WO2012131903A1 - Biosensor - Google Patents
Biosensor Download PDFInfo
- Publication number
- WO2012131903A1 WO2012131903A1 PCT/JP2011/057819 JP2011057819W WO2012131903A1 WO 2012131903 A1 WO2012131903 A1 WO 2012131903A1 JP 2011057819 W JP2011057819 W JP 2011057819W WO 2012131903 A1 WO2012131903 A1 WO 2012131903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- introduction port
- specimen
- channel
- sample introduction
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3271—Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
- G01N27/3272—Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
Definitions
- the present invention relates to an improvement of a biosensor used for analyzing a specific component in a specimen.
- a sample such as blood is introduced from the sample introduction port, and the current value between the measurement electrode and the counter electrode when the introduced sample reacts in the reaction part is measured.
- the value of the characteristic component in the specimen is measured.
- the method for introducing the sample into the sensor include a method for introducing the sample into the sample introduction port of the sensor from the fingertip, a method for introducing the sample by dropping, and the like.
- the sample is blood
- a small amount of blood is bleed from the fingertip by puncturing the fingertip, and the sampled blood is directly applied to the sample introduction port and the sample is used as a sensor. Introduce.
- the bleeding fingertip is directly applied to the sample introduction port, if the sample introduction port is provided on the upper surface of the sensor, it is difficult to introduce the sample because the sample introduction port is hidden by the finger. For this reason, in the case of a sensor that introduces a sample from the fingertip, it is preferable that the sample introduction port is provided at the end of the sensor because blood is easily applied to the sample introduction port.
- Patent Document 1 shows a biosensor in which a sample introduction port is provided at the end of the sensor
- Patent Document 2 shows a biosensor in which a sample introduction port is provided on the upper surface of the sensor.
- the location and structure of the sample introduction port differs depending on the method of introducing the sample, and the biosensor provided with the sample introduction port at the end of the sensor is suitable for introducing the sample from the fingertip.
- the biosensor provided with the sample introduction port at the end of the sensor is suitable for introducing the sample from the fingertip.
- it is not suitable for introducing a sample by dripping, and conversely, a biosensor with a sample introduction port provided on the upper surface of the sensor is suitable for introducing a sample by dripping, but for introducing a sample from a fingertip. Is not suitable.
- the inventors have been researching a biosensor that can perform both the introduction of a specimen from a fingertip and the introduction of a specimen by dripping.
- the flow of the sample after sample introduction differs depending on whether it is introduced from the fingertip or dripping, so that stable measurement results can be obtained. There wasn't. Specifically, when a sample is dropped, a sufficient amount of sample can be introduced into the sensor in advance to collect blood in a syringe or the like. There are few variations in the way the sample flows in the sample flow path. In addition, in the case of introduction from the fingertip, the amount of sample is small, so the flow rate of the sample after sample introduction varies depending on the characteristics of the sample to be introduced (viscosity, hematocrit value, etc.). It was a cause of variation in measurement results.
- the inventors have intensively studied to solve the above-described problems, and have invented the present invention.
- the present invention can perform both the introduction of the specimen from the fingertip and the introduction of the specimen by dripping, and can provide a stable measurement result without being affected by the difference in the specimen introduction method and the specimen characteristics. It aims at providing the biosensor which can obtain.
- the biosensor according to the present invention forms a sample channel into which a sample can be introduced by capillary action between the substrate and the top plate, and the sample channel includes a sample channel in the sample.
- a biosensor comprising an electrode having a reaction layer containing an enzyme that reacts with a characteristic component, a first sample introduction port that opens at one end of the substrate and the top plate and communicates with the sample channel, and the top surface
- a second sample introduction port provided on the plate and communicating between at least the first sample introduction port and the electrode in the sample channel; and the first sample introduction port in the sample channel and the It is characterized in that a constriction part for narrowing the width of the specimen channel is provided between the electrode and the electrode.
- the second sample introduction port may be configured to form a part of the constricted portion.
- the top plate is attached to a substrate via a double-sided tape made of an insulating material, and the double-sided tape is provided with a notch constituting the sample flow path, and one end of the notch
- An opening provided in the first sample introduction port may be configured to form the first sample introduction port.
- the notch is formed with a convex portion projecting toward the sample channel, and a concave portion is formed at a position facing the convex portion, and at least at a position corresponding to the concave portion in the upper surface plate.
- An opening is formed so that a part thereof overlaps the sample flow path, and the second sample introduction port is formed by the recess of the notch and the opening of the upper surface plate, and the second sample introduction port and the notch
- the constricted portion may be formed with the convex portion.
- the biosensor according to the present invention forms a sample flow channel into which a sample can be introduced by capillary action between the substrate and the top plate, and the sample flow channel contains an enzyme that reacts with a characteristic component in the sample.
- the first sample introduction port that opens at one end of the substrate and the upper surface plate and communicates with the sample flow path is provided in the upper surface plate.
- a second sample introduction port communicating between at least the first sample introduction port and the electrode in the channel, and a sample channel between the first sample introduction port and the electrode in the sample channel Since the constriction part which narrows the width
- the sample flow depends on which position of the sample introduction port the blood is in contact with.
- the way blood flows in the tract is different.
- the biosensor according to the present invention has a constricted portion that narrows the width of the sample channel between the first sample inlet and the electrode in the sample channel. Even if the sample is introduced, the sample always passes through the constricted portion, so that variation in the shape of the head of the blood when reaching the electrode is reduced. As a result, it is possible to obtain a stable measurement result while suppressing changes in the flow rate due to differences in the sample introduction method and differences in the characteristics of the sample.
- the second sample introduction port is formed so as to form a part of the constricted portion, so that the length of the sample flow channel is longer than when the constricted portion and the second sample introduction port are separately formed. As a result, the overall size of the biosensor can be reduced, thereby reducing the required amount of specimen.
- FIG. 1 is a schematic top view of a biosensor according to the present invention. It is a schematic top view of the state which removed the upper surface plate of the biosensor shown in FIG.
- FIG. 2 is a development view of the biosensor shown in FIG. 1.
- (A)-(c) is a figure which shows the use condition of the biosensor which concerns on this invention, respectively.
- FIG. 1 is a schematic top view of a biosensor according to the present invention
- FIG. 2 is a schematic top view of the biosensor shown in FIG. 1 with the top plate removed
- FIG. 3 is a biosensor shown in FIG. It is a general
- reference numeral 1 denotes a substrate made of an insulator, and three electrodes 2, 3 and 4 are formed on the substrate 1.
- a reaction layer containing an enzyme that reacts with a specific component in the specimen is provided on the upper surface of the measurement portion 2a of the first electrode 2 and functions as a measurement electrode.
- the second electrode 3 can function as a measurement electrode
- the third electrode 4 can function as a counter electrode.
- reference numeral 3a denotes a measurement part of the second electrode 3
- reference numeral 4a denotes a measurement part of the third electrode 4
- reference numeral 2b denotes a terminal of the first electrode 2
- reference numeral 3b denotes a second electrode 3.
- Reference numerals 4b denote terminals of the third electrode 4, respectively.
- a photoresist film 7 is provided on the substrate 1. The photoresist film 7 is formed shorter than the substrate 1 so as to cover portions other than the measurement portions 2a, 3a and 4a and the terminal portions 2b, 3b and 4b of the three electrodes 2, 3 and 4, and the measurement portion 2a. , 3a, 4a, openings 7a, 7b, 7c are formed.
- an upper surface plate 9 is provided on the upper surface of the photoresist film 7 via, for example, a polyethylene terephthalate (PET) double-sided tape 8.
- PET polyethylene terephthalate
- the material is not limited to PET, and any plastic film having a certain rigidity may be used.
- PEN polyethylene naphthalate
- PES polyethersulfone
- polyimide polyimide
- the PET double-sided tape 8 is provided with a notch 8a to be formed.
- the PET double-sided tape 8 functions as a spacer for forming a gap between the photoresist film 7 and the top plate 9 that causes capillary action at the notch 8a.
