WO2012130071A1 - 一种资源调度方法和设备 - Google Patents

一种资源调度方法和设备 Download PDF

Info

Publication number
WO2012130071A1
WO2012130071A1 PCT/CN2012/072773 CN2012072773W WO2012130071A1 WO 2012130071 A1 WO2012130071 A1 WO 2012130071A1 CN 2012072773 W CN2012072773 W CN 2012072773W WO 2012130071 A1 WO2012130071 A1 WO 2012130071A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
downlink
channel
transmission
sta
Prior art date
Application number
PCT/CN2012/072773
Other languages
English (en)
French (fr)
Inventor
鲍东山
王竞
刘慎发
曾勇波
周玉宝
闫志刚
雷俊
潘立军
王飞飞
Original Assignee
北京新岸线无线技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京新岸线无线技术有限公司 filed Critical 北京新岸线无线技术有限公司
Priority to CN201280012812.7A priority Critical patent/CN103621169A/zh
Priority to KR1020137028292A priority patent/KR20140031239A/ko
Priority to JP2014501415A priority patent/JP2014515208A/ja
Priority to CN201811269770.0A priority patent/CN109587808B/zh
Priority to US14/007,598 priority patent/US9351315B2/en
Priority to EP12762876.6A priority patent/EP2690919A4/en
Publication of WO2012130071A1 publication Critical patent/WO2012130071A1/zh
Priority to US15/130,384 priority patent/US9999068B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the application date of this application is March 25, 2011, and the application number is 201110074598.5.
  • the invention name is the priority of the prior art application for the method and system for adjusting the demodulation pilot in the wireless communication system, and all the contents of the prior application are It has been embodied in this application.
  • the present invention relates to a wireless communication network or, in particular, to a wireless communication network or, in particular, to a method and device for resource scheduling. Background technique
  • wireless communication systems for medium and short communication distances include wireless office i or network WiFi technology based on the 802.11 standard, Bluetooth Bluetooth system based on 802.15, and Femto technology for indoor applications derived from mobile communication systems. .
  • 802.11-based WiFi technology is one of the most widely used wireless network transmission technologies. It is mainly used in wireless office i or network environments. The application scenarios are mostly indoors and can also be applied to outdoor environments.
  • the 802.11 system evolved from the original CDMA transport mechanism-based 802.11b to OFDM-based 802.11a and 802.11g. In the latest 802.11n version, the 802.11 ⁇ physical layer peak rate is up to 600Mbps by introducing multi-antenna ( ⁇ ) technology.
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • the ten-party discussion uses the "competition" mechanism, and the access point CAP and each terminal or STA obtain the open air interface usage right through competition. In the course of its success, the air interface will be exclusively used by the successful CAP. Due to the competitive mechanism, the access network does not need to centrally control the nodes. Whether it is CAP or STA in the competition for air resources The WiFi system is less efficient and wastes wireless resources.
  • the root cause of this problem is that the CSMA/CA mechanism is a contention-based random multiple access mechanism, access point (CAP, Access). Point) and the station (STA, Station), or between different STAs, will compete for the use of radio resources through the CSMA/CA mechanism, and compete for the wireless channel.
  • the CSMA/CA mechanism requires that the CAP or STA need to randomly retreat when competing for the wireless channel.
  • the wireless channel is idle. But it is not used, which is also a great waste of the wireless channel.
  • the 802.11 system is less efficient. For example: 802.
  • the 802.11 system is flexible and does not rely on centralized control mechanisms. Therefore, it is also possible to achieve lower equipment costs.
  • the Femto technology based on the 3GPP standard is a new technology for indoor coverage that has evolved from a mobile communication system. Based on the statistics of 3G systems, about 70% of data services occur indoors, so indoor high-speed data access solutions are especially important.
  • Femto base stations called pico base stations, are compact (similar to Wi-Fi) and flexible to deploy. Due to the evolution from mobile communication systems, Femto base stations have inherited almost all the characteristics of mobile communication systems. The Femto device only combines its limited coverage, fewer access users and other application scenarios, which reduces the processing power of the device and reduces the cost of the device.
  • the duplex mode like the mobile communication system, the Femto base station can be divided into two types of duplex mechanisms: FDD and TDD.
  • the uplink and downlink carrier resources of the FDD are symmetric, and the asymmetric service characteristics of the uplink and downlink data traffic of the data service cause a certain waste of resources when the FDD system faces the data service.
  • the uplink and downlink of the TDD system work on the same carrier, and the time-resource resources are allocated to allocate different radio resources to the uplink and downlink. Therefore, the FDD can better adapt to the asymmetric data service of the uplink and downlink services.
  • the TDD duplex mode of the mobile communication system including the Femto system
  • the static allocation of uplink and downlink resources and various types of data services with different needs, such as: browsing web pages, mobile video, mobile games, M2M (machine-to-machine ), etc.
  • Wi-Fi since Femto uses a scheduling-based centralized control mechanism, there is no waste of radio resources between the base station or CAP and the terminal or terminal due to competition conflict and random backoff, so the link efficiency is high.
  • Femto technology its multiple access mechanism allocates mutually orthogonal access resources to different STAs by time, frequency and codeword, which is oriented to The competitive CSMA/CA random multiple access is essentially different.
  • the Femto technology requires a centralized control node to allocate mutually orthogonal radio resources to STAs. Different STAs can simultaneously transmit air interface resources by time, frequency, codeword or even space.
  • the Femto technology based on the 3G system uses the CDMA transmission mechanism, and the Femto technology for the LTE or WiMAX system uses the OFDM transmission mechanism. Since OFDM technology is the mainstream technology of future broadband wireless communication systems, the Femto technologies mentioned in the present invention all refer to LTE or WiMAX Femto.
  • the Femto mentioned in the present invention mainly refers to the TDD Femto technology.
  • the Femto system also allocates radio resources for different terminals by scheduling uplink and downlink communication, the statically configured frame structure cannot flexibly allocate radio resources for uplink and downlink, and cannot adapt to service changes with small granularity.
  • the resource configuration is out of balance, it may cause long-term queuing, the user experience is reduced, or the channel capacity is wasted.
  • both the Wi-Fi system based on 802.11 technology and the Femto technology derived from the mobile communication system have some shortcomings.
  • CSMA/CA is a multi-access mechanism for competition. Inevitably there will be conflicts in the system. If two or more terminals, or the terminal and the CAP compete for the air interface at the same time, neither party will compete for success. This is a competition conflict. Obviously, the conflict is undoubtedly a waste of air resources. Once the conflict is struck, in order to avoid the conflict again, all parties to the competition will initiate a random retreat. During the backoff process, there will be multiple situations where the competing nodes are waiting.
  • the scheduling period lms is the minimum configuration unit.
  • the asymmetric characteristics of the uplink and downlink services are inconsistent, and the statically configured frame format cannot adapt to the needs of various data services.
  • the service characteristics change, there will be some redundancy or shortage of the uplink and downlink resources initially configured. This will not only waste wireless resources, but also increase service delay.
  • the radio resources are allocated to different terminals by scheduling uplink and downlink communication, the statically configured frame structure cannot flexibly allocate radio resources for uplink and downlink, and cannot adapt to service changes with small granularity. When services and resources When the configuration is unbalanced, it may cause long-term queuing, the user experience is reduced, or the channel capacity is wasted. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a method and a device for resource scheduling, which are not subject to frame format and frame length, can dynamically allocate resources based on transmission requirements, and can also be better dynamic. It adapts to the needs of the data services with rich variety and different characteristics in the future, and has good scalability.
  • a summary of the cartridges is given below. This generalization is not a general comment, nor is it intended to identify key/important elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in the form of a single sheet as a preface to the following detailed description.
  • the present invention provides a resource scheduling method, including: performing resource scheduling according to transmission requirements;
  • the present invention further provides a resource scheduling device, including: a scheduling module, configured to perform resource scheduling according to a transmission requirement;
  • the configuration module configures a frame length non-fixed frame structure that matches the scheduled resource.
  • the CAP centrally schedules its associated STAs to allocate radio resources to different STAs, thereby avoiding the waste of radio resources caused by the competition mechanism.
  • the frame structure is flexible.
  • the invention can not only adapt to the large service rate change of different terminals, but also adapt to the dynamic changes of the wireless channel.
  • the invention can better adapt to the dynamic changes of various data service requirements, dynamically match the channel capacity with the service demand, and obtain better system efficiency. It can weigh the service requirements and channel characteristics, dynamically divide the uplink and downlink resources, and dynamically allocate radio resources for different terminals under the condition of link adaptation.
  • the present invention also considers the state information delay of the channel, the processing time requirements of different class devices, and the like. All of the above considerations can improve system efficiency and performance.
  • This frame feedback can be implemented to reduce the feedback delay of MU-MIMO.
  • This frame scheduling can be implemented, which reduces the scheduling delay of the service.
  • the frame structure is flexible and can adapt to the uplink and downlink transmission requirements of various data services. There is no fixed frame length or frame period constraint. At the same time, the system allows the uplink and downlink scheduling transmission period to adapt to the change of the uplink and downlink service requirements, and can adapt the service demand to the uplink and downlink channel capacity to obtain higher resource utilization.
  • the scheduling period can adapt to the change of time selective fading of the wireless channel, avoiding the control overhead caused by unnecessary frequent scheduling; the system allows the frame length to be dynamically adjusted to adaptive wireless channel time selective fading, and the system scheduling period can be Matching with the wireless channel, thereby reducing the control overhead caused by frequent scheduling. Has a high throughput and wireless resource utilization.
  • one or more embodiments include the features that are described in detail below and particularly pointed out in the claims.
  • the following description and the annexed drawings are intended to illustrate certain exemplary aspects, Other advantages and novel features will become apparent from the Detailed Description of the Drawing.
  • FIG. 1 is a schematic flowchart of a resource scheduling method provided by the present invention
  • FIG. 2 is a schematic diagram of a frame structure according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another frame structure according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of another frame structure according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for scheduling a line according to an application example of the present invention.
  • FIG. 6 is a schematic diagram of a line scheduling process of an application example of the present invention.
  • FIG. 7 is a flowchart of a method for downlink scheduling of an application example 2 of the present invention
  • FIG. 8 is a schematic diagram of a downlink scheduling process of application example 2 of the present invention
  • FIG. 9 is a flowchart of a third uplink scheduling method according to an application example of the present invention.
  • FIG. 10 is a schematic diagram of an uplink scheduling process of an application example of the present invention.
  • FIG. 11 is a flowchart of an uplink scheduling method of an application example of the present invention.
  • FIG. 12 is a schematic diagram of an uplink scheduling process of an application example of the present invention.
  • FIG. 13 is a schematic diagram of a fifth uplink and downlink scheduling transmission process according to an application example of the present invention
  • FIG. 14 is a block diagram of an apparatus for resource scheduling equipment according to a second embodiment of the present invention
  • 15 is a schematic structural diagram of a wireless communication system according to a third embodiment of the present invention
  • FIG. 16 is a schematic structural diagram of a network device according to a third embodiment of the present invention
  • FIG. 17 is a schematic structural diagram of a terminal device in a third embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a physical frame in the sixth application example of the present invention.
  • FIG. 19 is a schematic structural diagram of a physical frame in the seventh application example of the present invention.
  • Figure 20a is a first structural diagram of the first physical frame in the eighth application example of the present invention
  • Figure 20b is a schematic structural diagram of the second physical frame in the eighth application example of the present invention
  • FIG. 21 is a second schematic structural diagram of a first physical frame in the eighth application example of the present invention.
  • FIG. 22 is a schematic structural diagram of a second physical frame in the application example 9 of the present invention.
  • FIG. 23 is a schematic structural diagram of a physical frame in an application example 10 of the present invention
  • FIG. 24 is a schematic structural diagram of a physical frame in an application example 11 of the present invention
  • FIG. 25 is a schematic structural diagram of a physical frame in an application example 12 of the present invention
  • FIG. 26 is a schematic structural diagram of a physical frame in an application example 13 of the present invention
  • FIG. 27 is a schematic structural diagram of a physical frame in the application example 14 of the present invention
  • FIG. 28 is a schematic diagram of an uplink protection interval reserved in advance by CAP transmission in the application example 14 of the present invention
  • FIG. 29 is a physical frame in the fifteenth application example of the present invention. Schematic diagram of the structure;
  • FIG. 30 is a schematic diagram of an uplink transmission channel, an uplink scheduling request channel, and an uplink random access channel multiplexing resource in the fifteenth application example of the present invention
  • Figure 31 is a diagram showing the control channel and system information channel multiplexing resources in the fifteenth application of the present invention.
  • FIG. 32 is a schematic diagram of downlink signaling/feedback transmission channel multiplexing DL-TCH resources;
  • FIG. 33 is a schematic structural diagram of a first uplink signaling/feedback channel;
  • FIG. 34 is a schematic structural diagram of a second uplink signaling/feedback channel
  • FIG. 35 is a schematic diagram of a method for generating an uplink scheduling request channel
  • FIG. 36 is a sequence of a maximum length linear feedback shift register of a PN sequence
  • FIG. 37 is a format of a first type of uplink random access channel
  • 38 is a format of a second uplink random access channel
  • Figure 39 is a format of a third uplink random access channel.
  • Step S101 Perform resource scheduling according to transmission requirements.
  • Step S102 Configure a non-fixed frame structure with a frame length matched with the scheduled resource.
  • the method of the present invention does not have a waste of radio resources caused by conflict of competition or random backoff.
  • the system can dynamically divide uplink and downlink wireless resources based on service requirements, and can dynamically adapt to future kinds of data services with various characteristics and different characteristics. demand.
  • the transmitted communication frame in the present invention is based on the TDD duplex mode (on a fixed carrier, the base station or the CAP and the terminal or the STA completes the reception and transmission by the transmission and reception conversion time division), according to the direction of data transmission, TDD A frame can be divided into two parts: downlink (DL, Downlink, from base station to terminal or from CAP to STA direction) and uplink (UL, Uplink, from terminal to base station or from STA to CAP direction).
  • the frame length can be dynamically configured and the frame structure can be dynamically configured. That is, in the present invention, resource scheduling is performed according to transmission requirements, and the frame format is determined by the scheduled resources.
  • the resource scheduling process is not limited by the frame length and the frame format, and the resource allocation is more reasonable. The following will specifically explain how to perform resource scheduling according to the transmission needs and configure the frame structure accordingly.
  • Embodiment 1 is based on the TDD duplex mode (on a fixed carrier, the base station or the CAP and the terminal or the STA completes
  • the frame structure provided by the present invention includes a downlink subframe and/or an uplink subframe, and the downlink subframe and the uplink subframe divide different channels according to functions.
  • the protection interval GI is between the downlink subframe and the uplink subframe, and the transmission and reception protection interval between the downlink and the uplink is called the downlink protection interval DGI, and the uplink to downlink transmission and reception protection interval is called the uplink protection interval UGI.
  • the frame structure provided by the present invention is configured with at least a preamble sequence and a system information channel, where: the preamble sequence is disposed at a starting position of the frame structure, and is used for implementing synchronization.
  • the leader sequence can be divided into a short leader sequence and a long leader sequence.
  • the short preamble sequence is mainly used for system coarse synchronization, and is also used for frame detection, automatic gain control, coarse frequency synchronization or coarse symbol synchronization;
  • long preamble sequence is mainly used for system fine synchronization and channel estimation, and also used for fine frequency synchronization, Fine symbol synchronization, etc.
  • the system information channel is configured to carry information indicating a frame structure. By detecting the information indicating the frame structure on the system information channel, all STAs associated with the CAP can obtain the structure of the frame.
  • the system information channel is located after the preamble sequence, and its location is pre-agreed by the CAP and the STA.
  • the system information channel is also used to broadcast basic system configurations, such as CAP identification, CAP antenna configuration, frame numbering, CRC check protection information, and the like.
  • the transmission requirement is carried by the scheduling information, and the CAP obtains and parses the scheduling information to obtain a transmission requirement, and completes the resource scheduling.
  • the uplink transmission requirement is obtained by the CAP from the STA.
  • the CAP can obtain the uplink transmission requirement in the following three manners: The first type: obtains the uplink transmission requirement by using the request-response mode, specifically: the STA initiates a scheduling request, and the CAP allocates a feedback uplink transmission to the STA. For the required resource, the STA feeds back the uplink transmission request on the corresponding resource; if the first mode is used, the uplink scheduling request channel needs to be configured in the frame structure, and the STA sends the uplink scheduling to the CAP. Request to request a transmission resource for reporting the uplink transmission requirement to the CAP.
  • the STA may be configured to allocate an exclusive uplink transmission resource for the STA to initiate uplink scheduling in a non-contention manner, and may also schedule the shared uplink transmission resource for the STA to be used by the STA.
  • the competition method initiates uplink scheduling. That is, the STA initiates a scheduling request, and may use a collision-free uplink transmission request mechanism or use a contention-based uplink transmission request mechanism.
  • the duration of the uplink scheduling request channel is calculated and configured according to the number of STAs associated with the CAP. For example, N uplink scheduling request channels may be allocated to the N STAs associated with the CAP, and each STA may initiate an uplink scheduling request based on the collision-free uplink transmission request mechanism on the corresponding channel.
  • the M STAs associated with the CAP may be allocated with M uplink scheduling request channels, where M is smaller than N, and the N STAs compete for the M uplink scheduling request channels to initiate an uplink scheduling request.
  • the uplink scheduling request channel may also be designed to be used for feedback switching information, thereby implementing fast feedback.
  • the second type The uplink transmission requirement is obtained by the polling method.
  • the CAP periodically polls the STAs and receives the uplink transmission requirements fed back by the STA.
  • the third type obtains the uplink transmission requirement by carrying the report, specifically: STA is transmitting When the uplink service is transmitted, the uplink transmission requirement is carried in the data frame and sent to the CAP along with the uplink service.
  • the downlink transmission requirement is obtained from a MAC layer or a high layer of the CAP.
  • the transmission requirements may be classified into an uplink transmission requirement and a downlink transmission requirement according to a transmission direction.
  • the uplink resource When there is an uplink transmission requirement, the uplink resource is scheduled according to the uplink transmission requirement, and the uplink transmission channel matching the scheduled uplink resource is configured.
  • the downlink resource When there is a downlink transmission requirement, the downlink resource is scheduled according to the downlink transmission requirement, and the downlink transmission channel matching the scheduled downlink resource is configured.
  • the transmission requirements are classified according to the type of data transmitted, and the requirements for transmitting service data, the requirements for transmitting signaling, and feedback requirements.
  • the scheduling the uplink transmission resource according to the uplink transmission requirement, and configuring the matched uplink transmission channel may further include:
  • an uplink transmission resource is scheduled for the uplink service, and an uplink service transmission channel is configured in the frame structure.
  • the duration of the uplink traffic transmission channel is determined according to the total transmission resources required for each STA associated with the CAP to transmit the uplink service.
  • an uplink transmission resource is scheduled for the uplink signaling, and an uplink signaling channel is configured in the frame structure.
  • the duration of the uplink signaling channel is determined according to the total transmission resources required by each STA associated with the CAP to transmit uplink signaling.
  • the uplink transmission resource is scheduled for the downlink service feedback, and the downlink service feedback channel is configured accordingly.
  • the duration of the downlink service feedback channel is determined according to the total transmission resource required for each STA associated with the CAP to feed back the downlink service. If there are other uplink transmission requirements, a corresponding channel may be added to the uplink transmission channel, and the present invention will not be described in detail herein.
  • the scheduling the downlink transmission resource according to the downlink transmission requirement, and configuring the matched downlink transmission channel may further include:
  • the downlink transmission resource is scheduled for the downlink service, and the downlink service transmission channel is configured in the frame structure.
  • the duration of the downlink traffic transmission channel is determined according to the total transmission resources required by the CAP to transmit downlink traffic to each STA associated with it.
  • downlink transmission resources are scheduled for the downlink signaling, and a downlink signaling channel is configured in the frame structure.
  • the duration of the downlink signaling channel is determined according to the total transmission resources required by the CAP to transmit downlink signaling to each STA associated with it.
  • the downlink transmission resource is scheduled for the uplink service feedback, and the uplink service feedback channel is configured accordingly.
  • the duration of the uplink service feedback channel is determined according to the total transmission resource required by the CAP to feed back the uplink service to each STA associated with the CAP. If there are other downlink transmission requirements, the corresponding channel may be added to the downlink transmission channel, and the present invention will not be described in detail herein.
  • Resource allocation may be performed according to channel quality information CQI, or resource allocation may be performed according to CQI and channel state information CSI.
  • the CSI is an H matrix of the transmission channel (NxM order, N receiving antennas, M transmitting antennas;), or a V matrix of the H matrix of the transmission channel after SVD decomposition ( ⁇ order;), or compression of the V matrix Information;
  • CQI includes one or more of the following: SNR (signal-to-noise ratio) or SINR (signal-to-noise ratio;) of the transport channel, MCS (modulation code set for downlink transmission), Nss (downstream) The number of spatial streams that can be used for transmission;), PMI (a set of precoding matrices that can be used for downlink transmission) and other related measurement scales.
  • the CAP When the STA's capability supports the CAP to acquire the CQI, the CAP also acquires the CQI, and performs resource scheduling according to the transmission requirements and the CQI.
  • the capability of the STA supports the CAP to obtain the CQI and the CSI
  • the CAP also acquires the CQI and the CSI, and performs resource scheduling according to the transmission requirement, the CQI, and the CSI.
  • the CQI may be a CQI obtained by measuring an entire frequency band, or may be a CQI obtained by measuring a partial frequency band.
  • the CSI may be a CSI obtained by measuring the entire frequency band, or may be a CSI obtained by measuring a partial frequency band.
  • Mode 1 Calculate according to the uplink sounding channel. That is, when there is a demand for scheduling uplink transmission resources, for example, when there is a demand for transmitting an uplink service, a requirement for transmitting uplink signaling, or a request for feedback of a downlink service, resource scheduling for acquiring an uplink CQI is also required, and An uplink sounding channel is configured in the frame structure for the STA to send an uplink sounding signal to the CAP.
  • the uplink channel quality information CQI is calculated by measuring the uplink sounding signal on the uplink sounding channel, and the resource scheduling is performed according to the measured uplink CQI.
  • Manner 2 Using the upper and lower reciprocity of the TDD system, the STA measures and feeds back the downlink CQI.
  • the CAP obtains the uplink CQI based on the system reciprocity. That is, when there is an uplink transmission requirement, resource scheduling needs to be performed for acquiring the uplink CQI, and a downlink sounding channel and a CQI feedback channel are configured in the frame structure, and the downlink sounding channel is used for the CAP to send the downlink to the STA.
  • the CQI feedback channel is used by the STA to feed back the CQI of the downlink measured by the downlink sounding signal to the CAP.
  • the CAP schedules the uplink transmission resource according to the uplink transmission requirement
  • the CAP is based on the uplink and the reciprocity, and the downlink CQI is fed back according to the STA.
  • the uplink CQI is determined, and the uplink transmission resource is scheduled in combination with the uplink CQI.
  • resource scheduling may also be performed according to uplink CQI and CSI.
  • Mode 1 Calculate according to the uplink sounding channel. That is, when there is a demand for scheduling uplink transmission resources, for example, when there is a demand for transmitting an uplink service, a requirement for transmitting uplink signaling, or a request for feedback of a downlink service, it is also necessary to obtain an uplink CQI and an uplink CSI.
  • Resource scheduling and configuring an uplink sounding channel in the frame structure for the STA to send an uplink sounding signal to the CAP.
  • the uplink channel quality information CQI and CSI are calculated by measuring the uplink sounding signal on the uplink sounding channel, and combined with the measured uplink CQI and The uplink CSI performs resource scheduling.
  • Manner 2 Using the upper and lower reciprocity of the TDD system, the STA measures and feeds back the downlink CQI and the downlink CSI.
  • the CAP obtains the corresponding uplink CQI and uplink CSI based on the system reciprocity. That is, when there is an uplink transmission requirement, resource scheduling needs to be performed for acquiring the uplink CQI and the uplink CSI, and the downlink sounding channel, the CQI feedback channel, and the CSI feedback channel are configured in the frame structure, and the downlink detection is performed.
  • the channel is used by the CAP to send a downlink sounding signal to the STA.
  • the CQI feedback channel is used by the STA to feed back the CQI of the downlink measured according to the downlink sounding signal to the CAP.
  • the CSI feedback channel is used for the STA to feed back the CAP according to the downlink sounding signal.
  • Method 3 Use the direct measurement method to obtain the CQI, and use the system reciprocity to obtain the CSI; or use the direct measurement method to obtain the CSI, and use the system reciprocity to obtain the CQI.
  • resource scheduling is also performed for acquiring the uplink CQI and the uplink CSI, and the uplink sounding channel, the downlink sounding channel, and the CQI feedback channel are configured in the frame structure, and the uplink sounding channel is used.
  • the station STA sends an uplink sounding signal to the central access point CAP, where the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA, and the CQI feedback channel is used by the STA to feed back the CQI measured by the downlink sounding signal to the CAP.
  • the uplink sounding signal is measured on the uplink sounding channel, the uplink channel quality information CSI is calculated, and the uplink CQI is determined according to the downlink CQI fed back and forth by the STA based on the upper and lower reciprocity. And scheduling uplink transmission resources in combination with the uplink CQI and the uplink CSI.
  • the resource scheduling is performed for acquiring the uplink CQI and the uplink CSI, and the uplink sounding channel, the downlink sounding channel, and the CSI feedback channel are configured in the frame structure, where the uplink sounding is performed.
  • the channel is used by the station STA to send an uplink sounding signal to the central access point CAP, where the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA, and the CSI feedback channel is used by the STA to feed back the downlink measured by the downlink sounding signal to the CAP.
  • the CSI is configured to measure the uplink sounding signal on the uplink sounding channel, calculate the uplink channel quality information CQI, and determine the downlink CSI based on the upper and lower reciprocity based on the STA feedback when scheduling the uplink transmission resource according to the uplink transmission requirement.
  • the uplink CSI is combined with the uplink CQI and the uplink CSI to schedule uplink transmission resources.
  • resource scheduling may be performed according to the downlink CQI.
  • the following design can be used:
  • Method 1 The upper and lower reciprocity of the TDD system can be utilized, and the downlink CQI is calculated by the CAP. Specifically, when there is a requirement for scheduling downlink transmission resources, for example, when there is a requirement for transmitting a downlink service, a requirement for transmitting downlink signaling, or a requirement for feedback of an uplink service, resource scheduling for acquiring a downlink CQI is also required. And configuring an uplink sounding channel in the frame structure for the STA to send an uplink sounding signal to the CAP.
  • the uplink CQI is calculated by measuring the uplink sounding signal on the uplink sounding channel, determining the downlink CQI based on the uplink and downlink reciprocity of the TDD system, and performing resources according to the downlink CQI.
  • Scheduling. Manner 2 The downlink CQI can be measured by the STA, and the measurement result is reported to the CAP by means of feedback, so that the CAP obtains the downlink CQI.
  • resource scheduling for acquiring a downlink CQI is also required. And configuring a downlink sounding channel and a CQI feedback channel in the frame structure, where the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA, and the CQI feedback channel is used for the STA to report back to the CAP according to the downlink sounding signal. The downstream CQI.
  • the resource scheduling is performed according to the downlink CQI fed back by the STA.
  • the duration of the uplink sounding channel may be determined according to the total number of antennas of the STA that reports the uplink sounding signal.
  • resource scheduling may also be performed according to downlink CQI and CSI.
  • Method 1 The upper and lower reciprocity of the TDD system can be utilized, and the downlink CQI and CSI are calculated by the CAP.
  • it is also required to acquire a downlink CQI and a downlink.
  • the CSI performs resource scheduling, and accordingly, an uplink sounding channel is configured in the frame structure, and is used by the STA to send an uplink sounding signal to the CAP.
  • the uplink CQI and the uplink CSI are calculated by measuring the uplink sounding signal on the uplink sounding channel, and the downlink CQI and the downlink CSI are determined based on the uplink and downlink reciprocity of the TDD system.
  • the downlink CQI and the downlink CSI perform resource scheduling. Manner 2:
  • the downlink CQI and the downlink CSI can be measured by the STA, and the measurement result is reported to the CAP in a feedback manner, so that the CAP obtains the downlink CQI and the downlink CSI.
  • the CSI performs resource scheduling, and the downlink sounding channel, the CQI feedback channel, and the CSI feedback channel are configured in the frame structure, where the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA, and the CQI feedback channel is used for the STA.
  • the downlink CQI measured according to the downlink sounding signal is fed back to the CAP; the CSI feedback channel is used by the STA to feed back the CSI of the downlink measured according to the downlink sounding signal to the CAP.
  • the resource scheduling is performed according to the downlink CQI and the downlink CSI fed back by the STA.
  • the quality of the channel corresponding to the STA may be calculated according to the resource allocation manner. For example, if the resource allocation mode is time division or frequency division, the STA feedback may be directly used.
  • the downlink CQI and the CSI perform resource scheduling.
  • the space division transmission interference corresponding to each STA is calculated according to the CSI fed back by each STA.
  • the CQI fed back by each STA is used, the corresponding air separation needs to be removed. Thousands of disturbances.
  • the CQI fed back by each STA may be processed according to other adjustment factors to obtain a CQI for performing resource scheduling.
  • Mode 3 Considering that the data volume of CQI is small, the data volume of CSI is large, and the measurement accuracy of the downlink channel by STA is higher than that of the channel accuracy measured by CAP using the upper and lower reciprocity of TDD system.
  • the CAP uses the upper and lower reciprocity of the TDD system to measure the downlink CSI to save the transmission bandwidth.
  • the STA measures the downlink CQI, and reports the measurement result to the CAP through feedback, so that the CAP obtains the accurate CQI.
  • a scheduling downlink When the requirements of the transmission resource are required, for example, when there is a demand for transmitting the downlink service, a requirement for transmitting the downlink signaling, or a request for the feedback of the uplink service, the resource scheduling of the downlink CQI and the downlink CSI is also required, and An uplink sounding channel, a downlink sounding channel, and a CQI feedback channel are configured in the frame structure, where the uplink sounding channel is used by the STA to send an uplink sounding signal to the CAP, and the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA.
  • the CQI feedback channel is used by the STA to feed back the CQI of the downlink measured according to the downlink sounding signal to the CAP.
  • the downlink transmission resource is scheduled, when the resource scheduling is performed according to one or more of the requirements of transmitting the downlink service, the requirement of transmitting the downlink signaling, and the requirement for the feedback of the uplink service, the uplink detection is measured on the uplink sounding channel.
  • the signal is used to calculate the uplink CSI, and the downlink CSI is determined based on the uplink and downlink reciprocity of the system, and the resource scheduling is performed according to the downlink CSI and the downlink CQI fed back by the STA.
  • the quality of the channel corresponding to the STA may be calculated according to the resource allocation manner. For example, if the resource allocation mode is time division or frequency division, the STA feedback may be directly used. The downlink CQI and the CSI perform resource scheduling. If the resource allocation mode is null, the space division transmission interference corresponding to each STA is calculated according to the CSI fed back by each STA. When the CQI fed back by each STA is used, the corresponding air separation needs to be removed. Thousands of disturbances. In addition, the CQI fed back by each STA may be processed according to other adjustment factors to obtain a CQI for performing resource scheduling.
  • the STA may access the CAP scheduling resource, and configure a random access channel in the frame structure for the STA to access the CAP and associate with the CAP. relationship.
  • the duration of the random access channel is determined according to the expected maximum number of STAs that initiate simultaneous access. If the current frame no longer allows other STAs to access the CAP, the random access channel may not be configured for the current frame.
  • the downlink sounding channel may be located at two ends or in the middle of the downlink transport channel.
  • MU-MIMO Multi-Input Multiple-Out-put
  • the performance of the downlink MU-MIMO system is not only sensitive to the state information delay of the downlink channel, but also the multi-user MIMO is involved.
  • Signal processing complexity Considering the state information delay of the channel and the hardware processing complexity that may be different in different application scenarios, it is more reasonable that the downlink sounding channel is located in the middle of the downlink transport channel, and can be transmitted in the uplink according to the maximum processing time required by the STA to be fed back.
  • the downlink sounding channel is started at the previous maximum processing time position.
  • Downstream sounding channel The specific location of the downlink transport channel is indicated by the periodic broadcast message of the system information channel. If the downlink sounding channel position is fixed, it can be used to indicate the presence or absence of the downlink sounding channel in the system information channel. If there are STAs with different processing capabilities in the system, the downlink sounding channel position is variable. By setting the downlink sounding channel position dynamically or semi-statically, it is possible to provide sufficient processing time for STAs of different processing capabilities.
  • the STA may be configured to send an uplink sounding signal on the uplink sounding channel in two ways: CAP triggering, scheduling the STA to transmit the sounding signal; or after the CAP scheduling once, the STA is in the uplink sounding channel for a period of time
  • the detection signal is periodically transmitted.
  • the uplink scheduling request channel, the uplink random access channel, the downlink sounding channel, the uplink sounding channel, the CQI feedback channel, and the CSI feedback channel may be referred to as an auxiliary channel according to the role of the channel configured in the frame structure.
  • the CQI feedback channel and/or the CSI feedback channel may be configured in an uplink transport channel, that is, the CQI feedback is The channel and/or CSI feedback channel is part of the uplink transport channel.
  • the CQI feedback channel and/or the CSI feedback channel may also be configured as an auxiliary channel independently of the uplink transport channel.
  • a control channel is further configured in the frame structure, and is configured to carry the uplink transmission channel, a downlink transmission channel, an uplink sounding channel, a downlink sounding channel, a CQI feedback channel, a CSI feedback channel, an uplink scheduling request channel, Descriptive information of one or more channels in the random access channel.
  • the control channel is composed of scheduling signaling, and the description information is carried in the scheduling signaling.
  • the scheduling signaling is used to indicate an object of resource scheduling, and a transmission resource scheduled for the object; the object is one or a group of stations STA.
  • the duration of the control channel is determined according to the total transmission resources required by the CAP to send scheduling signaling to each STA associated with it.
  • the length of each scheduling signaling may be summed to obtain the control channel period; or, if the length of each signaling is a fixed size, the fixed length of the signaling is multiplied by the number of downlink scheduling signaling, Get the control channel period.
  • each channel in the configured frame structure can multiplex resources by one or a combination of time division, frequency division, code division, and space division.
  • the figure shows a frame structure, including a downlink subframe and an uplink subframe, where the downlink subframe includes a preamble sequence, a system information channel, and a control channel.
  • a downlink transmission channel and a downlink sounding channel where the uplink subframe includes an uplink sounding channel, an uplink scheduling request channel, an uplink transmission channel, and an uplink random access channel, and a guard interval GI is configured between the uplink subframe and the downlink subframe.
  • the transmission resources are shared between the channels by time division multiplexing.
  • Figure 2 shows only an example of a frame structure, which in the actual case dynamically configures the corresponding channel in the frame structure depending on the system application scenario or scheme.
  • the resource multiplexing mode between the channels is determined by the type of the scheduled resource.
  • the uplink transmission channel (which may include an uplink service transmission channel, an uplink signaling channel, a downlink service feedback channel, etc.)
  • the uplink scheduling request channel and the uplink random access channel use frequency division and time division hybrid multiplexing.
  • the system information channel and the control channel are frequency-multiplexed and time-division mixed.
  • resources allocated for each STA in the same channel may also share transmission resources in a multiplexing manner using one or more combinations of time division, frequency division, code division, and space division.
  • the downlink sounding channel shown in FIG. 3 and FIG. 4 is located in the middle of the downlink transport channel, and the downlink transport channel is divided into a downlink transport channel 1 and a downlink transport channel 2.
  • the frame structure can be indicated by bit bits in the system information channel, that is, the presence and absence of each channel and the period are indicated.
  • the frame structure indication mode is exemplified:
  • 6 bits are used to indicate the duration of the control channel, and the maximum 63 OFDM symbols, the minimum allocation unit of resources: 1 OFDM symbol; indicated by 9 bits Downlink transmission channel period, maximum 512 OFDM symbols (including dedicated demodulation pilots;); 9 bits indicating uplink transmission channel week Period, maximum 512 OFDM symbols (including dedicated demodulation pilots;); 1 bit indicating protection interval DGI, 1 OFDM symbol;
  • 2bits is used to indicate the uplink scheduling request channel configuration, respectively indicating 1, 2, 3, 4 OFDM symbols; 1bit is used to indicate the uplink random access channel configuration, respectively indicating presence/absence; if yes, only 1 OFDM symbol ;
  • the method for indicating the downlink transmission channel or the uplink transmission channel resource allocation of the control channel is as follows:
  • Nbit is used to indicate the starting position of a certain STA in the downlink transmission channel, and Nbit is used to indicate how many consecutive STAs are in the position.
  • the length of the resource is 000100000, and the conversion to decimal is 32. After the symbol (including the symbol), 32 consecutive symbols are assigned to the STA.
  • Mbit is used to indicate the starting position of a certain STA in the uplink transmission channel, and Mbit is used to indicate how many bits of the STA are allocated resources after the location.
  • the frame structure may be jointly indicated by the system information channel and the control channel, as follows: In the system information channel, the control channel period is indicated by 6 bits, and the maximum of 63 OFDM symbols is used; in the control channel, the downlink transmission channel period is indicated by 9 bits. Use 9bits to indicate the uplink transmission channel period, 1bit to indicate the downlink protection interval DGI, 2bits to indicate the uplink sounding channel configuration, 2bits to indicate the uplink scheduling request channel configuration, 1bits to indicate the uplink random access channel configuration, and 1bit to indicate the uplink protection interval UGI.
  • the CAP can also calculate the frame length and carry indication information of the frame length on the system information channel or the control channel. Thereby, the STA directly obtains the frame length information.
  • application examples one through five will explain how to perform resource scheduling according to requirements and configure the frame structure accordingly.
  • This application example provides a system based on the upper and lower reciprocity, measures the quality of the downlink channel through the uplink sounding channel, and completes the downlink scheduling and transmission process. As shown in FIG. 5, the following steps are included:
  • Step S501 The CAP receives and parses the downlink scheduling information, and obtains a requirement for transmitting the downlink service to the STA1 and the STA2.
  • the requirement for transmitting the downlink service includes scheduling requirements of different service flows of each STA or each STA, for example, the service to be scheduled and Queue length, quality of service QoS requirements for different services, business priorities, and more.
  • the requirement for transmitting the downlink service is carried by the downlink scheduling information.
  • Step S502 The CAP is two STAs that need to be scheduled, that is, STA1 and STA2 schedule two uplink sounding channels;
  • Step S503 The CAP measures the uplink sounding signals transmitted by the STA1 and the STA2 on the uplink sounding channel, and obtains the quality of the downlink transport channel corresponding to the STA1 and the STA2 according to the uplink and downlink reciprocity of the TDD system.
