppm, titanium (Ti / Nb 2 O 5 ) 50000 mass ppm, copper (Cu / Nb 2 O 5 ) 100 mass ppm, phosphorus (P / Nb 2 O 5 ) 800 mass ppm (These compositions were common to the raw material aqueous solutions of the examples and comparative examples).
-Sulfuric acid: Sulfur is measured by ICP emission spectroscopy and converted to sulfuric acid concentration-Free hydrofluoric acid: ion exchange separation, fluorine ion electrode method (standard addition)
-K, Na: Atomic absorption photometry-Others: ICP emission spectroscopy
 次に、ニオブの分離精製について説明する。調製した原料水溶液、および向流多段式ミキサーセトラーを用いて、ニオブの分離抽出を次のようにして行った。表1に、第一工程~第三工程の各工程における操業条件を、図1に、その具体的な装置構成を示す。なお、各工程における液の混合接触方法としては向流多段方式を採用し、具体的には、第一段に有機溶媒を供給し、最終段には水系溶媒を供給することにより混合接触を行った。まず、抽出剤としてのトリ-n-オクチルホスフィンオキシド(北興化学工業(株)製)を、希釈剤としてのシェルゾールA150(シェルケミカルジャパン(株)製)で、質量比35:65の割合で希釈した抽出用の有機溶媒(以下、単に抽出溶媒という)を調製し、ニオブの抽出を行った。第一工程(図1、A:Nb抽出段)として、原料水溶液に上記有機溶媒を添加して、表1に示される条件で混合接触させた。具体的には、フリーのフッ化水素酸濃度を6mol/Lに固定し、硫酸濃度を係数(原料水溶液中のフリーのフッ化水素酸濃度に対する硫酸濃度の割合)が0.05~1.5になるように調整して行った(表2、比較例1、実施例1~6、比較例6)。次いで、第二工程(図1、B:Nb精製段)として、第一工程で得られた有機溶媒に、3mol/L希硫酸(水相)を添加して、表1に示される条件で混合接触させた。これにより、ニオブおよびその他の不純物が希硫酸に移り、純粋なニオブが有機溶媒に残留した。さらに、第三工程(図1、C:Nbストリップ段)として、第二工程で得られた有機溶媒に、1mol/Lフッ化アンモニウム水溶液(水相)を添加して、表1に示される条件で混合接触させて、ニオブを抽出し、ニオブ精製液を得た。 Next, the separation and purification of niobium will be described. Niobium was separated and extracted as follows using the prepared raw material aqueous solution and a countercurrent multistage mixer settler. Table 1 shows operating conditions in each of the first to third steps, and FIG. 1 shows a specific apparatus configuration. In addition, a countercurrent multi-stage system is adopted as a method for mixing and contacting the liquid in each process. Specifically, mixing contact is performed by supplying an organic solvent to the first stage and an aqueous solvent to the final stage. It was. First, tri-n-octyl phosphine oxide (manufactured by Hokuko Chemical Co., Ltd.) as an extractant was added to Shellsol A150 (manufactured by Shell Chemical Japan Co., Ltd.) as a diluent at a mass ratio of 35:65 A diluted organic solvent for extraction (hereinafter simply referred to as extraction solvent) was prepared, and niobium was extracted. As the first step (FIG. 1, A: Nb extraction stage), the organic solvent was added to the raw material aqueous solution, and mixed and contacted under the conditions shown in Table 1. Specifically, the free hydrofluoric acid concentration is fixed at 6 mol / L, and the sulfuric acid concentration has a coefficient (ratio of sulfuric acid concentration to free hydrofluoric acid concentration in the raw aqueous solution) of 0.05 to 1.5. (Table 2, Comparative Example 1, Examples 1 to 6, and Comparative Example 6). Next, as a second step (FIG. 1, B: Nb purification stage), 3 mol / L dilute sulfuric acid (aqueous phase) is added to the organic solvent obtained in the first step and mixed under the conditions shown in Table 1. Made contact. This transferred niobium and other impurities to dilute sulfuric acid, leaving pure niobium in the organic solvent. Furthermore, as a third step (FIG. 1, C: Nb strip stage), a 1 mol / L aqueous ammonium fluoride solution (aqueous phase) was added to the organic solvent obtained in the second step, and the conditions shown in Table 1 Then, niobium was extracted and mixed to obtain a purified niobium solution.