- the notch 8 a of the PET double-sided tape 8 surrounds the measurement portions 2 a, 3 a, 4 a of the three electrodes 2, 3, and 4 and constitutes the sample flow path 10.
- the notch 8a is open at the end located on the opposite side of the terminal portions 2b, 3b and 4b in the state of being arranged on the substrate 1, and this open end forms the first sample introduction port 11. . Further, the notch 8a is disposed on the inner side (in the portion positioned between the open end (that is, the first sample introduction port 11) and the measurement portion 2a of the first electrode 2 in the state of being disposed on the substrate 1).
- a convex portion 8b that protrudes to the specimen flow channel 10 side is formed, and a concave portion c that constitutes a second sample introduction port 12 described later is formed at a position facing the convex portion 8b.
- the top plate 9 is formed with an air hole 9 a, an opening 9 b that constitutes the second sample introduction port 12, and a notch 9 c that forms the first sample introduction port 11. Since the sample introduced into the sample flow channel 10 from the first sample introduction port 11 passes through the opening 9b (that is, the second sample introduction port 12) of the upper surface plate 9 due to the capillary phenomenon, the convexity of the notch 8a.
- a constricted portion between the first sample introduction port 11 and the measurement portion 2a of the first electrode 2 in the sample flow channel 10 by the portion 8b and the second sample introduction port 12 constituted by the recess 8c and the opening 9b. 13 will be formed.
- the width of the first sample introduction port is 1.0 mm to 6.0 mm, preferably 2.5 mm to 3.5 mm.
- the height of the gap between the substrate and the top plate formed by the PET double-sided tape (8) is 0.05 mm to 0.5 mm, preferably 0.1 mm to 0.2 mm. This enables sample introduction by capillary action.
- the width of the narrowest portion of the constricted portion is 0.05 mm to 3.0 mm, preferably 0.5 mm to 1.0 mm.
- the flow rate of the sample introduced into the sample channel 10 from the first sample introduction port 11 is once rectified by the constricted portion 13 to stabilize the flow velocity, and due to the difference in sample characteristics (viscosity, hematocrit value, etc.).
- the difference in the shape of the blood head is converged.
- the flow rate can be suppressed by controlling the hydrophilicity of the inner surface of the specimen channel (10).
- the introduction from the fingertip can be facilitated by providing the notch 9c on the upper surface.
- FIG. 4A shows a state in which blood that has bleed from the fingertip by puncturing with the biosensor standing is introduced from the first sample introduction port 11 into the sample flow path 10. Shows a state in which blood that has bleed from the fingertip by puncturing while the biosensor is laid down is introduced from the second sample introduction port 12 into the sample flow path 10, and FIG. The state in which blood is introduced into the sample channel 10 by dropping the blood from the syringe from which the blood was collected into the second sample introduction port 12 in a state where the biosensor is laid down is shown.
- the biosensor according to the present embodiment it is possible to introduce the sample by both the method of introducing from the fingertip and the dropping method, and forming the constricted portion 13 in the sample channel 10. Since it is rate-limiting, the difference in flow velocity due to the difference in the amount and characteristics of the specimen (viscosity, hematocrit value, etc.) can be eliminated. Furthermore, according to the biosensor according to the present embodiment, since the second sample introduction port 12 forms a part of the constricted portion 13, the constricted portion 13 and the second sample introduction port 12 are formed separately. In comparison, the length of the sample channel 10 can be shortened, and as a result, the overall size of the biosensor can be reduced, thereby reducing the required sample amount.
- the second sample introduction port 12 forms a part of the constricted portion 13, so that the constricted portion 13 and the second sample introduction port 12 are formed separately as compared with the case where the constricted portion 13 and the second sample introduction port 12 are formed separately. As a result, the price of the entire biosensor can be reduced. Since such a biosensor is disposable, it is very easy to manufacture and is inexpensive as described above.
- the biosensor according to the present invention is described by taking the biosensor in which the three electrodes 2, 3 and 4 are arranged in the sample channel 10 as an example.
- the arrangement, number and function of the electrodes are not limited to those of the present embodiment.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
[Problem] To provide a biosensor which allows the introduction of a specimen both from a fingertip and by dropping and can provide stable measurement results without being affected by a difference in specimen-introduction methods or a difference in specimen properties.
[Solution] A biosensor, wherein a specimen channel allowing the introduction of a specimen by capillary action is formed between a substrate and an upper face plate, and an electrode, which is provided with a reaction layer containing an enzyme capable of reacting with a characteristic component in the specimen, is located in the specimen channel. The biosensor is characterized by comprising: a first specimen inlet having an opening at one end of the substrate and upper face plate and being connected to the specimen channel; a second specimen inlet being located in the upper face plate and connected at least to the area between the first specimen inlet and the electrode in the specimen channel; and a constricted part narrowing the width of the specimen channel, said constricted part being located between the first specimen inlet and the electrode in the specimen channel.
Description
本発明は、検体中の特定の成分を分析するために用いられるバイオセンサの改良に関する。
The present invention relates to an improvement of a biosensor used for analyzing a specific component in a specimen.
従来から、検体中の特定の成分、例えば、血糖値等を測定するために使い捨てのバイオセンサが提案されている。
具体的には、従来のバイオセンサには、例えば、検体導入口から血液等の検体を導入し、導入された検体が反応部で反応した時の測定極と対極との間の電流値を測定することにより検体中の特性成分の値を測定するように構成されているものがある。
センサへの検体の導入方法としては、検体をセンサの検体導入口に指先から導入する方法や、滴下により導入する方法などがある。
具体的には、例えば検体が血液の場合、指先からの導入方法では、指先を穿刺することにより指先から少量の血液を出血させ、その出血した血液を直接検体導入口に当てて検体をセンサに導入する。このように出血した指先を直接検体導入口に当てる場合、検体導入口がセンサの上面に設けられていると、指で検体導入口が隠れてしまうため検体の導入が行い難い。このため、指先より検体を導入するセンサの場合には、検体導入口はセンサの端部に設けられている方が、血液を検体導入口に当て易く、好ましい。
逆に、検体を上方より滴下する方法では、検体導入口はセンサの上面に設けておいた方が好ましい。
特許文献1には、検体導入口がセンサの端部に設けられたバイオセンサが示されており、特許文献2には、検体導入口がセンサの上面に設けられたバイオセンサが示されている。 Conventionally, disposable biosensors have been proposed for measuring specific components in a specimen, such as blood glucose level.
Specifically, in a conventional biosensor, for example, a sample such as blood is introduced from the sample introduction port, and the current value between the measurement electrode and the counter electrode when the introduced sample reacts in the reaction part is measured. In some cases, the value of the characteristic component in the specimen is measured.
Examples of the method for introducing the sample into the sensor include a method for introducing the sample into the sample introduction port of the sensor from the fingertip, a method for introducing the sample by dropping, and the like.
Specifically, for example, when the sample is blood, in the method of introducing from the fingertip, a small amount of blood is bleed from the fingertip by puncturing the fingertip, and the sampled blood is directly applied to the sample introduction port and the sample is used as a sensor. Introduce. When the bleeding fingertip is directly applied to the sample introduction port, if the sample introduction port is provided on the upper surface of the sensor, it is difficult to introduce the sample because the sample introduction port is hidden by the finger. For this reason, in the case of a sensor that introduces a sample from the fingertip, it is preferable that the sample introduction port is provided at the end of the sensor because blood is easily applied to the sample introduction port.
On the contrary, in the method of dropping the specimen from above, it is preferable that the specimen inlet is provided on the upper surface of the sensor.
Patent Document 1 shows a biosensor in which a sample introduction port is provided at the end of the sensor, and Patent Document 2 shows a biosensor in which a sample introduction port is provided on the upper surface of the sensor. .
