WO2012131816A1 - 人物追跡装置、人物追跡方法および人物追跡プログラムを格納した非一時的なコンピュータ可読媒体 - Google Patents

人物追跡装置、人物追跡方法および人物追跡プログラムを格納した非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2012131816A1
WO2012131816A1 PCT/JP2011/005973 JP2011005973W WO2012131816A1 WO 2012131816 A1 WO2012131816 A1 WO 2012131816A1 JP 2011005973 W JP2011005973 W JP 2011005973W WO 2012131816 A1 WO2012131816 A1 WO 2012131816A1
Authority
WO
WIPO (PCT)
Prior art keywords
person
information
feature
tracking
specificity
Prior art date
Application number
PCT/JP2011/005973
Other languages
English (en)
French (fr)
Inventor
亮磨 大網
高橋 祐介
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/001,251 priority Critical patent/US9235754B2/en
Priority to RU2013147808/08A priority patent/RU2546327C1/ru
Priority to JP2013506855A priority patent/JP5870996B2/ja
Priority to EP11862298.4A priority patent/EP2693404B1/en
Priority to BR112013025032A priority patent/BR112013025032A2/pt
Priority to CN201180069391.7A priority patent/CN103430214B/zh
Publication of WO2012131816A1 publication Critical patent/WO2012131816A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/103Static body considered as a whole, e.g. static pedestrian or occupant recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30242Counting objects in image

