WO2012130666A1 - Verfahren zum ermitteln der fokuslage eines laserstrahls in seinem arbeitsfeld oder arbeitsraum - Google Patents

Verfahren zum ermitteln der fokuslage eines laserstrahls in seinem arbeitsfeld oder arbeitsraum Download PDF

Info

Publication number
WO2012130666A1
WO2012130666A1 PCT/EP2012/054896 EP2012054896W WO2012130666A1 WO 2012130666 A1 WO2012130666 A1 WO 2012130666A1 EP 2012054896 W EP2012054896 W EP 2012054896W WO 2012130666 A1 WO2012130666 A1 WO 2012130666A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
pinhole
detector
measuring
grid
Prior art date
Application number
PCT/EP2012/054896
Other languages
English (en)
French (fr)
Inventor
Thomas Notheis
Original Assignee
Trumpf Laser Gmbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser Gmbh + Co. Kg filed Critical Trumpf Laser Gmbh + Co. Kg
Priority to CN201280017052.9A priority Critical patent/CN103501954B/zh
Publication of WO2012130666A1 publication Critical patent/WO2012130666A1/de
Priority to US14/040,896 priority patent/US20140027421A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam

Definitions

  • the invention relates to a method for determining the focal position or the beam profile of a laser beam deflectable in the xy direction by means of a scanner optics or an xy-movement unit and movable in the z-direction by means of a focusing optics or a z-movement unit at a plurality of measuring points in the 2-dimensional working field or in the 3-dimensional working space of the laser beam, as well as an associated laser processing system.
  • the tool center point (TCP) of the tool "Laser”, ie the focus position of the laser beam, can not be easily measured. This sample Although learning is generally available, it has come to the fore since optics with focal lengths in the range of> 400 mm and in particular also in "on the fly” mode, in which two movements are superimposed, are used.
  • WO 96/08027 A1 discloses a method for determining the x-y focus position of a laser beam which can be deflected in the x-y direction by means of scanner optics.
  • a perforated plate with a power detector arranged behind it, wherein the hole diameter is oriented at the focus diameter or corresponds to it.
  • the laser beam is moved across the measurement hole, resulting in a Gaussian distribution for the measured power.
  • the drag delay of the laser beam moving across the measuring hole results in inaccuracies which must be corrected by averaging the data. A survey of the entire work area or space is not possible in this way.
  • the scanner axis of the scanner optics or the xy- movement unit is in the measurement, whereby inaccuracies due to drag delay can be avoided.
  • This measurement method is both fast and accurate as well as simple, robust and cheap.
  • the focal positions The measurement is wavelength-independent and can also be used with long focal lengths.
  • the xy focus position or the center of gravity (TCP) and / or the beam profile of the laser beam at the respective measuring points can be determined from the measured values and transmitted, for example, as offset correction value to the control of the scanner optics or the xy motion unit.
  • the laser beam in the z-direction within the measuring hole, e.g. in a grid spacing of about 0.1 to
  • the peak value (z-focus position) is calculated and, e.g. transmitted as offset correction value to the control of the focusing optics or z motion unit.
  • a pinhole aperture is used which contains one or more additional holes with different diameters adjacent to or around the actual measurement hole. The measurements are made starting with the largest diameter measuring hole.
  • the laser beam partially or completely passes through the respective holes of the pinhole and corresponding measured values are detected. In this way, the focus position in x, y and z can be easily controlled and the grid can be adjusted according to the deviation of the actual focus position assumed by the control.
  • a perforated plate with a plurality of holes is preferably used. At each measuring hole, a focal position measurement is carried out, with which the working field in this plane is measured and correlated. can be gassed. The field measurement is independent of the wavelength. If the perforated plate is used in conjunction with a Justierkorb or attached to a reference plane, the field can be calibrated on site in the laser processing system with the respective laser. Preferably, such a field measurement is carried out in several levels, with which the working space is measured and can be calibrated.
  • a measuring hole with a hole diameter that is many times smaller than the focal diameter is used. With the measured values thus obtained, the beam profile can be created and used for further analysis.
  • the pinhole is designed to absorb the energy absorbed during the measurement without overheating. For this purpose, for example, countersunk the hole edge of the pinhole and run the pinhole gilded.
  • the detector can be located directly behind the measuring hole of the pinhole and be a simple photodiode.
  • a light guide cable may be used, which forwards the light to the detector arranged elsewhere.
  • a single detector may also be provided, wherein a diffuser is arranged between the perforated plate and the common detector in order to direct the light incident on the holes to the one detector to steer.
  • the invention also relates, in a further aspect, to a laser processing system suitable for carrying out the method described above having the features of claim 12.
  • the laser processing system 1 shown in FIG. 1 is used for processing workpieces (not shown) by means of a laser beam 2, which is generated by a laser 3.
  • the laser beam 2 can be changed by means of focusing optics 4 in its focal length and deflected by means of a scanning optics 5 in the xy direction for machining a workpiece.
  • the scanning optics 5 can be moved in the z-direction via a z-movement unit 6.
  • the xy working field which can be scanned by the laser beam 2, in this case the workpiece support, is designated by 7.
  • a sensor 10 is arranged, which has a pinhole 11 with a provided behind the measuring hole 12 power detector 13.
  • this sensor 10 can be arranged at any measuring points in the working field 7.
  • the hole diameter of the pinhole 1 1 corresponds approximately to the focus diameter of the laser beam 2.
  • the laser beam 2 as shown in Fig. 2, respectively by means of the scanner optics 5 or an xy-movement unit 5 'in an xy grid on the measuring hole 12 of the pinhole 1 1 moves.
  • 9 halftone dots 20 are measured with the detector 3 during the measurement of the stationary scanner axis of the scanner optics 5 or of the xy movement unit 5 '.
  • the edge length of the xy grid is approximately 5 to 00 times the focus diameter of the laser beam 2 and the grid spacing of the xy grid is approximately 0.01 to 1 mm.
  • the xy focus position of the laser beam 2 at the respective measuring point can then be determined from the measured values and transmitted as an offset correction value to the controller of the scanner optics 5 or xy-movement unit 5 '.
  • the xyz focus position can be measured and calibrated throughout the working space.
  • the hole diameter of the pinhole 1 also corresponds approximately to the focus diameter of the laser beam 2.
  • the laser beam 2 is by means of the focusing optics 4 or the z- movement unit 6 in the z-direction within the measuring hole 12 of the pinhole 1 1 in one Z-grid process and measured in each of the grid points, the laser power with the detector 13.
  • the grid spacing of the z-grid is preferably about 0.1 to 1 mm. From the measured values, the peak value, ie the z-focus position of the laser beam 2, can then be determined at the respective measuring point and used as an offset correction value to the controller
  • Focusing optics 4 and the z-movement unit 6 are transmitted.
  • the reference used in this case is the maximum measured value measured along the grid in the previous measurements.
  • the hole diameter of the pinhole aperture 11 is many times smaller than the focal diameter.
  • the edge length of the xy-grid corresponds approximately to the focus diameter of the laser beam 2 and the grid spacing is selected to be correspondingly small.
  • Beam profile measurements are made as described above with reference to FIG.
  • Each of the plurality of holes 12 of the perforated plate 30 may have its own detector or, as shown in FIG. 3, a central common detector 31.
  • a diffuser 32 can be arranged between the perforated plate 30 and the common detector 31 in order to direct the light incident on the holes 12 onto the detector 31.
  • the focus position can be found particularly quickly by the pinhole 1 1, which has a measuring hole 12 of e.g. 0.5 mm, as shown in FIG. 4, with at least one, preferably a plurality of additional holes 33 whose diameters differ from the diameter of the measuring hole (for example 6 mm, 4 mm, 2 mm, 1 mm), is provided.
  • a measuring hole 12 of e.g. 0.5 mm, as shown in FIG. 4
  • additional holes 33 whose diameters differ from the diameter of the measuring hole (for example 6 mm, 4 mm, 2 mm, 1 mm).
  • a measurement is made through the respective hole.
  • the measured value measured in the largest diameter measuring hole is used as a reference. If the measured values of the measurements agree to approx. +/- 5%, then the position in x, y and z is correct. If this is not the case, the measured values measured in the various holes serve as a measure of the deviation of the actual focus position assumed by the control. In this way, the grid, at the grid