具体的には、従来のバイオセンサには、例えば、検体導入口から血液等の検体を導入し、導入された検体が反応部で反応した時の測定極と対極との間の電流値を測定することにより検体中の特性成分の値を測定するように構成されているものがある。
センサへの検体の導入方法としては、検体をセンサの検体導入口に指先から導入する方法や、滴下により導入する方法などがある。
具体的には、例えば検体が血液の場合、指先からの導入方法では、指先を穿刺することにより指先から少量の血液を出血させ、その出血した血液を直接検体導入口に当てて検体をセンサに導入する。このように出血した指先を直接検体導入口に当てる場合、検体導入口がセンサの上面に設けられていると、指で検体導入口が隠れてしまうため検体の導入が行い難い。このため、指先より検体を導入するセンサの場合には、検体導入口はセンサの端部に設けられている方が、血液を検体導入口に当て易く、好ましい。
逆に、検体を上方より滴下する方法では、検体導入口はセンサの上面に設けておいた方が好ましい。
特許文献1には、検体導入口がセンサの端部に設けられたバイオセンサが示されており、特許文献2には、検体導入口がセンサの上面に設けられたバイオセンサが示されている。 Conventionally, disposable biosensors have been proposed for measuring specific components in a specimen, such as blood glucose level.
Specifically, in a conventional biosensor, for example, a sample such as blood is introduced from the sample introduction port, and the current value between the measurement electrode and the counter electrode when the introduced sample reacts in the reaction part is measured. In some cases, the value of the characteristic component in the specimen is measured.
Examples of the method for introducing the sample into the sensor include a method for introducing the sample into the sample introduction port of the sensor from the fingertip, a method for introducing the sample by dropping, and the like.
Specifically, for example, when the sample is blood, in the method of introducing from the fingertip, a small amount of blood is bleed from the fingertip by puncturing the fingertip, and the sampled blood is directly applied to the sample introduction port and the sample is used as a sensor. Introduce. When the bleeding fingertip is directly applied to the sample introduction port, if the sample introduction port is provided on the upper surface of the sensor, it is difficult to introduce the sample because the sample introduction port is hidden by the finger. For this reason, in the case of a sensor that introduces a sample from the fingertip, it is preferable that the sample introduction port is provided at the end of the sensor because blood is easily applied to the sample introduction port.
On the contrary, in the method of dropping the specimen from above, it is preferable that the specimen inlet is provided on the upper surface of the sensor.
上記したように、バイオセンサは、検体を導入する方法によって検体導入口の場所及び構造が異なり、検体導入口がセンサの端部に設けられたバイオセンサは指先からの検体の導入には適しているが、滴下による検体の導入には適してなく、逆に、検体導入口がセンサの上面に設けられたバイオセンサは滴下による検体の導入には適しているが、指先からの検体の導入には適していない。
発明者等は、上記した従来の問題点に鑑みて、指先からの検体の導入と滴下による検体の導入の両方を行うことができるバイオセンサの研究を進めていたが、単に、センサの端部とセンサの上面との両方に検体導入口を設けるだけでは、検体導入後の検体の流れが、指先からの導入の場合と滴下の場合とで異なってしまうため安定した測定結果を得ることができなかった。具体的には、検体を滴下する場合には、予めシリンジ等に血液を採取しておくため十分な量の検体をセンサに導入することができるが、指先からの導入する場合には検体量が少ないため検体流路内での検体の流れ方にバラツキが生じる。また、指先からの導入の場合には、検体量が少ないため、導入する検体の特性(粘性、ヘマトクリット値等)の違いにより、検体導入後の検体の流速に違いが出てしまい、このことも測定結果のバラツキの原因になっていた。
発明者等は、上記した課題を解決するために鋭意研究を重ね、本発明を発明するに至った。
本発明は、指先からの検体の導入と滴下による検体の導入の両方を行うことができ、かつ、検体の導入方法の違いや、検体の特性の違いに影響を受けることなく、安定した測定結果を得ることができるバイオセンサを提供することを目的としている。 As described above, the location and structure of the sample introduction port differs depending on the method of introducing the sample, and the biosensor provided with the sample introduction port at the end of the sensor is suitable for introducing the sample from the fingertip. However, it is not suitable for introducing a sample by dripping, and conversely, a biosensor with a sample introduction port provided on the upper surface of the sensor is suitable for introducing a sample by dripping, but for introducing a sample from a fingertip. Is not suitable.
In view of the above-described conventional problems, the inventors have been researching a biosensor that can perform both the introduction of a specimen from a fingertip and the introduction of a specimen by dripping. And providing a sample inlet on both the sensor and the top surface of the sensor, the flow of the sample after sample introduction differs depending on whether it is introduced from the fingertip or dripping, so that stable measurement results can be obtained. There wasn't. Specifically, when a sample is dropped, a sufficient amount of sample can be introduced into the sensor in advance to collect blood in a syringe or the like. There are few variations in the way the sample flows in the sample flow path. In addition, in the case of introduction from the fingertip, the amount of sample is small, so the flow rate of the sample after sample introduction varies depending on the characteristics of the sample to be introduced (viscosity, hematocrit value, etc.). It was a cause of variation in measurement results.
The inventors have intensively studied to solve the above-described problems, and have invented the present invention.
The present invention can perform both the introduction of the specimen from the fingertip and the introduction of the specimen by dripping, and can provide a stable measurement result without being affected by the difference in the specimen introduction method and the specimen characteristics. It aims at providing the biosensor which can obtain.
発明者等は、上記した従来の問題点に鑑みて、指先からの検体の導入と滴下による検体の導入の両方を行うことができるバイオセンサの研究を進めていたが、単に、センサの端部とセンサの上面との両方に検体導入口を設けるだけでは、検体導入後の検体の流れが、指先からの導入の場合と滴下の場合とで異なってしまうため安定した測定結果を得ることができなかった。具体的には、検体を滴下する場合には、予めシリンジ等に血液を採取しておくため十分な量の検体をセンサに導入することができるが、指先からの導入する場合には検体量が少ないため検体流路内での検体の流れ方にバラツキが生じる。また、指先からの導入の場合には、検体量が少ないため、導入する検体の特性(粘性、ヘマトクリット値等)の違いにより、検体導入後の検体の流速に違いが出てしまい、このことも測定結果のバラツキの原因になっていた。
発明者等は、上記した課題を解決するために鋭意研究を重ね、本発明を発明するに至った。
本発明は、指先からの検体の導入と滴下による検体の導入の両方を行うことができ、かつ、検体の導入方法の違いや、検体の特性の違いに影響を受けることなく、安定した測定結果を得ることができるバイオセンサを提供することを目的としている。 As described above, the location and structure of the sample introduction port differs depending on the method of introducing the sample, and the biosensor provided with the sample introduction port at the end of the sensor is suitable for introducing the sample from the fingertip. However, it is not suitable for introducing a sample by dripping, and conversely, a biosensor with a sample introduction port provided on the upper surface of the sensor is suitable for introducing a sample by dripping, but for introducing a sample from a fingertip. Is not suitable.
In view of the above-described conventional problems, the inventors have been researching a biosensor that can perform both the introduction of a specimen from a fingertip and the introduction of a specimen by dripping. And providing a sample inlet on both the sensor and the top surface of the sensor, the flow of the sample after sample introduction differs depending on whether it is introduced from the fingertip or dripping, so that stable measurement results can be obtained. There wasn't. Specifically, when a sample is dropped, a sufficient amount of sample can be introduced into the sensor in advance to collect blood in a syringe or the like. There are few variations in the way the sample flows in the sample flow path. In addition, in the case of introduction from the fingertip, the amount of sample is small, so the flow rate of the sample after sample introduction varies depending on the characteristics of the sample to be introduced (viscosity, hematocrit value, etc.). It was a cause of variation in measurement results.
The inventors have intensively studied to solve the above-described problems, and have invented the present invention.
The present invention can perform both the introduction of the specimen from the fingertip and the introduction of the specimen by dripping, and can provide a stable measurement result without being affected by the difference in the specimen introduction method and the specimen characteristics. It aims at providing the biosensor which can obtain.