Definitions

  • the present invention relates to a person tracking device, a person tracking method, and a non-transitory computer-readable medium storing a person tracking program, and more particularly to a person tracking device, a person tracking method, and a person that track a person using video captured by a surveillance camera.
  • the present invention relates to a non-transitory computer readable medium storing a tracking program.
  • Patent Document 1 discloses a method for tracking a person based on the color characteristics of the person as an example of a person tracking method.
  • FIG. 9 shows an embodiment of the person tracking system disclosed in Patent Document 1.
  • the person tracking system includes a person area extracting unit 1, a voxel generating unit 2, a person color feature extracting unit 3, and a person tracking unit 4.
  • the person area extraction unit 1 extracts a person area from the monitoring video and outputs the person area extraction result to the voxel generation unit 2.
  • the voxel generation means 2 generates voxel information from the person area extraction result output from the person area extraction means 1, and outputs the generated voxel information to the person color feature extraction means 3.
  • the person color feature extraction unit 3 extracts a person color feature from the voxel information output from the voxel generation unit 2 and the monitoring video, and outputs the extracted person color feature to the person tracking unit 4.
  • the person tracking unit 4 tracks a person using the person color feature output from the person color feature extracting unit 3 and outputs a person tracking result.
  • the person area extracting means 1 extracts a person area from the monitoring video input from the camera by the background subtraction method. Then, the person area extraction unit 1 outputs the extracted person area extraction result to the voxel generation unit 2.
  • the voxel generation means 2 generates a voxel based on the input person area extraction result.
  • the input person region extraction result is obtained by a plurality of cameras.
  • the voxel generating means 2 generates a voxel representing the position of the person in the space by projecting the input person region extraction result onto the three-dimensional space by the view volume intersection method.
  • the voxel generation unit 2 outputs the generated voxel to the person color feature extraction unit 3.
  • the person color feature extraction means 3 obtains the vertical distribution of the color from the person's feet to the head as the person color feature based on the generated voxel and the surveillance camera video. At this time, the person color feature extraction unit 3 calculates the average of the colors for each height of the voxel, and normalizes the height to calculate the person color feature. This color feature is basically determined by the color of the clothes being worn, but a value obtained by calculating the average of the colors in all directions at the same height is used. Thereby, the person color feature extracting means 3 realizes robust color feature extraction against changes in the appearance of clothes depending on the direction.
  • the person tracking means 4 compares the obtained person color feature with the person color feature obtained in the past, and determines similarity.
  • the person tracking unit 4 calculates the correspondence between the voxel calculated in the past and the most recently calculated voxel according to the determination result. As a result, the person tracking unit 4 calculates a person tracking result in which the past person extraction result and the current extraction result are associated with each other.
  • the present invention has been made in view of such problems, and a person tracking device, a person tracking method, and a person capable of tracking a tracking target with high accuracy even when the tracking target has few features It is a primary object to provide a non-transitory computer readable medium storing a tracking program.
  • One aspect of the person tracking device is: A person area information extracting means for detecting a person area that is an area to which a person included in the video belongs, and generating person area information describing the information of the person area; Based on the person area information and information specifying the tracking person, at least one accompanying person accompanying the tracking person is identified from the persons included in the person area information, and the accompanying person is described
  • Companion determination means for generating companion information as information, A characteristic person, which is information describing the characteristic person, is selected from the accompanying persons specified by the companion determination information by using the person area information to select a characteristic person having a specific characteristic amount.
  • a characteristic person selection means for generating information;
  • a person tracking means for calculating a characteristic person tracking result which is a tracking result of the characteristic person based on the person area information and the characteristic person information; It is what has.
  • One aspect of the person tracking method is as follows. Detecting a person area that is an area to which a person included in the video belongs, and generating information person area information describing information of the person area; Based on the person area information and information specifying the tracking person, at least one accompanying person accompanying the tracking person is identified from the persons included in the person area information, and the accompanying person is described Generate companion information, which is information, A characteristic person, which is information describing the characteristic person, is selected from the accompanying persons specified by the companion determination information by using the person area information to select a characteristic person having a specific feature amount. Generate information, A feature person tracking result that is a result of tracking the feature person is calculated based on the person region information and the feature person information.
  • a non-transitory computer-readable medium storing a person tracking program is as follows.
  • a non-transitory computer-readable medium storing a program for causing a computer to execute processing for tracking a person included in an image, The processing detects a person area that is an area to which a person included in the video belongs, generates information person area information describing information on the person area, Based on the person area information and information specifying the tracking person, at least one accompanying person accompanying the tracking person is identified from the persons included in the person area information, and the accompanying person is described
  • Generate companion information which is information
  • a characteristic person which is information describing the characteristic person, is selected from the accompanying persons specified by the companion determination information by using the person area information to select a characteristic person having a specific feature amount.
  • Generate information A feature person tracking result that is a result of tracking the feature person is calculated based on the person region information and the feature person information.
  • a person tracking device In the present invention, a person tracking device, a person tracking method, and a non-transitory computer-readable medium storing a person tracking program capable of tracking a tracking target with high accuracy even when the tracking target has few features Can be provided.
  • FIG. 1 is a block diagram showing a configuration of a person tracking apparatus according to a first embodiment.
  • 3 is a flowchart showing a flow of processing of a companion determination unit 102 according to the first embodiment.
  • 3 is a flowchart showing a flow of processing of a companion determination unit 102 according to the first embodiment.
  • 3 is a flowchart showing a flow of processing of the person tracking apparatus 100 according to the first embodiment.
  • 3 is a block diagram illustrating a configuration of a feature person selection unit 103 according to the first embodiment.
  • FIG. 3 is a flowchart showing a flow of processing of a characteristic person determination unit 201 according to the first embodiment.
  • FIG. 6 is a block diagram illustrating a configuration of a feature person selection unit 103 according to the second embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a feature person selection unit 103 according to the third embodiment. It is a block diagram showing the structure of the person tracking system currently disclosed by patent document 1.
  • FIG. 1 is a block diagram showing the configuration of the person tracking apparatus according to this embodiment.
  • the person tracking device 100 includes a person area information extraction unit 101, a companion determination unit 102, a feature person selection unit 103, a person tracking unit 104, and a tracking result calculation unit 105.
  • the person area information extraction unit 101 receives the monitoring video and outputs the extracted person area information to the accompanying person determination unit 102, the feature person selection unit 103, and the person tracking unit 104.
  • the companion determination unit 102 receives the person area information output from the person area information extraction unit 101 and the tracking target person information, and outputs the calculated companion information to the feature person selection unit 103.
  • the feature person selection unit 103 receives the person region information output from the person region information extraction unit 101 and the accompanying person information output from the accompanying person determination unit 102 and inputs the calculated characteristic person information to the person tracking unit 104. And the calculated tracking target person relative position information is output to the tracking result calculation unit 105.
  • the person tracking unit 104 receives the person area information output from the person area information extraction unit 101 and the feature person information output from the feature person selection unit 103, and uses the calculated feature person tracking information as a tracking result calculation unit.
  • the tracking result calculation unit 105 receives the characteristic person tracking information output from the person tracking unit 104 and the tracking target person relative position information output from the characteristic person selection unit 103, and calculates a tracking target person tracking result. Output to any processing unit.
  • a monitoring video is input to the person area information extraction unit 101.
  • the person area information extraction unit 101 generates a frame image from the input monitoring video.
  • the person area information extraction unit 101 performs a process of extracting a person area from the frame image, and further performs a process of extracting person area information describing the person area.
  • the input monitoring video is an analog video
  • the person area information extraction unit 101 captures the monitoring video and generates a frame image.
  • the monitoring video is a digital video encoded by H.264, Motion JPEG, MPEG-2, or the like
  • the person area information extraction unit 101 generates a frame image by decoding using a corresponding decoding method.
  • the person area extraction processing by the person area information extraction unit 101 can use various existing methods. For example, in the extraction of a person area based on a background difference, the person area information extraction unit 101 constructs a model representing background information from a frame image input along a time series, and extracts a moving object using the model. The person region is extracted from the extracted information. Most simply, the person area information extraction unit 101 defines a background image generated by averaging information of a still area of an image between a plurality of frames as a background model, and calculates a difference between the frame image and the background image. Then, a region having a large difference is extracted as a moving object.
  • the person area information extraction unit 101 may directly use the moving object extraction result as the person area extraction result.
  • the person area information extraction unit 101 determines whether the extracted moving object area corresponds to a person, and only an area that is highly likely to be a person. May be extracted as a person region.
  • the person area information extraction unit 101 may extract a person area directly using a person model without using a background model.
  • the person model used here may be a model representing the whole person or a model representing a part of the person.
  • the person area information extraction unit 101 detects a face or head using a face detector or head detector that models and extracts the face or head as a part of the person, and the detection result
  • the person area may be determined from Alternatively, the person area information extraction unit 101 may extract a person area using a detector that detects a part of the person area such as the upper body and the lower body.
  • the person area information extraction unit 101 extracts person area information from the person area extracted by the above-described method.
  • the person area information is information representing the characteristics of the extracted person area.
  • the person area information includes information indicating the position and shape of the person area on the image and information describing the characteristics of the person included in the area specified by the information.
  • the former (information representing the position and shape of the person area on the image) includes silhouette information representing the shape of the person (information obtained by labeling pixels corresponding to the person area), rectangular information representing the circumscribed rectangle of the person area, Alternatively, any information may be used as long as the information represents the shape and position of the person area. For example, it is also possible to represent area information using a descriptor that describes an area defined by MPEG-7.
  • the latter (information describing the characteristics of the person included in the designated area) may be various, including the image characteristics included in the area and the higher-level characteristics of the person itself.
  • the information includes a feature amount representing a human face feature, a hair color and a hairstyle, a feature amount representing a hair feature, a visual feature amount representing a clothing color or pattern, a shape, information representing a clothing type, Includes personal items (hats, glasses, masks, handbags, ties, mufflers, etc. worn by the person), information representing specific marks and logos on clothes, information representing skin color, etc. It is.
  • the face feature can be calculated using a conventionally used face detector and face feature extraction.
  • the feature of the clothes is calculated by designating the clothes area from the person area and extracting information describing the area.
  • Various conventional methods for example, a method for describing a color, pattern, or shape defined in MPEG-7) can be used as a feature extraction method for colors, patterns, and shapes.
  • Information describing a human accessory is calculated by detecting the accessory using a detector that detects a corresponding object from a specific part of the head or body and extracting information describing the region. .
  • Specific marks and logos written on clothes can be detected using a discriminator that has learned the patterns.
  • the specific mark or logo is also calculated by extracting information describing the feature or the identified result from the detected area.
  • the skin color can also be extracted by estimating the skin area from the person area and obtaining the color of that part.
  • the latter information can also include higher-order characteristics.
  • personal height information may be a feature.
  • the height information of the person can be calculated from the three-dimensional position of the person in the real world by using the camera calibration data from the two-dimensional position of the image acquired by the camera.
  • information related to a person's physique can be extracted and used as a feature.
  • information that describes the state of the person, such as riding in a wheelchair, holding a child, walking with a cane, by using a discriminator that determines a specific state such as the person is in a wheelchair can be extracted and used as a feature.
  • a gait feature that is a feature of walking can be calculated and used as a feature.
  • a classifier that identifies a specific state or classifies a gait feature can be constructed by learning the classifier using a learning image.
  • the person area information extraction unit 101 outputs the extracted person area information to the accompanying person determination unit 102, the feature person selection unit 103, and the person tracking unit 104.
  • the accompanying person determination unit 102 determines the accompanying person of the tracking target person from the input tracking target person information and the person area information output from the person area information extraction unit 101, and uses the determination result as the accompanying person information. Output.
  • There are two main methods for determining a companion a method of specifying a companion person after specifying the target person to be tracked and a method of specifying a target person to be tracked after determining a group including the target person to be tracked.
  • the companion determination unit 102 identifies the tracking target person by some method, and then determines a person existing in the vicinity as a companion. This process will be described with reference to the flowchart of FIG.
  • the accompanying person determination unit 102 specifies a tracking target person from the tracking target person information and the person area information (S501).
  • the companion determination unit 102 determines the face feature amount of the tracking target person and the face feature amount of the person area information. To identify the person to be tracked.
  • the tracking target person information includes position information obtained from other sensor information such as RFID
  • the companion determination unit 102 compares the person position information included in the person area information and tracks a person whose position is substantially the same. Identify as subject.
  • the tracking target person identification process is not always executable in all frames, and is therefore executed in executable frames.
  • the accompanying person determination unit 102 determines the accompanying person of the identified tracking target person (S502).
  • the companion determination unit 102 determines the companion determination unit 102, for example, if the distance in the image between the identified tracking target person and each person included in the person area information is within a certain threshold within a certain time.
  • Judge as a companion That is, the companion determination unit 102 tracks the movement of each person from the input person area information for several frames from the frame in which the tracking target person is identified, and in each frame, the tracking target person and other persons are tracked. Calculate the distance.
  • the companion determination unit 102 determines that the person is a companion when the distance is within a predetermined threshold.
  • the companion determination unit 102 does not have to determine only the person who is always within the predetermined threshold as the companion, and accompanies the person who is within the threshold for a certain ratio or more. You may make it judge with a person.
  • the companion determination unit 102 uses the calibration information of the camera used for associating the two-dimensional coordinates in the image with the three-dimensional coordinates in the real world and the position of the person in the image in the real world. The position information of each person at is calculated. Then, the companion determination unit 102 may determine the companion of the tracking target person using the position information of each person.
  • the companion determination unit 102 sets a person whose distance is within a certain threshold as a companion candidate in the frame in which the tracking target person is identified.
  • the accompanying person determination part 102 may determine whether it is a companion by calculating
  • the companion determination unit 102 generates companion information as a result of the companion determination (S502).
  • the companion information is information that specifies which of the information of each person included in the person area information corresponds to the person who is the companion of the person to be tracked. For example, the companion information is given a flag indicating whether or not each person included in the person area information is a companion, and if this value is 1, it indicates that the companion is not companion. Alternatively, the companion information may be expressed in three values so as to include a state in which it is unknown whether the companion is companion.
  • the companion information is information including information for specifying the tracking target person. This companion information calculation is performed only when the tracking target person can be identified.
  • the accompanying person determination unit 102 calculates a group of persons estimated to include the tracking target person, and determines an accompanying person from the group. This process will be described with reference to the flowchart of FIG.
  • the companion determination unit 102 groups persons having close positions from the position information of each person included in the person area information (S511). At this time, the companion determination unit 102 may use the position on the image, or calculates the position of the person in the real world using the camera calibration information as described above. It may be used.
  • the accompanying person determination unit 102 determines the accompanying person (S512).
  • the tracking target person information includes the position information of the tracking target person obtained by other information such as sensor information
  • the companion determination unit 102 selects the group most likely to include the tracking target person.
  • the companion determination unit 102 generates companion information from the selected group.
  • the companion determination unit 102 determines the person to be tracked (S513).
  • the tracking target person information includes information that can specify the tracking target person (such as a facial feature value or a visual feature value of clothes)
  • the companion determination unit 102 may determine whether the target person is a tracking target person from the accompanying persons. Narrow down high people.
  • the accompanying person determination part 102 also includes the information which specifies a tracking object person in accompanying person information. This determination does not need to be performed every frame, and may be performed only when a group that is highly likely to include the tracking target person can be identified.
  • the companion information (which may include information on the person to be tracked) obtained mainly by one of the two methods described above is output to the feature person selection unit 103.
  • the feature person selection unit 103 obtains the feature person information and the tracking target person relative position information based on the person region information output from the person region information extraction unit 101 and the accompanying person information output from the accompanying person determination unit 102. calculate.
  • Characteristic person information is information indicating which person is characteristic and easy to track. For example, if a group of people in white wears one person wearing red clothes, the person wearing red clothes is completely different from the others. Therefore, when tracking using clothes color, it is considered unlikely that people wearing red clothes will be confused with other people. On the other hand, when chasing people wearing other white clothes, there is a high possibility of mistracking because there are many other people in white clothes. In this manner, the feature person selection unit 103 determines the ease of tracking of each person included in the person area information, and selects a person with high ease of tracking as a feature person. Details of the configuration and operation of the feature person selection unit 103 will be described later.
  • the tracking target person relative position information is information representing a relative position between the tracking target person and the characteristic person selected from the accompanying persons.
  • the tracking target person relative position information is vector information obtained by subtracting the position coordinates of the characteristic person from the position coordinates of the tracking target person.
  • the tracking target person relative position information may be information that roughly represents the relative positional relationship such as “the tracking target person is behind the characteristic person”.
  • the relative position information is a representative value of coordinates obtained from the plurality of person information (average, one point, etc.) It may be. Details of the relative position information will also be described later.
  • the feature person selection unit 103 outputs the calculated feature person information to the person tracking unit 104, and outputs the calculated tracking target person relative position information to the tracking result calculation unit 105.
  • the number of characteristic persons is not necessarily limited to one, and a plurality of characteristic persons may exist.
  • the person tracking unit 104 calculates characteristic person tracking information obtained by tracking a characteristic person from the person area information output from the person area information extraction unit 101 and the characteristic person information output from the characteristic person selection unit 103.
  • a tracking method any conventionally used tracking method may be used.
  • the person tracking unit 104 may perform tracking using, for example, a particle filter using a feature amount of clothes.
  • the person tracking unit 104 may perform tracking using a Kalman filter.
  • the person tracking unit 104 selects the next neighboring camera area when a person being tracked appears in an area outside the angle of view of the camera currently being tracked. Predict how far you will go or how long you will be entering the angle of view of the camera. Then, the person tracking unit 104 notifies the camera to be tracked next (a control unit that controls the camera) of information about the characteristics of the person and the estimated time of arrival at the angle of view of the camera. Next, when receiving the information, the control unit of the camera that performs tracking starts searching for the characteristic person slightly before the estimated arrival time.
  • control unit of the camera to be tracked next compares the characteristics of the person newly entering the angle of view with the characteristics of the characteristic person being tracked, and there is a person whose characteristics match. It is determined whether or not to do.