Abstract

Bei einem Verfahren zum Ermitteln der Fokuslage oder des Strahlprofils eines mittels einer Scanneroptik (5) oder x-y-Bewegungseinheit (5') in x-y-Richtung ablenkbaren und mittels einer Fokussieroptik (4) oder z-Bewegungseinheit (6) in z-Richtung verfahrbaren Laserstrahls (2) an mehreren Messpunkten im 2-dimensionalen Arbeitsfeld (7) oder im 3-dimensionalen Arbeitsraum des Laserstrahls (2) wird an jedem der Messpunkte eine Lochblende (11) mit nachgeordnetem Detektor (13) angeordnet. An jedem der Messpunkte wird für eine x-y-Fokuslagen- oder Strahlprofilvermessung der Laserstrahl (2) mittels der Scanneroptik (5) oder x-y-Bewegungseinheit (5') in einem x-y-Raster über das Messloch (12) der Lochblende (11) bewegt und in jedem der Rasterpunkte bei ortsfester Scannerachse der Scanneroptik (5) oder x-y-Bewegungseinheit (5') die Laserleistung mit dem Detektor (13) gemessen und/oder für eine z-Fokuslagenvermessung der Laserstrahl (2) mittels der Fokussieroptik (4) oder z-Bewegungseinheit (6) in z-Richtung innerhalb des Messloches (12) der Lochblende (11) verfahren und in jedem der Rasterpunkte die Laserleistung mit dem Detektor (13) gemessen. Aus den Messwerten werden dann die Fokuslage und/oder das Strahlprofil des Laserstrahls (2) an dem jeweiligen Messpunkt ermittelt.