上記した目的を達成するために本発明に係るバイオセンサは、基板と上面プレートとの間に、毛管現象によって検体を導入可能な検体流路を形成し、該検体流路中に、検体中の特性成分と反応する酵素を含有した反応層を備えた電極を配置して成るバイオセンサにおいて、前記基板及び上面プレートの一端で開口し前記検体流路と連通する第一検体導入口と、前記上面プレートに設けられ、前記検体流路における少なくとも前記第一検体導入口と前記電極との間に連通する第二検体導入口とを設け、かつ、前記検体流路における前記第一検体導入口と前記電極との間に検体流路の幅を狭くする括れ部を設けたことを特徴としている。
好ましくは、前記第二検体導入口が、前記括れ部の一部を形成するように構成され得る。
具体的には、例えば、前記上面プレートが、絶縁性材料から成る両面テープを介して基板に貼り付けられ、前記両面テープに前記検体流路を構成する切り欠きが設けられ、前記切り欠きの一端に設けられた開放部が前記第一検体導入口を形成するように構成され得る。また、この場合、前記切り欠きに、検体流路側に突出する凸部を形成し、かつ、前記凸部と対向する位置に凹部を形成し、前記上面プレートにおける前記凹部と対応する位置に、少なくとも一部分が検体流路と重なるように開口を形成し、前記切り欠きの凹部と前記上面プレートの開口とで前記第二検体導入口を形成すると共に、該第二検体導入口と、前記切り欠きの凸部とで前記括れ部を形成するように構成され得る。 In order to achieve the above-described object, the biosensor according to the present invention forms a sample channel into which a sample can be introduced by capillary action between the substrate and the top plate, and the sample channel includes a sample channel in the sample. In a biosensor comprising an electrode having a reaction layer containing an enzyme that reacts with a characteristic component, a first sample introduction port that opens at one end of the substrate and the top plate and communicates with the sample channel, and the top surface A second sample introduction port provided on the plate and communicating between at least the first sample introduction port and the electrode in the sample channel; and the first sample introduction port in the sample channel and the It is characterized in that a constriction part for narrowing the width of the specimen channel is provided between the electrode and the electrode.
Preferably, the second sample introduction port may be configured to form a part of the constricted portion.
Specifically, for example, the top plate is attached to a substrate via a double-sided tape made of an insulating material, and the double-sided tape is provided with a notch constituting the sample flow path, and one end of the notch An opening provided in the first sample introduction port may be configured to form the first sample introduction port. Further, in this case, the notch is formed with a convex portion projecting toward the sample channel, and a concave portion is formed at a position facing the convex portion, and at least at a position corresponding to the concave portion in the upper surface plate. An opening is formed so that a part thereof overlaps the sample flow path, and the second sample introduction port is formed by the recess of the notch and the opening of the upper surface plate, and the second sample introduction port and the notch The constricted portion may be formed with the convex portion.
好ましくは、前記第二検体導入口が、前記括れ部の一部を形成するように構成され得る。
具体的には、例えば、前記上面プレートが、絶縁性材料から成る両面テープを介して基板に貼り付けられ、前記両面テープに前記検体流路を構成する切り欠きが設けられ、前記切り欠きの一端に設けられた開放部が前記第一検体導入口を形成するように構成され得る。また、この場合、前記切り欠きに、検体流路側に突出する凸部を形成し、かつ、前記凸部と対向する位置に凹部を形成し、前記上面プレートにおける前記凹部と対応する位置に、少なくとも一部分が検体流路と重なるように開口を形成し、前記切り欠きの凹部と前記上面プレートの開口とで前記第二検体導入口を形成すると共に、該第二検体導入口と、前記切り欠きの凸部とで前記括れ部を形成するように構成され得る。 In order to achieve the above-described object, the biosensor according to the present invention forms a sample channel into which a sample can be introduced by capillary action between the substrate and the top plate, and the sample channel includes a sample channel in the sample. In a biosensor comprising an electrode having a reaction layer containing an enzyme that reacts with a characteristic component, a first sample introduction port that opens at one end of the substrate and the top plate and communicates with the sample channel, and the top surface A second sample introduction port provided on the plate and communicating between at least the first sample introduction port and the electrode in the sample channel; and the first sample introduction port in the sample channel and the It is characterized in that a constriction part for narrowing the width of the specimen channel is provided between the electrode and the electrode.
Preferably, the second sample introduction port may be configured to form a part of the constricted portion.
Specifically, for example, the top plate is attached to a substrate via a double-sided tape made of an insulating material, and the double-sided tape is provided with a notch constituting the sample flow path, and one end of the notch An opening provided in the first sample introduction port may be configured to form the first sample introduction port. Further, in this case, the notch is formed with a convex portion projecting toward the sample channel, and a concave portion is formed at a position facing the convex portion, and at least at a position corresponding to the concave portion in the upper surface plate. An opening is formed so that a part thereof overlaps the sample flow path, and the second sample introduction port is formed by the recess of the notch and the opening of the upper surface plate, and the second sample introduction port and the notch The constricted portion may be formed with the convex portion.
本発明に係るバイオセンサは、基板と上面プレートとの間に、毛管現象によって検体を導入可能な検体流路を形成し、該検体流路中に、検体中の特性成分と反応する酵素を含有した反応層を備えた電極を配置して成るバイオセンサにおいて、前記基板及び上面プレートの一端で開口し前記検体流路と連通する第一検体導入口と、前記上面プレートに設けられ、前記検体流路における少なくとも前記第一検体導入口と前記電極との間に連通する第二検体導入口とを設け、かつ、前記検体流路における前記第一検体導入口と前記電極との間に検体流路の幅を狭くする括れ部を設けているので、指先からの検体の導入と滴下による検体の導入の両方を行うことができる。
また、通常、指先を穿刺することにより指先から出血させた少量の血液をセンサの先端に設けた検体導入口から血液を導入する場合、検体導入口のどの位置に血液を接触させるかによって検体流路における血液の流れ方が異なる。本発明に係るバイオセンサは、検体流路における前記第一検体導入口と前記電極との間に検体流路の幅を狭くする括れ部を設けているので、第一検体導入口のどの位置から検体を導入しても必ず検体が括れ部を通過するため、電極に到達する時の血液の先頭の形状のばらつきが軽減する。これにより、検体の導入方法の違いや、検体の特性の違いによる流速の変化等を抑えて、安定した測定結果を得ることができる。
また、前記第二検体導入口が、前記括れ部の一部を形成するように構成することで、括れ部と第二検体導入口とを別に形成した場合に比べて、加工が容易になり、結果としてバイオセンサ全体の価格を安価にすることができる。
さらにまた、前記第二検体導入口が、前記括れ部の一部を形成するように構成することで、括れ部と第二検体導入口とを別に形成した場合に比べて検体流路の長さを短くすることができ、結果としてバイオセンサ全体の大きさを小型化することができ、これにより必要検体量を減らすことができる。 The biosensor according to the present invention forms a sample flow channel into which a sample can be introduced by capillary action between the substrate and the top plate, and the sample flow channel contains an enzyme that reacts with a characteristic component in the sample. In the biosensor comprising the electrode having the reaction layer, the first sample introduction port that opens at one end of the substrate and the upper surface plate and communicates with the sample flow path is provided in the upper surface plate. A second sample introduction port communicating between at least the first sample introduction port and the electrode in the channel, and a sample channel between the first sample introduction port and the electrode in the sample channel Since the constriction part which narrows the width | variety of this is provided, both the introduction of the sample from a fingertip and the introduction of the sample by dripping can be performed.
In addition, when a small amount of blood that has been bleed from the fingertip by puncturing the fingertip is usually introduced from the sample introduction port provided at the tip of the sensor, the sample flow depends on which position of the sample introduction port the blood is in contact with. The way blood flows in the tract is different. The biosensor according to the present invention has a constricted portion that narrows the width of the sample channel between the first sample inlet and the electrode in the sample channel. Even if the sample is introduced, the sample always passes through the constricted portion, so that variation in the shape of the head of the blood when reaching the electrode is reduced. As a result, it is possible to obtain a stable measurement result while suppressing changes in the flow rate due to differences in the sample introduction method and differences in the characteristics of the sample.