 この得られたニオブ精製液を攪拌しながら、25質量%アンモニア水をpH9.0となるまで約15分間で添加し、水酸化ニオブを沈殿させた。この沈殿を濾別した後、乾燥し、900℃、5時間焼成して、酸化ニオブ(Nb)を得た。 While stirring the obtained niobium purified solution, 25 mass% ammonia water was added in about 15 minutes until pH 9.0 was reached, thereby precipitating niobium hydroxide. The precipitate was filtered off, dried, and calcined at 900 ° C. for 5 hours to obtain niobium oxide (Nb 2 O 5 ).
 各条件で得られた酸化ニオブについて、不純物濃度、ニオブ回収率を表2に示す。この表2に示す各不純物濃度(酸化ニオブ重量に対する不純物重量濃度)、ニオブ回収率は、次のようにして測定した。
-Si:イオン交換分離・モリブデンブルー吸光光度法
-K:イオン交換分離、原子吸光光度法
-その他:イオン交換分離、ICP発光分光法
Table 2 shows the impurity concentration and the niobium recovery rate for the niobium oxide obtained under each condition. Each impurity concentration (impurity weight concentration with respect to niobium oxide weight) and niobium recovery shown in Table 2 were measured as follows.
-Si: ion exchange separation / molybdenum blue absorptiometry -K: ion exchange separation, atomic absorptiometry -others: ion exchange separation, ICP emission spectroscopy
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示すように、係数(原料水溶液中のフリーのフッ化水素酸濃度に対する硫酸濃度の割合)が0.05(比較例1)のとき、酸化ニオブ中のホウ素は0.1ppm未満であったが、ニオブ回収率が悪い結果となった。実施例1~6(係数0.1~1.25)であると、酸化ニオブ中のホウ素が10ppm以下であり、ニオブ回収率は50%以上となった。また、係数が1.5(比較例2)の場合、ニオブ回収率は高いものの、酸化ニオブ中のホウ素が10ppmを遙かに超え、ホウ素の分離除去効率が悪く、他の不純物も多く残存していることが判明した。 As shown in Table 2, when the coefficient (ratio of sulfuric acid concentration to free hydrofluoric acid concentration in the raw material aqueous solution) was 0.05 (Comparative Example 1), boron in niobium oxide was less than 0.1 ppm. However, the niobium recovery rate was poor. In Examples 1 to 6 (coefficient 0.1 to 1.25), boron in the niobium oxide was 10 ppm or less, and the niobium recovery rate was 50% or more. Further, when the coefficient is 1.5 (Comparative Example 2), the recovery rate of niobium is high, but the boron in niobium oxide exceeds 10 ppm, the boron separation and removal efficiency is poor, and many other impurities remain. Turned out to be.
 続いて、第一工程におけるフリーのフッ化水素酸濃度を変更した場合について説明する。ニオブの分離精製条件は、上記表1及び表2、図1で説明した条件と基本的には同じで、係数を0.5に固定して、フリーのフッ化水素酸濃度を1.5~12mol/Lとなるように変化させた(表3、比較例3、実施例7~11、比較例4)。また、酸化ニオブの製造条件、各不純物濃度、ニオブ回収率についても上記と同様とした。表3にフリーのフッ化水素酸濃度を変化させた場合の結果を示す。 Subsequently, the case where the free hydrofluoric acid concentration in the first step is changed will be described. The conditions for separation and purification of niobium are basically the same as those described in Tables 1 and 2 and FIG. 1, with the coefficient fixed at 0.5 and the free hydrofluoric acid concentration of 1.5 to The amount was changed to 12 mol / L (Table 3, Comparative Example 3, Examples 7 to 11 and Comparative Example 4). The niobium oxide production conditions, impurity concentrations, and niobium recovery rate were the same as described above. Table 3 shows the results when the free hydrofluoric acid concentration was changed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示すように、フリーのフッ化水素酸濃度が1.5mol/L(比較例3)と低い場合、酸化ニオブ中のホウ素は10ppmを超え、ニオブ回収率も悪い結果となった。実施例7~11(フリーのフッ化水素酸濃度2~10.0mol/L)であると、酸化ニオブ中のホウ素が10ppm以下であり、ニオブ回収率は50%以上となった。