Description

Verfahren zum Ermitteln der Fokuslage eines Laserstrahls in seinem Arbeitsfeld oder Arbeitsraum
Die Erfindung betrifft ein Verfahren zum Ermitteln der Fokuslage oder des Strahlprofils eines mittels einer Scanneroptik oder einer x-y-Bewegungseinheit in x-y-Richtung ablenkbaren und mittels einer Fokussieroptik oder einer z- Bewegungseinheit in z-Richtung verfahrbaren Laserstrahls an mehreren Messpunkten im 2-dimensionalen Arbeitsfeld oder im 3-dimensionalen Arbeitsraum des Laserstrahls, sowie eine zugehörige Laserbearbeitungsanlage.
Der Tool Center Point (TCP) des Werkzeugs "Laser", also die Fokuslage des Laserstrahls, kann nicht einfach ausgemessen werden. Dieses Prob- lern ist zwar generell vorhanden, tritt aber in den Vordergrund, seit Optiken mit Brennweiten im Bereich von > 400mm und insbesondere auch im "on the fly"-Betrieb, bei dem sich zwei Bewegungen überlagern, eingesetzt werden.
Aus der WO 96/08027 A1 ist ein Verfahren zum Ermitteln der x-y-Fokuslage eines mittels einer Scanneroptik in x-y-Richtung ablenkbaren Laserstrahls bekannt. An einem bestimmten ortsfesten Messpunkt des Arbeitsfeldes befindet sich eine Lochblende mit einem dahinter angeordneten Leistungsde- tektor, wobei der Lochdurchmesser am Fokusdurchmesser orientiert ist bzw. diesem entspricht. Für eine x-y-Fokuslagenvermessung wird der Laserstrahl über das Messloch hinweg bewegt, so dass sich für die gemessene Leistung eine Gauss-Verteilung ergibt. Durch den Schleppverzug des sich über das Messloch hinweg bewegenden Laserstrahls ergeben sich Ungenauigkeiten, die durch eine Mittelung der Daten korrigiert werden müssen. Eine Vermessung des gesamten Arbeitsfeldes bzw. -raumes ist auf diese Weise nicht möglich.
Demgegenüber ist es die Aufgabe der Erfindung, ein Verfahren anzugeben, mit dem die x-y- oder z-Fokuslage des Laserstrahls an mehreren, über das gesamte 2-dimensionale Arbeitsfeld bzw. den gesamten 3-dimensionalen Arbeitsraum verteilt angeordneten Messpunkten ausreichend genau, insbesondere mit einer Genauigkeit von ca. ±50μιη in x-y-Richtung und ± mm in z- Richtung, gemessen werden kann.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen von Anspruch 1 gelöst.
Erfindungsgemäß erfolgt die x-y-Fokuslagenvermessung in jedem x-y- Rasterpunkt ortsfest, d.h., die Scannerachse der Scanneroptik oder der x-y- Bewegungseinheit steht bei der Messung, wodurch Ungenauigkeiten aufgrund von Schleppverzug vermieden werden. Dieses Messverfahren ist sowohl schnell und genau als auch einfach, robust und günstig. Die Fokuslagenve- rmessung erfolgt wellenlängenunabhängig und ist auch bei langen Brennweiten einsetzbar.
Erfindungsgemäß ist es möglich, das gesamte Arbeitsfeld bzw. -räum zu vermessen, indem entweder die gleiche Lochblende an den unterschiedlichen Messpunkten angeordnet wird oder in jedem der Messpunkte jeweils eine'Lochblende angeordnet ist. Aus den Messwerten kann die x-y- Fokuslage bzw. der Schwerpunkt (TCP) und/oder das Strahlprofil des Laserstrahls an den jeweiligen Messpunkten ermittelt und z.B. als Offsetkor- rekturwert an die Steuerung der Scanneroptik oder der x-y- Bewegungseinheit übermittelt werden.
Für eine z-Fokuslagenvermessung wird der Laserstrahl in z-Richtung innerhalb des Messloches, z.B. in einem Rasterabstand von ca. 0,1 bis
1 mm (je nach Brennweite des Laserstrahls) verfahren. Aus den Messwerten wird der Scheitelwert (z-Fokuslage) berechnet und z.B. als Offsetkorrekturwert an die Steuerung der Fokussieroptik oder der z- Bewegungseinheit übermittelt. Für eine besonders schnelle Fokuslagenvermessung wird eine Lochblende verwendet, die neben bzw. um das eigentliche Messloch herum ein oder mehrere zusätzliche Löcher mit unterschiedlichen Durchmessern enthält. Die Messungen erfolgen beginnend bei dem Messloch mit dem größten Durchmesser. Je nach Abweichung der tatsächlichen von der von der Steuerung angenommenen Fokuslage, tritt der Laserstrahl teilweise oder vollständig durch die jeweiligen Löcher der Lochblende und es werden dementsprechen- de Messwerte detektiert. Auf diese Weise kann die Fokuslage in x, y und z leicht kontrolliert werden und das Raster entsprechend der Abweichung der tatsächlichen von der von der Steuerung angenommenen Fokuslage ange- passt werden.