In addition, by configuring the second sample introduction port to form a part of the constricted portion, compared to the case where the constricted portion and the second sample introduction port are separately formed, processing becomes easier. As a result, the price of the entire biosensor can be reduced.
Furthermore, the second sample introduction port is formed so as to form a part of the constricted portion, so that the length of the sample flow channel is longer than when the constricted portion and the second sample introduction port are separately formed. As a result, the overall size of the biosensor can be reduced, thereby reducing the required amount of specimen.
また、通常、指先を穿刺することにより指先から出血させた少量の血液をセンサの先端に設けた検体導入口から血液を導入する場合、検体導入口のどの位置に血液を接触させるかによって検体流路における血液の流れ方が異なる。本発明に係るバイオセンサは、検体流路における前記第一検体導入口と前記電極との間に検体流路の幅を狭くする括れ部を設けているので、第一検体導入口のどの位置から検体を導入しても必ず検体が括れ部を通過するため、電極に到達する時の血液の先頭の形状のばらつきが軽減する。これにより、検体の導入方法の違いや、検体の特性の違いによる流速の変化等を抑えて、安定した測定結果を得ることができる。
また、前記第二検体導入口が、前記括れ部の一部を形成するように構成することで、括れ部と第二検体導入口とを別に形成した場合に比べて、加工が容易になり、結果としてバイオセンサ全体の価格を安価にすることができる。
さらにまた、前記第二検体導入口が、前記括れ部の一部を形成するように構成することで、括れ部と第二検体導入口とを別に形成した場合に比べて検体流路の長さを短くすることができ、結果としてバイオセンサ全体の大きさを小型化することができ、これにより必要検体量を減らすことができる。 The biosensor according to the present invention forms a sample flow channel into which a sample can be introduced by capillary action between the substrate and the top plate, and the sample flow channel contains an enzyme that reacts with a characteristic component in the sample. In the biosensor comprising the electrode having the reaction layer, the first sample introduction port that opens at one end of the substrate and the upper surface plate and communicates with the sample flow path is provided in the upper surface plate. A second sample introduction port communicating between at least the first sample introduction port and the electrode in the channel, and a sample channel between the first sample introduction port and the electrode in the sample channel Since the constriction part which narrows the width | variety of this is provided, both the introduction of the sample from a fingertip and the introduction of the sample by dripping can be performed.
In addition, when a small amount of blood that has been bleed from the fingertip by puncturing the fingertip is usually introduced from the sample introduction port provided at the tip of the sensor, the sample flow depends on which position of the sample introduction port the blood is in contact with. The way blood flows in the tract is different. The biosensor according to the present invention has a constricted portion that narrows the width of the sample channel between the first sample inlet and the electrode in the sample channel. Even if the sample is introduced, the sample always passes through the constricted portion, so that variation in the shape of the head of the blood when reaching the electrode is reduced. As a result, it is possible to obtain a stable measurement result while suppressing changes in the flow rate due to differences in the sample introduction method and differences in the characteristics of the sample.
In addition, by configuring the second sample introduction port to form a part of the constricted portion, compared to the case where the constricted portion and the second sample introduction port are separately formed, processing becomes easier. As a result, the price of the entire biosensor can be reduced.
Furthermore, the second sample introduction port is formed so as to form a part of the constricted portion, so that the length of the sample flow channel is longer than when the constricted portion and the second sample introduction port are separately formed. As a result, the overall size of the biosensor can be reduced, thereby reducing the required amount of specimen.
以下、添付図面を参照して本発明に係るバイオセンサの実施の形態について説明していく。
Hereinafter, an embodiment of a biosensor according to the present invention will be described with reference to the accompanying drawings.
図1は本発明に係るバイオセンサの概略上面図であり、図2は、図1に示したバイオセンサの上面プレートを取り外した状態の概略上面図であり、図3は図1に示したバイオセンサの概略展開斜視図である。
図中符号1は絶縁体から成る基板を示しており、この基板1上には、三つの電極2,3及び4が形成されている。
第一の電極2における測定部分2aの上面には、検体中の特定成分と反応する酵素が含まれた反応層が設けられ測定極として機能する。第二の電極3も同様に測定極として機能し得、第三の電極4は対極として機能し得る。
図面中、符号3aは第二の電極3の測定部分を、符号4aは第三の電極4の測定部分を、符号2bは第一の電極2の端子を、符号3bは第二の電極3の端子を、符号4bは第三の電極4の端子を各々示している。
前記基板1には、フォトレジスト膜7が設けられている。フォトレジスト膜7は、三つの電極2,3及び4の測定部分2a,3a,4a及び端子部分2b,3b,4b以外の部分を覆うように、基板1より短く形成され、かつ、測定部分2a,3a,4aに対応する位置に開口7a,7b,7cが形成されている。
さらに、フォトレジスト膜7の上面に、例えば、ポリエチレンテフタレート(PET)両面テープ8を介して上面プレート9が設けられている。ここで、材質として、PETに限定されるものではなく、一定の剛性を有するプラスチックフィルムであればよい。例えば、ポリエチレンナフタレート(PEN)、ポリエーテルサルホン(PES)、ポリイミド等があげられる。
前記PET両面テープ8には形成する切り欠き8aが設けられている。該PET両面テープ8はフォトレジスト膜7と上面プレート9との間に前記切り欠き8aの部分で毛管現象を生じさせる間隙を形成するためのスペーサとして機能する。
前記PET両面テープ8の切り欠き8aは、三つの電極2,3及び4の測定部分2a,3a,4aを囲み検体流路10を構成する。
また、前記切り欠き8aは、基板1に配置された状態で端子部2b、3b及び4bの反対側に位置する端部が開放しており、この開放端が第一検体導入口11を形成する。
さらに、前記切り欠き8aは、基板1に配置された状態で前記開放端(即ち、第一検体導入口11)と第一の電極2の測定部分2aとの間に位置する部分に、内側(即ち、検体流路10側)に突出する凸部8bが形成されており、さらに、この凸部8bと対向する位置に後述する第二検体導入口12を構成する凹部cが形成されている。
上面プレート9には、空気孔9a、第二検体導入口12を構成する開口9b、及び第一検体導入口11を形成する切り欠き9cが形成されている。
第一検体導入口11から検体流路10内に導入された検体は、毛細現象により上面プレート9の開口9b(即ち、第二検体導入口12)を避けて通るため、前記切り欠き8aの凸部8bと、凹部8c及び開口9bで構成される第二検体導入口12とで、検体流路10における第一検体導入口11と第一の電極2の測定部分2aとの間に、括れ部13を形成することになる。
第一検体導入口の横幅は1.0mm~6.0mmであり、好ましくは2.5mm~3.5mmである。また、PET両面テープ(8)により形成される、基板と上面プレートとの間隙の高さは、0.05mm~0.5mmであり、好ましくは0.1mm~0.2mmである。これにより、毛管現象による検体導入を可能にする。
括れ部の最狭部の幅は、0.05mm~3.0mmであり、好ましくは0.5mm~1.0mmである。そして、この括れ部13によって第一検体導入口11から検体流路10内に導入された検体の流れを一度整流することによって流速を安定させ、検体の特性(粘性やヘマトクリット値等)の違いによる血液先頭の形状の差が収束される。
さらに、検体流路(10)内面の親水性をコントロールすることにより、流速を抑制することも可能である。
また、必要採血量によっては、上面の切り欠き9cを設けることによって、指先からの導入を容易にすることができる。 FIG. 1 is a schematic top view of a biosensor according to the present invention, FIG. 2 is a schematic top view of the biosensor shown in FIG. 1 with the top plate removed, and FIG. 3 is a biosensor shown in FIG. It is a general | schematic expanded perspective view of a sensor.