また、フリーのフッ化水素酸濃度12mol/L(比較例4)の場合、ニオブ回収率は高いものの、酸化ニオブ中のホウ素が50ppmも残存し、ホウ素の分離除去効率が悪く、他の不純物も多く残存していることが判明した。 As shown in Table 3, when the free hydrofluoric acid concentration was as low as 1.5 mol / L (Comparative Example 3), boron in niobium oxide exceeded 10 ppm, and the niobium recovery rate was poor. In Examples 7 to 11 (free hydrofluoric acid concentration 2 to 10.0 mol / L), boron in niobium oxide was 10 ppm or less, and the niobium recovery rate was 50% or more. In the case of a free hydrofluoric acid concentration of 12 mol / L (Comparative Example 4), although the niobium recovery rate is high, 50 ppm of boron in niobium oxide remains, the separation and removal efficiency of boron is poor, and other impurities are also present. It was found that many remained.
 さらに、第一工程における抽出剤を変更した場合について説明する。抽出剤としては、トリ-n-ブチルホスフェート(TBP:大八化学工業(株)製:実施例12)、トリス(2-エチルヘキシル)ホスフェート(TOP:大八化学工業(株)製:実施例13)、4-メチル-2-ペンタノン(MIBK:三井化学(株)製:比較例5)を用いた。また、ニオブの分離精製条件は、上記表1及び表2、図1で説明した実施例4の場合と基本的には同じである。また、抽出剤と希釈剤(シェルゾールA150)との混合比は、実施例12及び13は容量比35:65の割合、比較例5が希釈剤を使用せず100%抽出剤で行った。酸化ニオブの製造条件、各不純物濃度、ニオブ回収率についても上記と同様とした。表4に抽出剤を変更した場合の結果を示す。尚、この表4には、参照として上記実施例4の結果もあわせて示している。 Furthermore, the case where the extractant in the first step is changed will be described. Examples of the extractant include tri-n-butyl phosphate (TBP: manufactured by Daihachi Chemical Industry Co., Ltd .: Example 12) and tris (2-ethylhexyl) phosphate (TOP: manufactured by Daihachi Chemical Industry Co., Ltd .: Example 13). ), 4-methyl-2-pentanone (MIBK: manufactured by Mitsui Chemicals, Inc .: Comparative Example 5) was used. The niobium separation and purification conditions are basically the same as those in Example 1 described in Tables 1 and 2 and FIG. The mixing ratio of the extractant to the diluent (Shellsol A150) was determined in Examples 12 and 13 in a volume ratio of 35:65, and Comparative Example 5 was 100% extractant without using a diluent. Niobium oxide production conditions, impurity concentrations, and niobium recovery were the same as above. Table 4 shows the results when the extractant is changed. In Table 4, the results of Example 4 are also shown for reference.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、抽出剤としてトリ-n-ブチルホスフェート(TBP:実施例12)、トリ-n-オクチルホスフェート(TOP:実施例13)を使用した場合、トリ-n-オクチルホスフィンオキシド(TOPO:実施例13)と同様に、ホウ素の分離除去が可能であることが判明した。これに対して、4-メチル-2-ペンタノン(MIBK:比較例5)の場合では、酸化ニオブ中のホウ素は32ppmもあり、ホウ素の分離除去能率があまり高くないことが判明した。 As shown in Table 4, when tri-n-butyl phosphate (TBP: Example 12) and tri-n-octyl phosphate (TOP: Example 13) were used as the extracting agent, tri-n-octyl phosphine oxide ( TOPO: As in Example 13), it was found that boron can be separated and removed. In contrast, in the case of 4-methyl-2-pentanone (MIBK: Comparative Example 5), the boron content in niobium oxide was as high as 32 ppm, and it was found that the boron separation and removal efficiency was not so high.
 本発明によれば、ホウ素を多量に含むガラススクラップから、高純度のニオブを容易に且つ効率的に得ることができ、電子材料や光学材料に好適なニオブ原料を市場に提供することができる。 According to the present invention, high-purity niobium can be easily and efficiently obtained from glass scrap containing a large amount of boron, and niobium raw materials suitable for electronic materials and optical materials can be provided to the market.