Für eine Arbeitsfeldvermessung wird bevorzugt eine Lochplatte mit mehreren Löchern verwendet. An jedem Messloch wird eine Fokuslagenvermessung durchgeführt, womit das Arbeitsfeld in dieser Ebene vermessen ist und korri- giert werden kann. Die Feldvermessung ist unabhängig von der Wellenlänge. Wird die Lochplatte in Verbindung mit einem Justierkorb verwendet oder auf einer Referenzebene angebracht, kann das Feld vor Ort in der Laserbearbeitungsanlage mit dem jeweiligen Laser kalibriert werden. Vorzugsweise wird in mehreren Ebenen eine solche Feldvermessung durchgeführt, womit der Arbeitsraum vermessen ist und kalibriert werden kann.
Für eine Strahlprofilvermessung wird ein Messloch mit einem im Vergleich zum Fokusdurchmesser um ein Vielfaches kleineren Lochdurchmesser ver- wendet. Mit den so gewonnenen Messwerten kann das Strahlprofil erstellt und zur weiteren Analyse verwendet werden.
Die Lochblende ist so ausgeführt, dass sie die bei der Messung absorbierte Energie ohne zu starke Erwärmung aufnimmt. Dazu kann beispielsweise die Lochkante der Lochblende angesenkt und die Lochblende vergoldet ausgeführt sein.
Der Detektor kann sich direkt hinter dem Messloch der Lochblende befinden und eine einfache Photodiode sein. Alternativ kann in das Messloch der Lochblende auch ein Lichtleitkabel eingesetzt sein, das das Licht zu dem an anderer Stelle angeordneten Detektor weiterleitet. Im Falle einer Lochplatte mit mehreren Löchern kann statt mehreren, jeweils den Löchern nachgeordneten Detektoren auch ein einziger Detektor vorgesehen sein, wobei zwischen der Lochplatte und dem gemeinsamen Detektor ein Diffusor angeord- net ist, um das über die Löcher einfallende Licht auf den einen Detektor zu lenken.
Die Erfindung betrifft in einem weiteren Aspekt auch eine zum Durchführen des oben beschriebenen Verfahrens geeignete Laserbearbeitungsanlage mit den Merkmalen von Anspruch 12.
Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinati- onen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
schematisch eine erste Ausführungsform der erfindungsgemäßen Laserbearbeitungsanlage;
das x-y-Messraster eines in Fig. 1 gezeigten Messaufnehmers;
schematisch eine zweite Ausführungsform der erfindungsgemäßen Laserbearbeitungsanlage; und
eine Lochblende mit mehreren im Durchmesser unterschiedlichen Messlöchern.
Die in Fig. 1 gezeigte Laserbearbeitungsanlage 1 dient zum Bearbeiten von Werkstücken (nicht gezeigt) mittels eines Laserstrahls 2, der von einem Laser 3 erzeugt wird. Der Laserstrahl 2 kann mithilfe einer Fokussieroptik 4 in seiner Brennweite geändert und mithilfe einer Scannoptik 5 in x-y-Richtung zur Bearbeitung eines Werkstücks abgelenkt werden. Die Scannoptik 5 ist über eine z-Bewegungseinheit 6 in z-Richtung verfahrbar. Das vom Laserstrahl 2 abscannbare x-y-Arbeitsfeld, vorliegend also die Werkstückauflage, ist mit 7 bezeichnet. Auf diesem Arbeitsfeld 7 ist ein Messaufnehmer 10 angeordnet, der eine Lochblende 11 mit einem hinter dem Messloch 12 vorgesehenen Leistungsdetektor 13 aufweist. Wie gestrichelt angedeutet, kann dieser Messaufnehmer 10 an beliebigen Messpunkten im Arbeitsfeld 7 angeordnet werden. Für eine x-y-Fokuslagenvermessung des Laserstrahls 2 entspricht der Lochdurchmesser der Lochblende 1 1 etwa dem Fokusdurchmesser des Laserstrahls 2. An mehreren Messpunkten wird der Laserstrahl 2, wie in Fig. 2 gezeigt, jeweils mittels der Scanneroptik 5 oder einer x-y-Bewegungseinheit 5' in einem x-y-Raster über das Messloch 12 der Lochblende 1 1 bewegt. In jedem der hier beispielhaft 9 Rasterpunkte 20 wird bei während der Messung ortsfester Scannerachse der Scanneroptik 5 oder der x-y-Bewegungseinheit 5' die