In the figure,reference numeral 1 denotes a substrate made of an insulator, and three electrodes 2, 3 and 4 are formed on the substrate 1.
A reaction layer containing an enzyme that reacts with a specific component in the specimen is provided on the upper surface of themeasurement portion 2a of the first electrode 2 and functions as a measurement electrode. Similarly, the second electrode 3 can function as a measurement electrode, and the third electrode 4 can function as a counter electrode.
In the drawing, reference numeral 3a denotes a measurement part of thesecond electrode 3, reference numeral 4a denotes a measurement part of the third electrode 4, reference numeral 2b denotes a terminal of the first electrode 2, and reference numeral 3b denotes a second electrode 3. Reference numerals 4b denote terminals of the third electrode 4, respectively.
Aphotoresist film 7 is provided on the substrate 1. The photoresist film 7 is formed shorter than the substrate 1 so as to cover portions other than the measurement portions 2a, 3a and 4a and the terminal portions 2b, 3b and 4b of the three electrodes 2, 3 and 4, and the measurement portion 2a. , 3a, 4a, openings 7a, 7b, 7c are formed.
Further, anupper surface plate 9 is provided on the upper surface of the photoresist film 7 via, for example, a polyethylene terephthalate (PET) double-sided tape 8. Here, the material is not limited to PET, and any plastic film having a certain rigidity may be used. For example, polyethylene naphthalate (PEN), polyethersulfone (PES), polyimide and the like can be mentioned.
The PET double-sided tape 8 is provided with a notch 8a to be formed. The PET double-sided tape 8 functions as a spacer for forming a gap between the photoresist film 7 and the top plate 9 that causes capillary action at the notch 8a.
Thenotch 8 a of the PET double-sided tape 8 surrounds the measurement portions 2 a, 3 a, 4 a of the three electrodes 2, 3, and 4 and constitutes the sample flow path 10.
Thenotch 8a is open at the end located on the opposite side of the terminal portions 2b, 3b and 4b in the state of being arranged on the substrate 1, and this open end forms the first sample introduction port 11. .
Further, thenotch 8a is disposed on the inner side (in the portion positioned between the open end (that is, the first sample introduction port 11) and the measurement portion 2a of the first electrode 2 in the state of being disposed on the substrate 1). That is, a convex portion 8b that protrudes to the specimen flow channel 10 side is formed, and a concave portion c that constitutes a second sample introduction port 12 described later is formed at a position facing the convex portion 8b.
Thetop plate 9 is formed with an air hole 9 a, an opening 9 b that constitutes the second sample introduction port 12, and a notch 9 c that forms the first sample introduction port 11.
Since the sample introduced into thesample flow channel 10 from the first sample introduction port 11 passes through the opening 9b (that is, the second sample introduction port 12) of the upper surface plate 9 due to the capillary phenomenon, the convexity of the notch 8a. A constricted portion between the first sample introduction port 11 and the measurement portion 2a of the first electrode 2 in the sample flow channel 10 by the portion 8b and the second sample introduction port 12 constituted by the recess 8c and the opening 9b. 13 will be formed.
The width of the first sample introduction port is 1.0 mm to 6.0 mm, preferably 2.5 mm to 3.5 mm. The height of the gap between the substrate and the top plate formed by the PET double-sided tape (8) is 0.05 mm to 0.5 mm, preferably 0.1 mm to 0.2 mm. This enables sample introduction by capillary action.
The width of the narrowest portion of the constricted portion is 0.05 mm to 3.0 mm, preferably 0.5 mm to 1.0 mm. Then, the flow rate of the sample introduced into thesample channel 10 from the first sample introduction port 11 is once rectified by the constricted portion 13 to stabilize the flow velocity, and due to the difference in sample characteristics (viscosity, hematocrit value, etc.). The difference in the shape of the blood head is converged.
Furthermore, the flow rate can be suppressed by controlling the hydrophilicity of the inner surface of the specimen channel (10).
Further, depending on the required blood collection amount, the introduction from the fingertip can be facilitated by providing thenotch 9c on the upper surface.
図中符号1は絶縁体から成る基板を示しており、この基板1上には、三つの電極2,3及び4が形成されている。
第一の電極2における測定部分2aの上面には、検体中の特定成分と反応する酵素が含まれた反応層が設けられ測定極として機能する。第二の電極3も同様に測定極として機能し得、第三の電極4は対極として機能し得る。
図面中、符号3aは第二の電極3の測定部分を、符号4aは第三の電極4の測定部分を、符号2bは第一の電極2の端子を、符号3bは第二の電極3の端子を、符号4bは第三の電極4の端子を各々示している。
前記基板1には、フォトレジスト膜7が設けられている。フォトレジスト膜7は、三つの電極2,3及び4の測定部分2a,3a,4a及び端子部分2b,3b,4b以外の部分を覆うように、基板1より短く形成され、かつ、測定部分2a,3a,4aに対応する位置に開口7a,7b,7cが形成されている。
さらに、フォトレジスト膜7の上面に、例えば、ポリエチレンテフタレート(PET)両面テープ8を介して上面プレート9が設けられている。ここで、材質として、PETに限定されるものではなく、一定の剛性を有するプラスチックフィルムであればよい。例えば、ポリエチレンナフタレート(PEN)、ポリエーテルサルホン(PES)、ポリイミド等があげられる。
前記PET両面テープ8には形成する切り欠き8aが設けられている。該PET両面テープ8はフォトレジスト膜7と上面プレート9との間に前記切り欠き8aの部分で毛管現象を生じさせる間隙を形成するためのスペーサとして機能する。
前記PET両面テープ8の切り欠き8aは、三つの電極2,3及び4の測定部分2a,3a,4aを囲み検体流路10を構成する。
また、前記切り欠き8aは、基板1に配置された状態で端子部2b、3b及び4bの反対側に位置する端部が開放しており、この開放端が第一検体導入口11を形成する。
さらに、前記切り欠き8aは、基板1に配置された状態で前記開放端(即ち、第一検体導入口11)と第一の電極2の測定部分2aとの間に位置する部分に、内側(即ち、検体流路10側)に突出する凸部8bが形成されており、さらに、この凸部8bと対向する位置に後述する第二検体導入口12を構成する凹部cが形成されている。
上面プレート9には、空気孔9a、第二検体導入口12を構成する開口9b、及び第一検体導入口11を形成する切り欠き9cが形成されている。
第一検体導入口11から検体流路10内に導入された検体は、毛細現象により上面プレート9の開口9b(即ち、第二検体導入口12)を避けて通るため、前記切り欠き8aの凸部8bと、凹部8c及び開口9bで構成される第二検体導入口12とで、検体流路10における第一検体導入口11と第一の電極2の測定部分2aとの間に、括れ部13を形成することになる。
第一検体導入口の横幅は1.0mm~6.0mmであり、好ましくは2.5mm~3.5mmである。また、PET両面テープ(8)により形成される、基板と上面プレートとの間隙の高さは、0.05mm~0.5mmであり、好ましくは0.1mm~0.2mmである。これにより、毛管現象による検体導入を可能にする。
括れ部の最狭部の幅は、0.05mm~3.0mmであり、好ましくは0.5mm~1.0mmである。そして、この括れ部13によって第一検体導入口11から検体流路10内に導入された検体の流れを一度整流することによって流速を安定させ、検体の特性(粘性やヘマトクリット値等)の違いによる血液先頭の形状の差が収束される。
さらに、検体流路(10)内面の親水性をコントロールすることにより、流速を抑制することも可能である。
また、必要採血量によっては、上面の切り欠き9cを設けることによって、指先からの導入を容易にすることができる。 FIG. 1 is a schematic top view of a biosensor according to the present invention, FIG. 2 is a schematic top view of the biosensor shown in FIG. 1 with the top plate removed, and FIG. 3 is a biosensor shown in FIG. It is a general | schematic expanded perspective view of a sensor.