  • the person tracking unit 104 switches to the process of tracking the person in the camera and tracks the person. The method for tracking a person in the same camera is as described above.
  • the person tracking unit 104 outputs the tracking information for the calculated characteristic person to the tracking result calculation unit 105 as characteristic person tracking information.
  • the tracking result calculation unit 105 calculates the tracking target person tracking result from the characteristic person tracking information output from the person tracking unit 104 and the tracking target person relative position information output from the characteristic person selection unit 103.
  • the tracking result calculation unit 105 calculates the tracking result person tracking result by adding the tracking target person relative position information to the characteristic person tracking information.
  • the tracking target person relative position information cannot always be calculated. Therefore, at the time when the tracking target person relative position information cannot be calculated, the tracking result calculation unit 105 calculates the person tracking result using the previous relative position information as it is, or from the previous relative position information.
  • the person tracking result may be calculated by prediction.
  • the tracking result calculation unit 105 temporarily stores the characteristic person tracking information in the buffer until the tracking target person relative position information is calculated next time. At the time when the next tracking target person relative position information is calculated, the tracking result calculation unit 105 uses the relative position information and the previous relative position information to interpolate the relative position information at each time by interpolation. calculate.
  • the tracking result calculation unit 105 may calculate the person tracking result of the tracking target person using the characteristic person tracking information and the relative position information calculated by the interior interpolation.
  • FIG. 4 is a flowchart showing the operation of the person tracking apparatus 100 according to the present embodiment.
  • the person area information extraction unit 101 calculates person area information from the monitoring video (S101). The details of the calculation process of the person area information are as described in the description of the person area information extraction unit 101.
  • the companion determination unit 102 calculates companion information based on the person area information and the tracking target person information (S102). The details of the companion information calculation process are as described in the explanation of the companion determination unit 102.
  • the characteristic person selection unit 103 calculates characteristic person information and tracking target person relative position information based on the person area information and the accompanying person information (S103). The calculation of the information is as described in the description of the feature person selection unit 103.
  • the person tracking unit 104 calculates characteristic person tracking information from the person area information and the characteristic person information (S104).
  • the characteristic person tracking information calculation process is as described in the description of the person tracking unit 104.
  • the tracking result calculation unit 105 calculates a tracking target person tracking result from the characteristic person tracking information and the tracking target person relative position information (S105). Details of the tracking target person tracking result calculation process are as described in the description of the tracking result calculation unit 105.
  • FIG. 5 is a block diagram showing a configuration of the feature person selection unit 103 according to the present embodiment.
  • the feature person selection unit 103 includes a feature person determination unit 201 and a feature specificity information storage unit 202.
  • the feature specificity information storage unit 202 stores feature specificity information and outputs it to the feature person determination unit 201.
  • the feature person determination unit 201 receives the person region information, the accompanying person information, and the feature specificity information output from the feature specificity information storage unit 202, and calculates the feature person information and the tracking target person relative position information. To do.
  • the feature specificity information storage unit 202 stores feature specificity information.
  • the feature specificity information is information indicating how unique (characteristic) the value obtained as each feature amount representing the feature of a person is. For example, in the case of a clothing color feature, the specificity of a commonly seen clothing color (eg white) is low. On the other hand, if it is a color of clothes that is not often seen (for example, bright red), the specificity of the color becomes high.
  • the specific specificity value is calculated by calculating the appearance frequency of each feature amount value (the value of each color in the case of clothes) using the learning data, and calculating a monotonous non-increasing function for the frequency.
  • the value of the self-information amount (-log 2 p where frequency is p) is calculated from the frequency, and the calculated value can be used as the specificity information.
  • a value (for example, 1 / p) corresponding to the inverse document frequency used in the document search may be obtained and this value may be used as the specificity information.
  • ⁇ Specificity information may be switched for each season or time. That is, the feature specificity information storage unit 202 may change the feature specificity information to be stored for each season or time. For example, black clothes increase in winter, but white clothes increase in summer. Or, since the suit jacket is worn in the morning and evening, the frequency of the jacket color is high, but in the daytime only the shirt is often used, so the frequency of the white color is high. Thus, when the frequency changes depending on the season and time, the specificity information may be changed according to the season and time. Moreover, when the tendency of the color of clothes changes with places (for example, Okinawa and Hokkaido), you may change specificity information according to a place.
  • places for example, Okinawa and Hokkaido
  • the specificity information may be changed.
  • the feature is information such as a person's age, gender, and height, and there are many children in the daytime but many adults in the daytime, the daytime is a small age value or a peculiar to the height. However, at night, it is more specific for small age values and heights.
  • the specificity information may be changed according to the change in the attribute of the person existing in the area observed by the monitoring camera.
  • the feature specificity information is input to the feature person determination unit 201. Based on the feature specificity information, the feature person determination unit 201 calculates the specificity of the feature amount data for the person specified by the companion information among the person regions included in the person region information. The characteristic person determination unit 201 determines a person with high specificity as a characteristic person, and outputs information specifying the person to the person tracking unit 104 as characteristic person information.
  • the feature person determination unit 201 calculates the feature specificity of each person from the feature amount of each person included in the person area information (S601).
  • the feature person determination unit 201 directly uses the value as the specificity of each person. To do.
  • the feature person determination unit 201 selects the person region from among the feature value values from which the value of specificity can be acquired. A value similar to the feature value included in the information is calculated. Then, the characteristic person determination unit 201 estimates the specificity value from the similar specificity values. For example, the feature person determination unit 201 may use the specificity value as it is, or may calculate a plurality of similar feature amounts and average the specificity values for these feature amounts. Good.
  • the feature person determination unit 201 can easily and stably select a person with high specificity in the process described later. Furthermore, the characteristic person determination unit 201 can select a characteristic person suitable for the situation by appropriately changing the peculiarity information according to the situation such as time, season, and place.
  • the characteristic person determination unit 201 selects a highly specific person (S602).
  • the feature person determination unit 201 may select only one person having the highest specificity, or may select all persons having specificity greater than a certain threshold.
  • the characteristic person determination unit 201 calculates the difference between the position of the tracking target person and the position of the person selected as the characteristic person, and tracks this difference. It outputs to tracking result calculation part 105 as subject person relative position information (S603).
  • subject person relative position information S603
  • the tracking target person relative position information is obtained by obtaining a difference from each of these persons.
  • the person tracking device 100 identifies a companion of the person to be tracked, selects a characteristic person that is a characteristic person from the accompanying persons, and tracks the characteristic person. Thereby, the person tracking device 100 can perform highly accurate tracking even when tracking a tracking target person with few features.
  • the person tracking device 100 can calculate the detailed position information of the tracking target person. it can.
  • the person tracking apparatus according to the second embodiment is different from the person tracking apparatus described in the first embodiment in that the configuration of the feature person selection unit 103 is different.
  • the human tracking device according to the present embodiment will be described below with respect to differences from the first embodiment.
  • FIG. 7 is a block diagram showing a configuration of the feature person selection unit 103 according to the present embodiment.
  • the feature person selection unit 103 includes a feature specificity determination unit 250 and a feature person determination unit 201.
  • the feature specificity determination unit 250 calculates the feature specificity information using the person region information as an input, and outputs the calculated feature specificity information to the feature person determination unit 201.
  • the feature person determination unit 201 receives the person region information, the accompanying person information, and the feature specificity information output from the feature specificity determination unit 250, and outputs the feature person information and the tracking target person relative position information. .
  • the person area information is input to the feature specificity determination unit 250.
  • the feature specificity determination unit 250 acquires the feature amount of each person area from the person area information, and calculates the specificity of the feature amount value. For example, when the feature amount is a clothing color, the feature specificity determination unit 250 calculates the appearance frequency of each color by summing up the clothing colors included in each person area information, and calculates the specificity according to the appearance frequency. .
  • the appearance frequency may be calculated using only the person information of the current frame, or using all the characteristics of the person who has appeared up to now.
  • the feature specificity determination unit 250 may calculate the above-described appearance frequency using only information on a person who has appeared within a certain time from the present time.
  • the feature specificity determination unit 250 may add the appearance frequency to the past data with a weight that decreases as the time is further away from the present.
  • the feature specificity determination unit 250 may calculate the appearance frequency using past data with different days but close times, or may calculate the appearance frequency using data only in the same season.
  • the feature specificity determination unit 250 may add the appearance frequency with a weight having a small value as the season or time moves away from the time of the current frame. Furthermore, the feature specificity determination unit 250 may calculate the appearance frequency by aggregating information on the person area detected between a plurality of cameras. In this case, the feature specificity determination unit 250 may calculate the appearance frequency with a weight that increases as the physical arrangement between the cameras is closer.
  • the feature specificity determination unit 250 calculates the specificity information of each person from the calculated appearance frequency.
  • the method for calculating the specificity information is the same as the method for calculating based on the learning data described in the description of the feature specificity information storage unit 202 in FIG.
  • the characteristic specificity information obtained in this way is input to the characteristic person determination unit 201.
  • the operation of the feature person determination unit 201 is the same as that of the feature person determination unit 201 shown in FIG.
  • the feature person selection unit 103 calculates the appearance frequency of each feature amount using the actually input monitoring video, and calculates the specificity of each person. Thereby, the feature person selection unit 103 can calculate the specificity most suitable for the place and time where the camera is installed, and can improve the validity of the feature person selection. By improving the validity of the feature person selection, it is possible to improve the tracking accuracy of the tracking target person. Furthermore, even if the specificity information changes with time, the person tracking device according to the present embodiment can appropriately follow the tracking target person.
  • the person tracking apparatus is characterized in that the feature person selection unit 103 includes the feature specificity information storage unit 202 and the feature specificity determination unit 250 described above.
  • the human tracking device will be described below with respect to differences from the first and second embodiments.
  • FIG. 8 is a block diagram showing a configuration of the feature person selection unit 103 according to the present embodiment.
  • the feature person selection unit 103 includes a feature specificity determination unit 250, a feature specificity information storage unit 202, a feature specificity information integration unit 253, and a feature person determination unit 201.
  • the feature specificity determination unit 250 receives the person region information as input, and outputs the first feature specificity information to the feature specificity information integration unit 253.
  • the feature specificity information storage unit 202 outputs the stored feature specificity information to the feature specificity information integration unit 253 as second feature specificity information.
  • the feature specificity information integration unit 253 inputs the first feature specificity information output from the feature specificity determination unit 250 and the second feature specificity information output from the feature specificity information storage unit 202. And the calculated characteristic specificity information is output to the characteristic person determination unit 201.
  • the feature person determination unit 201 receives the person region information, the accompanying person information, and the feature specificity information output from the feature specificity information integration unit 253, and outputs the feature person information and the tracking target person relative position information. To do.
  • the operation of the feature specificity information storage unit 202 is the same as that of the feature specificity information storage unit 202 shown in FIG.
  • the operation of the feature specificity determination unit 250 is the same as that of the feature specificity determination unit 250 shown in FIG.
  • the feature specificity information output from the feature specificity determination unit 250 is input to the feature specificity information integration unit 253 as first feature specificity information.
  • the feature specificity information output from the feature specificity information storage unit 202 is input to the feature specificity information integration unit 253 as second feature specificity information.
  • the feature specificity information integration unit 253 calculates feature specificity information to be supplied to the feature person determination unit 201 using the first feature specificity information and the second feature specificity information.
  • Various calculation methods are conceivable.
  • the feature specificity information integration unit 253 sets the average of both as the feature specificity information supplied to the feature person determination unit 201.
  • the feature specificity information integration unit 253 may calculate an average after weighting one of them. For example, when the feature specificity information integration unit 253 calculates the feature specificity information by increasing the weight of the first feature specificity information, the feature specificity information integration unit 253 emphasizes the monitoring video and the feature specificity. Information can be calculated.
  • the feature specificity information integration unit 253 supplies either one of the first feature specificity information and the second feature specificity information to the feature person determination unit 201 according to time and day of the week. It may be information.
  • the feature specificity information integration unit 253 outputs the calculated feature specificity information to the feature person determination unit 201.
  • the operation of the feature specificity determination unit 250 is the same as that of the feature person determination unit 250 shown in FIG.
  • the feature person selection unit 103 selects feature persons that take advantage of both. Is possible.
  • Each process in the person tracking apparatus according to the first to third embodiments described above may be realized as a program that operates in an arbitrary computer.
  • the program can be stored and provided to a computer using various types of non-transitory computer readable media.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • non-transitory computer-readable media examples include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • a person area information extracting means for detecting a person area that is an area to which a person included in the video belongs, and generating person area information describing the information of the person area; Based on the person area information and information specifying the tracking person, at least one accompanying person accompanying the tracking person is identified from the persons included in the person area information, and the accompanying person is described
  • Companion determination means for generating companion information as information, A characteristic person, which is information describing the characteristic person, is selected from the accompanying persons specified by the companion determination information by using the person area information to select a characteristic person having a specific feature amount.
  • a characteristic person selection means for generating information;
  • a person tracking means for calculating a characteristic person tracking result which is a tracking result of the characteristic person based on the person area information and the characteristic person information;
  • a person tracking device for detecting a person area that is an area to which a person included in the video belongs, and generating person area information describing the information of the person area; Based on the person area information and information specifying the tracking person
  • the companion information includes information specifying the tracking target person,
  • the characteristic person selection means calculates tracking target person relative position information representing a relative position between the tracking target person and the characteristic person,
  • the person tracking device further includes tracking result calculation means for calculating a tracking result of the tracking target person from the characteristic person tracking result and the tracking target person relative position information.
  • the person tracking device according to attachment 1.
  • the feature person selection means includes feature specificity information storage means for storing feature specificity information describing information on the specificity of the feature value, and Calculate the feature amount of each of the accompanying persons specified by the accompanying person information based on the person area information, calculate the specificity of the feature amount of each of the accompanying persons based on the feature specificity information, Characteristic person determination means for selecting the characteristic persons in an order of relatively high specificity,
  • the person tracking device according to appendix 1 or 2, characterized in that:
  • the feature person selection means calculates feature specificity information that is information on the specificity of the value of the feature quantity based on the feature quantity of the person described in the person area information; and Calculate the feature amount of each of the accompanying persons specified by the accompanying person information based on the person area information, calculate the specificity of the feature amount of each of the accompanying persons based on the feature specificity information, Characteristic person determination means for selecting the characteristic persons in an order of relatively high specificity, The person tracking device according to appendix 1 or 2, characterized in that:
  • the characteristic person selection means calculates characteristic first characteristic information, which is information relating to the characteristic value of the characteristic quantity, based on the characteristic quantity of each person described in the person area information.
  • Feature-specificity information storage means for storing second feature-specificity information that describes information about the specificity of the feature value
  • Feature specificity information integration means for calculating integrated feature specificity information obtained by integrating the first feature specificity information and the second feature specificity information
  • the feature amount of each of the accompanying persons specified by the accompanying person information is calculated based on the person area information, and the specificity of the feature amount of each of the accompanying persons is calculated based on the integrated feature specificity information.
  • a characteristic person determination means for selecting the characteristic person in order of relatively high specificity.
  • Appendix 7 The person tracking apparatus according to appendix 3, wherein the feature specificity information accumulating unit changes the feature specificity information to be accumulated according to at least one of a current position, season, and time.
  • the feature specificity information integration means calculates an average value from the first feature specificity information and the second feature specificity information, and generates the integrated feature specificity information from the average value.
  • the feature specificity information integration means weights at least one of the first feature specificity information and the second feature specificity information, calculates an average value from both, and calculates the average value 6.
  • the companion determination unit specifies information on the tracking target person included in the person area information based on the information specifying the tracking target person, and specifies the companion based on the specified information.
  • the person tracking device according to any one of appendices 1 to 9, characterized in that:
  • the companion determination unit performs grouping by grouping persons having close positions from the position information of each person included in the person area information, and based on the information specifying the tracking target person, the tracking target 10.
  • the person tracking device according to any one of appendices 1 to 9, wherein a group to which the person belongs is specified, and the accompanying person information is calculated based on the specified group.
  • (Appendix 12) Detecting a person area that is an area to which a person included in the video belongs, and generating information person area information describing information of the person area; Based on the person area information and information specifying the tracking person, at least one accompanying person accompanying the tracking person is identified from the persons included in the person area information, and the accompanying person is described
  • Generate companion information which is information
  • a characteristic person which is information describing the characteristic person, is selected from the accompanying persons specified by the companion determination information by using the person area information to select a characteristic person having a specific feature amount.
  • Generate information A person tracking method for calculating a feature person tracking result, which is a result of tracking the feature person, based on the person area information and the feature person information.
  • a non-transitory computer-readable medium storing a program for causing a computer to execute processing for tracking a person included in an image, The processing detects a person area that is an area to which a person included in the video belongs, generates information person area information describing information on the person area, Based on the person area information and information specifying the tracking person, at least one accompanying person accompanying the tracking person is identified from the persons included in the person area information, and the accompanying person is described Generate companion information, which is information, A characteristic person, which is information describing the characteristic person, is selected from the accompanying persons specified by the companion determination information by using the person area information to select a characteristic person having a specific feature amount. Generate information, A non-transitory computer-readable medium storing a person tracking program that calculates a characteristic person tracking result that is a result of tracking the characteristic person based on the person area information and the characteristic person information.
  • the present invention it is possible to track a person with a monitoring camera and calculate the position of the person at a specific time. Therefore, an arbitrary system can provide information corresponding to the position to the tracking target person.
  • the present invention can be applied to a child watching service for transmitting a child tracking result to a guardian.
  • the present invention can also be applied to a purpose of tracking a specific person in a general security system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Image Analysis (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

