WO2012130001A1 - 一种光功率调测方法、装置及系统 - Google Patents

一种光功率调测方法、装置及系统 Download PDF

Info

Publication number
WO2012130001A1
WO2012130001A1 PCT/CN2012/071428 CN2012071428W WO2012130001A1 WO 2012130001 A1 WO2012130001 A1 WO 2012130001A1 CN 2012071428 W CN2012071428 W CN 2012071428W WO 2012130001 A1 WO2012130001 A1 WO 2012130001A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
nominal
nodes
optical power
target
Prior art date
Application number
PCT/CN2012/071428
Other languages
English (en)
French (fr)
Inventor
石礌
韩建蕊
徐明明
谭琳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to RU2013143627/07A priority Critical patent/RU2013143627A/ru
Priority to EP12763486.3A priority patent/EP2662995A4/en
Publication of WO2012130001A1 publication Critical patent/WO2012130001A1/zh
Priority to US14/040,112 priority patent/US20140029937A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2933Signal power control considering the whole optical path
    • H04B10/2939Network aspects

Definitions

  • the present invention relates to the field of optical networks, and in particular, to an optical power measurement method, apparatus, and system. Background technique
  • a wavelength division network is an optical network that uses the principle of wavelength division multiplexing (WND) transmission.
  • Wavelength division multiplexing transmission is to combine two or more optical carrier signals of different wavelengths (carrying various kinds of information) at the transmitting end via a multiplexer (also called a multiplexer) and coupled to the optical line.
  • a technique for transmitting in the same fiber; at the receiving end, a demultiplexer (also known as a demultiplexer or demultiplexer) separates optical carriers of various wavelengths and then further processes them by an optical receiver. To restore the original signal.
  • This technique of simultaneously transmitting two or many different wavelengths of optical signals in the same fiber is called wavelength division multiplexing.
  • the quality of the transmitted signal obtained by the receiving end of the WDM network is restricted by the optical power of the transmitting end.
  • the optical power of the transmitting end is adjusted to make the receiving end obtain better service performance.
  • the service is detected at the receiving end.
  • the bit error rate (BER) value the smaller the BER value of each service, and the BER values of each service tend to be consistent, indicating that the receiving end obtains a relatively average transmission signal quality.
  • the nominal degradation degree of the signal-to-noise ratio (OSNR) between the same nodes is consistent, so after the optical power is adjusted at the transmitting end, each service is performed.
  • the degree of target degradation between the same nodes is also consistent. but Yes, for services with a larger transmission granularity and transmission distance, the BER value obtained at the receiving end is larger.
  • the optical power measurement device of the prior art does not consider the granularity and the transmission distance of different services. Therefore, after the optical power is adjusted, the quality of the transmission signals obtained at the receiving end is largely different. Summary of the invention
  • the embodiment of the invention provides an optical power debugging method, which can average the transmission signal quality of the receiving end.
  • An optical power modulation method comprising:
  • the target power adjustment value of each service at the transmitting end node is sent to the optical power adjusting unit on the transmitting end node, and the optical power is adjusted for each service.
  • Embodiments of the present invention provide an optical power measurement apparatus capable of averaging the quality of a transmission signal at a receiving end.
  • An optical power measuring device comprising:
  • a signal-to-noise ratio (SNR) OSNR degradation coefficient calculation unit configured to calculate a corresponding degradation coefficient of each service according to a characteristic of the service
  • the damage model calculation unit is configured to calculate a nominal signal to noise ratio output between the nodes according to a nominal signal to noise ratio input and a nominal power input between the nodes;
  • An inter-node OSNR nominal degradation degree calculation unit is configured to calculate a nominal degradation degree of OSNR between nodes according to a nominal signal to noise ratio input between nodes and a nominal signal to noise ratio output between nodes;
  • the adjustment value calculation unit is configured to calculate a target deterioration degree of each service between the nodes according to the corresponding degradation coefficient of each service and the nominal degradation degree of the inter-node OSNR; and calculate each service according to the target deterioration degree of each service in the transmission The target optical power adjustment value on the end node;
  • the sending unit is configured to send the target power adjustment value of each service on the sending end node to the optical power adjusting unit on the sending end node, and perform optical power adjustment on each service.
  • Embodiments of the present invention provide an optical power commissioning system capable of averaging the quality of a transmission signal at a receiving end.
  • An optical power commissioning system comprising: an optical power commissioning device and a transmitting end node connected to the optical power detecting device;
  • the optical power commissioning device is configured to calculate a corresponding degradation coefficient of each service according to the characteristics of the service; calculate a nominal signal to noise ratio output between the nodes according to a nominal signal to noise ratio input and a nominal power input between the nodes; The nominal signal-to-noise ratio input and output, calculate the nominal degradation degree of OSNR between nodes; calculate the target degradation degree of each service between nodes according to the corresponding degradation coefficient of each service and the nominal degradation degree of OSNR between nodes; Calculating the target optical power adjustment value of each service on the transmitting end node according to the target deterioration degree of each service;
  • the transmitting end node adjusts the optical power of the service on the transmitting end node according to the target optical power adjustment value calculated by the optical power debugging device.
  • the key to the embodiment of the present invention is the addition of the OSNR degradation coefficient calculation unit in the optical power commissioning device, that is, considering different services having different characteristics, such as granularity and transmission distance, quality of service (Qos), etc.
  • the OSNR degradation coefficient calculation unit When the granularity and the transmission distance are small, the service with a short distance and a small granularity is subjected to the OSNR degradation coefficient calculation unit, and a large degradation coefficient is obtained, thereby increasing the target deterioration degree of the service in the adjustment value calculation unit; Big business
  • the OSNR degradation coefficient calculation unit After the OSNR degradation coefficient calculation unit, a smaller degradation coefficient is obtained, thereby lowering the target deterioration degree of the service.
  • the degree of deterioration of the service with a short distance and a small granularity is relatively large, and the degree of deterioration of the service with a long distance and a large granularity is relatively small, so that each service is obtained at the receiving end.