In the figure,
A reaction layer containing an enzyme that reacts with a specific component in the specimen is provided on the upper surface of the
In the drawing, reference numeral 3a denotes a measurement part of the
A
Further, an
The PET double-
The
The
Further, the
The
Since the sample introduced into the
The width of the first sample introduction port is 1.0 mm to 6.0 mm, preferably 2.5 mm to 3.5 mm. The height of the gap between the substrate and the top plate formed by the PET double-sided tape (8) is 0.05 mm to 0.5 mm, preferably 0.1 mm to 0.2 mm. This enables sample introduction by capillary action.
The width of the narrowest portion of the constricted portion is 0.05 mm to 3.0 mm, preferably 0.5 mm to 1.0 mm. Then, the flow rate of the sample introduced into the
Furthermore, the flow rate can be suppressed by controlling the hydrophilicity of the inner surface of the specimen channel (10).
Further, depending on the required blood collection amount, the introduction from the fingertip can be facilitated by providing the
図4(a)~(c)は、上記したように構成されたバイオセンサの使用状態を示す図である。
図4(a)は、バイオセンサを立てた状態で、穿刺することにより指先から出血した血液を第一検体導入口11から検体流路10に導入する状態を示しており、図4(b)は、バイオセンサを横に寝かせた状態で、穿刺することにより指先から出血した血液を、第二検体導入口12から検体流路10に導入する状態を示しており、さらに図4(c)は、バイオセンサを横に寝かせた状態で、血液を採取したシリンジから第二検体導入口12に血液を滴下することにより検体流路10に血液を導入する状態を示している。
上記したように本実施例に係るバイオセンサによれば、検体を指先からの導入及び滴下の両方の方法で導入することが可能であり、また、検体流路10に括れ部13を形成し、律速しているので、検体の量や特性(粘性やヘマトクリット値等)の違いによる流速の差を無くすことができる。
さらにまた、本実施例によるバイオセンサによれば、第二検体導入口12が括れ部13の一部を形成しているので、括れ部13と第二検体導入口12とを別に形成した場合に比べて検体流路10の長さを短くすることができ、結果としてバイオセンサ全体の大きさを小型化することができ、これにより必要検体量を減らすことができる。静脈や動脈血と異なり、指先から採取する場合、被験者によって出血量に差があり、著しく少ない被験者もいる。そのような被験者にとって、無理に血液を搾り出すことは、極めて苦痛である。本構成は、そのような負担を軽減する結果をもたらす。
さらに、前記したように第二検体導入口12で括れ部13の一部を形成するように構成することにより、括れ部13と第二検体導入口12とを別に形成した場合に比べて、加工が容易になり、結果としてバイオセンサ全体の価格を安価にすることができる。かかるバイオセンサは、使い捨てであるため、このように製造が容易で、しかも安価であることは極めて顕著な効果を奏するものである。 4 (a) to 4 (c) are diagrams showing the usage state of the biosensor configured as described above.
FIG. 4A shows a state in which blood that has bleed from the fingertip by puncturing with the biosensor standing is introduced from the firstsample introduction port 11 into the sample flow path 10. Shows a state in which blood that has bleed from the fingertip by puncturing while the biosensor is laid down is introduced from the second sample introduction port 12 into the sample flow path 10, and FIG. The state in which blood is introduced into the sample channel 10 by dropping the blood from the syringe from which the blood was collected into the second sample introduction port 12 in a state where the biosensor is laid down is shown.
As described above, according to the biosensor according to the present embodiment, it is possible to introduce the sample by both the method of introducing from the fingertip and the dropping method, and forming theconstricted portion 13 in the sample channel 10. Since it is rate-limiting, the difference in flow velocity due to the difference in the amount and characteristics of the specimen (viscosity, hematocrit value, etc.) can be eliminated.
Furthermore, according to the biosensor according to the present embodiment, since the secondsample introduction port 12 forms a part of the constricted portion 13, the constricted portion 13 and the second sample introduction port 12 are formed separately. In comparison, the length of the sample channel 10 can be shortened, and as a result, the overall size of the biosensor can be reduced, thereby reducing the required sample amount. Unlike venous and arterial blood, there are differences in the amount of bleeding among subjects when they are collected from the fingertips, and some subjects are significantly less. For such subjects, it is extremely painful to squeeze out blood. This structure brings about the result which reduces such a burden.
Further, as described above, the secondsample introduction port 12 forms a part of the constricted portion 13, so that the constricted portion 13 and the second sample introduction port 12 are formed separately as compared with the case where the constricted portion 13 and the second sample introduction port 12 are formed separately. As a result, the price of the entire biosensor can be reduced. Since such a biosensor is disposable, it is very easy to manufacture and is inexpensive as described above.
図4(a)は、バイオセンサを立てた状態で、穿刺することにより指先から出血した血液を第一検体導入口11から検体流路10に導入する状態を示しており、図4(b)は、バイオセンサを横に寝かせた状態で、穿刺することにより指先から出血した血液を、第二検体導入口12から検体流路10に導入する状態を示しており、さらに図4(c)は、バイオセンサを横に寝かせた状態で、血液を採取したシリンジから第二検体導入口12に血液を滴下することにより検体流路10に血液を導入する状態を示している。
上記したように本実施例に係るバイオセンサによれば、検体を指先からの導入及び滴下の両方の方法で導入することが可能であり、また、検体流路10に括れ部13を形成し、律速しているので、検体の量や特性(粘性やヘマトクリット値等)の違いによる流速の差を無くすことができる。
さらにまた、本実施例によるバイオセンサによれば、第二検体導入口12が括れ部13の一部を形成しているので、括れ部13と第二検体導入口12とを別に形成した場合に比べて検体流路10の長さを短くすることができ、結果としてバイオセンサ全体の大きさを小型化することができ、これにより必要検体量を減らすことができる。静脈や動脈血と異なり、指先から採取する場合、被験者によって出血量に差があり、著しく少ない被験者もいる。そのような被験者にとって、無理に血液を搾り出すことは、極めて苦痛である。本構成は、そのような負担を軽減する結果をもたらす。
さらに、前記したように第二検体導入口12で括れ部13の一部を形成するように構成することにより、括れ部13と第二検体導入口12とを別に形成した場合に比べて、加工が容易になり、結果としてバイオセンサ全体の価格を安価にすることができる。かかるバイオセンサは、使い捨てであるため、このように製造が容易で、しかも安価であることは極めて顕著な効果を奏するものである。 4 (a) to 4 (c) are diagrams showing the usage state of the biosensor configured as described above.
FIG. 4A shows a state in which blood that has bleed from the fingertip by puncturing with the biosensor standing is introduced from the first
As described above, according to the biosensor according to the present embodiment, it is possible to introduce the sample by both the method of introducing from the fingertip and the dropping method, and forming the
Furthermore, according to the biosensor according to the present embodiment, since the second
Further, as described above, the second
尚、上記した実施例では、検体流路10内に三つの電極2,3及び4を配置したバイオセンサを例に挙げて本発明に係るバイオセンサを説明しているが、検体流路内における電極の配置、数及び機能は本実施例に限定されるものではないことは勿論である。
In the above-described embodiment, the biosensor according to the present invention is described by taking the biosensor in which the three electrodes 2, 3 and 4 are arranged in the sample channel 10 as an example. Of course, the arrangement, number and function of the electrodes are not limited to those of the present embodiment.