 人物領域情報抽出部101は、映像に含まれる人物の属する領域である人物領域を検出し、人物領域の情報を記述した情報人物領域情報を生成する。同伴者判定部102は、人物領域情報と追跡対象者を指定する情報とに基づいて、人物領域情報に含まれる人物中から追跡対象者に同伴する少なくとも1人の同伴者を特定し、同伴者を記述した情報である同伴者情報を生成する。特徴人物選出部103は、同伴者判定情報によって指定される同伴者の中から、人物領域情報を用いて特異的な特徴量を有する人物である特徴人物を選出し、特徴人物を記述した情報である特徴人物情報を生成する。人物追跡部104は、人物領域情報と、特徴人物選出情報と、に基づいて特徴人物の追跡結果を算出する。

Description

人物追跡装置、人物追跡方法および人物追跡プログラムを格納した非一時的なコンピュータ可読媒体
 本発明は人物追跡装置、人物追跡方法および人物追跡プログラムを格納した非一時的なコンピュータ可読媒体に関し、特に監視カメラで撮影された映像を用いて人物を追跡する人物追跡装置、人物追跡方法および人物追跡プログラムを格納した非一時的なコンピュータ可読媒体に関する。
 近年、監視カメラで撮影された映像を用いて人物を追跡する技術が開示されている。特許文献1は、人物追跡方法の一例として人物の色特徴に基づいて人物を追跡する方式について開示している。
 図9は、特許文献1に開示されている人物追跡システムの実施形態を示している。当該人物追跡システムは、人物領域抽出手段1と、ボクセル生成手段2と、人物色特徴抽出手段3と、人物追跡手段4と、からなる。
 人物領域抽出手段1は、監視映像から人物領域を抽出し、ボクセル生成手段2へ人物領域抽出結果を出力する。ボクセル生成手段2は、人物領域抽出手段1から出力された人物領域抽出結果からボクセル情報を生成し、生成したボクセル情報を人物色特徴抽出手段3へ出力する。人物色特徴抽出手段3は、ボクセル生成手段2から出力されたボクセル情報と監視映像から人物色特徴を抽出し、抽出した人物色特徴を人物追跡手段4へ出力する。人物追跡手段4は、人物色特徴抽出手段3から出力された人物色特徴を用いて人物を追跡し、人物追跡結果を出力する。
 次に、図9に示す人物追跡システムの動作詳細について説明する。
 人物領域抽出手段1は、カメラから入力される監視映像から、背景差分法によって人物領域を抽出する。そして、人物領域抽出手段1は、抽出した人物領域抽出結果をボクセル生成手段2に出力する。
 ボクセル生成手段2は、入力された人物領域抽出結果に基づいてボクセルを生成する。ここで、入力される人物領域抽出結果は、複数のカメラによって取得したものである。ボクセル生成手段2は、入力された人物領域抽出結果を視体積交差法によって3次元空間に投影することにより、空間上での人物の存在位置を表すボクセルを生成する。ボクセル生成手段2は、生成したボクセルを人物色特徴抽出手段3に出力する。
 人物色特徴抽出手段3は、生成されたボクセルと監視カメラ映像に基づいて、人物色特徴として、人物の足元から頭までの色の垂直方向の分布を求める。この際に人物色特徴抽出手段3は、ボクセルの各高さに対して色の平均を算出し、身長で正規化して人物色特徴を算出する。この色特徴は基本的には着ている服の色によって定まるが、同じ高さで全方向の色の平均を算出した値を用いる。これにより、人物色特徴抽出手段3は、服の見え方が方向によって変化することに対して、頑健な色特徴の抽出を実現している。
 人物追跡手段4は、得られた人物色特徴と過去に得られた人物色特徴とを比較し、類似性を判定する。人物追跡手段4は、判定結果に応じて、過去に算出したボクセルと、直近に算出したボクセルとの対応関係を算出する。この結果、人物追跡手段4は、過去の人物抽出結果と現在の抽出結果とを対応付けた人物追跡結果を算出する。
特開2005-250692号公報
 特許文献1に記載の人物追跡システムでは、追跡対象者の着用する服に特徴が無い場合、当該追跡対象者の追跡が困難になる。一般的に、服は類似したものが多い。追跡対象者の着用する服と類似色の服を着用する人物が多い場合、当該人物追跡システムは他の類似した人と混同する確率が大きくなり、精度の高い追跡が困難である。特に、画角に重なりのない監視カメラ間で人物を追跡する場合、特許文献1に記載の人物追跡システムでは、追跡対象者がカメラの死角に入って一旦追跡が途切れると、別のカメラの撮像範囲に追跡対象者が再び現れても、正しく追跡することが困難になる。
 本発明はこのような問題に鑑みてなされたものであり、追跡対象者に特徴が少ない場合であっても高精度な追跡対象者の追跡が可能となる人物追跡装置、人物追跡方法、及び人物追跡プログラムを格納した非一時的なコンピュータ可読媒体を提供することを主たる目的とする。
 本発明にかかる人物追跡装置の一態様は、
 映像に含まれる人物の属する領域である人物領域を検出し、前記人物領域の情報を記述した人物領域情報を生成する人物領域情報抽出手段と、
 前記人物領域情報と追跡対象者を指定する情報とに基づいて、前記人物領域情報に含まれる人物中から前記追跡対象者に同伴する少なくとも1人の同伴者を特定し、前記同伴者を記述した情報である同伴者情報を生成する同伴者判定手段と、
 前記同伴者判定情報によって指定される前記同伴者の中から、前記人物領域情報を用いて特異的な特徴量を有する人物である特徴人物を選出し、前記特徴人物を記述した情報である特徴人物情報を生成する特徴人物選出手段と、
 前記人物領域情報と、前記特徴人物情報と、に基づいて前記特徴人物の追跡結果である特徴人物追跡結果を算出する人物追跡手段と、
を有する、ものである。
 本発明にかかる人物追跡方法の一態様は、
 映像に含まれる人物の属する領域である人物領域を検出し、前記人物領域の情報を記述した情報人物領域情報を生成し、
 前記人物領域情報と追跡対象者を指定する情報とに基づいて、前記人物領域情報に含まれる人物中から前記追跡対象者に同伴する少なくとも1人の同伴者を特定し、前記同伴者を記述した情報である同伴者情報を生成し、
 前記同伴者判定情報によって指定される前記同伴者の中から、前記人物領域情報を用いて特異的な特徴量を有する人物である特徴人物を選出し、前記特徴人物を記述した情報である特徴人物情報を生成し、
前記人物領域情報と、前記特徴人物情報と、に基づいて前記特徴人物の追跡結果である特徴人物追跡結果を算出する、ものである。
 本発明にかかる人物追跡プログラムを格納した非一時的なコンピュータ可読媒体の一態様は、
 映像に含まれる人物を追跡する処理をコンピュータに実行させるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
 前記処理は、前記映像に含まれる人物の属する領域である人物領域を検出し、前記人物領域の情報を記述した情報人物領域情報を生成し、
 前記人物領域情報と追跡対象者を指定する情報とに基づいて、前記人物領域情報に含まれる人物中から前記追跡対象者に同伴する少なくとも1人の同伴者を特定し、前記同伴者を記述した情報である同伴者情報を生成し、
 前記同伴者判定情報によって指定される前記同伴者の中から、前記人物領域情報を用いて特異的な特徴量を有する人物である特徴人物を選出し、前記特徴人物を記述した情報である特徴人物情報を生成し、
前記人物領域情報と、前記特徴人物情報と、に基づいて前記特徴人物の追跡結果である特徴人物追跡結果を算出する、ものである。
 本発明では、追跡対象者に特徴が少ない場合であっても高精度な追跡対象者の追跡が可能となる人物追跡装置、人物追跡方法、及び人物追跡プログラムを格納した非一時的なコンピュータ可読媒体を提供することができる。
実施の形態1にかかる人物追跡装置の構成を示すブロック図である。 実施の形態1にかかる同伴者判定部102の処理の流れを表すフローチャートである。 実施の形態1にかかる同伴者判定部102の処理の流れを表すフローチャートである。 実施の形態1にかかる人物追跡装置100の処理の流れを表すフローチャートである。 実施の形態1にかかる特徴人物選出部103の構成を表すブロック図である。 実施の形態1にかかる特徴人物判定部201の処理の流れを表すフローチャートである。 実施の形態2にかかる特徴人物選出部103の構成を表すブロック図である。 実施の形態3にかかる特徴人物選出部103の構成を表すブロック図である。 特許文献1に開示されている人物追跡システムの構成を表すブロック図である。
<実施の形態1>
 以下、図面を参照して本発明の実施の形態について説明する。図1は、本実施の形態にかかる人物追跡装置の構成を示すブロック図である。人物追跡装置100は、人物領域情報抽出部101と、同伴者判定部102と、特徴人物選出部103と、人物追跡部104と、追跡結果算出部105と、を有する。
 人物領域情報抽出部101は、監視映像を入力とし、抽出した人物領域情報を同伴者判定部102、特徴人物選出部103、及び人物追跡部104に出力する。同伴者判定部102は、人物領域情報抽出部101から出力された人物領域情報と、追跡対象者情報とを入力とし、算出した同伴者情報を特徴人物選出部103に出力する。特徴人物選出部103は、人物領域情報抽出部101から出力された人物領域情報と、同伴者判定部102から出力された同伴者情報と、を入力とし、算出した特徴人物情報を人物追跡部104に出力するとともに、算出した追跡対象者相対位置情報を追跡結果算出部105に出力する。人物追跡部104は、人物領域情報抽出部101から出力された人物領域情報と、特徴人物選出部103から出力された特徴人物情報と、を入力とし、算出した特徴人物追跡情報を追跡結果算出部105に出力する。追跡結果算出部105は、人物追跡部104から出力された特徴人物追跡情報と、特徴人物選出部103から出力された追跡対象者相対位置情報と、を入力とし、追跡対象者追跡結果を算出して任意の処理部に出力する。
 次に、図1に示す人物追跡装置の動作詳細について説明する。
 まず、監視映像が人物領域情報抽出部101に入力される。人物領域情報抽出部101は、入力された監視映像からフレーム画像を生成する。そして人物領域情報抽出部101は、フレーム画像から人物領域を抽出する処理を行い、さらにその人物領域を記述した人物領域情報を抽出する処理を行う。ここで、入力された監視映像がアナログ映像である場合、人物領域情報抽出部101は、監視映像をキャプチャしてフレーム画像を生成する。一方、監視映像がH.264やMotion JPEG,MPEG-2などで符号化されたデジタル映像である場合、人物領域情報抽出部101は、それぞれ対応する復号方式によって復号してフレーム画像を生成する。
 人物領域情報抽出部101による人物領域の抽出処理は、既存の様々な方式を利用することができる。例えば、背景差分に基づく人物領域の抽出では、人物領域情報抽出部101は、時系列に沿って入力されるフレーム画像から背景の情報を表すモデルを構築し、このモデルを用いて移動物体を抽出し、抽出した情報から人物領域を抽出する。最も単純には、人物領域情報抽出部101は、画像の静止領域の情報を複数フレーム間で平均することにより生成した背景画像を背景モデルとして定義し、フレーム画像と背景画像との差分を計算し、差分が大きい領域を移動物体として抽出する。ここで、移動物体が人物に限定される場合、人物領域情報抽出部101は移動物体抽出結果をそのまま人物領域抽出結果としてもよい。一方、人物以外にも移動物体が存在する場合、人物領域情報抽出部101は、抽出された移動物体領域に対して人物に該当するかどうかの判定を行い、人物である可能性が高い領域のみを人物領域として抽出してもよい。
 人物領域情報抽出部101は、背景モデルを用いずに直接人物のモデルを用いて人物領域を抽出してもよい。ここで用いる人物モデルは、人物全体を表すモデルであってもよいし、人物の一部を表すモデルであってもよい。例えば、人物領域情報抽出部101は、人物の一部として顔や頭部をモデル化して抽出するようにした顔検出器や頭部検出器を用いて、顔や頭部を検出し、検出結果から人物領域を定めるようにしてもよい。あるいは、人物領域情報抽出部101は、上半身や下半身など人物領域の一部を検出する検出器を用いて、人物領域を抽出するようにしてもよい。
 人物領域情報抽出部101は、上述した方式により抽出した人物領域から人物領域情報を抽出する。人物領域情報とは、抽出された人物領域の特徴を表す情報である。人物領域情報は、人物領域の画像上の位置や形状を表す情報と、その情報によって指定される領域に含まれる人物の特徴を記述する情報と、が含まれる。
 前者(人物領域の画像上の位置や形状を表す情報)は、人物の形状を表すシルエット情報(人物の領域に相当する画素にラベルを付与した情報)、人物領域の外接矩形を表す矩形情報、あるいは、同様に人物領域の形状や位置を表す情報であればどのような情報であってもよい。例えば、MPEG-7で規定されている領域を記述する記述子を用いて領域情報を表すことも可能である。
 一方、後者(指定される領域に含まれる人物の特徴を記述する情報)は、領域内に含まれる画像特徴や人物自体の高次の特徴まで含めた様々なものが考えられる。例えば、当該情報には、人物の顔特徴を表す特徴量、髪の色や髪型、髪の毛の特徴を表す特徴量、服の色や模様、形状を表す視覚特徴量、服の種別を表す情報、人物の付帯物(帽子やめがね、マスク、ハンドバッグ、ネクタイ、マフラーなど、人物が身につけているもの)、服に記された特定のマークやロゴを表す情報、肌の色を表す情報などが含まれる。
 顔特徴は、従来から用いられている顔検出器と顔特徴抽出を用いて算出することができる。服の特徴は、人物領域から服の領域を指定し、その領域を記述する情報を抽出することにより算出される。色や模様、形状の特徴抽出法としては、従来の様々な方式(例えばMPEG-7で規定されている色や模様、形状を記述する方式)を用いることができる。人物の付帯物を記述する情報は、頭部や身体の特定の部位から該当する物体を検出する検出器を用いて付帯物を検出し、その領域を記述する情報を抽出することにより算出される。服に記された特定のマークやロゴも、それらのパターンを学習した識別器を用いて検出することが可能である。当該特定のマークやロゴも検出された領域からその特徴を記述する情報や識別した結果を抽出することにより算出される。肌の色の場合も、肌領域を人物領域から推定し、その部分の色を求めることで抽出可能である。
 上記した以外にも、後者の情報(指定される領域に含まれる人物の特徴を記述する情報)には、より高次な特徴を含めることも可能である。例えば、人物の身長情報を特徴としても良い。人物の身長情報は、カメラで取得した画像の2次元位置から、カメラのキャリブレーションデータを用いることによって実世界における人物の3次元位置を算出し、当該3次元位置から算出することができる。また、人物の体格に関する情報も同様に抽出し、特徴として利用できる。あるいは、年齢・性別推定器を用いることによって人物の年齢や性別に関する情報を抽出し、当該抽出した情報を特徴として用いることもできる。または、人物が車椅子に乗っているといった特定の状態を判定する識別器を用いることによって、車椅子に乗っている、子供を抱っこしている、杖をついて歩いているといった人物の状態を記述する情報を抽出し、特徴として用いることもできる。あるいは、歩き方の特徴である歩容特徴を算出し、特徴として用いることもできる。特定の状態を識別したり、歩容特徴を分類したりする識別器は、学習画像を用いて識別器を学習させることによって構築可能である。
 人物領域情報抽出部101は、抽出した人物領域情報を同伴者判定部102と、特徴人物選出部103と、人物追跡部104と、に出力する。