  • a smaller BER value and each BER value tends to be consistent, It shows that the receiving end obtains a relatively average transmission signal quality of each service.
  • Figure 1 is a networking diagram of a WDM network in which three services of different granularities and different transmission distances are transmitted in the same optical fiber.
  • FIG. 2 is a schematic diagram of an optical power measurement apparatus according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of N optical nodes between two service nodes in AB.
  • FIG. 4 is a schematic structural diagram of an optical power debugging system according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
  • Figure 1 is a networking diagram of a WDM network in which three services of different granularities and different transmission distances are transmitted in the same optical fiber.
  • the granularity of service 1 and service 2 is 10G (Gbits/s, gigabits per second), the granularity of service 3 is 40G, the transmission distance of service 1 is short, and the transmission distance from node A to node B and services 2 and 3. Longer, from node A to node C.
  • the three services represent three optical signals of different granularity and different transmission distances.
  • the measurement of optical power is generally segmented, that is, first adjust point A to node B, and then adjust point B to node C.
  • the optical power debugging device of the embodiment of the present invention is as shown in FIG. 2, and includes:
  • the OSNR degradation coefficient calculation unit 201 is configured to calculate, according to the characteristics of the service, a degradation coefficient corresponding to each service.
  • the characteristics of the service include, but are not limited to, the granularity and transmission distance of the service, and the quality of service Qos.
  • the granularity of the service or the size of the transmission distance value is inversely proportional to the value of the degradation coefficient calculated by the OSNR degradation coefficient calculation unit; the size of the quality of service parameter of the service, and the degradation coefficient calculated by the OSNR degradation coefficient calculation unit The value is inversely proportional.
  • the damage model calculation unit 202 is configured to perform nominal signal noise between nodes according to the node acquired from the transmitting end node Calculate the nominal signal-to-noise ratio output between the nodes compared to the input and nominal power inputs;
  • the inter-node OSNR nominal degradation degree calculation unit 203 is configured to calculate between the nodes according to the nominal signal to noise ratio input between the nodes acquired from the transmitting end node and the nominal signal to noise ratio output between the nodes acquired from the damage model calculating unit.
  • OSNRin and OSNRout are the nominal SNR input and output between nodes, respectively, and calculate the nominal degradation of OSNR between nodes.
  • the adjustment value calculation unit 204 is configured to calculate a target degradation degree of each service between the nodes according to the corresponding degradation coefficient of each service and the nominal degradation degree of the inter-node OSNR; and calculate each service according to the target degradation degree of each service between the nodes.
  • the target optical power adjustment value on the transmitting end node; in the prior art, the nominal degradation degree of each service between the nodes is the same as the target degradation degree, and the deterioration coefficient is added in the embodiment of the present invention, according to formula (3) : Target deterioration degree of the i-th service nominal deterioration degree X deterioration coefficient, and the target deterioration degree of each service between nodes is calculated.
  • the OSNR deterioration degree ⁇ ⁇ , where
  • the OSNR degradation degree is the target deterioration degree of each service between nodes, and OSNRin is the nominal signal-to-noise ratio input between nodes, and the target signal-to-noise ratio output between nodes is calculated; according to formula (1):
  • OSNRout -101og ⁇ 10" + 10 ⁇ ⁇ , where OSNRout is the target SNR output between nodes, OSNRin is the nominal SNR input between nodes, NF is the noise figure of OA on the transmitting node, h is Planck constant, V is the frequency of light, and Wt is the noise bandwidth. Calculate the target optical power adjustment value Pin of each service at the transmitting end node.
  • the sending unit 205 is configured to send the target power adjustment value of each service on the sending end node to the optical power adjusting unit on the sending end node, and perform optical power adjustment on each service; where the service is transmitted between nodes.
  • the nodes are between two adjacent service nodes, and the former one of the two adjacent nodes is a sender node, and the service node refers to a scenario where services are up and down.
  • the damage model calculation unit is introduced.
  • the unit can calculate the optical power output and signal-to-noise ratio output of the receiving end service when the optical power input and signal-to-noise ratio input of the input transmitting end service are input.
  • the establishment of a specific model requires a large amount of information.
  • the more detailed the information the more accurate the model is, that is, the closer the output is to the actual value according to the input.
  • the information needs to consider not only the dispersion slope, attenuation, nonlinear coefficient, effective area of the optical fiber, but also the difference of the single board, the noise figure of the light release, and various signal-to-noise ratio costs during the transmission of the optical fiber.
  • By modeling the mutual influence relationship between the wavelengths in the light distribution and the signal-to-noise ratio of the link it is possible to accurately calculate the light of the receiving end service in the case of inputting the optical power input of the transmitting end service and the signal-to-noise ratio input. Power output and signal to noise ratio output. Therefore, the establishment of the damage model calculation unit is also a process of continuous improvement with practice. For example, the assumption is based on the formula (1)
  • OSNRout -101og ⁇ 10" ⁇ +10 ⁇ ° ⁇
  • the damage model calculation unit where NF, h, v, and Wt are known quantities, and can be input according to the nominal signal-to-noise ratio between the input nodes (OSNRin) With the nominal power input (Pin), the nominal signal-to-noise ratio output (OSNRout) between the corresponding nodes can be calculated.
  • Figure 3 shows the relationship between the two service nodes of AB.
  • the nominal signal-to-noise ratio input and the nominal power input between the AB service nodes are known, for the service node From A to light, the input optical power and OSNR of optical amplifier 1 can be accurately calculated according to the stimulated Raman scattering (SRS) model of the fiber in the link. Then, using the model of optical amplifier 1, the optical amplifier 1 can be accurately calculated. Output optical power and OSNR, where the damage model includes the SRS model and the light-off model on each span. Similarly, the damage model is calculated for each span in turn, until the nominal SNR output between the nodes is calculated.
  • SRS stimulated Raman scattering
  • the point A to the node B are adjusted first.
  • the node A is the initial transmitting end node, the signal has not passed through the optical OA, and the light is fading, so no noise occurs, so the nominal signal to noise ratio between the ABs is considered.