Claims (5)

  1. ニオブを含み、フッ化水素酸及び硫酸を含有する原料水溶液に、下記一般式を有するホスホリル系抽出剤;
    Figure JPOXMLDOC01-appb-C000001
    (ただし、Rは、水素であるか、または炭素数1~20のアルキル基もしくはアリール基である。)を、石油系炭化水素希釈剤を用いて希釈した有機溶媒を接触させて、ニオブを該有機溶媒に抽出する第一工程と、
    該抽出後の有機溶媒を水または硫酸で洗浄して該有機溶媒中に残存する不純物をさらに低減する第二工程と、
    該不純物が低減された有機溶媒中に含まれるニオブを水系溶媒により逆抽出することによってニオブ精製液を得る第三工程と、を有するニオブ分離精製方法であって、
     前記第一工程における原料水溶液中のフリーのフッ化水素酸濃度が2~10mol/Lであり、
    ニオブ精製液の不純物のホウ素含有量が、当該ニオブ精製液から得られる酸化ニオブに対して10ppm以下であることを特徴とするニオブの分離精製方法。
    A phosphoryl-based extractant having the following general formula in a raw material aqueous solution containing niobium and containing hydrofluoric acid and sulfuric acid;
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R is hydrogen, or an alkyl group or aryl group having 1 to 20 carbon atoms) is brought into contact with an organic solvent diluted with a petroleum hydrocarbon diluent to convert niobium A first step of extraction into an organic solvent;
    A second step of further reducing impurities remaining in the organic solvent by washing the organic solvent after the extraction with water or sulfuric acid;
    A third step of obtaining a niobium purified solution by back-extracting niobium contained in the organic solvent in which the impurities are reduced with an aqueous solvent, comprising:
    The concentration of free hydrofluoric acid in the aqueous raw material solution in the first step is 2 to 10 mol / L,
    A method for separating and purifying niobium, wherein the boron content of impurities in the niobium refined solution is 10 ppm or less with respect to niobium oxide obtained from the niobium refined solution.
  2. 前記第一工程における原料水溶液中の硫酸濃度は8mol/L以下であり、かつ、前記原料水溶液中のフリーのフッ化水素酸濃度に対して0.1~1.25倍である請求項1に記載のニオブの分離精製方法。 The sulfuric acid concentration in the raw material aqueous solution in the first step is 8 mol / L or less, and is 0.1 to 1.25 times the free hydrofluoric acid concentration in the raw material aqueous solution. The method for separating and purifying niobium as described.
  3. 前記第三工程における逆抽出後の有機溶媒の一部または全部を、前記第一工程の有機溶媒の一部または全部として循環させる工程を含む請求項1または2に記載のニオブの分離精製方法。 The method for separating and purifying niobium according to claim 1 or 2, comprising a step of circulating part or all of the organic solvent after back extraction in the third step as part or all of the organic solvent in the first step.
  4. 請求項1~3のいずれか一項に記載のニオブの分離精製方法により得られたニオブ精製液に、アンモニアを添加して水酸化ニオブを沈殿させ、該沈殿物をろ過し、仮焼して、酸化ニオブを製造することを特徴とするニオブの製造方法。 A niobium purified solution obtained by the method for separating and purifying niobium according to any one of claims 1 to 3 is added with ammonia to precipitate niobium hydroxide, and the precipitate is filtered and calcined. A method for producing niobium, comprising producing niobium oxide.
  5. 請求項4に記載のニオブの製造方法により得られた酸化ニオブであって、不純物としてのホウ素、ケイ素、カリウム、錫、アンチモン、銅、亜鉛における、それぞれの含有量が10ppm以下であり、
    さらに、不純物としての鉄、チタン、リンにおける、それぞれの含有量が1ppm以下であることを特徴とする酸化ニオブ。
    Niobium oxide obtained by the method for producing niobium according to claim 4, wherein each content in boron, silicon, potassium, tin, antimony, copper, and zinc as impurities is 10 ppm or less,
    Furthermore, each content in iron, titanium, and phosphorus as an impurity is 1 ppm or less, and niobium oxide characterized by the above-mentioned.
PCT/JP2011/077009 2011-03-31 2011-11-24 Method for producing and method for isolating/purifying niobium WO2012132107A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-077672 2011-03-31
JP2011077672A JP5103541B2 (en) 2011-03-31 2011-03-31 Niobium separation and purification method and production method