 続いて、同伴者判定部102の動作について説明する。同伴者判定部102は、入力された追跡対象者情報と、人物領域情報抽出部101から出力された人物領域情報と、から、追跡対象者の同伴者を判定し、判定結果を同伴者情報として出力する。同伴者の判定方法には、追跡対象者を特定してから同伴者を特定する方法と、追跡対象者を含むグループを判定してから追跡対象者を特定する方法の大きく2つの方法がある。
 追跡対象者を特定してから同伴者を判定する方法では、同伴者判定部102はなんらかの方法で追跡対象者を同定し、次にその周囲に存在する人を同伴者と判定する。図2のフローチャートを参照してこの処理を説明する。
 はじめに、同伴者判定部102は、追跡対象者情報と人物領域情報とから追跡対象者を特定する(S501)。追跡対象者情報が追跡対象者の顔特徴量を含み、人物領域情報が人物の顔特徴量を含む場合、同伴者判定部102は、追跡対象者の顔特徴量と人物領域情報の顔特徴量を照合し、追跡対象者を同定する。追跡対象者情報がRFIDなどの他のセンサ情報によって得られた位置情報を含む場合、同伴者判定部102は、人物領域情報に含まれる人物位置情報と比較し、位置がほぼ一致する人物を追跡対象者として同定する。なお、この追跡対象者の同定処理は、全てのフレームで実行可能とは限らないため、実行可能なフレームにおいて実行される。
 続いて、同伴者判定部102は、同定した追跡対象者の同伴者を判定する(S502)。同伴者の判定(S502)では、同伴者判定部102は、例えば、同定した追跡対象者と人物領域情報に含まれる各人物との画像中における距離が一定時間内に一定の閾値以内であれば同伴者と判定する。すなわち、同伴者判定部102は、追跡対象者が同定されたフレームから数フレーム間、入力される人物領域情報から各人物の動きを追跡し、各フレームにおいて、追跡対象者とそれ以外の人物の距離を算出する。そして、同伴者判定部102は、この距離が所定の閾値以内に収まっている場合に当該人物を同伴者と判定する。ここで、同伴者判定部102は、追跡している間、常に所定の閾値に収まっている人物のみを同伴者と判定しなくても良く、一定の割合以上、閾値以内であった人物を同伴者と判定するようしてもよい。
 あるいは、同伴者判定部102は、画像中の2次元座標と実世界の3次元座標との対応付けに用いるカメラのキャリブレーション情報と、画像中の人物の位置と、を用いて、実世界上での各人物の位置情報を算出する。そして、同伴者判定部102は、各人物の位置情報を用いて追跡対象者の同伴者を判定するようにしてもよい。
 または、同伴者判定部102は、追跡対象者が同定されたフレームにおいて、距離が一定閾値以内の人物を同伴者候補とする。そして、同伴者判定部102は、同伴者候補の動きを求めて、追跡対象者と同じ方向に同程度の速度で動いているかどうかを判定することによって同伴者か否かを判定してもよい。
 同伴者判定部102は、同伴者の判定(S502)の処理結果として同伴者情報を生成する。同伴者情報は、人物領域情報に含まれる各人物の情報のうち、追跡対象人物の同伴者である人物に対応する情報はどれかを指定する情報である。例えば、同伴者情報は、人物領域情報に含まれる各人物が同伴者かどうかを示すフラグを付与し、この値が1であれば同伴者、そうでなければ同伴者でないことを表す。または、同伴者情報は、同伴者かどうか不明であるという状態も含むようにして、3値で表すようになっていてもよい。同伴者情報は、追跡対象者を特定する情報も含む情報である。この同伴者情報の算出は、追跡対象者が特定できた場合にのみ行われる。
 次に、追跡対象者を含むグループを判定してから追跡対象者を特定する方法について説明する。同伴者判定部102は、追跡対象者が含まれることが推定される人物のグループを算出し、このグループ内から同伴者を判定する。図3のフローチャートを参照してこの処理を説明する。
 同伴者判定部102は、人物領域情報に含まれる各人物の位置情報から、位置が近い人物同士をグループ化する(S511)。この際、同伴者判定部102は、画像上の位置を用いてもよいし、上述のようにカメラのキャリブレーション情報を用いて実世界上での人物の位置を算出し、算出した位置情報を用いてもよい。
 次に、同伴者判定部102は、同伴者の判定を行う(S512)。追跡対象者情報がセンサ情報などの他の情報によって得られた追跡対象者の位置情報を含む場合、同伴者判定部102は、追跡対象者が含まれる可能性が最も高いグループを選択する。同伴者判定部102は、選択したグループから同伴者情報を生成する。
 次に、同伴者判定部102は、追跡対象者の判定を行う(S513)。追跡対象者情報が追跡対象者を指定可能な情報(顔特徴量や服の視覚特徴量など)も含んでいる場合、同伴者判定部102は、同伴者の中から追跡対象者の可能性が高い人物を絞り込む。そして同伴者判定部102は、追跡対象者を特定する情報も同伴者情報に含める。この判定は毎フレーム行われる必要はなく、追跡対象者が含まれる可能性が高いグループが特定できた場合にのみ行われればよい。
 上記した主に2つの方法のいずれかによって得られた同伴者情報(追跡対象者の情報を含みうる)は、特徴人物選出部103に出力される。
 続いて、特徴人物選出部103について説明を行う。特徴人物選出部103は、人物領域情報抽出部101から出力された人物領域情報と,同伴者判定部102から出力された同伴者情報と、に基づいて特徴人物情報及び追跡対象者相対位置情報を算出する。
 特徴人物情報は、どの人物が特徴的であり、追跡しやすいかを表す情報である。例えば、白い服を着た集団に一人赤い服を着た人がいる場合、赤い服を着た人は他の人と全く異なる服装である。そのため、服の色を用いて追跡する場合、赤い服を着た人を他の人と混同する可能性は低いと考えられる。逆に他の白い服を着た人を追跡する場合、他にも白い服の人がたくさんいるために追跡を誤る可能性が高い。このように、特徴人物選出部103は、人物領域情報に含まれる各人物の追跡のしやすさを判定し、追跡のしやすさが高い人物を特徴人物として選出する。特徴人物選出部103の構成、及び動作の詳細については後述する。
 追跡対象者相対位置情報は、追跡対象者と、同伴者中から選出された特徴人物と、の相対位置を表す情報である。例えば、追跡対象者相対位置情報は、追跡対象者の位置座標から特徴人物の位置座標を減算して得られるベクトル情報である。あるいは、追跡対象者相対位置情報は、「追跡対象者が特徴人物の後方にいる」といった大雑把に相対位置関係を表す情報であってもよい。または、同伴者情報に含まれる人物中で追跡対象者である可能性が高い人物が複数存在する場合、相対位置情報は、それら複数の人物情報から求まる座標の代表値(平均、ある一点など)であってもよい。相対位置情報の詳細についても後述する。
 特徴人物選出部103は、算出した特徴人物情報を人物追跡部104に出力し、算出した追跡対象者相対位置情報を追跡結果算出部105に出力する。なお、特徴人物は必ずしも一人に限定する必要はなく、複数存在しても良い。
 続いて、人物追跡部104について説明する。人物追跡部104は、人物領域情報抽出部101から出力された人物領域情報と、特徴人物選出部103から出力された特徴人物情報と、から、特徴人物を追跡した特徴人物追跡情報を算出する。追跡の方法は、従来用いられているどのような追跡方法を用いてもよい。同一カメラ映像内での人物の追跡を行う場合、人物追跡部104は、例えば服の特徴量を利用したパーティクルフィルタによって追跡を行うようにしてもよい。あるいは、人物追跡部104は、カルマンフィルタを用いて追跡を行うようにしてもよい。
 次に複数のカメラによる監視映像が入力される場合について説明する。複数カメラ間での追跡の場合、人物追跡部104は、現在追跡が行われているカメラの画角外の領域に追跡を行っている人物が出た場合に次に近隣のどのカメラの領域に行くか、どの位の時刻にそのカメラの画角に入ってくるかを予測する。そして人物追跡部104は、次に追跡が行われるカメラ(を制御する制御部)に対して人物の特徴とそのカメラの画角への到達予定時刻の情報を通知する。次に追跡を行うカメラの制御部は、情報を受信すると到達予定時刻より少し前から該特徴人物の探索を開始する。具体的には、次に追跡を行うカメラの制御部は、画角内に新たに入ってくる人物の特徴と、追跡中の特徴人物の特徴と、を比較し、特徴が合致する人物が存在するか否かを判定する。当該カメラの画角内に追跡対象者が入ってきた場合、人物追跡部104は、当該カメラ内でその人物を追跡する処理に切り替えて人物の追跡を行う。同一カメラ内で人物を追跡する方法に関しては、上述の通りである。
 人物追跡部104は、算出した特徴人物に対する追跡情報を特徴人物追跡情報として追跡結果算出部105に出力する。
 追跡結果算出部105は、人物追跡部104から出力された特徴人物追跡情報と、特徴人物選出部103から出力された追跡対象者相対位置情報と、から、追跡対象者追跡結果を算出する。
 具体的には、追跡結果算出部105は、特徴人物追跡情報に追跡対象者相対位置情報を加算することによって追跡対象者の人物追跡結果を算出する。ただし、追跡対象者相対位置情報は、常に算出できるとは限らない。そのため、追跡対象者相対位置情報が算出できていない時刻では、追跡結果算出部105は、それ以前の相対位置情報をそのまま用いて人物追跡結果を算出するか、あるいは、それ以前の相対位置情報から予測して人物追跡結果を算出するようにしてもよい。
 また人物追跡結果の出力に遅延が許される場合には、追跡結果算出部105は、次に追跡対象者相対位置情報が算出されるまで特徴人物追跡情報をバッファに一時的に溜めておく。そして、次の追跡対象者相対位置情報が算出された時点において、追跡結果算出部105は、この相対位置情報とそれ以前の相対位置情報とを用いて各時刻における相対位置情報を内挿補間により算出する。追跡結果算出部105は、特徴人物追跡情報と、内装補間により算出した相対位置情報を用いて追跡対象者の人物追跡結果を算出してもよい。
 続いて、図4を参照して、図1に示す人物追跡装置100の動作の流れを説明する。図4は、本実施の形態にかかる人物追跡装置100の動作を示すフローチャートである。
 人物領域情報抽出部101は、監視映像から人物領域情報を算出する(S101)。人物領域情報の算出処理の詳細は、人物領域情報抽出部101の説明で記載した通りである。次に、同伴者判定部102は、人物領域情報と追跡対象者情報に基づいて同伴者情報を算出する(S102)。同伴者情報の算出処理の詳細は、同伴者判定部102の説明で記載した通りである。特徴人物選出部103は、人物領域情報と同伴者情報に基づいて、特徴人物情報と追跡対象者相対位置情報とを算出する(S103)。当該情報の算出は、特徴人物選出部103の説明で記載した通りである。続いて、人物追跡部104は、人物領域情報と特徴人物情報とから、特徴人物追跡情報を算出する(S104)。特徴人物追跡情報の算出処理は、人物追跡部104の説明で記載した通りである。次に、追跡結果算出部105は、特徴人物追跡情報と追跡対象者相対位置情報とから、追跡対象者追跡結果を算出する(S105)。追跡対象者追跡結果の算出処理の詳細は、追跡結果算出部105の説明で記載した通りである。
 次に、図5を参照して特徴人物選出部103の構成について説明する。図5は、本実施の形態にかかる特徴人物選出部103の構成を示すブロック図である。
 特徴人物選出部103は、特徴人物判定部201と、特徴特異性情報蓄積部202と、を有する。
 特徴特異性情報蓄積部202は、特徴特異性情報を蓄積しており、これを特徴人物判定部201へ出力する。特徴人物判定手段201は、人物領域情報と、同伴者情報と、特徴特異性情報蓄積部202から出力される特徴特異性情報と、を入力とし、特徴人物情報と追跡対象者相対位置情報を算出する。
 図5に示す特徴人物選出部103の各処理部の具体的な動作について以下に説明する。特徴特異性情報蓄積部202は、特徴特異性情報を蓄積する。
 特徴特異性情報とは、人物の特徴を表す各特徴量として得られた値がどの程度特異であるか(特徴的であるか)を表す情報である。例えば、服の色の特徴の場合、一般によく見られる服の色(例えば白)の特異性は低くなる。一方、あまり見られない服の色(例えば鮮やかな赤)であれば、その色の特異性は高くなる。具体的な特異性の値は、学習データを用いて各特徴量値(服の色であれば各色の値)の出現頻度を算出し、その頻度に対する単調非増加関数によって算出される。例えば、頻度から自己情報量(頻度をpとすると、-log2p)の値が算出され、算出された値を特異性情報として用いることができる。あるいは、文書検索で用いるinverse document frequencyに相当する値(例えば1/p)を求め、この値を特異性情報として用いても良い。
 特異性情報は、季節や時間ごとに切り替えられるようになっていてもよい。すなわち、特徴特異性情報蓄積部202は、蓄積する特徴特異性情報を季節や時間ごとに変更しても良い。例えば冬の場合には黒い服が多くなるが、夏には白い服が多くなる。あるいは、朝晩はスーツのジャケットを着ているためジャケットの色の頻度が高くなるが、昼間はワイシャツのみの場合が多いために白い色の頻度が高くなる。このように、季節や時間によって頻度が変化する場合には、季節や時間に応じて特異性情報を変更してもよい。また、場所によって服の色の傾向が異なる場合(例えば沖縄と北海道)、場所に応じて特異性情報を変更してもよい。
 同様に、監視カメラが観測するエリアに存在する人物の属性が季節や時間や場所によって変化する場合、特異性情報を変更できるようになっていてもよい。例えば、特徴量が人物の年齢、性別、身長等の情報であり、昼間は子供が多く見られるが、夜は大人が多く見られるようなエリアの場合、昼間は小さい年齢の値や身長に対する特異性が低くなるが、夜は小さい年齢の値や身長に対する特異性が高くなる。このように、監視カメラが観測するエリアに存在する人物の属性の変化に応じて、特異性情報を変更できるようになっていてもよい。
 特徴特異性情報は、特徴人物判定部201に入力される。特徴人物判定部201は、特徴特異性情報に基づいて、人物領域情報に含まれる各人物領域のうち同伴者情報によって指定される人物に対し、特徴量データの持つ特異性を算出する。そして、特徴人物判定部201は、特異性が高い人物を特徴人物として判定し、その人物を特定する情報を特徴人物情報として人物追跡部104に出力する。
 特徴人物判定部201の処理を図6のフローチャートを参照して説明する。
 特徴人物判定部201は、人物領域情報に含まれる各人物の特徴量から、各人物の特徴の特異性を算出する(S601)。ここで、人物領域情報に含まれる人物特徴量の値に対応する特異性の値が特徴特異性情報に含まれている場合、特徴人物判定部201は、その値をそのまま各人物の特異性とする。一方、人物領域情報に含まれる人物特徴量の値に対応する特異性の値が含まれない場合、特徴人物判定部201は、特異性の値が取得可能な特徴量の値のうち、人物領域情報に含まれる特徴量の値に類似したものを算出する。そして、特徴人物判定部201は、この類似した特異性の値から特異性の値を推定する。例えば、特徴人物判定部201は、この特異性の値をそのまま用いてもよいし、あるいは、類似する特徴量を複数算出し、これらの特徴量に対する特異性の値の平均をとるようにしてもよい。
 上記の処理により算出した特異性データを用いることにより、特徴人物判定部201は、後述する処理において、特異性の高い人物の選出を容易かつ安定して実行できるようになる。さらに、特異性情報を時間、季節、場所等の状況に応じて適宜変更することによって、特徴人物判定部201は、状況に適した特徴人物の選出が可能になる。