  • the input is infinite, and the signal-to-noise ratio is the ratio of the normal signal power to the power of the noise in the optical signal transmission.
  • the nominal power input between the ABs is the nominal value of the OA, which can be found according to the OA manual. Enter the nominal SNR input between the AB and the nominal power input through the damage model After the calculation unit 202, the nominal signal to noise ratio output between the ABs is obtained. Then, the nominal deterioration degree of each service calculated by the inter-node OSNR nominal deterioration degree calculation unit 203 is the same.
  • the OSNR degradation coefficient calculation unit 201 can obtain different degradation coefficients, the granularity of the service or the size of the transmission distance value, and the OSNR degradation coefficient calculation unit according to the granularity and the transmission distance of the service.
  • the calculated degradation coefficient value is inversely proportional, that is, the service with the near-distance and small granularity is obtained by the OSNR degradation coefficient calculation unit, and a large degradation coefficient is obtained; after the OSNR degradation coefficient calculation unit is obtained, the service with a long distance and a large granularity is obtained. Smaller degradation factor. For example, for services 1, 2, and 3 in Fig.
  • the degradation coefficient of service 1 is 110%
  • the degradation coefficient of service 2 is 100%
  • the degradation coefficient of service 3 is 90%.
  • the service 1 having the highest degradation coefficient passes through the inter-node OSNR nominal degradation degree calculation unit 203, and enters the adjustment value calculation unit 204 to obtain the highest target degradation degree, which means that the service 1 is degraded after adjusting the optical power at point A.
  • the largest degree the purpose is to balance the BER value of each service. It can be seen that, when the subsequent adjustment value calculation unit 204 adjusts the optical power of each service as compared with the prior art, the degree of deterioration between the ABs is required to be different.
  • the node B is adjusted to the node C, and the node B is the relay transmitting node. Since Service 1 goes from Node A to Node B, services 2 and 3 continue to be transmitted between BCs. Since the signal-to-noise ratio does not change as long as it does not pass through the OA, the nominal signal-to-noise ratio input value of each subsequent segment from the second segment is the nominal signal noise of the previous segment. The output value of the ratio.
  • the nominal SNR input between BC is the nominal SNR output between AB.
  • the nominal power input between BC is the nominal value of OA, which is still available in the OA manual.
  • the nominal SNR input and nominal power input between BCs are passed through the damage model calculation unit 202 to obtain a nominal SNR output between the BCs.
  • the nominal degradation degrees of the respective services calculated by the inter-node OSNR nominal degradation degree calculation unit 203 are then the same. However, since the degradation coefficients of the services 2 and 3 are different, when the subsequent adjustment value calculation unit 204 adjusts the optical powers of the services 2 and 3, the degree of deterioration between the BCs is required to be different.
  • the point A to the node B is adjusted first, then the point B to the node C is adjusted, the target deterioration degree of the service 1 at the receiving end node B, and the services 2 and 3 are at the receiving end thereof.
  • the target deterioration degree of the node C is different, which is the result of intervention by the OSNR degradation coefficient. In this way, after the optical power is adjusted, a smaller BER value of each service can be obtained at the receiving end, and each BER value tends to be consistent, so that the receiving end obtains a relatively average transmission signal quality of each service.
  • an embodiment of the present invention further provides an optical power debugging method, where the method includes:
  • the target power adjustment value of each service at the transmitting end node is sent to the optical power adjusting unit on the transmitting end node, and the optical power is adjusted for each service.
  • the optical power modulation apparatus shown in FIG. 2 receives a signal on the transmitting end node and calculates a target optical power on the transmitting end node.
  • Both the node A and the node B in FIG. 1 can serve as the transmitting end node, so the optical power debugging device can receive the signal of the node A or the node B.
  • the adjustment value calculation unit 204 receives a nominal signal to noise ratio input sent by the transmitting end node; and the damage model calculation unit 202 receives the nominal signal noise between the nodes sent by the transmitting end node.
  • the inter-node OSNR nominal degradation degree calculation unit 203 receives the nominal signal to noise ratio input between the nodes transmitted by the transmitting end node, and the transmitting unit 205 transmits the target power adjustment value to the transmitting end.
  • the node adjusts the optical power of each service.
  • FIG. 4 is a schematic structural diagram of an optical power debugging system according to an embodiment of the present invention. In this embodiment, between nodes AB The optical power adjustment is taken as an example to illustrate the signal interaction with the optical power debugging device when the node A is used as the transmitting end. It should be noted that, in each unit of the optical power debugging apparatus in the foregoing embodiment, the received signal is not necessarily the signal on the transmitting end node, and the signal may be directly obtained from other devices such as the network management system or the OA.
  • the embodiment of the present invention further provides an optical power commissioning system, the system comprising: an optical power commissioning device and a transmitting end node connected to the optical power debugging device;
  • the optical power commissioning device is configured to calculate a corresponding degradation coefficient of each service according to the characteristics of the service; calculate a nominal signal to noise ratio output between the nodes according to a nominal signal to noise ratio input and a nominal power input between the nodes; The nominal signal-to-noise ratio input and output, calculate the nominal degradation degree of OSNR between nodes; calculate the target degradation degree of each service between nodes according to the corresponding degradation coefficient of each service and the nominal degradation degree of OSNR between nodes; Calculating the target optical power adjustment value of each service on the transmitting end node according to the target deterioration degree of each service;
  • the transmitting end node adjusts the optical power of the service on the transmitting end node according to the target optical power adjustment value calculated by the optical power debugging device.
  • the calculation of the corresponding degradation coefficient of each service includes, but is not limited to, the granularity and transmission distance of the service, and may also be based on the protection level and attributes of the service.
  • the deterioration degree of each service can be adjusted by the deterioration coefficient are within the protection range of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供了一种光功率调测方法,该方法包括:根据业务的特性,计算各个业务相应的劣化系数;根据节点间的标称信噪比输入和标称功率输入,计算节点间的标称信噪比输出;根据节点间的标称信噪比输入和输出,计算节点间OSNR的标称劣化度;根据各个业务相应的劣化系数以及节点间OSNR的标称劣化度,计算各个业务在节点间的目标劣化度;根据各个业务在节点间的目标劣化度计算各个业务在发送端节点上的目标光功率调节值;将各个业务在发送端节点上的目标功率调节值发送给发送端节点上的光功率调节单元,对各个业务进行光功率的调节。本发明还提供了一种光功率调测装置及系统。采用本发明能够平均接收端的传输信号质量。