1 基板
2 第一の電極
2a 測定部分
2b 端子
3 第二の電極
3a 測定部分
3b 端子
4 第三の電極
4a 測定部分
4b 端子
7 フォトレジスト膜
7a 開口
7b 開口
7c 開口
8 PET両面テープ
8a 切り欠き
8b 凸部
8c 凹部
9 上面プレート
9a 空気孔
9b 開口
9c 切り欠き
10 検体流路
11 第一検体導入口
12 第二検体導入口
13 括れ部 1Substrate 2 First Electrode 2a Measurement Part 2b Terminal 3 Second Electrode 3a Measurement Part 3b Terminal 4 Third Electrode 4a Measurement Part 4b Terminal 7 Photoresist Film 7a Opening 7b Opening 7c Opening 8 PET Double-Sided Tape 8a Notch 8b Convex part 8c Concave part 9 Top plate 9a Air hole 9b Opening 9c Notch 10 Sample flow path 11 First sample introduction port 12 Second sample introduction port 13 Constricted part
2 第一の電極
2a 測定部分
2b 端子
3 第二の電極
3a 測定部分
3b 端子
4 第三の電極
4a 測定部分
4b 端子
7 フォトレジスト膜
7a 開口
7b 開口
7c 開口
8 PET両面テープ
8a 切り欠き
8b 凸部
8c 凹部
9 上面プレート
9a 空気孔
9b 開口
9c 切り欠き
10 検体流路
11 第一検体導入口
12 第二検体導入口
13 括れ部 1
Claims (4)
- 基板と上面プレートとの間に、毛管現象によって検体を導入可能な検体流路を形成し、該検体流路中に、検体中の特性成分と反応する酵素を含有した反応層を備えた電極を配置して成るバイオセンサにおいて、
前記基板及び上面プレートの一端で開口し前記検体流路と連通する第一検体導入口と、
前記上面プレートに設けられ、前記検体流路における少なくとも前記第一検体導入口と前記電極との間に連通する第二検体導入口と
を設け、
かつ、前記検体流路における前記第一検体導入口と前記電極との間に検体流路の幅を狭くする括れ部を設けた
ことを特徴とするバイオセンサ。 An electrode having a reaction layer containing an enzyme that reacts with a characteristic component in the sample is formed between the substrate and the top plate by forming a sample channel capable of introducing the sample by capillary action. In the arranged biosensor,
A first sample introduction port that opens at one end of the substrate and the top plate and communicates with the sample channel;
A second sample introduction port provided in the upper surface plate and communicating between at least the first sample introduction port and the electrode in the sample channel;
In addition, a biosensor is characterized in that a narrow portion that narrows the width of the sample channel is provided between the first sample introduction port and the electrode in the sample channel. - 前記第二検体導入口が、前記括れ部の一部を形成する
ことを特徴とする請求項1に記載のバイオセンサ。 The biosensor according to claim 1, wherein the second sample introduction port forms a part of the constricted portion. - 前記上面プレートが、絶縁性材料から成る両面テープを介して基板に貼り付けられ、
前記両面テープに前記検体流路を構成する切り欠きが設けられ、
前記切り欠きの一端に設けられた開放部が前記第一検体導入口を形成する
ことを特徴とする請求項1又は2に記載のバイオセンサ。 The top plate is attached to the substrate via a double-sided tape made of an insulating material,
The double-sided tape is provided with a notch constituting the sample channel,
The biosensor according to claim 1 or 2, wherein an opening provided at one end of the notch forms the first sample introduction port. - 前記切り欠きに、検体流路側に突出する凸部を形成し、かつ、前記凸部と対向する位置に凹部を形成し、
前記上面プレートにおける前記凹部と対応する位置に、少なくとも一部分が検体流路と重なるように開口を形成し、前記切り欠きの凹部と前記上面プレートの開口とで前記第二検体導入口を形成すると共に、
該第二検体導入口と、前記切り欠きの凸部とで前記括れ部を形成する
ことを特徴とする請求項3に記載のバイオセンサ。 Forming a convex portion projecting toward the specimen channel in the notch, and forming a concave portion at a position facing the convex portion;
An opening is formed at a position corresponding to the recess in the upper surface plate so that at least a portion thereof overlaps the sample channel, and the second sample introduction port is formed by the recess of the notch and the opening of the upper surface plate. ,
The biosensor according to claim 3, wherein the constricted portion is formed by the second sample introduction port and the notched convex portion.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/057819 WO2012131903A1 (en) | 2011-03-29 | 2011-03-29 | Biosensor |
JP2013506919A JP5818275B2 (en) | 2011-03-29 | 2011-03-29 | Biosensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/057819 WO2012131903A1 (en) | 2011-03-29 | 2011-03-29 | Biosensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012131903A1 true WO2012131903A1 (en) | 2012-10-04 |
Family
ID=46929736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/057819 WO2012131903A1 (en) | 2011-03-29 | 2011-03-29 | Biosensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5818275B2 (en) |
WO (1) | WO2012131903A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014064978A1 (en) * | 2012-10-22 | 2016-09-08 | 株式会社村田製作所 | Biosensor and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001516040A (en) * | 1997-09-05 | 2001-09-25 | アボット・ラボラトリーズ | Low capacity electrochemical sensor |
JP2002168821A (en) * | 2000-11-30 | 2002-06-14 | Matsushita Electric Ind Co Ltd | Biosensor |
JP2008249538A (en) * | 2007-03-30 | 2008-10-16 | Seiko Epson Corp | Detecting element |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6616819B1 (en) * | 1999-11-04 | 2003-09-09 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US7780828B2 (en) * | 2004-01-07 | 2010-08-24 | Arkray, Inc. | Analytical instrument having improved arrangement of reagent section and analytical method |
JP2006047287A (en) * | 2004-06-22 | 2006-02-16 | Sumitomo Electric Ind Ltd | Sensor chip and production method therefor |
JP4693657B2 (en) * | 2005-03-29 | 2011-06-01 | シチズンホールディングス株式会社 | Biosensor |
JP4501793B2 (en) * | 2005-06-24 | 2010-07-14 | パナソニック株式会社 | Biosensor |
-
2011
- 2011-03-29 JP JP2013506919A patent/JP5818275B2/en not_active Expired - Fee Related
- 2011-03-29 WO PCT/JP2011/057819 patent/WO2012131903A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001516040A (en) * | 1997-09-05 | 2001-09-25 | アボット・ラボラトリーズ | Low capacity electrochemical sensor |
JP2002168821A (en) * | 2000-11-30 | 2002-06-14 | Matsushita Electric Ind Co Ltd | Biosensor |
JP2008249538A (en) * | 2007-03-30 | 2008-10-16 | Seiko Epson Corp | Detecting element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014064978A1 (en) * | 2012-10-22 | 2016-09-08 | 株式会社村田製作所 | Biosensor and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5818275B2 (en) | 2015-11-18 |
JPWO2012131903A1 (en) | 2014-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7846311B2 (en) | In vitro analyte sensor and methods of use | |
JP6297026B2 (en) | Sensor assembly and manufacturing method thereof | |
JP5580934B2 (en) | Method for manufacturing a dual biosensor test strip | |
US20070199818A1 (en) | Biosensors and Methods of Making | |
CZ20022639A3 (en) | Methods and apparatus usable for tests determining analyte concentration | |
JP2010513931A (en) | Sample sensor and method of use | |
US8992750B1 (en) | Biosensor and methods for manufacturing | |
EP2735869A1 (en) | Bio-sensor | |
JP6259903B2 (en) | Biosensor | |
JP2020197541A (en) | Test element for electrochemically detecting at least one analyte | |
JP6154538B2 (en) | Biosensor and manufacturing method thereof | |
US7776608B2 (en) | Volume meter testing device and method of use | |
JP5818275B2 (en) | Biosensor | |
US9835579B2 (en) | Analytical device, method for manufacturing the same, and measuring apparatus using the same | |
TW201934992A (en) | A biological test strip and a biological test strip reader for the biological test strip | |
JP3117103U (en) | Electrochemical biological specimen that can be sampled in a small amount | |
JP2004020465A (en) | Biosensor | |
US20140138244A1 (en) | Test strip for a medical meter | |
TWI687673B (en) | Glucose test arrangement and method | |
CN203534868U (en) | Biosensor | |
TWI269036B (en) | Bioelectrochemical sensor strip capable of taking trace samples | |
US8308923B2 (en) | Biosensor strip | |
JPH09203696A (en) | Spotting aid | |
JPH11326262A (en) | Biosensor | |
KR20220047980A (en) | Integrated sensor assembly unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11862370 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013506919 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11862370 Country of ref document: EP Kind code of ref document: A1 |