 特徴人物判定部201は、特異性の高い人物を選出する(S602)。ここで、特徴人物判定部201は、特異性が最も高い一人のみを選出してもよいし、ある一定閾値以上の特異性を有する人物を全て選出するようにしてもよい。
 同伴者情報が追跡対象者を特定する情報も含む場合、特徴人物判定部201は、追跡対象者の位置と、特徴人物として選択された人物の位置と、の差分を算出し、この差分を追跡対象者相対位置情報として追跡結果算出部105に出力する(S603)。複数の人物が特徴人物と判定された場合、追跡対象者相対位置情報は、これらの人物それぞれとの差分を求めたものになる。
 続いて、本実施の形態にかかる人物追跡装置100の効果について説明する。一般に、人間はグループ単位で行動することが多い。そのため、追跡対象となる人物に特徴が少ない場合には、同伴者を代わりに追跡することが効果的である。人物追跡装置100は、追跡対象者の同伴者を特定し、この同伴者の中から特徴的な人物である特徴人物を選出し、この特徴人物を追跡している。これにより、人物追跡装置100は、特徴が少ない追跡対象者を追跡する場合であっても、高精度な追跡を行うことができる。
 さらに、特徴人物の位置情報を算出するとともに特徴人物と追跡対象者との相対的な位置関係を算出しているため、人物追跡装置100は、追跡対象者の詳細な位置情報を算出することができる。
<実施の形態2>
 本実施の形態2にかかる人物追跡装置は、実施の形態1に記載の人物追跡装置と比べ、特徴人物選出部103の構成が異なることを特徴とする。本実施の形態にかかる人物追跡装置について、実施の形態1と異なる点を以下に説明する。
 図7は、本実施の形態にかかる特徴人物選出部103の構成を示すブロック図である。特徴人物選出部103は、特徴特異性判定部250と、特徴人物判定部201と、を有する。
 特徴特異性判定部250は、人物領域情報を入力として特徴特異性情報を算出し、算出した特徴特異性情報を特徴人物判定部201に出力する。特徴人物判定部201は、人物領域情報と、同伴者情報と、特徴特異性判定部250から出力された特徴特異性情報と、を入力とし、特徴人物情報及び追跡対象者相対位置情報を出力する。
 続いて、図7に示す特徴人物選出部103の詳細な動作について説明する。人物領域情報は、特徴特異性判定部250へ入力される。特徴特異性判定部250は、人物領域情報から各人物領域の特徴量を取得し、特徴量の値の特異性を算出する。例えば特徴量が服の色である場合、特徴特異性判定部250は、各人物領域情報に含まれる服の色を集計して各色の出現頻度を求め、出現頻度に応じて特異性を算出する。ここで出現頻度は、現在のフレームの人物情報のみを用いてもよいし、現在までに出現した人物の特徴を全て用いて算出してもよい。
 または、特徴特異性判定部250は、現在から一定時間内に出現した人物の情報のみを用いて上述の出現頻度を算出してもよい。特徴特異性判定部250は、過去のデータについて、現在から時間的に遠くなるほど値が小さくなる重みをつけて出現頻度を加算するようにしてもよい。あるいは、特徴特異性判定部250は、日は異なるが時刻が近い過去のデータを用いて出現頻度を算出してもよく、同じ季節のみのデータを用いて出現頻度を算出してもよい。
 特徴特異性判定部250は、季節や時刻が現在フレームの時刻から離れるにつれて、小さな値を持つ重みをつけて出現頻度を加算してもよい。さらにまた、特徴特異性判定部250は、複数カメラ間で検出された人物領域の情報を集計して出現頻度を算出してもよい。この場合、特徴特異性判定部250は、カメラ間の物理的な配置が近いほど値が大きくなる重みをつけて出現頻度を算出するようになっていてもよい。
 このように、特徴特異性判定部250は、算出された出現頻度から各人物の特異性情報を算出する。特異性情報の算出方法は、図5における特徴特異性情報蓄積部202の説明において述べた、学習データに基づいて算出する方法と同様である。
 このようにして得られた特徴特異性情報は、特徴人物判定部201に入力される。特徴人物判定部201の動作は、図5に示す特徴人物判定部201と同様である。
 上記一連の処理により、特徴人物選出部103は、実際に入力される監視映像を用いて各特徴量の出現頻度を算出し、各人物の特異性を算出する。これにより、特徴人物選出部103は、カメラが設置された場所や時間に最も適した特異性を算出でき、特徴人物選出の妥当性を向上させることができる。特徴人物選出の妥当性が向上することにより、追跡対象者の追跡精度を向上させることができる。さらに、特異性の情報が時間とともに変化する場合であっても、本実施の形態にかかる人物追跡装置は、適切に追跡対象者を追従することができる。
<実施の形態3>
 本実施の形態3にかかる人物追跡装置は、特徴人物選出部103内に上述の特徴特異性情報蓄積部202及び特徴特異性判定部250を備えることを特徴とする。本実施の形態にかかる人物追跡装置について、実施の形態1及び2と異なる点を以下に説明する。
 図8は、本実施の形態にかかる特徴人物選出部103の構成を示すブロック図である。特徴人物選出部103は、特徴特異性判定部250と、特徴特異性情報蓄積部202と、特徴特異性情報統合部253と、特徴人物判定部201と、を有する。
 特徴特異性判定部250は、人物領域情報を入力とし、第1の特徴特異性情報を特徴特異性情報統合部253へ出力する。特徴特異性情報蓄積部202は、蓄積されている特徴特異性情報を第2の特徴特異性情報として特徴特異性情報統合部253へ出力する。
 特徴特異性情報統合部253は、特徴特異性判定部250から出力された第1の特徴特異性情報と、特徴特異性情報蓄積部202から出力された第2の特徴特異性情報と、を入力とし、算出した特徴特異性情報を特徴人物判定部201へ出力する。
 特徴人物判定部201は、人物領域情報と、同伴者情報と、特徴特異性情報統合部253から出力された特徴特異性情報と、を入力とし、特徴人物情報及び追跡対象者相対位置情報を出力する。
 続いて、図8に示す特徴人物選出部103の動作の詳細について説明する。特徴特異性情報蓄積部202の動作は、図5に示す特徴特異性情報蓄積部202と同様である。特徴特異性判定部250の動作は、図7に示す特徴特異性判定部250と同様である。特徴特異性判定部250から出力される特徴特異性情報は、第1の特徴特異性情報として特徴特異性情報統合部253の入力となる。特徴特異性情報蓄積部202から出力される特徴特異性情報は、第2の特徴特異性情報として特徴特異性情報統合部253の入力となる。
 特徴特異性情報統合部253は、第1の特徴特異性情報と、第2の特徴特異性情報と、を用いて特徴人物判定部201に対して供給する特徴特異性情報を算出する。この算出方法は、様々な方法が考えられる。例えば、特徴特異性情報統合部253は、両者の平均を特徴人物判定部201に対して供給する特徴特異性情報とする。また、この際、特徴特異性情報統合部253は、一方に重みを付けた上で平均を算出しても良い。例えば、特徴特異性情報統合部253が第1の特徴特異性情報の重みづけを大きくして特徴特異性情報を算出した場合、特徴特異性情報統合部253は監視映像を重視して特徴特異性情報を算出することができる。または、特徴特異性情報統合部253は、時間や曜日に応じて第1の特徴特異性情報と第2の特徴特異性情報のいずれか一方を特徴人物判定部201に対して供給する特徴特異性情報としてもよい。特徴特異性情報統合部253は、算出した特徴特異性情報を特徴人物判定部201に出力する。
 特徴特異性判定部250の動作は、図7に示す特徴人物判定部250と同様である。
 上記したように、予め蓄積していた特徴特異性情報と、動的に算出される特徴特異性情報を統合することにより、特徴人物選出部103は、両者のもつ利点を活かした特徴人物の選出が可能になる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。上述した実施の形態1~3にかかる人物追跡装置内の各処理は、任意のコンピュータ内で動作するプログラムとして実現してもよい。プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 映像に含まれる人物の属する領域である人物領域を検出し、前記人物領域の情報を記述した人物領域情報を生成する人物領域情報抽出手段と、
 前記人物領域情報と追跡対象者を指定する情報とに基づいて、前記人物領域情報に含まれる人物中から前記追跡対象者に同伴する少なくとも1人の同伴者を特定し、前記同伴者を記述した情報である同伴者情報を生成する同伴者判定手段と、
 前記同伴者判定情報によって指定される前記同伴者の中から、前記人物領域情報を用いて特異的な特徴量を有する人物である特徴人物を選出し、前記特徴人物を記述した情報である特徴人物情報を生成する特徴人物選出手段と、
 前記人物領域情報と、前記特徴人物情報と、に基づいて前記特徴人物の追跡結果である特徴人物追跡結果を算出する人物追跡手段と、
 を有する人物追跡装置。
 (付記2)
 前記同伴者情報は、前記追跡対象者を指定する情報を含み、
 前記特徴人物選出手段は、前記追跡対象者と前記特徴人物との相対位置を表す追跡対象者相対位置情報を算出し、
 前記人物追跡装置は、前記特徴人物追跡結果と前記追跡対象者相対位置情報とから前記追跡対象者の追跡結果を算出する追跡結果算出手段をさらに有する、
 付記1に記載の人物追跡装置。
 (付記3)
 前記特徴人物選出手段は、特徴量の値の特異性に関する情報を記述した特徴特異性情報を蓄積する特徴特異性情報蓄積手段と、
 前記同伴者情報により指定される前記同伴者の各々の特徴量を前記人物領域情報に基づいて算出し、前記特徴特異性情報を基に前記同伴者の各々の特徴量の特異性を算出し、前記特異性が相対的に高い順序で前記特徴人物を選出する特徴人物判定手段と、を有する、
 ことを特徴とする付記1または2に記載の人物追跡装置。
 (付記4)
 前記特徴人物選出手段は、前記人物領域情報に記述された人物の特徴量に基づいて、特徴量の値の特異性に関する情報である特徴特異性情報を算出する特徴特異性判定手段と、
 前記同伴者情報により指定される前記同伴者の各々の特徴量を前記人物領域情報に基づいて算出し、前記特徴特異性情報を基に前記同伴者の各々の特徴量の特異性を算出し、前記特異性が相対的に高い順序で前記特徴人物を選出する特徴人物判定手段と、を有する、
 ことを特徴とする付記1または2に記載の人物追跡装置。
 (付記5)
 前記特徴人物選出手段は、前記人物領域情報に記述された各人物の特徴量に基づいて、特徴量の値の特異性に関する情報である第1の特徴特異性情報を算出する特徴特異性判定手段と、
 特徴量の値の特異性に関する情報を記載した第2の特徴特異性情報を蓄積する特徴特異性情報蓄積手段と、
 前記第1の特徴特異性情報と前記第2の特徴特異性情報とを統合した統合特徴特異性情報を算出する特徴特異性情報統合手段と、
 前記同伴者情報により指定される前記同伴者の各々の特徴量を前記人物領域情報に基づいて算出し、前記統合特徴特異性情報を基に前記同伴者の各々の特徴量の特異性を算出し、前記特異性が相対的に高い順序で前記特徴人物を選出する特徴人物判定手段と、を有する、
 ことを特徴とする付記1または2に記載の人物追跡装置。
 (付記6)
 前記特徴特異性判定手段は、前記特徴量の値の出現頻度が小さくなるにつれて前記特異性を高く設定することを特徴とする付記4または付記5に記載の人物追跡装置。
 (付記7)
 前記特徴特異性情報蓄積手段は、現在位置、季節、時間の少なくとも1つに応じて蓄積する前記特徴特異性情報を変更することを特徴とする付記3に記載の人物追跡装置。
 (付記8)
 前記特徴特異性情報統合手段は、前記第1の特徴特異性情報と前記第2の特徴特異性情報と、から平均値を算出し、当該平均値から前記統合特徴特異性情報を生成することを特徴とする付記5に記載の人物追跡装置。
 (付記9)
 前記特徴特異性情報統合手段は、前記第1の特徴特異性情報と前記第2の特徴特異性情報との少なくとも一方に重みづけを行った上で、両者から平均値を算出し、当該平均値を基に前記統合特徴特異性情報を生成することを特徴とする付記5に記載の人物追跡装置。
 (付記10)
 前記同伴者判定手段は、前記追跡対象者を指定する情報に基づいて、前記人物領域情報に含まれる前記追跡対象者の情報を特定し、当該特定した情報に基づいて、前記同伴者を特定することを特徴とする付記1~9のいずれか1項に記載の人物追跡装置。
 (付記11)
 前記同伴者判定手段は、前記人物領域情報に含まれる各人物の位置情報から位置が近い人物同士を同一グループとするグループ化を行い、前記追跡対象者を指定する情報に基づいて、前記追跡対象者が属するグループを特定し、特定したグループに基づいて、前記同伴者情報を算出することを特徴とする付記1~9のいずれか1項に記載の人物追跡装置。
 (付記12)
 映像に含まれる人物の属する領域である人物領域を検出し、前記人物領域の情報を記述した情報人物領域情報を生成し、
 前記人物領域情報と追跡対象者を指定する情報とに基づいて、前記人物領域情報に含まれる人物中から前記追跡対象者に同伴する少なくとも1人の同伴者を特定し、前記同伴者を記述した情報である同伴者情報を生成し、
 前記同伴者判定情報によって指定される前記同伴者の中から、前記人物領域情報を用いて特異的な特徴量を有する人物である特徴人物を選出し、前記特徴人物を記述した情報である特徴人物情報を生成し、
 前記人物領域情報と、前記特徴人物情報と、に基づいて前記特徴人物の追跡結果である特徴人物追跡結果を算出する、人物追跡方法。
 (付記13)
 映像に含まれる人物を追跡する処理をコンピュータに実行させるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
 前記処理は、前記映像に含まれる人物の属する領域である人物領域を検出し、前記人物領域の情報を記述した情報人物領域情報を生成し、
 前記人物領域情報と追跡対象者を指定する情報とに基づいて、前記人物領域情報に含まれる人物中から前記追跡対象者に同伴する少なくとも1人の同伴者を特定し、前記同伴者を記述した情報である同伴者情報を生成し、
 前記同伴者判定情報によって指定される前記同伴者の中から、前記人物領域情報を用いて特異的な特徴量を有する人物である特徴人物を選出し、前記特徴人物を記述した情報である特徴人物情報を生成し、
前記人物領域情報と、前記特徴人物情報と、に基づいて前記特徴人物の追跡結果である特徴人物追跡結果を算出する、人物追跡プログラムを格納した非一時的なコンピュータ可読媒体。
 この出願は、2011年3月28日に出願された日本出願特願2011-070114を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明によれば、監視カメラで人物を追跡し、ある特定時刻における人物の位置を算出することが可能である。そのため、任意のシステムが追跡対象者に対して当該位置に応じた情報提供を行うことができる。または、追跡対象者が子供の場合、本発明は、子供の追跡結果を保護者に伝達する子供の見守りサービスに適用することができる。勿論、本発明は、一般的なセキュリティシステムにおいて特定人物を追跡する用途にも応用可能である。
1 人物領域検出手段
2 ボクセル生成手段
3 人物色抽出手段
4 人物追跡手段
100 人物追跡装置
101 人物領域情報抽出部
102 同伴者判定部
103 特徴人物選出部
104 人物追跡部
105 追跡結果算出部
201 特徴人物判定部
202 特徴特異性情報蓄積部
250 特徴特異性判定部
253 特徴特異性情報統合部