Description

一种光功率调测方法、 装置及系统 本申请要求了 2011年 3月 29 日提交的, 申请号为 201110077267.7, 名 称为"一种光功率调测方法、装置及系统"的中国申请的优先权,其全部内容通 过引用结合在本申请中。 技术领域
本发明涉及光网络领域,特别涉及一种光功率调测方法、装置及系统。 背景技术
近年来, 随着网络传输技术的发展, 波分网络引起人们的广泛关注。 波分网络, 是指采用波分复用 ( WND )传输原理的光网络。 波分复用传输 是将两种或多种不同波长的光载波信号 (携带各种信息) 在发送端经复用 器 (亦称合波器, Multiplexer ) 汇合在一起, 并耦合到光线路的同一根光 纤中进行传输的技术; 在接收端, 经解复用器(亦称分波器或称去复用器, Demultiplexer ) 将各种波长的光载波分离, 然后由光接收机作进一步处理 以恢复原信号。 这种在同一根光纤中同时传输两个或众多不同波长光信号 的技术, 称为波分复用。
波分网络的接收端获取传输信号质量的好坏受发送端光功率的调测 的制约, 通过发送端光功率的调节, 使得接收端得到较好的业务性能, 一 般会在接收端检测各业务的误码率(BER )值, 各业务的 BER值数量级越 小, 且各业务的 BER值都趋于一致, 则说明接收端获得了较为平均的传输 信号质量。
由于现有技术中对于在同一光纤中传输的不同粒度及传输距离的业 务, 相同节点间的信噪比 (OSNR ) 的标称劣化度是一致的, 所以发送端 经过光功率调节后, 各个业务在相同节点间的目标劣化度也是一致的。 但 是,对于传输粒度及传输距离越大的业务,在接收端得到的 BER值就越大。 现有技术的光功率调测装置,并没有考虑不同业务的粒度及传输距离不同, 所以对光功率调节后, 在接收端得到的传输信号质量差别较大。 发明内容
本发明实施例提供了一种光功率调测方法, 能够平均接收端的传输信 号质量。
一种光功率调测方法, 该方法包括:
根据业务的特性, 计算各个业务相应的劣化系数;
根据节点间的标称信噪比输入和标称功率输入, 计算节点间的标称信噪 比输出;
根据节点间的标称信噪比输入和输出,计算节点间 OSNR的标称劣化度; 根据各个业务相应的劣化系数以及节点间 OSNR的标称劣化度, 计算各 个业务在节点间的目标劣化度; 根据各个业务在节点间的目标劣化度计算各 个业务在发送端节点上的目标光功率调节值;
将各个业务在发送端节点上的目标功率调节值发送给发送端节点上 的光功率调节单元, 对各个业务进行光功率的调节。
本发明实施例提供了一种光功率调测装置, 能够平均接收端的传输信 号质量。
一种光功率调测装置, 该装置包括:
信噪比 OSNR劣化系数计算单元, 用于根据业务的特性, 计算各个业务 相应的劣化系数;
损伤模型计算单元, 用于根据节点间的标称信噪比输入和标称功率输入, 计算节点间的标称信噪比输出;
节点间 OSNR标称劣化度计算单元, 用于根据节点间的标称信噪比输入 和节点间的标称信噪比输出, 计算节点间 OSNR的标称劣化度; 调节值计算单元, 用于根据各个业务相应的劣化系数以及节点间 OSNR 的标称劣化度, 计算各个业务在节点间的目标劣化度; 根据各个业务在节点 间的目标劣化度计算各个业务在发送端节点上的目标光功率调节值;
发送单元, 用于将各个业务在发送端节点上的目标功率调节值发送给 发送端节点上的光功率调节单元, 对各个业务进行光功率的调节。
本发明实施例提供了一种光功率调测系统, 能够平均接收端的传输信 号质量。
一种光功率调测系统, 该系统包括: 光功率调测装置以及与该光功率调 测装置连接的发送端节点;
光功率调测装置, 用于根据业务的特性, 计算各个业务相应的劣化系数; 根据节点间的标称信噪比输入和标称功率输入, 计算节点间的标称信噪比输 出; 根据节点间的标称信噪比输入和输出, 计算节点间 OSNR的标称劣化度; 根据各个业务相应的劣化系数以及节点间 OSNR的标称劣化度, 计算各个业 务在节点间的目标劣化度; 根据各个业务在节点间的目标劣化度计算各个业 务在发送端节点上的目标光功率调节值;
发送端节点, 根据光功率调测装置计算的目标光功率调节值, 对该发 送端节点上的业务进行光功率的调节。
本发明实施例的关键在于光功率调测装置中 OSNR劣化系数计算单元 的加入,也就是说考虑到不同业务具有不同的特性,例如粒度及传输距离、 服务质量 (Qos ) 等, 当考虑业务的粒度及传输距离时, 将距离近、 粒度 小的业务经 OSNR劣化系数计算单元后, 得到较大的劣化系数, 从而在调 节值计算单元中调高该业务的目标劣化度; 将距离远、 粒度大的业务经
OSNR劣化系数计算单元后, 得到较小的劣化系数, 从而调低该业务的目 标劣化度。 这样, 根据光信号传输原理, 距离近、 粒度小的业务的劣化度 被调节的相对较大, 距离远、 粒度大的业务的劣化度被调节的相对较小, 从而在接收端得到各个业务的较小 BER值, 且各 BER值基本趋于一致, 说明接收端获得了较为平均的各个业务的传输信号质量。 附图说明
图 1为不同粒度及不同传输距离的三个业务在同一光纤中传输的波分 网络的组网示意图。
图 2为本发明实施例光功率调测装置的示意图。
图 3为 AB两个业务节点间包含 N个光放节点的示意图。
图 4为本发明实施例光功率调测系统的结构示意图。 具体实施方式 为使本发明的目的、 技术方案、 及优点更加清楚明白, 以下参照附图 并举实施例, 对本发明进一步详细说明。
图 1为不同粒度及不同传输距离的三个业务在同一光纤中传输的波分 网络的组网示意图。