Laserleistung mit dem Detektor 3 gemessen. Vorzugsweise betragen die Kantenlänge des x-y-Rasters ca. das 5- bis 00-fache des Fokusdurchmes- sers des Laserstrahls 2 und der Rasterabstand des x-y-Rasters ca. 0,01 bis 1 mm. Aus den Messwerten kann dann die x-y-Fokuslage des Laserstrahls 2 an dem jeweiligen Messpunkt ermittelt und als Offsetkorrekturwert an die Steuerung der Scanneroptik 5 oder x-y-Bewegungseinheit 5' übermittelt werden. Indem eine solche Feldvermessung in mehreren zum x-y-Arbeitsfeld 7 paral- lelen Ebenen durchgeführt wird, kann die x-y-z-Fokuslage im gesamten Arbeitsraum vermessen und kalibriert werden.
Für eine z-Fokuslagenvermessung des Laserstrahls 2 entspricht der Lochdurchmesser der Lochblende 1 ebenfalls etwa dem Fokusdurchmesser des Laserstrahls 2. Der Laserstrahl 2 wird mittels der Fokussieroptik 4 oder der z- Bewegungseinheit 6 in z-Richtung innerhalb des Messloches 12 der Lochblende 1 1 in einem z-Raster verfahren und in jedem der Rasterpunkte die Laserleistung mit dem Detektor 13 gemessen. Vorzugsweise beträgt der Rasterabstand des z-Rasters ca. 0,1 bis 1 mm. Aus den Messwerten kann dann der Scheitelwert, also die z-Fokuslage des Laserstrahls 2, an dem jeweiligen Messpunkt ermittelt und als Offsetkorrekturwert an die Steuerung der
Fokussieroptik 4 bzw. der z-Bewegungseinheit 6 übermittelt werden.
Zur Kontrolle der Fokuslage in x, y und z ist eine einzige Messung in der Mitte des Rasters ausreichend. Als Referenz dient in diesem Fall der maximale Messwert, der bei den vorhergehenden Messungen entlang des Rasters gemessen wurde.
Für eine Strahlprofilvermessung ist der Lochdurchmesser der Lochblende 11 um ein Vielfaches kleiner als der Fokusdurchmesser. Vorzugsweise entspricht die Kantenlänge des x-y-Rasters etwa dem Fokusdurchmessers des Laserstrahls 2 und ist der Rasterabstand entsprechend klein gewählt. Mit den so gewonnenen Messwerten des x-y-Rasters kann das Strahlprofil des Laserstrahls 2 erstellt und analysiert werden. Anders als bei der in Fig. 1 gezeigten Ausführungsform, bei der die gleiche Lochblende 1 1 nacheinander an den mehreren Messpunkten angeordnet wird, wird in Fig. 3 eine Lochplatte 30 mit mehreren, jeweils die Messpunkte defi- nierenden Löchern 12 im Arbeitsfeld 7 angeordnet. Die Fokuslagen- und
Strahlprofilvermessungen erfolgen wie oben mit Bezug auf Fig. 1 beschrieben.
Den mehreren Löchern 12 der Lochplatte 30 kann jeweils ein eigener Detektor oder, wie in Fig. 3 gezeigt, zentral ein gemeinsamer Detektor 31 nachge- ordnet sein. Dabei kann zwischen der Lochplatte 30 und dem gemeinsamen Detektor 31 ein Diffusor 32 angeordnet sein, um das über die Löcher 12 einfallende Licht auf den Detektor 31 zu lenken. Durch Verwendung von Lochplatten 30 mit unterschiedlichen Höhen zum Arbeitsfeld 7 kann die Feldvermessung in mehreren zum x-y-Arbeitsfeld 7 parallelen Ebenen durchgeführt und die x-y-z-Fokuslage im gesamten Arbeitsraum vermessen und kalibriert werden.
Die Fokuslage kann besonders schnell gefunden werden, indem die Lochblende 1 1 , die ein Messloch 12 von z.B. 0,5 mm aufweist, wie in Fig. 4 ge- zeigt, mit mindestens einem, vorzugsweise mehreren, zusätzlichen Löchern 33, deren Durchmesser sich vom Durchmesser des Messlochs unterscheiden (bspw. 6 mm, 4 mm, 2 mm, 1 mm), versehen wird. Beginnend beim Loch mit dem größten Durchmesser erfolgt jeweils eine Messung durch das jeweilige Loch. Der Messwert, der in dem Messloch mit dem größten Durchmesser gemessen wurde, wird als Referenz verwendet. Stimmen die Messwerte der Messungen auf ca. +/- 5 % überein, dann stimmt die Position in x, y und z. Ist das nicht der Fall, so dienen die in den verschiedenen Löchern gemessenen Messwerte als Maß für die Abweichung der tatsächlichen von der von der Steuerung angenommenen Fokuslage. Auf diese Weise kann das Raster, an dessen Rasterpunkten jeweils eine Fokuslagenmessung erfolgt, eingeschränkt werden und die Fokuslage kann besonders schnell vermessen werden.