Claims (10)

  1.  映像に含まれる人物の属する領域である人物領域を検出し、前記人物領域の情報を記述した人物領域情報を生成する人物領域情報抽出手段と、
     前記人物領域情報と追跡対象者を指定する情報とに基づいて、前記人物領域情報に含まれる人物中から前記追跡対象者に同伴する少なくとも1人の同伴者を特定し、前記同伴者を記述した情報である同伴者情報を生成する同伴者判定手段と、
     前記同伴者判定情報によって指定される前記同伴者の中から、前記人物領域情報を用いて特異的な特徴量を有する人物である特徴人物を選出し、前記特徴人物を記述した情報である特徴人物情報を生成する特徴人物選出手段と、
     前記人物領域情報と、前記特徴人物情報と、に基づいて前記特徴人物の追跡結果である特徴人物追跡結果を算出する人物追跡手段と、
     を有する人物追跡装置。
  2.  前記同伴者情報は、前記追跡対象者を指定する情報を含み、
     前記特徴人物選出手段は、前記追跡対象者と前記特徴人物との相対位置を表す追跡対象者相対位置情報を算出し、
     前記人物追跡装置は、前記特徴人物追跡結果と前記追跡対象者相対位置情報とから前記追跡対象者の追跡結果を算出する追跡結果算出手段をさらに有する、
     請求項1に記載の人物追跡装置。
  3.  前記特徴人物選出手段は、特徴量の値の特異性に関する情報を記述した特徴特異性情報を蓄積する特徴特異性情報蓄積手段と、
     前記同伴者情報により指定される前記同伴者の各々の特徴量を前記人物領域情報に基づいて算出し、前記特徴特異性情報を基に前記同伴者の各々の特徴量の特異性を算出し、前記特異性が相対的に高い順序で前記特徴人物を選出する特徴人物判定手段と、を有する、
     ことを特徴とする請求項1または2に記載の人物追跡装置。
  4.  前記特徴人物選出手段は、前記人物領域情報に記述された人物の特徴量に基づいて、特徴量の値の特異性に関する情報である特徴特異性情報を算出する特徴特異性判定手段と、
     前記同伴者情報により指定される前記同伴者の各々の特徴量を前記人物領域情報に基づいて算出し、前記特徴特異性情報を基に前記同伴者の各々の特徴量の特異性を算出し、前記特異性が相対的に高い順序で前記特徴人物を選出する特徴人物判定手段と、を有する、
     ことを特徴とする請求項1または2に記載の人物追跡装置。
  5.  前記特徴人物選出手段は、前記人物領域情報に記述された各人物の特徴量に基づいて、特徴量の値の特異性に関する情報である第1の特徴特異性情報を算出する特徴特異性判定手段と、
     特徴量の値の特異性に関する情報を記載した第2の特徴特異性情報を蓄積する特徴特異性情報蓄積手段と、
     前記第1の特徴特異性情報と前記第2の特徴特異性情報とを統合した統合特徴特異性情報を算出する特徴特異性情報統合手段と、
     前記同伴者情報により指定される前記同伴者の各々の特徴量を前記人物領域情報に基づいて算出し、前記統合特徴特異性情報を基に前記同伴者の各々の特徴量の特異性を算出し、前記特異性が相対的に高い順序で前記特徴人物を選出する特徴人物判定手段と、を有する、
     ことを特徴とする請求項1または2に記載の人物追跡装置。
  6.  前記特徴特異性判定手段は、前記特徴量の値の出現頻度が小さくなるにつれて前記特異性を高く設定することを特徴とする請求項4または請求項5に記載の人物追跡装置。
  7.  前記特徴特異性情報蓄積手段は、現在位置、季節、時間の少なくとも1つに応じて蓄積する前記特徴特異性情報を変更することを特徴とする請求項3に記載の人物追跡装置。
  8.  前記特徴特異性情報統合手段は、前記第1の特徴特異性情報と前記第2の特徴特異性情報と、から平均値を算出し、当該平均値から前記統合特徴特異性情報を生成することを特徴とする請求項5に記載の人物追跡装置。
  9.  映像に含まれる人物の属する領域である人物領域を検出し、前記人物領域の情報を記述した情報人物領域情報を生成し、
     前記人物領域情報と追跡対象者を指定する情報とに基づいて、前記人物領域情報に含まれる人物中から前記追跡対象者に同伴する少なくとも1人の同伴者を特定し、前記同伴者を記述した情報である同伴者情報を生成し、
     前記同伴者判定情報によって指定される前記同伴者の中から、前記人物領域情報を用いて特異的な特徴量を有する人物である特徴人物を選出し、前記特徴人物を記述した情報である特徴人物情報を生成し、
     前記人物領域情報と、前記特徴人物情報と、に基づいて前記特徴人物の追跡結果である特徴人物追跡結果を算出する、人物追跡方法。
  10.  映像に含まれる人物を追跡する処理をコンピュータに実行させるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記処理は、前記映像に含まれる人物の属する領域である人物領域を検出し、前記人物領域の情報を記述した情報人物領域情報を生成し、
     前記人物領域情報と追跡対象者を指定する情報とに基づいて、前記人物領域情報に含まれる人物中から前記追跡対象者に同伴する少なくとも1人の同伴者を特定し、前記同伴者を記述した情報である同伴者情報を生成し、
     前記同伴者判定情報によって指定される前記同伴者の中から、前記人物領域情報を用いて特異的な特徴量を有する人物である特徴人物を選出し、前記特徴人物を記述した情報である特徴人物情報を生成し、
     前記人物領域情報と、前記特徴人物情報と、に基づいて前記特徴人物の追跡結果である特徴人物追跡結果を算出する、人物追跡プログラムを格納した非一時的なコンピュータ可読媒体。 
PCT/JP2011/005973 2011-03-28 2011-10-26 人物追跡装置、人物追跡方法および人物追跡プログラムを格納した非一時的なコンピュータ可読媒体 WO2012131816A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/001,251 US9235754B2 (en) 2011-03-28 2011-10-26 Person tracking device, person tracking method, and non-transitory computer readable medium storing person tracking program
RU2013147808/08A RU2546327C1 (ru) 2011-03-28 2011-10-26 Устройство для отслеживания человека, способ отслеживания человека и невременный машиночитаемый носитель, хранящий программу для отслеживания человека
JP2013506855A JP5870996B2 (ja) 2011-03-28 2011-10-26 人物追跡装置、人物追跡方法および人物追跡プログラム
EP11862298.4A EP2693404B1 (en) 2011-03-28 2011-10-26 Person tracking device, person tracking method, and non-temporary computer-readable medium storing person tracking program
BR112013025032A BR112013025032A2 (pt) 2011-03-28 2011-10-26 dispositivo de rastreamento de pessoa, método de rastreamento de pessoa, e meio legível por computador não transitório que armazena programa de rastreamento de pessoa
CN201180069391.7A CN103430214B (zh) 2011-03-28 2011-10-26 人员跟踪设备和人员跟踪方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011070114 2011-03-28
JP2011-070114 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012131816A1 true WO2012131816A1 (ja) 2012-10-04