Publications (2)

Publication Number Publication Date
WO2012132107A1 true WO2012132107A1 (en) 2012-10-04
WO2012132107A9 WO2012132107A9 (en) 2012-11-08

Family

ID=46929905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077009 WO2012132107A1 (en) 2011-03-31 2011-11-24 Method for producing and method for isolating/purifying niobium

Country Status (2)

Country Link
JP (1) JP5103541B2 (en)
WO (1) WO2012132107A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862384A (en) * 2018-08-23 2018-11-23 广东致远新材料有限公司 A kind of preparation method and a kind of preparation method of low antimony tantalum oxide of low antimony niobium oxide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6802582B2 (en) * 2016-08-26 2020-12-16 中南大学 How to prepare phosphotungstic acid
JP7297294B2 (en) * 2019-06-19 2023-06-26 国立研究開発法人日本原子力研究開発機構 Method for producing specific substances by extraction and separation in a liquid-liquid system
JP7430377B2 (en) * 2019-06-19 2024-02-13 国立研究開発法人日本原子力研究開発機構 Equipment for producing specific substances through extraction and separation in a liquid-liquid system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162827A (en) * 1986-12-25 1988-07-06 Naade Kenkyusho:Kk Treatment of niobium-containing alloy
JPS63243231A (en) * 1987-03-31 1988-10-11 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk Production of metallic niobium
JPH01246144A (en) * 1988-03-28 1989-10-02 Taki Chem Co Ltd Production of high-purity niobium oxide or tantalum oxide
JP2004043229A (en) * 2002-07-10 2004-02-12 Mitsui Mining & Smelting Co Ltd Crystal precipitation prevention method for separation and purification of tantalum and/or niobium by solvent extraction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162827A (en) * 1986-12-25 1988-07-06 Naade Kenkyusho:Kk Treatment of niobium-containing alloy
JPS63243231A (en) * 1987-03-31 1988-10-11 Nishimura Watanabe Chiyuushiyutsu Kenkyusho:Kk Production of metallic niobium
JPH01246144A (en) * 1988-03-28 1989-10-02 Taki Chem Co Ltd Production of high-purity niobium oxide or tantalum oxide
JP2004043229A (en) * 2002-07-10 2004-02-12 Mitsui Mining & Smelting Co Ltd Crystal precipitation prevention method for separation and purification of tantalum and/or niobium by solvent extraction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862384A (en) * 2018-08-23 2018-11-23 广东致远新材料有限公司 A kind of preparation method and a kind of preparation method of low antimony tantalum oxide of low antimony niobium oxide

Also Published As

Publication number Publication date
JP2012211048A (en) 2012-11-01
WO2012132107A9 (en) 2012-11-08
JP5103541B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5598631B2 (en) Recovery method of rare earth elements
WO2013085052A1 (en) Rare earth element recovery method
CN103771526B (en) A kind of take industrial manganic sulfate as the method that high purity manganese sulfate prepared by raw material
CN104928475B (en) A kind of recovery method of the aluminium scrap silicon containing rare earth
Kumar et al. Precipitation of sodium silicofluoride (Na2SiF6) and cryolite (Na3AlF6) from HF/HCl leach liquors of alumino-silicates
WO2020196046A1 (en) Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
CN102828025A (en) Method for extracting V2O5 from stone coal navajoite
MX2014002803A (en) Process for purifying zinc oxide.
JP5103541B2 (en) Niobium separation and purification method and production method
KR101645431B1 (en) Method for Recover Tantalum or Tantalum/Niobium
JP5867727B2 (en) Separation method of rare earth elements
AU6558301A (en) Tantalum purification method
JP2010138490A (en) Method of recovering zinc
JP3641190B2 (en) Method for processing tantalum / niobium-containing raw materials
JP4949960B2 (en) Method for producing tantalum oxide
JP5549648B2 (en) Molybdenum recovery method and molybdenum extraction solvent
JP3634747B2 (en) Separation and purification method of tantalum and niobium
JP4351912B2 (en) Method for purifying niobium compound and / or tantalum compound
JP4326345B2 (en) Method for purifying high-purity niobium compound and / or tantalum compound
Berhe et al. Green extraction of niobium and tantalum from Kenticha tantalite ore using 1-ethyl-3-methyl imidazolium chloride ionic liquid
JP3613443B2 (en) Method for dissolving and extracting tantalum and / or niobium-containing alloys
JP4322122B2 (en) Method for purifying high-purity niobium compound and / or tantalum compound
JP4136504B2 (en) Crystal precipitation prevention method for separation and purification of tantalum and / or niobium by solvent extraction method
JP4125877B2 (en) Method for treating oil-containing sludge containing tantalum / niobium and method for recovering tantalum / niobium
CN104649328A (en) Method of preparing ferric vanadate from residue of aluminum powder vanadium removal of crude titanium tetrachloride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862512

Country of ref document: EP

Kind code of ref document: A1