业务 1和业务 2的粒度为 10G ( Gbits/s, 千兆比特每秒) , 业务 3的 粒度为 40G, 业务 1的传输距离较短, 从节点 A到节点 B , 业务 2和 3的 传输距离较长, 从节点 A到节点 C。 三个业务分别代表不同粒度及不同传 输距离的三个光信号。
对光功率的调测一般都是分段的, 也就是说先调节点 A到节点 B , 再 调节点 B到节点 C。 本发明实施例光功率调测装置如图 2所示, 包括:
OSNR劣化系数计算单元 201 , 用于根据业务的特性, 计算各个业务相应 的劣化系数; 其中, 业务的特性包括但不限于业务的粒度及传输距离、 服务 质量 Qos等。 所述业务的粒度或者传输距离值的大小, 与通过 OSNR劣化系 数计算单元计算得到的劣化系数值成反比; 所述业务的服务质量参数的大小, 与通过 OSNR劣化系数计算单元计算得到的劣化系数值成反比。
损伤模型计算单元 202,用于根据从发送端节点获取的节点间的标称信噪 比输入和标称功率输入, 计算节点间的标称信噪比输出;
节点间 OSNR标称劣化度计算单元 203 , 用于根据从发送端节点获取的 节点间的标称信噪比输入和从损伤模型计算单元获取的节点间的标称信噪比 输出, 计算节点间 OSNR的标称劣化度; 具体地, 根据劣化度公式(2 ): OSNR劣化度 = ^ ^ , 其中,
OSNRout OSNRin
OSNRin 和 OSNRout分别为节点间的标称信噪比输入和输出, 计算节点间 OSNR的标称劣化度。
调节值计算单元 204 , 用于根据各个业务相应的劣化系数以及节点间 OSNR 的标称劣化度, 计算各个业务在节点间的目标劣化度; 根据各个业务 在节点间的目标劣化度计算各个业务在发送端节点上的目标光功率调节值; 现有技术中, 各个业务在节点间的标称劣化度与目标劣化度是相同的, 而本发明实施例中加入了劣化系数, 根据公式( 3 ):第 i条业务的目标劣化度 =标称劣化度 X劣化系数, 计算各个业务在节点间的目标劣化度。 接下来, 根据劣化度公式 (2 ) OSNR劣化度 = ^ ^ , 其中,
OSNRout OSNRin
OSNR劣化度为各个业务在节点间的目标劣化度, OSNRin为节点间的标称信 噪比输入, 计算得到节点间的目标信噪比输出; 根据公式 ( 1 ) :
(OSNRin) Pm-NF-101og(hvWt)^
OSNRout = -101og{10" + 10 Γο } , 其中, OSNRout为节点间的目标信 噪比输出, OSNRin为节点间的标称信噪比输入, NF为发送端节点上 OA的 噪声系数, h为普朗克常量, V为光的频率, Wt为噪声带宽, 计算各个业务 在发送端节点上的目标光功率调节值 Pin。
发送单元 205 , 用于将各个业务在发送端节点上的目标功率调节值发 送给发送端节点上的光功率调节单元, 对各个业务进行光功率的调节; 其中, 所述业务在节点间传输, 所述节点间为相邻两个业务节点间, 其中相邻两个节点中的前一个节点为发送端节点, 业务节点指的是有业务 上下的场景。 首先介绍一下损伤模型计算单元, 该单元可以在输入发送端业务的光 功率输入及信噪比输入的情况下, 计算得到接收端业务的光功率输出及信 噪比输出。 具体的模型建立, 需要大量的信息, 信息越详细, 模型越准确, 即根据输入得到的输出越接近真实值。 所述信息, 不仅需要考虑光纤的色 散斜率、 衰减、 非线性系数、 有效面积等, 还要考虑单板的差损、 光放的 噪声系数及光纤传输过程中各种信噪比代价等, 然后通过对光放中波长间 的相互影响关系和链路信噪比值进行建模, 从而能够在输入发送端业务的 光功率输入及信噪比输入的情况下, 准确计算得到接收端业务的光功率输 出及信噪比输出。 所以损伤模型计算单元的建立也是随着实践不断完善修 正 的 过 程 。 筒 单 举 例 来 说 , 假 设 根 据 公 式 ( 1 )
OSNRin. ^.Pm-NF-lQlogChvWt)^
OSNRout = -101og{10" ~ +10 ~° }得到的损伤模型计算单元, 其中, NF、 h、 v和 Wt 为已知量, 可以根据输入的节点间的标称信噪比输入 ( OSNRin ) 与标称功率输入(Pin ) , 就可以筒单的计算出对应的节点间 的标称信噪比输出 (OSNRout ) 。 为了清楚地说明损伤模型计算单元, 图 3为 AB两个业务节点间包含 N个光放节点的示意图。 其中, 光放节点指 的是该节点上只有光放, 没有业务的上下。 已知 AB业务节点间的标称信 噪比输入和标称功率输入, 对于业务节点 A至光放 1段, 根据链路中光纤 的收激拉曼散射( SRS )模型可以准确计算出光放 1的输入光功率和 OSNR, 再利用光放 1的模型, 可以准确计算出光放 1的输出光功率和 OSNR, 其 中损伤模型包括每个跨段上的 SRS模型和光放模型。 同理依次对每个跨段 都用损伤模型计算, 直到计算得到节点间的标称信噪比输出。
根据图 1 , 先调节点 A到节点 B , 此时节点 A为初始发送端节点, 信 号还没有经过光放 OA, 及光衰等, 所以没有出现噪声, 因此认为 AB 间 的标称信噪比输入为无穷大, 信噪比是光信号传输中正常的信号功率与噪 声的功率的比值。 AB间的标称功率输入为 OA的标称值, 该值根据 OA手 册可以查得。 将 AB间的标称信噪比输入和标称功率输入, 通过损伤模型 计算单元 202后, 就得到 AB间的标称信噪比输出。 接着节点间 OSNR标 称劣化度计算单元 203计算得到的各个业务的标称劣化度是相同的。