Claims

Patentansprüche
Verfahren zum Ermitteln der Fokuslage oder des Strahlprofüs eines mittels einer Scanneroptik (5) oder x-y-Bewegungseinheit (5') in x-y- Richtung ablenkbaren und mittels einer Fokussieroptik (4) oder z- Bewegungseinheit (6) in z-Richtung verfahrbaren Laserstrahls (2) an mehreren Messpunkten im 2-dimensionaien Arbeitsfeld (7) oder im 3- dimensionalen Arbeitsraum des Laserstrahls (2),
wobei an jedem der Messpunkte eine Lochblende (11 ) mit nachgeordnetem Detektor (13; 31) angeordnet wird,
wobei an jedem der Messpunkte für eine x-y-Fokuslagen- oder Strahlprofilvermessung der Laserstrahl (2) mittels der Scanneroptik (5) oder x-y-Bewegungseinheit (5') in einem x-y-Raster über das Messloch (12) der Lochblende ( ) bewegt wird und in jedem der Rasterpunkte bei ortsfester Scannerachse der Scanneroptik (5) oder x-y- Bewegungseinheit (5') die Laserleistung mit dem Detektor ( 3; 31 ) gemessen wird und/oder für eine z-Fokuslagenvermessung der Laserstrahl (2) mittels der Fokussieroptik (4) oder z-Bewegungseinheit (6) in z-Richtung innerhalb des Messloches (12) der Lochblende (11 ) erfahren wird und in jedem der Rasterpunkte die Laserleistung mit dem Detektor (13; 31 ) gemessen wird, und
wobei aus den Messwerten die Fokuslage und/oder das Strahlprofil des Laserstrahls (2) an dem jeweiligen Messpunkt ermittelt werden.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass für eine x-y-Fokuslagenvermessung der Lochdurchmesser der Lochblende (11 ) etwa dem Fokusdurchmesser des Laserstrahls (2) entspricht.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für eine x-y-Fokuslagenvermessung die Kantenlänge des x-y-Rasters ca. das 5- bis 100-fache des Fokusdurchmessers des Laserstrahls (2) beträgt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Rasterabstand des x-y-Rasters ca. 0,01 bis 1 mm beträgt.
5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass für eine z-Fokuslagenvermessung der Rasterabstand des z-Rasters ca. 0,1 bis 1 mm beträgt.
6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die gemessene x-y-Fokuslage als Offsetkorrekturwert an die Scanneroptik (5) oder x-y-Bewegungseinheit (5') übermittelt wird.
Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die gemessene z-Fokuslage als Offsetkorrekturwert an die Fokussieroptik (5) und/oder an die z-Bewegungseinheit (6) übermit telt wird.
Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Lochblende (1 1 ) zusätzlich zum Messloch (12) mit mindestens einem weiteren Loch (33) versehen ist, welches sich in seinem Durchmesser von dem Messloch (12) unterscheidet.
Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass für eine Strahlprofilvermessung der Lochdurchmesser der Lochblende (1 1 ) um ein Vielfaches kleiner als der Fokusdurchmesser ist.
10. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die gleiche Lochblende (1 1 ) nacheinander an den mehreren Messpunkten angeordnet wird.
1 1 . Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine Lochplatte (30) mit mehreren die Messpunkte definierenden Löchern (12) im Arbeitsfeld (7) oder in mindestens einer Ebene des Arbeitsraums angeordnet wird.
12. Verfahren nach Anspruch 1 1 , dadurch gekennzeichnet, dass den mehreren Löchern (12) der Lochplatte (30) ein gemeinsamer Detektor (31 ) oder jeweils ein eigener Detektor (13) nachgeordnet ist.
13. Laserbearbeitungsanlage (1 ) zum Bearbeiten von Werkstücken,
mit einer Scanneroptik (5) oder x-y-Bewegungseinheit (5') zum Ablenken eines Laserstrahls (2) in x-y-Richtung,
mit einer Fokussieroptik (4) und/oder einer z-Bewegungseinheit (6) zum Verfahren des Laserstrahls (2) in z-Richtung, und
mit mindestens einer im 2-dimensionalen Arbeitsfeld (7) oder im 3- dimensionalen Arbeitsraum des abgelenkten Laserstrahls (2) angeordneten oder anordnenbaren Lochblende (1 1 ) mit nachgeordnetem Detektor (13; 31 ).
14. Laserbearbeitungsanlage nach Anspruch 13, dadurch gekennzeichnet, dass die gleiche Lochblende (1 1 ) im 2-dimensionalen Arbeitsfeld (7) oder im 3-dimensionalen Arbeitsraum an mehreren Messpunkten anordnenbar ist.
15. Laserbearbeitungsanlage nach Anspruch 13, dadurch gekennzeichnet, dass eine Lochplatte (30) mit mehreren Löchern (12) im 2- dimensionalen Arbeitsfeld (7) oder in mindestens einer Ebene des Arbeitsraums angeordnet oder anordnenbar ist.
16. Laserbearbeitungsanlage nach Anspruch 15, dadurch gekennzeichnet, dass den mehreren Löchern (12) der Lochplatte (30) jeweils ein eigener Detektor (13) oder ein gemeinsamer Detektor (31 ) nachgeordnet ist.
17. Laserbearbeitungsaniage nach Anspruch 16, dadurch gekennzeichnet, dass zwischen den Löchern (12) der Lochplatte (30) und dem gemeinsamer Detektor (31 ) ein Diffusor (32) angeordnet ist.
18. Laserbearbeitungsanlage nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass die Lochblende (1 1 ) mehrere Messlöcher (12, 33) mit jeweils unterschiedlichen Durchmessern aufweist.
PCT/EP2012/054896 2011-03-31 2012-03-20 Verfahren zum ermitteln der fokuslage eines laserstrahls in seinem arbeitsfeld oder arbeitsraum WO2012130666A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280017052.9A CN103501954B (zh) 2011-03-31 2012-03-20 用于求取激光射束在其工作区域或工作空间中的焦点位置的方法
US14/040,896 US20140027421A1 (en) 2011-03-31 2013-09-30 Method of Determining a Focal Point or Beam Profile of a Laser Beam in a Working Field

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011006553A DE102011006553B4 (de) 2011-03-31 2011-03-31 Verfahren zum Ermitteln der Fokuslage eines Laserstrahls in seinem Arbeitsfeld oder Arbeitsraum
DE102011006553.9 2011-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/040,896 Continuation US20140027421A1 (en) 2011-03-31 2013-09-30 Method of Determining a Focal Point or Beam Profile of a Laser Beam in a Working Field

Publications (1)

Publication Number Publication Date
WO2012130666A1 true WO2012130666A1 (de) 2012-10-04

Family

ID=45876762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/054896 WO2012130666A1 (de) 2011-03-31 2012-03-20 Verfahren zum ermitteln der fokuslage eines laserstrahls in seinem arbeitsfeld oder arbeitsraum

Country Status (4)

Country Link
US (1) US20140027421A1 (de)
CN (1) CN103501954B (de)
DE (1) DE102011006553B4 (de)
WO (1) WO2012130666A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015028110A1 (de) * 2013-08-28 2015-03-05 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum feststellen von abweichungen einer ist-lage eines laserbearbeitungskopfes von seiner soll-lage
DE102015226722A1 (de) * 2015-12-23 2017-06-29 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Kalibrieren einer Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts
EP3431261A1 (de) * 2017-07-21 2019-01-23 CL Schutzrechtsverwaltungs GmbH Vorrichtung zur additiven herstellung dreidimensionaler objekte