Family

ID=46929659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005973 WO2012131816A1 (ja) 2011-03-28 2011-10-26 人物追跡装置、人物追跡方法および人物追跡プログラムを格納した非一時的なコンピュータ可読媒体

Country Status (8)

Country Link
US (1) US9235754B2 (ja)
EP (1) EP2693404B1 (ja)
JP (1) JP5870996B2 (ja)
CN (1) CN103430214B (ja)
BR (1) BR112013025032A2 (ja)
MY (1) MY167470A (ja)
RU (1) RU2546327C1 (ja)
WO (1) WO2012131816A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014155159A (ja) * 2013-02-13 2014-08-25 Nec Corp 情報処理システム、情報処理方法及びプログラム
WO2016132769A1 (ja) * 2015-02-19 2016-08-25 シャープ株式会社 撮影装置、撮影装置の制御方法、および制御プログラム
JP2016201758A (ja) * 2015-04-14 2016-12-01 パナソニックIpマネジメント株式会社 施設内人物捜索支援装置、施設内人物捜索支援システムおよび施設内人物捜索支援方法
JPWO2015064292A1 (ja) * 2013-10-30 2017-03-09 日本電気株式会社 画像の特徴量に関する処理システム、処理方法及びプログラム
JP2017157127A (ja) * 2016-03-04 2017-09-07 Necソリューションイノベータ株式会社 捜索支援装置、捜索支援方法、及びプログラム
JP2018084924A (ja) * 2016-11-22 2018-05-31 サン電子株式会社 管理装置及び管理システム
WO2019131062A1 (ja) * 2017-12-27 2019-07-04 パイオニア株式会社 判定装置及び情報記録装置、判定方法並びに判定用プログラム

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10248868B2 (en) * 2012-09-28 2019-04-02 Nec Corporation Information processing apparatus, information processing method, and information processing program
JP6148505B2 (ja) * 2013-03-21 2017-06-14 株式会社東芝 在室確率推定装置およびその方法、ならびにプログラム
CN103984955B (zh) * 2014-04-23 2017-02-22 浙江工商大学 基于显著性特征和迁移增量学习的多摄像机目标识别方法
JP6428144B2 (ja) * 2014-10-17 2018-11-28 オムロン株式会社 エリア情報推定装置、エリア情報推定方法、および空気調和装置
US10687022B2 (en) 2014-12-05 2020-06-16 Avigilon Fortress Corporation Systems and methods for automated visual surveillance
US20160165191A1 (en) * 2014-12-05 2016-06-09 Avigilon Fortress Corporation Time-of-approach rule
US20160182814A1 (en) * 2014-12-19 2016-06-23 Microsoft Technology Licensing, Llc Automatic camera adjustment to follow a target
CN105718905A (zh) * 2016-01-25 2016-06-29 大连楼兰科技股份有限公司 基于行人特征与车载摄像头的盲人检测与识别方法与系统
CN105718904A (zh) * 2016-01-25 2016-06-29 大连楼兰科技股份有限公司 基于组合特征与车载摄像头的盲人检测与识别方法与系统
CN105718907A (zh) * 2016-01-25 2016-06-29 大连楼兰科技股份有限公司 基于导盲犬特征与车载摄像头的盲人检测识别方法与系统
JP6776719B2 (ja) * 2016-08-17 2020-10-28 富士通株式会社 移動体群検出プログラム、移動体群検出装置、及び移動体群検出方法
US11049260B2 (en) * 2016-10-19 2021-06-29 Nec Corporation Image processing device, stationary object tracking system, image processing method, and recording medium
US20180232647A1 (en) * 2017-02-10 2018-08-16 International Business Machines Corporation Detecting convergence of entities for event prediction
CN107316463A (zh) * 2017-07-07 2017-11-03 深圳市诺龙技术股份有限公司 一种车辆监控的方法和装置
CN107370989A (zh) * 2017-07-31 2017-11-21 上海与德科技有限公司 目标寻找方法及服务器
CN107862240B (zh) * 2017-09-19 2021-10-08 中科(深圳)科技服务有限公司 一种多摄像头协同的人脸追踪方法
CN108897777B (zh) * 2018-06-01 2022-06-17 深圳市商汤科技有限公司 目标对象追踪方法及装置、电子设备和存储介质
DE102018214635A1 (de) 2018-08-29 2020-03-05 Robert Bosch Gmbh Verfahren zur Vorhersage zumindest eines zukünftigen Geschwindigkeitsvektors und/oder einer zukünftigen Pose eines Fußgängers
CN110781733B (zh) * 2019-09-17 2022-12-06 浙江大华技术股份有限公司 图像去重方法、存储介质、网络设备和智能监控系统
US20220343673A1 (en) * 2019-09-27 2022-10-27 Nec Corporation Information processing apparatus, information processing method and storage medium
EP3907650A1 (en) * 2020-05-07 2021-11-10 IDEMIA Identity & Security Germany AG Method to identify affiliates in video data
CN111739065A (zh) * 2020-06-29 2020-10-02 上海出版印刷高等专科学校 基于数码印花的目标识别方法、系统、电子设备和介质
JP2022177392A (ja) * 2021-05-18 2022-12-01 富士通株式会社 制御プログラム、制御方法、および情報処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250692A (ja) 2004-03-02 2005-09-15 Softopia Japan Foundation 物体の同定方法、移動体同定方法、物体同定プログラム、移動体同定プログラム、物体同定プログラム記録媒体、移動体同定プログラム記録媒体
JP2006092396A (ja) * 2004-09-27 2006-04-06 Oki Electric Ind Co Ltd 単独行動者及びグループ行動者検知装置
WO2006080367A1 (ja) * 2005-01-28 2006-08-03 Olympus Corporation 粒子群運動解析システム、粒子群運動解析方法及びプログラム
JP2008117264A (ja) * 2006-11-07 2008-05-22 Chuo Electronics Co Ltd 不正通過者検出装置及びこれを利用した不正通過者録画システム
JP2009075802A (ja) * 2007-09-20 2009-04-09 Giken Torasutemu Kk 人物行動検索装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240957B2 (ja) * 2002-08-30 2009-03-18 日本電気株式会社 物体追跡装置、物体追跡方法および物体追跡プログラム
RU2370817C2 (ru) 2004-07-29 2009-10-20 Самсунг Электроникс Ко., Лтд. Система и способ отслеживания объекта
EP1805684A4 (en) * 2004-10-12 2008-10-22 Samsung Electronics Co Ltd METHOD, MEDIUM AND DEVICE FOR PERSON-BASED PHOTOCLUSTERING IN A DIGITAL PHOTO ALBUM AND METHOD, MEDIUM AND DEVICE FOR CREATING A PERSON-BASED DIGITAL PHOTOALBUM
WO2006048809A1 (en) * 2004-11-04 2006-05-11 Koninklijke Philips Electronics N.V. Face recognition
US7479299B2 (en) 2005-01-26 2009-01-20 Honeywell International Inc. Methods of forming high strength coatings
US20080166020A1 (en) * 2005-01-28 2008-07-10 Akio Kosaka Particle-Group Movement Analysis System, Particle-Group Movement Analysis Method and Program
EP1915874A2 (de) * 2005-08-17 2008-04-30 SeeReal Technologies GmbH Verfahren und schaltungsanordnung zum erkennen und verfolgen von augen mehrerer betrachter in echtzeit
CN101582166A (zh) * 2008-05-12 2009-11-18 皇家飞利浦电子股份有限公司 目标的跟踪系统和方法
US8284990B2 (en) * 2008-05-21 2012-10-09 Honeywell International Inc. Social network construction based on data association
JP5144487B2 (ja) * 2008-12-15 2013-02-13 キヤノン株式会社 主顔選択装置、その制御方法、撮像装置及びプログラム
US8320617B2 (en) * 2009-03-27 2012-11-27 Utc Fire & Security Americas Corporation, Inc. System, method and program product for camera-based discovery of social networks
WO2010143290A1 (ja) * 2009-06-11 2010-12-16 富士通株式会社 不審者検出装置、不審者検出方法、および、不審者検出プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250692A (ja) 2004-03-02 2005-09-15 Softopia Japan Foundation 物体の同定方法、移動体同定方法、物体同定プログラム、移動体同定プログラム、物体同定プログラム記録媒体、移動体同定プログラム記録媒体
JP2006092396A (ja) * 2004-09-27 2006-04-06 Oki Electric Ind Co Ltd 単独行動者及びグループ行動者検知装置
WO2006080367A1 (ja) * 2005-01-28 2006-08-03 Olympus Corporation 粒子群運動解析システム、粒子群運動解析方法及びプログラム
JP2008117264A (ja) * 2006-11-07 2008-05-22 Chuo Electronics Co Ltd 不正通過者検出装置及びこれを利用した不正通過者録画システム
JP2009075802A (ja) * 2007-09-20 2009-04-09 Giken Torasutemu Kk 人物行動検索装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014155159A (ja) * 2013-02-13 2014-08-25 Nec Corp 情報処理システム、情報処理方法及びプログラム
JPWO2015064292A1 (ja) * 2013-10-30 2017-03-09 日本電気株式会社 画像の特徴量に関する処理システム、処理方法及びプログラム
US10140555B2 (en) 2013-10-30 2018-11-27 Nec Corporation Processing system, processing method, and recording medium
WO2016132769A1 (ja) * 2015-02-19 2016-08-25 シャープ株式会社 撮影装置、撮影装置の制御方法、および制御プログラム
JP2016201758A (ja) * 2015-04-14 2016-12-01 パナソニックIpマネジメント株式会社 施設内人物捜索支援装置、施設内人物捜索支援システムおよび施設内人物捜索支援方法
JP2017157127A (ja) * 2016-03-04 2017-09-07 Necソリューションイノベータ株式会社 捜索支援装置、捜索支援方法、及びプログラム
JP2018084924A (ja) * 2016-11-22 2018-05-31 サン電子株式会社 管理装置及び管理システム
JP7101331B2 (ja) 2016-11-22 2022-07-15 サン電子株式会社 管理装置及び管理システム
WO2019131062A1 (ja) * 2017-12-27 2019-07-04 パイオニア株式会社 判定装置及び情報記録装置、判定方法並びに判定用プログラム
JPWO2019131062A1 (ja) * 2017-12-27 2021-01-07 パイオニア株式会社 判定装置及び情報記録装置、判定方法並びに判定用プログラム

Also Published As

Publication number Publication date
CN103430214B (zh) 2016-10-26
US20130329958A1 (en) 2013-12-12
CN103430214A (zh) 2013-12-04
RU2546327C1 (ru) 2015-04-10
MY167470A (en) 2018-08-29
JPWO2012131816A1 (ja) 2014-07-24
BR112013025032A2 (pt) 2017-01-10
EP2693404A4 (en) 2016-02-17
EP2693404B1 (en) 2019-04-24
RU2013147808A (ru) 2015-05-10
JP5870996B2 (ja) 2016-03-01
EP2693404A1 (en) 2014-02-05
US9235754B2 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5870996B2 (ja) 人物追跡装置、人物追跡方法および人物追跡プログラム
JP6968645B2 (ja) 画像処理装置、画像処理方法及びプログラム
Gowsikhaa et al. Automated human behavior analysis from surveillance videos: a survey
US20130136304A1 (en) Apparatus and method for controlling presentation of information toward human object
US8432445B2 (en) Air conditioning control based on a human body activity amount
Jalal et al. Depth map-based human activity tracking and recognition using body joints features and self-organized map
WO2015131734A1 (zh) 一种前视监视场景下的行人计数方法、装置和存储介质
US9305217B2 (en) Object tracking system using robot and object tracking method using a robot
JP5271227B2 (ja) 群衆監視装置および方法ならびにプログラム
WO2018084191A1 (ja) 混雑状況分析システム
JP2016057998A (ja) 物体識別方法
CN109583373A (zh) 一种行人重识别实现方法
Ramos et al. Fast-forward video based on semantic extraction
Afsar et al. Automatic human trajectory destination prediction from video
JP2018081654A (ja) 検索装置、表示装置および検索方法
JP2021149687A (ja) 物体認識装置、物体認識方法及び物体認識プログラム
CN107665495B (zh) 对象跟踪方法及对象跟踪装置
Willems et al. A video-based algorithm for elderly fall detection
Sharma et al. NAVI: Navigation aid for the visually impaired
Verma et al. Prediction of satellite images using fuzzy rule based Gaussian regression
KR101564760B1 (ko) 범죄 사건의 예측을 위한 영상 처리 장치 및 방법
Reljin et al. Small moving targets detection using outlier detection algorithms
Kuplyakov et al. Further improvement on an MCMC-based video tracking algorithm
US20230206641A1 (en) Storage medium, information processing method, and information processing apparatus
Rezaei et al. Distibuted human tracking in smart camera networks by adaptive particle filtering and data fusion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013506855

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14001251

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1301005429

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013147808

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013025032

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013025032

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130927