当考虑到不同业务的粒度和传输距离时, OSNR劣化系数计算单元 201 能够按照业务的粒度和传输距离, 得到不同的劣化系数, 业务的粒度或者 传输距离值的大小, 与通过 OSNR劣化系数计算单元计算得到的劣化系数 值成反比,也就是说距离近、粒度小的业务经 OSNR劣化系数计算单元后, 得到较大的劣化系数; 距离远、 粒度大的业务经 OSNR劣化系数计算单元 后, 得到较小的劣化系数。 例如, 对于图 1中的业务 1、 2和 3 , 得到业务 1的劣化系数为 110%, 业务 2的劣化系数为 100% , 业务 3的劣化系数为 90%。 劣化系数最高的业务 1经过节点间 OSNR标称劣化度计算单元 203 , 进入调节值计算单元 204后, 得到最高的目标劣化度, 这就意味着在调节 A点的光功率后, 业务 1的劣化度最大, 目的是平衡各个业务的 BER值。 可以看出, 与现有技术相比, 后续调节值计算单元 204对每个业务的光功 率进行调节时, 要求在 AB间的劣化度就已经不同。
进而, 调节节点 B到节点 C, 此时节点 B为中继发送端节点。 因为业 务 1从节点 A到节点 B , 所以在 BC间继续传输的是业务 2和 3。 由于只 要不经过 OA, 那么信噪比不会发生改变, 所以, 从第二段开始, 后面每 段的标称信噪比输入值, 就是在标称情况下的, 前一段的标称信噪比的输 出值。 BC间的标称信噪比输入为 AB间的标称信噪比输出。 BC间的标称 功率输入为 OA的标称值, 该值仍然根据 OA手册可以查得。 将 BC间的 标称信噪比输入和标称功率输入, 通过损伤模型计算单元 202后, 就得到 BC 间的标称信噪比输出。 接着由节点间 OSNR标称劣化度计算单元 203 计算得到的各个业务的标称劣化度是相同的。 但是由于业务 2和 3的劣化 系数不同, 所以后续调节值计算单元 204对业务 2和 3的光功率进行调节 时, 要求在 BC间的劣化度也是不同的。
从上述可以看出, 通过分段的光功率调节, 每一节点间各个业务的目 标劣化度就出现差异, 上述实施例中为先调节点 A到节点 B , 再调节点 B 到节点 C, 业务 1在其接收端节点 B的目标劣化度, 以及业务 2和 3在其 接收端节点 C的目标劣化度各不相同,这正是通过 OSNR劣化系数进行干 预的结果。 这样, 经过光功率调节后, 就可以在接收端得到各个业务的较 小 BER值, 且各 BER值基本趋于一致, 从而使得接收端获得较为平均的 各个业务的传输信号质量。
与装置相对应, 本发明实施例还提供了一种光功率调测方法, 该方法包 括:
根据业务的特性, 计算各个业务相应的劣化系数;
根据节点间的标称信噪比输入和标称功率输入, 计算节点间的标称信噪 比输出;
根据节点间的标称信噪比输入和输出,计算节点间 OSNR的标称劣化度; 根据各个业务相应的劣化系数以及节点间 OSNR的标称劣化度, 计算各 个业务在节点间的目标劣化度; 根据各个业务在节点间的目标劣化度计算各 个业务在发送端节点上的目标光功率调节值;
将各个业务在发送端节点上的目标功率调节值发送给发送端节点上的 光功率调节单元, 对各个业务进行光功率的调节。
图 2所示的光功率调测装置接收发送端节点上的信号, 对发送端节点上 的目标光功率进行计算。 对于图 1中的节点 A和节点 B都可以作为发送端节 点, 所以光功率调测装置可以接收节点 A或者节点 B的信号。 具体地, 结合 图 1和图 2, 所述调节值计算单元 204接收发送端节点发送的标称信噪比输 入; 所述损伤模型计算单元 202接收发送端节点发送的节点间的标称信噪比 输入和标称功率输入, 所述节点间 OSNR标称劣化度计算单元 203接收发送 端节点发送的节点间的标称信噪比输入, 所述发送单元 205将目标功率调节 值发送给发送端节点, 对各个业务进行光功率的调节。 如图 4所示。 图 4为 本发明实施例光功率调测系统的结构示意图。在该实施例中, 以节点 AB间的 光功率调节为例, 示意出节点 A作为发送端时, 与光功率调测装置之间的信 号交互。 需要注意的是, 上述实施例中光功率调测装置的各个单元, 接收的 不一定是发送端节点上的信号, 也可以从网管或者 OA等其他设备上直接获 取信号。
因此, 本发明实施例还提供了一种光功率调测系统, 该系统包括: 光功 率调测装置以及与该光功率调测装置连接的发送端节点;
光功率调测装置, 用于根据业务的特性, 计算各个业务相应的劣化系数; 根据节点间的标称信噪比输入和标称功率输入, 计算节点间的标称信噪比输 出; 根据节点间的标称信噪比输入和输出, 计算节点间 OSNR的标称劣化度; 根据各个业务相应的劣化系数以及节点间 OSNR的标称劣化度, 计算各个业 务在节点间的目标劣化度; 根据各个业务在节点间的目标劣化度计算各个业 务在发送端节点上的目标光功率调节值;
发送端节点, 根据光功率调测装置计算的目标光功率调节值, 对该发 送端节点上的业务进行光功率的调节。
另外, 需要说明的是, 各个业务相应劣化系数的计算, 包括但不限于 业务的粒度及传输距离, 还可以根据业务的保护级别、 属性等。 只要能够 将各个业务的劣化度通过劣化系数进行调整的各种实施例都在本发明的保 护范围内。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在 本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包 含在本发明保护的范围之内。