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105252144B (zh) * 2014-07-17 2017-11-03 大族激光科技产业集团股份有限公司 一种高精度激光随动切割头及其监测和自动寻焦方法
US9572715B2 (en) * 2014-07-25 2017-02-21 Amo Manufacturing Usa, Llc Systems, devices, and methods for calibration of beam profilers
DE102015001421B4 (de) 2015-02-06 2016-09-15 Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung Vorrichtung und Verfahren zur Strahldiagnose an Laserbearbeitungs-Optiken (PRl-2015-001)
DE102015004163B4 (de) 2015-04-01 2017-03-23 Primes Gmbh Vorrichtung und Verfahren zur Bestimmung von Eigenschaften eines Laserstrahls
EP3906904A3 (de) 2015-10-21 2022-01-26 AMO Development, LLC Laserstrahlkalibrierung und strahlqualitätsmessung in laserchirurgiesystemen
DE102015016240B3 (de) 2015-12-16 2017-05-24 Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung Transparente Mess-Sonde für Strahl-Abtastung
DE102016001355B4 (de) 2016-02-08 2022-03-24 Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung Verfahren und Vorrichtung zur Analyse von Laserstrahlen in Anlagen für generative Fertigung
JP6825234B2 (ja) * 2016-06-03 2021-02-03 株式会社リコー 計測装置、計測方法、加工装置、および被加工物の生産方法
DE102016222187A1 (de) * 2016-11-11 2018-05-17 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Bestimmen eines Strahlprofils eines Laserstrahls und Bearbeitungsmaschine
DE102017005418B4 (de) 2017-06-09 2019-12-24 Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung Vorrichtung zur Abtastung eines Lichtstrahls
WO2019014290A1 (en) * 2017-07-12 2019-01-17 3D Systems, Inc. SENSOR SYSTEM FOR DIRECT CALIBRATION OF HIGH ENERGY DENSITY LASERS USED IN DIRECT METAL LASER FUSION PROCESS
DE102017131224A1 (de) * 2017-12-22 2019-06-27 Precitec Gmbh & Co. Kg Verfahren und Vorrichtung zur Erfassung einer Fokuslage eines Laserstrahls
IL277622B2 (en) 2018-03-30 2024-02-01 Edison Welding Inst Inc A laser beam system for producing a profile for use in the production of powder substrate fusion by laser
FR3081366B1 (fr) * 2018-05-28 2021-11-05 Beam Dispositif et procede de detection de la position d'un faisceau laser
DE102018219129B3 (de) * 2018-11-09 2019-11-07 Trumpf Laser Gmbh Verfahren und Computerprogrammprodukt zur OCT-Messstrahljustierung
DE102019124258A1 (de) * 2019-09-10 2021-03-11 Carl Zeiss Meditec Ag Verfahren zur Charakterisierung eines Laserstrahls eines Laserbearbeitungssystems, Blendenanordnung und Laserbearbeitungssystem
DE102019132619A1 (de) * 2019-12-02 2021-06-02 Trumpf Laser Gmbh Verfahren zur Abstandsmessung mittels OCT und zugehöriges Computerprogrammprodukt
DE102022104184A1 (de) 2022-02-22 2023-08-24 Kurtz Gmbh & Co. Kg Vorrichtung, System und Verfahren zum Kalibrieren einer Lasereinrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2083216A (en) * 1980-09-02 1982-03-17 Amada Co Ltd Determining the focus position of focused beams
WO1996008027A1 (en) 1994-09-07 1996-03-14 Lumonics Corporation Focused laser beam measurement system and method of beam location
DE10150129C1 (de) * 2001-10-11 2003-04-17 Siemens Ag Verfahren zum Kalibrieren einer Laserbearbeitungsmaschine, Kalibriereinrichtung für Laserbearbeitungsmaschinen sowie Substrathalter für eine Laserbearbeitungsmaschine
DE102004043072A1 (de) * 2003-09-17 2005-04-21 Daimler Chrysler Ag Vorrichtung zum Bearbeiten durch einen Laserstrahl
DE102009016585A1 (de) * 2009-04-06 2010-10-07 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zum Kalibrieren einer Bestrahlungsvorrichtung
WO2012013818A1 (de) * 2010-07-30 2012-02-02 Isedo Ag Verfahren und vorrichtung zum kalibrieren einer laserbearbeitungsmaschine unter verwendung eines laserlicht-sensors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726496B1 (fr) * 1994-11-09 1997-01-17 Aerospatiale Procede de localisation spatiale du point focal d'un faisceau laser d'une machine d'usinage et outillage pour la mise en oeuvre de ce procede
DE102004030607A1 (de) * 2004-06-24 2006-02-02 Siemens Ag Verfahren und Vorrichtung zum Vermessen des Strahlprofils eines Laserstrahls, Laserbearbeitungsmaschine
CN101349551B (zh) * 2007-07-20 2012-08-29 通用电气公司 轮廓测定设备及操作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2083216A (en) * 1980-09-02 1982-03-17 Amada Co Ltd Determining the focus position of focused beams
WO1996008027A1 (en) 1994-09-07 1996-03-14 Lumonics Corporation Focused laser beam measurement system and method of beam location
US5521374A (en) * 1994-09-07 1996-05-28 Lumonics Corporation Focused laser beam measurement system and method of beam location
DE10150129C1 (de) * 2001-10-11 2003-04-17 Siemens Ag Verfahren zum Kalibrieren einer Laserbearbeitungsmaschine, Kalibriereinrichtung für Laserbearbeitungsmaschinen sowie Substrathalter für eine Laserbearbeitungsmaschine
DE102004043072A1 (de) * 2003-09-17 2005-04-21 Daimler Chrysler Ag Vorrichtung zum Bearbeiten durch einen Laserstrahl
DE102009016585A1 (de) * 2009-04-06 2010-10-07 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zum Kalibrieren einer Bestrahlungsvorrichtung
WO2012013818A1 (de) * 2010-07-30 2012-02-02 Isedo Ag Verfahren und vorrichtung zum kalibrieren einer laserbearbeitungsmaschine unter verwendung eines laserlicht-sensors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015028110A1 (de) * 2013-08-28 2015-03-05 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum feststellen von abweichungen einer ist-lage eines laserbearbeitungskopfes von seiner soll-lage
US10207360B2 (en) 2013-08-28 2019-02-19 Trumpf Laser- Und Systemtechnik Gmbh Determining deviations of an actual position of a laser machining head from a desired position
DE102015226722A1 (de) * 2015-12-23 2017-06-29 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Kalibrieren einer Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts
US10792865B2 (en) 2015-12-23 2020-10-06 Eos Gmbh Electro Optical Systems Device and method for calibrating a device for generatively manufacturing a three-dimensional object
EP3431261A1 (de) * 2017-07-21 2019-01-23 CL Schutzrechtsverwaltungs GmbH Vorrichtung zur additiven herstellung dreidimensionaler objekte
US10760958B2 (en) 2017-07-21 2020-09-01 Concept Laser Gmbh Method for additively manufacturing of three-dimensional objects