  • Step S504 The CAP schedules downlink transmission resources for the STA1 and the STA2 according to the downlink scheduling information and the quality of the downlink transmission channel, respectively.
  • STA1 and STA2 share downlink transmission resources through a combination of time division multiplexing.
  • Step S505 The CAP schedules a transmission resource used for feeding back downlink service according to the downlink scheduling information and the quality of the downlink transmission channel.
  • the downlink transmission of STA2 in the Nth frame does not feed back ACK2 signaling in the uplink transmission of the frame, which may be due to the following reasons: (1) STA2 downlink feedback in the Nth frame is in the N+k frame feedback; (2) The downlink service of STA2 does not need to feed back ACK signaling.
  • the CAP configures a frame structure that matches the scheduled transmission resource.
  • the STA learns the frame structure by parsing the system information channel, and learns the specific transmission resource allocation by analyzing the control channel.
  • FIG. 6 the resource scheduling process for completing downlink traffic transmission through two frames, and the process of dynamically configuring the frame structure according to the scheduled resources.
  • Application Example 2 This application example provides a quality information of a channel measured by the STA and fed back to the CAP.
  • the CAP completes the uplink scheduling and transmission process according to the channel quality information of the feedback. As shown in FIG. 7, the method includes the following steps:
  • Step S701 The CAP receives and parses the downlink scheduling information, and obtains a requirement for transmitting the downlink service to the STA1 and the STA2.
  • the requirement for transmitting the downlink service includes scheduling requirements of different service flows of each STA or each STA, for example, the service to be scheduled and Queue length, quality of service QoS requirements for different services, business priorities, and more.
  • the requirement for transmitting the downlink service is carried by the downlink scheduling information.
  • Step S702 The CAP is two STAs that need to be scheduled, that is, STA1 and STA2 schedule two CQI feedback channels;
  • Step S703 The CAP sends a sounding signal on a downlink sounding channel.
  • Step S704 STA1 and STA2 respectively measure the sounding signals transmitted by the CAP on the downlink sounding channel, and obtain the quality of the downlink transport channel corresponding to STA1 and STA2.
  • Step S705 STA1 and STA2 respectively pass the corresponding CQI feedback channel, and the measured downlink is performed. The quality of the transmission channel is fed back to the CAP;
  • Step S706 The CAP schedules downlink transmission resources for STA1 and STA2 according to the downlink scheduling information and the quality of the downlink transmission channel, respectively.
  • Step S707 The CAP schedules a transmission resource used for feeding back the downlink service according to the downlink scheduling information and the quality of the downlink transmission channel.
  • the downlink transmission of STA2 in the Nth frame does not feed back ACK2 signaling in the uplink transmission of the frame, which may be due to the following reasons: (1) STA2 downlink feedback in the Nth frame is in the N+k frame feedback; (2) The downlink service of STA2 does not need to feed back ACK signaling.
  • the CAP configures a frame structure that matches the scheduled transmission resource.
  • the STA learns the frame structure by parsing the system information channel, and learns the specific transmission resource allocation by analyzing the control channel.
  • FIG. 8 the resource scheduling process for completing downlink traffic transmission through two frames, and the process of dynamically configuring the frame structure according to the scheduled resources.
  • the STA measures the downlink sounding channel and feeds back the quality of the channel to the CAP, so the uplink sounding channel is no longer needed.
  • Which feedback method is used is determined by the CAP scheduler based on the STA capabilities and system settings.
  • the channel configured in the frame structure can be adaptively varied with the transmission requirements, and preferably adaptively adjusted with the time selective fading of the wireless channel.
  • This application example provides an uplink scheduling and transmission process, as shown in FIG. 9, which specifically includes the following steps:
  • Step S901 The CAP receives the uplink scheduling request signal sent by the STA in the uplink scheduling request channel of the N-2 frame.
  • Step S902 The CAP schedules an uplink sounding channel and an uplink transport channel for transmitting uplink service transmission requirements for the STA in the N-1th frame.
  • Step S903 The CAP receives and parses uplink scheduling information on an uplink transmission channel of the N-1th frame, and obtains a requirement for the STA to transmit an uplink service.
  • the demand for transmitting the uplink service includes the scheduling requirements of the STA or the STA for different service flows, for example, the service to be scheduled and the queue length, the quality of service QoS requirements of different services, the service priority, and the like.
  • the requirement for transmitting the uplink service is carried by the uplink scheduling information.
  • Step S904 The CAP measures the uplink sounding signal sent by the STA in the uplink sounding channel of the N-1 frame, and obtains the quality of the uplink transport channel corresponding to the STA.
  • Step S905 The CAP transmits the uplink according to the STA. The demand of the service and the quality of the uplink transmission channel, and the uplink transmission resource is scheduled for the STA in the Nth frame.
  • the CAP configures a frame structure that matches the scheduled transmission resource.
  • the STA learns the frame structure by parsing the system information channel, and learns the specific transmission resource allocation by analyzing the control channel.
  • FIG. 10 To further illustrate the resource scheduling process of the application instance of the present invention, refer to FIG. 10, a resource scheduling process for completing uplink service transmission through three frames, and a process of dynamically configuring a frame structure according to the scheduled resources.
  • Step S1101 The CAP schedules an uplink transmission resource for the STA in the Nth frame.
  • Step S1102 The STA transmits the uplink service demand in the uplink frame, and sends the uplink service to the CAP along with the uplink data.
  • Step S1103 After receiving the requirement for the STA to transmit the uplink service, the CAP allocates an uplink transmission resource to the STA in the N+1th frame according to the requirement of the STA to transmit the uplink service.
  • the CAP configures a frame structure that matches the scheduled transmission resource.
  • the STA learns the frame structure by parsing the system information channel, and learns the specific transmission resource allocation by analyzing the control channel.
  • FIG. 12 To further illustrate the resource scheduling process of the application instance of the present invention, refer to FIG. 12, a resource scheduling process for performing uplink service transmission through two frames, and a process of dynamically configuring a frame structure according to the scheduled resources.
  • FIG. 13 is a schematic diagram of a system frame structure of an uplink and downlink scheduling transmission process provided by the application example.
  • the frame is divided into a preamble sequence, a system information channel, a control channel, a downlink service transmission channel, a downlink guard interval DGI, an uplink sounding channel, an uplink scheduling request channel, an uplink traffic transmission channel, an uplink random access channel, and an uplink. Protection interval UGI.
  • the preamble sequence specifically includes a short preamble and a long preamble.
  • a CAP is associated with 4 STAs: STA0, STA1, STA2, and STA3.
  • STAO performs uplink and downlink service transmission, but there are still packet queuing in the downlink transmission queue of each service of STA0, waiting to be scheduled.
  • STA0 is slightly up after the end of the N-1 frame.
  • the STA0 service uplink queue waits for the number of scheduled packets.
  • the CAP schedules STA0 to feed back the quality of the downlink channel through the uplink transport channel in the N-1th frame; to ensure efficient uplink scheduling of the Nth frame, the CAP schedules STA0 in the N-1th frame.
  • the uplink sounding signal is transmitted on the uplink sounding channel 1 to facilitate the CAP to measure the quality of the uplink channel.
  • STA1 has a new downlink service arriving, waiting to be scheduled.
  • STA2 completes the random access procedure in the N-1 frame, waits to be scheduled, and reports the transmission capability and device configuration of STA2 to the CAP.
  • STA3 successfully initiates an uplink scheduling request in the N-1 frame uplink scheduling request channel.
  • the CAP schedules downlink 384 OFDM symbols for downlink service transmission for STA0 according to the STA0 downlink transmission queue information and the quality of the downlink transmission channel fed back in the N-1 frame.
  • the intra-frame downlink sounding channel is set to 1 OFDM symbol.
  • the CAP schedules the uplink 128 OFDM symbols for the uplink service transmission for the STA0 according to the uplink transmission queue information fed back by the STA0 and the quality of the uplink transmission channel measured by the CAP according to the uplink sounding channel 1.
  • the CAP allocates 16 OFDM symbols to STA2 for STA2 transmission capability and device configuration.
  • the CAP allocates 16 OFDM symbols to STA3 and reports the uplink scheduling channel.
  • Both STA2 and STA3 are feedback transmissions, and the determined modulation coding format is adopted.
  • the CAP does not need to consider the quality of the uplink transmission channel as its assigned transmission format.
  • the CAP estimates that STA0 still has uplink traffic waiting for transmission, so the scheduling STA0 still transmits the uplink sounding channel through the uplink sounding channel 1.
  • the CAP scheduling STA3 transmits an uplink sounding channel on the uplink sounding channel 2, which facilitates scheduling STA3 uplink transmission in the N+1 frame.
  • the CAP allocates the quality of 64 OFDM symbol feedback uplink channels to STA1.
  • the CAP calculates the control channel requirements: the downlink scheduling transmission, and the ACK/NACK signaling for the N0 frame STA0 uplink transmission, which requires two control subchannels; the uplink scheduling transmission requires six control subchannels for STA0, STA1, STA2 and STA3 uplink transmission channel scheduling, and STA0 and STA3 uplink sounding channel assignment.
  • this frame requires 6 OFDM symbols for control channel transmission.
  • the Nth frame configuration information is as follows: 6 OFDM symbols are used for control channel transmission, 384 OFDM symbols are used for downlink traffic transmission, and 1 OFDM symbol is used for downlink sounding channel transmission (downlink sounding channel position is fixed) 2 OFDM symbols are used for uplink sounding channel transmission, 2 OFDM symbols are used for uplink scheduling request channel, 224 OFDM symbols are used for uplink transmission channel, and 1 OFDM symbol is used for uplink random access channel.
  • 6 OFDM symbols are used for control channel transmission
  • 384 OFDM symbols are used for downlink traffic transmission
  • 1 OFDM symbol is used for downlink sounding channel transmission (downlink sounding channel position is fixed)
  • 2 OFDM symbols are used for uplink sounding channel transmission
  • 2 OFDM symbols are used for uplink scheduling request channel
  • 224 OFDM symbols are used for uplink transmission channel
  • 1 OFDM symbol is used for uplink random access channel.
  • one OFDM symbol In addition to the system's inherent short preamble, long preamble, and system information channel, one OFDM symbol
  • the STA0, STA 1, STA 2, and STA 3 can obtain the control channel period by 6 OFDM symbols, the downlink transmission channel period by 384 OFDM symbols, and the DGI period by receiving the broadcast information of the system information channel.
  • the method, the system and the device of the present invention can dynamically adapt to the future rich and diverse data.
  • the system can provide very small resource granularity, which can not only adapt to the large service rate change of different terminals, but also better adapt to the dynamic changes of the wireless channel. 4
  • the system can weigh the service requirements and channel characteristics, dynamically divide the uplink and downlink resources, and dynamically allocate radio resources for different terminals under the condition of link adaptation.
  • the embodiment of the present invention further provides a resource scheduling device, as shown in FIG. 14, including: a scheduling module 1401, configured to perform resource scheduling according to a transmission requirement;
  • the configuration module 1402 is configured to configure a frame length non-fixed frame structure that matches the scheduled resource.
  • the configuration module 1402 configures at least a preamble sequence and a system information channel in the frame structure.
  • the preamble sequence is used to implement synchronization; the system information channel is used to carry information indicating a frame structure.
  • the configuration module 1402 schedules an uplink transmission resource according to the uplink transmission requirement, and configures an uplink transmission channel according to the frame structure; and schedules a downlink transmission resource according to the downlink transmission requirement, and accordingly A downlink transport channel is configured in the frame structure.
  • the uplink transmission requirement includes one or more of a requirement for transmitting an uplink service, a requirement for transmitting uplink signaling, and a requirement for feedback for a downlink service.
  • the configuration module 1402 includes one or more of an uplink transport channel, an uplink signaling channel, and a downlink service feedback channel.
  • the downlink transmission requirement includes one or more of a requirement for transmitting a downlink service, a requirement for transmitting downlink signaling, and a requirement for feedback for an uplink service.
  • the configuration module 1402 includes one or more of a downlink service transmission channel, a downlink signaling channel, and an uplink service feedback channel.
  • the configuration module 1402 when there is an uplink transmission requirement, also configures an uplink sounding channel in the frame structure, where the station STA sends an uplink sounding signal to the central access point CAP; the scheduling module 1401, When the uplink transmission resource is scheduled according to the uplink transmission requirement, the uplink sounding signal is measured on the uplink sounding channel, and the uplink channel quality information CQI is obtained, and the uplink transmission resource is scheduled according to the measured uplink CQI.
  • the configuration module 1402 is configured to configure, in the frame structure, a downlink sounding channel and a CQI feedback channel, where the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA, where the CQI is The feedback channel is used by the STA to feed back the downlink CQI measured according to the downlink sounding signal to the CAP.
  • the scheduling module 1401 determines the downlink CQI according to the STA feedback based on the upper and lower reciprocity when scheduling the uplink transmission resource according to the uplink transmission requirement.
  • the uplink CQI is used to schedule uplink transmission resources in combination with the measured uplink CQI.
  • the configuration module 1402 when there is an uplink transmission requirement, also configures an uplink sounding channel for the STA to send an uplink sounding signal to the CAP; the scheduling module 1401 is scheduled according to the uplink transmission demand.
  • the uplink sounding signal is measured on the uplink sounding channel, and the uplink CQI and the uplink channel state information CSI are obtained, and the uplink transmission resource is scheduled according to the measured uplink CQI and the uplink CSI.
  • the configuration module 1402 is configured to configure, in the frame structure, a downlink sounding channel, a CQI feedback channel, and a CSI feedback channel, where the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA.
  • the CQI feedback channel is used by the STA to feed back the downlink CQI measured according to the downlink sounding signal to the CAP;
  • the CSI feedback channel is used by the STA to feed back the downlink CSI measured by the downlink sounding signal to the CAP;
  • the scheduling module 1401 When scheduling the uplink transmission resource according to the uplink transmission requirement, based on the uplink and the reciprocity, determining the uplink CQI according to the downlink CQI fed back by the STA, and determining the uplink CSI according to the downlink CSI fed back by the STA, and combining the uplink CQI and the uplink
  • the CSI schedules uplink transmission resources.
  • the configuration module 1402 when there is an uplink transmission requirement, also configures an uplink sounding channel, a downlink sounding channel, and a CQI feedback channel in the frame structure, where the uplink sounding channel is used by the station STA to the central access point.
  • the CAP sends an uplink sounding signal, where the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA, and the CQI feedback channel is used by the STA to feed back, to the CAP, the downlink CQI measured according to the downlink sounding signal; the scheduling module 1401, When the uplink transmission resource is scheduled according to the uplink transmission requirement, the uplink sounding signal is measured on the uplink sounding channel to obtain the uplink channel quality information CSI, and the uplink CQI is determined according to the downlink CQI fed back and forth by the STA, and combined.
  • the uplink CQI and the uplink CSI schedule uplink transmission resources.
  • the configuration module 1402 when there is an uplink transmission requirement, also configures an uplink sounding channel, a downlink sounding channel, and a CSI feedback channel in the frame structure, where the uplink sounding channel is used by the station STA to the central access point.
  • the CAP sends an uplink sounding signal, where the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA, and the CSI feedback channel is used by the STA to feed back, to the CAP, the downlink CSI measured according to the downlink sounding signal; the scheduling module 1401, When the uplink transmission resource is scheduled according to the uplink transmission requirement, the uplink sounding signal is measured on the uplink sounding channel to obtain the uplink channel quality information CQI, and the uplink CSI is determined according to the downlink CSI fed back and forth by the STA, and combined The uplink CQI and the uplink CSI schedule uplink transmission resources.
  • the configuration module 1402 is still in the frame when there is a downlink transmission requirement Configuring an uplink sounding channel for the STA to send an uplink sounding signal to the CAP; the scheduling module 1401, when scheduling the downlink transmission resource according to the downlink transmission requirement, measuring the uplink sounding signal on the uplink sounding channel, based on the upper and lower reciprocity The downlink CQI is obtained, and the downlink transmission resource is scheduled in combination with the measured downlink CQI.
  • the configuration module 1402 when there is a downlink transmission requirement, also configures an uplink sounding channel in the frame structure, where the STA sends an uplink sounding signal to the CAP; the scheduling module 1401 is scheduled according to the downlink transmission demand.
  • the downlink transmission resource is used, the uplink sounding signal is measured on the uplink sounding channel, and the downlink CQI and the downlink CSI are obtained based on the upper and lower reciprocity, and the downlink transmission resource is scheduled according to the measured downlink CQI and the downlink CSI.
  • the configuration module 1402 is configured to configure, in the frame structure, a downlink sounding channel and a CQI feedback channel, where the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA, where the CQI is present.
  • the feedback channel is used by the STA to feed back the downlink CQI measured by the downlink sounding signal to the CAP.
  • the scheduling module 1401 performs resource scheduling according to the downlink CQI fed back by the STA when scheduling the downlink transmission resource according to the downlink transmission requirement.
  • the configuration module 1402 is configured to configure, in the frame structure, a downlink sounding channel, a CQI feedback channel, and a CSI feedback channel, where the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA.
  • the CQI feedback channel is used by the STA to feed back the downlink CQI measured according to the downlink sounding signal to the CAP;
  • the CSI feedback channel is used by the STA to feed back the downlink CSI measured by the downlink sounding signal to the CAP; the scheduling module 1401
  • the downlink transmission resource is scheduled according to the downlink transmission requirement, the downlink transmission resource is scheduled according to the downlink CQI and the downlink CSI fed back by the STA.
  • the configuration module 1402 is configured to configure an uplink sounding channel, a downlink sounding channel, and a CQI feedback channel in the frame structure, where the uplink sounding channel is used by the STA to send an uplink sounding signal to the CAP.
  • the downlink sounding channel is used by the CAP to send a downlink sounding signal to the STA
  • the CQI feedback channel is used by the STA to feed back the downlink CQI measured according to the downlink sounding signal to the CAP
  • the scheduling module 1401 is scheduled according to the downlink transmission demand.
  • the uplink sounding signal is measured on the uplink sounding channel, and the downlink CSI is obtained based on the upper and lower reciprocity, and the downlink transmission resource is scheduled according to the downlink CSI and the downlink CQI fed back by the STA.
  • the CQI includes one or more of a signal to noise ratio of a transmission channel, a signal to noise ratio, a modulation and coding set, a rank of a transmission channel matrix, and a precoding matrix set.
  • the CSI includes at least one of a transport channel matrix H, a V matrix of the transport channel matrix H after SVD decomposition, and compressed information of the V matrix.
  • the configuration module 1402 further configures an uplink scheduling request channel in the frame structure, where the STA sends an uplink scheduling request to request a transmission resource for reporting an uplink transmission requirement to the CAP.
  • the scheduling module 1401 for the uplink scheduling request channel of the STA, schedules an exclusive uplink transmission resource, and is used by the STA to initiate uplink scheduling in a non-contention manner; or, for the uplink scheduling request channel of the STA, to allocate the shared uplink transmission resource, Used by the STA to initiate uplink scheduling in a competitive manner.
  • the configuration module 1402 further configures a random access channel in the frame structure, and is used by the STA to access the CAP and establish an association relationship with the CAP.
  • the configuration module 1402 further configures a control channel in the frame structure, and is configured to carry the uplink transport channel, the downlink transport channel, the uplink sounding channel, the downlink sounding channel, the CQI feedback channel, the CSI feedback channel, and the uplink. Decoding the request channel, description information of one or more channels in the random access channel.
  • the control channel is composed of scheduling signaling, and the description information is carried in the scheduling signaling.
  • the configuration module 1402 when the channel for uplink transmission and the channel for downlink transmission are configured in the frame structure, are also used for the channel for uplink transmission and the downlink for downlink transmission A guard interval is configured between channels.
  • the scheduling module 1401 performs resource scheduling by using a resource allocation manner of one or more combinations of time division, frequency division, code division, and space division.
  • the configuration module 1402, the configured system information channel and the control channel are time division multiplexing, frequency division multiplexing, code division multiplexing, frequency division and time division hybrid multiplexing, or code division and time division hybrid multiplexing.
  • the configuration module 1402 configures an uplink transmission channel, an uplink scheduling request channel, and an uplink random access channel, using time division multiplexing, frequency division multiplexing, frequency division, and time division hybrid multiplexing, or code division and time division mixing. Reuse.
  • the frame length does not exceed a preset length threshold.
  • the resource scheduling method according to the present invention provides a solution capable of dynamically configuring a frame structure according to transmission requirements, and can dynamically adapt to uplink and downlink transmission requirements of data services with various types and characteristics in the future.
  • the system can provide very small resource granularity, which can not only adapt to the large service rate requirements of different terminal devices, but also better adapt to the dynamic changes of the wireless channel. A detailed description will be given below.
  • FIG. 15 is a schematic structural diagram of a system according to an embodiment of the present invention, where the system includes:
  • a CAP 151 determines the structure of the current physical frame according to the scheduled transmission resource, and transmits information indicating the current physical frame structure in the current physical frame; and, at least one STA 152 communicating with the CAP 151, according to the current physical frame Information indicating the current physical frame structure, determining the structure of the current physical frame;
  • FIG. 16 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device includes: a configuration unit 161 and a first communication unit 162.
  • the configuration unit 161 determines the structure of the current physical frame according to the scheduled transmission resource.
  • the first communication unit 162 transmits information indicating the current physical frame structure in the current physical frame, and communicates with at least one terminal device.
  • each physical frame is determined by its structure and is not fixed.
  • the configuration unit 161 configures a preamble sequence for synchronization for the current physical frame, and a system information channel for transmitting information indicating the current physical frame structure.
  • the first communication unit 162 transmits the preamble sequence, and transmits information indicating the current physical frame structure on the system information channel.
  • the configuration unit 161 configures a preamble sequence for synchronization and a system information channel for transmitting information indicating a current physical frame structure for the current physical frame, and optionally configures the current physical frame. At least one of the channels.
  • the above multiple channels include the following situations:
  • the foregoing multiple channels include: a first downlink transport channel for transmitting downlink traffic, and/or downlink signaling, and/or uplink traffic feedback; a downlink sounding channel for transmitting downlink sounding signals; and, second The downlink transport channel is used for transmitting downlink traffic, and/or downlink signaling, and/or uplink traffic feedback.
  • the first communication unit 162 transmits a preamble sequence, and transmits a system information channel indicating information of the current physical frame structure on the system information channel; and transmits the correlation on the selectively configured channel.
  • the determining unit 161 determines that the current physical frame further includes: configuring a control channel for the current physical frame, and transmitting information indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource.
  • the first communication unit 162 sends a preamble sequence, and transmits information indicating a current physical frame structure on the system information channel; and transmits, on the control channel, a transmission format indicating a transmission resource allocation and scheduling, and a channel occupying the transmission resource.
  • Information and, transmitted in a selectively configured channel.
  • the first communication unit 162 sends a preamble sequence; transmitting, on the system information channel, a part of information indicating a current physical frame structure, where at least a duration of the control channel is included, and another part of the control channel is sent to indicate information about a current physical frame structure; And transmitting, on the control channel, information indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource; and transmitting the correlation on the selectively configured channel.
  • the foregoing multiple channels include: an uplink sounding channel for transmitting an uplink sounding signal; an uplink scheduling request channel for transmitting an uplink scheduling request; and an uplink transport channel for transmitting an uplink service, and/or uplink signaling, and/or Or downlink service feedback, and/or downlink CQI feedback, and/or downlink CSI feedback; and, an uplink random access channel, for transmitting an uplink random access request.
  • the foregoing multiple channels include: an uplink sounding channel for transmitting an uplink sounding signal; an uplink scheduling request channel for transmitting an uplink scheduling request; and an uplink transport channel for transmitting an uplink service, and/or uplink signaling, and/or Or downlink service feedback; CQI feedback channel for transmitting downlink CQI feedback; CSI feedback channel for transmitting downlink CSI feedback; and, uplink random access signal Channel, used to transmit uplink random access requests.
  • the first communication unit 162 transmits a preamble sequence, transmits information indicating the current physical frame structure in the system information channel, and performs related reception on the selectively configured channel.
  • the determining unit 161 determines that the current physical frame further includes: configuring a control channel for the current physical frame, and transmitting information indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource.
  • the first communication unit 162 sends a preamble sequence, and sends the information indicating the current physical frame structure on the system information channel; transmitting, on the control channel, the allocation and scheduling of the transmission resource, and the transmission format of the channel occupying the transmission resource.
  • Information and, received in a selectively configured channel.
  • the first communication unit 162 transmits a preamble sequence; transmitting, on the system information channel, a part of information indicating a current physical frame structure, where at least the duration of the control channel is included, and another part of the control channel is sent to indicate the current physical frame structure; And transmitting information indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource; and receiving the correlation in the selectively configured channel.
  • FIG. 17 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device includes: a parsing unit 171 and a second communication unit 172.
  • the parsing unit 171 parses the information indicating the current physical frame structure in the current physical frame, and determines the structure of the current physical frame.
  • the second communication unit 172 is in communication with the network device within the current physical frame.
  • the length of each of the physical frames is determined by its structure and is not fixed.
  • the current physical frame is composed of a preamble sequence, and a system information channel carrying information indicating a current physical frame structure.
  • the second communication unit 172 receives the preamble sequence, and receives information indicating the current physical frame structure on the system information channel.
  • the current physical frame includes a preamble sequence, a system information channel carrying information indicating a current physical frame structure, and at least one selectively configured channel.
  • Channels that are selectively configured may include the following:
  • the selectively configured channel includes: an uplink sounding channel for transmitting an uplink sounding signal; an uplink scheduling request channel for transmitting an uplink scheduling request; and an uplink transport channel for transmitting an uplink service, and/or an uplink signal. And/or downlink traffic feedback, and/or downlink CQI feedback, and/or downlink CSI feedback; and an uplink random access channel for transmitting an uplink random access request.
  • the foregoing multiple channels include: an uplink sounding channel for transmitting an uplink sounding signal; an uplink scheduling request channel for transmitting an uplink scheduling request; and an uplink transport channel for transmitting an uplink service, and/or uplink signaling, and/or Or downlink service feedback; CQI feedback channel, used for transmitting downlink CQI feedback; CSI feedback channel, for transmitting downlink CSI feedback; and, uplink random access channel, for transmitting uplink random access request.
  • the second communication unit 172 receives the preamble sequence; receives information indicating the current physical frame structure on the system information channel; and transmits the correlation on at least one selectively configured channel.
  • the current physical frame further includes: a control channel, configured to transmit information indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource.
  • the second communication unit 172 receives the preamble sequence; receives information indicating a current physical frame structure on the system information channel; and receives information indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource on the control channel; and Transmitting in association with at least one selectively configured channel.
  • the second communication unit 172 receives the preamble sequence; and receives, on the system information channel, a part of the information indicating the current physical frame structure, where at least the duration of the control channel is included, and the other part of the control channel receives the information indicating the current physical frame structure; Receiving information indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource; and transmitting in association with the at least one selectively configured channel.
  • the selectively configured channel includes: a first downlink transport channel for transmitting downlink traffic, and/or downlink signaling, and/or uplink traffic feedback; and a downlink sounding channel for transmitting a downlink sounding signal; And a second downlink transmission channel, configured to transmit downlink traffic, and/or downlink signaling, and/or uplink traffic feedback.
  • the second communication unit 172 receives the preamble sequence; receives information indicating the current physical frame structure on the system information channel; and, performs reception on the at least one selectively configured channel.
  • the current physical frame further includes: a control channel, configured to transmit information indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource.
  • the second communication unit 172 receives the preamble sequence; receives information indicating a current physical frame structure on the system information channel; and receives information indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource on the control channel; and And receiving at least one selectively configured channel.
  • the second communication unit 172 receives the preamble sequence; and receives, on the system information channel, a part of the information indicating the current physical frame structure, where at least the duration of the control channel is included, and the other part of the control channel receives the information indicating the current physical frame structure; Receiving information indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource; and receiving the correlation in at least one selectively configured channel.
  • the network device configures the structure of the current physical frame according to the scheduled transmission resource, and sends information indicating the current physical frame structure in the current physical frame, and the terminal device uses the information indicating the current physical frame structure. , you can determine the structure of the current physical frame.
  • the network device is a CAP and the terminal device is a STA.
  • the CAP may send information indicating the current physical frame structure in the following two manners.
  • Manner 1 Send information indicating the current physical frame structure on the system information channel.
  • the information indicating the current physical frame structure includes one or more of the following: information indicating the existence of the channel, information indicating the existence and duration of the channel, and information indicating the duration of the channel.
  • the STA associated with the CAP resolves the information indicating the current physical frame structure in the system information channel, and may determine the structure of the current physical frame, and add the durations of the respective channels in the current physical frame to obtain the frame length of the current physical frame.
  • the CAP can also send the frame length information of the current physical frame on the system information channel.
  • the STA associated with the CAP can directly determine the frame length of the current physical frame, and does not need to be calculated.
  • Manner 2 Send information indicating the current physical frame structure on the system information channel and the control channel.
  • the information indicating the current physical frame structure includes one or more of the following: information indicating the existence of the channel, information indicating the existence and duration of the channel, and information indicating the duration of the channel.
  • the CAP sends a part of the information indicating the current physical frame structure on the system information channel, where the part indicates that the information of the current physical frame structure includes at least the duration of the control channel, and the control channel transmits another part of the information indicating the current physical frame structure.
  • the STA associated with the CAP analyzes the information of the current physical frame structure, and determines the structure of the current physical frame, and adds the durations of the respective channels in the current physical frame to obtain the frame length of the current physical frame.
  • the CAP can also send the frame length information of the current physical frame on the system information channel, and the STA associated with the CAP directly obtains the frame length of the current physical frame without calculation.
  • the CAP may also send the frame length information of the current physical frame on the system information channel and the control channel. At this time, the STA associated with the CAP adds the frame lengths of the system information channel and the control channel to obtain the current physical frame. Frame length.
  • FIG. 18 is a schematic structural diagram of a physical frame in the sixth application example of the present invention, wherein the abscissa indicates time, the ordinate indicates frequency or codeword, and the physical frame includes a preamble sequence and a system information channel.
  • the CAP performs the following operations: transmitting a preamble sequence; and, transmitting information indicating a current physical frame structure on the system information channel.
  • Control channel duration indication field indicating the duration of the control channel
  • the control channel duration indication field may be 6 bits, the maximum may indicate 63 OFDM symbols, and the 1 OFDM symbol is the minimum resource allocation unit. For example: If the 6 bits are 010000, the conversion to decimal number is 16, which corresponds to 16 OFDM symbols.
  • the downlink transmission channel duration indication field indicates the duration of the downlink transmission channel, and the downlink transmission channel duration indication field may be 9 bits, and the maximum indication may be 511 OFDM symbols. For example: If the 9 bits are 100000000, the conversion to decimal is 256, which corresponds to 256 OFDM symbols. 3
  • the uplink transmission channel duration indication field indicates the duration of the uplink transmission channel, and the uplink transmission channel duration indication field may be 9 bits, and the maximum may indicate 511 OFDM symbols.
  • Downstream sounding channel configuration field indicating the presence of the downlink sounding channel.
  • the duration of the downlink sounding channel is fixed, and the downlink sounding channel configuration field may be 1 bit.
  • the bit indicates that the downlink sounding channel exists, it is equivalent to indirectly indicating that the downlink sounding channel is a fixed time length.
  • the uplink sounding channel configuration field indicates the existence and duration of the uplink sounding channel.
  • the uplink sounding channel configuration field may be 2 bits, for example, filling 00 indicates no uplink sounding channel, filling 01 indicates that the uplink sounding channel occupies 1 OFDM symbol, and filling 10 indicates that the uplink sounding channel occupies 2 OFDM symbols, and filling in 11 indication The uplink sounding channel occupies 4 OFDM symbols.
  • the uplink scheduling request channel configuration field indicates the presence and duration of the uplink scheduling request channel.
  • the uplink scheduling request channel configuration field may be 2 bits, for example, 00 indicates that there is no uplink scheduling request channel, 01 indicates that the uplink scheduling request channel occupies 1 OFDM symbol, and 10 indicates that the uplink scheduling request channel occupies 2 OFDM symbols. Filling in 11 indicates that the uplink scheduling request channel occupies 4 OFDM symbols.
  • the uplink random access channel configuration field indicates the presence of the uplink random access channel.
  • the uplink random access channel has a fixed duration, and the uplink random access channel configuration field may be 1 bit.
  • the uplink random access channel is indirectly indicated.
  • the field 1-3 in the system information channel indicates the duration information of the channel
  • the fields 4 and 7 indicate the information of the existence of the channel
  • the fields 5 and 6 indicate the existence and duration of the channel. information.
  • the downlink sounding channel and the uplink random access channel may not be fixed durations.
  • the downlink sounding channel configuration field and the uplink random access channel configuration field may also use multi-bit indicating channel existence and Duration, or information indicating the duration of the channel.
  • the physical frame structure in the sixth application example does not include the control channel, the downlink transmission channel, the downlink sounding channel, the uplink transmission channel, the uplink sounding channel, the uplink random access channel, and the uplink scheduling request channel, and the CAP is in the control channel duration indication field.
  • the downlink transmission channel duration indication field and the uplink transmission channel duration indication field, the filling duration is 0, and the value of the indication channel does not exist in the downlink sounding channel configuration field and the uplink random access channel configuration field, and the uplink sounding channel configuration field and the uplink
  • the scheduling request configuration field fills in the value indicating that the channel does not exist.
  • the duration of the preamble sequence and the system information channel is preset, and both the CAP and the STA are aware of the preset condition, so the STA parses the information indicating the current physical frame structure from the system information channel, and can determine the current physics. Only the preamble sequence and the system information channel are included in the frame, thereby determining that the transmitting operation is not performed in the current physical frame, and only the relevant receiving operation is performed.
  • Application example seven 19 is a schematic structural diagram of a physical frame in the seventh application example of the present invention, wherein the abscissa represents time, the ordinate represents frequency or codeword, and the physical frame includes a preamble sequence, a system information channel, a downlink guard interval, an uplink scheduling request channel, and an uplink. Random access channel.
  • the CAP performs the following operations: transmitting a preamble sequence; and, transmitting information indicating a current physical frame structure on the system information channel.
  • the downlink protection interval duration in the seventh application example the CAP may be carried in the information indicating the current physical frame structure, where the system information channel is based on the fields listed in the application instance 6. It is also possible to have an indication field of the guard interval, which may indicate the duration of the downlink guard interval by multiple bits, or in the case where the guard interval has a fixed duration, the field may also indicate the existence of the downlink guard interval with only 1 bit.
  • the CAP may also be carried in a broadcast information frame (BCF) periodically broadcasted by the downlink transmission channel, and the BCF indicates the downlink protection interval by using 2 bits. For example, when the value is 0, the downlink protection interval is 2 OFDM symbols. When the value is 1, the downlink protection interval is 4 OFDM symbols.
  • BCF broadcast information frame
  • the STA periodically detects the duration of the downlink protection interval by periodically detecting the BCF. At this time, the CAP does not need to indicate the downlink protection interval in each physical frame. Duration, saving the overhead of the system information channel.
  • the STA determines the structure of the current physical frame, thereby determining that the following physical operations can be selectively performed in addition to performing the related receiving operations on the current physical frame:
  • the uplink scheduling request channel sends an uplink scheduling sequence, thereby triggering the CAP to allocate resources for sending the uplink scheduling request; or sending fast signaling feedback on the uplink scheduling request channel.
  • the STA obtains the transmission resources of the uplink random access channel and the uplink scheduling request channel in a competitive manner. Therefore, the CAP does not need to send resource indications for the two channels on the control channel, and the control channel may not be configured.
  • the physical frame structure in the seventh application example may also include only one of an uplink random access request channel and an uplink scheduling request channel.
  • the application scenario of this application example 8 includes: CAP has downlink service transmission requirements for STAs; channel detection is required before downlink traffic transmission; STA has no uplink traffic, uplink signaling, or lower industry feedback requirements.
  • the CAP needs to perform downlink traffic transmission through two physical frames, as shown in Figures 20a and 20b, where the abscissa represents time and the ordinate represents frequency or codeword.
  • the CAP performs the following send operations: sending a preamble sequence; and, in the system
  • the information channel transmits information indicating a current physical frame structure; and, in the control channel, transmits information indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource; and transmitting a downlink sounding signal on the downlink sounding channel.
  • the STA determines the structure of the first physical frame by indicating the current physical frame structure, and determines that the first physical frame can perform the following transmission operation by the ilt: the downlink channel measurement result is fed back to the CAP on the uplink transmission channel.
  • the downlink channel measurement result is obtained by the STA based on the downlink sounding signal sent by the CAP, and includes the downlink CQI, or includes the downlink CQI and the downlink CSI.
  • the CAP performs the following sending operation: sending a preamble sequence; and transmitting information indicating a current physical frame structure on the system information channel; and transmitting and indicating scheduling and transmission resource allocation on the control channel Information of the transmission format of the channel; and, transmitting downlink service data on the downlink transmission channel.
  • the STA determines the structure of the second physical frame by indicating the information of the current physical frame structure, and thereby determines that the transmitting operation is not performed in the second physical frame.
  • the CAP needs to complete downlink traffic transmission through two physical frames, as shown in FIG. 21 and FIG. 20b, where the abscissa represents time and the ordinate represents frequency or codeword.
  • the CAP performs the following sending operation: transmitting a preamble sequence; and transmitting information indicating a current physical frame structure on the system information channel; and transmitting and indicating scheduling and transmission resource allocation on the control channel Information on the transmission format of the channel.
  • the STA determines the structure of the first physical frame, and it is determined by it ⁇ that the following transmission operation can be performed in the first physical frame:
  • the STA sends an uplink sounding signal to the CAP on the uplink sounding channel, so that the CAP uses the uplink sounding signal to perform uplink channel quality measurement, or performs uplink channel quality and uplink channel state measurement, and obtains a downlink channel according to the principle of uplink and downlink reciprocity. CQI, or get the CQI and CSI of the downlink channel.
  • the CAP performs the following sending operation: sending a preamble sequence; and transmitting information indicating a current physical frame structure on the system information channel; and transmitting and indicating scheduling and transmission resource allocation on the control channel Information of the transmission format of the channel; downlink traffic data is transmitted on the downlink transmission channel.
  • the STA determines the structure of the second physical frame by indicating the information of the current physical frame structure, and thereby determines that the transmitting operation is not performed in the second physical frame.
  • the CAP may indicate the downlink guard interval by using two the same optional implementation manners as the application instance 7.
  • the system information channel is based on the fields listed in the application instance 6.
  • the indicator field of the guard interval may also be used, and the field may indicate the duration of the downlink guard interval by using multiple bits. Alternatively, if the guard interval has a fixed duration, the field may also indicate the existence of the downlink guard interval by only 1 bit.
  • the system information channel has the same fields as in the embodiment.
  • the control channel duration indication field of the system information channel is filled in correspondingly.
  • the value is 9 bits in the control channel to indicate the duration of the downlink transmission channel.
  • the CAP can complete downlink traffic transmission by using one physical frame as shown in Fig. 20b.
  • the first physical frame and the second physical frame may be continuous or non-contiguous.
  • channel detection may be performed on the downlink detection channel and the uplink sounding channel simultaneously, that is, the downlink sounding channel, the uplink sounding channel, and the uplink transmission channel are simultaneously configured in the first physical frame.
  • the CAP uses the uplink sounding signal sent by the STA to perform the uplink channel state measurement, and obtains the downlink CSI based on the uplink and downlink reciprocity, and receives the downlink CQI that the STA feeds back in the uplink transmission channel; or, the CAP uses the uplink sounding signal sent by the STA.
  • the uplink channel quality measurement is performed, and the downlink CQI is obtained based on the uplink and downlink reciprocity, and the downlink CSI fed back by the STA in the uplink transmission channel is received.
  • the channel detection is performed in one physical frame as an example. In actual applications, channel detection may also be performed through multiple physical frames, which is not mentioned here.
  • the application scenario of this application example 9 includes: STA has uplink service transmission requirement; channel detection is required before uplink service transmission; CAP has no downlink service, downlink signaling or uplink service feedback requirement.
  • the STA needs to complete the uplink transmission by using two physical frames, as shown in FIG. 21 and FIG. 22, where the abscissa indicates time.
  • the ordinate represents the frequency or codeword.
  • the CAP performs the following sending operation: transmitting a preamble sequence; and transmitting information indicating a current physical frame structure on the system information channel; and transmitting and indicating scheduling and transmission resource allocation on the control channel Information on the transmission format of the channel.
  • the STA determines the structure of the current physical frame, and thereby determines that the following transmission operation can be performed in the first physical frame:
  • the uplink sounding channel sends an uplink sounding signal to the CAP, so that the CAP uses the uplink sounding signal to perform uplink channel quality measurement, obtain an uplink CQI, or perform uplink channel quality measurement and uplink channel state measurement, and obtain uplink CQI and CSI.
  • the CAP performs the following sending operation: sending a preamble sequence; and transmitting information indicating a current physical frame structure on the system information channel; and transmitting and indicating scheduling and transmission resource allocation on the control channel Information on the transmission format of the channel.
  • the STA determines the structure of the current physical frame, and thereby determines that the second physical frame can be executed as Send operation:
  • the uplink service data is transmitted on the uplink transmission channel.
  • the STA needs to complete the uplink transmission by using two physical frames, as shown in FIG. 20a and FIG. 22, where the abscissa indicates time, vertical.
  • the coordinates represent the frequency or codeword.
  • the CAP performs the following sending operation: transmitting a preamble sequence; and transmitting information indicating a current physical frame structure on the system information channel; and transmitting and indicating scheduling and transmission resource allocation on the control channel Information of the transmission format of the channel; and, transmitting a downlink sounding signal on the downlink sounding channel.
  • the STA determines the structure of the current physical frame, and thereby determines that the following transmission operation can be performed in the first physical frame:
  • the downlink CQI is sent to the CAP on the uplink transmission channel, or the downlink CQI and CSI are transmitted. Therefore, the CAP obtains the uplink CQI or the uplink CQI and CSI based on the principle of uplink and downlink reciprocity.
  • the CAP performs the following sending operation: sending a preamble sequence; and transmitting information indicating a current physical frame structure on the system information channel; and transmitting and indicating scheduling and transmission resource allocation on the control channel Information on the transmission format of the channel.
  • the STA determines the structure of the current physical frame and thereby determines that the following transmission operation can be performed in the second physical frame:
  • the uplink service data is transmitted on the uplink transmission channel.
  • the CAP may indicate the downlink guard interval by using two the same optional implementation manners as the application instance 7.
  • the system information channel is based on the fields listed in the application instance 6.
  • the indicator field of the guard interval may also be used, and the field may indicate the duration of the downlink guard interval by using multiple bits. Alternatively, if the guard interval has a fixed duration, the field may also indicate the existence of the downlink guard interval by only 1 bit.
  • the system information channel has the same fields as in the embodiment.
  • the control channel duration indication field of the system information channel is filled in correspondingly. Value, 9 bits are used in the control channel to indicate the duration of the uplink transport channel.
  • the CAP may not configure the uplink sounding channel, and complete the uplink traffic transmission through one physical frame shown in FIG.
  • the CAP may also configure the downlink sounding channel, the uplink sounding channel, and the uplink transport channel in the first physical frame, and the CAP uses the STA in the first physical frame.
  • the uplink sounding signal sent by the uplink sounding channel performs uplink channel state measurement and obtains uplink
  • the CSI receives the downlink CQI fed back by the STA in the uplink transmission channel of the first physical frame, and obtains the uplink CQI based on the uplink and downlink reciprocity, or the CAP uses the uplink sent by the STA on the uplink sounding channel of the first physical frame.
  • the detection signal performs the uplink channel quality measurement, obtains the uplink CQI, receives the downlink CSI fed back by the STA in the uplink transmission channel of the first physical frame, and obtains the uplink CSI based on the uplink and downlink reciprocity.
  • the channel detection is performed in one physical frame as an example.
  • channel detection may also be performed through multiple physical frames, which is not mentioned here.
  • several possible physical frame structures are exemplified, and the purpose is to explain the association between the transmission channel and the corresponding sounding channel in the physical frame of the embodiment of the present invention.
  • the actual application scenario may be more complicated.
  • the CAP and each STA have different transmission requirements. Based on whether the STA supports channel detection, some channel detection is required before uplink and downlink transmission. Channel detection may not be required before the uplink and downlink transmission.
  • the following application examples show the physical frame structure that may be configured in other application scenarios.
  • FIG. 23 is a schematic structural diagram of a physical frame in the tenth application example of the present invention.
  • the physical frame includes a downlink subframe and an uplink subframe, where the downlink subframe includes a preamble sequence, a system information channel, a control channel, and a downlink transmission channel, and the uplink subframe includes an uplink transmission channel.
  • Each STA can share uplink transmission resources by time division, frequency division, code division, space division or a combination of the above multiplexing methods.
  • the CAP may send information indicating the current physical frame structure on the system information channel, as follows:
  • the duration of the control channel is indicated by 6 bits, which can indicate up to 63 OFDM symbols. For example: If the 6 bits are 010000, the conversion to decimal number is 16, corresponding to 16 OFDM symbols.
  • the length of the downlink transmission channel is indicated by 9 bits, and the maximum 511 OFDM symbols. For example: If the 9 bits are 100000000, the conversion to decimal is 256, corresponding to 256 OFDM symbols. In the system information channel, 9 bits are used to indicate the length of the uplink transmission channel, which is a maximum of 511 OFDM symbols.
  • the guard interval can be indicated by 1 bit, for a total of 1 OFDM symbol. Or the system information channel does not indicate the guard interval, but the system is configured.
  • the CAP may also send a message indicating a current physical frame structure on the system information channel and the control channel. Information, for example:
  • control channel duration is transmitted by 6 bits; in the control channel, the bit transmits the downlink transmission channel duration, and 9 bits are used to transmit the uplink transmission channel duration.
  • signaling can be separated from traffic in uplink and downlink transmissions.
  • Figure 24 is a block diagram showing the structure of a physical frame in the application example 11 of the present invention.
  • a downlink sounding channel is set in the downlink subframe.
  • the presence information of the downlink sounding channel is included in the information sent by the CAP indicating the current physical frame structure, and can be implemented by 1 bit and transmitted in the system information channel.
  • the downlink sounding channel can be located behind the downlink transport channel.
  • Figure 25 is a schematic diagram showing the structure of a physical frame in the application example 12 of the present invention, wherein the downlink sounding channel is located in the middle of the downlink transmission channel.
  • downlink MU-MIMO system performance is not only sensitive to downlink channel state information delay, but multi-user MIMO involves large signal processing complexity.
  • the downlink sounding channel is located in the middle of the downlink transmission channel. If the downlink sounding channel position is fixed, the presence of the downlink sounding channel can be indicated by 1 bit in the system information channel. If there are STAs with different processing capabilities in the system, the downlink sounding channel position is variable. At this time, not only the presence of the downlink sounding channel needs to be indicated in the system information channel, but also the duration of the two downlink transport channels in FIG. 25 needs to be indicated.
  • the duration indications of the two downlink transmission channels can be used in the following three ways:
  • the total duration of the downlink transmission channel and the duration of the downlink transmission channel 2 are respectively indicated.
  • the downlink sounding channel position is set by the above dynamic or semi-static setting to provide sufficient processing time for devices with different processing capabilities.
  • the CAP sends information indicating the current physical frame structure on the system information channel, for example: 6 bits are used to indicate the duration of the control channel; 9 bits are used to indicate the total duration of the downlink transmission channel, and 7 bits are used to indicate the downlink transmission channel.
  • the duration of the uplink transmission channel is indicated by 9 bits;
  • the downlink sounding channel is indicated by 2 bits, indicating: no downlink sounding channel, downlink sounding channel position 1, downlink sounding channel position 2, and downlink sounding channel position 3, for matching different Sounding bandwidth.
  • the downlink sounding channel positions 1, 2, and 3 are all system-defined locations.
  • the CAP may send information indicating a current physical frame structure on the system information channel and the control channel, for example, in the system information channel, the CAP uses 6 bits to indicate the duration of the control channel, and in the control channel, The bit indicates the total duration of the downlink transmission channel, 7 bits indicate the duration of the downlink transmission channel 2, 9 bits indicate the duration of the uplink transmission channel, and 2 bits indicate the position of the downlink sounding channel.
  • Figure 26 is a diagram showing the structure of a physical frame in the thirteenth application example of the present invention.
  • auxiliary channels are set in the uplink subframe, for example: one or more of an uplink sounding channel, an uplink scheduling request channel, and an uplink random access channel are set in the uplink subframe.
  • Figure 26 is only an example of the frame structure included in all three auxiliary channels. In actual situations, some auxiliary channels may not be considered depending on the system application scenario or scheme.
  • the CAP may send information indicating a current physical frame structure on the system information channel, for example, 6 bits are used to indicate a control channel duration in the system information channel; 9 bits are used to indicate a downlink transmission channel duration; The bit indicates the duration of the uplink transmission channel; the presence of the uplink sounding channel is indicated by 2 bits and is long, indicating 0, 1, 2, 4 OFDM symbols respectively; 2 bits are used to indicate the existence and time length of the uplink scheduling request channel, respectively indicating 1 2, 3, 4 OFDM symbols; 1 bit indicates the presence of the uplink random access channel, indicating whether there are two cases, if any, fixed to 1 OFDM symbol.
  • the CAP may send information indicating a current physical frame structure on the system information channel and the control channel, for example:
  • the system information channel 6 bits are used to indicate the duration of the control channel, and 1 bit is used to indicate the existence of the uplink random access channel; in the control channel, 9 bits are used to indicate the duration of the downlink transmission channel, and 9 bits are used to indicate the uplink transmission channel.
  • the duration of the uplink sounding channel is indicated by 2 bits and is long and long, and the presence of the uplink scheduling request channel is indicated by 2 to be long.
  • Figure 27 is a diagram showing the structure of a physical frame in the application example 14 of the present invention.
  • a downlink sounding channel is set in the downlink subframe, and an uplink sounding channel, an uplink scheduling request channel, and an uplink random access channel are also set in the uplink subframe.
  • some auxiliary channels may not be considered depending on the system application scenario or scheme.
  • the uplink protection interval is reserved in advance by the transmission, that is, the uplink transmission time is advanced, and the protection interval of the uplink to the downlink transition is reserved for the CAP and the STA.
  • the CAP can pass the STA in the network access phase.
  • the resource sent in the control channel indicates the notification timing advance, and the STA performs the transmission advance according to the timing advance in the subsequent uplink transmission operation.
  • the uplink guard interval in advance by transmitting, indicating the downlink guard interval of the downlink to uplink transition It shall be not less than the sum of the maximum downlink-to-uplink transmission and uplink-to-downlink transmission and reception times of the CAP and STA or STA and the CAP.
  • Figure 29 is a diagram showing the structure of a physical frame in the fifteenth application example of the present invention, wherein the abscissa represents time and the ordinate represents frequency or codeword.
  • the CAP performs the following sending operation: transmitting a preamble sequence; and transmitting information indicating a current physical frame structure on the system information channel; and transmitting, on the control channel, indicating allocation and scheduling of the transmission resource, and a channel occupying the transmission resource Information of the transmission format; and, transmitting one or more of downlink service data, downlink signaling, and uplink service feedback on the downlink transmission channel; and transmitting a downlink sounding signal on the downlink sounding channel; and, in the downlink transmission channel One or several of downlink service data, downlink signaling, and uplink service feedback are sent.
  • the STA determines the structure of the current physical frame, and determines that the following sending operation can be performed in the current physical frame: sending an uplink sounding signal on the uplink sounding channel; and initiating an uplink scheduling request in the uplink scheduling request channel;
  • Uplink traffic, and/or uplink signaling, and/or uplink feedback are transmitted on the uplink transmission channel; random access is initiated on the uplink random access channel.
  • the uplink guard interval and the downlink guard interval may be indicated in a similar manner to the application instance 7.
  • the uplink transmission channel, the uplink scheduling request channel, and the uplink random access channel pass time division multiplexing and frequency division.
  • the resource is multiplexed in one way or in a combination of code division multiple access, and the physical frame structure in the application example fifteen is taken as an example.
  • FIG. 30 is an example of such a multiplexing situation.
  • the multiplexing mode can be preset and is known by both the CAP and the STA. In this case, the multiplexing mode is not required to be indicated in the physical frame, or can be indicated by the control channel, for example, 4 bits are used to indicate the uplink scheduling request channel on the uplink transmission channel.
  • the edge of the channel is edged.
  • control channel and the system information channel may be multiplexed by one of a time division multiplexing, a frequency division multiplexing, and a code division multiple access, to apply the resource.
  • the physical frame structure in the fifteenth embodiment is taken as an example.
  • Fig. 31 is an example of such a multiplexing case.
  • the system information channel and the control channel are frequency-multiplexed and time-division mixed-multiplexed. This multiplexing mode is preset and known to both the CAP and the STA, so there is no need to indicate the multiplexing mode in the physical frame.
  • the control channel and the system information channel can also multiplex resources only in a frequency division manner.
  • resources allocated for each STA in the same channel may also share transmission resources in a multiplexing manner using one or more combinations of time division, frequency division, code division, and space division.
  • the information indicating the current physical frame structure includes: information indicating the presence of the first channel.
  • Information indicating the presence of the first channel is carried in at least one channel of the physical frame.
  • the first channel is a downlink sounding channel.
  • the information indicating the current physical frame structure further includes: information indicating the duration of the second channel.
  • the duration information indicating the second channel is carried in at least one channel of the physical frame.
  • the second channel can be a downlink transport channel or an uplink transport channel.
  • the downlink channel detection may be performed first, and then the uplink channel measurement result is obtained based on the uplink and downlink reciprocity.
  • the downlink channel detection may be performed first. The downlink channel measurement result is obtained.
  • the first channel is an uplink random access channel.
  • the information indicating the current physical frame structure includes: the existence of the first channel and the information of the duration.
  • the information of the presence and duration of the first channel is carried in at least one channel of the physical frame.
  • the first channel is an uplink scheduling request channel. In another optional implementation manner, the first channel is an uplink sounding channel.
  • the information indicating the current physical frame structure further includes: duration information indicating the second channel.
  • the duration information indicating the second channel is carried in at least one channel of the physical frame.
  • the second channel is an uplink transport channel or a downlink transport channel.
  • the uplink channel detection may be performed first, and then the downlink channel measurement result is obtained based on the uplink and downlink reciprocity.
  • the uplink channel detection may be performed first. Get the uplink channel measurement result.
  • the information indicating the current physical frame structure includes: duration information indicating the first channel, the duration being greater than or equal to zero.
  • the duration information indicating the first channel is carried in at least one channel of the physical frame.
  • the first channel is a control channel for indicating a transmission resource allocation and scheduling, and a transmission format of a channel occupying the transmission resource.
  • the first channel is a downlink transmission channel.
  • the information indicating the current physical frame structure further includes: information indicating the presence and duration of the second channel.
  • Information indicating the presence and duration of the second channel is carried in at least one channel of the physical frame.
  • the second channel is an uplink sounding channel for transmitting an uplink sounding signal.
  • the uplink channel measurement may be performed first, and the downlink channel measurement result is obtained based on the uplink and downlink reciprocity.
  • the first channel is a downlink transmission channel.
  • the information indicating the current physical frame structure further includes: information indicating the existence of the second channel.
  • Information indicating the presence of the second channel is carried in at least one channel of the physical frame.
  • the second channel is a downlink sounding channel for transmitting a downlink sounding signal.
  • the downlink channel measurement may be performed first to obtain a downlink channel measurement result.
  • the first channel is an uplink transport channel.
  • the information indicating the current physical frame structure further includes: information indicating the presence and duration of the second channel.
  • Information indicating the presence and duration of the second channel is carried in at least one channel of the physical frame.
  • the second channel is an uplink sounding channel for transmitting an uplink sounding signal.
  • the uplink channel measurement may be performed first to obtain an uplink channel measurement result.
  • the first channel is an uplink transmission channel.
  • the information indicating the current physical frame structure further includes: information indicating the existence of the second channel.
  • Information indicating the presence of the second channel is carried in at least one channel of the physical frame.
  • the second channel is a downlink sounding channel for transmitting a downlink sounding signal.
  • the downlink channel measurement may be performed first, and the uplink channel measurement result is obtained based on the uplink and downlink reciprocity.
  • the embodiment of the invention further provides an indication method for specifically indicating the allocation of each channel resource in the frame structure, as follows:
  • System Information Channel Field Definition The system information channel is transmitted using MCS0, and space time coding is not used.
  • the system information field definition is shown in Table 1.
  • the uplink sounding channel is 1 OFDM port.
  • the uplink sounding channel is 2 OFDM ports.
  • the uplink sounding channel is 4 OFDM ports.
  • the scheduling request channel is 1 OFDM port.
  • the scheduling request channel is 2 OFDM ports
  • the scheduling request channel is 4 OFDM ports.
  • the initial state of the register is 0xFF, and the register state is inverted as the CRC check sequence output after the end of the operation.
  • the high-order register output corresponds to the upper bit ( .3 ), and the low-order register output corresponds to the lower bit ( ) o
  • Control channel field definition The control channel is transmitted by MCS1, and space-time coding is not used.
  • the control channel consists of multiple unicast and broadcast scheduling signaling.
  • the uplink and downlink unicast scheduling signaling fields are shown in Table 2.
  • this transmission is 4 3 ⁇ 4u
  • this transmission is 5 stream feedback, indicating the number of columns of the feedback matrix MU-MIMO
  • this transmission is 8 3 ⁇ 4u MU-MIMO
  • MU-MIMO space; 3 ⁇ 4 up: 1 ⁇ 2 bit
  • 3 ⁇ 4 8 0 , b 54 — b 49 indicates the resources used for signaling and feedback transmission in the user resource group, the domain value is 0 ⁇ 63.
  • b. 6 is the CRC of the unicast scheduling signaling field and the XOR of the unique 12-bit ID of the local cell allocated by the CAP.
  • Uplink and downlink transport channel resource allocation types are:
  • this part supports time division resource multiplexing scheduling.
  • the time-frequency resources allocated to each STA on the uplink or downlink transport channel are referred to as resource groups.
  • the OFDM symbol index in the STA resource group is from 0 to D ( 2 — 4 ) - 1 according to the time increment direction.
  • D b 32 b 3 'b 24 represents a decimal number corresponding to bit 2 b ... ⁇ .
  • Time division multiplexing resource allocation In STA scheduling signaling (Table 2), use [ 3 ⁇ 416 3 ⁇ 415 to indicate STA resource group start OFDM symbol index, field value 0 ⁇ 510; use [ ⁇ 32 ⁇ '" 4] to indicate STA resource group The number of consecutive OFDM symbols occupied.
  • the resource group allocated for the STA includes the resources occupied by the demodulation pilot.
  • Transmission Channel Demodulation Pilot This section dynamically adjusts the demodulation pilot pattern. Different time domain pilot intervals can be configured by control channel scheduling signaling 5 (Table 2); different frequency domain pilot patterns can be configured by control channel scheduling signaling 7 (Table 2).
  • the demodulation pilot needs to be precoded (dedicated demodulation pilot); if 0 is 00 or 11, the demodulation pilot does not need precoding processing (common demodulation pilot).
  • the demodulation pilot pattern is as follows:
  • the demodulation pilot pattern is shown in Table 3.
  • the number of pilot symbols, DP refers to the number of consecutive OFDM symbols occupied by the demodulation pilot in the time domain.
  • Table 4 defines the subcarrier positions corresponding to the pilot symbols in the demodulation pilot pattern.
  • the demodulation pilot spacing is designed as follows:
  • Different time domain pilot intervals can be configured by the control channel scheduling signaling b 45 ( 0 ) to adapt to different wireless propagation environments.
  • Time domain pilot spacing configuration, DPI T ie: Inserting a set of demodulation pilots every D ⁇ OFDM symbols.
  • the pilot sequence generator polynomial is 1 + + 15 .
  • the initial state of the register is:
  • the time domain baseband signal of the ti antenna port is
  • H (t) is the time domain window function, if is the loading symbol of the A subcarrier on the first spatial stream, [3 ⁇ 4] 3 ⁇ 4 . represents the element of the first row and column of the precoding matrix 3 ⁇ 4£ ⁇ «.
  • the downlink multi-antenna transmission modes supported in this section are as follows:
  • Mode 1 Open-loop SU-MIMO
  • the STA can receive two codewords in parallel.
  • the precoding matrix eC ' s in open loop mode is a column orthogonal matrix, and ⁇
  • ⁇ .
  • Mode 2 For closed-loop SU-MIMO closed-loop SU-MIMO, the STA can receive two codewords in parallel and precode in units of subcarrier groups.
  • the precoding matrix grouping is defined as follows: The number of groups of precoding packets of the useful subcarrier is Ng , and the set of subcarrier numbers within the gth packet is 0, and the group uses the same precoding matrix.
  • the number of subcarriers g I in the same precoding packet in the SU-MIMO mode is determined by the following formula.
  • ⁇ ⁇ -DPI F
  • ⁇ ⁇ is defined in the Appendix.
  • ⁇ ⁇ has values of 1 and 2.
  • £)3 ⁇ 4 1, 4 subcarriers are grouped: [ -115,-113 ][ -112,-109 ][ -108,-105 ][ -104,-101 ][ -100,-97 ][ -96,-93 ][ -92,-89 ][ -88,-85 ][-84,-81 ][ -80,-77 ][ -76,-73 ][ -72,-69 ][ -68,-65 ][ -64,-61 ][ - 60,-57 ][ -56,-53 ][ -52,-49 ][ -48,-45 ][ -44,-41 ][ -40,-37 ][ -36,-33 ][ -32 , -29 ]
  • the STA can feed back channel information according to the MAC layer indication.
  • each STA can only receive one codeword and pre-code it in units of subcarrier groups.
  • the precoding matrix grouping is defined as follows: The number of groups of precoding packets of the useful subcarrier is ⁇ , and the set of subcarrier numbers within the gth packet is ⁇ ⁇ , and the group uses the same precoding matrix.
  • the number of subcarriers Qg in the same precoding packet in the MU-MIMO mode is determined by the following formula.
  • ⁇ n ⁇ DPi F
  • D ⁇ is defined in Appendix B.
  • the value of DPI ⁇ is 1.
  • the STA may feed back channel information according to the MAC layer indication.
  • Uplink transmission channel multi-antenna scheme The uplink multi-antenna transmission modes supported in this part are:
  • Mode 1 Open Loop SU-MIMO
  • Mode 2 Closed-loop SU-MIMO
  • the signaling/feedback transmission channel described herein refers to a channel for transmitting signaling and/or feedback information.
  • the 0 ⁇ 454 3 ⁇ 453 '" 3 ⁇ 449 indicates that the service transmission starts to transmit the packet data and its demodulation pilot from the OFDM symbol indexed to 1 in the STA resource group.
  • ⁇ ( 4 3 ''' 9) is 4 3 ' 9 corresponds to the decimal number, which is high and 9 is low.
  • OFDM symbol 0 to OFDM symbol ⁇ 54 3 ⁇ 453 "' 9 ) _1 is used for signaling or feedback transmission, and the transmission format is independent of the indication in 0.
  • the corresponding transmission format is shown as 0.
  • the downlink signaling/feedback transport channel multiplexes the DL-TCH resources, as shown in FIG. All downlink signaling/feedback transport channels share a demodulation pilot.
  • Uplink Signaling/Feedback Transport Channel The uplink signaling/feedback transport channel multiplexes UL-TCH resources.
  • the uplink signaling/feedback transmission channel can support two structures, as shown in Figures 33 and 34, respectively. In the format 2 of Fig. 34, each basic resource block is 28 ⁇ ⁇ 8 . , (not including phase ⁇ trace pilot). The first 4 OFDM symbols and the last 4 OFDM symbols are frequency hopped as shown. Signaling/Feedback Transmission Channel Resource Indicator-.
  • the signaling/feedback transport channel broadcasts the DL-TCH and UL-TCH resources to all STAs in a broadcast manner through CCH broadcast scheduling signaling.
  • the broadcast scheduling signaling uses control channel resources and has the same packet size as the control channel scheduling signaling, using the same transmission format (see Table 2).
  • Broadcast Scheduling Signaling The CRC check is scrambled with the BSTAID defined by the MAC layer. The specific field definitions are shown in Table 6.
  • the number of OFDM symbols occupied by the downlink signaling feedback channel is D
  • b2 ''' 3 ⁇ 423 index is an OFDM symbol for the common demodulation pilot occupied resources.
  • the CRC is defined as in Table 1.
  • the CAP can allocate a signaling/feedback transmission channel to the STA by signaling as shown in Table 7.
  • K b 2i--- ' indicates that the STA is channel 1 at the start of the signaling/feedback channel, and the value of the field ranges from 0 to 63.
  • b 3l b 30 b 29 indicating the number of signaling/feedback channels occupied, field value: 1 ⁇ 7;
  • a field value of 0 indicates that the channel indication is invalid.
  • b 43 b 42 ---b 32 indicating STAID
  • the value of the field value ranges from 0 to 63.
  • b 55 b 54 b 53 indicating the number of signalling/feedback channels occupied, field value: 1 ⁇ 7;
  • a field value of 0 indicates that the channel indication is invalid.
  • the uplink signaling feedback transmission channel format 1, D ⁇ 28 bl1 ⁇ ⁇ ⁇ ) indicates the first OFDM symbol corresponding to the STA uplink signaling feedback transmission channel, D ⁇ 2 ⁇ 27 ''' 023 ) -1 corresponding OFDM
  • the symbol is the demodulation pilot of the STA uplink signaling feedback transmission channel.
  • D b2 & bl1 ⁇ ' S ) ° is an invalid indication.
  • the downlink signaling feedback transmission channel and the uplink signaling feedback transmission channel format 1, each OFDM symbol is one signaling/feedback channel; the uplink signaling feedback transmission channel format 2, and each resource block is a signaling/feedback channel.
  • this frame configures the downlink sounding channel.
  • the specific location of the downlink sounding channel on the downlink transport channel and the downlink sounding channel pilot pattern are indicated by the MAC layer BCF frame (Table 2).
  • Downlink detection pilot pattern The number of logical antenna ports that the downlink sounding channel can support is 1 ⁇ 8, and the pilot pattern is as follows:
  • Table 9 defines the subcarrier positions corresponding to the pilot symbols in the demodulation pilot pattern.
  • SC s i p l [ ⁇ (1 + ti (/ 1) . SPI)), ⁇ (1 + SPI + ti (/ 1) . SPI)), ... , + ti (/ 1) . SPI) )] 1 tl
  • N l + SPI- (N sr - ti + (/ - 1) . SPI - 1) / 5 ⁇ /"
  • is the set of subcarrier indices occupied by the first antenna port sounding pilot
  • the pilot sequence generator polynomial is 1 + + 15 .
  • the initial state of the register is:
  • MSB is on the left and LSB is on the right.
  • Is the CAP's MAC address is the most 4 ⁇ 7 bits.
  • the uplink probe pilot port is shown in Table 10.
  • the CAP allocates an uplink sounding channel to the STA through the signaling shown in Table 11.
  • MSB is on the left and LSB is on the right.
  • "6 " 5 ⁇ "° is the most 4 ⁇ 7 bits of the CAP's MAC address.
  • the set of uplink probe ports allocated by the CAP for the STA is:
  • SP i(k,l) ⁇ ke [-115,+115l, / e ⁇ ,3 ⁇ ) ⁇ ⁇ , , ⁇ ⁇ ⁇ ⁇ ⁇ . 3 , , , ⁇
  • L “ L” where is the subcarrier index in Table 10, Z is the OFDM symbol index in Table 1C, is the STA antenna port index, and P ort is the uplink sounding pilot port index.
  • the uplink sounding pilot is mapped to the following rules. Time-frequency resources.
  • the uplink scheduling request signal is generated in accordance with the method shown in FIG.
  • CAP-MAC refers to the lowest 7 bits of the CAP's MAC address, which is the PN sequence index (0 ⁇ ⁇ 4), ⁇ (5 CS ⁇ is the cyclic shift parameter set, _/ is the cyclic shift parameter index ( 0 ⁇ _/ ⁇ 8).
  • the PN sequence uses a sequence of maximum length linear feedback shift registers with a generator polynomial of 1 +.
  • the block diagram is shown in Figure 36.
  • the modulation mapping sequence S t is BPSK-modulated
  • the sequence C t is obtained.
  • the subcarrier mapping sequence performs subcarrier mapping according to the following equation to obtain a sequence ⁇ '.
  • the frequency domain cyclic shift is performed on the subcarrier-mapped sequence ⁇ , and is cyclically shifted according to the following equation to obtain the sequence ⁇ .
  • TJ k M. k e ⁇
  • N is the number of points in IFFT, kei]
  • ⁇ 5 is the cyclic shift parameter
  • the CAP allocates the UL-TCH resource occupied by the independent resource request frame to the STA by signaling as shown in Table 12.
  • V3 ⁇ 4 00, corresponding to the scheduling request of the first OFDM symbol of UL-SRCH
  • V3 ⁇ 4 01, corresponding to the scheduling request of the second OFDM symbol of UL-SRCH
  • V3 ⁇ 4 10, corresponding to the scheduling request of the 3rd OFDM symbol of UL-SRCH
  • V3 ⁇ 4 ll, the scheduling request corresponding to the 4th OFDM symbol of the UL-SRCH b n b l0 , PN sequence index, domain value: 0-3 allocation 1 b l4 b l3 b l2 , PN sequence frequency domain cyclic shift cable 1
  • the system frame number of the scheduling request occurs the lowest 3 bits indicate b 2 H
  • the resources allocated for the scheduling request are in the signaling /initial position index of the feedback channel
  • the value of the field value ranges from 1 to 63
  • the value of field 0 indicates invalid indication... b 25 b 24 , definition of the same assignment 2 b 21 b 26 , PN sequence index, field value: 0 ⁇ 3 b 30 b 29 b 2S , PN sequence frequency domain cyclic shift cable 1
  • the resource to be allocated is indexed at the beginning of the signaling/feedback channel.
  • the value of the field is in the range of 1 to 63.
  • the value in the field is 0.
  • the random access signal is generated in the same manner as the uplink scheduling request signal.
  • the sequence index number of the uplink random access signal and the cyclic shift index number ⁇ , _/ ⁇ are randomly selected by each STA.
  • Random access channel format Format 1 is shown in Figure 37.
  • the CAP allocates the UL-TCH resource occupied by the random access request frame to the STA by signaling as shown in Table 13.
  • the transmission timing advance amount b 3l b 30 - - -b 26 the resource allocated by the random access request is indexed at the start position of the signaling/feedback channel, and the value of the field value ranges from 1 to 63, the field value of 0 means invalid indication b 33 b 32 , PN sequence index, 0 ⁇ 3 b 36 b 35 b 34 , PN sequence frequency domain cyclic shift cable 1
  • the CAP indicates the DL-TCH resource occupied by the random access response frame for the STA by signaling as shown in Table 14.
  • b 3 b 2 b, b 0 0101, random access response frame (allocation resource for random access response frame) reserved, PN sequence index, 0 ⁇ 3 b n A. , PN sequence frequency domain cyclic shift cable 1
  • the resource allocated for the random access response is indexed at the start position of the signaling/feedback channel, the field value ranges from 1 to 63, and the field value is 0 indicates invalid indication b 23 b 2 2 ' Reserved 39 38... 24 b 25 b 24 , PN sequence index, field value 0 ⁇ 3 allocation 2 b 2 , b 27 b 26 , PN sequence frequency domain cyclic shift cable 1
  • the poor source ⁇ signaling / anti-inertial signal assigned to the 13 ⁇ 4 machine access Starting position index, field value range 1 63, field value 0 means invalid indication
  • the resource allocated for the random access response is indexed at the start position of the signaling/feedback channel, the value of the field is in the range of 1 to 63, and the value of the field is 0, indicating that the indication is invalid b 55 b 54 , reserved
  • PSTA min ⁇ ⁇ PL 0L +C/N + 10 log 10 (BW) ⁇ (dBm) where -.
  • P ⁇ 0L Transmission path loss estimate.
  • the signal power and CAP transmission power estimate can be estimated according to the STA.
  • the CAP transmit power is indicated in the MAC layer BCF frame.
  • C/N The carrier-to-noise ratio corresponding to different MCS.
  • BW The transmission bandwidth allocated by the CAP to the STA.
  • the embodiment of the invention provides a resource indication method for indicating signaling and/or feedback transmission Source, including:
  • Step 1 Generate scheduling signaling, where the scheduling signaling carries indication information indicating resources used for signaling and/or feedback transmission in the user resource group; the user resource group is used for user service data transmission;
  • Step 2 Send the scheduling signaling.
  • the scheduling signaling further carries indication information for indicating a starting location and a length of the user resource group.
  • the resources used for signaling and/or feedback transmission are multiplexed with the user transmission resources, and the signaling feedback channel is multiplexed with the transmission channel according to the resource scheduling.
  • Scheduling signaling format Table 2 to b 53 ⁇ index indicating the traffic transmitted from the STA resource group is 1 3 ⁇ 453 ⁇ ⁇ ⁇ 49) of the OFDM symbol start transmitting packet data and pilot demodulation.
  • D ⁇ 54 ⁇ ' ⁇ 9 ) is the corresponding decimal number of b 53 ⁇ , where 3 ⁇ 454 is high and 3 ⁇ 449 is 4 ⁇ .
  • OFDM symbol 0 to OFDM symbol 1 ⁇ 054 053 ... 049 ) -1 are used for signaling or feedback transmission, and the OFDM symbol indexed as D b54 from the STA resource group.
  • When transmitting signaling and/or feedback information it is transmitted in accordance with a double-ended agreed signaling and/or feedback transmission format.
  • the embodiment of the present invention further provides a resource indication device, including:
  • the encapsulating module is configured to generate scheduling signaling, where the scheduling signaling carries indication information indicating resources used for signaling and/or feedback transmission in the user resource group; the user resource group is used for user service data transmission;
  • a sending module configured to send the scheduling signaling.
  • the scheduling signaling further carries indication information for indicating a starting location and a length of the user resource group.
  • the scheduling signaling further indicates that the transmission is performed according to a preset signaling and/or feedback transmission format.
  • an embodiment of the present invention further provides a data sending method, which is used to receive the foregoing scheduling.
  • the signaling includes: Step 1: receiving scheduling signaling, where the scheduling signaling carries indication information indicating resources used for signaling and/or feedback transmission in the user resource group; User data transmission;
  • Step 2 According to the indication information, transmit signaling and/or feedback messages at corresponding locations in the user resource group.
  • an embodiment of the present invention further provides a data sending apparatus, including: a receiving module, configured to receive scheduling signaling, where the scheduling signaling carries an indication in a user resource group for signaling and/or Or feedback information indicating the transmitted resource; the user resource group is used for user service data transmission;
  • a sending module configured to transmit, according to the indication information, a signaling and/or a feedback message at a corresponding location in the user resource group.
  • the sending module is configured to transmit according to a preset signaling and/or feedback transmission format.
  • the embodiment of the present invention provides a resource indication method, which is used to indicate signaling and/or feedback transmission resources, and includes: Step 1: generating first scheduling signaling, where the first scheduling signaling is used to indicate signaling And/or information about the resources transmitted by the feedback;
  • Step 2 Send the first scheduling signaling.
  • the information indicating the signaling and/or the resource for the feedback transmission includes a starting position and a length.
  • the information indicating the signaling and/or the resource for feedback transmission includes a format, where the format is used to indicate a manner of resource multiplexing.
  • the manner of multiplexing the resources may be time division multiplexing, frequency division multiplexing, time frequency multiplexing, or code division multiplexing.
  • the information indicating the signaling and/or the resource for the feedback transmission includes a subchannel or a subcarrier indicating that the first scheduling signaling is applicable in the spectrum aggregation mode.
  • Steps 2 and 4 are also included after step 2 above: Step 3: Generate second scheduling signaling, where the second scheduling signaling carries information for allocating signaling and/or feedback transmission resources, indicating signaling and/or feedback transmission resources allocated for each user; Step 4: Send the second scheduling signaling.
  • the information about the resource allocated for signaling and/or feedback transmission includes one or more user identification STAIDs, and a starting position and length of the corresponding STA in the signaling and/or feedback transmitted resources.
  • the STAID can be used to uniquely identify a STA.
  • the STAID may also be a broadcast ID identifier.
  • the broadcast ID identifier is an ID identifier shared by all STAs, and each STA can receive a corresponding signaling by using the broadcast ID identifier.
  • the length of the STA may be indicated by indicating the number of signaling and/or feedback channels occupied by the STA.
  • the unit length of each signaling and/or feedback channel is 1 OFDM symbol (mode 1, instant division multiplexing) or 1 unit resource block (mode 2, instant frequency multiplexing).
  • resources for signaling and/or feedback transmission are independent of user transmission resources.
  • the first scheduling signaling may be as shown in Table 6, and the second scheduling signaling may be as shown in Table 7.
  • the two transmission modes shown in Figure 33 and Figure 34 are supported.
  • the embodiment of the present invention further provides a resource indication device, including:
  • a first encapsulating module configured to generate first scheduling signaling, where the first scheduling signaling carries information for indicating signaling and/or feedback transmission; and a first sending module, configured to send the first Scheduling signaling.
  • the information indicating the signaling and/or the resource for the feedback transmission includes a starting position and a length.
  • the information indicating the signaling and/or the resource for feedback transmission further includes a format, where the format is used to indicate a manner of resource multiplexing.
  • the manner of multiplexing the resources may be time division multiplexing, frequency division multiplexing, time frequency multiplexing, or code division multiplexing.
  • the information indicating the signaling and/or the resource for the feedback transmission includes a subchannel or a subcarrier indicating that the first scheduling signaling is applicable in the spectrum aggregation mode.
  • the resource indication device further includes:
  • a second encapsulating module configured to generate second scheduling signaling, where the second scheduling signaling carries information for allocating signaling and/or feedback transmission resources, indicating signaling and/or feedback allocated for each user Transmitted resources;
  • the second sending module is configured to send the second scheduling signaling.
  • the information about the resource allocated for signaling and/or feedback transmission includes one or more user identification STAIDs, and a starting position and length of the corresponding STA in the signaling and/or feedback transmitted resources.
  • the STAID can be used to uniquely identify a STA.
  • the STAID may also be a broadcast ID identifier.
  • the length of the STA is indicated by indicating the number of signaling and/or feedback channels occupied by the STA.
  • the unit length of each signaling and / or feedback channel is 1 OFDM symbol (mode 1, see Figure 33) or 1 unit resource block (mode 2, see Figure 34).

Abstract

本发明提供了一种资源调度方法和设备,该方法包括:根据传输需求进行资源调度;配置与调度的资源匹配的帧长非固定的帧结构。采用本发明的方法不存在竞争冲突或者随机退避导致的无线资源浪费,能够较好的动态适配未来种类丰富且特征各异的数据业务需求。

Description

一种资源调度方法和设备
本申请要求申请日为 2011年 3月 25日, 申请号为 201110074598.5, 发明名称为无线通信系统中解调导频的调整方法及系统的在先申请的优先 权, 该在先申请的全部内容均已在本申请中体现。
本申请要求申请曰为 2011年 3月 31 曰, 申请号为 201110080637.2, 发明名称为一种调度方法、 无线通信系统与设备的在先申请的优先权, 该在 先申请的全部内容均已在本申请中体现。
本申请要求申请日为 2011年 5月 19日, 申请号为 201110130194.3, 发明名称为一种通信系统的在先申请的优先权, 该在先申请的全部内容均已 在本申请中体现。 本申请要求申请曰为 2012年 1月 16曰, 申请号为 201210012030.5, 发明名称为一种资源调度方法和设备的在先申请的优先权, 该在先申请的全 部内容均已在本申请中体现。 本申请要求申请曰为 2012年 2月 16曰, 申请号为 201210035783.8, 发明名称为一种资源调度方法和设备的在先申请的优先权, 该在先申请的全 部内容均已在本申请中体现。 本申请要求申请曰为 2012年 2月 21 曰, 申请号为 201210041655.4, 发明名称为"无线通信系统及用于无线通信的装置"的在先申请的优先权, 该 在先申请的全部内容均已在本申请中体现。
本申请要求申请曰为 2012年 2月 21 曰, 申请号为 201210041650.1, 发明名称为"用于无线通信的装置 "的在先申请的优先权, 该在先申请的全部 内容均已在本申请中体现。
本申请要求申请曰为 2012年 2月 21 曰, 申请号为 201210041651.6, 发明名称为"用于无线通信的装置 "的在先申请的优先权, 该在先申请的全部 内容均已在本申请中体现。
技术领域
本发明属于无线通信领 i或, 尤其涉及一种无线通信领 i或, 尤其涉及一种 用于资源调度的方法和设备。 背景技术
近年来, 应用于中短通信距离的无线通信系统有基于 802.11标准的无线 局 i或网 WiFi技术、基于 802.15的蓝牙 Bluetooth系统以及由移动通信系统 ί 生而来的面向室内应用的 Femto技术等等。
基于 802.11的 WiFi技术是当今使用最广的一种无线网络传输技术。 主 要应用于无线局 i或网环境, 应用场景以室内居多, 也可应用于室外环境。 802.11 系统由最初的基于 CDMA传输机制的 802.11b演进为基于 OFDM技 术的 802.11a 和 802.11g。 在最新的 802.11η 版本中, 又通过引入多天线 ( ΜΙΜΟ ) 技术使得 802.11η物理层峰值速率可达 600Mbps„ 在 MAC层, 802.11系统一直延续着以随机多址为基础的载波侦听 /冲突避免( CSMA/CA, Carrier Sense Multiple Access with Collision Avoidance )十办议。 该十办议釆用 "竟 争"机制,接入点 CAP和各终端或 STA通过竟争获取开放的空中接口使用权。 一旦竟争成功, 在其传输周期内, 空中接口将被竟争成功的 CAP独享。 由于 釆用竟争机制, 接入网络不需要集中控制节点。 无论是 CAP还是 STA在竟 争空口资源上都是平等的。 WiFi系统效率较低, 对无线资源浪费较大。 导致 这一问题的根本原因是 CSMA/CA 机制是一种基于竟争的随机多址接入机 制, 接入点 (CAP, Access Point ) 和站点 ( STA, Station ), 或者不同 STA 之间, 会通过 CSMA/CA机制竟争无线资源的使用权, 同时竟争无线信道, 此时就发生碰撞, 导致无线资源的浪费。 为了避免碰撞, 具有 CSMA/CA机 制要求 CAP或 STA在竟争无线信道时需要随机退避, 在所有 CAP和 STA 都退避时, 无线信道虽有空闲, 但并未被使用, 这也是对无线信道的极大浪 费。 由于上述原因, 802.11 系统效率较低。 例如: 802. l lg系统物理层峰值速 率可达 54Mbps, 但 TCP层在大数据包下载业务下 (例如: FTP Download ) 可达速率不高于 30Mbps (在小数据包业务下, 由于开销比例增加, 可达峰 值速率更低)。 虽然存在上述缺点, 但 802.11 系统灵活, 不依赖集中控制机 制, 因此也能够实现较低的设备成本。
基于 3GPP标准的 Femto技术是从移动通信系统演进而来的一种面向室 内覆盖的新技术。 基于对 3G系统的数据统计, 大约 70%的数据业务都发生 在室内, 因此室内高速率数据接入方案就尤为重要。 Femto基站, 称为微微 基站, 体积小巧(与 Wi-Fi近似 ),部署灵活。 由于从移动通信系统演进而来, Femto基站几乎继承了移动通信系统的所有特点。 Femto设备只是结合其有 限的覆盖范围, 较少的接入用户等应用场景特征, 将设备处理能力降低, 进 而降低设备成本。 从双工方式考虑, 与移动通信系统相同, Femto基站可分 为 FDD与 TDD两类双工机制。 FDD上下行载波资源对称, 而数据业务上下 行数据流量非对称的业务特征使得 FDD 系统面对数据业务时存在一定的资 源浪费。 TDD系统上下行链路工作在同一载波上, 通过划分时间资源为上下 行链路分配不同的无线资源, 因此较 FDD 能够更好的适配上下行业务需求 非对称的数据业务。 然而, 移动通信系统 (包括 Femto 系统) 的 TDD双工 方式, 上下行资源静态分配, 面对需求不同的各类数据业务, 例如: 浏览网 页, 移动视频, 移动游戏, M2M ( machine-to-machine ) 等, 难以实现业务 需求与资源划分的动态适配。 与 Wi-Fi相比, 由于 Femto釆用了基于调度的 集中控制机制,基站或 CAP和终端或者终端之间不存在由于竟争冲突和随机 退避导致的无线资源浪费, 因此链路效率较高。 Femto技术, 其多址接入机 制通过时间、 频率、 码字为不同的 STA分配相互正交的接入资源, 这与面向 竟争的 CSMA/CA随机多址接入有着本质不同。 Femto技术需要集中控制节 点为 STA分配相互正交的无线资源, 不同 STA可通过时间、 频率、 码字甚 至空间复用空口资源, 同时传输。 在物理层技术上, 基于 3G 系统的 Femto 技术釆用 CDMA传输机制, 面向 LTE或 WiMAX系统的 Femto技术则釆用 OFDM传输机制。 由于 OFDM技术是未来宽带无线通信系统的主流技术, 本发明中提到的 Femto技术均指 LTE或 WiMAX Femto。 由于 TDD技术较 FDD技术能够更好的适应移动互联网上下行非对称业务, 因此本发明中提到 的 Femto主要指 TDD Femto技术。 虽然 Femto系统也通过调度为上下行通信,为不同的终端分配无线资源, 但其静态配置的帧结构不能为上下行灵活分配无线资源, 不能够以较小的颗 粒度自适应业务变化, 当业务与资源配置失衡时或者会造成长时排队, 用户 体验降低, 或者会造成信道容量浪费。
面向未来各类宽带、 窄带数据业务, 考虑中短距离无线通信场景, 无论 是基于 802.11技术的 Wi-Fi系统, 还是由移动通信系统衍生而来的 Femto技 术均有一些缺点。
( 1 ) Wi-Fi技术缺点
802.11η 技术虽然通过 MIMO-OFDM 技术使其物理层峰值速率可达 600Mbps, 但由于 MAC层釆用的基于 CSMA/CA的随机多址接入机制使其 TCP呑吐量大打折扣。 CSMA/CA是一种面向竟争的多址接入机制, 系统中 不可避免的会存在竟争冲突。 若两个或多个终端, 或者终端与 CAP之间同时 竟争空中接口, 任何一方均不会竟争成功, 这就是竟争冲突。 显然, 竟争冲 突无疑是对空口资源的一种浪费。 一旦竟争冲突, 为了避免再次冲突, 竟争 各方均会发起随机退避。 在退避过程中, 会存在多个竟争节点均在等待的情 况。 此时, 虽然有业务等待传输, 但空口资源却未被合理使用, 这也会造成 极大的空口资源浪费。 竟争冲突与随机退避是造成 802.11 系统效率不高的重 要因素。 更为重要的是, 随终端数量的增加, 冲突概率指数增加, 系统性能 将更为恶化。
( 2 ) TDD LTE Femto技术缺点 虽然 TDD LTE Femto系统上下行无线资源由帧结构格式静态配置,以调 度周期 lms为最小配置单位。 面对种类丰富的各类数据业务, 其上下行业务 非对称特性并不一致, 而这种静态配置的帧格式不能自适应各类数据业务的 需求。 当业务特征发生变化时, 初始配置的上下行资源就会存在一定的冗余 或紧缺, 这不仅会造成无线资源的浪费, 同时也会增加业务延迟。 虽然也通 过调度为上下行通信, 为不同的终端分配无线资源, 但其静态配置的帧结构 不能为上下行灵活分配无线资源, 不能够以较小的颗粒度自适应业务变化, 当业务与资源配置失衡时或者会造成长时排队, 用户体验降低, 或者会造成 信道容量浪费。 发明内容
有鉴于此, 本发明所要解决的技术问题是提供一种用于资源调度的方法 和设备, 不受帧格式和帧长的约束, 能够基于传输需求动态地进行资源分配, 还能够较好的动态适配未来种类丰富且特征各异的数据业务需求, 具有很好 的扩展性。 为了对披露的实施例的一些方面有一个基本的理解, 下面给出了筒单的 概括。 该概括部分不是泛泛评述, 也不是要确定关键 /重要组成元素或描绘 这些实施例的保护范围。 其唯一目的是用筒单的形式呈现一些概念, 以此作 为后面的评细说明的序言。 为了解决上述技术问题, 本发明提供了一种资源调度方法, 包括: 根据传输需求进行资源调度;
配置与调度的资源匹配的帧长非固定的帧结构。
为了解决上述技术问题, 本发明还提供了一种资源调度设备, 包括: 调度模块, 用于根据传输需求进行资源调度;
配置模块, 配置与调度的资源匹配的帧长非固定的帧结构。 釆用本发明所提出的方案, 将可以实现以下功能:
1、 通过 CAP集中调度与其关联的 STA, 为不同的 STA分配无线资源, 避免了竟争机制带来的无线资源浪费。
2、 可实现动态的 TDD帧长配置, 灵活的资源比例配置, 提高了系统各 类控制信息效率, 基于业务需求动态分配资源, 能够较好的动态适配未来种 类丰富且特征各异的数据业务的传输需求, 没有固定的帧长或帧周期约束, 帧结构灵活可变。
3、 能够以较小的颗粒度为用户和上下行通信分配无线资源, 资源分配 能够较好的自适应业务变化, 为不同用户和上下行通信分配的无线资源能够 较好的适配业务需求与信道传输条件。
4、 不仅能够适配不同终端的较大的业务速率需求变化, 而且也能够较 好的适配无线信道的动态变化。 本发明能够更好的适配各种数据业务需求的 动态变化, 将信道容量与业务需求动态匹配, 可获得更好的系统效率。 能够 权衡业务需求与信道特征, 动态划分上下行链路资源, 在考虑链路自适应的 条件下, 为不同终端动态分配无线资源。
5、 除上述特征外, 本发明还考虑到信道的状态信息延迟, 不同等级设 备对处理时间的需求等。 上述考虑都能够提高系统效率和性能。
6、 可实现本帧反馈, 减少 MU-MIMO的反馈延迟。 7、 可实现本帧调度, 减少了业务的调度延迟。
8、 帧结构灵活可变, 可自适应各类数据业务上下行传输需求, 没有固 定的帧长或帧周期约束。 同时, 本系统允许上下行调度传输周期自适应上下 行业务需求变化, 能够将业务需求与上下行信道容量相互适配, 可获得较高 的资源利用率。
9、 调度周期可自适应无线信道时间选择性衰落的变化, 避免不必要的 频繁调度导致的控制开销; 本系统允许帧长可动态调整以自适应无线信道时 间选择性衰落, 可将系统调度周期与无线信道相互匹配, 进而减小频繁调度 带来的控制开销。 具有较高的呑吐量和无线资源利用率。
为了上述以及相关的目的, 一个或多个实施例包括后面将详细说明并在 权利要求中特别指出的特征。下面的说明以及附图评细说明某些示例性方面, 并且其指示的仅仅是各个实施例的原则可以利用的各种方式中的一些方式。 其它的益处和新颖性特征将随着下面的详细说明结合附图考虑而变得明显, 所公开的实施例是要包括所有这些方面以及它们的等同。
附图说明 图 1是本发明提供的资源调度方法的流程示意图;
图 2是本发明实施例一种帧结构的示意图; 图 3是本发明实施例另一种帧结构的示意图;
图 4是本发明实施例又一种帧结构的示意图; 图 5是本发明应用实例一下行调度方法流程图; 图 6是本发明应用实例一下行调度过程示意图;
图 7是本发明应用实例二下行调度方法流程图; 图 8是本发明应用实例二下行调度过程示意图;
图 9是本发明应用实例三上行调度方法流程图; 图 10是本发明应用实例三上行调度过程示意图; 图 11是本发明应用实例四上行调度方法流程图;
图 12是本发明应用实例四上行调度过程示意图;
图 13是本发明应用实例五上下行调度传输过程的示意图; 图 14是本发明第二实施例一种资源调度设备的装置方框图; 图 15是本发明第三实施例中无线通信系统的结构示意图; 图 16是本发明第三实施例中的网络设备结构示意图;
图 17是本发明第三实施例中的终端设备的结构示意图;
图 18是本发明应用实例六中物理帧的结构示意图; 图 19是本发明应用实例七中物理帧的结构示意图;
图 20a是本发明应用实例八中第一个物理帧的第一种结构示意图; 图 20b是本发明应用实例八中第二个物理帧的结构示意图;
图 21是本发明应用实例八中第一个物理帧的第二种结构示意图; 图 22是本发明应用实例九中第二个物理帧的结构示意图;
图 23是本发明应用实例十中物理帧的结构示意图; 图 24是本发明应用实例十一中物理帧的结构示意图;
图 25是本发明应用实例十二中物理帧的结构示意图; 图 26是本发明应用实例十三中物理帧的结构示意图;
图 27是本发明应用实例十四中物理帧的结构示意图; 图 28是本发明应用实例十四中通过 CAP发射提前预留上行保护间隔的 示意图; 图 29是本发明应用实例十五中物理帧的结构示意图;
图 30 是本发明应用实例十五中上行传输信道、 上行调度请求信道和上 行随机接入信道复用资源的示意图;
图 31 是本发明应用实例十五中控制信道和系统信息信道复用资源的示 意图;
图 32是下行信令 /反馈传输信道复用 DL-TCH资源的示意图; 图 33是第一种上行信令 /反馈信道的结构示意图;
图 34为第二种上行信令 /反馈信道的结构示意图; 图 35为上行调度请求信道的生成方法示意图;
图 36为 PN序列的最大长度线性反馈移位寄存器序列; 图 37为第一种上行随机接入信道的格式; 图 38为第二种上行随机接入信道的格式;
图 39为第三种上行随机接入信道的格式。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案, 以使本领域的技术 人员能够实践它们。 其他实施方案可以包括结构的、 逻辑的、 电气的、 过程 的以及其他的改变。 实施例仅代表可能的变化。 除非明确要求, 否则单独的 组件和功能是可选的, 并且操作的顺序可以变化。 一些实施方案的部分和特 征可以被包括在或替换其他实施方案的部分和特征。 本发明的实施方案的范 围包括权利要求书的整个范围, 以及权利要求书的所有可获得的等同物。 在 本文中, 本发明的这些实施方案可以被单独地或总地用术语"发明 "来表示, 这仅仅是为了方便, 并且如果事实上公开了超过一个的发明, 不是要自动地 限制该应用的范围为任何单个发明或发明构思。 考虑上述应用场景, 本发明提出了一种资源调度方法, 如图 1所示, 具 体实现方式为:
步骤 S101 : 根据传输需求进行资源调度;
步骤 S102: 配置与调度的资源匹配的帧长非固定的帧结构。 釆用本发明的方法不存在竟争冲突或者随机退避导致的无线资源浪费。 与传统移动通信系统 (包括: LTE、 WiMax等下一代移动通信系统) 不同, 该系统能够基于业务需求动态划分上下行无线资源, 能够较好的动态适配未 来种类丰富且特征各异的数据业务需求。
通过上述方法, 我们可以得到要传输的通信帧。 本发明中的传输的通信帧是以 TDD 双工方式 (在某一固定载波上, 基 站或 CAP与终端或 STA通过收发转换分时完成接收与发射) 为基础, 根据 数据的传输的方向, TDD帧 (Frame )可以划分为下行(DL, Downlink, 从 基站到终端或从 CAP到 STA方向 )传输和上行 ( UL, Uplink, 从终端到基 站或从 STA到 CAP方向 ) 传输两个部分。 帧长可动态配置, 帧结构可动态 配置。 即, 在本发明中是根据传输需求进行资源调度, 帧格式由所调度的资 源决定, 资源调度过程不受到帧长和帧格式的限制, 资源分配更为合理。 下面将具体说明如何根据传输需要进行资源调度并据以配置帧结构。 实施例一
本发明提供的帧结构包括下行子帧和 /或上行子帧,下行子帧和上行子帧 按照功能划分不同的信道。 下行子帧与上行子帧之间具有保护间隔 GI, 其中 下行至上行之间的收发保护间隔称作下行保护间隔 DGI, 上行至下行的收发 保护间隔称作上行保护间隔 UGI。 本发明提供的帧结构中至少配置有前导序列和系统信息信道, 其中: 所述前导序列, 配置于帧结构的起始位置, 用于实现同步。 前导序列可 以划分为短前导序列和长前导序列。其中,短前导序列主要用于系统粗同步, 还用于帧检测、 自动增益控制、 粗频率同步或粗符号同步; 长前导序列主要 用于系统精同步及信道估计, 还用于精频率同步、 精符号同步等。
所述系统信息信道, 用于承载指示帧结构的信息。 通过在所述系统信息 信道检测所述指示帧结构的信息, 与 CAP关联的所有 STA均可获得本帧的 结构。 所述系统信息信道位于所述前导序列之后, 其位置由 CAP和 STA预 先约定。另外,所述系统信息信道还用于广播基本系统配置,例如 CAP标识、 CAP天线配置、 帧标号、 CRC校验保护信息等。 当存在传输需求时, 根据所述传输需求调度相应的传输资源, 配置与所 调度的传输资源匹配的帧结构。 本发明中传输需求由调度信息承载, CAP获 取并解析所述调度信息, 得到传输需求, 据以完成资源调度。
其中, 所述上行的传输需求是 CAP从 STA获取到的。 具体地, CAP可 以通过如下三种方式获取到上行的传输需求: 第一种: 通过请求 -应答方式获取上行的传输需求, 具体为: STA发起调 度请求, CAP为所述 STA分配反馈上行的传输需求的资源, 所述 STA在相 应的资源上反馈上行的传输需求; 若釆用所述第一种方式, 则需在所述帧结构中配置上行调度请求信道, 用于 STA向 CAP发送上行调度请求, 以请求用于向 CAP上报上行传输需求 的传输资源。
在所述帧结构中配置上行调度请求信道时,可以为 STA调度独占的上行 传输资源, 用于 STA以非竟争方式发起上行调度; 也可以为 STA调度共享 的上行传输资源, 用于 STA以竟争方式发起上行调度。 即, STA发起调度请 求, 可以釆用基于无冲突的上行传输请求机制, 或者釆用基于竟争的上行传 输请求机制。
在配置上行调度请求信道时, 根据与 CAP关联的 STA的数量计算并配 置所述上行调度请求信道的时长。 例如, 可为与 CAP关联的 N个 STA分别 分配 N个上行调度请求信道, 各 STA可在对应的信道上基于无冲突的上行 传输请求机制发起上行调度请求。 或者也可以为与 CAP关联的 N个 STA分 配 M个上行调度请求信道, M小于 N, 所述 N个 STA竟争所述 M个上行调 度请求信道, 以发起上行调度请求。
另外, 还可以设计所述上行调度请求信道还可以用于反馈开关量信息, 从而实现快速反馈。 第二种: 通过轮询方式获取上行的传输需求, 具体为: CAP周期性轮询 各 STA, 接收 STA反馈的上行的传输需求。 第三种: 通过携带上报的方式获取上行的传输需求, 具体为: STA在传 输上行业务时, 将上行的传输需求承载于数据帧中, 随上行业务一起发送至 CAP。 其中, 所述下行的传输需求是从 CAP的 MAC层或者高层获取到的。 所述传输需求,按照传输方向,可以分为上行传输需求和下行传输需求。 当存在上行传输需求时, 根据所述上行传输需求调度上行资源, 据以配置与 所调度的上行资源匹配的上行传输信道。 当存在下行传输需求时, 根据所述 下行传输需求调度下行资源, 据以配置与所调度的下行资源匹配的下行传输 信道。
所述传输需求按照传输的数据类型, 又可以分为传输业务数据的需求、 传输信令的需求, 以及反馈需求等。
基于此, 所述根据上行传输需求调度上行传输资源, 并配置匹配的上行 传输信道可以进一步包括:
当存在传输上行业务的需求时, 为所述上行业务调度上行传输资源, 并 据以在所述帧结构中配置上行业务传输信道。 所述上行业务传输信道的时长 根据与 CAP关联的各 STA传输上行业务所需的总的传输资源确定。 当存在传输上行信令的需求时, 为所述上行信令调度上行传输资源, 并 据以在所述帧结构中配置上行信令信道。 所述上行信令信道的时长根据与 CAP关联的各 STA传输上行信令所需的总的传输资源确定。 当存在对下行业务进行反馈的需求时, 为所述下行业务反馈调度上行传 输资源, 并据以配置下行业务反馈信道。 所述下行业务反馈信道的时长根据 与 CAP关联的各 STA对下行业务进行反馈所需的总的传输资源确定。 若还存在其他上行传输需求, 则可在所述上行传输信道中增加相应的信 道, 本发明在此不再详述。
基于此, 所述根据下行传输需求调度下行传输资源, 并配置匹配的下行 传输信道可以进一步包括:
当存在传输下行业务的需求时, 为所述下行业务调度下行传输资源, 并 据以在所述帧结构中配置下行业务传输信道。 所述下行业务传输信道的时长 根据 CAP向与其关联的各 STA传输下行业务所需的总的传输资源确定。 当存在传输下行信令的需求时, 为所述下行信令调度下行传输资源, 并 据以在所述帧结构中配置下行信令信道。 所述下行信令信道的时长才艮据 CAP 向与其关联的各 STA传输下行信令所需的总的传输资源确定。
当存在对上行业务进行反馈的需求时, 为所述上行业务反馈调度下行传 输资源, 并据以配置上行业务反馈信道。 所述上行业务反馈信道的时长根据 CAP向与其关联的各 STA反馈上行业务所需的总的传输资源确定。 若还存在其他下行传输需求, 则可在所述下行传输信道中增加相应的信 道, 本发明在此不再详述。 较佳地, 当对传输资源进行调度时, 还需要考虑信道的状况, 以使得资 源调度更合理。 可以根据信道质量信息 CQI 进行资源分配, 或者根据 CQI 和信道状态信息 CSI进行资源分配。 其中, CSI是传输信道的 H矩阵( NxM 阶, N个接收天线, M个发射天线;), 或者传输信道的 H矩阵在 SVD分解后 的 V矩阵( ΜχΚ阶;), 或者该 V矩阵的压缩信息; CQI包括下述信息中的一 种或者多种: 传输信道的 SNR (信噪比)或 SINR (信千噪比;), MCS (下行 传输可釆用的调制编码集合 ), Nss (下行传输可釆用的空间流数;), PMI (下 行传输可釆用的预编码矩阵集合) 等其它相关测量尺度。
当 STA的能力支持 CAP获取 CQI时, CAP还获取 CQI, 根据传输需求 和 CQI进行资源调度。 当 STA的能力支持 CAP获取 CQI和 CSI时, 所述 CAP还获取 CQI和 CSI, 根据传输需求、 CQI、 CSI进行资源调度。
其中, 所述 CQI可以是测量整个频带得到的 CQI, 也可以是测量部分频 带得到的 CQI。 所述 CSI可以是测量整个频带得到的 CSI, 也可以是测量部 分频带得到的 CSI。
下面分别从获取上行的信道状况和获取下行的信道状况说明本发明资源 调度及帧结构配置:
在调度上行传输资源时, 根据上行的 CQI进行资源调度。 为获取上行的 CQI, 可釆用如下设计: 方式一: 根据上行探测信道测算。 即, 当存在调度上行的传输资源的需 求时, 例如, 存在传输上行业务的需求、 传输上行信令的需求或者对下行业 务进行反馈的需求时, 还需为获取上行的 CQI进行资源调度, 并据以在所述 帧结构中配置上行探测信道, 用于 STA向 CAP发送上行探测信号。 当 CAP 调度上行的传输资源时, 通过在所述上行探测信道测量上行探测信号, 计算 出上行的信道质量信息 CQI, 结合测算出的上行的 CQI进行资源调度。
方式二: 利用 TDD系统的上下互易性, 由 STA测算并反馈下行的 CQI, CAP基于系统互易性, 得到上行的 CQI。 即, 当存在上行传输需求时, 还需 为获取上行的 CQI进行资源调度, 并据以在所述帧结构中配置下行探测信道 和 CQI反馈信道, 所述下行探测信道用于 CAP向 STA发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测信号测算出的下行的 CQI; CAP在根据上行传输需求调度上行传输资源时, 基于上下互易性, 根 据 STA反馈的下行的 CQI确定上行的 CQI, 并结合所述上行的 CQI调度上 行传输资源。
在调度上行传输资源时, 还可根据上行的 CQI和 CSI进行资源调度。 为 获取上行的 CQI和上行的 CSI, 可釆用如下设计: 方式一: 根据上行探测信道测算。 即, 当存在调度上行的传输资源的需 求时, 例如, 存在传输上行业务的需求、 传输上行信令的需求或者对下行业 务进行反馈的需求时, 还需为获取上行的 CQI和上行的 CSI进行资源调度, 并据以在所述帧结构中配置上行探测信道, 用于 STA向 CAP发送上行探测 信号。 当调度上行的传输资源时, 通过在所述上行探测信道测量上行探测信 号, 计算出上行的信道质量信息 CQI和 CSI, 并结合测算出的上行的 CQI和 上行的 CSI进行资源调度。
方式二: 利用 TDD系统的上下互易性, 由 STA测算并反馈下行的 CQI 和下行的 CSI, CAP基于系统互易性,得到对应的上行的 CQI和上行的 CSI。 即, 当存在上行传输需求时, 还需为获取上行的 CQI和上行的 CSI进行资源 调度, 并据以在所述帧结构中配置下行探测信道、 CQI反馈信道和 CSI反馈 信道, 所述下行探测信道用于 CAP向 STA发送下行探测信号, 所述 CQI反 馈信道用于 STA向 CAP反馈根据下行探测信号测算出的下行的 CQI; 所述 CSI反馈信道用于 STA向 CAP反馈根据下行探测信号测算出的下行的 CSI; 在根据上行传输需求调度上行传输资源时, 基于上下互易性, 根据 STA反馈 的下行的 CQI确定上行的 CQI, 以及根据 STA反馈的下行的 CSI确定上行 的 CSI, 并结合上行的 CQI和上行的 CSI调度上行传输资源。
方式三: 利用直接测量方式得到 CQI, 利用系统互易性得到 CSI; 或者 利用直接测量方式得到 CSI, 利用系统互易性得到 CQI。 即:
当存在上行传输需求时,还需为获取上行的 CQI和上行的 CSI进行资源 调度, 并据以在所述帧结构中配置上行探测信道、 下行探测信道和 CQI反馈 信道, 所述上行探测信道用于站点 STA向中心接入点 CAP发送上行探测信 号, 所述下行探测信道用于 CAP向 STA发送下行探测信号, 所述 CQI反馈 信道用于 STA向 CAP反馈根据下行探测信号测量出的下行的 CQI; 在根据 上行传输需求调度上行传输资源时, 在所述上行探测信道上测量上行探测信 号, 计算出上行的信道质量信息 CSI, 以及基于上下互易性根据 STA反馈的 下行的 CQI确定上行的 CQI, 并结合所述上行的 CQI和上行的 CSI调度上 行传输资源。
或者, 当存在上行传输需求时, 还需为获取上行的 CQI 和上行的 CSI 进行资源调度, 并据以在所述帧结构中配置上行探测信道、 下行探测信道和 CSI反馈信道, 所述上行探测信道用于站点 STA向中心接入点 CAP发送上 行探测信号, 所述下行探测信道用于 CAP向 STA发送下行探测信号, 所述 CSI反馈信道用于 STA向 CAP反馈根据下行探测信号测算出的下行的 CSI; CAP在根据上行传输需求调度上行传输资源时, 在所述上行探测信道上测量 上行探测信号, 计算出上行的信道质量信息 CQI, 以及基于上下互易性根据 STA反馈的下行的 CSI确定上行的 CSI, 并结合上行的 CQI和上行的 CSI调 度上行传输资源。 在调度下行传输资源时, 可根据下行的 CQI进行资源调度。 为获取下行 的 CQI, 可釆用如下设计:
方式一: 可以利用 TDD系统的上下互易性, 由 CAP测算出下行的 CQI。 具体可以是, 当存在调度下行的传输资源的需求时, 例如, 存在传输下行业 务的需求、 传输下行信令的需求或者对上行业务进行反馈的需求时, 还需为 获取下行的 CQI进行资源调度, 并据以在所述帧结构中配置上行探测信道, 用于 STA向 CAP发送上行探测信号。 当 CAP调度下行的传输资源时, 通过 在所述上行探测信道测量上行探测信号, 计算出上行的 CQI, 基于 TDD 系 统的上下行互易性, 确定下行的 CQI, 结合所述下行的 CQI进行资源调度。 方式二: 可以由 STA测量下行的 CQI, 通过反馈的方式向 CAP上报测 量结果, 以使得 CAP获得下行的 CQI。 具体可以是, 当存在调度下行的传输 资源的需求时, 例如, 存在传输下行业务的需求、 传输下行信令的需求或者 对上行业务进行反馈的需求时, 还需为获取下行的 CQI进行资源调度, 并据 以在所述帧结构中配置下行探测信道和 CQI反馈信道, 所述下行探测信道用 于 CAP向 STA发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP反 馈根据下行探测信号测算出的下行的 CQI。 当调度下行的传输资源时, 根据 STA反馈的下行的 CQI进行资源调度。
其中,所述上行探测信道的时长可根据上报上行探测信号的 STA的天线 总数确定。 在调度下行传输资源时, 还可根据下行的 CQI和 CSI进行资源调度。 为 获取下行的 CQI和 CSI, 可釆用如下设计: 方式一: 可以利用 TDD系统的上下互易性, 由 CAP测算出下行的 CQI 和 CSI。 具体可以是, 当存在调度下行的传输资源的需求时, 例如, 存在传 输下行业务的需求、传输下行信令的需求或者对上行业务进行反馈的需求时, 还需为获取下行的 CQI和下行的 CSI进行资源调度,并据以在所述帧结构中 配置上行探测信道, 用于 STA向 CAP发送上行探测信号。 当调度下行的传 输资源时, 通过在所述上行探测信道测量上行探测信号, 计算出上行的 CQI 和上行的 CSI, 基于 TDD系统的上下行互易性, 确定下行的 CQI和下行的 CSI, 结合所述下行的 CQI和下行的 CSI进行资源调度。 方式二: 可以由 STA测量下行的 CQI和下行的 CSI, 通过反馈的方式向 CAP上报测量结果, 以使得 CAP获得下行的 CQI和下行的 CSI。 具体可以 是, 当存在调度下行的传输资源的需求时, 例如, 存在传输下行业务的需求、 传输下行信令的需求或者对上行业务进行反馈的需求时, 还需为获取下行的 CQI和下行的 CSI进行资源调度,并据以在所述帧结构中配置下行探测信道、 CQI反馈信道和 CSI反馈信道, 所述下行探测信道用于 CAP向 STA发送下 行探测信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测信号测 算出的下行的 CQI; 所述 CSI反馈信道用于 STA向 CAP反馈根据下行探测 信号测算出的下行的 CSI。 当调度下行的传输资源时, 根据 STA反馈的下行 的 CQI和下行的 CSI进行资源调度。 较佳地, 在接收到的 STA反馈的 CQI后, 还可结合资源分配方式, 计 算所述 STA对应的信道的质量, 例如, 如果资源分配方式为时分, 频分, 则 可直接使用 STA反馈的下行的 CQI和 CSI进行资源调度; 如果资源分配方 式为空分, 则根据各 STA反馈的 CSI计算各 STA对应的空分传输千扰, 在 使用各 STA反馈的 CQI时, 需去除对应的空分千扰。 另外, 还可以根据其 他调整因素对各 STA反馈的 CQI进行处理, 得到用于进行资源调度的 CQI。 方式三: 考虑到 CQI的数据量较小, CSI的数据量较大, 由 STA对下行 的信道的测算精度高于由 CAP利用 TDD系统上下互易性测算出的信道精度 的特点, 综合考虑后, 设计由 CAP利用 TDD系统的上下互易性测算下行的 CSI, 以节约传输带宽, 由 STA测量下行的 CQI, 通过反馈的方式向 CAP上 报测量结果, 以使得 CAP获取到准确的 CQI。 具体可以是, 当存在调度下行 的传输资源的需求时, 例如, 存在传输下行业务的需求、 传输下行信令的需 求或者对上行业务进行反馈的需求时, 还需为获取下行的 CQI和下行的 CSI 进行资源调度, 并据以在所述帧结构中配置上行探测信道、 下行探测信道和 CQI反馈信道, 所述上行探测信道用于 STA向 CAP发送上行探测信号; 所 述下行探测信道用于 CAP向 STA发送下行探测信号, 所述 CQI反馈信道用 于 STA向 CAP反馈根据下行探测信号测量出的下行的 CQI。 当调度下行的 传输资源时, 在根据传输下行业务的需求、 传输下行信令的需求和对上行业 务进行反馈的需求中的一种或者多种进行资源调度时, 在上行探测信道上测 量上行探测信号, 计算出上行的 CSI, 基于系统的上下行互易性, 确定下行 的 CSI, 根据所述下行的 CSI以及 STA反馈的下行的 CQI进行资源调度。 较佳地, 在接收到的 STA反馈的 CQI后, 还可结合资源分配方式, 计 算所述 STA对应的信道的质量, 例如, 如果资源分配方式为时分, 频分, 则 可直接使用 STA反馈的下行的 CQI和 CSI进行资源调度; 如果资源分配方 式为空分, 则根据各 STA反馈的 CSI计算各 STA对应的空分传输千扰, 在 使用各 STA反馈的 CQI时, 需去除对应的空分千扰。 另外, 还可以根据其 他调整因素对各 STA反馈的 CQI进行处理, 得到用于进行资源调度的 CQI。
较佳地, 如果当前帧允许其他 STA接入 CAP, 则可为 STA接入 CAP调 度资源, 并据以在所述帧结构中配置随机接入信道, 用于 STA接入 CAP, 与 CAP建立关联关系。所述随机接入信道的时长根据预期的同时发起接入的 STA的最大数量确定。 如果当前帧不再允许其他 STA接入 CAP, 则可不再 当前帧配置随机接入信道。
其中, 所述下行探测信道可以位于下行传输信道的两端或中间。 在下行 多入多出 (MU-MIMO, Multiple-Input Multiple-Out-put, )传输方案中, 由于 下行 MU-MIMO系统性能不仅对下行信道的状态信息延迟敏感, 而且多用户 MIMO会涉及较大的信号处理复杂度。 综合考虑信道的状态信息延迟, 以及 不同应用场景下可能不同的硬件处理复杂度, 下行探测信道位于下行传输信 道的中间更为合理, 可以根据需要反馈的 STA所需的最大处理时间, 在上行 传输之前的所述最大处理时间位置上开始所述下行探测信道。 下行探测信道 在下行传输信道的具体位置由系统信息信道的周期性广播消息指示。 如果下 行探测信道位置固定, 可用在系统信息信道中指示下行探测信道有无。 如果 系统中存在不同处理能力的 STA, 下行探测信道位置可变。 通过上述动态或 半静态设置下行探测信道位置,可为不同处理能力的 STA提供足够的处理时 间。
其中, 可以釆用两种方式调度 STA 在上行探测信道上发送上行探测信 号: CAP触发, 调度 STA发射探测信号; 或当所述 CAP调度一次后, 在一 段时间内, 所述 STA在上行探测信道上周期性地发射探测信号。 根据帧结构中配置的信道的作用, 可将上行调度请求信道、 上行随机接 入信道、 下行探测信道、 上行探测信道、 CQI反馈信道、 CSI反馈信道称作 辅助信道。
其中, 在配置所述 CQI反馈信道和 /或 CSI反馈信道时, 可以是在上行 传输信道中配置所述 CQI反馈信道和 /或 CSI反馈信道, 即将所述 CQI反馈 信道和 /或 CSI反馈信道作为上行传输信道的一部分。 另外, 也可以配置所述 CQI反馈信道和 /或 CSI反馈信道独立于上行传输信道, 作为辅助信道。
较佳地, 还可在所述帧结构中配置控制信道, 用于承载所述上行传输信 道、 下行传输信道、 上行探测信道、 下行探测信道、 CQI反馈信道、 CSI反 馈信道、上行调度请求信道、 随机接入信道中一个或者多个信道的描述信息。 从而告知与 CAP关联的 STA所述帧结构中各信道的具体传输资源分配情况。 其中, 所述控制信道由调度信令组成, 所述描述信息承载于所述调度信 令中。 所述调度信令用于指示资源调度的对象, 以及为所述对象调度的传输 资源; 所述对象为一个或者一组站点 STA。
所述控制信道的时长根据 CAP向与其关联的各 STA下发调度信令所需 的总的传输资源确定。 可以对每个调度信令的长度求和计算, 得到所述控制 信道周期; 或, 如果各信令的长度是固定大小, 用信令的固定长度与下行调 度信令的个数相乘计算, 得到控制信道周期。
在进行资源调度时,可以釆用例如最大载千比调度算法,轮询调度算法, 正比公平调度算法等调度算法完成。 所调度的资源类型可以是时分、 频分、 码分以及空分中的一种或者多种组合。 因此, 配置的帧结构中的各信道可以 釆用时分、 频分、 码分以及空分中的一种或者多种组合的方式复用资源。
为了更形象地说明本发明帧结构配置方法, 参见图 2, 该图示出了一种 帧结构, 包括下行子帧和上行子帧, 所述下行子帧包括前导序列、 系统信息 信道、 控制信道、 下行传输信道和下行探测信道, 所述上行子帧包括上行探 测信道、 上行调度请求信道、 上行传输信道、 上行随机接入信道, 所述上行 子帧和下行子帧之间配置有保护间隔 GI。各信道之间釆用时分复用方式共享 传输资源。
图 2示出的仅仅是一种帧结构的举例, 在实际情况中会根据系统应用场 景或方案的不同, 动态地在帧结构中配置相应的信道。 另外, 各信道之间的 资源复用方式由调度的资源类型决定, 例如, 也可如图 3所示, 上行传输信 道(可包括上行业务传输信道、 上行信令信道、 下行业务反馈信道等)、 上行 调度请求信道和上行随机接入信道釆用频分和时分混合复用。 再例如, 也可 以如图 4所示, 在图 3基础上, 系统信息信道和控制信道釆用频分和时分混 合复用。 另外, 同一信道中为各 STA分配的资源之间也可以釆用时分、频分、 码分以及空分中的一种或者多种组合的复用方式共享传输资源。 其中, 图 3, 图 4中示出的下行探测信道位于下行传输信道的中部, 将下行传输信道分为 下行传输信道 1和下行传输信道 2。
在帧结构中, 可以通过在系统信息信道中用 bit位指示帧结构, 即指示 各信道的有无和周期。 以图 2所示帧结构为例, 举例说明帧结构指示方式: 在系统信息信道中, 用 6bit指示控制信道的时长, 最大 63个 OFDM符 号, 资源最小分配单位: 1个 OFDM符号; 用 9bits指示下行传输信道周期, 最大 512个 OFDM符号(包括专用解调导频;); 用 9bits指示上行传输信道周 期,最大 512个 OFDM符号(包括专用解调导频;);用 lbit指示保护间隔 DGI, 共 1个 OFDM符号; 用 2bits指示上行探测信道配置, 分别指示 0、 1、 2、 4 个 OFDM符号; 用 2bits指示上行调度请求信道配置, 分别指示 1、 2、 3、 4 个 OFDM符号; 用 lbit指示上行随机接入信道配置, 分别指示有 /无两种情 况; 若有, 仅 1个 OFDM符号; 用 lbit指示保护间隔 UGI, 共 1个 OFDM 符号。
控制信道指示下行传输信道或上行传输信道资源分配的方法举例如下: 在控制信道, 分别用 Nbit指示某个 STA在下行传输信道的起始位置, 再用 Nbit指示该 STA在该位置后连续多少个 bit是为其分配的资源。 例如: N=9, 控制信道对 STA指示起始位置, 000010000, 转换为十进制数是 16, 表示该 STA起始位置是第 16个 OFDM符号。 资源长度为 000100000, 转换 为十进制数是 32, 表示该符号后 (包括该符号), 连续 32个符号都分配给该 STA。 在控制信道, 分别用 Mbit指示某个 STA在上行传输信道的起始位置, 再用 Mbit指示该 STA在该位置后连续多少个 bit是为其分配的资源。 或者可以通过系统信息信道与控制信道共同指示帧结构, 举例如下: 在系统信息信道中,用 6bits指示控制信道周期,最大 63个 OFDM符号,; 在控制信道中, 用 9bits指示下行传输信道周期, 用 9bits指示上行传输信道 周期, 用 lbit指示下行保护间隔 DGI, 用 2bits指示上行探测信道配置, 用 2bits指示上行调度请求信道配置, 用 lbits指示上行随机接入信道配置, 用 lbit指示上行保护间隔 UGI。 另外, CAP还可以计算帧长, 并在系统信息信道或者控制信道承载帧长 的指示信息。 从而使得 STA直接获得帧长信息。 下面将以应用实例一至五对如何才艮据需求进行资源调度并据以配置帧结 构进行详细说明。
应用实例一
本应用实例提供了一种基于系统的上下互易性, 通过上行探测信道测量 下行信道的质量的情况, 并据以完成下行调度及传输过程,具体如图 5所示, 包括以下步骤:
步骤 S501 : CAP接收并解析下行调度信息, 得到向 STA1和 STA2传输 下行业务的需求; 所述传输下行业务的需求包括各 STA或各 STA的不同业务流的调度需 求, 例如: 待调度的业务和队列长度、 不同业务的服务质量 QoS需求、 业务 优先级等等。 所述传输下行业务的需求由下行调度信息承载。
步骤 S502: 所述 CAP为需要调度的 2个 STA, 即 STA1和 STA2调度 2 个上行探测信道; 步骤 S503 :所述 CAP分别测量 STA1和 STA2在上行探测信道发射的上 行探测信号, 并基于 TDD系统的上下行互易性, 得到 STA1和 STA2对应的 下行传输信道的质量;
步骤 S504: 所述 CAP依据下行调度信息和下行传输信道的质量分别为 STA1和 STA2调度下行传输资源;
其中, STA1和 STA2通过时分复用方式的结合共享下行传输资源。
步骤 S505:所述 CAP依据下行调度信息和下行传输信道的质量为 STA1 调度用于对下行业务进行反馈的传输资源。
STA2在第 N帧的下行传输并未在该帧的上行传输反馈 ACK2信令, 这 可能是由于下述原因: ( 1 ) STA2在第 N帧的下行传输在第 N+k帧反馈; ( 2 ) STA2的下行业务不需要反馈 ACK信令。
所述 CAP 配置与调度的传输资源匹配的帧结构, STA通过解析系统信 息信道获知帧结构, 通过解析控制信道获知具体的传输资源分配情况。 为了更形象地说明本发明应用实例资源调度过程, 参见图 6, 通过 2个 帧完成下行业务传输的资源调度过程, 以及根据所调度的资源动态配置帧结 构的过程。
应用实例二 本应用实例提供了一种由 STA测量信道的质量信息并向 CAP反馈, CAP 根据所述反馈的信道质量信息完成上行调度及传输过程, 具体如图 7所示, 包括以下步骤:
步骤 S701 : CAP接收并解析下行调度信息, 得到向 STA1和 STA2传输 下行业务的需求; 所述传输下行业务的需求包括各 STA或各 STA的不同业务流的调度需 求, 例如: 待调度的业务和队列长度、 不同业务的服务质量 QoS需求、 业务 优先级等等。 所述传输下行业务的需求由下行调度信息承载。
步骤 S702: 所述 CAP为需要调度的 2个 STA, 即 STA1和 STA2调度 2 个 CQI反馈信道;
步骤 S703 : 所述 CAP在下行探测信道发送探测信号;
步骤 S704: STA1和 STA2分别测量 CAP在下行探测信道发射的探测信 号, 得到 STA1和 STA2对应的下行传输信道的质量; 步骤 S705: STA 1和 STA2分别通过对应的 CQI反馈信道, 将测算出的 下行传输信道的质量反馈给 CAP; 步骤 S706: 所述 CAP依据下行调度信息和下行传输信道的质量分别为 STA1和 STA2调度下行传输资源;
步骤 S707:所述 CAP依据下行调度信息和下行传输信道的质量为 STA1 调度用于对下行业务进行反馈的传输资源。
STA2在第 N帧的下行传输并未在该帧的上行传输反馈 ACK2信令, 这 可能是由于下述原因: ( 1 ) STA2在第 N帧的下行传输在第 N+k帧反馈; ( 2 ) STA2的下行业务不需要反馈 ACK信令。
所述 CAP 配置与调度的传输资源匹配的帧结构, STA通过解析系统信 息信道获知帧结构, 通过解析控制信道获知具体的传输资源分配情况。 为了更形象地说明本发明应用实例资源调度过程, 参见图 8, 通过 2个 帧完成下行业务传输的资源调度过程, 以及根据所调度的资源动态配置帧结 构的过程。 应用实例一中, 由于考虑 TDD 上下行信道互易性获得下行传输信道的 质量, 需要上行探测信道。 而在应用实例二中, STA测量下行探测信道并将 信道的质量反馈给 CAP, 因此不再需要上行探测信道。 釆用哪种反馈方式, 由 CAP调度器依据 STA能力, 以及系统设置确定。 帧结构中配置的信道可 随传输需求自适应变化,较佳地还可随无线信道时间选择性衰落自适应调整。
应用实例三
本应用实例提供了一种上行调度及传输过程, 如图 9所示, 具体包括以 下步骤:
步骤 S901 : CAP在第 N-2帧的上行调度请求信道接收 STA发送的上行 调度请求信号;
步骤 S902: 所述 CAP在第 N-1帧为所述 STA调度上行探测信道和用于 发送上行业务传输需求的上行传输信道;
步骤 S903: 所述 CAP在第 N-1帧的上行传输信道接收并解析上行调度 信息, 得到所述 STA传输上行业务的需求;
所述传输上行业务的需求包括所述 STA或所述 STA的不同业务流的调 度需求, 例如: 待调度的业务和队列长度、 不同业务的服务质量 QoS需求、 业务优先级等等。 所述传输上行业务的需求由上行调度信息承载。
步骤 S904: 所述 CAP在第 N-1帧的上行探测信道测量所述 STA发送的 上行探测信号, 得到所述 STA对应的上行传输信道的质量; 步骤 S905: 所述 CAP依据所述 STA传输上行业务的需求和上行传输信 道的质量, 在第 N帧为所述 STA调度上行传输资源。 所述 CAP 配置与调度的传输资源匹配的帧结构, STA通过解析系统信 息信道获知帧结构, 通过解析控制信道获知具体的传输资源分配情况。 为了更形象地说明本发明应用实例资源调度过程, 参见图 10, 通过 3个 帧完成上行业务传输的资源调度过程, 以及根据所调度的资源动态配置帧结 构的过程。
应用实例四
本应用实例提供了另一种上行调度及传输过程, 如图 11所示, 具体包括 以下步骤: 步骤 S 1101: CAP在第 N帧为 STA调度上行传输资源;
步骤 S1102: 所述 STA在上行传输时, 将所述 STA传输上行业务的需求 载于数据帧中, 随上行数据一起发送至所述 CAP;
步骤 S1103: 所述 CAP接收到所述 STA传输上行业务的需求后, 才艮据 所述 STA传输上行业务的需求在第 N+1帧为所述 STA分配上行传输资源。 所述 CAP 配置与调度的传输资源匹配的帧结构, STA通过解析系统信 息信道获知帧结构, 通过解析控制信道获知具体的传输资源分配情况。 为了更形象地说明本发明应用实例资源调度过程, 参见图 12, 通过 2个 帧完成上行业务传输的资源调度过程, 以及根据所调度的资源动态配置帧结 构的过程。
应用实例五
图 13 为本应用实例提供的一种上下行调度传输过程的系统帧结构的示 意图。
如图 13 所示, 帧被划分前导序列、 系统信息信道、 控制信道、 下行业 务传输信道、 下行保护间隔 DGI、 上行探测信道、 上行调度请求信道、 上行 业务传输信道、 上行随机接入信道和上行保护间隔 UGI。 其中, 前导序列具体包括短前导和长前导。
某个 CAP关联有 4个 STA: STA0、 STA1、 STA2和 STA3。 在第 N-1帧, STAO进行了上下行业务传输,但 STA0各业务的下行传输 队列中依然有分组排队, 等待被调度; 在上行业务传输中, STA0 向上稍带 了 N- 1 帧结束后, STA0各业务上行队列等待被调度的分组数量。 为了确保 第 N帧高效下行调度, CAP在第 N-1帧调度 STA0通过上行传输信道反馈下 行信道的质量; 为了确保第 N帧高效上行调度, CAP在第 N-1帧调度 STA0 在上行探测信道 1上发射上行探测信号, 便于 CAP测量上行信道的质量。 在 N-1帧, STA1有新的下行业务到达, 等待被调度。 STA2在 N-1帧完成随机 接入过程, 等待被调度, 向 CAP报告 STA2的传输能力和设备配置。 STA3 在 N-1帧上行调度请求信道成功发起上行调度请求。 在第 N帧, 下行传输过程, CAP依据 STA0下行传输队列信息, 以及在 N-1帧反馈的下行传输信道的质量, 为 STA0调度了下行 384个 OFDM符号 用于下行业务传输。 由于只有 STA0有业务传输, 本帧内下行传输信道共分 配了 384个 OFDM符号,其中编号 1至编号 384的 OFDM符号都由 CAP向 STA0传输下行业务。 为了便于 CAP在后续帧下行调度 STA1, CAP发起下 行探测信号, 并调度 STA1在上行传输过程反馈信道的状态信息。 因此, 本 帧内下行探测信道设置 1个 OFDM符号。
在第 N帧, 上行传输过程, CAP依据 STA0反馈的上行传输队列信息, 以及 CAP依据上行探测信道 1测量的上行传输信道的质量, 为 STA0调度了 上行 128个 OFDM符号用于上行业务传输。 CAP为 STA2分配了 16个 OFDM 符号报告 STA2传输能力和设备配置。 CAP为 STA3分配了 16个 OFDM符 号, 报告上行调度信道。 STA2与 STA3均为反馈传输, 釆用确定的调制编码 格式, CAP不需要考虑上行传输信道的质量为其指配传输格式。 本帧传输结 束后, STA0不再有下行业务传输,因此 STA0不再需要反馈下行信道的质量。 但 CAP估计 STA0依然有上行业务等待传输, 因此调度 STA0依然通过上行 探测信道 1发射上行探测信道。 同时, CAP调度 STA3在上行探测信道 2发 射上行探测信道, 便于在 N+1帧调度 STA3上行传输。 另外, CAP为 STA1 分配了 64个 OFDM符号反馈上行信道的质量。 综上, 上行探测信道共需要 128+16+16+64=224个 OFDM符号。 其中, 编号 1至编号 16用于 STA2 艮告 设备能力; 编号 17至编号 32用于 STA3反馈上行调度信息; 编号 33至编号 96用于 STA1反馈下行信道的质量;编号 98至编号 224用于 STA0进行上行 传输。 另外, 本帧还需要 2个上行探测信道。 由于未知其它 STA是否还会发 起上行业务调度请求, 需要预留 2个 OFDM符号用于上行调度请求信道; 由 于未知是否会有新的 STA发起随机接入, 预留 1个 OFDM符号用于上行随 机接入。
CAP计算控制信道需求: 下行调度传输, 以及为 N-1帧 STA0上行传输 反馈 ACK/NACK信令, 共需 2个控制子信道; 上行调度传输, 需要 6个控 制子信道, 分别用于 STA0、 STA1、 STA2与 STA3上行传输信道调度, 以及 STA0和 STA3上行探测信道指配。 综上分析, 本帧需要 6个 OFDM符号用 于控制信道传输。 基于上述调度考虑, 第 N帧帧配置信息如下: 6个 OFDM符号用于控制 信道传输, 384个 OFDM符号用于下行业务传输, 1个 OFDM符号用于下行 探测信道传输 (下行探测信道位置固定), 2个 OFDM符号用于上行探测信 道传输, 2个 OFDM符号用于上行调度请求信道, 224个 OFDM符号用于上 行传输信道, 1个 OFDM符号用于上行随机接入信道。 加之系统固有的短前 导、 长前导、 系统信息信道各一个 OFDM符号。 下行至上行保护间隔 DGI, 以及上行至下行保护间隔 UGI 各一个 OFDM 符号。 本帧共计: 3+6+384+1+1 +2+2+224+ 1 + 1 =625个 OFDM符号。 基于上述过程, STA0、 STA 1、 STA 2、 STA 3收到通信帧后, 通过检测 系统信息信道的广播信息, 可获得控制信道周期 6个 OFDM符号、 下行传输 信道周期 384个 OFDM符号、 DGI周期 1个 OFDM符号、 下行探测信道周 期 1个 OFDM符号、 上行探测信道周期 2个 OFDM符号、 调度请求信道周 期 2个 OFDM符号、 上行传输信道周期 224个 OFDM符号、 随机接入信道 周期 1个 OFDM符号和 UGI周期 1个 OFDM符号; 然后通过对前导序列信 道周期 2个 OFDM符号(短训练序列 1个 OFDM符号、长训练序列 1个 OFDM 符号)、 系统信息信道周期 1个 OFDM符号、 控制信道周期、 下行传输信道 周期、 下行探测信道周期、 DGI周期、 上行探测信道周期、 调度请求信道周 期、 上行传输周期、 随机接入信道周期和 UGI周期进行求和运算, 确定帧 N 帧长, 即 3+6+384+ 1 + 1 +2+2+224+ 1 + 1 = 625个 OFDM符号。 釆用本发明的方法、 系统和设备, 通过动态配置帧结构, 通过上下行调 度, 能够实现基于业务需求动态划分上下行无线资源, 能够较好的动态适配 未来种类丰富且特征各异的数据业务需求。 同时, 该系统能够提供甚小的资 源颗粒度, 不仅能够适配不同终端的较大的业务速率需求变化, 而且也能够 较好的适配无线信道的动态变化。 4既括言之, 该系统能够权衡业务需求与信 道特征, 动态划分上下行链路资源, 在考虑链路自适应的条件下, 为不同终 端动态分配无线资源。
第二实施例
为了实现本发明第一实施例所述的资源调度方法, 本发明实施例还提供 了一种资源调度设备, 如图 14所示, 包括: 调度模块 1401, 用于根据传输需求进行资源调度;
配置模块 1402, 配置与调度的资源匹配的帧长非固定的帧结构。
其中, 所述配置模块 1402, 在所述帧结构中至少配置前导序列和系统信 息信道。 所述前导序列用于实现同步; 所述系统信息信道用于承载指示帧结 构的信息。
进一步地, 所述配置模块 1402, 根据所述上行传输需求调度上行传输资 源, 并据以在所述帧结构中配置上行传输信道; 以及根据所述下行传输需求 调度下行传输资源, 并据以在所述帧结构中配置下行传输信道。
进一步地, 所述上行传输需求包括传输上行业务的需求、 传输上行信令 的需求和对下行业务进行反馈的需求中的一个或者多个。 相应地, 所述配置 模块 1402, 配置的上行传输信道中包括上行业务传输信道、 上行信令信道和 下行业务反馈信道中的一个或者多个。
进一步地, 所述下行传输需求包括传输下行业务的需求、 传输下行信令 的需求和对上行业务进行反馈的需求中的一个或者多个。 相应地, 所述配置 模块 1402, 配置的下行传输信道中包括下行业务传输信道、 下行信令信道和 上行业务反馈信道中的一个或者多个。 进一步地, 所述配置模块 1402, 当存在上行传输需求时, 还在所述帧结 构中配置上行探测信道, 用于站点 STA向中心接入点 CAP发送上行探测信 号; 所述调度模块 1401, 在根据上行传输需求调度上行传输资源时, 在所述 上行探测信道上测量上行探测信号, 得到上行的信道质量信息 CQI, 并结合 测算出的上行的 CQI调度上行传输资源。
进一步地, 所述配置模块 1402, 当存在上行传输需求时, 还在所述帧结 构中配置下行探测信道和 CQI反馈信道,所述下行探测信道用于 CAP向 STA 发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测 信号测量出的下行的 CQI; 所述调度模块 1401, 在根据上行传输需求调度上 行传输资源时, 基于上下互易性, 根据 STA反馈的下行的 CQI确定上行的 CQI, 并结合测算出的上行的 CQI调度上行传输资源。
进一步地, 所述配置模块 1402, 当存在上行传输需求时, 还在所述帧结 构中配置上行探测信道, 用于 STA向 CAP发送上行探测信号; 所述调度模 块 1401, 在根据上行传输需求调度上行传输资源时, 在所述上行探测信道上 测量上行探测信号, 得到上行的 CQI和上行的信道状态信息 CSI, 并结合测 算出的上行的 CQI和上行的 CSI调度上行传输资源。
进一步地, 所述配置模块 1402, 当存在上行传输需求时, 还在所述帧结 构中配置下行探测信道、 CQI反馈信道和 CSI反馈信道, 所述下行探测信道 用于 CAP向 STA发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP 反馈根据下行探测信号测量出的下行的 CQI;所述 CSI反馈信道用于 STA向 CAP反馈根据下行探测信号测量出的下行的 CSI; 所述调度模块 1401, 在根 据上行传输需求调度上行传输资源时, 基于上下互易性, 根据 STA反馈的下 行的 CQI确定上行的 CQI,以及根据 STA反馈的下行的 CSI确定上行的 CSI, 并结合上行的 CQI和上行的 CSI调度上行传输资源。
进一步地, 所述配置模块 1402, 当存在上行传输需求时, 还在所述帧结 构中配置上行探测信道、 下行探测信道和 CQI反馈信道, 所述上行探测信道 用于站点 STA向中心接入点 CAP发送上行探测信号, 所述下行探测信道用 于 CAP向 STA发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP反 馈根据下行探测信号测量出的下行的 CQI; 所述调度模块 1401, 在根据上行 传输需求调度上行传输资源时, 在所述上行探测信道上测量上行探测信号, 得到上行的信道质量信息 CSI, 以及基于上下互易性根据 STA反馈的下行的 CQI确定上行的 CQI, 并结合上行的 CQI和上行的 CSI调度上行传输资源。
进一步地, 所述配置模块 1402, 当存在上行传输需求时, 还在所述帧结 构中配置上行探测信道、 下行探测信道和 CSI反馈信道, 所述上行探测信道 用于站点 STA向中心接入点 CAP发送上行探测信号, 所述下行探测信道用 于 CAP向 STA发送下行探测信号, 所述 CSI反馈信道用于 STA向 CAP反 馈根据下行探测信号测量出的下行的 CSI; 所述调度模块 1401, 在根据上行 传输需求调度上行传输资源时, 在所述上行探测信道上测量上行探测信号, 得到上行的信道质量信息 CQI, 以及基于上下互易性根据 STA反馈的下行的 CSI确定上行的 CSI, 并结合上行的 CQI和上行的 CSI调度上行传输资源。
进一步地, 所述配置模块 1402, 当存在下行传输需求时, 还在所述帧结 构中配置上行探测信道, 用于 STA向 CAP发送上行探测信号; 所述调度模 块 1401, 在根据下行传输需求调度下行传输资源时, 在所述上行探测信道上 测量上行探测信号, 基于上下互易性, 得到下行的 CQI, 并结合测算出的下 行的 CQI调度下行传输资源。
进一步地, 所述配置模块 1402, 当存在下行传输需求时, 还在所述帧结 构中配置上行探测信道, 用于 STA向 CAP发送上行探测信号; 所述调度模 块 1401, 在根据下行传输需求调度下行传输资源时, 在所述上行探测信道上 测量上行探测信号, 基于上下互易性, 得到下行的 CQI和下行的 CSI, 并结 合测算出的下行的 CQI和下行的 CSI调度下行传输资源。
进一步地, 所述配置模块 1402, 当存在下行传输需求时, 还在所述帧结 构中配置下行探测信道和 CQI反馈信道,所述下行探测信道用于 CAP向 STA 发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测 信号测量出的下行的 CQI; 所述调度模块 1401, 在根据下行传输需求调度下 行传输资源时, 根据 STA反馈的下行的 CQI进行资源调度。
进一步地, 所述配置模块 1402, 当存在下行传输需求时, 还在所述帧结 构中配置下行探测信道、 CQI反馈信道和 CSI反馈信道, 所述下行探测信道 用于 CAP向 STA发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP 反馈根据下行探测信号测量出的下行的 CQI;所述 CSI反馈信道用于 STA向 CAP反馈根据下行探测信号测量出的下行的 CSI; 所述调度模块 1401, 在根 据下行传输需求调度下行传输资源时, 根据 STA反馈的下行的 CQI和下行 的 CSI调度下行传输资源。
进一步地, 所述配置模块 1402, 当存在下行传输需求时, 还在所述帧结 构中配置上行探测信道、 下行探测信道和 CQI反馈信道, 所述上行探测信道 用于 STA向 CAP发送上行探测信号; 所述下行探测信道用于 CAP向 STA 发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测 信号测量出的下行的 CQI; 所述调度模块 1401, 在根据下行传输需求调度下 行传输资源时,在所述上行探测信道上测量上行探测信号,基于上下互易性, 得到下行的 CSI,根据所述下行的 CSI以及 STA反馈的下行的 CQI调度下行 传输资源。
其中, 所述 CQI包括传输信道的信噪比、 信千噪比、 调制编码集合、 传 输信道矩阵的秩、 预编码矩阵集合中的一个或多个。 其中, 所述 CSI包括传输信道矩阵 H、 传输信道矩阵 H在 SVD分解后 的 V矩阵、 该 V矩阵的压缩信息中的至少一个。
进一步地, 所述配置模块 1402, 还在所述帧结构中配置上行调度请求信 道, 用于 STA发送上行调度请求, 以请求用于向 CAP上报上行传输需求的 传输资源。
进一步地, 所述调度模块 1401, 为 STA的上行调度请求信道调度独占 的上行传输资源, 用于 STA 以非竟争方式发起上行调度; 或者为 STA的上 行调度请求信道调度共享的上行传输资源,用于 STA以竟争方式发起上行调 度。 进一步地, 所述配置模块 1402, 还在所述帧结构中配置随机接入信道, 用于 STA接入 CAP, 与 CAP建立关联关系。 进一步地, 所述配置模块 1402, 还在所述帧结构中配置控制信道, 用于 承载所述上行传输信道、 下行传输信道、 上行探测信道、 下行探测信道、 CQI 反馈信道、 CSI反馈信道、 上行调度请求信道、 随机接入信道中一个或者多 个信道的描述信息。 其中, 所述控制信道由调度信令组成, 所述描述信息承载于所述调度信 令中。
进一步地, 所述配置模块 1402, 当在所述帧结构中配置有用于上行传输 的信道和用于下行传输的信道时, 还在所述用于上行传输的信道和所述用于 下行传输的信道之间配置保护间隔。
进一步地, 所述调度模块 1401, 釆用时分、 频分、 码分以及空分中的一 种或者多种组合的资源分配方式进行资源调度。
进一步地, 所述配置模块 1402, 配置的系统信息信道和控制信道为时分 复用、 频分复用、 码分复用、 频分和时分混合复用, 或者码分和时分混合复 用。
进一步地, 所述配置模块 1402, 配置的上行传输信道、 上行调度请求信 道和上行随机接入信道釆用时分复用、 频分复用、 频分和时分混合复用, 或 者码分和时分混合复用。
进一步地, 所述帧长不超过预设的长度阈值。
第三实施例
基于本发明上述资源调度方法提供了一种能够根据传输需求动态配置帧 结构的解决方案, 能够较好的动态适配未来种类丰富且特征各异的数据业务 上下行传输需求。 同时, 该系统能够提供甚小的资源颗粒度, 不仅能够适配 不同终端设备的较大的业务速率需求变化, 而且也能够较好的适配无线信道 的动态变化。 下面将进行评细说明。
图 15为本发明实施例中的系统结构示意图, 该系统包括:
一个 CAP 151, 才艮据调度的传输资源确定当前物理帧的结构, 并在当前 物理帧发送指示当前物理帧结构的信息; 和, 至少一个与 CAP151通信的 STA 152, 才艮据当前物理帧中指示当前物理 帧结构的信息, 确定当前物理帧的结构;
其中, 每一物理帧的长度由其结构决定, 是非固定的。 图 16 为本发明实施例中的网络设备结构示意图, 该网络设备包括: 配 置单元 161和第一通信单元 162。 配置单元 161, 艮据调度的传输资源确定当前物理帧的结构。
第一通信单元 162, 在当前物理帧发送指示当前物理帧结构的信息, 并 与至少一个终端设备进行通信。
每一物理帧的长度由其结构决定, 是非固定的。 一种可选的实施方式中, 配置单元 161为当前物理帧配置用于同步的前 导序列, 和, 用于发送指示当前物理帧结构的信息的系统信息信道。
相应的, 第一通信单元 162发送前导序列, 和, 在系统信息信道发送指 示当前物理帧结构的信息。 另一种可选的实施方式中, 配置单元 161为当前物理帧配置用于同步的 前导序列和用于发送指示当前物理帧结构的信息的系统信息信道, 还选择性 地为当前物理帧配置多个信道中的至少一个。 上述多个信道包括如下几种情况:
1 ) 上述多个信道包括: 第一下行传输信道, 用于传输下行业务、 和 /或 下行信令、 和 /或上行业务反馈; 下行探测信道, 用于传输下行探测信号; 和, 第二下行传输信道, 用于传输下行业务、 和 /或下行信令、 和 /或上行业务反 馈。
在此基础上, 相应的, 第一通信单元 162发送前导序列, 在系统信息信 道发送指示当前物理帧结构的信息的系统信息信道; 和, 在被选择性地配置 的信道进行相关地发送。
在此基础上, 配置单元 161确定当前物理帧的结构还包括: 为当前物理 帧配置控制信道, 用于传输指示传输资源的分配和调度、 及占用传输资源的 信道的传输格式的信息。 相应的, 第一通信单元 162发送前导序列, 在所述 系统信息信道发送指示当前物理帧结构的信息; 在控制信道上发送指示传输 资源的分配和调度、 及占用传输资源的信道的传输格式的信息; 和, 在被选 择性地配置的信道进行相关地发送。或者, 第一通信单元 162发送前导序列; 在所述系统信息信道发送一部分指示当前物理帧结构的信息, 其中至少包括 控制信道的时长, 在控制信道发送另一部分指示当前物理帧结构的信息; 在 控制信道上发送指示传输资源的分配和调度、 及占用传输资源的信道的传输 格式的信息; 和, 在被选择性地配置的信道进行相关地发送。
2 ) 上述多个信道包括: 上行探测信道, 用于传输上行探测信号; 上行 调度请求信道, 用于传输上行调度请求; 上行传输信道, 用于传输上行业务、 和 /或上行信令、 和 /或下行业务反馈、 和 /或下行的 CQI 反馈、 和 /或下行的 CSI反馈; 和, 上行随机接入信道, 用于传输上行随机接入请求。
或者, 上述多个信道包括: 上行探测信道, 用于传输上行探测信号; 上 行调度请求信道, 用于传输上行调度请求; 上行传输信道, 用于传输上行业 务、 和 /或上行信令、 和 /或下行业务反馈; CQI 反馈信道, 用于传输下行的 CQI反馈; CSI反馈信道, 用于传输下行的 CSI反馈; 和, 上行随机接入信 道, 用于传输上行随机接入请求。
在此基础上, 相应的, 第一通信单元 162发送前导序列, 在系统信息信 道发送指示当前物理帧结构的信息; 和, 在被选择性地配置的信道上进行相 关地接收。
在此基础上, 配置单元 161确定当前物理帧的结构还包括: 为当前物理 帧配置控制信道, 用于传输指示传输资源的分配和调度、 及占用传输资源的 信道的传输格式的信息。 相应的, 第一通信单元 162发送前导序列, 在系统 信息信道发送所述指示当前物理帧结构的信息; 在控制信道上发送指示传输 资源的分配和调度、 及占用传输资源的信道的传输格式的信息; 和, 在被选 择性地配置的信道进行相关地接收。或者, 第一通信单元 162发送前导序列; 在系统信息信道发送一部分指示当前物理帧结构的信息, 其中至少包括控制 信道的时长, 在控制信道发送另一部分指示当前物理帧结构的信息; 在控制 信道上发送指示传输资源的分配和调度、 及占用传输资源的信道的传输格式 的信息; 和, 在被选择性地配置的信道进行相关地接收。
图 17 为本发明实施例中的终端设备的结构示意图, 该终端设备包括: 解析单元 171和第二通信单元 172。
解析单元 171, 解析当前物理帧中指示当前物理帧结构的信息, 确定当 前物理帧的结构。 第二通信单元 172, 在当前物理帧内与网络设备通信。
其中, 每一所述物理帧的长度由其结构决定, 是非固定的。
一种可选的实施方式, 当前物理帧由前导序列, 和, 携带指示当前物理 帧结构的信息的系统信息信道组成。
在此基础上, 相应的, 第二通信单元 172接收前导序列, 和, 在系统信 息信道接收指示当前物理帧结构的信息。
另一种可选的实施方式中, 当前物理帧包括前导序列、 携带指示当前物 理帧结构的信息的系统信息信道, 和, 至少一个被选择性地配置的信道。 被选择性配置的信道可能包括如下几种情况:
1 )上述被选择性地配置的信道包括: 上行探测信道, 用于传输上行探测 信号; 上行调度请求信道, 用于传输上行调度请求; 上行传输信道, 用于传 输上行业务、 和 /或上行信令、 和 /或下行业务反馈、 和 /或下行的 CQI反馈、 和 /或下行的 CSI反馈; 和,上行随机接入信道,用于传输上行随机接入请求。
或者, 上述多个信道包括: 上行探测信道, 用于传输上行探测信号; 上 行调度请求信道, 用于传输上行调度请求; 上行传输信道, 用于传输上行业 务、 和 /或上行信令、 和 /或下行业务反馈; CQI 反馈信道, 用于传输下行的 CQI反馈; CSI反馈信道, 用于传输下行的 CSI反馈; 和, 上行随机接入信 道, 用于传输上行随机接入请求。 在此基础上, 第二通信单元 172接收前导序列; 在系统信息信道接收指 示当前物理帧结构的信息; 和, 在至少一个被选择性地配置的信道进行相关 地发送。
在此基础上, 当前物理帧还包括: 控制信道, 用于传输指示传输资源的 分配和调度、 及占用传输资源的信道的传输格式的信息。 相应的, 第二通信 单元 172接收前导序列; 在系统信息信道接收指示当前物理帧结构的信息; 在控制信道接收指示传输资源的分配和调度、 及占用传输资源的信道的传输 格式的信息; 和, 在至少一个被选择性地配置的信道进行相关地发送。 或者, 第二通信单元 172接收前导序列; 在系统信息信道接收一部分指示当前物理 帧结构的信息, 其中至少包括控制信道的时长, 在控制信道接收另一部分指 示当前物理帧结构的信息; 在控制信道接收指示传输资源的分配和调度、 及 占用传输资源的信道的传输格式的信息; 和, 在至少一个被选择性地配置的 信道进行相关地发送。
2 ) 被选择性地配置的信道包括: 第一下行传输信道, 用于传输下行业 务、 和 /或下行信令、 和 /或上行业务反馈; 下行探测信道, 用于传输下行探 测信号; 和, 第二下行传输信道, 用于传输下行业务、 和 /或下行信令、 和 / 或上行业务反馈。
在此基础上, 第二通信单元 172接收前导序列; 在系统信息信道接收指 示当前物理帧结构的信息; 和, 在至少一个被选择性地配置的信道进行相关 地接收。
在此基础上, 当前物理帧还包括: 控制信道, 用于传输指示传输资源的 分配和调度、 及占用传输资源的信道的传输格式的信息。 相应的, 第二通信 单元 172接收前导序列; 在系统信息信道接收指示当前物理帧结构的信息; 在控制信道接收指示传输资源的分配和调度、 及占用传输资源的信道的传输 格式的信息; 和, 在至少一个被选择性地配置的信道进行相关地接收。 或者, 第二通信单元 172接收前导序列; 在系统信息信道接收一部分指示当前物理 帧结构的信息, 其中至少包括控制信道的时长, 在控制信道接收另一部分指 示当前物理帧结构的信息; 在控制信道接收指示传输资源的分配和调度、 及 占用传输资源的信道的传输格式的信息; 和, 在至少一个被选择性地配置的 信道进行相关地接收。 可见, 在本发明实施例中, 网络设备根据调度的传输资源配置当前物理 帧的结构, 并在当前物理帧中发送指示当前物理帧结构的信息, 终端设备才艮 据指示当前物理帧结构的信息, 可以确定当前物理帧的结构。
以下以网络设备是 CAP、 终端设备是 STA为例进行说明。 本发明实施例中, CAP可以通过如下两种方式发送指示当前物理帧结构 的信息。
方式一: 在系统信息信道发送指示当前物理帧结构的信息。
指示当前物理帧结构的信息, 包括如下一种或几种: 指示信道存在性的 信息、 指示信道的存在性以及时长的信息、 和指示信道的时长的信息。 与 CAP关联的 STA解析系统信息信道中的指示当前物理帧结构的信息, 可以确定当前物理帧的结构, 将当前物理帧中的各个信道的时长相加, 得到 当前物理帧的帧长。
可选的, CAP还可以在系统信息信道发送当前物理帧的帧长信息,这时, 与 CAP关联的 STA可以直接确定当前物理帧的帧长, 不需要计算。 方式二: 在系统信息信道和控制信道发送指示当前物理帧结构的信息。 指示当前物理帧结构的信息, 包括如下一种或几种: 指示信道存在性的 信息、 指示信道的存在性以及时长的信息、 和指示信道的时长的信息。
CAP在系统信息信道发送一部分指示当前物理帧结构的信息, 该部分指 示当前物理帧结构的信息中至少包括控制信道的时长, 在控制信道发送另一 部分指示当前物理帧结构的信息。 与 CAP关联的 STA解析指示当前物理帧结构的信息, 可以确定当前物 理帧的结构, 将当前物理帧中的各个信道的时长相加, 得到当前物理帧的帧 长。
进一步, CAP 还可以在系统信息信道发送当前物理帧的帧长信息, 与 CAP关联的 STA将直接获得当前物理帧的帧长, 无需计算。 或者, CAP还 可以在系统信息信道和控制信道发送当前物理帧的帧长信息, 这时, 与 CAP 关联的 STA将系统信息信道和控制信道中的两部分帧长相加,得到当前物理 帧的帧长。
下面给出几个具体应用实例, 均以通过上行传输信道进行下行的 CQI反 馈及下行的 CSI反馈为例。
应用实例六
图 18 是本发明应用实例六中物理帧的结构示意图, 其中横坐标表示时 间, 纵坐标表示频率或码字, 物理帧中包括前导序列和系统信息信道。
CAP执行如下操作: 发送前导序列; 和, 在系统信息信道发送指示当前 物理帧结构的信息。
本应用实例六中的系统信息信道包括的如下字段:
① 控制信道时长指示字段,指示控制信道的时长,控制信道时长指示字 段可以为 6比特, 最大可指示 63个 OFDM符号, 1个 OFDM符号为最小资 源分配单位。 例如: 如果这 6 比特是 010000, 转换为十进制数是 16, 即对 应 16个 OFDM符号。
② 下行传输信道时长指示字段,指示下行传输信道的时长, 下行传输信 道时长指示字段可以为 9比特, 最大可指示 511个 OFDM符号。 例如: 如果 这 9比特是 100000000, 转换为十进制数是 256, 即对应 256个 OFDM符号。 ③ 上行传输信道时长指示字段,指示上行传输信道的时长,上行传输信 道时长指示字段可以为 9比特, 最大可以指示 511个 OFDM符号。
④ 下行探测信道配置字段,指示下行探测信道的存在性。本应用实例六 中, 下行探测信道的时长固定, 下行探测信道配置字段可以为 1比特, 当该 比特指示存在下行探测信道时, 相当于间接指示了该下行探测信道为固定时 长。
⑤ 上行探测信道配置字段,指示上行探测信道的存在性以及时长。上行 探测信道配置字段可以为 2比特, 例如填入 00指示无上行探测信道, 填入 01指示上行探测信道占用 1个 OFDM符号, 填入 10指示上行探测信道占用 2个 OFDM符号, 填入 11指示上行探测信道占用 4个 OFDM符号。
⑥ 上行调度请求信道配置字段,指示上行调度请求信道的存在性以及时 长。 上行调度请求信道配置字段可以为 2 比特, 例如填入 00指示无上行调 度请求信道, 填入 01指示上行调度请求信道占用 1个 OFDM符号, 填入 10 指示上行调度请求信道占用 2个 OFDM符号, 填入 11指示上行调度请求信 道占用 4个 OFDM符号。
⑦ 上行随机接入信道配置字段,指示上行随机接入信道的存在性。本应 用实例六中, 上行随机接入信道的时长固定, 上行随机接入信道配置字段可 以为 1比特, 当该比特指示存在上行随机接入信道时, 相当于间接指示了该 上行随机接入信道为固定时长。 可以看出, 系统信息信道中的字段① -③, 指示的是信道的时长信息, 字 段④和⑦指示的是信道的存在性的信息, 字段⑤和⑥指示的是信道的存在性 以及时长的信息。 在其他应用场景下, 上述下行探测信道和上行随机接入信道也可以不是 固定时长, 此时下行探测信道配置字段和上行随机接入信道配置字段, 也可 以釆用多比特指示信道的存在性以及时长, 或者指示信道的时长信息。 由于本应用实例六中的物理帧结构不包括控制信道、 下行传输信道、 下 行探测信道、 上行传输信道、 上行探测信道、 上行随机接入信道和上行调度 请求信道, CAP在控制信道时长指示字段、 下行传输信道时长指示字段和上 行传输信道时长指示字段, 填写时长为 0, 在下行探测信道配置字段和上行 随机接入信道配置字段填写指示信道不存在的取值, 在上行探测信道配置字 段和上行调度请求配置字段填写指示信道不存在的取值。
本应用实例六中, 前导序列和系统信息信道的时长预先设定, CAP 和 STA均知晓该预先设定的情况,因此 STA从系统信息信道中解析指示当前物 理帧结构的信息, 可以确定当前物理帧中只包括前导序列和系统信息信道, 由此确定在当前物理帧不执行发送操作, 只执行相关接收操作。
应用实例七 图 19 是本发明应用实例七中物理帧的结构示意图, 其中横坐标表示时 间, 纵坐标表示频率或码字, 物理帧中包括前导序列、 系统信息信道、 下行 保护间隔、 上行调度请求信道和上行随机接入信道。
CAP执行如下操作: 发送前导序列; 和, 在系统信息信道发送指示当前 物理帧结构的信息。 作为一种可选的实施方式, 本应用实例七中的下行保护间隔时长, CAP 可以在指示当前物理帧结构的信息中携带, 此时系统信息信道在应用实例六 中所列字段的基础上, 还可以具有保护间隔的指示字段, 该字段可以用多比 特指示下行保护间隔的时长, 或者, 在保护间隔具有固定时长的情况下, 该 字段也可以仅用 1比特指示下行保护间隔的存在性。 作为另一种可选的实施方式,本应用实例七中的下行保护间隔时长, CAP 还可以在下行传输信道周期性广播的广播信息帧 ( BCF ) 中携带, BCF中用 2 比特指示下行保护间隔的时长, 例如取值为 0时, 指示下行保护间隔为 2 个 OFDM符号, 取值为 1时, 指示下行保护间隔为 4个 OFDM符号。 STA 在接入 CAP 所在无线网络的过程中, 及接入成功之后, 通过周期性的检测 BCF来获知下行保护间隔的时长, 此时, CAP就无需在每一物理帧中再指示 下行保护间隔的时长, 节省系统信息信道的开销。
STA确定当前物理帧的结构, 由此确定在当前物理帧除执行相关接收操 作外, 还可以选择性的执行以下发送操作:
在上行随机接入信道发送随机接入请求序列,从而触发 CAP分配发送随 机接入请求的资源;
在上行调度请求信道发送上行调度序列,从而触发 CAP分配发送上行调 度请求的资源; 或者, 在上行调度请求信道发送快速信令反馈。 本应用实例七中, STA通过竟争的方式获得上行随机接入信道和上行调 度请求信道的传输资源,因此 CAP无需在控制信道发送对这两个信道的资源 指示, 可以不配置控制信道。 可选的, 本应用实例七中的物理帧结构中也可以只包括上行随机接入请 求信道和上行调度请求信道中的一个。
应用实例八
£设本应用实例八的应用场景包括: CAP对 STA有下行业务传输需求; 在下行业务传输之前需进行信道探测; STA无上行业务、 上行信令或下行业 务反馈需求。
作为第一种可选的实施方式, CAP需要通过两个物理帧完成下行业务传 输, 如图 20a和图 20b所示, 其中横坐标表示时间, 纵坐标表示频率或码字。
在第一个物理帧, CAP执行如下发送操作: 发送前导序列; 和, 在系统 信息信道发送指示当前物理帧结构的信息; 和, 在控制信道发送指示传输资 源的分配和调度、 及占用传输资源的信道的传输格式的信息; 和, 在下行探 测信道发送下行探测信号。 STA通过指示当前物理帧结构的信息, 确定第一 个物理帧的结构, 并由 ilt确定在第一个物理帧可以执行如下发送操作: 在上行传输信道向 CAP反馈下行信道测量结果。这里的下行信道测量结 果, 由 STA基于 CAP发送的下行探测信号对下行信道测量后得到, 包括下 行的 CQI, 或者, 包括下行的 CQI和下行的 CSI。 在第二个物理帧, CAP执 行如下发送操作: 发送前导序列; 和, 在系统信息信道发送指示当前物理帧 结构的信息; 和, 在控制信道发送指示传输资源的分配和调度、 及占用传输 资源的信道的传输格式的信息; 和, 在下行传输信道发送下行业务数据。
STA通过指示当前物理帧结构的信息, 确定第二个物理帧的结构, 并由 此确定在第二个物理帧中不执行发送操作。
作为第二种可选的实施方式, CAP需要通过两个物理帧完成下行业务传 输, 如图 21和图 20b所示, 其中横坐标表示时间, 纵坐标表示频率或码字。 在第一个物理帧, CAP执行如下发送操作: 发送前导序列; 和, 在系统 信息信道发送指示当前物理帧结构的信息; 和, 在控制信道发送指示传输资 源的分配和调度、 及占用传输资源的信道的传输格式的信息。
STA确定第一个物理帧的结构, 并由 it匕确定在第一个物理帧中可以执行 如下发送操作:
STA在上行探测信道向 CAP发送上行探测信号, 使得 CAP利用该上行 探测信号进行上行信道质量测量,或进行上行信道质量和上行信道状态测量, 并根据上下行互易性的原理,得到下行信道的 CQI,或者得到下行信道的 CQI 和 CSI。
在第二个物理帧, CAP执行如下发送操作: 发送前导序列; 和, 在系统 信息信道发送指示当前物理帧结构的信息; 和, 在控制信道发送指示传输资 源的分配和调度、 及占用传输资源的信道的传输格式的信息; 在下行传输信 道发送下行业务数据。
STA通过指示当前物理帧结构的信息, 确定第二个物理帧的结构, 并由 此确定在第二个物理帧中不执行发送操作。
在上述两种实施方式中,从 CAP和 STA执行发送操作的角度进行说明, 当 CAP执行发送时, STA将执行相关的接收, 当 STA执行发送时, CAP将 执行相关的接收。
在上述两种实施方式中, CAP可以通过与应用实例七相同的两种可选的 实施方式指示下行保护间隔, 其中釆用第一种时, 系统信息信道在应用实例 六中所列字段的基础上, 还可以具有保护间隔的指示字段, 该字段可以用多 比特指示下行保护间隔的时长, 或者, 在保护间隔具有固定时长的情况下, 该字段也可以仅用 1比特指示下行保护间隔的存在性; 釆用第二种时, 系统 信息信道具有与实施例中相同的字段。 在上述两种实施方式中,如果 CAP釆用前文所述的方式二发送指示当前 物理帧结构的信息, 以第二个物理帧为例, 在系统信息信道的控制信道时长 指示字段填入相应取值,在控制信道中釆用 9比特指示下行传输信道的时长。
在上述两种实施方式中,如果在下行业务传输之前不进行信道探测, CAP 可以通过如图 20b所示的一个物理帧完成下行业务传输。
在上述两种实施方式中, 第一个物理帧和第二个物理帧, 可以是连续或 非连续的。
除上述两种实施方式外, 在下行业务传输之前, 还可以同时基于下行探 测信道和上行探测信道进行信道探测, 即在第一个物理帧同时配置下行探测 信道、 上行探测信道和上行传输信道, 此时 CAP利用 STA发送的上行探测 信号进行上行信道状态测量,并基于上下行互易性得到下行的 CSI,接收 STA 在上行传输信道反馈的下行的 CQI; 或者, CAP利用 STA发送的上行探测 信号进行上行信道质量测量,并基于上下行互易性得到下行的 CQI,接收 STA 在上行传输信道反馈的下行的 CSI。 上述两种实施方式中, 以在一个物理帧中完成信道探测为例说明, 实际 应用中, 也可能通过多个物理帧完成信道探测, 这里不再赞述。
应用实例九
£设本应用实例九的应用场景包括: STA有上行业务传输需求; 在上行 业务传输之前需进行信道探测; CAP无下行业务、 下行信令或上行业务反馈 需求。
作为第一种可选的实施方式, 在 CAP 已知 STA有上行业务传输需求的 前提下, STA需要通过两个物理帧完成上行传输, 如图 21和图 22所示, 其 中横坐标表示时间, 纵坐标表示频率或码字。 在第一个物理帧, CAP执行如下发送操作: 发送前导序列; 和, 在系统 信息信道发送指示当前物理帧结构的信息; 和, 在控制信道发送指示传输资 源的分配和调度、 及占用传输资源的信道的传输格式的信息。
STA确定当前物理帧的结构, 并由此确定在第一物理帧中可以执行如下 发送操作:
在上行探测信道向 CAP发送上行探测信号, 使得 CAP利用该上行探测 信号进行上行信道质量测量、 得到上行的 CQI, 或进行上行信道质量测量和 上行信道状态测量、 得到上行的 CQI和 CSI。
在第二个物理帧, CAP执行如下发送操作: 发送前导序列; 和, 在系统 信息信道发送指示当前物理帧结构的信息; 和, 在控制信道发送指示传输资 源的分配和调度、 及占用传输资源的信道的传输格式的信息。
STA确定当前物理帧的结构, 并由此确定在第二个物理帧中可以执行如 下发送操作:
在上行传输信道发送上行业务数据。
作为第二种可选的实施方式, 在 CAP 已知 STA有上行业务需求的前提 下, STA需要通过两个物理帧完成上行传输, 如图 20a和图 22所示, 其中 横坐标表示时间, 纵坐标表示频率或码字。
在第一个物理帧, CAP执行如下发送操作: 发送前导序列; 和, 在系统 信息信道发送指示当前物理帧结构的信息; 和, 在控制信道发送指示传输资 源的分配和调度、 及占用传输资源的信道的传输格式的信息; 和, 在下行探 测信道发送下行探测信号。
STA确定当前物理帧的结构, 并由此确定在第一物理帧中可以执行如下 发送操作:
在上行传输信道向 CAP发送下行的 CQI, 或者发送下行的 CQI和 CSI。 由此, CAP 基于上下行互易性的原理, 得到上行的 CQI, 或者上行的 CQI 和 CSI。
在第二个物理帧, CAP执行如下发送操作: 发送前导序列; 和, 在系统 信息信道发送指示当前物理帧结构的信息; 和, 在控制信道发送指示传输资 源的分配和调度、 及占用传输资源的信道的传输格式的信息。
STA确定当前物理帧的结构, 并由此确定在第二个物理帧中可以执行如 下发送操作:
在上行传输信道发送上行业务数据。
在上述两种实施方式中,从 CAP和 STA执行发送操作的角度进行说明, 当 CAP执行发送时, STA将执行相关的接收, 当 STA执行发送时, CAP将 执行相关的接收。
在上述两种实施方式中, CAP可以通过与应用实例七相同的两种可选的 实施方式指示下行保护间隔, 其中釆用第一种时, 系统信息信道在应用实例 六中所列字段的基础上, 还可以具有保护间隔的指示字段, 该字段可以用多 比特指示下行保护间隔的时长, 或者, 在保护间隔具有固定时长的情况下, 该字段也可以仅用 1比特指示下行保护间隔的存在性; 釆用第二种时, 系统 信息信道具有与实施例中相同的字段。 在上述两种实施方式中, 如果 CAP 釆用前文所述的方式二发送指示当前物理帧结构的信息, 以第二个物理帧为 例, 在系统信息信道的控制信道时长指示字段填入相应取值, 在控制信道中 使用 9比特指示上行传输信道的时长。
在上述两种实施方式中, 如果不进行上行信道测量, 那么 CAP也可以不 配置上行探测信道, 并通过图 22所示的一个物理帧完成上行业务传输。
在上述两种实施方式中, CAP也可以在第一个物理帧同时配置下行探测 信道、 上行探测信道和上行传输信道, 此时 CAP利用 STA在第一个物理帧 的上行探测信道发送的上行探测信号进行上行信道状态测量、 得到上行的
CSI, 接收 STA在第一个物理帧的上行传输信道反馈的下行的 CQI、 并基于 上下行互易性得到上行的 CQI, 或者, CAP利用 STA在第一个物理帧的上 行探测信道发送的上行探测信号进行上行信道质量测量、 得到上行的 CQI, 接收 STA在第一个物理帧的上行传输信道反馈的下行的 CSI, 并基于上下行 互易性得到上行的 CSI。
上述两种实施方式中, 以在一个物理帧中完成信道探测为例说明, 实际 应用中, 也可能通过多个物理帧完成信道探测, 这里不再赞述。 以上应用实例六至应用实例九, 分别针对最筒单的应用场景, 举出了几 种可能的物理帧结构, 目的在于说明本发明实施例的物理帧中, 传输信道与 相应的探测信道的关联性, 而实际的应用场景可能要复杂的多, 例如系统中 存在多个 STA, CAP和各个 STA都有不同的传输需求, 基于 STA是否支持 信道探测, 有些上下行传输之前需要进行信道探测, 有些上下行传输之前也 可能不需要信道探测, 以下的应用实例分别举出在其他应用场景下可能配置 的物理帧结构。
应用实例十
图 23是本发明应用实例十中物理帧的结构示意图。 如图 23 所示, 物理帧中包括下行子帧和上行子帧, 下行子帧包括前导 序列、 系统信息信道、 控制信道和下行传输信道, 上行子帧包括上行传输信 道。
各 STA可通过时分, 频分, 码分、 空分或者上述复用方式的结合共享上 行传输资源。
一种可选的实施方式, CAP可以在系统信息信道发送指示当前物理帧结 构的信息, 举例如下:
用 6比特指示控制信道的时长,该 6比特最大可指示 63个 OFDM符号。 例如: 如果这 6比特是 010000, 转换为十进制数是 16, 对应 16个 OFDM符 号。
在系统信息信道中,用 9比特指示下行传输信道时长,最大 511个 OFDM 符号。 例如: 如果这 9比特是 100000000, 转换为十进制数是 256, 对应 256 个 OFDM符号。 在系统信息信道中,用 9比特指示上行传输信道时长,最大 511个 OFDM 符号。
在系统信息信道中, 可以用 1比特指示保护间隔, 共 1个 OFDM符号。 或者系统信息信道不指示保护间隔, 而是系统已配置好。 另一种可选的实施 方式, CAP还可以在系统信息信道与控制信道发送指示当前物理帧结构的信 息, 举例如下:
在系统信息信道中, 用 6比特发送控制信道时长; 在控制信道中, 比特发送下行传输信道时长, 并用 9比特发送上行传输信道时长。
基于图 23的物理帧结构, 可在上下行传输中将信令与业务分离。
应用实例十一
图 24是本发明应用实例十一中物理帧的结构示意图。
如图 24所示, 在图 23的基础上, 在下行子帧设置了下行探测信道。 下 行探测信道的存在性信息包含在 CAP发送的指示当前物理帧结构的信息中, 可以用 1 比特实现, 是在系统信息信道中发送的。 如图 24所示, 下行探测 信道可以位于下行传输信道的后面。
应用实例十二
图 25 是本发明应用实例十二中物理帧的结构示意图, 下行探测信道位 于下行传输信道的中间。
在 MU-MIMO传输方案中, 由于下行 MU-MIMO 系统性能不仅对下行 信道状态信息延迟敏感, 而且多用户 MIMO会涉及较大的信号处理复杂度。 综合考虑信道状态信息延迟, 以及不同应用场景下可能不同的硬件处理复杂 度, 下行探测信道位于下行传输信道的中间更为合理。 如果下行探测信道位 置固定, 可在系统信息信道中用 1比特指示下行探测信道的存在性。 如果系 统中存在不同处理能力的 STA, 下行探测信道位置可变。 此时, 在系统信息 信道中不仅需要指示下行探测信道的存在性, 还需要指示图 25 中两个下行 传输信道的时长。 两个下行传输信道的时长指示可釆用如下三种方法:
分别指示下行传输信道一和下行传输信道二的时长; 分别指示下行传输信道总时长和下行传输信道一的时长;
分别指示下行传输信道总时长和下行传输信道二的时长。 通过上述动态或半静态设置下行探测信道位置, 为不同处理能力的设备 提供足够的处理时间。
一种可选的实施方式, CAP在系统信息信道发送指示当前物理帧结构的 信息, 例如: 用 6比特指示控制信道时长; 用 9比特指示下行传输信道总时 长,用 7比特指示下行传输信道二的时长; 用 9比特指示上行传输信道时长; 用 2比特指示下行探测信道, 分别指示: 无下行探测信道、 下行探测信道位 置 1、下行探测信道位置 2和下行探测信道位置 3,用于匹配不同的 Sounding 带宽。 下行探测信道位置 1、 2、 3均是系统定义的确定位置。 另一种可选的实施方式, CAP可以在系统信息信道与控制信道发送指示 当前物理帧结构的信息, 例如, 在系统信息信道, CAP用 6比特指示控制信 道的时长, 在控制信道, 用 9比特指示下行传输信道总时长, 用 7比特指示 下行传输信道二的时长, 用 9比特指示上行传输信道的时长, 用 2比特指示 下行探测信道的位置。
应用实例十三
图 26是本发明应用实例十三中物理帧的结构示意图。
本应用实例十三在上行子帧中设置了一些辅助信道, 例如: 在上行子帧 设置了上行探测信道、 上行调度请求信道和上行随机接入信道中的一个或多 个。 图 26 仅仅是一个三种辅助信道都包括的帧结构举例, 在实际情况中, 依据系统应用场景或方案的不同, 某些辅助信道也可不予考虑。
一种可选的实施方式, CAP可以在系统信息信道发送指示当前物理帧结 构的信息, 例如, 在系统信息信道中, 用 6比特指示控制信道时长; 用 9比 特指示下行传输信道时长; 用 9比特指示上行传输信道时长; 用 2比特指示 上行探测信道的存在性及时长, 分别指示 0、 1、 2、 4个 OFDM符号; 用 2 比特指示上行调度请求信道的存在性及时长, 分别指示 1、 2、 3、 4个 OFDM 符号; 用 1比特指示上行随机接入信道的存在性,分别指示有和无两种情况, 若有, 固定为 1个 OFDM符号。
另一种可选的实施方式, CAP可以在系统信息信道与控制信道发送指示 当前物理帧结构的信息, 例如:
在系统信息信道中, 用 6比特指示控制信道的时长, 用 1比特指示上行 随机接入信道的存在性; 在控制信道中, 用 9比特指示下行传输信道的时长, 用 9比特指示上行传输信道的时长, 用 2比特指示上行探测信道的存在性及 时长, 用 2指示上行调度请求信道的存在性及时长。
应用实例十四
图 27是本发明应用实例十四中物理帧的结构示意图。 在下行子帧中设置了下行探测信道, 并且同时也在上行子帧中设置了上 行探测信道、 上行调度请求信道和上行随机接入信道。 但在实际情况中, 依 据系统应用场景或方案的不同, 某些辅助信道也可不予考虑。
可选的, 上行保护间隔通过发射提前预留, 即: 将上行发射时间提前, 为 CAP和 STA预留上行至下行转换的保护间隔, 具体如图 28所示, CAP 在 STA 的入网阶段可以通过控制信道中发送的资源指示通知定时提前量, STA在此后的上行发射操作中, 均按照该定时提前量进行发射提前。 在通过 发射提前预留上行保护间隔的情况下,指示下行至上行转换的下行保护间隔, 应不小于 CAP与 STA或 STA与所述 CAP的最大下行至上行收发与上行至 下行收发的保护时间之和。
应用实例十五
图 29 是本发明应用实例十五中物理帧的结构示意图, 其中横坐标表示 时间, 纵坐标表示频率或码字。
在当前物理帧, CAP执行如下发送操作: 发送前导序列; 和, 在系统信 息信道发送指示当前物理帧结构的信息; 和, 在控制信道发送指示传输资源 的分配和调度、 及占用传输资源的信道的传输格式的信息; 和, 在下行传输 信道一发送下行业务数据、 下行信令和上行业务反馈中的一个或几个; 和, 在下行探测信道发送下行探测信号; 和, 在下行传输信道二发送下行业务数 据、 下行信令和上行业务反馈中的一个或几个。
STA确定当前物理帧的结构, 并由此确定在当前物理帧中可以执行如下 发送操作: 在上行探测信道发送上行探测信号; 在上行调度请求信道发起上行调度请求;
在上行传输信道发送上行业务、 和 /或上行信令、 和 /或上行反馈; 在上行随机接入信道发起随机接入。 可选的, 上行保护间隔和下行保护间隔都可以按照与应用实例七类似的 方式指示。
在以上具体应用实例中, 当物理帧中存在上行传输信道、 上行调度请求 信道和上行随机接入信道时, 上行传输信道、 上行调度请求信道和上行随机 接入信道通过时分复用、 频分复用、 码分多址中的一种方式或组合方式复用 资源, 以应用实例十五中的物理帧结构为例, 图 30 是这种复用情况的一个 举例。 这种复用方式可以预先设定且 CAP和 STA均知晓, 此时无需在物理 帧中指示该复用方式, 或者可以由控制信道予以指示, 例如用 4比特指示上 行调度请求信道在上行传输信道中占用的子载波个数, 最大 16 个子载波, 位于上行传输信道上边带边缘; 用 4比特指示上行随机接入信道在上行传输 信道中占用的子载波个数, 最大 16 个子载波, 位于上行传输信道下边带边 缘。
进一步, 当物理帧中存在控制信道和系统信息信道时, 控制信道与系统 信息信道可以通过时分复用、 频分复用、 码分多址中的一种方式或组合方式 复用资源, 以应用实例十五中的物理帧结构为例, 图 31 是这种复用情况的 一个举例, 系统信息信道和控制信道釆用频分和时分混合复用。 这种复用方 式预先设定且 CAP和 STA均知晓, 因此无需在物理帧中指示该复用方式。 控制信道和系统信息信道也可以只釆用频分的方式复用资源。 另外, 同一信道中为各 STA分配的资源之间也可以釆用时分、 频分、 码 分以及空分中的一种或者多种组合的复用方式共享传输资源。
应用实例十六
指示当前物理帧结构的信息包括: 指示第一信道的存在性的信息。 指示 第一信道的存在性的信息, 携带在物理帧的至少一个信道中。
一种可选的实施方式, 第一信道是下行探测信道。
在此基础上, 指示当前物理帧结构的信息还包括: 指示第二信道的时长 的信息。 指示第二信道的时长信息, 携带在物理帧的至少一个信道中。 第二 信道可以是下行传输信道或上行传输信道。 在该可选的实施方式中, 存在上行传输需求时, 可以先进行下行信道探 测, 然后基于上下行互易性, 得到上行信道测量结果, 存在下行传输需求时, 可以先进行下行信道探测, 直接得到下行信道测量结果。
另一种可选的实施方式中, 第一信道是上行随机接入信道。
应用实例十七
指示当前物理帧结构的信息包括: 第一信道的存在性以及时长的信息。 第一信道的存在性及时长的信息, 携带在物理帧的至少一个信道中。
一种可选的实施方式中, 第一信道是上行调度请求信道。 另一种可选的实施方式中, 第一信道是上行探测信道。
在此基础上, 指示当前物理帧结构的信息还包括: 指示第二信道的时长 信息。 指示第二信道的时长信息, 携带在物理帧的至少一个信道中。 第二信 道是上行传输信道或下行传输信道。
在该可选的实施方式中, 存在下行传输需求时, 可以先进行上行信道探 测, 然后基于上下行互易性, 得到下行信道测量结果, 存在上行传输需求时, 可以先进行上行信道探测, 直接得到上行信道测量结果。
应用实例十八
指示当前物理帧结构的信息包括: 指示第一信道的时长信息, 所述时长 大于或等于零。指示第一信道的时长信息,携带在物理帧的至少一个信道中。
第一种可选的实施方式中,第一信道是用于指示传输资源的分配和调度、 及占用传输资源的信道的传输格式的控制信道。 第二种可选的实施方式中, 第一信道是下行传输信道。
在此基础上, 指示当前物理帧结构的信息还包括: 指示第二信道的存在 性以及时长的信息。 指示第二信道的存在性以及时长的信息, 携带在物理帧 的至少一个信道中。 第二信道是用于传输上行探测信号的上行探测信道。 在该可选的实施方式中, 当存在下行传输需求时, 可以先进行上行信道 测量, 并基于上下行互易性得到下行信道测量结果。
第三种可选的实施方式中, 第一信道是下行传输信道。 在此基础上, 指 示当前物理帧结构的信息还包括: 指示第二信道的存在性的信息。 指示第二 信道的存在性的信息, 携带在物理帧的至少一个信道中。 第二信道是用于传 输下行探测信号的下行探测信道。
在该可选的实施方式中, 当存在下行传输需求时, 可以先进行下行信道 测量, 得到下行信道测量结果。
第四种可选的实施方式中, 第一信道是上行传输信道。 在此基础上, 指示当前物理帧结构的信息还包括: 指示第二信道的存在 性以及时长的信息。 指示第二信道的存在性以及时长的信息, 携带在物理帧 的至少一个信道中。 第二信道是用于传输上行探测信号的上行探测信道。 在该可选的实施方式中, 当存在上行传输需求时, 可以先进行上行信道 测量, 得到上行信道测量结果。
第五种可选的实施方式中, 第一信道是上行传输信道。 在此基础上, 指 示当前物理帧结构的信息还包括: 指示第二信道的存在性的信息。 指示第二 信道的存在性的信息, 携带在物理帧的至少一个信道中。 第二信道是用于传 输下行探测信号的下行探测信道。
在该可选的实施方式中, 当存在上行传输需求时, 可以先进行下行信道 测量, 并基于上下行互易性得到上行信道测量结果。
第四实施例
本发明实施例还提供了一种具体指示帧结构中各信道资源分配情况的指 示方法, 如下:
1、 系统信息信道与控制信道:
系统信息信道字段定义 系统信息信道釆用 MCS0传输, 不釆用空时编码。 系统信息字段定义如 表 1所示。
表 1系统信息字段定义
Figure imgf000041_0001
配置
1, 配置下行探测信道 预留 预留
00, 无上行探测信道
01,上行探测信道为 1个 OFDM 口
付^"
上行探测信道
配置 10,上行探测信道为 2个 OFDM 口
付^"
11 ,上行探测信道为 4个 OFDM 口
付^"
00, 无调度请求信道
01,调度请求信道为 1个 OFDM 口
付^"
上行调度请求
信道配置 10,调度请求信道为 2个 OFDM 口
付^"
11 ,调度请求信道为 4个 OFDM 口
付^"
0, 无上行随机接入信道 上行随机接入
K
信道配置
1, 配置上行随机接入信道
预留 预留
帧标号 0-4095, 帧编号计数
Figure imgf000043_0001
其中, 系统信息信道釆用 16 位 CRC 校验, CRC 生成多项式为 g(D) = D16 +D12 +D5+l。 寄存器初始状态为 0xFF, 运算结束后将寄存器状态取 反作为 CRC校验序列输出。 高阶寄存器输出对应高位( 。3 ), 低阶寄存器输 出对应低位 ( )o
2、 控制信道字段定义: 控制信道釆用 MCS1传输, 不釆用空时编码。 控制信道由多个单播和广 播调度信令组成。 上下行单播调度信令字段如表 2所示。
表 2下行与上行调度信令字段定义
Figure imgf000043_0002
00: 开环 SU-MIMO传输
01 : 闭环 SU-MIMO传输(专用解调导频模式 ) 10: 闭环 MU-MIMO传输(仅 = 1时有效) 11 : 闭环 SU-MIMO传输(公共解调导频模式 ) 用户资源组起始 OFDM符号索引, 域值: 0~ 510 码字 I的 MCS及并行空间流数 ( < 4 ) 指示 h h · · -h 用户资源组连续 OFDM符号数, 域值: 1~511 码字 II的 MCS及并行空间