Claims

权利 要求 书
1、 一种光功率调测方法, 其特征在于, 该方法包括:
根据业务的特性, 计算各个业务相应的劣化系数;
根据节点间的标称信噪比输入和标称功率输入, 计算节点间的标称信噪比 输出;
根据节点间的标称信噪比输入和输出, 计算节点间 OSNR的标称劣化度; 根据各个业务相应的劣化系数以及节点间 OSNR的标称劣化度, 计算各个 业务在节点间的目标劣化度; 根据各个业务在节点间的目标劣化度计算各个业 务在发送端节点上的目标光功率调节值;
将各个业务在发送端节点上的目标功率调节值发送给发送端节点上的光功 率调节单元, 对各个业务进行光功率的调节。
2、 如权利要求 1所述的方法, 其特征在于, 根据公式(3 ) :第 i条业务的 目标劣化度=标称劣化度 X劣化系数, 计算所述各个业务在节点间的目标劣化 度。
3、 如权利要求 2所述的方法, 其特征在于, 所述业务的特性为业务的粒度 及传输距离, 所述业务的粒度或者传输距离值的大小, 与通过 OSNR劣化系数 计算单元计算得到的劣化系数值成反比。
4、 如权利要求 2所述的方法, 其特征在于, 所述业务的特性为业务的服务 质量 QoS, 所述业务的服务质量参数的大小, 与通过 OSNR劣化系数计算单元 计算得到的劣化系数值成反比。
5、 一种光功率调测装置, 其特征在于, 该装置包括:
信噪比 OSNR劣化系数计算单元, 用于根据业务的特性, 计算各个业务相 应的劣化系数;
损伤模型计算单元, 用于根据节点间的标称信噪比输入和标称功率输入, 计算节点间的标称信噪比输出;
节点间 OSNR标称劣化度计算单元, 用于根据节点间的标称信噪比输入和 节点间的标称信噪比输出, 计算节点间 OSNR的标称劣化度;
调节值计算单元, 用于根据各个业务相应的劣化系数以及节点间 OSNR的 标称劣化度, 计算各个业务在节点间的目标劣化度; 根据各个业务在节点间的 目标劣化度计算各个业务在发送端节点上的目标光功率调节值;
发送单元, 用于将各个业务在发送端节点上的目标功率调节值发送给发送 端节点上的光功率调节单元, 对各个业务进行光功率的调节。
6、 如权利要求 5所述的装置, 其特征在于, 所述调节值计算单元根据公式 ( 3 ) :第 i条业务的目标劣化度=标称劣化度 X劣化系数, 计算所述各个业务在 节点间的目标劣化度。
7、 如权利要求 6所述的装置, 其特征在于, 所述业务的特性为业务的粒度 及传输距离。
8、 如权利要求 6所述的装置, 其特征在于, 所述业务的特性为业务的服务 质量 QoS。
9、 一种光功率调测系统, 其特征在于, 该系统包括: 光功率调测装置以及 与该光功率调测装置连接的发送端节点;
光功率调测装置, 用于根据业务的特性, 计算各个业务相应的劣化系数; 根据节点间的标称信噪比输入和标称功率输入, 计算节点间的标称信噪比输出; 根据节点间的标称信噪比输入和输出, 计算节点间 OSNR的标称劣化度; 根据 各个业务相应的劣化系数以及节点间 OSNR的标称劣化度, 计算各个业务在节 点间的目标劣化度; 根据各个业务在节点间的目标劣化度计算各个业务在发送 端节点上的目标光功率调节值;
发送端节点, 根据光功率调测装置计算的目标光功率调节值, 对该发送端 节点上的业务进行光功率的调节。
10、 如权利要求 9所述的系统, 其特征在于, 所述光功率调测装置包括: OSNR劣化系数计算单元,用于根据业务的特性,计算各个业务相应的劣化 系数; 损伤模型计算单元, 用于根据节点间的标称信噪比输入和标称功率输入, 计算节点间的标称信噪比输出;
节点间 OSNR标称劣化度计算单元, 用于根据节点间的标称信噪比输入和 节点间的标称信噪比输出, 计算节点间 OSNR的标称劣化度;
调节值计算单元, 用于根据各个业务相应的劣化系数以及节点间 OSNR的 标称劣化度, 计算各个业务在节点间的目标劣化度; 根据各个业务在节点间的 目标劣化度计算各个业务在发送端节点上的目标光功率调节值;
发送单元, 用于将各个业务在发送端节点上的目标功率调节值发送给发送 端节点上的光功率调节单元, 对各个业务进行光功率的调节。
11、 如权利要求 10所述的系统, 其特征在于, 所述业务的特性为业务的粒 度及传输距离。
12、 如权利要求 10所述的系统, 其特征在于, 所述业务的特性为业务的服 务质量 QoS。
PCT/CN2012/071428 2011-03-29 2012-02-22 一种光功率调测方法、装置及系统 WO2012130001A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2013143627/07A RU2013143627A (ru) 2011-03-29 2012-02-22 Способ, устройство и система для мониторинга и регулирования оптической мощности
EP12763486.3A EP2662995A4 (en) 2011-03-29 2012-02-22 METHOD, DEVICE AND SYSTEM FOR DEBUGGING OPTICAL POWER
US14/040,112 US20140029937A1 (en) 2011-03-29 2013-09-27 Method, apparatus, and system for monitoring and adjusting optical power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110077267.7 2011-03-29
CN201110077267.7A CN102142903B (zh) 2011-03-29 2011-03-29 一种光功率调测方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/040,112 Continuation US20140029937A1 (en) 2011-03-29 2013-09-27 Method, apparatus, and system for monitoring and adjusting optical power