Also Published As

Publication number Publication date
DE102011006553B4 (de) 2013-04-11
DE102011006553A1 (de) 2012-10-04
CN103501954B (zh) 2016-03-02
US20140027421A1 (en) 2014-01-30
CN103501954A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
DE102011006553B4 (de) Verfahren zum Ermitteln der Fokuslage eines Laserstrahls in seinem Arbeitsfeld oder Arbeitsraum
DE102007063627B4 (de) Verfahren zur Bestimmung der Lage eines Laserstrahls relativ zu einer Öffnung, sowie Laserbearbeitungsmaschine
DE102012204128B4 (de) Hochauflösende Scanning-Mikroskopie
EP2592461B1 (de) Mikroskopische Einrichtung und Verfahren zur dreidimensionalen Lokalisierung von punktförmigen Objekten in einer Probe
DE102012212278B4 (de) Anordnung zum Erzeugen von Bohrungen oder Schweißnähten
EP2847540B1 (de) Verbessertes beleuchtungsmodul für ein koordinatenmessgerät
WO2020094709A2 (de) Verfahren und computerprogrammprodukt zur oct-messstrahljustierung
DE102016014564A1 (de) Messvorrichtung zum Überwachen eines Bearbeitungsprozesses unter Verwendung von an unterschiedlichen Messpositionen erfassten Messinformationen
WO2016128287A1 (de) Mehrkopf-laseranlage mit sensoreinheit in kombination mit einem beweglichen optischen führungselement
EP1718925B1 (de) Tastkopf für ein koordinatenmessgerät
DE102017010055A1 (de) Laserstrahlschweißen von geometrischen Figuren mit OCT-Nahtführung
DE102015004163B4 (de) Vorrichtung und Verfahren zur Bestimmung von Eigenschaften eines Laserstrahls
DE10056329B4 (de) Optisches Abstandsmeßverfahren und Abstandssensor
DE102005038587A1 (de) Messsystem und Verfahren zum Vermessen eines Laserstrahls
EP3566793B1 (de) Schneidbutzenerkennung für biegezellen
DE102016008184B4 (de) Messvorrichtung und Verfahren zum Überwachen eines Bearbeitungsprozesses zur Materialbearbeitung eines Werkstücks unter synchroner Ansteuerung eines Bearbeitungsscanners und eines Referenzarmscanners sowie System zum Bearbeiten und Überwachen eines Werkstücks mit einer Messvorrichtung
DE102007047298B3 (de) Verfahren zur Fokuslagenbestimmung und Laserbearbeitungsdüse
EP2928280B1 (de) Messmarkensystem zur kalibrierung einer maschine
DE102016225484B3 (de) Verfahren und optischer Sensor zur Bestimmung mindestens einer Koordinate mindestens eines Messobjekts
DE102005043064B4 (de) Verfahren zum Messen des Abstandes eines Objektes
EP2767797A1 (de) Niedrigkohärenzinterferometer und Verfahren zur ortsaufgelösten optischen Vermessung des Oberflächenprofils eines Objekts
DE102019116280B3 (de) Verfahren und Vorrichtung zum Bestimmen einer Länge
DE102006059269B4 (de) Vorrichtung und Verfahren zur optischen Abstandsmessung
DE102022109740A1 (de) Verfahren und Vorrichtung zur Durchführung optischer Kohärenzmessungen für eine Überwachung eines Bearbeitungsprozesses eines Werkstücks
AT516044B1 (de) Biegewinkel-Messvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12710244

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12710244

Country of ref document: EP

Kind code of ref document: A1