流数指示
1111111 , 本次传 输为
SU-MIMO无码字 II
1111110 , 本次传输为 2 流
MU-MIMO
1111101 , 本次传输为 3 流 ί>36 b35 ' BitMa 指示 MU-MIMO
CQI, CSI, 或 BFM反馈子信道 κ ··· 1111100 , 本次传输为 4 ¾u
b39 b3&b37 , 对于 CSI反馈, MU-MIMO
指示反馈矩阵的行数; 对于 BFM
1111011 , 本次传输为 5 流 反馈, 指示反馈矩阵的列数 MU-MIMO
1111010 , 本次传输为 6 流
MU-MIMO
1111001 , 本次传输为 7 流
MU-MIMO
1111000 , 本次传输为 8 ¾u MU-MIMO
0000000-1100011 ,
SU-MIMO码字 II的 MCS及流数
¾。 =1 , 请求 CQI反馈
SU-MIMO: 000
¾Αι =01 , 请求 CSI反馈
MU-MIMO: 空间;¾起: ½位
b42b4l =10 , 请求 BFM反馈 置索引, 域值 0~7
¾A =11 , 预留
00, BCC编码
01, LDPC码长 1 ( 1344比特 )
10, : LDPC码长 2 ( 2688比特)
11, LDPC码长 3 ( 5376比特)
0 , 时或解调导频间隔 0 (短解调导频间隔 )
1 , 时或解调导频间隔 1 (长解调导频间隔 )
00, 频或解调导频图样 1 (DPI=1 )
01, 频或解调导频图样 2 (DPI=2)
10, 频或解调导频图样 3 (DPI=4)
11, 预留
¾8 =0 , b54—b49指示本用户资源组内用于信令和反馈传输的资 源, 域值 0~63
54 53 · · · 48 b4S=l, 4··· 9预留 b5s 0, 不采用 STBC传输 1 , 采用 STBC传输 b~n t>1056 CRC校 -睑保护与 STAID标识
其中, b 。… 6为单播调度信令字段的 CRC校验码与 CAP分配的本小 区唯一的 12比特 ID异或。
[K H ] = [000 l 4。 · · ]STAID © [C15 C14 · · · C0 ]CRC 控制信道釆用 16位 CRC校儉, CRC生成多项式为
g(D) = D16+D12+D5+l。 定义同表 1。
3、 上下行传输信道:
上下行传输信道资源分配类型:
在上下行传输信道, 本部分支持时分资源复用调度。
时分复用资源分配:
在上行或下行传输信道为每个 STA分配的时频资源称为资源组。 时分复用时, STA资源组内 OFDM符号索引按照时间增长方向由 0至 D ( 24 ) - 1。 其中, D b32b3 'b24、表示比特 2 b …^对应的十进制数。 上下行传输信道资源指示:
时分复用资源分配: 在 STA调度信令(表 2 ) 中, 用 [¾16 ¾15 指示 STA资源组起始 OFDM 符号索引, 域值 0〜510; 用 [δ32 ι '" 4]指示 STA资源组占用的连续 OFDM符 号个数。 为 STA分配的资源组包括解调导频占用的资源。 传输信道解调导频 本部分可动态调整解调导频图样。 通过控制信道调度信令 5 (表 2) 可 配置不同的时域导频间隔; 通过控制信道调度信令 7 6 (表 2) 可配置不同 的频域导频图样。 若 0中 为 01或 10, 解调导频需经预编码处理 (专用解调导频); 若 0中 为 00或 11, 解调导频不需要预编码处理 (公共解调导频)。 解调导频图样如下:
解调导频图样如表 3所示。
表 3解调导频图样
Figure imgf000047_0001
12 5 2 3
13 5 4 2
14 6 1 6
15 6 2 3
16 6 4 2
17 7 1 7
18 7 2 4
19 7 4 2
20 8 1 8
21 8 2 4
22 8 4 2 其巾,
( 1 )导频间隔 1) 指同一空时流导频符号子载波周期。 例如: DPIF = 2 指示每 2个相邻的有用子载波有一个解调导频。
( 2 )导频符号数, DP , 指解调导频在时间域占用的连续 OFDM符号 个数。 表 4定义了解调导频图样中各导频符号对应的子载波位置。
表 4解调导频位置
Figure imgf000048_0001
(iV + _ (7 _ 1) . DPI)] , sti
+
+
+
+ sti (/ 1) · DPI))] , sti ,
+ sti (/ 1) · DPI))] , sti ,
Figure imgf000049_0001
其中, 为第 个空时流解调导频子载波索引集合; / = ι··· ζ)υ§ 示解调导频占用的 OFDM符号;表内的 DV为频域的解调导频间隔, 即 DPIF。 解调导频间隔设计如下:
通过控制信道调度信令 b45 ( 0 ) 可配置不同的时域导频间隔, 以自适应 不同的无线传播环境。 时域导频间隔配置, DPIT, 即: 每隔 D^个 OFDM 符号插入一组解调导频。 b45 =0为短 DPI" b45 =\为长 DPIT 长、 短 D^在 MAC层 BCF帧指示。 解调导频序列
导频序列生成多项式为 1 + + 15。生成序列经 BPSK调制得到导频符号 序列 ί = 0,1,···, 32767。 寄存器初始状态为:
[θ 0101011 α6 α5 α4 α3 α2 αι αο ]
MSB在左, LSB在右。 α6α5〜α。是 CAP的 MAC地址最 4氐 7比特。 解调导频按照如下规则映射到时频资源。 令: '· = 231·/ + ( + 115) 式中: k = -115,···, +115; / = 0,1,···, DP -1。 i = 0
Figure imgf000050_0001
for k = -115:1: +115
if ke SCS"
ps" =
else
psti = 0
end
i = i-\-l
end
end 下行传输信道多天线方案:
多天线传输模式下, 第 ti个天线端口的时域基带信号为
Figure imgf000051_0001
式中: H (t)为时域窗函数, if 为第 个空间流上第 A个子载波的加载符 号, [¾]¾ .表示预编码矩阵¾£^« 的第 行、 列的元素。 本部分支持的下行多天线传输模式有:
模式 1: 开环 SU-MIMO
模式 2: 闭环 SU-MIMO
模式 3: 闭环 MU-MIMO 其巾 ··
模式 1: 开环 SU-MIMO 开环 SU-MIMO时, STA可并行接收两个码字。 开环模式下的预编码矩 阵 eC 's为列正交矩阵, 且^ || = ^。 模式 2: 闭环 SU-MIMO 闭环 SU-MIMO时, STA可并行接收两个码字, 且以子载波组为单位预 编码。 预编码矩阵分组定义如下: 有用子载波的预编码分组的组数为 Ng, 第 g个分组内的子载波序号集合为0 , 该组使用相同的预编码矩阵。
SU-MIMO 模式下的同一预编码分组内的子载波数 g I通过如下公式确 定。
l \ = -DPIF 其中 ΖλΡ ^定义在附录 Β。使用预编码分组时, ΖλΡ ^的取值为 1和 2两种。 £)¾ =1时, 4个子载波分组: [ -115,-113 ][ -112,-109 ][ -108,-105 ][ -104,-101 ][ -100,-97 ][ -96,-93 ][ -92,-89 ][ -88,-85 ][-84,-81 ][ -80,-77 ][ -76,-73 ][ -72,-69 ][ -68,-65 ][ -64,-61 ][ - 60,-57 ][ -56,-53 ][ -52,-49 ][ -48,-45 ][ -44,-41 ][ -40,-37 ][ -36,-33 ][ -32,-29 ][ - 28,-25 ][ -24,-21 ][ -20,-17 ][ -16,-13 ][ -12,-9 ][ -8,-5 ][ -4,-1 ][ 1,4 ][ 5,8 ][ 9,12 ][ 13,16 ][ 17,20 ][ 21,24 ][ 25,28 ][ 29,32 ][ 33,36 ][ 37,40 ][ 41,44 ][ 45,48 ][ 49 ,52 ][ 53,56 ][ 57,60 ][ 61,64 ][ 65,68 ][ 69,72 ][ 73,76 ][ 77,80 ][ 81,84 ][ 85,88 ] [ 89,92 ][ 93,96 ][ 97,100 ][ 101, 104 ][ 105,108 ][ 109,112 ][ 113,115 ]
DPIF = 2时, 8个子载波分组:
[ -115„-105 ][ -104,-97 ][ -96,-89 ][ -88,-81 ][ -80,-73 ][ -72,-65 ][ -64,-57 ][
-56,-49 ][-48,-41 ][ -40,-33 ][ -32,-25 ][ -24,-17 ][ -16,-9 ][ -8,-1 ][ 1,8 ][ 9,16 ][ 1 7,24 ][ 25,32 ][ 33,40 ][ 41,48 ][ 49,56 ][ 57,64 ][ 65,72 ][ 73,80 ][ 81,88 ][ 89,96 ][ 97, 104 ][ 105,115 ] 闭环 SU-MIMO下, STA可依据 MAC层指示反馈信道信息。 模式 3: 闭环 MU-MIMO 闭环 MU-MIMO时, 各 STA只能接收一个码字, 且以子载波组为单位 预编码。 预编码矩阵分组定义如下: 有用子载波的预编码分组的组数为^, 第 g个分组内的子载波序号集合为 Ω^, 该组使用相同的预编码矩阵。 MU-MIMO模式下的同一预编码分组内的子载波数 Qg通过如下公式确定。
\n \ = DPiF 其中 D ^定义在附录 B, 使用基于 CSI矩阵反馈的 MU-MIMO预编码 分组时, DPI ^的取值为 1。 闭环 MU-MIMO下, STA可依据 MAC层指示反馈信道信息。 上行传输信道多天线方案 本部分支持的上行多天线传输模式有:
模式 1 : 开环 SU-MIMO 模式 2: 闭环 SU-MIMO
4、 信令 /反馈传输信道
此处所述信令 /反馈传输信道, 是指用于传输信令和 /或反馈信息的信道。
STA时分复用资源时, 0 中 ¾54 ¾53'"¾49指示业务传输从 STA资源组中索 引为 1 的 OFDM 符号开始传输分组数据及其解调导频。 ^( 4 3 ''' 9)为 4 3' 9对应的十进制数, 其中 为高位, 9为低位。 在
STA资源组内, OFDM符号 0至 OFDM符号 ^^54 ¾53 "' 9)_1用于信令或反 馈传输, 且传输格式独立于 0中的指示。 其对应的传输格式如 0所示。
表 5信令 /反馈传输格式
Figure imgf000053_0001
信令 /反馈传输除复用 0分配的业务传输资源外,还可通过如下广播信令 分配专用的信令 /反馈传输资源。
下行信令 /反馈传输信道:
下行信令 /反馈传输信道复用 DL-TCH资源, 图 32所示。 所有下行信令 / 反馈传输信道共享一个解调导频。 上行信令 /反馈传输信道: 上行信令 /反馈传输信道复用 UL-TCH资源。 上行信令 /反馈传输信道可 支持两种结构, 分别如图 33和图 34所示。 在图 34格式 2中, 每个基本资 源块为 28ϊ χ 8 。, (不包括相位 ί艮踪导频)。 其中, 前 4个 OFDM符号和后 4 个 OFDM符号如图所示方式跳频。 信令 /反馈传输信道资源指示 -.
每帧内, 信令 /反馈传输信道在 DL-TCH和 UL-TCH占用资源通过 CCH 广播调度信令以广播方式通知所有 STA。该广播调度信令使用控制信道资源, 与控制信道调度信令具有相同的分组大小, 釆用相同的传输格式 (见表 2 )。 广播调度信令 CRC校验用 MAC层定义的 BSTAID加扰。具体字段定义如表 6。
表 6信令 /反馈传输信道资源指示信令字段定义
Figure imgf000054_0001
01 : 格式 2 10-11 : 预留
0: 下行广播信道分配
κ 有效; 1 : 下行广播信道分
配无效 下行广播信道占用的 预留
36 35 · · · 32 信令 /反馈信道起始索引,
域值: 1〜31 下行广播信道占用的
b39b3&b31 信令 /反馈信道个数, 域值:
1-7 55 54 · · · 40 预留 71 70… 56 16比特 CRC被 B STAID加 4尤
其中, 下行信令反馈信道占用的 OFDM符号数为 Db2 ' ' '¾23 索引为 OFDM符号为公共解调导频占用资源。 CRC定义同表 1。 信令 /反馈传输信道分配:
CAP可通过如表 7所示信令为 STA分配信令 /反馈传输信道。
表 7信令 /反馈传输信道分配信令字段定义
Figure imgf000055_0001
b3 b2 bx b0 =0011, 上行信令 /反馈信道分配 b7 b6 b5 b4 预留 bl9 b、d, 指示 STAID b2lb20 ' 预留
¾i ¾o " "¾
K b2i--- ' 指示该 STA 在信令 /反馈信道起始位置索 信道 1 引, 域值取值范围 0〜63。 b3lb30b29 , 指示占用的信令 /反馈信道个数, 域值: 1〜7; 域值为 0表示该信道指示无效。 b43 b42---b32, 指示 STAID
K K^ 预留
Figure imgf000056_0001
b52b5l' b41,指示该 STA在信令 /反馈信道的起始位置索 信道 2
引, 域值取值范围 0〜63。 b55b54b53 , 指示占用的信令 /反馈信道个数, 域值: 1〜7; 域值为 0表示该信道指示无效。 b~n t>1056 16比特 CRC被 B STAID加 4尤 其巾 ·· 下行信令反馈传输信道, ^^2^27023)指示的是对应 STA下行信令反馈 传输信道的第 1个 OFDM符号, D b2& , · ' S ) = °指示下行信令反馈传输信 道公共解调导频, 属于无效指示。 上行信令反馈传输信道格式 1, D ^28 bl1 · · · )指示的是对应 STA上行信 令反馈传输信道的第 1个 OFDM符号, D^2^27 ' ' '023 )— 1对应的 OFDM符号 是该 STA上行信令反馈传输信道的解调导频。 对于格式 1, D b2& bl1 · ' S ) = ° 是无效指示。 上行信令反馈传输信道格式 2, D ( …^ )指示的是对应 STA上行信 令反馈传输信道索引, D b2& bl1 · ' S ) = °指示信令 /反馈信道 0。 下行信令反馈传输信道和上行信令反馈传输信道格式 1, 每个 OFDM符 号为一个信令 /反馈信道; 上行信令反馈传输信道格式 2, 每个资源块为一个 信令 /反馈信道。
5、 上下行探测信道
下行探测信道:
当系统信息字段 SICH中的 4 = 1, 表示本帧配置下行探测信道。 下行探 测信道在下行传输信道的具体位置以及下行探测信道导频图样由 MAC 层 BCF帧 (表 2 ) 指示。 下行探测导频图样: 下行探测信道可支持的逻辑天线端口数为 1〜8个, 导频图样如下:
表 8 探测导频图样 索
SPI
1 1 4 1
2 2 4 1
3 3 4 1 4 4 4 1
5 5 4 2
6 6 4 2
7 7 4 2
8 8 4 2 表 9定义了解调导频图样中各导频符号对应的子载波位置。
表 9探测导频位置
Figure imgf000058_0001
SC = [±(1 + ti (/ 1) . SPI)), ±(1 + SPI + ti (/ 1) . SPI)), ... , ±(7V + ίζ·— (/— 1) . SPI))] 1 ti
W = 1 + S5/ . |_(Wsr - f + (/ - 1) .5P/ - 1) / 5P/」
40MHz
SPI = 4
ti = 0-7
^ =243
2
SCs i p l = [±(1 + ti (/ 1) . SPI)), ±(1 + SPI + ti (/ 1) . SPI)), ... , + ti (/ 1) . SPI))] 1 tl
N = l + SPI- (Nsr - ti + (/ - 1) . SPI - 1) / 5Τ·/」
80MHz
SPI = 4
ti = 0-7
Wsr =499
其中, ^为第 个天线端口探测导频占用的子载波索引集合;
/ = οι· . sp ―
1指示探测导频占用的 OFDM符号。
下行探测序列生成: 导频序列生成多项式为 1 + + 15。生成序列经 BPSK调制得到导频符号 序列 = 01 ··· 32767。 寄存器初始状态为:
[00101011 α6 α5 α4 α3 α2 αι αο ]
MSB在左, LSB在右。 α6α5 α。是 CAP的 MAC地址最 4氐 7比特。 探测导频按照如下规则映射到时频资源。 令: '· = 231·/ + ( + 115) 式中: 115 ··· +115;/ = 01 ··· 1 i = 0
/Or/ = 0:1: 1
/or Λ = -115:1: +115
if ke SC"
a
p = s,
else
p" =0
end
i = i-\-l
end
end 上行探测信道
上行探测导频端口
上行探测导频端口如表 10所示。
表 10 上行探测导频端口索引
Figure imgf000060_0001
上行探测信道分配
CAP通过表 11所示信令为 STA分配上行探测信道。
表 11上行探测信道分配信令字段定义 比特 定义 广播类型
¾¾^0=0111, 上行探测信道资源指示 b,b6b5b4 预留
619 ·Α STAID π 1
b23b22… 。, 上行探测导频端口索引 b35b34---b24, STAID π 2
b39b3S6, 上行探测导频端口索引 " o STAID
^55^54 "· 0
π 3
b55b54 ---b52, 上行探测导频端口索引
^71 ^70 ""^56 16比特 CRC被 B STAID加 4尤 其中, 上行探测导频端口索引指示 STA天线 0 的探测导频端口。 如果 STA为多天线配置, 其它天线上行探测导频端口索引如下式: =D( H ) + t (t = 0,l,-,7) 其中, D( "' ·¾-3 )表示比特 Κ_γ · · · — 3对应的十进制数。 上行探测导频序列: 导频序列生成多项式为 1 + + 。 生成序列经 BPSK调制得到导频符号 序列 } '· = 01,···,32767。 寄存器初始状态为: [θ 0101011 α6 α5 α4 α3 α2 at α0 ]
MSB在左, LSB在右。 "6 "5···"°是 CAP的 MAC地址最 4氐 7比特。
CAP 为 STA 分 配 的 上 行 探 测 导 频 端 口 集 合 为 :
SP , = i(k,l)\k e [-115,+115l, / e Γθ,3ΐ) ^ ^ , , ^ ^ ^ ^ ^ . 3, , , ^
;| L 」 L ", 其中 为表 10中子载波索引, Z为表 1C 中 OFDM符号索引, 为 STA天线端口索引, Port为上行探测导频端口索引。 上行探测导频按照如下规则映射到时频资源。 令:
'· = 231·/ + ( + 115)
J φ . ^: = -115,…'+ 115 / =0,1,2,3
i = 0
for I = 0:1:3
for k = -115:1 :+115
Figure imgf000062_0001
el
Figure imgf000062_0002
end
i = i-\-l
end
end
6、 上行调度请求信道
上行调度请求信号按照图 35所示方法产生。 图中, CAP— MAC指 CAP的 MAC地址的最低 7比特, 为 PN序列索 引 ( 0≤ <4 ), {(5CS}为循环移位参数集, _/为循环移位参数索引 ( 0≤_/<8 )。
PN序列的产生 PN序列釆用生成多项式为 1 + 的最大长度线性反馈移位寄存器序 列, 其框图如图 36所示。 寄存器的初始值^ ¾ = [001010111¾1¾ 1¾ , MSB在左, LSB在右; 其中 [ν6ν5ν4ν3ν2ψ01 = CAP MAC, 是 CAP的 MAC地址的最 4氐 7比特。 调制映射 序列 St经 BPSK调制后, 得到序列 Ct。 子载波映射 序列 按照下式进行子载波映射, 得到序列 Μ'.。
Figure imgf000063_0001
频域循环移位 对子载波映射后的序列 Μ,.按照下式循环移位, 得到序列 τ
TJk = M. ke ^
式中: N 为 IFFT的点数, k e i], <5 为循环移位参数,
Figure imgf000063_0002
单位为釆样点个数。 对于 20MHz系统, = 256, {5CS } = {0 32 64 96 128 160 192 224}。 独立资源请求帧资源分配
CAP通过如表 12所示信令为 STA分配独立资源请求帧占用的 UL-TCH 资源。
表 12资源请求帧资源分配 比特 定义 广播类型 b3b2b、b0 b3b2b{b0 =0110, 独立资源请求帧(为独立资源请求帧分配 资源) 预留
V¾ =00,对应 UL-SRCH第 1个 OFDM符号的调度请求
V¾ =01,对应 UL-SRCH第 2个 OFDM符号的调度请求
V¾ = 10,对应 UL-SRCH第 3个 OFDM符号的调度请求
V¾ = l l,对应 UL-SRCH第 4个 OFDM符号的调度请求 bnbl0 , PN序列索引, 域值: 0-3 分配 1 bl4bl3bl2, PN序列频域循环移位索 1
000循环移位 0, 001循环移位 32, 依次类推 111循环 移位 224 bl7bl6bl5, 调度请求发生的系统帧号最低 3比特指示 b2H ,为调度请求分配的资源在信令 /反馈信道的起 始位置索引, 域值取值范围 1〜63, 域值为 0表示无效指示 … b25b24 , 定义同 分配 2 b21b26 , PN序列索引, 域值: 0〜3 b30b29b2S, PN序列频域循环移位索 1
000循环移位 0, 001循环移位 32, 依次类推 111循环 移位 224 b33b32b3l, 调度请求发生的系统帧号最低 3比特指示 b39b3S · Ί为调度请求分配的资源在信令 /反馈信道的起 始位置索引, 域值取值范围 1〜63, 域值为 0表示无效指示 b4lb40 , 定义同 ¾ b43b42 , PN序列索引, 域值: 0-3 b46b45b44, PN序列频域循环移位索 1
000循环移位 0, 001循环移位 32, 依次类推 111循环 分配 3 移位 224 b49b4&b41, 调度请求发生的系统帧号最低 3比特指示 b55b5 ' -b50,为调度请求分配的资源在信令 /反馈信道的起 始位置索引, 域值取值范围 1〜63, 域值为 0表示无效指示
^71 ^70 " " ^56 16比特 CRC被 B STAID加 4尤
7、 上行随机接入信道
随机接入信号产生
随机接入信号的产生同上行调度请求信号。 上行随机接入信号的序列索引号和 循环移位索引号 {,_/}由各 STA随机选择。
随机接入信道格式: 格式 1如图 37所示,
{ cs = {0 \.6us 3.2us 4.Sus 6Aus S.Ous 9.6us \\.2us 格式 2, 如图 38所示,
|(5CS j = {0 3.2us 6.4us 9.6us j 格式 3, 如图 39所示,
{<5CS} = {° 6Aus } 随机接入请求帧资源分配 -.
CAP通过如表 13所示信令为 STA分配随机接入请求帧占用的 UL-TCH 资源。
表 13随机接入请求帧资源分配
Figure imgf000066_0001
b25b24 · · -bl6, 发射定时提前量 b3lb30 - - -b26,随机接入请求分配的资源在信令 /反馈信道的 起始位置索引, 域值取值范围 1〜63, 域值为 0表示无效指示 b33b32 , PN序列索引, 0〜3 b36b35b34, PN序列频域循环移位索 1
000循环移位 0, 001循环移位 32, 依次类推 111循环 移位 224 b39b3,b37, 随机接入发生的系统帧号最
分配 2 4氐 3比特 b49b4&… , 发射定时提前量 b55b54 " 'b50,随机接入请求分配的资源在信令 /反馈信道的 起始位置索引, 域值取值范围 1〜63, 域值为 0表示无效指示 b~n t>1056 16比特 CRC被 B STAID加 4尤 其中, 发射定时提前量为
Figure imgf000067_0001
单位: 样点数。 定时提前量 以 100ns为单位, 若釆样时钟为 20MHz, W = 2。
随机接入响应帧资源分配:
CAP通过如表 14所示信令为 STA指示随机接入响应帧占用的 DL-TCH 资源。
表 14随机接入响应帧资源分配 比特 定义 广播类型 b3b2b、b0
b3b2b、b0 =0101, 随机接入响应帧 (为随机接入响应帧分 配资源) 预留 , PN序列索引, 0〜3 bn A。, PN序列频域循环移位索 1
000循环移位 0, 001循环移位 32, 依次类推 111循环 移位 224
23 22 ' ' ' ¾
bl5bl4bl3, 随机接入发生的系统帧号最 4氐 3比特 分配 1
b2lb20 - - -bl6,为随机接入响应分配的资源在信令 /反馈信道 的起始位置索引, 域值取值范围 1〜63, 域值为 0表示无效指 示 b23b22 ' 预留 39 38… 24 b25b24 , PN序列索引, 域值 0〜3 分配 2 b2,b27b26, PN序列频域循环移位索 1
000循环移位 0, 001循环移位 32, 依次类推 111循环 移位 224 b3lb30b29, 随机接入发生的系统帧号最低 3比特
b37b36 - - -b32,为 1¾ 机接入响^分配的贫源茌信令 /反惯信迢 的起始位置索引, 域值取值范围 1 63, 域值为 0表示无效指 示
¾9¾8 ' 预留 b4lb40 , PN序列索引, 域值 0 3 b44b43b42 PN序列频域循环移位索 1
000循环移位 0 001循环移位 32, 依次类推 111循环 移位 224 b47b46b45, 随机接入发生的系统帧号最低 3比特 分配 3
bH ,为随机接入响应分配的资源在信令 /反馈信道 的起始位置索引, 域值取值范围 1 63, 域值为 0表示无效指 示 b55b54 , 预留
^71 ^70 ""^56 16比特 CRC被 B STAID加 4尤
上行功率控制 开环功控
考虑到 TDD系统上下行链路的信道互易性, 可以釆用开环功控。 PSTA =min{ ^ PL0L +C/N + 10 log10 (BW)}(dBm) 式中-.
P∑0L: 传输路径损耗估计值。 可依据 STA接收信号功率与 CAP发送功 率估计。 CAP发送功率在 MAC层 BCF帧指示。 C/N : 不同 MCS对应的载噪比。
BW: CAP分配给 STA的传输带宽。
Figure imgf000070_0001
第五实施例
本发明实施例提供了一种资源指示方法,用于指示信令和 /或反馈传输资 源, 包括:
步骤 1 : 生成调度信令, 所述调度信令中携带指示用户资源组内用于信 令和 /或反馈传输的资源的指示信息; 所述用户资源组用于用户业务数据传 输;
步骤 2: 发送所述调度信令。 其中, 所述调度信令中还携带用于指示用户资源组的起始位置和长度的 指示信息。 本发明实施例中, 用于信令和 /或反馈传输的资源与用户传输资源复用, 根据资源调度, 相应地配置信令反馈信道与传输信道复用。 调度信令格式可 以参见表 2,以 b53 · 指示业务传输从 STA资源组中索引为1 ¾53 · · ^49 ) 的 OFDM符号开始传输分组数据及其解调导频。 D^54 · ' · 9 )为 b53 · 对应的十进制数, 其中 ¾54为高位, ¾49为 4氐位。 相应地, 如图 33所示, 在用 户资源组内, OFDM符号 0至 OFDM符号1 ^054 053049)— 1用于信令或反馈 传输, 从 STA资源组中索引为 D b54 的 OFDM符号开始传输分组数 据及其解调导频。 在传输信令和 /或反馈信息时, 按照双端约定好的信令和 /或反馈传输格 式传输。
为了实现上述资源指示方法,本发明实施例还提供了一种资源指示装置, 包括:
封装模块, 用于生成调度信令, 所述调度信令中携带指示用户资源组内 用于信令和 /或反馈传输的资源的指示信息; 所述用户资源组用于用户业务数 据传输;
发送模块, 用于发送所述调度信令。
其中, 所述调度信令中还携带用于指示用户资源组的起始位置和长度的 指示信息。 其中, 所述调度信令, 还指示按照预设的信令和 /或反馈传输格式传输。
相应地, 本发明实施例还提供了一种数据发送方法, 用于接收上述调度 信令, 据以传输, 包括: 步骤 1 : 接收调度信令, 所述调度信令中携带指示用户资源组内用于信 令和 /或反馈传输的资源的指示信息; 所述用户资源组用于用户业务数据传 输;
步骤 2: 根据所述指示信息, 在用户资源组中相应的位置上传输信令和 / 或反馈消息。
其中, 在传输数据时, 按照预设的信令和 /或反馈传输格式传输。
为了实现上述数据发送方法,本发明实施例还提供了一种数据发送装置, 包括: 接收模块, 用于接收调度信令, 所述调度信令中携带指示用户资源组内 用于信令和 /或反馈传输的资源的指示信息; 所述用户资源组用于用户业务数 据传输;
发送模块, 用于根据所述指示信息, 在用户资源组中相应的位置上传输 信令和 /或反馈消息。 其中, 所述发送模块, 用于按照预设的信令和 /或反馈传输格式传输。
第六实施例
本发明实施例提供了一种资源指示方法,用于指示信令和 /或反馈传输资 源, 包括: 步骤 1 : 生成第一调度信令, 所述第一调度信令中携带用于指示信令和 / 或反馈传输的资源的信息;
步骤 2: 发送所述第一调度信令。
其中, 所述指示信令和 /或反馈传输的资源的信息中包括起始位置和长 度。
其中, 所述指示信令和 /或反馈传输的资源的信息中包括格式, 所述格式 用于指示资源复用的方式。
其中, 所述资源复用的方式可以是时分复用、 频分复用、 时频复用或者 码分复用。
其中,所述指示信令和 /或反馈传输的资源的信息中包括指示在频谱聚合 模式下该第一调度信令所适用的子信道或子载波。
上述步骤 2之后还包括步骤 3和 4: 步骤 3: 生成第二调度信令, 所述第二调度信令中携带用于分配信令和 / 或反馈传输的资源的信息, 指示为各用户分配的信令和 /或反馈传输的资源; 步骤 4: 发送所述第二调度信令。
其中,所述分配信令和 /或反馈传输的资源的信息中包括一个或者多个用 户标识 STAID, 以及对应的 STA在所述信令和 /或反馈传输的资源中的起始 位置和长度。 其中, 所述 STAID可以用于唯一标识一个 STA。 其中, 所述 STAID也可以是广播 ID标识。 所述广播 ID标识是指, 所 有的 STA共用的 ID标识, 各 STA均可通过所述广播 ID标识接收对应的信 令。
其中, 可以通过指示所述 STA 占用的信令和 /或反馈信道的个数来指示 所述 STA的长度。每个信令和 /或反馈信道的单位长度为 1个 OFDM符号(模 式 1, 即时分复用方式) 或者 1个单位资源块 (模式 2, 即时频复用方式)。 本发明实施例中, 用于信令和 /或反馈传输的资源与用户传输资源独立。 具体地, 本发明实施例中第一调度信令可以如表 6所示, 第二调度信令可以 如表 7所示。 支持图 33和图 34所示的两种传输模式。
为了实现上述资源指示方法,本发明实施例还提供了一种资源指示装置, 包括:
第一封装模块, 用于生成第一调度信令, 所述第一调度信令中携带用于 指示信令和 /或反馈传输的资源的信息; 第一发送模块, 用于发送所述第一调度信令。
其中, 所述指示信令和 /或反馈传输的资源的信息中包括起始位置和长 度。
其中, 所述指示信令和 /或反馈传输的资源的信息中还包括格式, 所述格 式用于指示资源复用的方式。 其中, 所述资源复用的方式可以是时分复用、 频分复用、 时频复用或者 码分复用。
其中,所述指示信令和 /或反馈传输的资源的信息中包括指示在频谱聚合 模式下该第一调度信令所适用的子信道或子载波。
上述资源指示装置还包括:
第二封装模块, 用于生成第二调度信令, 所述第二调度信令中携带用于 分配信令和 /或反馈传输的资源的信息, 指示为各用户分配的信令和 /或反馈 传输的资源;
第二发送模块, 用于发送所述第二调度信令。
其中,所述分配信令和 /或反馈传输的资源的信息中包括一个或者多个用 户标识 STAID, 以及对应的 STA在所述信令和 /或反馈传输的资源中的起始 位置和长度。 其中, 所述 STAID可以用于唯一标识一个 STA。 其中, 所述 STAID也可以是广播 ID标识。
其中, 通过指示所述 STA 占用的信令和 /或反馈信道的个数来指示所述 STA的长度。 每个信令和 /或反馈信道的单位长度为 1个 OFDM符号 (模式 1, 见图 33 ) 或者 1个单位资源块 (模式 2, 见图 34 )。
应该明白,公开的过程中的步骤的特定顺序或层次是示例性方法的实例。 基于设计偏好, 应该理解, 过程中的步骤的特定顺序或层次可以在不脱离本 公开的保护范围的情况下得到重新安排。 所附的方法权利要求以示例性的顺 序给出了各种步骤的要素, 并且不是要限于所述的特定顺序或层次。 在上述的详细描述中, 各种特征一起组合在单个的实施方案中, 以筒化 本公开。 不应该将这种公开方法解释为反映了这样的意图, 即, 所要求保护 的主题的实施方案需要比清楚地在每个权利要求中所陈述的特征更多的特 征。 相反, 如所附的权利要求书所反映的那样, 本发明处于比所公开的单个 实施方案的全部特征少的状态。 因此, 所附的权利要求书特此清楚地被并入 详细描述中, 其中每项权利要求独自作为本发明单独的优选实施方案。
上文的描述包括一个或多个实施例的举例。 当然, 为了描述上述实施例 而描述部件或方法的所有可能的结合是不可能的, 但是本领域普通技术人员 应该认识到, 各个实施例可以做进一步的组合和排列。 因此, 本文中描述的 实施例旨在涵盖落入所附权利要求书的保护范围内的所有这样的改变、 修改 和变型。 此外, 就说明书或权利要求书中使用的术语"包含", 该词的涵盖方 式类似于术语 "包括", 就如同"包括, "在权利要求中用作衔接词所解释的那 样。 此外, 使用在权利要求书的说明书中的任何一个术语"或者"是要表示"非 排它性的或者"。

Claims

权 利 要 求 书
1. 一种资源调度方法, 其特征在于, 包括: 根据传输需求进行资源调度;
配置与调度的资源匹配的帧长非固定的帧结构。
2. 如权利要求 1所述的方法, 其特征在于:
在所述帧结构中至少配置前导序列和系统信息信道; 所述前导序列用于实现同步;
所述系统信息信道用于承载指示帧结构的信息。
3. 如权利要求 2所述的方法, 其特征在于: 当存在上行传输需求时, 根据所述上行传输需求调度上行传输资源, 并 据以在所述帧结构中配置上行传输信道;
当存在下行传输需求时, 根据所述下行传输需求调度下行传输资源, 并 据以在所述帧结构中配置下行传输信道。
4. 如权利要求 3所述的方法, 其特征在于: 所述上行传输需求包括传输上行业务的需求、 传输上行信令的需求和对 下行业务进行反馈的需求中的一个或者多个; 根据所述上行传输需求配置的上行传输信道包括上行业务传输信道、 上 行信令信道和下行业务反馈信道中的一个或者多个。
5. 如权利要求 3所述的方法, 其特征在于: 所述下行传输需求包括传输下行业务的需求、 传输下行信令的需求和对 上行业务进行反馈的需求中的一个或者多个; 根据所述下行传输需求配置的下行传输信道包括下行业务传输信道、 下 行信令信道和上行业务反馈信道中的一个或者多个。
6. 如权利要求 3所述的方法, 其特征在于: 当存在上行传输需求时, 在所述帧结构中配置上行探测信道, 用于站点 STA向中心接入点 CAP发送上行探测信号; 在根据上行传输需求调度上行传输资源时, 在所述上行探测信道上测量 上行探测信号, 据以计算出上行的信道质量信息 CQI, 并结合测算出的上行 的 CQI调度上行传输资源。
7. 如权利要求 3所述的方法, 其特征在于: 当存在上行传输需求时, 在所述帧结构中配置下行探测信道和 CQI反馈 信道, 所述下行探测信道用于 CAP向 STA发送下行探测信号, 所述 CQI反 馈信道用于 STA向 CAP反馈根据下行探测信号测算出的下行的 CQI;
在根据上行传输需求调度上行传输资源时, 基于上下互易性, 根据 STA 反馈的下行的 CQI确定上行的 CQI,结合所述上行的 CQI调度上行传输资源。
8. 如权利要求 3 所述的方法, 其特征在于: 当存在上行传输需求时, 在所述帧结构中配置上行探测信道, 用于 STA 向 CAP发送上行探测信号; 在根据上行传输需求调度上行传输资源时, 在所述上行探测信道上测量 上行探测信号, 据以计算出上行的 CQI和上行的信道状态信息 CSI, 并结合 测算出的上行的 CQI和上行的 CSI调度上行传输资源。
9. 如权利要求 3 所述的方法, 其特征在于: 当存在上行传输需求时, 在所述帧结构中配置下行探测信道、 CQI反馈 信道和 CSI反馈信道, 所述下行探测信道用于 CAP向 STA发送下行探测信 号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测信号测算出的下 行的 CQI; 所述 CSI反馈信道用于 STA向 CAP反馈根据下行探测信号测算 出的下行的 CSI;
在根据上行传输需求调度上行传输资源时, 基于上下互易性, 根据 STA 反馈的下行的 CQI确定上行的 CQI, 以及根据 STA反馈的下行的 CSI确定 上行的 CSI, 并结合上行的 CQI和上行的 CSI调度上行传输资源。
10.如权利要求 3 所述的方法, 其特征在于:
当存在上行传输需求时, 在所述帧结构中配置上行探测信道、 下行探测 信道和 CQI反馈信道, 所述上行探测信道用于站点 STA向中心接入点 CAP 发送上行探测信号,所述下行探测信道用于 CAP向 STA发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测信号测算出的下行的 CQI; 在根据上行传输需求调度上行传输资源时, 在所述上行探测信道上测量 上行探测信号, 据以计算出上行的信道质量信息 CSI, 以及基于上下互易性 根据 STA反馈的下行的 CQI确定上行的 CQI, 并结合上行的 CQI和上行的 CSI调度上行传输资源。
11.如权利要求 3 所述的方法, 其特征在于:
当存在上行传输需求时, 在所述帧结构中配置上行探测信道、 下行探测 信道和 CSI反馈信道, 所述上行探测信道用于站点 STA向中心接入点 CAP 发送上行探测信号,所述下行探测信道用于 CAP向 STA发送下行探测信号, 所述 CSI反馈信道用于 STA向 CAP反馈根据下行探测信号测算出的下行的 CSI; 在根据上行传输需求调度上行传输资源时, 在所述上行探测信道上测量 上行探测信号, 据以计算出上行的信道质量信息 CQI, 以及基于上下互易性 根据 STA反馈的下行的 CSI确定上行的 CSI, 并结合上行的 CQI和上行的 CSI调度上行传输资源。
12.如权利要求 3 所述的方法, 其特征在于: 当存在下行传输需求时, 在所述帧结构中配置上行探测信道, 用于 STA 向 CAP发送上行探测信号; 在根据下行传输需求调度下行传输资源时, 在所述上行探测信道上测量 上行探测信号, 据以计算出上行的 CQI, 基于上下互易性, 确定下行的 CQI, 并结合测算出的下行的 CQI调度下行传输资源。
13.如权利要求 3所述的方法, 其特征在于: 当存在下行传输需求时, 在所述帧结构中配置上行探测信道, 用于 STA 向 CAP发送上行探测信号; 在根据下行传输需求调度下行传输资源时, 在所述上行探测信道上测量 上行探测信号, 据以计算出上行的 CQI和上行的 CSI, 基于上下互易性, 得 到下行的 CQI和下行的 CSI,并结合所述下行的 CQI和下行的 CSI调度下行 传输资源。
14.如权利要求 3所述的方法, 其特征在于:
当存在下行传输需求时, 在所述帧结构中配置下行探测信道和 CQI反馈 信道, 所述下行探测信道用于 CAP向 STA发送下行探测信号, 所述 CQI反 馈信道用于 STA向 CAP反馈根据下行探测信号测算出的下行的 CQI; 在根据下行传输需求调度下行传输资源时,根据 STA反馈的下行的 CQI 进行资源调度。
15.如权利要求 3 所述的方法, 其特征在于:
当存在下行传输需求时, 在所述帧结构中配置下行探测信道、 CQI反馈 信道和 CSI反馈信道, 所述下行探测信道用于 CAP向 STA发送下行探测信 号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测信号测算出的下 行的 CQI; 所述 CSI反馈信道用于 STA向 CAP反馈根据下行探测信号测算 出的下行的 CSI; 在根据下行传输需求调度下行传输资源时,根据 STA反馈的下行的 CQI 和下行的 CSI调度下行传输资源。
16.如权利要求 3 所述的方法, 其特征在于:
当存在下行传输需求时, 在所述帧结构中配置上行探测信道、 下行探测 信道和 CQI反馈信道, 所述上行探测信道用于 STA向 CAP发送上行探测信 号; 所述下行探测信道用于 CAP向 STA发送下行探测信号, 所述 CQI反馈 信道用于 STA向 CAP反馈根据下行探测信号测算出的下行的 CQI;
在根据下行传输需求调度下行传输资源时, 在所述上行探测信道上测量 上行探测信号, 据以计算出上行的 CSI, 基于上下互易性, 确定下行的 CSI, 根据所述下行的 CSI以及 STA反馈的下行的 CQI调度下行传输资源。
17.如权利要求 3所述的方法, 其特征在于, 还包括:
在所述帧结构中配置控制信道, 用于指示传输资源的分配和调度、 及占 用传输资源的信道的传输格式。
18.如权利要求 17所述的方法, 其特征在于: 所述控制信道由调度信令组成,所述描述信息承载于所述调度信令 中。
19.一种资源调度设备, 其特征在于, 包括: 调度模块, 用于根据传输需求进行资源调度;
配置模块, 配置与调度的资源匹配的帧长非固定的帧结构。
20.如权利要求 19所述的设备, 其特征在于: 所述配置模块, 在所述帧结构中至少配置前导序列和系统信息信道; 其中, 所述前导序列用于实现同步; 所述系统信息信道用于承载指示帧 结构的信息。
21.如权利要求 19所述的设备, 其特征在于: 所述配置模块, 根据上行传输需求调度上行传输资源, 并据以在所述帧 结构中配置上行传输信道; 以及根据下行传输需求调度下行传输资源, 并据 以在所述帧结构中配置下行传输信道。
22.如权利要求 21所述的设备, 其特征在于: 所述上行传输需求包括传输上行业务的需求、 传输上行信令的需求和对 下行业务进行反馈的需求中的一个或者多个;
所述配置模块, 配置的上行传输信道中包括上行业务传输信道、 上行信 令信道和下行业务反馈信道中的一个或者多个。
23.如权利要求 21所述的设备, 其特征在于: 所述下行传输需求包括传输下行业务的需求、 传输下行信令的需求和对 上行业务进行反馈的需求中的一个或者多个;
所述配置模块, 配置的下行传输信道中包括下行业务传输信道、 下行信 令信道和上行业务反馈信道中的一个或者多个。
24.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 当存在上行传输需求时, 还在所述帧结构中配置上行探 测信道, 用于站点 STA向中心接入点 CAP发送上行探测信号; 所述调度模块, 在根据上行传输需求调度上行传输资源时, 在所述上行 探测信道上测量上行探测信号, 据以计算出上行的信道质量信息 CQI, 并结 合测算出的上行的 CQI调度上行传输资源。
25.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 当存在上行传输需求时, 还在所述帧结构中配置下行探 测信道和 CQI反馈信道, 所述下行探测信道用于 CAP向 STA发送下行探测 信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测信号测算出的 下行的 CQI; 所述调度模块, 在根据上行传输需求调度上行传输资源时, 基于上下互 易性, 根据 STA反馈的下行的 CQI确定上行的 CQI, 结合所述上行的 CQI 调度上行传输资源。
26.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 当存在上行传输需求时, 还在所述帧结构中配置上行探 测信道, 用于 STA向 CAP发送上行探测信号; 所述调度模块, 在根据上行传输需求调度上行传输资源时, 在所述上行 探测信道上测量上行探测信号,据以计算出上行的 CQI和上行的信道状态信 息 CSI, 结合所述上行的 CQI和上行的 CSI调度上行传输资源。
27.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 当存在上行传输需求时, 还在所述帧结构中配置下行探 测信道、 CQI反馈信道和 CSI反馈信道,所述下行探测信道用于 CAP向 STA 发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测 信号测算出的下行的 CQI; 所述 CSI反馈信道用于 STA向 CAP反馈才艮据下 行探测信号测算出的下行的 CSI; 所述调度模块, 在根据上行传输需求调度上行传输资源时, 基于上下互 易性, 根据 STA反馈的下行的 CQI确定上行的 CQI, 以及才艮据 STA反馈的 下行的 CSI确定上行的 CSI, 结合所述上行的 CQI和上行的 CSI调度上行传 输资源。
28.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 当存在上行传输需求时, 还在所述帧结构中配置上行探 测信道、 下行探测信道和 CQI 反馈信道, 所述上行探测信道用于站点 STA 向中心接入点 CAP发送上行探测信号, 所述下行探测信道用于 CAP向 STA 发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测 信号测算出的下行的 CQI;
所述调度模块, 在根据上行传输需求调度上行传输资源时, 在所述上行 探测信道上测量上行探测信号, 据以计算出上行的信道质量信息 CSI, 以及 基于上下互易性艮据 STA反馈的下行的 CQI确定上行的 CQI, 结合所述上 行的 CQI和上行的 CSI调度上行传输资源。
29.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 当存在上行传输需求时, 还在所述帧结构中配置上行探 测信道、 下行探测信道和 CSI反馈信道, 所述上行探测信道用于站点 STA向 中心接入点 CAP发送上行探测信号, 所述下行探测信道用于 CAP向 STA发 送下行探测信号, 所述 CSI反馈信道用于 STA向 CAP反馈才艮据下行探测信 号测算出的下行的 CSI;
所述调度模块, 在根据上行传输需求调度上行传输资源时, 在所述上行 探测信道上测量上行探测信号, 据以计算出上行的信道质量信息 CQI, 以及 基于上下互易性, 根据 STA反馈的下行的 CSI确定上行的 CSI, 结合所述上 行的 CQI和上行的 CSI调度上行传输资源。
30.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 当存在下行传输需求时, 还在所述帧结构中配置上行探 测信道, 用于 STA向 CAP发送上行探测信号; 所述调度模块, 在根据下行传输需求调度下行传输资源时, 在所述上行 探测信道上测量上行探测信号, 据以计算出上行的 CQI, 基于上下互易性, 确定下行的 CQI, 结合所述下行的 CQI调度下行传输资源。
31.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 当存在下行传输需求时, 还在所述帧结构中配置上行探 测信道, 用于 STA向 CAP发送上行探测信号; 所述调度模块, 在根据下行传输需求调度下行传输资源时, 在所述上行 探测信道上测量上行探测信号, 据以计算出上行的 CQI和上行的 CSI, 基于 上下互易性, 确定下行的 CQI和下行的 CSI, 结合所述下行的 CQI和下行的 CSI调度下行传输资源。
32.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 当存在下行传输需求时, 还在所述帧结构中配置下行探 测信道和 CQI反馈信道, 所述下行探测信道用于 CAP向 STA发送下行探测 信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测信号测算出的 下行的 CQI; 所述调度模块, 在根据下行传输需求调度下行传输资源时, 结合 STA反 馈的下行的 CQI进行资源调度。
33.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 当存在下行传输需求时, 还在所述帧结构中配置下行探 测信道、 CQI反馈信道和 CSI反馈信道,所述下行探测信道用于 CAP向 STA 发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测 信号测算出的下行的 CQI; 所述 CSI反馈信道用于 STA向 CAP反馈才艮据下 行探测信号测算出的下行的 CSI; 所述调度模块, 在根据下行传输需求调度下行传输资源时, 结合 STA反 馈的下行的 CQI和下行的 CSI调度下行传输资源。
34.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 当存在下行传输需求时, 还在所述帧结构中配置上行探 测信道、下行探测信道和 CQI反馈信道,所述上行探测信道用于 STA向 CAP 发送上行探测信号; 所述下行探测信道用于 CAP向 STA发送下行探测信号, 所述 CQI反馈信道用于 STA向 CAP反馈根据下行探测信号测算出的下行的 CQI; 所述调度模块, 在根据下行传输需求调度下行传输资源时, 在所述上行 探测信道上测量上行探测信号, 据以计算出上行的 CSI, 基于上下互易性, 确定下行的 CSI,根据所述下行的 CSI以及 STA反馈的下行的 CQI调度下行 传输资源。
35.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 还在所述帧结构中配置上行调度请求信道, 用于 STA发 送上行调度请求, 以请求用于向 CAP上报上行传输需求的传输资源。
36.如权利要求 35所述的设备, 其特征在于: 所述调度模块, 为 STA的上行调度请求信道调度独占的上行传输资源, 用于 STA以非竟争方式发起上行调度; 或者为 STA的上行调度请求信道调 度共享的上行传输资源, 用于 STA以竟争方式发起上行调度。
37.如权利要求 21所述的设备, 其特征在于: 所述配置模块, 还在所述帧结构中配置随机接入信道, 用于 STA 接入 CAP, 与 CAP建立关联关系。
38.如权利要求 21所述的设备, 其特征在于:
所述配置模块, 还在所述帧结构中配置控制信道, 用于指示传输资源的 分配和调度、 及占用传输资源的信道的传输格式。
39.如权利要求 38所述的设备, 其特征在于: 所述控制信道由调度信令组成,所述描述信息承载于所述调度信令 中。
40.如权利要求 19所述的设备, 其特征在于: 所述调度模块, 釆用时分、 频分、 码分以及空分中的一种或者多种组合 的资源分配方式进行资源调度。
41.一种资源指示方法, 其特征在于, 包括: 生成调度信令,所述调度信令中携带指示用户资源组内用于信令和 /或反 馈传输的资源的指示信息; 所述用户资源组用于用户业务数据传输;
发送所述调度信令。
42.如权利要求 41所述的方法, 其特征在于: 所述调度信令中还携带用于指示用户资源组的起始位置和长度的指示信 息。
43.如权利要求 41所述的方法, 其特征在于: 所述调度信令, 还指示按照预设的信令和 /或反馈传输格式传输。
44.一种数据发送方法, 其特征在于, 包括: 接收调度信令,所述调度信令中携带指示用户资源组内用于信令和 /或反 馈传输的资源的指示信息; 所述用户资源组用于用户业务数据传输;
根据所述指示信息,在用户资源组中相应的位置上传输信令和 /或反馈消 息。
45.如权利要求 44所述的方法, 其特征在于: 按照预设的信令和 /或反馈传输格式传输。
46.—种资源指示装置, 其特征在于, 包括: 封装模块, 用于生成调度信令, 所述调度信令中携带指示用户资源组内 用于信令和 /或反馈传输的资源的指示信息; 所述用户资源组用于用户业务数 据传输;
发送模块, 用于发送所述调度信令。
47.如权利要求 46所述的装置, 其特征在于: 所述调度信令中还携带用于指示用户资源组的起始位置和长度的指示信 息。
48.如权利要求 46所述的装置, 其特征在于: 所述调度信令, 还指示按照预设的信令和 /或反馈传输格式传输。
49.一种数据发送装置, 其特征在于, 包括: 接收模块, 用于接收调度信令, 所述调度信令中携带指示用户资源组内 用于信令和 /或反馈传输的资源的指示信息; 所述用户资源组用于用户业务数 据传输;
发送模块, 用于根据所述指示信息, 在用户资源组中相应的位置上传输 信令和 /或反馈消息。
50.如权利要求 49所述的装置, 其特征在于: 所述发送模块, 用于按照预设的信令和 /或反馈传输格式传输。
51.一种资源指示方法, 其特征在于, 包括: 生成第一调度信令,所述第一调度信令中携带用于指示信令和 /或反馈传 输的资源的信息;
发送所述第一调度信令。
52.如权利要求 51所述的方法, 其特征在于: 所述指示信令和 /或反馈传输的资源的信息中包括起始位置和长度。
53.如权利要求 51所述的方法, 其特征在于: 所述指示信令和 /或反馈传输的资源的信息中包括格式,所述格式用于指 示资源复用的方式。
54.如权利要求 53所述的方法, 其特征在于: 所述资源复用的方式是时分复用、 频分复用、 时频复用或者码分复用。
55.如权利要求 51所述的方法, 其特征在于: 所述指示信令和 /或反馈传输的资源的信息中包括指示在频谱聚合模式 下该第一调度信令所适用的子信道或子载波。
56.如权利要求 51所述的方法, 其特征在于, 还包括:
生成第二调度信令,所述第二调度信令中携带用于分配信令和 /或反馈传 输的资源的信息, 指示为各用户分配的信令和 /或反馈传输的资源; 发送所述第二调度信令。
57.如权利要求 56所述的方法, 其特征在于: 所述分配信令和 /或反馈传输的资源的信息中包括一个或者多个用户标 识 STAID, 以及对应的 STA在所述信令和 /或反馈传输的资源中的起始位置 和长度。
58.如权利要求 57所述的方法, 其特征在于: 所述 STAID用于唯一标识一个 STA。
59.如权利要求 57所述的方法, 其特征在于: 所述 STAID是广播 ID标识。
60.如权利要求 57所述的方法, 其特征在于: 通过指示所述 STA占用的信令和 /或反馈信道的个数来指示所述 STA的 长度。
61.一种资源指示装置, 其特征在于, 包括: 第一封装模块, 用于生成第一调度信令, 所述第一调度信令中携带用于 指示信令和 /或反馈传输的资源的信息; 第一发送模块, 用于发送所述第一调度信令。
62.如权利要求 61所述的装置, 其特征在于: 所述指示信令和 /或反馈传输的资源的信息中包括起始位置和长度。
63.如权利要求 61所述的装置, 其特征在于: 所述指示信令和 /或反馈传输的资源的信息中包括格式,所述格式用于指 示资源复用的方式。
64.如权利要求 63所述的装置, 其特征在于: 所述资源复用的方式是时分复用、 频分复用、 时频复用或者码分复用。
65.如权利要求 61所述的装置, 其特征在于: 所述指示信令和 /或反馈传输的资源的信息中包括指示在频谱聚合模式 下该第一调度信令所适用的子信道或子载波。
66.如权利要求 61所述的装置, 其特征在于, 还包括:
第二封装模块, 用于生成第二调度信令, 所述第二调度信令中携带用于 分配信令和 /或反馈传输的资源的信息, 指示为各用户分配的信令和 /或反馈 传输的资源;
第二发送模块, 用于发送所述第二调度信令。
67.如权利要求 66所述的装置, 其特征在于: 所述分配信令和 /或反馈传输的资源的信息中包括一个或者多个用户标 识 STAID, 以及对应的 STA在所述信令和 /或反馈传输的资源中的起始位置 和长度。
68.如权利要求 67所述的装置, 其特征在于: 所述 STAID用于唯一标识一个 STA。
69.如权利要求 67所述的装置, 其特征在于: 所述 STAID是广播 ID标识。
70.如权利要求 67所述的装置, 其特征在于: 通过指示所述 STA占用的信令和 /或反馈信道的个数来指示所述 STA的 长度。
PCT/CN2012/072773 2011-03-25 2012-03-22 一种资源调度方法和设备 WO2012130071A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201280012812.7A CN103621169A (zh) 2011-03-25 2012-03-22 一种资源调度方法和设备
KR1020137028292A KR20140031239A (ko) 2011-03-25 2012-03-22 리소스 스케쥴링 방법과 설비
JP2014501415A JP2014515208A (ja) 2011-03-25 2012-03-22 リソーススケジューリング方法及び機器
CN201811269770.0A CN109587808B (zh) 2011-03-25 2012-03-22 一种无线通信资源调度方法及装置
US14/007,598 US9351315B2 (en) 2011-03-25 2012-03-22 Resource scheduling method and device
EP12762876.6A EP2690919A4 (en) 2011-03-25 2012-03-22 DEVICE AND METHOD FOR PROGRAMMING RESOURCES
US15/130,384 US9999068B2 (en) 2011-03-25 2016-04-15 Resource scheduling method and device

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201100745985 2011-03-25
CN201110074598.5 2011-03-25
CN201100806372 2011-03-31
CN201110080637.2 2011-03-31
CN201110130194 2011-05-19
CN201110130194.3 2011-05-19
CN201200120305 2012-01-16
CN201210012030.5 2012-01-16
CN201200357838 2012-02-16
CN201210035783.8 2012-02-16
CN201210041650 2012-02-21
CN201210041655 2012-02-21
CN201210041655.4 2012-02-21
CN201210041650.1 2012-02-21
CN201210041651 2012-02-21
CN201210041651.6 2012-02-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/007,598 A-371-Of-International US9351315B2 (en) 2011-03-25 2012-03-22 Resource scheduling method and device
US15/130,384 Continuation US9999068B2 (en) 2011-03-25 2016-04-15 Resource scheduling method and device

Publications (1)

Publication Number Publication Date
WO2012130071A1 true WO2012130071A1 (zh) 2012-10-04

Family

ID=50187543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072773 WO2012130071A1 (zh) 2011-03-25 2012-03-22 一种资源调度方法和设备

Country Status (2)

Country Link
US (1) US9351315B2 (zh)
WO (1) WO2012130071A1 (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269502A1 (en) * 2013-03-15 2014-09-18 Antonio Forenza Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
CN104904300A (zh) * 2013-01-15 2015-09-09 华为技术有限公司 无线通信方法、用户设备和网络侧设备
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
CN108401277A (zh) * 2018-01-19 2018-08-14 京信通信系统(中国)有限公司 无线网络接入的方法及装置、终端设备
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US10243623B2 (en) 2004-07-30 2019-03-26 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10320455B2 (en) 2004-04-02 2019-06-11 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10333604B2 (en) 2004-04-02 2019-06-25 Rearden, Llc System and method for distributed antenna wireless communications
US10349417B2 (en) 2004-04-02 2019-07-09 Rearden, Llc System and methods to compensate for doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10966242B2 (en) 2014-03-21 2021-03-30 Qualcomm Incorporated Techniques for configuring preamble and overhead signals for transmissions in an unlicensed radio frequency spectrum band
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10187133B2 (en) 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
CN102300158B (zh) * 2010-06-28 2015-03-11 中国移动通信集团公司 时分双工系统中获知载波信息及载波信息指示方法和设备
CN104066145B (zh) * 2013-03-22 2017-08-29 华为技术有限公司 Ofdma竞争方法及接入点
US10313913B2 (en) * 2013-05-09 2019-06-04 Qualcomm Incorporated Overload control and supervision for wireless devices
CN105052222B (zh) 2013-08-23 2019-06-21 华为技术有限公司 一种用于传输上行信息的方法及装置
CN104754748B (zh) * 2013-12-27 2019-02-26 电信科学技术研究院 一种d2d资源分配方法、数据传输方法及装置
US9445427B2 (en) * 2014-04-30 2016-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Downlink resource allocation in OFDM networks
CN107079467B (zh) 2014-12-18 2020-07-07 华为技术有限公司 一种获取站点设备请求的方法、接入点设备及站点设备
WO2017010825A1 (ko) * 2015-07-14 2017-01-19 엘지전자 주식회사 단말이 상향링크 스케줄링 요청을 수행하는 방법 및 장치
US10045349B2 (en) 2015-07-16 2018-08-07 Ali Atefi Apparatuses, methods, and computer-readable medium for communication in a wireless local area network
WO2017011744A1 (en) 2015-07-16 2017-01-19 Atefi Ali Apparatuses, methods, and computer-readable medium for communication in a wireless local area network
JP2018527768A (ja) * 2015-07-17 2018-09-20 インテル アイピー コーポレイション セルラIoTのためのNB−PRACH送信及び受信技術(狭帯域物理ランダムアクセスチャネル技術)
EP3796732B1 (en) * 2016-05-13 2023-07-26 Sony Group Corporation Communications device and infrastructure equipment
US10148356B2 (en) * 2016-09-16 2018-12-04 International Business Machines Corporation Data transfer over bi-directional links leveraging counter-propagating back channel for low-latency responses
US10148386B2 (en) 2016-09-16 2018-12-04 International Business Machines Corporation Multichannel optical transceiver for matching data traffic classes to channel numbers
WO2018101979A2 (en) * 2016-11-30 2018-06-07 Intel IP Corporation Apparatus, system and method of location measurement report (lmr) feedback
GB2565344B (en) * 2017-08-11 2022-05-04 Tcl Communication Ltd Slot aggregation
US10432330B2 (en) 2017-08-15 2019-10-01 At&T Intellectual Property I, L.P. Base station wireless channel sounding
US10834689B2 (en) 2017-08-15 2020-11-10 At&T Intellectual Property I, L.P. Base station wireless channel sounding
US10638340B2 (en) 2017-08-15 2020-04-28 At&T Intellectual Property I, L.P. Base station wireless channel sounding
US11343124B2 (en) 2017-08-15 2022-05-24 At&T Intellectual Property I, L.P. Base station wireless channel sounding
US10091662B1 (en) 2017-10-13 2018-10-02 At&T Intellectual Property I, L.P. Customer premises equipment deployment in beamformed wireless communication systems
US11032721B2 (en) 2017-10-13 2021-06-08 At&T Intellectual Property I, L.P. Minimization of drive tests in beamformed wireless communication systems
CN108513359B (zh) * 2018-02-09 2022-06-24 京信网络系统股份有限公司 一种空口资源分配方法和装置
CN112292904B (zh) * 2018-06-21 2022-12-13 华为技术有限公司 一种通信的方法、基站及终端
US11051206B2 (en) 2018-10-31 2021-06-29 Hewlett Packard Enterprise Development Lp Wi-fi optimization for untethered multi-user virtual reality
US10846042B2 (en) 2018-10-31 2020-11-24 Hewlett Packard Enterprise Development Lp Adaptive rendering for untethered multi-user virtual reality
US11082265B2 (en) 2019-07-31 2021-08-03 At&T Intellectual Property I, L.P. Time synchronization of mobile channel sounding system
US11224046B2 (en) 2019-11-28 2022-01-11 Ali Atefi Apparatuses, methods, and computer-readable medium for communication in a wireless local area network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047432A (zh) * 2006-06-23 2007-10-03 华为技术有限公司 一种分配上行资源的方法
CN101150564A (zh) * 2006-09-19 2008-03-26 华为技术有限公司 划分帧结构的方法及其实现的系统和一种域调度的方法
CN101924721A (zh) * 2009-06-10 2010-12-22 清华大学 确定下行多址系统传输模式的方法及发射端、接收端装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19751073A1 (de) * 1997-11-18 1999-06-02 Nokia Mobile Phones Ltd Verfahren zum Steuern der Sende- und Empfangsaktivitäten eines lokalen Radiokommunikationssystems
GB2377596B (en) * 2001-07-11 2004-09-01 Cambridge Broadband Ltd Communications protocol
US8089911B2 (en) 2004-05-01 2012-01-03 Neocific, Inc. Methods and apparatus for cellular broadcasting and communication system
KR20060046335A (ko) * 2004-06-01 2006-05-17 삼성전자주식회사 산술코딩을 이용한 채널 상태 정보 피드백을 위한 장치 및방법
CN101204016B (zh) 2005-05-23 2013-02-13 思科技术公司 用于干扰减少的方法和系统
KR100789756B1 (ko) 2005-12-09 2008-01-02 한국전자통신연구원 가변 프레임 길이를 이용한 전송 포맷 판정 장치 및 그방법과 그를 이용한 복호 방법
CN101047421B (zh) * 2006-04-28 2011-12-07 华为技术有限公司 利用中继站实现移动通信的装置及方法
US20080075032A1 (en) 2006-09-22 2008-03-27 Krishna Balachandran Method of resource allocation in a wireless communication system
KR101387486B1 (ko) * 2007-03-14 2014-04-21 엘지전자 주식회사 이종 모드 지원 무선 데이터 통신 방법
GB0721763D0 (en) * 2007-11-06 2007-12-19 Fujitsu Ltd Frame structure for a wireless communication system
KR101720475B1 (ko) * 2007-11-09 2017-03-27 지티이 (유에스에이) 인크. 통신 시스템용의 유연한 ofdm/ofdma 프레임 구조
US8315330B2 (en) * 2007-12-20 2012-11-20 Lg Electronics Inc. Method of transmitting data in wireless communication system
WO2009084925A1 (en) * 2008-01-03 2009-07-09 Lg Electronics Inc. Frame for flexibly supporting heterogeneous modes and tdd/fdd modes, and method for transmitting signals using the same
US8326324B2 (en) 2008-01-08 2012-12-04 Wi-Lan, Inc. Systems and methods for location positioning within radio access systems
US8159979B2 (en) * 2008-01-11 2012-04-17 Lg Electronics Inc. Enhanced TDD frame structure
US8483152B1 (en) * 2009-01-16 2013-07-09 Entropic Communications, Inc. Method and apparatus for use of OFDMA in a communication network
US8982750B2 (en) 2009-01-16 2015-03-17 Qualcomm Incorporated Method and apparatus for transmitting overload indicator over the air
KR101495247B1 (ko) 2009-03-20 2015-02-24 삼성전자주식회사 펨토 기지국들을 포함하는 통신 시스템을 위한 전송 프레임및 자원 할당 방법
KR20100113435A (ko) 2009-04-13 2010-10-21 삼성전자주식회사 광대역 무선통신 시스템에서 시스템 정보 블록 송신 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047432A (zh) * 2006-06-23 2007-10-03 华为技术有限公司 一种分配上行资源的方法
CN101150564A (zh) * 2006-09-19 2008-03-26 华为技术有限公司 划分帧结构的方法及其实现的系统和一种域调度的方法
CN101924721A (zh) * 2009-06-10 2010-12-22 清华大学 确定下行多址系统传输模式的方法及发射端、接收端装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690919A4 *

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US11923931B2 (en) 2004-04-02 2024-03-05 Rearden, Llc System and method for distributed antenna wireless communications
US11646773B2 (en) 2004-04-02 2023-05-09 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11196467B2 (en) 2004-04-02 2021-12-07 Rearden, Llc System and method for distributed antenna wireless communications
US11190246B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US11190247B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US11070258B2 (en) 2004-04-02 2021-07-20 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10320455B2 (en) 2004-04-02 2019-06-11 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10333604B2 (en) 2004-04-02 2019-06-25 Rearden, Llc System and method for distributed antenna wireless communications
US10349417B2 (en) 2004-04-02 2019-07-09 Rearden, Llc System and methods to compensate for doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10243623B2 (en) 2004-07-30 2019-03-26 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US10727907B2 (en) 2004-07-30 2020-07-28 Rearden, Llc Systems and methods to enhance spatial diversity in distributed input distributed output wireless systems
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11818604B2 (en) 2012-11-26 2023-11-14 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
CN104904300A (zh) * 2013-01-15 2015-09-09 华为技术有限公司 无线通信方法、用户设备和网络侧设备
US9980283B2 (en) * 2013-01-15 2018-05-22 Huawei Technologies Co., Ltd. Radio communication method, network side device and user equipment
US20150319779A1 (en) * 2013-01-15 2015-11-05 Huawei Technologies Co., Ltd. Radio communication method, network side device and user equipment
US10848225B2 (en) 2013-03-12 2020-11-24 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11451281B2 (en) 2013-03-12 2022-09-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11901992B2 (en) 2013-03-12 2024-02-13 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
TWI695597B (zh) * 2013-03-15 2020-06-01 美商李爾登公司 於分佈式輸入及分佈式輸出之無線通信中應用頻道互易以用於射頻校準之系統及方法
US10547358B2 (en) * 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11581924B2 (en) 2013-03-15 2023-02-14 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
CN105052176B (zh) * 2013-03-15 2020-08-04 李尔登公司 分布式无线通信中利用信道互易性的射频校准系统和方法
TWI758719B (zh) * 2013-03-15 2022-03-21 美商李爾登公司 於分佈式輸入及分佈式輸出之無線通信中應用頻道互易以用於射頻校準之系統
CN105052176A (zh) * 2013-03-15 2015-11-11 李尔登公司 分布式输入分布式输出无线通信中用于利用信道互易性的射频校准的系统和方法
US11146313B2 (en) 2013-03-15 2021-10-12 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US20140269502A1 (en) * 2013-03-15 2014-09-18 Antonio Forenza Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US10966242B2 (en) 2014-03-21 2021-03-30 Qualcomm Incorporated Techniques for configuring preamble and overhead signals for transmissions in an unlicensed radio frequency spectrum band
US11337246B2 (en) 2014-03-21 2022-05-17 Qualcomm Incorporated Techniques for configuring preamble and overhead signals for transmissions in an unlicensed radio frequency spectrum band
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
CN108401277A (zh) * 2018-01-19 2018-08-14 京信通信系统(中国)有限公司 无线网络接入的方法及装置、终端设备
CN108401277B (zh) * 2018-01-19 2020-07-17 京信通信系统(中国)有限公司 无线网络接入的方法及装置、终端设备

Also Published As

Publication number Publication date
US20140064206A1 (en) 2014-03-06
US9351315B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
WO2012130071A1 (zh) 一种资源调度方法和设备
CN109587808B (zh) 一种无线通信资源调度方法及装置
WO2012130073A1 (zh) 用于无线通信的装置
CN103430608B (zh) 用于无线通信的装置
CA2963228C (en) Data transmission method in wireless communication system and device therefor
EP3316616B1 (en) Wlan channel measurement method and station
CN103124433A (zh) 用于无线通信的装置
WO2015190698A1 (ko) 프레임을 수신하는 방법 및 장치
GB2596241A (en) Data transmission method in wireless communication system, and apparatus therefor
KR20130003030A (ko) 다중-사용자 송신들을 위한 순차적 ack
JP2015511077A (ja) Wlanシステムにおけるマルチユーザ並列チャネルアクセス
CN103430610A (zh) 一种调度方法、网络设备和终端设备
EP3391700B1 (en) Aparatuses and methods for indicating periodic allocations
WO2012130076A1 (zh) 一种调度方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014501415

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012762876

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137028292

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14007598

Country of ref document: US