Publications (1)

Publication Number Publication Date
WO2012130001A1 true WO2012130001A1 (zh) 2012-10-04

Family

ID=44410161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071428 WO2012130001A1 (zh) 2011-03-29 2012-02-22 一种光功率调测方法、装置及系统

Country Status (5)

Country Link
US (1) US20140029937A1 (zh)
EP (1) EP2662995A4 (zh)
CN (1) CN102142903B (zh)
RU (1) RU2013143627A (zh)
WO (1) WO2012130001A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142903B (zh) * 2011-03-29 2014-04-02 华为技术有限公司 一种光功率调测方法、装置及系统
WO2012119364A1 (en) * 2011-07-27 2012-09-13 Huawei Technologies Co., Ltd. Method and apparatus for determining an optical signal-to-noise ratio (OSNR) penalty
CN103095370B (zh) 2011-11-03 2016-05-18 华为技术有限公司 波分复用光网络扩容调测的方法及控制器
EP2924891A4 (en) * 2012-12-07 2015-11-11 Huawei Tech Co Ltd AUTOMATIC CURRENT TEST METHOD AND FIRST ROADM STATION THEREFOR
EP2930869A1 (en) * 2014-04-08 2015-10-14 Alcatel Lucent Setting the power of a plurality of optical signals in an optical network
CN106487733B (zh) * 2015-08-31 2019-10-01 华为技术有限公司 一种通信方法、发送端、接收端及系统
CN113630180B (zh) * 2020-05-06 2022-10-18 华为技术有限公司 光功率调测的方法、调测系统、控制设备以及调测站点

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505190A (zh) * 2008-02-04 2009-08-12 华为技术有限公司 一种光功率调测方法和设备
CN101656589A (zh) * 2008-08-21 2010-02-24 华为技术有限公司 一种dwdm网络信道优化的方法和装置
US7769302B1 (en) * 2007-03-13 2010-08-03 At&T Intellectual Property Ii, L.P. Method and apparatus for adjusting for polarization-induced, optical signal transients
CN102142903A (zh) * 2011-03-29 2011-08-03 华为技术有限公司 一种光功率调测方法、装置及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3720112B2 (ja) * 1996-03-18 2005-11-24 富士通株式会社 波長分割多重が適用されるシステム及び光パワー制御装置
JP4671478B2 (ja) * 2000-08-08 2011-04-20 富士通株式会社 波長多重光通信システムおよび波長多重光通信方法
US6961525B2 (en) * 2000-11-17 2005-11-01 Sycamore Networks, Inc. Method for channel balance
JP4053389B2 (ja) * 2002-09-19 2008-02-27 富士通株式会社 光信号対雑音比のモニタ方法およびそれを用いた光伝送システム
JP4340567B2 (ja) * 2004-03-17 2009-10-07 富士通株式会社 端局装置、光出力パワーの制御方法及び光出力パワー制御プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7769302B1 (en) * 2007-03-13 2010-08-03 At&T Intellectual Property Ii, L.P. Method and apparatus for adjusting for polarization-induced, optical signal transients
CN101505190A (zh) * 2008-02-04 2009-08-12 华为技术有限公司 一种光功率调测方法和设备
CN101656589A (zh) * 2008-08-21 2010-02-24 华为技术有限公司 一种dwdm网络信道优化的方法和装置
CN102142903A (zh) * 2011-03-29 2011-08-03 华为技术有限公司 一种光功率调测方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2662995A4 *

Also Published As

Publication number Publication date
CN102142903B (zh) 2014-04-02
CN102142903A (zh) 2011-08-03
EP2662995A4 (en) 2014-07-23
RU2013143627A (ru) 2015-04-10
EP2662995A1 (en) 2013-11-13
US20140029937A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
WO2012130001A1 (zh) 一种光功率调测方法、装置及系统
WO2017193849A1 (zh) 一种光调顶信号的传输方法、装置及存储介质
US8045852B2 (en) Channel balancing algorithm
US20090274464A1 (en) Method, system and device for setting up wavelength connection
ES2623913T3 (es) Método y equipo para balancear el funcionamiento de enlaces
JP6513589B2 (ja) 光通信システム及び通信装置
US8494360B2 (en) In-service optical network testing
US7400830B2 (en) Quality monitoring method and apparatus for wavelength division multiplexed optical signal and optical transmission system using the same
WO2013167074A2 (zh) 一种光信噪比检测的方法、系统和设备
JP2013528982A (ja) 光受信機の電力最適化
US10841005B2 (en) Closed loop module control for communication based on signal quality
US11575448B1 (en) System and methods for coherent burst reception
US8254788B2 (en) High speed in-service optical network testing
WO2013063936A1 (zh) 波分复用光网络扩容调测的方法及控制器
WO2020181549A1 (en) Power saving mechanisms for high speed passive optical network
JP2004515186A (ja) 性能監視方法、光増幅器、光伝送リンク
JP4625284B2 (ja) 光伝送装置
JP2014501081A (ja) 複数ステージの偏光モード分散補償装置及び方法
WO2014086044A1 (zh) 自动功率调测方法和第一roadm站点
JP2012058252A (ja) ファイバスパンの損失および分散の測定
US6634807B1 (en) Optical transmission system including performance optimization
US6961525B2 (en) Method for channel balance
JP2008277893A (ja) マルチレートponシステムとその局側装置、端末装置及び伝送レート設定方法
JP5909154B2 (ja) コヒーレント光受信回路及びコヒーレント光受信方法
Waqar et al. A performance analysis of 5G fronthaul networks for long-distance communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012763486

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013143627

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE